

Ph.D. Degree

in Computer Science

Cycle XXXVII

Final Thesis

Advanced Representation Learning Techniques

For Graph Neural Networks

Supervisor

Professor Marcello Pelillo

Co-supervisor

Professor Thilo Stadelmann

Graduand

Waqar Ali

Matriculation Number: 956676

Academic Year 2024/2025

Abstract

Over the past decade, deep learning models have become a key driver of modern artificial

intelligence, enabling remarkable advancements in analyzing and interpreting complex

data across various fields, such as computer vision, speech recognition, natural language

processing, and beyond. These models are mainly developed for regular grid-structured

data like sequences and images; however, not all forms of data conform to grid-like struc-

tures. A graph is a more general data structure that powerfully represents entities and

their relationships, which is natural for fields such as social networks, biology, and chem-

istry. Modern deep learning models face significant challenges when applied to graph

data due to the inherent complexity and non-euclidean nature of these graphs. Recently,

Graph Neural Networks (GNNs) have been developed as a powerful tool for capturing the

intricate structures and relationships within graph data. In this thesis, we delve into the

various aspects that can enhance the performance of GNNs for standard graph learning

tasks (e.g., graph and node classification) by introducing advanced graph representa-

tion learning techniques such as graph pooling, graph augmentation, community-based

message passing, and graph rewiring.

First, we focus on graph pooling, an essential GNN building block, and design three

novel graph pooling methods for learning graph representations. These methods reduce

graphs’ size and complexity while preserving essential structural information, enabling

GNN models to achieve superior performance in graph classification tasks. Second, we

propose advanced graph augmentation techniques to generate weakly labelled data sam-

ples, improving the generalization and robustness of GNN models. These techniques

include the Node-Dropping Augmentation strategy, which selectively removes less impor-

tant nodes based on their degree and a structure learning method to reconnect isolated

nodes by learning attention-based relationships.

Third, we develop an advanced message passing framework designed to address the chal-

lenges of heterophilic graphs, where connected nodes may have dissimilar features or

labels. This improved message passing method enhances the GNN ability to capture

diverse node attributes, leading to more accurate node classification outcomes. Lastly,

we present a novel graph rewiring method to overcome the over-squashing problem in

GNN architectures. This method strategically adds edges to ensure effective communi-

cation and information flow within the graph, preserving long-range dependencies and

improving overall model performance.

Acknowledgments

Above all, I am deeply thankful to Allah, the Most Merciful and Compassionate, for His

unending mercy, guidance, and wisdom during this journey. I sincerely acknowledge that

I have the courage, perseverance, and knowledge to complete my thesis because of His

boundless kindness and blessings. His divine will has been my guiding light, and I am

profoundly aware of my complete reliance on His support in every step of this endeavor.

I would like to express my sincere gratitude to my supervisor, Professor Marcello Pelillo,

whose vast knowledge, continuous support, and insightful guidance have been pivotal

in the successful completion of this thesis. His constant support, thoughtful feedback,

and encouragement have been invaluable throughout my Ph.D. journey. Additionally,

our informal conversations, often revolving around shared interests in culture, religious

talk, and the joys of desi Pakistani food (chicken biryani), have been particularly memo-

rable, and I will always cherish them. I am also profoundly grateful to my co-supervisor,

Professor Thilo Stadelmann, for his expert advice, collaborative spirit, and the count-

less opportunities he provided me for learning and professional development, especially

during my internship at the Zurich University of Applied Sciences, where his support

and encouragement greatly enriched my research journey and personal growth, laying a

strong foundation for future collaborations in applied research settings. Thanks, Profes-

sor Thilo, for reviewing my thesis’s advanced draft and providing detailed feedback that

greatly helped me to refine and improve it.

I would like to express my deepest gratitude to my family for their unwavering support,

without which none of this would have been possible. To my late mother, who always

dreamed of seeing me earn a Ph.D., I dedicate this achievement to her memory and

enduring inspiration. A special note of gratitude also goes to my wife, whose endless

patience, understanding, and unwavering support have guided me through the most chal-

lenging moments of this journey. Your love, sacrifices, and belief in me have made this

accomplishment possible, and I am profoundly grateful to have you by my side.

My research stay at the University of Alicante, Spain, marked a pivotal chapter in my

academic journey. I am deeply grateful for this opportunity to work under the supervision

of Professor Francisco Escolano Ruiz, whose guidance, encouragement, and collaborative

atmosphere were invaluable to my research. Additionally, I am thankful to Ahmed Begga

for his collaboration and insightful discussions, which significantly contributed to our

research projects.

I would like to thank my colleagues and friends at Ca’ Foscari University for their un-

wavering support throughout my Ph.D. journey. Special thanks go to Anees, Zubair,

Waqas, Anwar, Waseem, Federico, Alberto, and Guglielmo for their encouragement and

companionship. I am especially grateful to Sebastiano, my primary collaborator during

this journey, for the countless hours we spent together discussing ideas, coding, debug-

ging, and writing papers, especially during intense deadlines. I would also like to thank

Nicolla Miotello for his constant assistance with all the administrative matters I encoun-

tered during my doctorate. Your support has been invaluable to me.

In sum, this thesis represents my efforts and the unwavering support, guidance, and

encouragement of everyone acknowledged above. I am deeply thankful to all who have

contributed to my Ph.D. journey and am extremely grateful for your belief in me every

step of the way.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contribution . 5

1.4 Thesis Structure . 7

1.5 Publications . 8

2 Background 11

2.1 Preamble . 11

2.2 Definition and Notations . 12

2.3 Graph Neural Networks . 13

2.3.1 Node Embeddings in Graph Neural Networks 13

2.3.2 Graph Neural Network Architectures 15

2.3.3 Tasks in Graph Learning . 17

2.4 Graph Pooling Operations . 19

2.5 Graph Augmentation . 22

2.6 Over Squashing . 24

2.7 Conclusion . 25

3 Quasi-Clique Pooling for Graph Neural Networks 27

3.1 Preamble . 27

3.2 Introduction . 28

3.3 Related work . 30

vi CONTENTS

3.3.1 Graph Neural Network Models . 30

3.3.2 Graph Pooling Methods . 31

3.4 Limitations in Existing Graph Poolings 32

3.5 Quasi-Clique Graph Pooling . 33

3.5.1 Replicator Dynamics, Maximal and Quasi Clique 34

3.5.2 Graph Coarsening with Quasi-CliquePool 37

3.5.3 Quasi-CliquePool Algorithm . 38

3.6 Result and Discussion . 40

3.6.1 Dataset Setup . 40

3.6.2 Baselines and Experimental Settings 41

3.6.3 Performance on Graph Classification 42

3.6.4 Ablation Study . 44

3.7 Conclusion . 47

4 Dominant Sets: A Multi-View Approach to Graph Pooling 49

4.1 Preamble . 49

4.2 Introduction . 50

4.3 Related Work . 52

4.4 Proposed Methodology . 54

4.4.1 Local Topology Pooling (View 1) 55

4.4.2 Global Topology Pooling (View 2) 56

4.4.3 Node Feature Pooling (View 3) 59

4.4.4 Fusion-View Attention Convolution 60

4.4.5 Pooling Aggregation Operation 61

4.4.6 Hierarchical DSMVPool Architecture and Readout Layer 62

4.4.7 Complexity Analysis . 62

4.5 Experiments . 62

4.5.1 Competitors and Experimental Settings 63

4.5.2 Performance Comparison with state-of-the-art 64

4.5.3 Ablation Study . 65

0.0. CONTENTS vii

4.5.4 Graph Visualization . 66

4.6 Conclusion and Future Work . 67

5 Glocal Attention: Hierarchical Pooling for Graph Learning 69

5.1 Preamble . 69

5.2 Introduction . 70

5.3 Related Work . 72

5.4 Methodology . 74

5.4.1 Global Topological Structure Learning 74

5.4.2 Local Topological Structure Learning 77

5.4.3 Hierarchical HGLA-Pool Architecture and Readout Layer 79

5.5 Experiments and Analysis . 80

5.5.1 Baselines and Experimental Settings 80

5.5.2 Performance Comparison . 81

5.5.3 Ablation Study . 82

5.5.4 Parameter Sensitivity Analysis . 83

5.5.5 Graph Visualization for Comparison 84

5.6 Limitations . 85

5.7 Conclusion and Future Directions . 85

6 Residual Attention and Mixup Augmentation 87

6.1 Preamble . 87

6.2 Introduction . 88

6.3 Related work . 89

6.4 Methodology . 90

6.4.1 Node Augmentation Mixup Method 91

6.4.2 Attention Mechanism for Node Classification 92

6.4.3 Skip Connections . 92

6.5 Experimental Results and Discussion . 93

6.6 Conclusion . 95

viii CONTENTS

6.7 Acknowledge . 95

7 Topology-Aware Augmentation 97

7.1 Preamble . 97

7.2 Introduction . 98

7.3 Related Work . 99

7.4 Methodology . 101

7.4.1 Problem Formulation . 101

7.4.2 Motifs Preservation . 102

7.4.3 Node Degree-based Dropping . 103

7.4.4 Structure Learning Method . 103

7.5 Experiments and Discussion . 105

7.5.1 Baseline Methods . 105

7.5.2 Performance Comparison and Graph Visualization 106

7.5.3 Ablation Studies . 107

7.5.4 NDAUG with Different GNN models and Graph Pooling 108

7.6 Conclusion and Future Work . 109

8 Community-Hop Mechanism for Graph Neural Networks 111

8.1 Preamble . 111

8.2 Introduction . 112

8.3 Related Work . 113

8.4 Preliminaries . 114

8.4.1 Spectral Clustering . 114

8.4.2 Graph Neural Networks . 116

8.5 Methodology . 116

8.5.1 Computational Complexity . 119

8.6 Experiments and discusions . 120

8.7 Conclusion and Future Work . 122

0.0. CONTENTS ix

9 Spectral Rewiring: Local-to-Global Adaptations for GNNs 123

9.1 Preamble . 123

9.2 Introduction . 124

9.3 Related Work . 126

9.3.1 Graph Rewiring . 126

9.3.2 Graph Augmentation . 128

9.4 Spectral Graph Theory . 129

9.5 Methodology . 130

9.5.1 Inductive Spectral Theory . 130

9.5.2 Method: Graph Classification . 133

9.5.3 Computational Efficiency . 134

9.6 Experiments . 135

9.7 Conclusion . 139

10 Conclusion and Discussion 141

10.1 Summary of Key Findings . 141

10.2 Future Directions . 142

10.3 Final Remarks . 144

A Theoretical and Experimental details for Spectral Rewiring 145

A.1 Summary of Results . 145

A.2 Results . 147

A.3 Practical Findings . 153

A.4 Dataset Analysis and Experimental Setup 155

A.4.1 Dataset Statistics . 155

A.4.2 Experimental Environment . 156

Bibliography 157

x CONTENTS

Chapter 1

Introduction

“Data is the new science. Big Data holds the answers.”

— Pat Gelsinger

1.1 Motivation

In the era of big data, the ability to derive meaningful insights from vast and complex

datasets has become increasingly essential. Deep learning has emerged as a transforma-

tive technology for extracting significant value from massive datasets, obtaining unprece-

dented levels of accuracy and efficiency in numerous applications, such as face recognition

from images, machine translation from text, and speech recognition from audio. Unlike

traditional machine learning approaches, deep learning models excel in automatically

learning features from large-scale data, driven by the surge in computational power and

the exponential growth of available data.

Modern deep learning architectures are specially designed for data with regular struc-

tures, such as grids and sequences. For instance, Convolutional Neural Networks (CNNs)

[60, 76] are tailored for image data arranged in grids, while Recurrent Neural Networks

(RNNs) [33, 61] and Transformers [123] are designed for sequence data. This structural

regularity simplifies the implementation of these models and contributes to their out-

standing performance.

2 CHAPTER 1. INTRODUCTION

Nevertheless, many real-world entities, such as molecular compounds, brain structures,

and social networks, can be naturally represented as graphs, which consist of nodes and

edges capturing complex relationships and interactions. These graphs do not attach to

the regular structure assumed by traditional deep learning models, posing unique chal-

lenges for data representation and processing. This thesis focuses primarily on Graph

Neural Networks (GNNs) [72], a class of deep learning models, which is specifically de-

signed to learn the relational and structural information inherent in graph data and shown

significant promise across a diverse range of applications, including molecular structures,

bioinformatics, physics, knowledge graphs, brain networks, Natural Language Processing

(NLP), recommendation systems, Computer Vision (CV), social sciences, and more. Fig-

ure 1.1 shows the difference between the convolution operation of CNNs and the graph

convolution operation of GNNs.

Despite the rapid progress and outstanding results attained by GNNs, the field of graph

representation learning remains in its early stages. Further research is essential to unlock

the full potential of these groundbreaking deep learning approaches. The main motiva-

tion of this thesis is to enhance the performance of GNNs in graph learning tasks, such as

node and graph classification, by developing advanced graph representation learning tech-

niques. Many components commonly used to construct GNNs often lack the necessary

expressivity for addressing more advanced tasks because of their poor graph representa-

tions or limited design choices. For instance, the pooling operation is a key component of

GNN that aggregates node and edge information to simplify large-scale graphs, enhanc-

ing GNNs’ performance in real-world applications [143, 50]. However, the graph pooling

methods are inconsistently addressed in the literature. This thesis identifies significant

design flaws in several commonly used pooling layers in GNN architectures and proposes

three novel approaches to address these issues, detailed in Chapters 3, 4 and 5.

Additionally, the message passing mechanism, a core component of GNNs, iteratively up-

dates node representations by aggregating information from neighboring nodes. However,

the standard message passing methods struggle to capture long-range interactions, espe-

cially in applications where such interactions are crucial for performance or dealing with

1.2. PROBLEM STATEMENT 3

heterophilic (i.e., connected nodes have dissimilar labels). This prompts the redesign of

typical representation learning architectures, addressing key aspects while opening new

opportunities to solve interesting problems such as graph and node classification. Fur-

thermore, the scarcity of labelled data poses a significant challenge in many graph classi-

fication tasks, such as predicting molecular properties, where obtaining labelled examples

is often complex and resource-intensive. This lack of sufficient labelled data hinders the

ability of GNNs to attain a promising prediction performance, highlighting the need for

innovative techniques to enhance data availability and model robustness.

Fig. 1.1: Shows the difference between traditional convolution operations on grid-structured
data (left) and graph convolution operations on non-grid, irregular data structures (right). Sim-
ilar to a graph, each pixel in the diagram is considered a node, and the filter window determines
neighbors. The convolution operation captures the features of the red node along its neighbors.
The neighbor nodes are ordered and fixed in size. Meanwhile, the graph convolution operation
takes the features of the red node along its neighbors, which are unordered and variable in size.
This highlights the adaptability of GNNs in processing diverse data types beyond regular grids.

1.2 Problem Statement

The ultimate goal of enhancing graph representation learning techniques, as discussed

in the previous section, requires addressing several key issues inherent in current GNN

architectures and their components. GNNs must be able to efficiently and effectively han-

dle the complexities of real-world graph data, which are often large-scale, heterogeneous,

and dynamically evolving.

This gives rise to the following specific problems in GNNs for graph and node-level pre-

dictions:

1. Complex structures and scalability: As the size and complexity of graphs

4 CHAPTER 1. INTRODUCTION

increase, GNNs face computational challenges, leading to scalability issues that

can impede performance in real-world applications. Simplifying large graphs by

reducing their size while retaining critical graph features is necessary for performing

efficient downstream tasks, such as graph classification.

2. Generalization and robustness: GNNs often struggle to generalize across dif-

ferent datasets and maintain robustness against perturbations, which is essential

for their reliability in real-world applications. Achieving consistent performance

under varying conditions and across diverse datasets remains a key challenge, high-

lighting the need for methods such as graph augmentation to enhance the model’s

generalization and robustness.

3. Over-squashing problem: In deeper GNN architectures, important information

can become bottlenecked, leading to the loss of crucial details and impairing effective

communication between distant nodes. This is an over-squashing problem, which

impedes GNNs’ ability to capture long-range dependencies.

4. Heterophilic graphs: Many real-world graphs exhibit heterophily, where con-

nected nodes have dissimilar features or labels. Traditional GNN models, which

often assume homophily, struggle to perform well on such graphs, resulting in poor

classification performance.

By addressing the above challenges in the problem statement, this thesis aims to ad-

vance the field of representation learning, designing more efficient and effective graph

representation learning techniques, including novel graph pooling methods to improve

scalability and efficiency by reducing the size and complexity of graphs while preserving

their essential structural information, advanced augmentation techniques to enhance the

generalization and robustness of GNNs against diverse and perturbed datasets, graph

rewiring methods to tackle the over-squashing problem and ensure effective communica-

tion and information flow within deep GNN architectures, and advanced message passing

strategy to handle heterophilic graphs, thereby improving classification performance on

1.3. CONTRIBUTION 5

graphs where connected nodes have dissimilar features or labels. The proposed meth-

ods are expected to have significant implications across a wide range of applications,

enhancing the applicability and performance of GNNs across various domains.

1.3 Contribution

Given the context and challenges outlined above, this thesis makes the following contri-

butions to enhance the performance of GNNs:

• A novel graph pooling method, Quasi-CliquePool, is proposed to address the prob-

lem of finding overlapping nodes between two cliques. The experimental results

demonstrate that combining the Quasi-CliquePool with existing GNN architectures

yields an average improvement of 2% accuracy on four out of six graph classifica-

tion benchmarks compared to the state-of-the-art. This contribution is explained

in Chapter 3.

• We identify the limitations in existing graph clustering pooling methods and de-

velop a novel Dominant Set clustering-based Multi-View Graph Pooling method

(DSMVPool), which uses edge weights to extract the clusters without relying on

a predefined cluster ratio. Furthermore, we design an attention-fusion-view convo-

lution layer that refines the graph representations by integrating different sources

of information, including local topology, coarser graph structure, and node fea-

tures. Comprehensive experiments are performed on four different kinds of graph

classification benchmarks, including CV, chemical, biological, and social networks,

demonstrating superior performance against the state-of-the-art. This contribution

is presented in Chapter 4.

• A novel pooling layer, Hierarchical Glocal Attention Pooling (HGLA-Pool), is in-

troduced to address the limitations in existing clique pooling by sequentially inte-

grating global structural properties of the graph with local node properties. This

method designs a dynamic fusion technique that leverages both graph structural

6 CHAPTER 1. INTRODUCTION

information and node features to identify and rank the most relevant global struc-

tures (cliques). Additionally, a multi-attention LocalPool is developed to capture

local node properties. Experimental results demonstrate that this method reduces

the complexity and improves the representation of the graphs, consistently showing

superior performance on seven diverse and challenging graph classification bench-

marks. This contribution is presented in Chapter 5.

