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Benefits of Predictive Maintenance
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Predictive Maintenance
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Detection Diagnostics

Detecting that there is Diagnosing the type of Predicting the probability
an anomaly in the problem occurring, of the monitored
behavior of the identifying the affected component failing within
monitored component components atime frame

Being able to identify when a failure is about to occur: no unexpected failures
Specific target actions identified for affected components

Less troubleshooting time

Fewer maintenance interventions necessary

Minimal inspections on field

Reduced downtimes

An efficient tool for scheduling maintenance operations
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The Promise of Data Science

m Difference with respect to classical statistics:
Classical statistics:

» Estimate p parameters from n samples ( p << n). Usually p is quite small
» Test a hypothesis about data . Example : gaussian distribution

Big Data’:

= Estimate p parameters from n samples ,but p can be very large
= Discover structures without a priori knowledge

m Successes of Data Science:
» Data Analysis : Clustering, Visualization
» Learning: Classification, Regression
= Ability to manage and store huge amount of data ( e.g. Map/ Reduce, Spark, Hadoop)
» |n progress: ‘deep learning’

®m Limitations of Data Science for PHM today:

= Requires typically much larger data sets than are available from field (learning normal and
abnormal operations: continuous analog measurements)

= Mathematical challenge of high-dimensional spaces ( large p)
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Motivation

®m PHM goal: detection, diagnostics and prognostics of a target
component in presence of different sources of uncertainty.

- present uncertainty (e.g. noisy measurements)

- future uncertainty (e.g. loading and operating conditions)

- modeling uncertainty (e.g. model parameters, unmodeled dynamics).

m Availability of a robust set of data is crucial for design of effective
PHM algorithms.

m Field data only are generally not informative enough for the purpose
of designing a PHM algorithm:

- Time for degradation excessively long, evolution difficult to track.

m Therefore Prototyping approach is proposed to address
the issue of lack of representative data.
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CBM International Standard

B Open System Architecture for Condition-Based Maintenance.

B OSA-CBM is an implementation of ISO-13374 functional standard.

Data-driven models.

Advisory Generation (AG) '

— —=  Physics-based models

Health Assessment (HA) '

State Detection (SD) '

Data Manipulation (DM) '

Data Acquisition (DA) '

\Hybrid models
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Data-driven (DD) prognostics models

® Use condition monitoring data and/or historical event data collected
from the asset to automatically learn a model of system behavior and to

predict failures.
Example techniques: ANN, SOM, SVM, HMM, regression analysis, etc.

, _ _ , + Large amount of data required (healthy and
Relatively easy to implement, flexible, cost-effective. deteriorated conditions)

« Performance highly dependent on the quality
of operational data

« Computational load can be demanding

* No physical understanding

m Application of data-driven techniques entails:

(i) Learning/training: mapping (M1) from features to damaged state

mapping (M2) from operational conditions to damage growth rate

(i) Prediction: use M1 to assess health based on latest measurements

use M2 to estimate future damage evolution based on a future mission profile
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Example: data-driven prognostics for bearings

m Tobon et al. 2012: “A Data-Driven Failure Prognostics Method based on Mixture of
Gaussians Hidden Markov Models”

® Two phases:

(i) Off-line: sensor data processed to extract features (Wavelet Packet Decomposition
coefficients), learning of MoG-HMMs for different initial states/operating conditions.

(i)  Online: assessment of current state (Viterbi algorithm) and RUL estimation.
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Physics-based (PB) prognostics models

m Accurate mathematical model for component degradation (e.g. crack growth)
required for each failure mechanism.

Examples: equations derived from fundamental laws of physics, empirical models, FE, etc.

. » Lack of knowledge about physics of failure.
* Intuitive results. .
o : L + Implementation costly compared to DD.
» Limited amount of data required (e.g. calibration). . . .
« Component- and failure mechanism-specific,

» Accurate predictions achieved if detailed . -
. S . limited flexibility
knowledge about failure mechanism is available.

m Mathematical model used to predict future process evolution:

. » Degradation parameters (subset of ©)
X(t) — f(t, x(t)g t u t jv(t)) tracked using filtering techniques (e.g.

particle filters, Kalman filter, etc) or

y(t) — h(tj X(t), G(t)? u(t)’ Il(t)) pre-calculated (e.g. look-up tables) for

efficient online implementation.

m Uncertainty management schemes to account for model
approximations/simplifications.

m Field/Experimental data may be required for model tuning and validation.
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Hybrid models

B Combine knowledge about the physical process and information from
sensor readings to enhance prognostics capabilities.

m Integration of measured data and physics can lead to a reduction of
uncertainty (e.g. adjust predictions from model using observed data).

m Integration can be implemented at different levels of the PHM process:
- Online model parameters updating.
- Model predictions correction based on observed data.
- Measure current damage level and propagate.

