Zürcher Hochschule für Angewandte Wissenschaften

1st European COST Conference on Mathematics for Industry in Switzerland

Deep Fault Detection

-- An Unsupervised Representation to Detect Anomalies in Raw Condition Monitoring Signals

Yang Hu¹, Thomas Palmé², and Olga Fink^{1*}

¹Zurich University of Applied Sciences, Rosenstr. 3, Winterthur, 8401, Switzerland,

²General Electric (GE) Switzerland, Brown Boveri Str. 7, Baden, 5401, Switzerland

2016.09.12

Relevance of the problem

zh aw

Early warnings and fault detections of the key components in industry systems

Generator

- Key component of power plants
- Penalties in case of power supply shortage
- Increase efficiency, reduce operation costs (without sacrificing reliability)

Bearing

Responsible of about **40%** of the failures in industrial motors.

Data-Driven approach

Sensor system

Step 1

Step 3 **Model Development**

Feature engineering: Issues

• Raw signal measurements affected by noise

Feature engineering: Issues

- Measurements affected by noise
- Available measurements not directly related to degradation / fault progression
- Measurements partially non-informative, or redundant

Feature engineering: Target

- Specific for the system or equipment
- Intensive time and human resource consumption

Zürcher Hochschule für Angewandte Wissenschafter

From feature engineering to feature learning

edges

combinations of edges

object models

Hierarchical Extreme Learning Machines (HELM)

Reference Case Study 1:

Fault detection of generator in combined cycle power plant

Generator condition monitoring

Large quantity of health related signals

Sensing and Data Transmission Devices

188 signals

Sensor	Tasks	Number					
partial discharge monitoring PD	detect aging of the main insulation, loose bars or contact as well as contamination	16					
rotor shaft voltage RSV	detect shaft grounding problems, shaft rubbing, electro erosion, bearing isolation problems and rotor inter-turn shorts						
stator end winding vibration	detect deterioration in mechanical stiffness of overhang support system						
rotor flux RF	detect the occurrence, the magnitude and the location of the rotor winding inter- turn short circuit	32					

zh aw

Application

Based on the operation records of the generator, an anomaly, and a fault were observed on day 169 and 247 respectively

Only the "base load" observations (totally 55'774 observations) are considered in this case study \rightarrow the overall dimension of signal set is 55'774x188

Evaluation of feature learning approach: a comparison

Perform the anomaly/fault detection of generator using different signals and feature extraction approaches

Different signals as input

Different feature extraction approaches

Zürcher Hochschule für Angewandte Wissenschaften

Experiment design

Without signal processing		Expert knowledge	Traditional feature extraction approach		Our approach		
	Raw signal	Manual	Principle Component Analysis		HELM		
	Input dimension	Selected input dimension	Number of input PCs	Variance explained	Number of layers	Hidden neurons in each layer	
PD	16 signals	Select 3 from 16 signals	3	88.6%	2	10,50	
RSV	7 signals	Select 2 from 7 signals	3	82.2%	2	3,20	
wv	133 signals	Select 5 from 133 signals	30	85.3%	3	50,10,50	
RF	32 signals	Select 4 from 32 signals	15	80.8%	2	10,50	
All signals	188 signals	Select 8 from 188 signals	30	81.1%	3	50,10,50	

Manually selected signals

Very time consuming process: 8 "good" signals from 188 raw signals by experienced engineers

Zürcher Hochschule für Angewandte Wissenschafter

Detection results: Principle Component Analysis

Detection results: HELM

Detection results: overall

	Raw signal		Principle Component Analysis		Manual		HELM	
	Anomaly	Fault	Anomaly	Fault	Anomaly	Fault	Anomaly	Fault
PD	Yes	No	Yes	No	Yes	No	Yes	No
RSV	Yes	No	Yes	No	Yes	No	Yes	No
WV	No	No	No	No	No	Yes	No	Yes
RF	No	No	No	Yes	No	Yes	No	Yes
All signals	No	No	No	No	Yes	Yes	Yes	Yes

Performance

Raw signal < Principle Component Analysis < Manual = HELM

Reference Case Study 2:

Health indicator extraction of bearings under accelerated degradation tests

Accelerated degradation test

Experimental Platform of "PRONOSTIA" IEEE PHM 2012 Data Challenge

Signals from **three bearings** are considered: Working condition: 1800 rpm, 4000 N. Life: 27990, 23740 and 14270 seconds. vibration signals frequency: 2560 samples per 10 seconds (with some time gaps). dimensions of the raw signals: 1629 × 2560, 2371 × 2560, 1425 × 2560

Zürcher Hochschule für Angewandte Wissenschaften

Experiment design

Bearing 2 and 3

Learned Features (bearing 2)

STD: standard deviation of vibration signal DWT: Discrete wavelet transform using Sym6 basis at level 3

Learned Features (bearing 3)

STD: standard deviation of vibration signal DWT: Discrete wavelet transform using Sym6 basis at level 3

Conclusion

z

Pros:

- 1. Capable to handle high-dimensional complicated raw signals;
- 2. No need for expert knowledge for feature engineering;
- 3. Strong adaptability to any learning problems

Cons:

- 1. Large training datasets required
- → however, just require data representing "normal" system state
- 2. "Black box"-approach \rightarrow difficult to explain the results from the physical point of view
- → additional approaches required to identify signals with the biggest influence on the anomaly for physical interpretation, a "pre-selection" for the engineers.

Deep Fault Detection

-- An Unsupervised Representation to Detect Anomalies in Raw Condition Monitoring Signals

Deep Autoencoder

THANK YOU!

Yang Hu¹, Thomas Palmé², and Olga Fink^{1*}