• In this contribution, we study the residual skip connections, attention mechanism,

and Mixup augmentation methods for addressing over-smoothing issues in GNNs

and enhancing their regularization in training. We design a Residual Attention Aug-

mentation (RAA) methodology using skip connections with a multi-head attention

strategy and Mixup augmentation method. This methodology shows superior per-

formance on node-level prediction tasks. This contribution is outlined in Chapter

6.

• This contribution focuses on generating new data samples (graphs) to improve

the generalization and robustness of the GNNs. We introduce the Node-Dropping

Augmentation (NDAUG) method that selectively removes nodes with lower impor-

tance based on their degree while maintaining key topological motif structures. In

the case of isolated nodes, we develop a structure learning method to reconnect

these isolated nodes by learning attention-based relationships between nodes. Ex-

periments demonstrate that combining the proposed NDAUG with existing GNN

models yields an average improvement of 3% accuracy on eight graph classifica-

tion benchmarks compared to the state-of-the-art baselines. This contribution is

outlined in Chapter 7.

• A GNN architecture has been improved by incorporating valuable insights from

community detection algorithms for addressing the heterophily issue (dissimilar

labels among connected nodes). We developed an expressive and interpretable

GNN model that can adapt to diverse graph properties and improve performance

on various node classification tasks. This contribution is outlined in Chapter 8.

1.4. THESIS STRUCTURE 7

• We propose a novel graph rewiring method to improve communication within graphs

by adding a linear number of edges locally to encourage community structures and

globally to facilitate long-range connections. Our rewiring method generates a new

optimized graph, and we utilize it as an augmented graph to increase the training

size of the dataset, thereby improving the generalization and robustness of the

GNN. This contribution is outlined in Chapter 9.

1.4 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 introduces the mathematical notations and fundamental concepts related to

graph theory used in the thesis. This chapter also focuses on the relevant background

of GNNs (e.g., message passing mechanism, basic tasks in graph learning, graph pooling

strategies), which is required to understand all other chapters. Additionally, it provides

valuable literature related to graph augmentation methods and graph rewiring techniques

for over-squashing problems. Chapters 3, 4, and 5 introduce the works related to graph

pooling for GNNs. Specifically, Chapter 3 generalizes the notion of the clique to extract

dense incomplete subgraphs as quasi-cliques, Chapter 4 proposes a novel graph pooling

approach that can refine the graph representations by integrating different sources of

information, including local topology, coarser graph structure, and node features, and

Chapter 5 discusses the limitations of the existing clique-based pooling operations and

proposes a novel pooling method called Hierarchical Glocal Attention Pooling. These

three chapters address the first key issue of the problem statement.

Chapter 6 and Chapter 7 address the second key challenge of the problem statement.

Chapter 6 focuses on the residual skip connections, attention mechanism, and Mixup

augmentation methods for GNNs, and Chapter 7 introduces a novel node-dropping aug-

mentation method to enhance the robustness and generalization of GNNs and test it

on different domains, such as molecular graphs, bioinformatics, and social networks, for

graph classification tasks.

8 CHAPTER 1. INTRODUCTION

Chapter 8 improves the message passing aggregation procedure of the GNN model for

heterophily graph structures (dissimilar labels among connected nodes) by incorporating

valuable insights from community detection algorithms. This chapter addresses the fourth

part of the problem statement.

Chapter 9 addresses the second and third part of the problem statement. We develop a

novel graph rewiring method called Inductive Spectral Theory (IST) that improves graph

communication by optimizing its topology. Our method especially learns eigenfunctions

that are reactive to graph labels and adds a linear number of edges locally and globally

to encourage community structures and facilitate long-range connections.

Finally, Chapter 10 concludes this thesis and explains promising future work directions.

1.5 Publications

This thesis is primarily based on the following papers written during doctorate studies:

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. Quasi-

cliquepool: Hierarchical graph pooling for graph classification. In Proceedings of

the 38th ACM/SIGAPP Symposium on Applied Computing, pp. 544-552. 2023.

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. Dominant

Set Multi-View Graph Pooling for Graph Classification. Neural Networks Journal

2024 (under review).

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. Hierarchi-

cal Glocal Attention Pooling for Graph Classification. Pattern Recognition Letters

Journal 2024.

• Muhammad Affan Abbas, Waqar Ali, Florentin Smarandache, Sultan S Alsham-

rani, Muhammad Ahsan Raza, Abdullah Alshehri, Mubashir Ali. Residual At-

tention Augmentation Graph Neural Network for Improved Node Classification.

1.5. PUBLICATIONS 9

Engineering, Technology & Applied Science Research (ETASR), 14, no. 2 (2024):

13238-13242.

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. Topology-

Aware Node Dropping Augmentation for Graph Classification. European Sympo-

sium on Artificial Neural Networks (ESANN, 2025) (under review).

• Ahmed Begga, Waqar Ali, Gabriel Niculescu, Francisco Escolano, Thilo Stadel-

mann, and Marcello Pelillo. Community-Hop: Enhancing Node Classification

through Community Preference. Joint IAPR International Workshops on Statistical

Techniques in Pattern Recognition and Structural and Syntactic Pattern Recogni-

tion (S+SSPR 2024).

• Waqar Ali, Ahmed Begga, Francisco Escolano, Sebastiano Vascon, Thilo Stadel-

mann, and Marcello Pelillo. Inductive Spectral Theory: Learnable Local-to-Global

Spectral Rewiring in GNNs. In Proceedings of the 39th Annual AAAI Conference

on Artificial Intelligence 2024 (under review).

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

“Mankind invented a system to cope with the fact that we are so intrinsically lousy at

manipulating numbers. It’s called the graph.”

— Charlie Munger

2.1 Preamble

This chapter provides relevant background knowledge related to several topics (e.g.,

GNNs, graph pooling operations, graph augmentation methods and over-squashing issues

in GNNs) and structures them into the larger context of graph representation learning

to understand the thesis’s contributions.

First, we introduce mathematical notations and basic graph theory definitions that will

be used in this thesis. Section 2.3 introduces graph neural networks, including message

passing mechanisms, different GNN architectures, and prediction tasks in graph learning.

In section 2.4, we briefly explain graph pooling methods, which reduce the graph size for

graph classification tasks. Section 2.5 gives an overview of graph augmentation methods,

which increase the size of the datasets and enhance the generalization of GNN training.

Lastly, we describe graph rewiring methods to mitigate over-squashing issues in GNNs

and improve communication in graphs by introducing new edges on the bottleneck.

12 CHAPTER 2. BACKGROUND

2.2 Definition and Notations

This section defines the essential concepts and mathematical notations that will be uti-

lized in this thesis.

Graph: A graph is defined as a tuple of two sets G = (V,E), where V = {1, ..., N} is

set of the nodes with cardinality |V | = N , and E ⊆ V × V is the set of edges.

Nodes: We represent nodes by scalar indices, such as nodes 1 and i. It is essential to

understand that the numbering of nodes does not imply any specific order since V is

generally an unordered set.

Edges: Edges are defined as pairs of nodes (i, j). In the case of directed edges, the

sequence of the pair specifies the direction, indicating that edge (i, j) points from node

i to node j. For undirected edges, we consider edges as (i, j) ∈ E ⇔ (j, i) ∈ E. In this

thesis, we only focus on graphs with undirected edges.

Features: In this thesis, we also consider graph features, where each node and optionally

each edge is associated with a feature vector. For instance, social network graphs may con-

tain node features such as age, gender, and occupation, while edge features may include

the nature of the relationship between individuals, such as being friends or coworkers. we

represent the node feature vector as xi ∈ Rd, and similarly, we denote the edge feature

vector as eij ∈ Rd.

Feature matrices: We use X ∈ RN×d to represent all node features of a graph with

N as the total number of nodes and d as the feature space’s dimension. Similarly, we

represent the edge feature matrix as E ∈ RN×N×d, but it is less common.

Adjacency matrix: An adjacency matrix can represent the connection between nodes

of G as A ∈ {0, 1}N×N with Aij = 1 if (i, j) ∈ E and Ai,j = 0 otherwise. For weighted

graphs, the adjacency matrix can be represented as A ∈ RN×N , where Aij > 0 indicates

the weight of the connection between node i and node j, and Aij = 0 if there is no edge

between them.

2.3. GRAPH NEURAL NETWORKS 13

2.3 Graph Neural Networks

In recent years, GNNs have drawn considerable attention and become a powerful tool

for analyzing graph-structured data, extending traditional neural networks to operate

directly on graphs by learning structural and featural relationships between nodes to

improve prediction performance. The foundational research on GNNs dates back to the

Gori et al. [53] works and is further elaborated by Scarselli et al. [111]. These early studies

aimed to design recurrent graph neural networks (RecGNNs) capable of processing graph-

structured data. They learn a target node’s representation by iteratively propagating

neighbour information until a stable fixed point is reached. Over the following years,

researchers developed several GNN models, laying the foundation for graph-structured

data and demonstrating promising results in a variety of applications, such as social

network analysis, molecular property prediction, recommendation systems, and natural

language processing.

This section introduces the fundamental building blocks of GNNs. A GNN is a sequence

of differentiable operations that take a graph as input and output an embedding repre-

sentation vector for the entire graph or its nodes. In the following, we explain how the

message passing mechanism generates the node embedding, the different models of GNNs

and the common tasks in graph learning.

2.3.1 Node Embeddings in Graph Neural Networks

GNN models aim to generate node embeddings, also known as node representations, that

contain information derived from both node features and the graph topology. Most of the

GNN architectures utilize a neural message passing mechanism, where nodes exchange

messages and update them using different aggregation functions (e.g., sum, max, average)

or neural networks [138].

14 CHAPTER 2. BACKGROUND

Message Passing Mechanism

The core idea of GNN is to iteratively update node representations by aggregating in-

formation from their neighbours, a process known as message passing. This mechanism

allows GNNs to utilize each node’s local neighbourhood information by passing messages

through the graph to refine and update their representations. So, GNNs can effectively

capture the graph’s structural information and the features associated with each node,

enabling them to learn rich and expressive node representations that incorporate local

and global contexts. The message passing strategy in GNNs is similar to the convolution

operation in CNNs, but it is specifically designed for graph-based data. Specifically, at

each iteration of the message passing in a GNN, the embedding h
(k)
i of each node i ∈ V

is updated based on the aggregated information from its neighbourhood N(j). This

procedure can be illustrated mathematically as follows:

h
(k+1)
i = UPDATE(k)

(
h
(k)
i ,AGGREGATE(k)

({
h
(k)
j | j ∈ N (i)

}))
(2.1)

h
(k+1)
i = UPDATE(k)

(
h
(k)
i ,m

(k)
N (i)

)
(2.2)

where Aggregate and Update are functions (i.e., sum, mean, max or neural networks)

and m
(k)
N (i) represents the “message” that is aggregated from i’s graph neighbourhood

N(i). The aggregate function takes the set of embeddings of the nodes in i’s graph

neighbourhood N(i) as input and generates a message m
(k)
N (i) based on this aggregated

neighbourhood information. Then, the update function generates the updated embedding

by combining the message m
(k)
N (i) with the previous embedding hi of node i. The input

feature set for all the nodes at initial embeddings when k = 0 such as h
(0)
i = xi,∀i ∈ V .

The following equation can be used to define the embeddings for each node after K

number of GNN message passing layers:

zi = hK
i ,∀i ∈ V (2.3)

2.3. GRAPH NEURAL NETWORKS 15

Fig. 2.1: Abstract view of how a single node aggregates messages from its local neighborhood in
a GNN. Consider node A, a target node that collects messages from its neighboring nodes (i.e.,
B, C, and D). The messages that A receives from these neighbors are aggregates of information
gathered from their respective neighborhoods, creating a multi-layered information flow. This
visualization illustrates a three-layer message passing architecture, where each layer enables the
nodes to incorporate progressively more distant information.

Figure 2.1 is an abstract representation of how a single node aggregates messages from

its local neighborhood.

2.3.2 Graph Neural Network Architectures

There are many ways to design the message passing layer depending on the nature of

tasks. In the following, we briefly describe the different GNN architectures.

Graph Convolutional Networks (GCNs)

This is the most popular baseline GNN model, employing the Kipf [72] normalized aggre-

gation with the self-loop update approach. The GCN model defines the message passing

function using the combination of non-linearities and linear transformations:

H(k+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(k)W(k)

)
(2.4)

where σ is the row-wise non-linear activation function, Ã = A+I is the adjacency matrix

with added self-loops, D̃ is the corresponding degree matrix, and H(k) is the matrix of

node features at layer k.

16 CHAPTER 2. BACKGROUND

Graph Attention Networks (GATs)

This model is proposed by Veličković et al. [125], which utilizes attention mechanisms

to weigh the importance of neighboring nodes differently. The attention coefficients are

computed as:

eij = LeakyReLU(aT [Whi∥Whj]) (2.5)

where a is a learnable weight vector, and ∥ denotes concatenation. The normalized

attention coefficients are then used to aggregate the node features:

h
(k+1)
i = σ

 ∑
j∈N (i)

αijWh
(k)
j

 (2.6)

where αij = softmax(eij).

GraphSAGE

Hamilton et al. [56] introduced Graph Sample and Aggregate (GraphSAGE), which

generates node embeddings by sampling and aggregating features from a node’s local

neighborhood. The GraphSAGE framework can be described as:

h
(k+1)
i = σ

(
W(k) · AGGREGATE(k)

(
{h(k)

j : j ∈ Sample(N (i))}
))

(2.7)

Graph Isomorphism Networks (GINs)

Introduced by Xu et al. [138], GINs aim to distinguish different graph structures more

effectively by employing a sum aggregation function. The layer-wise propagation rule for

GINs is:

h
(k+1)
i = MLP(k)

(1 + ϵ(k))h
(k)
i +

∑
j∈N (i)

h
(k)
j

 (2.8)

2.3. GRAPH NEURAL NETWORKS 17

where MLP(k) is a multi-layer perceptron, ϵ(k) is a learnable parameter or a fixed scalar,

h
(k)
i is the hidden state of node i at layer k, and N (i) denotes the set of neighbors of

node i. All of the above-mentioned GNN variants showcase their adaptability to different

types of data to solve a wide range of prediction tasks using graph-structured data. The

principal difference among these variants lies in their output representations.

2.3.3 Tasks in Graph Learning

There are three common prediction tasks in graph learning, each highlighting the versa-

tility of GNNs.

Node Classification

In this type of task, the GNN aims to predict the label of individual nodes within a

graph by learning the representation of each node. For instance, classifying users in a

social network based on their roles or attributes or predicting traffic on different roads.

In classical deep learning, an example of node-learning is the task of image segmentation,

in which each pixel is classified as belonging to a particular object or region. Generally,

the node classification task can be represented as:

ŷi = softmax(h
(K)
i)

where ŷi is the predicted label of node i.

Graph Classification

In graph-level learning, the goal of the GNN is to assign a label to an entire graph. This

is useful in domains such as chemistry, where graphs can represent molecules and the

task is to predict properties like toxicity or activity. For graph classification, GNNs can

combine convolutional layers with pooling operations, like in CNNs, and use a readout

layer for mapping the graph to a vector representation. The graph classification task can

18 CHAPTER 2. BACKGROUND

Fig. 2.2: Structural representation of graph-level and node-level classification tasks. The
stacking of message passing layers as a GNN outputs a single node embedding or a prediction
for each node at the node level and a single prediction for the entire graph at the graph level.

be expressed as:

ŷG = softmax(hG)

where ŷG is the predicted label of the graph.

Edge Prediction

Another relevant use of GNNs is edge prediction, which involves determining the exis-

tence or type of edges between nodes. It is also known as link prediction, and this can

be structured as a specific case of node-level prediction, such as predicting node repre-

sentations that are similar for nodes that should be connected by an edge. This task

is essential for applications like link prediction in social networks, where the goal is to

predict potential future connections. The edge prediction can be formalized as:

ŷij = σ(h
(K)
i · h(K)

j)

where ŷij is the predicted probability of an edge existing between nodes i and j. Figure

2.2 shows the difference between the graph and node-level prediction tasks settings.

This thesis focuses on graph classification and node classification tasks. The Figure 2.3

2.4. GRAPH POOLING OPERATIONS 19

Fig. 2.3: The training pipeline for graph learning. In the first step, GNN receives a graph
as input and generates node embeddings. Next, the prediction head uses these embeddings and
performs predictions for node-level, graph-level, or edge-level tasks. The loss function calculates
the loss and compares it to true labels. The loss is then used in the backward pass to update the
model parameters. Evaluation metrics assess the model’s performance throughout the training
process.

illustrates how a GNN model processes an input graph to generate node embeddings and

make predictions.

2.4 Graph Pooling Operations

Graph Pooling methods are an essential component of GNNs, designed to reduce the

number of nodes in a graph. Pooling methods provide two primary benefits: they reduce

computational requirements and generate a more abstract representation of the graph

by mapping the nodes or subgraphs into a compact representation, similar to the role of

pooling layers in CNNs. Therefore, studying and improving graph pooling methods is

significant to enhancing GNN performance across various domains, driving the progress

of graph learning.

In general, pooling operations are defined as functions that transform a graph G = (V,E)

into a smaller graph G′ = (V ′, E ′) where |V ′| < |V |. This process is also known as graph

coarsening. A detailed description of the pooling operation will be presented in Chapters

3, 4, and 5 as part of this thesis’s contributions. This section provides an overview of the

diverse pooling techniques found in the literature.

Earlier works used only graph coarsening methods without neural networks. For ex-

ample, spectral clustering methods achieve coarsened graphs using eigendecomposition

20 CHAPTER 2. BACKGROUND

[131]. However, the eigendecomposition procedure was not good in terms of time com-

plexity. Dhillon et al. [38] first time proposed a Graclus method to extract the clusters

of given graphs without eigenvectors. Graclus method used the concept of mathematical

equivalence between a general weighted kernel k-means objective and a general spectral

clustering objective. This technique improves the several weighted graph clustering ob-

jectives, including ratio cut and normalized cut. Even in recent GNN models [18, 104],

Graclus is used as a pooling module.

Recently, many pooling techniques have been proposed based on different design prin-

ciples and requirements to extract global and hierarchical structural information in the

graphs. Global property-based pooling methods usually adopts summation or average

operations to integrate the embeddings of all nodes, resulting in a single vector represen-

tation for the entire graph. Gilmer et al. [51] introduced a message passing scheme based

on a general framework for graph classification and obtained the entire graph classifica-

tion using the Set2Set model. In [147], the authors proposed the SortPooling method

to keep much more node information and learn from the global graph topology. This

method sorts the node embeddings according to the graph structural roles and then feeds

these sorted embeddings to the next layers.