- Build empirical degradation models from data.
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Virtual Prototyping (VP) for PHM Applications

Prognostics models are tuned based on available data (healthy and
degraded conditions).

- For the cases where accessing these data is not feasible/expensive (e.g.
deterioration evolution), Virtual Prototyping (VP) methodology can be
conveniently applied.

- Virtual Prototyping (VP): design of a digital model (software-based) to
simulate the dynamics of interest of an asset (both healthy and degraded
conditions).

- VP goal: simulate the behavior of the target component under a wide range of
operating conditions that the system is expected to encounter during its
operational life.

- The data generated by the VP are then used to drive a prognostics model.
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Virtual Prototyping Methodology
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» High level of flexibility

@ + Reduced cost of experiment
» Safe evaluation of extreme states
» Cost-effective generation of a variety
of failure modes based on “FMMEA” (
Failure Modes, Mechanisms and
Effects Analysis”).

Challenges:

* Model validation
« Uncertainty representation/quantification
« Simulation speed (computational feasibility)
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Uncertainty in Prognostics

m Appropriate schemes need to be put in place for uncertainty quantification and
propagation for RUL estimation (either data-driven or physics-based models).

m For the virtual prototype to be realistic, the sources of uncertainty need to be
accurately incorporated in the simulation model.

m Computational framework for uncertainty propagation in VP: Monte Carlo Simulation

@ Initialize
Monte Carlo
Generate .
e Sampling methods:

- Importance Sampling

vy
®
I@ o lncion Boced - Latin Hypercube Sampling
1

Process results for
L k-th iteration

P>

End of
Monte Carlo
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Virtual Prototyping for Railway Systems - Example HVAC

m Model definition

m Model validation

® Model reduction (computational efficiency)

® Simulation of HVAC degraded conditions (clogged filter)

ALSTOM



HVAC Virtual Prototype definition

m HVAC system in a Rail car modeled including:

Tramway walls and windows

Airflows between thermal zones

Zone sub-model
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Puissance (W)

HVAC Virtual Prototype validation

m Virtual Prototype validated through a series of test performed on a real HVAC
unit (Alstom’s CORADIA Continental).

m Different variables of interest validated against sensor measurements.
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HVAC Virtual Prototype reduction

® Reduction of the computational load is vital to be able to perform extensive simulation
campaigns.

m Optimize the digital model by:

- reducing the number of states used to represent the physical model (therefore
decreasing the computational time for running the simulation)

- preserving the accuracy of the model within acceptable limits.

m Example: improved vapor compressor cycle model:

* Finite Volume (FV) formulamMwvingadBotaddary (MB) formulation: level of
results  but  computationallgccurexpensiwserved, significant reduction of
(4x4x2=32 cells, 96 states, high giynalaiiooiles (9 states, low dynamic order)

x=1 x=0
Superheat Two-Phase
| | |
Ll L2
w[’on(‘é;\/
Heat exchanger discretization in a finite EQuivalent pipe representation of a heat
volume modelling paradigm exchanger in a moving boundary modelling

paradigm
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HVAC Virtual Prototype reduction: Finite Volume vs Moving Boundary

B Simulation of evaporator: MB about 10-15 times faster than FV
m Simulation of condenser: MB about 6 times faster than FV

B Example: under the same simulation scenario:

- Simulation time FV =183 s

- Simulation time MB = 31 s (about 84% reduction)
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HVAC performance under degraded conditions
|

m Accumulation of dust and aging effects modify the air duct characteristic curve
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Conclusions

®m We Don't Need Big Data; We Need Wise Data! (Stephen Hall, President/CEO at Celeris Aerospace)

m Wise data: data that have been thoughtfully identified as having the potential to shed light on a
given problem or identify potential causal factors that may result in structural or system failures.

m The development of effective and robust prognostics models requires availability of “wise data”

Off line
Virtual Prototype

(designed to generate .»-Q»-» s -]
wise dota)

On-line

¢ Ignostics P
-
Operational data
from train

FPM BEF
am

m Integration of VP into the PHM methodology (considering associated benefits and
challenges) Initial applications indicate promising results for PHM of rail assets.
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Future Perspectives

= Promising developments of machine intelligence

* Deep Learning ( multi-layered neural networks)
* High-dimensional multi-variate statistics

* Reinforcement Learning

m Combination of those evolving data-driven methods with expert-based
and physics-based methods:

+ Expertise illuminates data
« Data feeds expertise

m Closer link between PHM approaches and classical reliability
engineering approaches ( e.g. proportional hazard models)
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