Condition Based Logistics: Calculation of Process Capacity

Bob Huisman

Manager Maintenance Research & Development at NS/NedTrain, Netherlands

1st COST Conference on Mathematics for Industry in Switzerland ZHAW - Winterthur - 2016

Outline

CBM Business Problem

- 2 Logistic Context
- 3 Solution Method
- Implementation
- 5 Results

• Maintenance jobs are triggered by condition of individual components

- Technically
 - preventive maintenance
- Logistically:
 - Planned inspections
 - Unplanned replacements and repairs
 - Significant variation in workload
- Train operation versus maintenance services
 - Train operation schedules train types
 - Maintenance services schedules trains as physical units

- To what extent can the rail infrastructure accommodate CBM?
 - Do shunting yards have sufficient process capacity?
 - What is the effect of modern train design on it?
- How to assess infrastructure modifications?
- Obtain an objective quantitative method to calculate process capacity

- Capacity is expressed in track or train length only
 - Process capacity emerges from daily practice
 - Result depends strongly on individual staff skills
- Required to take into account
 - Shunting and combining trains
 - Service and maintenance jobs
 - Access to dedicated platforms and machines
- No computational method available for overall process capacity
 - Poor support for investment decisions

Daily Logistic Problem (Example)

B4, B6: Train type

I, R, C, W: Job Type

Site Layout (Example)

- On-site process planner has to solve every day a different logistic problem, taking into account
 - Site characteristics
 - Resources availability
 - Process regulations
- Process capacity depends on the planner's ability to solve these problems in practice
- Core problem is planning
 - Shunting (Routing Problem, Rush Hour Problem)
 - Parking (Multi-Knapsack Problem)
 - Services (Resource Constrained Multi-Project Scheduling Problem)
 - Splitting and combining of trains
 - Mapping of incoming trains to outgoing trains
- Process capacity reflects *maximum work package* of shunting and service jobs for which feasible plans can be found

Capacity Measure Dimensions

- Trade off between number of trains and all services provided
- Process capacity measure should be multi-dimensional: (number of trains, fleet composition, job_type_W%, job_type_C%, ...)

Definition

The process capacity of a shunting yard is the Pareto front of work package parameters for which a feasible plan can be found (within a specified amount of time) with respect to the available resources.

Mathematics for Industry in Switzerland 2016

11 / 20

Definition

The process capacity of a shunting yard is the Pareto front of distribution parameters that describe work packages such that for at least a specified percentage of these packages a feasible plan can be found (within a specified amount of time) with respect to the available resources.

Condition Based Logistics: Calculation of Process Capacity

Pareto Front Analyzer

Condition Based Logistics: Calculation of Process Capacity

- Modular fit into Pareto Front Analyzer
- Up-till now three approaches
 - Flexible Flow Shop (heuristic) \rightarrow Shunting (exact)
 - Resource Constrained Schedule (heuristic) \rightarrow Shunting (exact)
 - Monolithic (heuristic)
 - Single initial solution (resource feasible, not time feasible)
 - Simulated annealing

Shunting: Train Repositioning Makes the Difference

Condition Based Logistics: Calculation of Process Capacity

Computational Results: Case Example

Computational Results: Effect of Job Type W Ratio

Computational Results: Effect of Job Type C Team Size

- Compare systematically with human planners' performance
- Improve and extend planning algorithms
- Better understanding of influencing factors
 - site layout
 - logistic problem characteristics
 - applied heuristics
- Empirical research to obtain more data on process variations and correlations

Thanks for Your Attention! Any Questions?