Global pooling is the most effective way to reduce the size of the graph. However, these

methods ignore the hierarchical graph information, which is important for capturing the

structural information of graphs. The principal goal of hierarchical pooling approaches

is to build a technique that uses graph topology or node feature information to learn the

node representation hierarchically. In this regard, Ying et al. [143] proposed the first

Differentiable Pooling (DiffPool) method that learns a hierarchical clustering of graph

nodes, generating a coarsened graph representation by assigning nodes to clusters. This

method can be used with various GNN architectures in an end-to-end fashion. Recently,

authors introduced a clique-based graph pooling method [84], partitioning the graph into

cliques (complete subgraphs). The nodes within each clique are then merged to form

supernodes and aggregate node features within each supernode. This method effectively

reduces the graph’s size while preserving the local connectivity structure. Furthermore,

2.4. GRAPH POOLING OPERATIONS 21

Fig. 2.4: The diagram illustrates two distinct approaches to graph pooling: cluster-based
graph pooling (a) and node selection-based graph pooling (b). In cluster-based pooling, nodes
are grouped into clusters based on connectivity, and each cluster is represented as a single node,
generating a pooled graph. In node selection-based pooling, nodes are scored based on impor-
tance, with high-scoring nodes retained and low-scoring nodes removed, resulting in a pooled
sparser graph that maintains essential structural features.

the k-plex pooling method [9] generalizes clique pooling by allowing for k-plexes, which

are subgraphs where each node is connected to all but k nodes within the subgraph. This

method provides more flexibility than strict cliques, extracting more complex and less

densely connected structures.

The cluster-based pooling methods are very effective in practice but have been criticized

for their high memory consumption [26]. To overcome these challenges, several studies

have proposed a range of sparse operators collectively referred to as node-selection graph

pooling methods. Figure 2.4 shows how cluster and node-selection pooling methods pro-

cess an input graph. These methods utilize learnable transformation functions to project

node features into a scoring vector, and then this scoring vector is used to generate a

pooled graph by selecting the most important nodes. Hongyang et al. [50] developed a

Topk-k Pooling method that selects a fixed number of nodes based on their importance

scores, typically computed using a learnable projection vector. Nodes with the Top-k

highest scores are selected, and their features are passed to the next layer. In SAGPool

[77], the authors introduced self-attention mechanisms to determine the importance of

each node. Nodes with higher attention scores are selected for the pooled graph. Jin-

heon et al. [140] proposed Multistructure Attention Convolutional (MAC) pooling that

incorporates dual-node scoring strategies to obtain the importance of nodes. Similar

to node-selection methods but focusing on edges rather than nodes, Edge Contraction

22 CHAPTER 2. BACKGROUND

Pooling [40, 39] computes a score for the edges incident to each node. Based on these com-

puted scores, edges are then iteratively contracted, meaning their endpoints are merged

into a single node.

2.5 Graph Augmentation

In recent years, GNNs have achieved remarkable advancements in graph representation

learning, excelling in graph and node classification tasks [72, 125]. However, a major

challenge remains the limited availability of labelled datasets for many graph classification

problems [144]. For example, in the domain of molecular property prediction, GNNs are

extensively utilized, but acquiring labeled molecular data often requires intricate and

labor-intensive laboratory processes. Consequently, the scarcity of sufficiently labeled

samples hinders the ability of GNNs to achieve promising prediction performance.

Data augmentation methods are known for their efficiency and effectiveness in generating

new weak-labeled synthetic data samples from the existing training data, providing a

straightforward and cost-efficient method to enhance the generalization of a deep model.

This strategy is preferred over resource-intensive methods like gathering extra real data

or significantly changing the model architecture or training algorithms.

Data augmentation methods have been demonstrated to be helpful in CV and NLP [101].

Effective data augmentation approaches for CV include image flipping, noise injection,

and cutout [37]. Additionally, methods like Generative Adversarial Networks [52] and

Auto-Encoder [71] also contribute to generating new samples by learning the distribution

of data. However, applying such techniques to graphs is more complex due to their non-

Euclidean nature, where nodes are irregularly connected by edges [153, 41], presenting

unique challenges in augmentation.

Recent works have focused on developing graph augmentation by revising the graph’s

structures and manipulating node features for node-level and graph-level prediction tasks

[126, 73]. Structure-based augmentation alters the graph’s topology to create diverse

2.5. GRAPH AUGMENTATION 23

Fig. 2.5: An outline of different graph augmentation methods for graph representation learning.

graph structures and the Figure 2.5 shows both structure and feature-based graph aug-

mentation methods. These methods can include edge and node perturbation, where edges

and nodes are randomly added or removed while maintaining the overall structure. For

example, DropEdge [106] employs a random method to remove a uniform portion of edges

and generate augmented graphs to enhance the robustness of the GNN model during test

time inference, AdaEdge [28] methodology uses an iterative process to add (or remove)

edges connecting nodes that are predicted to have similar (or different) labels with a

high level of probability, and DropNode [144] randomly deletes a certain portion of nodes

from the original graph, resulting in the generation of augmented graphs. The DropNode

augmentation operation can disconnect closely related nodes in the augmented graph,

which can lead to a loss of the graph’s overall structural information [132].

Feature-based augmentation methods manipulate the node features to create new training

samples. Researchers have recently developed Mixup augmentation methods [59, 95, 1]

for graph augmentation, which generates augmented graphs by interpolating the features

of node pairs. This method helps the model to generalize better by exposing it to inter-

mediate feature representations that lie between the original nodes. In the last, subgraph-

24 CHAPTER 2. BACKGROUND

based augmentation involves generating subgraphs from the original graph. The authors

in [132] developed a GraphCrop method, which generates various cropped-augmented

graphs using a node-centric strategy.

2.6 Over Squashing

As mentioned in section 2.3, message passing is a key component of a GNN model, where

node features are iteratively updated by aggregating information from neighboring nodes

and generating the node embedding for nodes [51]. Further, this node embedding output

is used to perform various tasks like graph and node classification.

However, the GNN’s message passing mechanism faces significant challenges, particularly

in practical applications that require capturing long-range interactions. One prominent

issue is over-smoothing, where node features become indistinguishable as the number of

layers increases [20]. This convergence of features limits the depth of GNNs, thereby

restricting their ability to capture complex relationships within the data.

Another critical issue is over-squashing, first identified by [6]. This problem arises as the

depth of a GNN increases, requiring information from potentially exponentially expand-

ing receptive fields to be processed simultaneously at each message passing step. This

scenario creates a bottleneck, where an exponential amount of information is compressed

into fixed-size node vectors, leading to over-squashing [6] (see the Figure 2.6). As a result,

GNNs may fail at tasks that depend on long-range interactions. Oversquashing tends to

occur when the GNN has sufficient layers to encompass the entire graph (large receptive

fields) but not enough to manage and process all the relationships between nodes effec-

tively. One of the prevalent strategies to address this issue is graph rewiring, which aims

to alter the graph’s edges to reduce structural bottlenecks [121]. Chapter 9 will present

a detailed description of graph rewiring methods and possible solutions as part of this

thesis’s contributions. This section provides an overview of the diverse graph rewiring

methods in the literature.

One of the prevalent strategies to address this issue is graph rewiring, which aims to

2.7. CONCLUSION 25

Fig. 2.6: This diagram depicts the over-squashing problem in GNNs and a potential solution
through graph rewiring methods. The over-squashing problem is illustrated on the left, where
information from distant nodes becomes bottlenecked, impairing effective communication. On
the right, the graph rewiring solution is shown, where additional edges are added to the graph to
alleviate bottlenecks, thus improving the flow of information and enhancing the GNN’s ability
to capture long-range dependencies.

alter the graph’s edges to reduce structural bottlenecks [121]. A common approach to

rewiring includes making the graph fully connected or applying transformer architectures

to form attention-based connections between nodes [75, 102]. These spatial rewiring

techniques often use a k-hop neighborhood strategy connecting each node to others [2].

However, these methods can sometimes neglect the graph’s inherent structural features

and may suffer from high computational costs and issues with noisy attention weights

[6]. Recent studies have explored leveraging graph-theoretic metrics such as spectral gap,

commute time, and effective resistance to adjust edges or their weights [7, 66, 19]. These

adjustments aim to diminish bottlenecks and enhance information flow across the graph.

2.7 Conclusion

This chapter covered the fundamental principles of GNNs, including generating node

embedding through a message passing mechanism, various GNN architectures and dif-

ferent graph learning tasks. We also explored the limitations in existing graph learning

approaches, which have driven the development of more advanced graph representation

learning techniques, such as pooling methods, enhanced message passing mechanisms,

novel augmentation strategies, and graph rewiring techniques to improve graph repre-

sentations. The concepts and methods described in this chapter will serve as the basis

for the novel methods and applications explored in this thesis to enhance further the

capabilities of GNNs.

26 CHAPTER 2. BACKGROUND

Chapter 3

Quasi-Clique Pooling for Graph

Neural Networks

“Patterns are not just the domain of design but the essence of understanding

complexity.”

— Dan Cederholm

3.1 Preamble

In this chapter, we implemented a novel Quasi-CliquePool method to overcome the limi-

tations of existing clique pooling. The research and findings discussed in this chapter are

based on the following paper:

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. “Quasi-

cliquepool: Hierarchical graph pooling for graph classification.” In Proceedings of

the 38th ACM/SIGAPP Symposium on Applied Computing, pp. 544-552. 2023

[4].

The author has the following contributions:

• Developing the overall framework of the algorithm.

• Writing the majority of the code.

28 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

• Performing all the experiments.

• Writing a significant part of the paper.

3.2 Introduction

In recent years, CNN models have demonstrated outstanding performance in various

challenging tasks in the fields of image processing, video processing, natural language

interpretation, and beyond [90, 55]. These tasks typically represent data in euclidean

space, whereas a large amount of data exists in non-euclidean domains, such as chemical

molecules, biological and social networks, which can usually be represented as graphs [34].

Therefore, attempts have been made to successfully generalize CNN models to operate

on graph data, leading to GNNs.

GNNs have been implemented for various kinds of graphs and have achieved state-of-

the-art performance for many graph-related tasks, such as classifying nodes, classifying

graphs, and predicting links [150]. These findings demonstrate that GNNs are effective

at node-level and graph-level representations. On the other hand, pooling approaches

are demonstrated to be efficient and effective in many natural language processing [74]

and image-related tasks such as text and image classification [78]. It is thus natural to

investigate these techniques also for graph data [77]. The researchers generalize the CNN

pooling methods on graphs to reduce the size of nodes for graph-level prediction. For

example, studies have extended the global average or sum pooling operations to graph

models by averaging or summing all node features [116]. But, such pooling methods are

not able to capture the hierarchical graph structure and may lose important features

[143].

Several advanced graph pooling techniques, like DiffPool [143], Top-k pooling [50], and

SortPool [77], have been developed to overcome the shortcomings of global pooling and

have achieved promising results on graph classification tasks. Furthermore, in [9, 84],

the authors proposed topology-based clique and k-plex hierarchical pooling methods for

3.2. INTRODUCTION 29

graph classification.

However, the pooling techniques mentioned above have room for improvement. For in-

stance, the DiffPool method produces a dense adjacency matrix due to its differentiable

nature. It requires hyper parameterization in the form of a prior on the number of clus-

ters or nodes allowed to be pruned. Top-k pooling introduced a new gPool method to

overcome this issue [50]. Based on the scalar projection values of the nodes, the gPool

method selects the top-k nodes to reduce the size of the graph. But, this method ignores

the topological structure of the graph. In [84], the authors proposed a clique pooling

method for graph classification using topological information. Still, clique pooling is

much more restricted and less flexible than k-plex pooling because it is limited to hard

graph partitions [9]; hence, k-plex pooling has achieved good results compared to clique

pooling. However, the k-plex pooling depends on the k number of adjacent nodes. The

method proposed in this chapter is close to clique and k-plex pooling methods.

This chapter links pooling operators and two graph theoretical concepts: clique and

quasi-clique. The former performs a hard partitioning between nodes, where each node

is connected up to one cluster. The latter ones provide flexible partitioning for a clique,

which relaxes the definition of a clique to a quasi-clique to extract dense, incomplete

subgraphs within a large graph. In this chapter, we propose Quasi-CliquePool (cf. Figure

3.1), a novel pooling technique to learn a hierarchical representation of a graph to address

the limitations mentioned above. The proposed method uses the Replicator Dynamics

(RD) algorithm to extract a subset of nodes (maximal clique) iteratively. The RD is a

dynamical system that, at convergence, provides the likelihood of participation of each

node into a cluster; the higher the value, the central the node.

In this chapter, we introduce a new soft peel-off strategy to find the low-participating

nodes in a converged RD. Such nodes, being not central, lie on the border of the cluster.

Hence they are good candidates for being the link with other clusters in the graph.

Those nodes are allowed to get extracted again with other clusters, while the central

ones belong only to one cluster. Having nodes that belong to multiple clusters inevitably

extends the maximal clique concept to a quasi-clique due to missing edges. Nodes that

30 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

remain isolated during the pooling operations are removed from the graph. Details are

discussed in Section 3.5. We make a coarsened graph based on extracted cliques in the

last step. Overall, this chpater makes the following contributions:

• We propose a novel graph pooling method, Quasi-CliquePool, based on the concept

of quasi-clique. The proposed graph pooling method can be integrated into various

GNN architectures.

• We also introduce a new soft peel-off strategy to find the overlapping cluster/clique

nodes of a given graph during the pooling procedure.

• We conduct comprehensive experiments and show that Quasi-CliquePool improves

an average accuracy by 2% in four out of six graph classification benchmarks com-

pared to state-of-the-art pooling methods.

3.3 Related work

This section briefly explains the multiple GNN models and graph pooling methods for

graph classifications.

3.3.1 Graph Neural Network Models

GNN models have drawn considerable attention due to their excellent performance on

various tasks in the graph learning representation domain. Recently, several GNN archi-

tectures have been developed, including architectures inspired by CNNs, recursive graph

networks [111], recurrent graph networks [81], and line graph neural networks [25]. Gilmer

et al. [51] proposed “a neural message passing” framework for graph data, and most of

the above approaches fit within this framework. In this message-passing framework, the

GNN model computed the node representations directly from their neighbour nodes’ fea-

tures using a differentiable aggregation and propagation function. In [57], the authors

present a comprehensive review of recent advancements in this domain, and [22] makes

connections to spectral graph convolutions.

3.3. RELATED WORK 31

3.3.2 Graph Pooling Methods

The pooling methods reduce the graph size using node dropping or node pruning for

graph classification. There are three categories of graph pooling: topology, global and

hierarchical pooling [77].

Topology based pooling

Earlier works used only graph coarsening methods without neural networks. For ex-

ample, spectral clustering methods achieve coarsened graphs using eigendecomposition

[131]. However, the eigendecomposition procedure was not good in terms of time com-

plexity. Dhillon et al. [38] first time proposed a Graclus method to extract the clusters

of given graphs without eigenvectors. Graclus method used the concept of mathematical

equivalence between a general weighted kernel k-means objective and a general spectral

clustering objective. This technique improves the several weighted graph clustering ob-

jectives, including ratio cut and normalized cut. Even in recent GNN models [104, 18],

Graclus is used as a pooling module.

Global pooling

Global pooling methods use neural networks or summation functions to pool all the node

representations in each layer. Gilmer et al. [51] introduced a message-passing scheme

based on a general framework for graph classification and obtained the entire graph

classification using the Set2Set model. In [147], the authors proposed the SortPooling

method to keep much more node information and learn from the global graph topology.

This method sorts the nodes embeddings according to the graph structural roles and then

feed these sorted embedding to the next layers.

Hierarchical pooling

Global pooling is the most effective way to reduce the size of the graph. However, these

methods ignore the hierarchical graph information, which is important for capturing the

structural information of graphs. The principal goal of hierarchical pooling approaches

32 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

is to build a technique that uses graph topology or node feature information to learn

the node representation hierarchically. In this regard, Ying et al. [143] proposed the

first hierarchical DiffPool method for classifying graphs. This method can be used with

various GNN architectures in an end-to-end fashion. It used the learning assignment

matrix that contains the probability values of nodes in layer L and then assigned these

values to clusters in the next layer L+ 1. Due to its differentiable essence, its application

produces dense adjacency matrices. In [50], the authors developed the Top-k pooling to

overcome this issue by learning a project vector. But, this method ignores the topological

structure of the graph. Enxhell et al. [84] introduced a clique-based hierarchical pooling

method for graph classification. Clique pooling is much more restrictive because it is

limited to hard graph partitions. In [9], the authors improved the simple clique pooling

method and proposed a k-plex pool method for graph classification. To further improve

pooling methods, this chapter proposes a novel Quasi-CliquePool method that can use

topological information to yield hierarchical representations.

3.4 Limitations in Existing Graph Poolings

Despite the advancements in graph pooling methods, several limitations still hinder their

effectiveness in accurately capturing graph structures. Table 3.1 summarizes the current

graph pooling methods based on their four desirable clustering properties: 1) Hierarchi-

cal pooling—Global pooling methods ignore the hierarchical structure information in the

graphs during pooling operation however, hierarchical pooling methods extract the hier-

archical information. Our quasi-pooling can extract hierarchical information from graphs

and can be combined with various GNN architectures, 2) Adaptive—we can distinguish

pooling methods based on the k number of nodes of the pooled graph. The k-plex [9] is

a fixed pooling method because it depends on the apriori k number of adjacent nodes.

Our pooling method is adaptive because it is not dependent on any k number of adja-

cent nodes, 3) Topology pooling—in terms of graph clustering, topology structure-based

aggregation is crucial for pooling operations. DiffPool [143] and Top-k [50] only used

3.5. QUASI-CLIQUE GRAPH POOLING 33

Table 3.1: Related work in terms of four desirable graph pooling properties outlined in Section
3.3. Methods are divided into hierarchical pooling, adaptive, topology pooling, and overlapping
nodes.

Methods Hierarchical Adaptive Topology Overlapping Nodes

Graclus [131] ✗ ✔ ✔ ✗

TopK-Pool [50] ✔ ✔ ✗ ✗

SAGPool [77] ✔ ✔ ✔ ✗

DiffPool [143] ✔ ✗ ✗ ✔

SortPool [147] ✗ ✔ ✔ ✗

CliquePool [84] ✔ ✔ ✔ ✗

K-plexPool [9] ✔ ✗ ✔ ✔

Quasi-CliquePool ✔ ✔ ✔ ✔

the node features to perform pooling and ignored the topological structure. The pro-

posed method uses topological structure information to perform pooling operations, and

aggregates node features using element-wise sum or max functions, and 4) Overlapping

nodes—one node may belong to multiple clusters. It can be observed from Table 3.1 that

the proposed pooling method is different from other partitioning-based graph coarsening

approaches [84, 9] because Quasi-CliquePool extracts overlapping nodes during pooling

operations to preserve the topological structure. Clique pooling, on the other hand, forces

a split between two nodes, which destroys the topological relationship between the two

nodes. The k-plex pooling finds the overlapping nodes, but it depends on the k-fixed

number of adjacent nodes.

3.5 Quasi-Clique Graph Pooling

In this section, we explain the mechanism of Quasi-CliquePool and show how it is imple-

mented in a GNN architecture for graph classification. Section 3.5.1 briefly describe the

background for RD with the quasi and maximal cliques. In section 3.5.2, we explain how

the quasi-clique method can be used to coarsen the graph. Finally, section 3.5.3 explains

the Quasi-CliquePool algorithm to extract the quasi-cliques and maximal cliques.

34 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

3.5.1 Replicator Dynamics, Maximal and Quasi Clique

Replicator Equations (REs) are a class of dynamical systems developed to model the

evolution of animal behaviour using tools and principles of game theory. The REs have

recently been applied with significant success to solve the maximal clique and related

problems [100]. This approach formulates the maximal clique problem into a standard

quadratic assignment program based on a well-known result from graph theory. We

introduce some notations and definitions to represent this concept formally. Initially, the

data to be clustered are represented as a graph G = (V,E) with no self-loop, where V and

E are sets of vertices and edges, respectively. In our case, the vertices correspond to the

graph nodes, and the edges represent the neighbouring relationship between two nodes.

We compute the adjacency matrix of G, which is the N × N non-negative symmetric

matrix A = (Aij) defined as follows:

aij =


1, if(i, j) ∈ E,

0, otherwise.

(3.1)

The degree of a vertex i ∈ V relative to a subset of vertices C, denoted by degC(i), is the

number of vertices in C adjacent to it, that is,

degC(i) =
∑
j∈C

aij. (3.2)

When C = V we obtain the standard degree notion, in which case we shall write deg(i)

instead of degV (j). A subset C of vertices in G is called a clique if all its vertices are

mutually adjacent. A clique is said to be maximal if it is not contained in any larger

clique, while Quasi-clique is a dense incomplete subgraph of a graph that relaxes the

clique constraints. In [100], a one-to-one correspondence between stable points of the

RD, local maximizers of a standard quadratic assignment problem and maximal clique is

provided. It is thus sufficient to reach an equilibrium point of the RD to get a maximal

clique. We used this algorithm in our implementation to extract the maximal and quasi-

3.5. QUASI-CLIQUE GRAPH POOLING 35

Fig. 3.1: An example of the Quasi-CliquePool method for a graph. We run a GNN model
at each hierarchical layer to obtain embeddings of nodes. After that, apply a Quasi-CliquePool
on learned embeddings to get the maximal and quasi cliques and transfer each clique into new
nodes in the coarsened graph G′. This process is repeated for n layers, and the final output
representation is used to classify the graph. The red nodes are isolated nodes and are removed
during the pooling operations. Numbers in bold font represent the number of agglomerated nodes
(the highly participating ones) from the previous layer. The nodes are connected in coarsened
graph based on node and edge-sharing among cliques.

cliques. Figure 3.2 shows the graphical representation of how the RD method obtains the

maximal cliques and quasi-clique using a density curve. The discrete replicator dynamic

is defined as:

x
(t+1)
i = x

(t)
i

(Sx(t))i
(x(t))′S(x(t))

(3.3)

the Equation 3.3 (for i = 1, ..., n) corresponds to the discrete-time version of first-order

replicator equations. The RD is a continuous optimization technique that, at convergence,

provides the degree of centrality for each node in a cluster; the higher the degree, the

more central the node. In [100], the authors introduced an effective strategy (Peel-off)

to perform a hard partition of the given data into coherent clusters using RD, with the

following steps: 1) find the most participating nodes based on a predefined threshold

to obtain a cluster. (i.e., a maximal clique), 2) remove those selected nodes from the

similarity graph, and 3) reiterate steps 1 and 2 on the remaining nodes until all nodes

have been clustered. The peel-off strategy considers only the highly participating nodes

due to the predefined threshold in the RD convergence; however, the low-participating

nodes that lie on the border of the cluster might be a good candidate to link with other

clusters in the graph. These nodes can be extracted again with other clusters at RD

convergence, while the central ones belong only to one cluster. Hence we introduce a new

36 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

soft peel-off strategy, a threshold, to find these low participating nodes in a converged

RD. Figure 3.3 shows that the central nodes belong only to one cluster, while the border

nodes can be linked to other clusters. The run-time complexity of RD is O(K|V |2),

where V is the number of vertices in the graph and K is the number of iterations. A

detailed explanation of how we used the RD algorithm and soft peel-off strategy in our

implementation is mentioned in section 3.5.3.

Fig. 3.2: Illustrations of the RD method to obtain the quasi-cliques and maximal clique. Given
a graph with 15 nodes and an initial density (d = 0.19). We apply the RD method to this graph
and map the obtained quasi-cliques and maximal clique onto the density curve at each iteration
of the RD. The quasi-cliques and maximal clique are shown in the dotted line and solid line
boxes, respectively. It can be seen that the RD method returns the quasi-cliques at each step;
however, it returns the maximal clique at convergence when it reaches density d = 1.0.

3.5. QUASI-CLIQUE GRAPH POOLING 37

3.5.2 Graph Coarsening with Quasi-CliquePool

The proposed Quasi-CliquePool method computes the cliques C = {C1, C2, ..., Ck} of the

input graph (V,E, α, β), and returns a coarsened graph (V ′, E ′, α′, β′), such as:

V ′ = V (G′) = {v′1, v′2, v′3, ..., v′k}, (3.4)

E ′ = E(G′) = {{v′i, v′j} | E(G[Ci, Cj]) ̸= ∅}, (3.5)

where node v′i represents the coarsened version of Ci and E ′{v′i, v′j} represents coarsened

edge that exists iff there is at least one edge in original graph G connecting a node of

Ci with a node of Cj. The node features function α′ : V ′ → IRd aggregates the features

that belong to the same clique Ci. We considered the features of maximal clique-based

nodes for aggregation since these nodes are highly connected. For relabeling the nodes

and edges in the coarsened graph, we defined node features in the following way:

α′(vi)
′ = Φ({α(vi)|vi ∈ Ci}), (3.6)

β′({v′i, v′j}) = ψ({β(e)|e ∈ E(G[Ci, Cj])}), (3.7)

where ϕ and ψ represent the aggregation functions. The element-wise max or sum is a

common aggregator function for node features [138]. We used element-wise max or sum

aggregators for node features. Our approach is different from other partitioning-based

graph coarsening methods [84] because a node may belong to multiple cliques in the pro-

posed method. On the other hand, CliquePool [84] performs a hard partition between

nodes, which destroys the topological structural relationship in the cliques1. Figure 3.1

illustrates the framework of Quasi-CliquePool. Concretely, we view a GraphConv layer

followed by a Quasi-cliquePool layer as a module and name it Quasi-cliquePool Graph-

Conv layer for convenience. The Quasi-cliquePool GraphConv layer takes a graph as an

input and outputs a new pooled graph with a new feature matrix and adjacency matrix.

Then, the pooled graph is fed into the next Quasi-cliquePool GraphConv layer and ap-

1We do not consider edge attributes in this work.

38 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

Fig. 3.3: An example illustrates the clustering process using Quasi-CliquePool. In the first
step, the RD method extracts a yellow quasi-cluster with six nodes: four highly participated and
two overlapping nodes. The red one is an isolated node removed during the pooling procedure.
The overlapping nodes are selected from the yellow cluster using the soft peel-off strategy σ.
We removed only the highly participated nodes from the similarity matrix and iterated the RD
method to extract the second purple cluster with overlapping nodes.

plies a readout function on it. In the last step, we get the final graph representation by

adding the embeddings of each graph layer, and a multi-layer perceptron model is applied

to this representation to classify the graph.

3.5.3 Quasi-CliquePool Algorithm

In this section, we propose a Quasi-CliquePool algorithm for graph classification, whose

pseudocode is shown in Algorithm 1, that extracts the quasi-cliques and maximal cliques

of a given graph. Algorithm 1 performs two main tasks: 1) partitions the graph and

assigns the nodes of the original graph G to k different cliques, and 2) each clique is

transformed into a new node in the coarsened graph G′. The core of our method is

inspired by the original RD algorithm for the maximal clique of Pelillo et al. [100].

Algorithm 1 receives a graph A ∈ {0, 1}N×N and X ∈ IRN×d as input and returns the list

of all possible quasi-cliques C. In the first step, we used the Euclidean pairwise distance

method, and the gaussian kernel [146] function to build the similarity matrix of the given

graph (Equation 3.8). The kernel function basically tells the model how similar two data

points are (xi, xj). The affinity between a pair of points can be defined as

Sij = exp

(
−d2(xi, xj)

ρiρj

)
, (3.8)

3.5. QUASI-CLIQUE GRAPH POOLING 39

where d(xi, xj) is the euclidean distance between the vectors xi and xj and ρi ρj are

the local scaling parameters computed with [146]. In the next step, the RD method

uses this similarity matrix as an input and provides a characteristic vector XN that

contains the probability value of the participation of each node in a cluster; the higher

the value, the central the nodes as a maximal clique, and the lower the value, the border

the nodes. Then a γ threshold is applied to the characteristic vector XN to extract the

highly participating nodes as a maximal clique. Here we are interested in extracting the

low participating nodes that lie on the clique’s border because these nodes might be good

candidates for overlapping nodes with other cliques in the graph. We introduced a new

soft peel-off strategy, a filter operation that finds border (overlapping) nodes using a σ

threshold and assigns them again in characteristic vector x for the next convergence of

the RD. So in this way, Algorithm 1 iteratively selects all the possible quasi-cliques by

extracting the nodes in set U. Nodes that remain isolated during the pooling operations

are removed from the graph. Moreover, the aggregation procedure of the node features

(Equation 3.6) contributes similarly to the respective clusters, and element-wise sum or

average readout functions are used to aggregate the node features in the coarsened graph.

In the next pooling layer, we transformed each clique into a new node and connected two

cliques (Equation 3.7) if they have a common edge or node in the original graph G. We

illustrate our proposed Quasi-CliquePool in Figure 3.1, where we performed quasi-clique

pooling on a graph with 19 nodes and obtained a new graph G′ at the first layer of

Quasi-CliquePool with 5 nodes.

40 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

Algorithm 1: Quasi-CliquePool

Input: Given a graph G as A ∈ {0, 1}N×N and X ∈ RN×d

Output: List of all possible Quasi-Cliques C of G

1 C ← ∅;

2 S ← build a similarity matrix (Equation 3.8);

3 U ← V (G);

4 while U ̸= 0 do

5 XN ← RD(S) ; // characteristics vector XN (Equation 3.3)

6 Ci ← filter(XN , γ) ; // extracts the quasi-clique

7 L← filter(Ci, σ) ; // selects the low participated nodes

quasi-clique (overlapping nodes) from Ci

8 C ← C ∪ Ci;

9 Ci ← Ci \ L ; // remove the selected lowest value nodes from Ci

10 Remove Ci from the similarity matrix S;

11 C = {C1, . . . , Ck};

3.6 Result and Discussion

This section evaluates the superiority and effectiveness of Quasi-CliquePool in compari-

son to other contemporary graph-based classification approaches. Section 3.6.1 Section

provides a brief overview of the datasets utilized in the research. Section 3.6.2 explains

the baseline methods used to compare the results and configuration of Quasi-CliquePool

and baseline methods. In section 3.6.3, we compare Quasi-CliquePool results with state-

of-the-art graph classification approaches. Finally, section 3.6.4 presents the ablation

study.

3.6.1 Dataset Setup

To verify the performance of Quasi-CliquePool in learning complex hierarchical graph

structures in different domains, it tested on a variety of large benchmarks that are com-

3.6. RESULT AND DISCUSSION 41

monly used in graph classification tasks [67]. This study used bio-informatics datasets

including DD [47], Protein and Enzymes [21, 42], and the molecule datasets Mutag [105],

NCI-1, and NCI-109 [129]. All datasets are retrieved from the TU-Dortmund collection

[92]. Table 3.2 shows the statistics of the datasets, most of the datasets are relatively

large-scale with different sizes of graphs and hence suitable for evaluating deep graph

models.

Table 3.2: Statistics of datasets.

Datasets Total Graph Average Nodes Average Edges Classes

ENZYMES [42] 600 32.63 62.14 6

PROTEINS [21] 1,113 39.06 72.82 2

D&D [47] 1,178 284.32 715.66 2

NCI-1 [129] 4,110 29.87 32.30 2

NCI-109 [129] 4,127 29.68 32.13 2

MUTAG [105] 188 17.93 19.79 2

3.6.2 Baselines and Experimental Settings

To compare the performance of graph classification, we consider GNNs-based baselines

combined with different state-of-the-art pooling methods. The next section briefly de-

scribes these baseline methods with experimental settings.

Graph Neural Network Methods. This chapter considers three GNN architectures to

test the proposed Quasi-CliquePool method. (1) GCN [72] is a convolutional neural net-

work that learns node representations by aggregating and propagating information from

neighbours. (2) GraphSage [56] introduces the inductive framework, which calculates

node embedding by aggregating and sampling features from local neighbours. (3) Graph-

Conve [91] proposed k-dimensional GNNs that can take high-order graph structures and

are useful in analysing social networks and molecule graphs.

Competitors. This chapter compares Quasi-CliquePool with five state-of-the-art hier-

archical pooling techniques: Top-k pooling [50], SAGEpool [77], DiffPool [143], clique

42 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

pooling [84], and k-plex pooling [9] and two global pooling methods: Sort pooling[147]

and Graclus[131]. For all baselines and quasi-clique poling, we employed the same hyper-

parameter search strategy. The hyperparameters are summarized in Table 3.3.

For all the pooling and GNN baselines, we consider the accuracy scores reported by the

original authors. In cases where baseline techniques did not publish require classification

scores, we used the original authors’ code (if available) with the same hyperparameters

setting mentioned in the original papers. In our experiments, we used the GraphConv

architecture for Quasi-CliquePool, since we achieved effective and superior performance

with this architecture compared to the standard graph convolutional model. We used the

Graphconv ”add” variant, and after each Graphconv layer, we added a Quasi-CliquePool

layer. A global readout function is applied after every layer of Quasi-CliquePool with

dropout (ratio 0.5). A total of three Quasi-CliquePool layers are used for the datasets.

Next, the ReLu activation function is applied after every convolutional layer. A softmax

function is used to classify the graph in the last step. We randomly split each dataset

into three parts: 80 percent for training, 10 percent for the validation set, and 10 percent

for the testing set. We repeated this random splitting process 10 times to get more stable

performance and reported the average performance. We used PyTorch to implement the

Quasi-CliquePool and the Adam optimizer to optimize the model. Table 3.3 shows the

hyperparameter list. For all GNNs and pooling baselines, we used the official PyTorch

published code.2

3.6.3 Performance on Graph Classification

Table 3.4 demonstrates the test accuracy of Quasi-CliquePool on bio-informatics and

molecules benchmarks. To summarize the results, we have the following observations:

• First, we can observe from the results that Quasi-CliquePool consistently outper-

forms other baselines in most datasets. For example, in the molecule datasets,

quasi-clique pooling achieves 1.10% improvement compared to the k-plex best base-

line in NCI-1, which is 10.13% improvement over a Graph Convolutional Network

2https : //github.com/pyg − team/pytorch geometric/tree/master/benchmark/kernel

3.6. RESULT AND DISCUSSION 43

Table 3.3: The hyper-parameters setting. We applied three graph convolutional layers and
three quasi-clique pooling layers. The pooling ratio is used only for Top-k pooling, SAGPool,
and DiffPool.

Model Hyper-Parameters Values

All

GNNs GCN, GraphSAGE, GraphConv

layers 2, 3

learning rate 1e-2, 1e-3, 1e-4

weight decay 1e-2, 1e-3, 1e-4, 1e-5

TopK-Pool, SAG-Pool 0.8

DiffPool pooling ratio 0.25

RD ϵ, γ 2.0e-4, 1.0e-7

Quasi-
CliquePool

σ 1.876e-03

(GCN) with no hierarchical pooling mechanism. Quasi-CliquePool also achieves

2.76% improvement over the k-plex pooling in the Proteins dataset, and the overall

improvement is 8.67% over the GCN model.

• In most of the datasets, our quasi-clique pooling method obtains better perfor-

mance than both hierarchical and global pooling methods. Quasi-CliquePool almost

achieves 2.5% overall improvement over hierarchical baselines, including DiffPool,

clique, k-plex, and Top k pooling in bio-informatics datasets. At the same time,

the quasi-clique method almost achieves 8% improvement over global pooling ap-

proaches (Graclus and Sortpooling).

• Being consistent with existing studies’ findings [85, 151], we can see from Table 3.4

that GNN architectures without pooling modules are not able to achieve promising

results because they ignore hierarchical graph information while summarizing the

node representations globally. So this also proves that GNNs need a graph pooling

layer for graph classification tasks.

• We also note that the hierarchical-based pooling methods achieved relatively better

results than global methods, which further demonstrates the effectiveness of the

hierarchical pooling operations. Both the SAGPool and Top-k pooling methods

44 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

Table 3.4: Test accuracy on the classification of molecules and bio-informatics benchmarks.
The bold and underlined text highlight the highest and second-highest accuracy scores, respec-
tively.

Classification Baselines ENZYMES PROTEINS D&D NCI-1 NCI-109 MUTAG

GNNs

GCN [72] 28.68% 70.01% 71.42% 70.24% 68.33% 72.30%

GraphSAGE [56] 31.73% 71.37% 71.70% 73.36% 72.30% 74.08%

GraphConv [91] 33.71% 72.43% 72.31% 74.70% 73.22% 77.97%

Pooling

Graclus [131] 28.51% 71.35% 72.45% 74.25% 72.32% 76.64%

TopK-Pool [50] 31.64% 77.25% 82.43% 73.30% 72.30% 74.75%

SAGPool [77] 32.68% 70.04% 76.19% 74.18% 74.04% 77.72%

DiffPool [143] 62.53% 76.25% 80.64% 76.40% 74.29% 81.09%

SortPool [147] - 75.54% 79.37% 74.48% 72.31% 84.12%

CliquePool [84] 42.17% 73.86% 74.88% 78.83% - -

K-plexPool [9] 43.33% 75.92% 77.76% 79.01% - -

Proposed Quasi-CliquePool 45.01% 78.68% 75.30% 80.11% 76.30% 84.88%

perform poorly on the ENZYMES dataset. The possible reason may be limited

training examples per class, resulting in overfitting in GNN. However, DiffPool

achieves superior performance in the ENZYMES dataset, and the proposed Quasi-

CliquePool achieves the second-best accuracy in this dataset. In addition, the Top-

Kpool obtains the best performance on the D&D dataset, and DiffPool obtains the

second-best performance. The quasi-clique pooling method performs badly on the

D&D dataset because it has very large, noisy, and sparse graphs.

• In comparison to the K-Plex and clique pooling methods, our method achieves

the best performance on all six datasets, as shown in Table 3.4. Such observations

demonstrate the overlapping nodes information in graphs is useful for graph pooling.

And overall, our Quasi-CliquePool performs best on four out of six datasets.

3.6.4 Ablation Study

In this section, we conducted the experiments to verify the performance of the proposed

method by varying the sensitivity of many significant hyperparameters. Next, we inte-

grate our pooling method into various GNN architectures to investigate its effect. We

3.6. RESULT AND DISCUSSION 45

ENZYMES PROTEINS NCI-109
0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (
%)

Quasi-CliquePool_GCN
Quasi-CliquePool_GSAGE
Quasi-CliquePool_GConv

Fig. 3.4: Quasi-CliquePool performance with different GNN architectures.

also investigate the performance of quasi-clique pooing with different readout functions.

Quasi-CliquePool and Graph Neural Network Architectures

As previously mentioned, the proposed Quasi-CliquePool can integrate into various GNNs

architectures. We integrate Quasi-CliquePool into the three most widely used graph con-

volutional models, including GCN, GraphSAGE, and GraphConv. These models test on

three datasets (Protein, Enzymes, NCI-109), which cover large and small graph datasets

with multiple classes. Figure 3.4 shows the performance of the three Quasi-CliquePool

variants. It can see the Quasi-CliquePool GraphConv achieves the highest accuracy on

all three datasets, specifically on the Protein dataset. One can also see that the perfor-

mance of Quasi-CliquePool GraphConv on the Enzymes dataset is also better than other

variants, so it shows our proposed model can get good results on multi-classes datasets.

Hyper-Parameter Analysis

This section further investigates the sensitivity of some important hyper-parameters on

Quasi-CliquePool. In detail, we investigate how the GNN layers L and graph represen-

tation dimension d affect graph classification results. As shown in Figure 3.5, Quasi-

46 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

CliquePool obtains the highest accuracy when setting k = 3 and d = 64, respectively. It

can be observed that the accuracy presents a slight increase trend with the dimension d

increasing in both datasets. This is because the higher dimensional representation space

makes classification tasks easy. One can also see that when we increase the neural net-

work layers, the accuracy is also increasing, but too large layers L will hurt the model’s

performance due to over-smoothing [79].

1 2 3 4
Neural Network Layers L

40

50

60

70

80

Ac
cu
ra
cy
 (%

)

Enzymes
Proteins

(a)

16 32 64 128
Dimension D

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Enzymes
Proteins

(b)

Fig. 3.5: Test accuracy curves on Protein and Enzymes with different values of L and d

Readout Functions

To investigate how the different readout functions affect the performance, we used three

readout functions, sum, avg, and max to aggregate node features, which are denoted as

Quasi-CliquePool-sum, Quasi-CliquePool-avg, and Quasi-CliquePool-max, respectively.

These readout-based quasi-clique models evaluate on three datasets (Protein, Enzymes,

NCI-109). As shown in Table 3.5, Quasi-CliquePool-Max and Quasi-CliquePool-Avg

achieve better performance than Quasi-CliquePool-Sum. Quasi-CliquePool-max obtains

the highest accuracy than Quasi-CliquePool-Avg, which is consistent with existing re-

search work [9, 84]. This observation highlights the significance of readout functions in

aggregating nodes in pooling operations.

3.7. CONCLUSION 47

Table 3.5: Quasi-CliquePool performance with various readout functions.

Readout Functions ENZYMES PROTEINS NCI-109

Quasi-CliquePool-Sum 43.20% 75.89% 78.15%

Quasi-CliquePool-Max 45.01% 78.68% 80.11%

Quasi-CliquePool-Avg 44.01% 77.30% 77.30%

3.7 Conclusion

In this chapter, we designed a novel graph pooling technique, Quasi-CliquePool, for graph

classification using the RD algorithm. The proposed Quasi-CliquePool method has the

following specifications: it exploits the topological structure of the graph, extracts the

complex hierarchical structure of graphs, does not require a-priori knowledge of the hier-

archy, and can be integrated into several GNN architectures. This chapter also introduced

a soft peel-off strategy to find the overlapping nodes of the graph in the clustering pro-

cedure. To demonstrate the superiority of Quasi-CliquePool for graph classification, it

tested on six datasets from two domains: molecules and bio-informatics. The proposed

method obtained the best results in four datasets, demonstrating our model’s effective-

ness.

48 CHAPTER 3. QUASI-CLIQUE POOLING FOR GRAPH NEURAL NETWORKS

Chapter 4

Dominant Sets: A Multi-View

Approach to Graph Pooling

“Authentic perspicuity comes not from a single view but from the intersection of

viewpoints, each uncovering a segment of the immense puzzle.”

— Unknown

4.1 Preamble

In this chapter, we introduced a novel Dominant Set-based clustering pooling method

that analyses the graph’s overall architecture and connectivity patterns, finds all potential

clusters using edge weight information, and generates a coarser graph view. Additionally,

we designed a fusion-view attention layer to fuse the different sources of information,

which allows our pooling method to extract and integrate global and local structures and

node features simultaneously. The research and findings discussed in this chapter are

based on the following paper:

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. “Domi-

nant Set Multi-View Graph Pooling for Graph Classification”; Submitted to Neural

Networks Journal 2024 (under review).

The author has the following contributions:

50 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

• Developing the overall framework of the algorithm.

• Writing the majority of the code.

• Performing the overall experiments.

• Writing a considerable part of the paper.

4.2 Introduction

GNNs have recently revolutionized the analysis of graph-structured data by leveraging

message passing mechanisms to aggregate neighborhood information, generating node em-

beddings, which are used to perform various graph-related tasks from node classification

to link prediction [157, 103]. In the context of graph classification, graph pooling is an es-

sential operation in GNNs for learning the representation of an entire graph. It maps the

nodes or subgraphs into a compact representation, highlighting significant graph struc-

tures while improving computational efficiency [94]. Early graph pooling methods use

sum or average aggregation functions to generate graph-level representations for GNNs

[12, 116]. Despite being straightforward, these methods often overlook the contextual

and hierarchical information within graphs. To address these limitations, recent studies

have introduced hierarchical pooling methods that preserve graph substructures through

local and global topological information [77, 30, 84]. These hierarchical methods provide

a more comprehensive graph representation by clustering or selecting informative nodes

layer by layer.

Node cluster pooling methods capture the connectivity patterns of the entire graph by

grouping similar nodes into clusters and transferring each cluster into a single node to

generate a coarsened graph. Ying et al. [143] developed the first DiffPool that learns

a soft cluster assignment matrix for nodes using the GNN, which contains the proba-

bility values of nodes being assigned to clusters. DiffPool mainly focuses on the node

features to extract the clusters and depends on a predefined cluster ratio. Similarly, the

clique pooling method [84] targets global topological structures by identifying all max-

4.2. INTRODUCTION 51

imal cliques within the graph. Methods [4] and [9] further improve clique pooling to

extract the overlapping nodes between two cliques. In node selection methods, the goal

is to create a pooled graph by learning the significance scores of each node and then

selecting a subset of nodes with high scores [140, 77, 30]. For example, Gao et al. [50]

proposed a Top-k pooling, which employs scalar projection values of node features to

select the most important nodes. SAGPool [77] further enhanced the performance of

Top-k pooling using self-attention weights, and MAC [140] used attention weights with a

convolutional neural network to evaluate the importance of nodes. Furthermore, MVPool

[152] employs a multi-view scoring strategy and uses the attention mechanism for inte-

grating the different views to generate more robust subgraphs. However, existing cluster

pooling approaches mainly perform analysis on unweighted graphs, overlooking the nu-

anced dynamics of weighted graphs. Edge weights in the graphs represent the similarity

between nodes, which is significant for analyzing the graph’s hierarchical structural infor-

mation to perform downstream classification tasks. Additionally, most of the traditional

graph cluster methods often require a predefined cluster ratio to guide the pooling pro-

cess. Furthermore, the above-mentioned pooling methods usually fail to integrate the

graph’s comprehensive multi-view contextual information, resulting in generating less ro-

bust graph representations.

To address the challenges in existing graph pooling, this chapter introduces a novel Dom-

inant Set Multi-View Pooling method (DSMVPool), which enhances the performance of

graph classification tasks by fusing different contextual information, including both global

and local topological information, as well as node features and edge weights. Specifically,

we develop a node cluster method using the dominant set concept [98] to capture the

graph’s global topological information. Unlike existing graph cluster pooling approaches,

our dominant set utilizes edge-weighted graphs and finds all potential clusters without

depending on a predefined cluster ratio, generating a more robust graph coarsening rep-

resentation Gcoarser. We also generate two pooled views of the input graph Glocal and

Gfeature by extracting the most important nodes based on the graph’s local topological

information and node features, respectively. Furthermore, we design a fusion-view atten-

52 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

tion convolution layer to fuse Gcoarser with Glocal and Gfeature. Ultimately, we generate

the final pooled graph by aggregating the fused graph representations. Specifically, our

contribution is four-fold:

• We propose a novel Dominant Set Multi-View Graph Pooling method, which si-

multaneously captures and integrates local topological information, coarser graph

structures, and node features.

• For the first time, we use the Dominant Set clustering method to develop graph

pooling. This has the advantage of exploiting edge weights (neglected by most of

the pooling methods) and avoiding an a-priori fixed number of clusters, resulting

in a more expressive graph coarsening.

• Furthermore, we design an attention-fusion-view convolution layer that refines the

graph representations by integrating the coarser graph with local topological struc-

tures and node features-based pooled graphs.

• We conduct extensive experiments showing that DSMVPool enhances average ac-

curacy by 1.31%, 1.51%, 0.62%, and 1.14% in chemical molecules, social networks,

bio-informatics, and computer vision-based graph classification benchmarks, respec-

tively, compared to the state-of-the-art pooling approaches.

4.3 Related Work

The current graph pooling methods are classified into two types based on their design

strategy: global and hierarchical pooling.

Global Pooling Approaches: Global pooling usually adopts summation or average

operations to integrate the embeddings of all nodes, resulting in a single vector represen-

tation for the entire graph. In Set2Set [127], the authors use the long short-term memory

model to aggregate the node embeddings and perform global pooling. The DGCNN [147]

model first sorts the node embeddings and subsequently generates the graph representa-

tion by combining certain node embeddings. Graph topological-based pooling procedures

4.3. RELATED WORK 53

are introduced in [145, 104], where Graclus and graph coarsening techniques are used as

pooling modules [62]. Global approaches perform pooling operations based only on node

attributes, potentially resulting in the loss of hierarchical information.

Hierarchical Pooling Approaches: Hierarchical graph pooling methods aim to learn

a hierarchical representation via building hierarchical GNNs. Based on designing proper-

ties, the hierarchical methods can be grouped into two main classes: sparse node selection

and node cluster. The node selection pooling algorithms calculate the importance of nodes

based on their features or the structural information of the graph and retain the nodes

with the highest scores. For example, Top-k pooling [50], SAGPool [77], and AttPool [63]

select the most significant nodes based on node attributes or attention scores to form a

pooled graph for the next input layer. Jinheon et al. [140] proposed MAC pooling that

incorporates multiple strategies to calculate the importance of nodes and use an atten-

tion mechanism to update node representations. MVPool [152] further improves the node

ranking using different contextual graph information and develops a structure learning

method to refine the graph structure for the pooled graph. These methods are more ef-

fective as they only need to calculate an important score for each node. However, they do

not perform node aggregation and neglect to consider the graph topological information

during the pooling operation. EdgePool [85] generates a pooled graph by integrating the

edges of a given graph. It lacks flexibility as it can only reduce the number of nodes by

half with each iteration.

The graph cluster method globally assigns all nodes to a number of clusters but requires

setting the number of clusters and then obtaining the basis vector of each cluster. This

strategy better ensures the completeness of feature information due to the basis vectors

of each cluster containing all node information. In [143], the authors proposed DiffPool

to learn a soft assignment matrix using graph neural networks and mapping nodes to a

set of clusters. In [84], the authors introduced clique-based graph pooling to capture the

overall topological structures of the network effectively. This is achieved by dividing the

graph into its possible cliques. Methods [4, 9] enhance the clique pooling technique to

retrieve the overlapping nodes shared by two cliques. Further, MuchPool [43] combines

54 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

Table 4.1: Comparison of graph pooling methods.

Properties TopkPool [50] SAGPool [77] DiffPool [143] CliquePool [84] MuchPool [43] Our

Sparse ✔ ✔ ✗ ✗ ✔ ✔

Node aggregation ✗ ✗ ✔ ✔ ✔ ✔

Graph clustering ✗ ✗ ✔ ✔ ✔ ✔

Flexible number of clusters ✗ ✗ ✗ ✗ ✗ ✔

Edge weights support ✗ ✗ ✗ ✗ ✗ ✔

DiffPool with Top-k pooling to capture graph local and global topological information and

node features. However, most current approaches only use a limited amount of contex-

tual information from graphs, disregarding collaboration and input from many sources of

information. Furthermore, the node cluster pooling methods stated above only focus on

unweighted graphs, which hinders their ability to adapt the weighted graphs during the

clustering implementation process. This limitation may constrain the potential use cases

for pooling operations. Thus, this chapter introduces a novel dominant set multi-view

pooling and uses edge weights to extract the clusters in the weighted graphs without

relying on a predefined cluster ratio. Furthermore, our method designs a attention-

fusion-view convolution layer to fuse the coarser graph with pooled graphs to generate

more robust graph representations for graph classification tasks. Table 4.1 compares the

attributes of the above graph pooling operators with DSMVPool. The table shows that

our technique consists of all properties.

4.4 Proposed Methodology

The proposed DSMVPool mainly uses three views to perform graph pooling operations

to learn different contextual information of a graph and then integrate the results of

these three views. The first step of the Figure 4.1 employs three graph pooling methods

to deeply understand the graph’s local and global topological structures and the node

features. In this initial step, we generate two pooled views of the graph Glocal and

Gfeature and one coarser view Gcoarser. The second step implements an attention-fusion-

view convolution layer that fuses the Gcoarser with Glocal and Gfeature. The last step

4.4. PROPOSED METHODOLOGY 55

Fig. 4.1: The architecture of the proposed DSMVPool. Step 1 applies three graph pooling
methods that capture the different contextual information of the graph and generate two pooled
views, Glocal and Gfeature, and one Gcoarser view of the graph. Step 2 implements a fusion-view
layer to fuse three subgraphs, such as Gcoarser with Glocal and Gfeature and generate two new
fusion feature embeddings Hfusion1 and Hfusion2. The last step generates the final pooled graph
by aggregating the results of Hfusion1 and Hfusion2.

aggregates the results of views 1 and 3 to generate the final pooled graph Gpool. The

following sections provide more detailed explanations of each step.

4.4.1 Local Topology Pooling (View 1)

This pooling view learns the graph’s structural importance by ranking nodes according

to their local neighborhood connectivity. Given a graph G = (V,E,X), we reduce the

set of nodes considering the most important ones while preserving the original connec-

tivity, hence generating the pooled graph Glocal. In this context, the notion of a node’s

neighborhood can be defined as the explicit connections within a graph or the affinities

within node embeddings. To assess the node’s importance, we use a GAT layer [125] to

capture the local topological structures. Mathematically, the significance of each node is

derived through the following formulation:

L = attention(GAT (X,A)); Lidx = {i| Li > p} (4.1)

56 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

where Li shows the attention score for a node i, A denotes the adjacency matrix of the

graph and X represents the initial node features. In Lidx we preserve only those nodes

having an attention score greater than the pooling ratio p. The pooled graph Glocal =

(VL, EL, XL) is then defined as VL = {vi|i ∈ Lidx} is the set of nodes, EL ⊆ VL × VL ∩ E

hence we use the original graph connectivity, and the set of features XL = {Xi|i ∈ Lidx}.

4.4.2 Global Topology Pooling (View 2)

This pooling view aims to generate a coarser graph view Gcoarser by capturing the graph’s

global topological information. Current cluster pooling techniques like DiffPool [143]

primarily use unweighted graphs to perform pooling operations, neglecting edge weights

and typically requiring a predefined cluster ratio to find clusters within a graph. Edge

weights play a crucial role in understanding the topological structures within graphs,

such as in a molecular graph where edges indicate chemical bonds of different strengths

or in a social network graph where edges represent the frequency of interactions among

individuals [10]. In these cases, edge weight information is significant for describing the

graph’s topological structures and can affect how clusters form. Inspired by a dominant

set-based clustering method [98] that combines concepts from graph theory and evolu-

tionary game theory to identify clusters in data using edge weights, we adopt this robust

concept for graph pooling. Therefore, we design a dominant set cluster pooling method

to capture the graph’s global topological information and identify all possible dominant

clusters. Following that, we transfer each dominant cluster into a single node (supernode)

and aggregate the feature within each cluster to generate Gcoarser. Next, we provide a

detailed explanation of the dominant set notion and describe how we used this concept

in graph pooling to generate the graph coarsening.

Dominant Set Clustering

The Dominant Set (DS) clustering extends the concept of identifying maximal cliques to

edge-weighted graphs. In this context, the DS method is used to coarsen the input graph

grouping nodes having similar features. The DS clustering is different from other graph

4.4. PROPOSED METHODOLOGY 57

coarsening approaches, such as DiffPool and Mincutpool, because it is not dependent

on any predefined cluster ratio or a-priori number of clusters, and it works on weighted

graphs. Therefore, DS pooling has strong advantages over the competitors, allowing the

structures to emerge spontaneously from the graphs, resulting in more natural, expres-

sive, and representative clusters. We then construct an undirected edge-weighted graph

G = (V,E,w) without self-loops, where the nodes V correspond to the graph’s nodes,

represented by feature vectors. The edges E ⊆ V × V are the pairwise relations between

nodes and their weight function ω : E → R≥0 calculates pairwise similarities. The N×N

symmetric adjacency matrix A = (aij) summarizes G:

aij =

 w(i, j) if (i, j) ∈ E

0 otherwise.
(4.2)

Typically, every clustering method is expected to exhibit two essential properties: high

intra-cluster homogeneity and low inter-cluster homogeneity. These properties are crucial

for effectively segregating and grouping objects. They directly influence the combinatorial

formulation of DS, as detailed in [98]. Pavan et al., established an intriguing connection

between clusters, dominant sets, and local solutions of the following quadratic problem

[98]:

maximize hTAh (4.3)

subject to h ∈ △n

where A is the similarity matrix of the graph and h is the so-called characteristic vector

which lies in the n-dimensional simplex △n, that is, (
∑

i hi = 1,∀i hi ≥ 0). If x is a strict

local solution of (4.3) then its support σ(h) = {i ∈ V |hi > 0} is a dominant set [97].

In order to extract a DS, a local solution of (4.3) must be found. A well-known method

to solve this problem is to use a result from evolutionary game theory [136] known as

58 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

replicator dynamics (RD) (see Equation 4.4).

hi(t+ 1) = hi(t)
(Ah(t))i

h(t)TAh(t)
(4.4)

RD is a dynamical system that conducts a selection process on the elements of the vector

h. Upon convergence of Equation 4.3 (|| (h(t)− h(t+ 1)) ||2 ≤ ϵ), specific elements will

emerge (hi > 0) while others will vanish (hi = 0). Convergence of the process is assured

when the matrix A is non-negative and symmetric. The dynamical system commences

at the barycenter of the simplex, and its elements are updated using Equation 4.4. At

convergence, a dominant set is identified using the support of h, the selected nodes are

removed from the graph (referred to as the ”peeling-off” strategy), and the process iterates

again on the remaining nodes until all nodes are assigned to a cluster.

Dominant Set Pooling

Given an unweighted graph G = (V,E,X) with associated features X for each node, we

first construct a weighted version of it G = (V,E,X,W) and then extract all the clusters

using the DS method. Given two nodes i and j, we compute the edge weights using the

cosine similarity of node features Xi ∈ X and Xj ∈ X and refine the similarities through

a Gaussian kernel.

sij =
Xi ·Xj

||Xi||||Xj||
; Wij = exp

(
−(1− sij)2

2σ2

)
(4.5)

The σ is a scale parameter (after several experiments, we set it as 1.0).

Given the weight W we used the DS’s peel-off strategy to extract all dominant set clusters

C = {c1, c2, ..., ck} from the graph G = (V,E,X) and generate the Gcoarser = (V̂ , Ê, X̂)

representation with updated features. Here, V̂ = {v̂1, v̂2, ..., v̂k} is the set of supernodes

representing the k clusters, Ê is the new set of edges connecting supernodes, and X̂ are

the features associated to each supernodes V̂ . These sets are defined as follows:

X̂i = α({Xv|v ∈ ci}) (4.6)

4.4. PROPOSED METHODOLOGY 59

(ci, cj) ∈ Ê iff ∃v ∈ ci and u ∈ cj|(v, u) ∈ E (4.7)

where α represents a node features aggregation functions (max or average). An edge

between supernodes i and j is added to Ê iff an edge already insists between a pair of

nodes belonging to the clusters i and j in the un-coarsened graph G.

4.4.3 Node Feature Pooling (View 3)

Beyond the structural information, graphs often come with node features that can broadly

describe their properties. For example, in chemical molecule graphs, node features depict

the type of atoms essential for predicting the graph properties. Therefore, it is a valuable

source for highlighting the significance of a node inside a graph. So, the main goal of

this pooling view is to select the most important nodes based solely on their feature

values. Given a graph G = (V,E,X), we reduce the set of nodes considering the most

important ones while preserving the original connectivity, hence generating the pooled

graph Gfeature. For this purpose, we directly use a Multi-Layer Perceptron (MLP)1 to

calculate the node importance score directly from node features:

F = (MLP (X)); Fidx = {i| Fi > p} (4.8)

where Fi shows the feature score for node i and X represents the initial feature matrix.

In view1 pooling, Equation 4.1 already considered the local topology and node features.

However, the pooling operations can cause the graph to become sparse and result in

isolated nodes (not connected to any other node). This can negatively impact the message

passing in the subsequent layers. As a result, the information from these isolated nodes

cannot be aggregated by Equation 4.1. However, Equation 4.8 for node feature learning

is independent of structural information, meaning that the presence or absence of edges

between nodes does not impact the learning process. Consequently, in a sparse graph,

this pooling view layer can effectively learn the information of these isolated nodes. The

1The MLP is composed of two linear layers of dimensions 64 and 1, respectively, interleaved with a
ReLU function.

60 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

pooled graph Gfeature = (VF , EF , XF) is then defined as VF = {vi|i ∈ Fidx} is the set of

nodes, EF ⊆ VF × VF ∩ E hence we use the original graph connectivity, and the set of

features XF = {Xi|i ∈ Fidx}.

4.4.4 Fusion-View Attention Convolution

In the first step, illustrated in Figure 4.1, we generate two pooled views and one coarser

view of the input graph Glocal, Gfeature, and Gcoarser. Next, we need to fuse these three

pooled graphs, each reflecting the graph’s distinct contextual aspects. Motivated by

MuchPool [43], we developed an attention-fusion-view message passing operation to fuse

Glocal with Gcoarser, and Gfeature with Gcoarser. The calculation of the fusion-view process

is as follows:

Hview = σ ([Hview + Afuse ·Hcoarser] ·W) (4.9)

where Hview ∈ Rp×d denotes the node embedding matrix of the Glocal or Gfeature, Hcoarser ∈

Rk×d represents the node embedding matrix of Gcoarser (see Equation 4.6 and Afuse ∈ Rp×k

denotes the attention scoring relationship matrix between Gcoarser and Glocal or Gfeature

pooled graphs, where p and k are the node numbers in the two pooled graphs and Gcoarser,

respectively.

In particular, to obtain Afuse, we perform multiple steps. First, we concatenate node

embedding of Hview and Hcoarser and then apply a linear transformation layer with ac-

tivation function to compute raw attention scores, which capture the affinity between

Hview and Hcoarser node pair. After that, we generate a binary relationship matrix

Arelation ∈ {0, 1}p×k, where p and k represents the number of nodes in Gview and Gcoarser,

respectively. Next, we used this binary relationship matrix to perform element-wise mul-

tiplication with Afuse to ensure the attention mechanism only considers node pairs that

are local and global topological contextually significant. The message passing architecture

within GNNs can be expressed as:

H(t) = σ
([
H(t−1) + AH(t−1)

]
W (t)

)
∈ Rn×d (4.10)

4.4. PROPOSED METHODOLOGY 61

where H(t) denotes the hidden node embeddings computed after t steps of the GNN,

A ∈ {0, 1}N×N denotes the adjacency matrix, and W (t) ∈ Rn×d denotes a learnable

weight matrix and the node embeddings H(t−1) generated from the previous message

passing step. In our case, we can use Afuse and Hcoarser as the adjacency matrix and

embedding matrix of the fused graph separately in Equation 4.10 and generate two new

embeddings Hfusion1 and Hfusion2.

4.4.5 Pooling Aggregation Operation

Using the fusion-view layer, we generate two fused pooled graph embeddings from views 1

to 3. The indices of the selected nodes in view 1 are denoted as Lidx, and the embedding

matrix following the fusion-view operation step is denoted as Hfusion1. Similarly, the

indices of the selected nodes and the embedding matrix in view 3 are Fidx and Hfusion2,

respectively. Next, we aggregate these fused graph embeddings to minimize the loss for

graph classification tasks. We perform the following formulations to aggregate the pooled

graphs:

Idx = Lidx ∪ Fidx (4.11)

The above Equation allows for extracting the induced graph, Gpool, from the selected

nodes. The adjacency matrix of this pooled graph is calculated as:

Apool = AIdx, Idx (4.12)

where AIdx, Idx is the row-wise and col-wise indexed adjacency matrix, and Apool ∈ RP×P

is the new adjacency matrix of the pooled graph. The node feature matrix for the

aggregated pooled graph, Xpool, is defined as:

Xpool[i, :] =


Hfusion1[i, :] if i ∈ Lidx

1
2

(Hfusion1[i, :] +Hfusion2[i, :]) if i ∈ Lidx ∩ Fidx

Hfusion2[i, :] if i ∈ Fidx

(4.13)

62 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

where Xpool ∈ RP×d is the node feature matrix for the aggregated pooled graph.

4.4.6 Hierarchical DSMVPool Architecture and Readout Layer

We integrate multiple GCN layers with DSMVPool layers to make a hierarchical pooling

architecture and perform graph classification tasks. Figure 4.1 illustrates the hierarchical

framework consisting of three blocks with GCN and DSMVPool layers, and each block

takes a graph as input and generates a pooled graph with updated feature and adjacency

matrices. Next, the pooled graph is fed into a readout function to combine all node

representations and generate a single graph embedding as follows:

Zj =

[
max

1≤i≤N l
X l

ij

]
∀j ∈ [0, d]; Rl =

 1

N l

N l∑
i=1

xl
i || Z

 (4.14)

where Z ∈ Rd vector contains the maximum values of each feature dimension across all

nodes N l at layer l-th, X l
i is the feature vector of i-th node, and || denotes concatenation.

The readout Rl ∈ R2∗d concatenates the two (average and max) feature representations.

Finally, this graph embedding is fed into a multi-layer perceptron classifier to make

predictions.

4.4.7 Complexity Analysis

The computation complexity of our dominant set method is O(k ∗ t ∗N2), where k is the

number of clusters, N is the number of nodes, and t is the number of iterations of the

replication dynamics with t << N and k depends on the unknown number of clusters in

the graph. For space complexity, our method requires O(N2) to memorize the similarity

matrix. If the graph is very large, we might use a function to compute the edge weight

on the fly; hence, the space needed concerns the vector h (Equation 4.4), which requires

O(N).

4.5 Experiments

This section reports the experimental details and evaluates the performance of the

DSMVPool. For experiments, we selected four diverse dataset categories: chemical

4.5. EXPERIMENTS 63

Table 4.2: Characteristics and Statistics of eight datasets.

Classification Datasets Total Graphs Average Nodes Average Edges Classes

Biological
Proteins 1,113 39.06 72.82 2

D&D 1,178 284.32 715.66 2

Chemical

Mutagen 4,337 30.32 30.77 2

COX2 467 41.22 43.45 2

BZR 405 35.75 38.36 2

Social
Networks

REDDIT-M-12K 11,929 391.41 456.89 11

IMDB-Binary 1000 19.77 96.53 2

Computer Vision MSRC 21 563 77.52 198.32 20

molecules, biological networks, social networks, and computer vision. These datasets

are benchmarks against which we compare DSMVPool with state-of-the-art competitors

and baselines methods. Table 4.2 shows the details of the datasets. Additionally, we

conduct ablation studies to evaluate the contribution of each view in the DSMVPool. We

also visualize the results of various pooling layers to see how baselines and the proposed

pooling method reduce the nodes.

4.5.1 Competitors and Experimental Settings

(1) Graph Neural Networks: We select four GNN architectures to conduct compar-

ative experiments: GCN [72], GAT [125], GraphSAGE [56] and GraphConv [91] .

(2) Graph Pooling Methods: We compare our DSMVPool with nine advanced hierar-

chical pooling methods to analyze the results of the experiment: TopkPool [50], SAGPool

[77], MAC [140], DiffPool [143], CliquePool [84], Quasi-CliquePool [4], MuchPool [43],

MPool [65], and Wit-TopoPool [30].

(3) Experimental Settings: DSMVPool is implemented using the PyTorch framework

[96] and PyTorch Geometric library [48]. We used the provided node features to generate

the edge weights for our dominant set cluster pooling method (see Section 4.4.2). To

ensure a fair comparison, we follow numerous prior research studies [77, 4, 43], employing

tenfold cross-validation to assess the performance of the models listed above and provide

average accuracy and standard deviation. For all the competitors we used the same GNN

backbone [91] as a message passing function to fairly emphasize the contributions of each

64 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

Table 4.3: Comparison of DSMVPool and baselines. The highest score is in bold, and the
second highest score is in underline (OOR referred to as out-of-resources).

Class Methods COX2 BZR MUTAGEN RED-M IMDB-B D&D PROTEINS MSRC-21

GNNs

GCN [72] 78.16±0.85 80.01±2.39 78.18±2.58 23.84±1.92 60.10±5.34 75.13±4.14 73.77±5.59 84.04±6.40

GAT [125] 78.37±0.66 80.74±2.52 78.99±2.44 21.73±1.03 52.00±2.12 76.91±2.68 75.30±5.23 88.80±4.38

GraphSAGE [56] 79.51±2.96 80.99±2.83 76.70±2.20 28.73±1.34 70.50±2.57 77.48±3.20 76.73±3.00 85.63±4.24

GraphConv [91] 80.01±4.43 82.12±2.89 79.18±3.13 37.53±2.34 70.12±2.78 76.57±3.98 74.04±5.07 88.66±3.47

Pooling

TopkPool [50] 77.93±2.79 81.49±4.17 78.56±1.94 37.56±3.39 70.11±2.31 73.85±4.63 73.32±6.09 88.45±3.70

SAGPool [77] 78.37±1.86 81.24±4.01 77.25±3.03 36.79±3.53 70.65±3.36 72.49±2.87 73.50±4.56 87.92±3.24

MAC [140] 78.36±0.16 82.30±2.58 80.33±2.01 42.67±2.23 57.20±0.92 79.13±4.70 76.08±3.55 89.75±2.12

DiffPool [143] 77.60±2.70 78.90±0.40 71.80±0.15 OOR 68.40±0.51 74.31±2.15 77.62±4.97 83.30±0.51

CliquePool [84] 78.37±1.86 82.17±2.25 78.47±1.62 36.11±2.13 70.00±3.71 74.81±3.87 73.56±2.86 88.72±1.14

QuasiPool [4] 80.15±2.13 82.21±2.58 79.53±1.58 38.21±2.43 70.30±1.45 75.30±3.30 75.68±1.38 88.15±2.28

MuchPool [43] 79.27±6.09 80.28±6.93 78.75±2.48 OOR 65.10±6.65 76.48±7.01 78.52±3.89 86.85±3.61

MPool [65] 78.10±0.10 78.70±0.11 79.60±3.70 OOR 71.02±3.57 80.20±2.10 79.30±3.30 87.52±0.54

Wit-TopoPool [30] 78.10±0.10 79.75±0.14 73.88±1.29 23.19±1.12 70.20±6.76 71.30±0.37 75.88±5.60 89.16±4.00

Our DSMVPool
Gain

81.13±2.96
+0.98

83.58±2.75
+1.28

81.39±1.98
+1.68

44.61±2.15
+1.94

72.10±2.98
+1.08

80.91±2.14
0.71

79.84±2.53
0.54

90.89±2.5
+1.14

pooling method. We utilize the official source codes of all methods provided by the au-

thors and tune hyperparameters to reproduce the results according to the requirements

in their papers. Hyperparameters are fine-tuned within specified ranges, such as embed-

ding dimensions in the range of {64, 128, 256}, learning rate in the range of {0.01, 0.001,

0.0001}, batch size in the range of {32, 64, 128, 256} and pooling ratio in the range {0.5,

0.6, 0.7, 0.8, 0.9}. We utilize the Adam optimizer[70] to initialize our model and apply

a negative log-likelihood loss function for training. We implement patience and an early

stopping criterion, which stops the training process if the loss value of the validation set

does not decrease for 50 consecutive epochs.

4.5.2 Performance Comparison with state-of-the-art

We evaluated our proposed DSMVPool and other baseline methods on the eight datasets

for the graph classification task and reported the accuracy and standard deviation in Ta-

ble 4.3. The proposed DSMVPool achieves superior results among all baseline methods

in the domain of social networks, chemical molecules, and computer vision while being

on par with biological networks. For example, our pooling method outperforms the top

baselines by 1.28% for BZR, 0.98% for COX2, and 1.68% for Mutagenicity in the chemical

4.5. EXPERIMENTS 65

molecular domain. Interestingly, the average number of edges in the chemical compounds

datasets is significantly less than in the other datasets, as seen in Table 4.2. Because of

their sparsity, these five datasets present a considerable challenge for pooling layers to

acquire meaningful representations. Our fusion-view layer captures different contextual

information from the graph, such as local and global information, allowing DSMVPool

to extract hidden information effectively from the sparse graph topology.

In addition, DSMVPool consistently surpasses GCN-based global pooling methods across

all datasets. These superior results highlight the effectiveness of our method in generat-

ing more significant graph representations, emphasizing the need to integrate hierarchical

pooling layers into the learning process. Specifically, DSMVPool and other node cluster

pooling methods like DiffPool, CliquePool, Quasi-CliquePool, and MPool demonstrate

superior performance compared to GNN models. Moreover, the CliquePool and DiffPool

do not consistently perform better than node selection pooling methods like SAGPool and

TopkPool. This observation further substantiates the idea that integrating the graph’s

local and global properties in a pooling method can lead to more effective methods for

graph classification tasks. Table 4.3 demonstrates that the proposed approach achieves

notable improvements in multiclass datasets, with a 1.14% enhancement on MSRC 21

and a 1.94% enhancement on REDDIT-MULTI. The DSMVPool also considerably im-

proves the IMDB-Binary dataset, resulting in a 1.08% increase. It is worth noting that

the average number of nodes and graphs is small in IMDB-MULTI, with only 19 and

1000, respectively. This phenomenon is consistent with the results obtained in chemical

molecules, which strongly confirms the correctness of the previous analysis. In con-

clusion, our DSMVPool consistently outperforms baseline pooling approaches on eight

benchmarks.

4.5.3 Ablation Study

This section performs an ablation study on DSMVPool by removing three views pooling to

verify further where the performance improvement comes from. For convenience, we name

the DSMVPool method without the local, global, and feature views as DSMVPoolNLV,

66 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

Table 4.4: Effect of different graph pooling views in DSMVPool.

Architecture MUTAGEN PROTEINS BZR IMDB-B MSRC21

DSMVPoolNLV 79.82 ± 2.63 78.65 ± 2.51 79.02 ± 1.16 70.80 ± 4.41 88.47 ± 4.24

DSMVPoolNGV 78.47 ± 2.97 76.56 ± 2.79 80.00 ± 5.48 71.00 ± 4.08 87.93 ± 3.51

DSMVPoolNFV 80.61 ± 1.70 78.21 ± 2.70 78.77 ± 1.59 71.70 ± 3.03 87.75 ± 5.03

DSMVPool 81.39 ± 2.01 79.84 ± 2.53 83.58 ±3.15 72.10 ± 3.40 90.89 ± 2.5

DSMVPoolNGV, and DSMVPoolNFV, respectively. We chose five different-scale graph

datasets covering small and large graphs for experiments. The results presented in Table

4.4 highlight the considerable impact of our dominant set-based clustering pooling, par-

ticularly within the domains of chemical molecules and MSRC graphs, since capturing

the global structure with local or node features is especially useful for the classifier to

distinguish the graphs. Furthermore, it can be observed that DSMVPoolNLV outperforms

DSMVPoolNFV in datasets characterized by sparse graph structures, such as those in-

volving chemical molecules, because the local topology pooling operation may generate

isolated nodes, which could adversely affect message passing in subsequent network lay-

ers. Overall, DSMVPool’s ability to learn both the graph’s local and global topological

information with node features and edge weight information enables it to generate robust

graph representations that significantly enhance performance in classification tasks.

4.5.4 Graph Visualization

To further demonstrate how DSMVPool outperforms baselines, we use networkx3 to vi-

sualize the pooling outcomes of the proposed approach and three other pooling methods:

MuchPool, SAGPool, and CliquePool. For a fair comparison, we make a three-layer hi-

erarchical pooling architecture and set a 0.7 pooling ratio. We select a random graph

from the Mutagenicity dataset containing 35 nodes. The first pooling layer of all methods

shows that the DSMVPool, CliquePool, and MuchPool largely preserved the significant

topological structure of the original graph, including ring and branch structures. How-

ever, the SAGPool contains several isolated nodes. The findings from the second and

third pooling layers demonstrate that SAGPool, CliquePool, and MuchPool struggle to

generate pooled graphs with appropriate topological structures.

4.6. CONCLUSION AND FUTURE WORK 67

(a) Original Graph (b) DSMVPool1 (c) DSMVPool2 (d) DSMVPool3

(e) Original Graph (f) CliquePool1 (g) CliquePool2 (h) CliquePool3

(i) Original Graph (j) SAGPool1 (k) SAGPool2 (l) SAGPool3

(m) Original Graph (n) MuchPool1 (o) MuchPool2 (p) MuchPool3

Fig. 4.2: Graph visualization of different pooling approaches. The graphs show that DSMVPool
preserves the graph’s original topological structures during the pooling operation.

Meanwhile, the second and third layers of our DSMVPool generate the pooled graph with

reasonable topological structures, including dual ring structures in the original graph. We

can see the effectiveness of DSMVPool since ring structures are crucial in characterizing

molecules. The visualization findings align with the results in Table 4.3.

4.6 Conclusion and Future Work

This chapter developed a novel Dominant Set Multi-View Pooling approach for hierarchi-

cal graph representation learning. We developed a dominant set cluster pooling method

68 CHAPTER 4. DOMINANT SETS: A MULTI-VIEW APPROACH TO GRAPH POOLING

to identify all potential clusters using edge weights, generating a coarser view of the graph.

Furthermore, we generated two pooled graph views by selecting the most significant nodes

based on the graph’s local topological structures and node features importance. Next, we

developed an attention-fusion-view layer to fuse the coarser graph with the pooled graphs

and perform aggregation to form the final pooled graph. We evaluate the performance

of DSMVPool on ten graph-classification datasets, including four distinct domains. Our

method outperforms baselines and competitors on all datasets. In the future, we plan

to use it for analyzing protein structures, which can help to design drugs that bind to

pre-selected regions, targeting specific biological pathways and reducing the probability

of off-target effects.

Chapter 5

Glocal Attention: Hierarchical

Pooling for Graph Learning

“Topology is precisely the mathematical discipline that allows the passage from local to

global.”

— Rene Thom

5.1 Preamble

In this chapter, we designed a novel Hierarchical Global Local Attention Pooling Domi-

nant that leverages graph structural information and node features to identify the most

relevant global structures (cliques). Furthermore, we developed a multi-attention Lo-

calPool to capture the local node’s properties from the ranked global structures to reduce

the size of the graph for downstream tasks such as graph classification. The research and

findings discussed in this chapter are based on the following paper:

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. “Hier-

archical Glocal Attention Pooling for Graph Classification.” Pattern Recognition

Letters Journal 2024 [5].

The author has the following contributions:

70 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

• Developing the overall framework of the algorithm.

• Writing the complete code.

• Performing the overall experiments.

• Writing the complete paper.

5.2 Introduction

GNNs have recently gained significant attention due to their ability to process graph-

structured data effectively. They have shown effectiveness in various tasks of classifying

graphs and learning graph representations [72], including understanding and predicting

interactions between molecules and proteins [135, 103] that can lead to significant ad-

vancements in drug discovery, analyzing structure and dynamics of interactions in social

networks [68], operating on knowledge graphs to enable Retrieval-Augmented Genera-

tion (RAG) [88] or enable the detection of visual objects from their context [58], e.g.,

to support document accessibility [112]. Within the scope of graph classification, the

Graph Pooling (GP) methods play a pivotal role in GNN architectures that map the set

of nodes or subgraphs into a compact representation to capture a meaningful structure

of the entire graph [94]. Early GP methods, referred to as global GPs [12, 116], are the

simplest approaches, which reduce the size of the input graph by performing a sum or

average of all nodes without considering the hierarchical information of the graph and

may lose feature information. Recently, several advanced hierarchical GP methods, such

as node cluster and node selection methods [30, 50, 84], have been proposed to tackle the

limitations of global pooling and obtain state-of-the-art performance.

The node cluster methods like DiffPool [143] and CliquePool [84] capture the Global

Topological Structure (GTS) of a graph, which extracts the overall architecture and con-

nectivity patterns of the entire network by partitioning the graph into clusters. Then,

each cluster pooled into a supernode to create a coarsened graph. However, the Clique-

Pool method has limitations in extracting overlapping nodes between cliques and treats all

5.2. INTRODUCTION 71

cliques equally informative without considering node attributes. On the other hand, node

selection methods such as Top-k pooling, SAGPool, and Topological Pooling [140, 77, 30]

identify the most significant nodes based on their feature values or attention scores while

dropping unnecessary nodes. These methods primarily focus on the graph’s Local Topo-

logical Structure (LTS), which includes the analysis of individual nodes, their attributes,

and neighborhoods. However, there is a lack of an effective GP method that combines

both global and local properties of the graph hierarchically to improve the graph repre-

sentation.

To address the limitations of existing GP methods, this chapter proposes Hierarchical

Global-Local Attention Pooling (HGLA-Pool), a novel pooling method designed to cap-

ture graphs’ local and global properties. The proposed approach is structured as a two-

fold process, each fold addressing specific limitations of existing GP approaches. The

fold-1 leverages the idea of cliques that perform clique pooling [84], which aims to en-

capsulate the graph’s GTS. In this fold, we design a rule-based method to enhance the

clique representation by identifying the overlapping nodes between cliques. Identifying

overlapping nodes is crucial in various real-world scenarios, such as molecular biology,

where a molecule might serve as a shared binding site for multiple proteins, and in social

network analysis, where individuals often belong to multiple social circles, including pro-

fessional networks and personal connections [135, 68]. Additionally, we introduce a novel

dynamic fusion method that incorporates graph structure information and node features

to calculate scores for each clique and select the Top-k significant cliques using this fusion

score. Furthermore, we recognize that every node within a selected clique does not con-

tribute equally to the graph representation during the pooling operation. We argue that

the most informative nodes from all ranked cliques should be captured in GP. Therefore,

in fold-2 we develop a LocalPool layer on top of fold-1 using multi-attention to pinpoint

and emphasize the most informative nodes within the ranked cliques, ensuring a more

meaningful representation of the overall graph for pooling operation. The hierarchical

architecture of our method, as illustrated in Figure 5.1, reflects this dual-fold approach.

We summarized our contributions as follows:

72 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

• This chapter introduces HGLA-Pool, a novel pooling layer that sequentially inte-

grates the global structural properties of the graph with the local node’s properties.

• We develop a rule-based method to extract the overlapping nodes between cliques.

Additionally, we design a novel dynamic fusion method that leverages both graph

structural information and node features to identify the most relevant global struc-

tures (cliques). Furthermore, this chapter develops a multi-attention LocalPool to

capture the local node’s properties.

• We experimentally prove that considering both sources of information (global and

local) yields a better-learned representation. We consistently outperformed 11 state-

of-the-art models on seven diverse and challenging benchmarks.

5.3 Related Work

Related work includes existing GP studies focusing on global and hierarchical techniques.

Global pooling methods usually use sum or mean functions to aggregate the node features

that generate a single vector representation for the entire graph. For example, Vinyal et

al. [127] proposed a Set2Set framework that uses the Long Short-Term Memory model to

generate graph representation by identifying informative nodes. Authors [147] developed

a novel GNN layer to capture multi-level node features and a sort pooling that sorts

these features to keep more graph information. However, global methods ignore the

graph’s hierarchical information during the pooling operations. Meanwhile, hierarchical

methods leverage graph structures and node features for the pooling. Based on designing

properties, the hierarchical methods can be classified into two main classes: node selection

and node cluster.

Node selection methods reduce the graph size by selecting the most informative nodes

based on their node features or attention scores. Hongyang et al. [50] developed a Top-k

pooling that uses node scalar values on a trainable projection vector as the node score.

SAGPool [77] further adopts the GNN layer to calculate node scores. Jinheon et al.

[140] proposed MAC pooling that incorporates dual-node scoring strategies to obtain the

5.3. RELATED WORK 73

importance of nodes. These methods are considered more computationally efficient as

they only require calculating an informative node’s score, but they ignore the graph’s

GTS information.

The node cluster method captures the global properties by finding the clusters within

the graph. DiffPool [143] uses the GNN layer output to learn a differentiable soft cluster

assignment to extract the clusters. In [84], the authors introduced a CliquePool method

to learn the GTS by extracting the maximal cliques from the graph. Quasi-CliquePool [4]

further improves the CliquePool by capturing the overlapping nodes between two cliques

using the replicator dynamic algorithm. [65] developed a Motif-based pooling method

that extracts the high-order graph structure by combining cluster and selection pooling

operations. The motif method treated all motif structures equally without consider-

ing the node features. Graph Multiset Transformer (GMT) pooling incorporates node

structural dependencies with a multi-head attention mechanism to enhance the graph

representation by identifying node interaction. Jinlong et al. [43] design a Multi-channel

pooling (MuchPool) that combines TopkPool and DiffPool methods to create a more

comprehensive hierarchical representation of graphs. However, the MuchPool method

suffers from considerable computational complexity due to the simultaneous operation of

three distinct channels to capture node feature information, global and local structural

information.

A recent study [30] introduced a Wit-TopoPool, which integrates a witness complex-based

topological embedding mechanism with a global pooling layer. This approach aims to

extract comprehensive and discriminative topological information from graphs.

In conclusion, the current landscape in pooling methods demonstrates a notable gap:

the lack of an effective pooling approach that combines node selection and node cluster

techniques sequentially to yield a robust graph representation. Addressing this gap, we

proposed a novel HGLA-Pool method that captures the local and global properties of the

graph with node features to generate a more robust graph representation.

74 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

Fig. 5.1: The hierarchical architecture of the HGLA-Pool integrates with GNN for graph classi-
fication. The grey lightbox demonstrates the overall workflow of HGLA-Pool, which contains two
folds. The fold-1 performs three steps: 1) capture GTS by finding all maximal cliques within
the graphs; 2) find overlapping nodes between two cliques to obtain more reasonable clique rep-
resentations; and 3) incorporate the dynamic fusion method to rank the cliques and form a new
pooled graph. Meanwhile, the fold-2 takes this pooled graph as input and captures the LTS
by selecting several significant nodes from ranked cliques based on scoring criteria (e.g., GCN
and GAT). The readout function is applied after each pair of GNN and HGLA-Pool layers to
generate the graph-level representation.

5.4 Methodology

This section explains our proposed HGLA-Pool, shown in Figure 5.1. The HGLA-Pool

performs pooling operations in two-fold, capturing the graph’s global and local properties,

and then aggregating the results to form a new pooled graph. The following subsections

present a detailed description of the proposed HGLA-Pool.

5.4.1 Global Topological Structure Learning

In fold 1, we aim to capture the GTS information of the graph. For this purpose, we

use the CliquePool [84] with a modified version of the Bron-Kerbosch algorithm [27] to

extract all cliques from the input graph G, denoted as a set C = {c1, c2, ..., ci}. This

fold is designed to overcome two significant challenges of CliquePool [84]: extracting

overlapping nodes between cliques and ranking cliques based on their node features.

Overlapping Nodes Extraction: Overlapping nodes substantially impact various real-

world scenarios, including molecular biology, where a particular molecule may act as a

shared binding site for multiple proteins, and in social network analysis, a person may

5.4. METHODOLOGY 75

be part of both a professional network. We design a rule-based algorithm using three

conditions to handle nodes that belong to multiple cliques during the clique extraction

process: 1) If a node is already assigned to a clique, it is only added to the current clique

being considered if the sizes of the existing and current clique are equal or current clique

size is bigger than existing clique in terms of nodes, 2) If a node is connected to multiple

cliques, in that case, we evaluate whether this specific node has maximum connectivity

with the nodes of an associated clique. If it does and is not already part of the associated

clique, the node is integrated into that clique, and 3) If nodes of a clique have already

been assigned to larger cliques, then we remove that clique. This criterion ensures that

the node’s association with the clique is not arbitrary but is based on a meaningful and

substantial connectivity pattern. In Figure 5.1, the fold-1 demonstrates the extraction of

overlapping nodes; see the cliques 1, 2, 3, and 4 with overlapping nodes.

The existing clique pooling method [84] partitions the graph into cliques based on the

graph’s topological structure without considering the node features. Furthermore, this

method treats all cliques equally, which can be problematic because not all cliques are

equally significant; some are rich in information, and others might merely consist of a

single node, thus carrying significantly less information to subsequent pooling layers. To

solve these issues, we developed a novel dynamic fusion method to calculate each clique’s

importance using graph structure information and node features.

Graph Structure Score: The graph structure can provide useful information on the

importance of nodes, such as node degrees and the shortest paths between different nodes,

etc. Hence, we borrow the node centrality definition to illustrate each clique’s importance

within the graph. We introduce a heuristic method to calculate a score for each clique

using graph structure information: fusion of degree centrality and unique neighbor count.

In the first step, we compute the mean degree centrality D̄ci of all nodes in ci. Next, we

calculate the number of unique neighbors ŪCi
of a clique ci by collecting all neighbors

of nodes in ci and removing any nodes that are part of this clique itself. Finally, the

structure score Sci of each clique is derived as a weighted sum of these two D̄ci and ŪCi

76 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

metrics, parameterized by β and calculated as follows:

D̄ci =
1

|ci|
∑
v∈ci

dv; Ūci = |∪v∈ciN(v)− ci| Sci = β × D̄ci + (1− β)× Ūci ; (5.1)

Node Feature Score: In addition to topological information, the node features informa-

tion contributes significantly to defining the graph properties. For instance, in chemical

molecules, node features represent atom types, which are essential for predicting the

graph’s characteristics. Therefore, it can be an effective resource to show the clique’s

importance within a graph. For this purpose, we use a graph convolution layer to calcu-

late attention scores for each node from the node feature. The calculation procedure is

outlined as follows:

a(v) = σ(D̃−1/2ÃD̃−1/2XW); Aci =
∑
v∈ci

a(v) (5.2)

where a(v) represents the attention scores of each node and σ(.) is a nonlinear activation

function (softmax). The Ã = A + I shows the adjacency matrix with self-loops, D̃ =∑
j Ãij is the degree matrix of Ã and W is a trainable weight matrix. To calculate the

score for each clique, various aggregation functions like max and sum can be employed.

In our implementation, we choose the sum function to aggregate the attention scores of

the nodes within the corresponding clique ci. Given a clique ci, the attention clique score

Aci is computed in Equation 5.2.

Fusion Score: To achieve a more robust score for each clique, it is necessary to use both

graph structure and node feature information fully. So, we combine Sci with the Aci score

using a learnable parameter α to obtain a fuse score Fci (see leftmost side of Equation

5.3), thus providing a more comprehensive representation of the graph’s topology. After

obtaining the Fci scores, we used them to select cliques that the pooling operator should

preserve. In detail, we first rank the cliques according to their fusion score Fci , then a

subset of top-ranked cliques are selected for constructing the pooled graph as follows:

FCi
= α×ACi + (1− α)× SCi

; C ′
j = rank(FCi, ⌈Cr ∗ |C|⌉) (5.3)

where rank(.) denotes the function that returns the important cliques, Cr is the clique

ratio, and |C| is the total cliques. We update the node feature based on selected clique

5.4. METHODOLOGY 77

nodes (see leftmost side of Equation 5.4). We construct a new adjacency matrix A′ where

only the edges between the nodes in the selected cliques are retained. For this purpose,

we define an edge mask matrix Em, which is structured to correspond with the A using

node mask Mi. Each element in Em is set to 1 if both corresponding nodes (vi and vj

in Mi) are part of the selected cliques and set to 0 otherwise. This can be represented

mathematically as:

X ′ = X ⊙M ; A′ = A⊙ Em (5.4)

where X ′ is the new node feature matrix, X is the original node feature matrix, ⊙

represents the broadcasted element-wise product, and M is a vector where each entry

corresponds to a node in the graph. The dimension of M is the same as the number of

nodes in the graph. Each entry in M specifies whether or not the corresponding node

is part of a selected clique (1 for nodes in C ′
k and 0 for all other nodes). A′ is the new

adjacency matrix, and A is the original edge index matrix. The first fold’s output serves

as an input for the subsequent fold. The information provided by this fold acts as a

contextual framework that enables the second fold to identify local structures effectively.

5.4.2 Local Topological Structure Learning

This section presents how our proposed LocalPool layer leverages multi-attention mech-

anisms to learn LTS information by extracting the most informative nodes from ranked

cliques. Existing pooling methods like CliquePool and KPlexPool [84, 9] extract all possi-

ble cliques from the input graph and often transfer each clique into a single node to form

a pooled graph. This transformation aims to reduce the graph size and complexity by

aggregating the information within each clique. However, this transformation does result

in a loss of information at the individual node level within each clique. The fine-grained

details of interactions and relationships between nodes within a clique are not preserved

in the pooled representation. This loss of information can potentially affect the down-

stream tasks, especially if the specific node-level information is crucial for classification

tasks.

To address this, we propose a LocalPool layer to refine the graph further by selecting

78 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

the most important nodes from ranked cliques. This refinement and selection process al-

lows our pooling operation to help preserve the key information within each clique while

reducing the graph size and complexity. Our LocalPool approach significantly diverges

from existing methods like SAGPool [77]. Specifically, SAGPool relies on a single strat-

egy for computing node importance, yielding less robust node rankings. Inspired by the

MAC method Xu et al. [140], we adopt a dual-strategy-based pooling layer to calculate

node importance, as illustrated in Figure 5.1. First, we employ a GCN layer to calculate

importance scores for the nodes. This choice stems from the GCN model’s ability to learn

node representations by aggregating information from neighboring nodes, offering a local-

ized perspective. GCNs aggregate feature information from a node’s local neighborhood,

providing a stable and robust representation by averaging the features of neighboring

nodes. Simultaneously, we employ the Graph GAT layer to compute attention scores.

GATs introduce an attention mechanism that assigns different importance to different

nodes within a neighborhood, capturing more intricate relationships. GATs can adapt

to varying graph structures by learning the attention coefficients, making them versatile

and capable of capturing complex patterns and dependencies that might be missed by the

uniform aggregation of GCNs. Given that GCN and GAT extract graph information from

distinct viewpoints—GCN provides a robust, averaged view of a node’s neighborhood,

and GAT offers a nuanced, dynamically weighted view. we consider this process a multi-

attention strategy for calculating node importance scores. By aggregating the scores

from both GCN and GAT (using operations such as sum or max), we achieve a more

comprehensive and robust node importance score, which enables our pooling method to

select the most important nodes. We consider this process as a multi-attention strategy,

and it is calculated as follows:

SNi
= Aggregation

(
σ
(1
h

h∑
h=1

∑
j∈N(i)

aij
hWhX ′

j

)
, σ
(
D̃−1/2Ã′D̃−1/2X ′W ′

))
(5.5)

where SNi
represents an attention score for a node, and Aggregation is an operation such

as max, mean, and sum. We use the max function to select the maximum value from

each row (e.g., for each node, choose the maximum score from either the GCN or GAT

model). The h shows the number of heads, aij is the attention weights between x′i and

5.4. METHODOLOGY 79

x′j, W
h is a trainable weight matrix of head h, X ′ is a feature vector, and W ′ represents

the trainable weight matrix of the pooled graph of the fold-1. Utilizing the scores from

SNi
, we identify and select high-score nodes to construct a pooled graph. The details of

this process are as follows:

idx = topk(SNi , ⌈Pr ∗N ′⌉); X l+1 = X ′(idx, :)⊙ SNi(idx, :); Al+1 = A′(idx, idx) (5.6)

where topk is the function that returns the indices of the top N l+1 = ⌈Pr ∗ N ′⌉ values.

The X ′(idx, :) perform the row-wise (node-wise) indexed node feature matrix, S(idx, :)

represents the row-wise indexed node importance score matrix, and A′(idx, idx) is the

row-wise and col-wise indexed adjacency matrix. X l+1 and Al+1 represent the new node

feature and adjacency matrices, respectively.

5.4.3 Hierarchical HGLA-Pool Architecture and Readout Layer

We employ a hierarchical pooling architecture, integrating multiple GCN layers with

HGLA-Pool layers to perform graph classification tasks. Figure 5.1 shows the architec-

ture consisting of three blocks with GCN and HGLA-Pool layers. Each block receives a

graph as input and generates a pooled graph with a new feature and adjacency matrices.

Concurrently, we use mean-pooling and max-pooling as a readout layer after each block

to aggregate all the node representations to obtain a single graph embedding as follows:

Γj =

[
max

1≤i≤N l
X l

ij

]
∀j ∈ [0, d]; Rl =

 1

N l

N l∑
i=1

xl
i || Γ

 (5.7)

where N l is the number of nodes at layer l-th, xi is the feature vector of i-th node, and ||

denotes concatenation. The Γ ∈ Rd vector contains the maximum values of each feature

dimension across all nodes. The readout Rl ∈ R2∗d concatenates the two (average and

max) feature representations. Finally, this graph embedding is subsequently fed into a

multi-layer perceptron classifier to make predictions.

80 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

5.5 Experiments and Analysis

This section presents a comprehensive evaluation and quantitative analysis of our pro-

posed HGLA-Pool’s effectiveness. We perform exhaustive experiments across four di-

verse dataset categories: chemical molecular structures [105, 129] (including Mutagenic-

ity, NCI-1, NCI-109, COX2, and BZR), social networks [9] (Reddit-Multi-12K), biolog-

ical networks [21, 42] (DD and Proteins) and computer vision [64] (MSRC 21). These

datasets are benchmarks against which we compare HGLA-Pool with state-of-the-art

baseline methods. Additionally, we conduct ablation studies to evaluate the individual

contributions of each fold within the HGLA-Pool layer. To further analyse the robust-

ness of our approach, we also explore the impact of hyperparameter variations on the

performance of our pooling method.

5.5.1 Baselines and Experimental Settings

(1) Graph neural networks: We select three GNN architectures to conduct compar-

ative experiments: GCN [72], GAT [125] and GraphConv [91].

(2) Graph pooling methods: In this group, we compare our HGLA-Pool with eleven

state-of-the-art hierarchical and global pooling approaches such as DiffPool [143], Sort-

Pool [147], TopkPool [50], SAGPool [77], CliquePool [84], GMT [11], MuchPool [43],

MPool [65], MAC [140], Quasi-CliquePool [4], and Wit-TopoPool [30].

(3) Experimental settings: We implement HGLA-Pool using the PyTorch framework

[96] and the PyTorch Geometric library [48]. For a fair comparison, we follow many

previous works [77, 4, 43], employing tenfold cross-validation to evaluate the effectiveness

of all models mentioned above and reporting average accuracy and standard deviation.

We utilize the source codes of all baselines provided by the authors and tune hyperpa-

rameters to reproduce the results according to the requirements in their papers. We use

the same GCN [91] layer as a message-passing function.1 Hyperparameters are optimized

within predefined ranges, including embedding dimensions {32, 64, 128, 256}, learning

1We reproduced the numbers of all baselines using the source codes given by the authors, and these numbers are
reported in Table 5.1. For transparency and reproducibility, the source codes for all baselines referenced in our analysis
are available on this link.

https://github.com/waqar12868/Hierarchical-Glocal-Attention-Pooling-for-Graph-Classification/tree/main

5.5. EXPERIMENTS AND ANALYSIS 81

rate {0.01, 0.001, 0.0001, 0.05, 0.005, 0.0005}, batch size {64, 128}, pooling and clique

ratios {0.5, 0.6, 0.7, 0.8, 0.9}. We employed the Adam optimizer for model initializa-

tion and a negative log-likelihood loss function for training. We also adopt patience and

early stopping criterion, i.e., if the loss value of the validation set does not reduce for 50

consecutive epochs, then the training process will be stopped.

5.5.2 Performance Comparison

We evaluated the performance of our proposed method (HGLA-Pool with importance

scores ZC and HGLA-Pool with dynamic fusion scores FC) and baseline methods on the

nine benchmark datasets for the graph classification tasks. We outlined the classification

accuracy with standard deviation in Table 5.1. In this comparison, HGLA-Pool method

achieves superior performance among all other baselines in the chemical molecules, social

networks, and computer vision domain datasets. For instance, in the case of the chemical

molecular domain, our method outperforms the best baselines by 2.81% improvement for

the NCI1, 2.42% for the NCI109, 3.92% for the BZR, 1.57% for the COX2 and 2.07%

for the Mutagenicity. It is worth noting that the average number of edges in these

datasets is much smaller compared to the other datasets. This implies that these five

chemical datasets are relatively sparse, presenting a significant challenge for pooling layers

to learn meaningful representations. However, our designed dual-fold attention strategy

can capture both the graph’s local and global information, which enables HGLA-Pool to

extract information undeterred by the sparse graph structure effectively.

Furthermore, HGLA-Pool consistently outperforms GCN-based global pooling methods

across datasets from all four domains. This superior performance underscores the ef-

ficacy of our approach in generating more meaningful graph representations, thereby

emphasizing the value of incorporating hierarchical pooling layers into the learning pro-

cess. Notably, HGLA-Pool and other node clustering techniques like CliquePool, Quasi-

CliquePool, and MPool exhibit better performance than other GNN-based models such

as GCN, GAT, and GraphConv. This outcome suggests that capturing GTSs as max-

imal cliques or clusters is beneficial for enhancing graph representation learning. It is

82 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

Table 5.1: Comparison of HGLA-Pool and baselines. The highest score is in bold, and the
second highest score is in underline (OOR referred to as out-of-resources).

Class Baselines PROTEINS D&D NCI1 NCI109 COX2 BZR MUTAGEN REDM12K MSRC

GNNs

GCN[2017] 73.77 ± 5.59 75.13 ± 4.14 74.68 ± 3.09 73.47 ± 2.22 78.16 ± 0.85 80.01 ± 2.39 78.18 ± 2.54 23.84 ± 0.92 84.04 ± 6.40

GAT[2018] 75.30 ± 5.23 76.91 ± 2.68 75.16 ± 3.36 73.78 ± 3.38 78.37 ± 0.66 80.74 ± 2.52 78.99 ± 2.44 21.73 ± 0.03 88.80 ± 4.38

GraphConv[2018] 74.04 ± 5.07 76.57 ± 3.98 78.15 ± 1.86 77.01 ± 2.52 80.79 ± 4.43 83.51 ± 2.89 79.18 ± 2.24 37.53 ± 1.97 88.66 ± 2.49

Pooling

DiffPool[2018] 77.62 ± 4.97 74.31 ± 2.15 70.70 ± 0.22 70.20 ± 0.24 77.60 ± 2.70 78.90 ± 0.04 71.80 ± 0.15 OOR 83.30 ± 0.51

SortPool[2018] 74.66 ± 5.08 67.47 ± 6.23 70.58 ± 3.68 68.87 ± 2.38 78.20 ± 0.02 79.70 ± 0.07 75.80 ± 2.43 42.50 ± 0.36 74.70 ± 0.40

TopkPool[2019] 73.32 ± 6.09 73.85 ± 4.63 74.84 ± 4.62 75.09 ± 2.37 77.93 ± 2.79 81.49 ± 4.17 79.56 ± 1.96 37.56 ± 3.39 88.45 ± 3.70

SAGPool[2019] 73.50 ± 4.56 72.49 ± 2.87 74.26 ± 1.96 74.94 ± 3.13 78.37 ± 1.86 81.24 ± 4.01 79.25 ± 3.03 36.79 ± 3.53 87.92 ± 3.24

CliquePool [2019] 73.56 ± 2.86 74.81 ± 3.87 77.26 ± 1.53 76.49 ± 1.14 78.37 ± 1.86 82.17 ± 2.25 78.47 ± 1.62 36.11 ± 2.13 88.72 ± 1.14

GMT[2021] 75.09 ± 0.59 78.72 ± 0.59 74.21 ± 1.88 71.38 ± 2.03 80.86 ± 0.41 82.25 ± 0.70 80.53 ± 0.11 44.06 ± 0.09 90.53 ± 0.34

MuchPool[2021] 78.52 ± 3.89 76.48 ± 7.01 74.70 ± 2.25 71.84 ± 2.66 79.27 ± 6.01 80.28 ± 6.93 74.75 ± 2.48 OOR 86.85 ± 3.61

MPool[2023] 79.30 ± 3.30 81.20 ± 2.10 77.40 ± 1.90 73.50 ± 2.50 78.10 ± 0.10 78.70 ± 0.11 79.60 ± 3.70 OOR 87.52 ± 0.54

MAC[2023] 76.08 ± 3.55 79.13 ± 4.70 77.60 ± 1.66 75.84 ± 1.86 78.36 ± 0.16 82.76 ± 5.91 80.33 ± 1.49 42.67 ± 2.23 89.75 ± 0.22

Quasi-CliquePool[2023] 75.68 ± 1.38 75.30 ± 3.30 78.21 ± 1.83 77.38 ± 2.23 80.15 ± 2.12 82.87 ± 2.58 79.53 ± 1.58 38.21 ± 2.43 88.15 ± 2.22

Wit-TopoPool[2023] 75.88 ± 5.60 71.30 ± 0.37 70.58 ± 0.29 69.71 ± 0.25 81.73 ± 3.50 79.75 ± 0.14 73.88 ± 1.29 33.87 ± 1.01 89.16 ± 4.00

Proposed
HGLA-Pool+AC 76.58 ± 3.34 77.57 ± 3.01 80.80 ± 1.24 79.80 ± 2.30 82.86 ± 3.55 85.93 ± 3.08 82.40 ± 1.58 45.61 ± 2.15 91.30 ± 2.39

HGLA-Pool+FC 73.33 ± 3.18 75.30 ± 3.95 81.02 ± 1.90 79.10 ± 1.10 83.30 ± 3.57 87.43 ± 3.87 82.25 ± 1.56 43.30 ± 2.03 92.19 ± 2.23

also noteworthy that CliquePool and DiffPool do not consistently outperform node se-

lection pooling approaches such as SAGPool and TopkPool. This observation further

substantiates the idea that integrating the graph’s local and global properties can lead

to more effective GP methods. We can also see from Table 5.1 that our proposed HGLA-

Pool demonstrates considerable improvement in the multi-classes based datasets, with an

increase of 1.66% and 1.55% on MSRC 21 and REDDIT-MULTI, respectively. Our anal-

ysis identified a significant proportion of isolated nodes and subgraphs in the biological

dataset. Furthermore, the graphs in this dataset demonstrate a scarcity of structures re-

sembling maximal cliques. Our approach’s effectiveness hinges significantly on identifying

and ranking such cliques, leading to challenges in capturing meaningful hierarchical rep-

resentation structures within these graphs. This structural difference between the dataset

and our method’s underlying assumption likely contributes to the observed performance

decline. To sum up, our proposed HGLA-Pool consistently performs better on seven out

of nine benchmarks than baseline pooling techniques.

5.5.3 Ablation Study

This subsection conducts an ablation study on HGLA-Pool by removing independently

both folds to verify further where the performance improvement comes from. For con-

5.5. EXPERIMENTS AND ANALYSIS 83

Fig. 5.2: Effect of dual folds and Hyperparameter analysis on HGLA-Pool performance.

venience, we name the HGLA-Pool method without the first and the second fold as

HGLAPool-NF1 and HGLAPool-NF2, respectively. For these experiments, we chose five

different-scale graph datasets covering small and large graphs. From Figure 5.2 (see

the leftmost graph), we can see that capturing GTS is crucial in the chemical molecule

and MSRC datasets since the GLAPool-NF2 variant obtains a notable performance en-

hancement as graph attention facilitates the selection of the most informative cliques.

Meanwhile, the GLAPool-NF1 variant outperforms GLAPool-NF2 in the PROTEINS as

this dataset has limited clique-like structures, which poses challenges for our method in

capturing meaningful hierarchical representation structures. This pattern suggests that

the LTS with node features are more important for some datasets than the GTS. Overall,

HGLA-Pool’s ability to learn both the graph’s local and global enables it to generate ro-

bust graph representations that significantly enhance performance in classification tasks.

5.5.4 Parameter Sensitivity Analysis

In this section, we investigate the sensitivities of the two main parameters, Pr and Cr,

influencing the performance of the HGLA-Pool. Figure 5.2 (see second and third graph)

summarizes the accuracy of HGLA-Pool under different combinations of these parameters

across four different datasets. Our method achieves the highest accuracy for all four

datasets when Pr=0.8 and Cr = 0.8, while performance drops with Pr=0.5 and Cr =

0.5. To further investigate these scenarios, we performed a more detailed analysis of the

interaction between Pr and Cr, generating a heatmap (see Figure 5.3) for each dataset,

illustrating their combined influence. The heatmap reveals specific scenarios where certain

combinations of Pr and Cr result in suboptimal performance, particularly in datasets with

84 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

Fig. 5.3: Effect of different combinations of clique and pooling ratios on HGLA-Pool perfor-
mance.

sparsely connected graphs like Mutagenicity. For instance, low values of Pr and Cr (e.g.,

Pr = {0.5, 0.6, 0.7} and Cr = {0.5, 0.6, 0.7}) tend to exacerbate graph sparsity, leading

to a loss of substantial graph structures during pooling, as depicted in Figure 5.3. From

our analysis, we also found that a Cr of at least 0.7 is essential for biological, social, and

computer vision datasets, while a minimum Cr of 0.8 is necessary for chemical datasets

due to their sparse nature. Therefore, the recommended small ranges for Cr and Pr are

{0.7, 0.8} for biological, social, and computer vision datasets and {0.8, 0.9} for molecular

datasets. Interestingly, the HGLA-Pool demonstrated stability, producing reasonably

satisfactory results across most combinations of these parameters.

5.5.5 Graph Visualization for Comparison

To further demonstrate the distinctiveness and superiority of our pooling method com-

pared to existing techniques, we use the Networkx library to visualize the pooling out-

comes of HGLA-Pool, CliquePool, TopkPool, and MuchPool. To provide a fair compar-

ison, we build a hierarchical pooling architecture consisting of two layers and set a 0.8

for the Cr and Pr. We randomly selected a graph from the Mutagenicity dataset com-

prising 36 nodes for the demonstration. The input and pooled graphs of the first and

second pooling layers for each method are shown in the first row and the second row of

Figure 5.4, respectively. The results demonstrate that the HGLA-Pool, CliquePool and

MuchPool mostly preserved the input graph’s significant topological structure (ring and

branch structures). In contrast, the results of the TopKPool are scattered with numerous

isolated nodes, indicating a lack of structural preservation. The results obtained from the

5.6. LIMITATIONS 85

(a) Input Graph (b) TopkPool (c) CliquePool (d) MuchPool (e) HGLAPool

Fig. 5.4: Comparative graph visualization of different polling methods.

second pooling layer indicate that three baselines encounter challenges with preserving

the underlying topology of the initial graph. However, HGLA-Pool can preserve rea-

sonable topological structures, such as dual ring structures present in the initial graph.

This underscores the effectiveness of HGLA-Pool since ring structures are crucial in the

characterization of molecules.

5.6 Limitations

Our pooling method, rooted in the fundamental notion of cliques, effectively captures the

graph’s local and global characteristics. However, its efficacy is constrained when applied

to datasets with non-clique structures, such as graphs containing many isolated nodes.

For example, if the clique-based representation in fold-1 is inaccurate, it might lead to

suboptimal outcomes in subsequent steps, such as clique ranking and LocalPool.

5.7 Conclusion and Future Directions

This chapter presents the HGLA-Pool method, an innovative approach for hierarchical

graph representation. It employs a two-fold strategy to capture the graph’s global and

local properties sequentially. Fold-1 captures the global topological structure of a graph

by identifying the cliques and overlapping nodes between cliques, coupled with a dynamic

fusion scoring method to rank and select significant cliques for pooling. In Fold-2, a

86 CHAPTER 5. GLOCAL ATTENTION: HIERARCHICAL POOLING FOR GRAPH LEARNING

LocalPool layer employing a multi-attention mechanism selects the most informative

nodes from these cliques, capturing the LTS. In the end, the outcomes of both folds are

integrated sequentially to form a new pooled graph, which retains the original graph’s

structure and enhances classification performance. The effectiveness of HGLA-Pool has

been rigorously assessed through extensive experiments across nine graph classification

datasets spanning four distinct domains. Future work will enhance the clique pooling

technique to capture a broader range of graph structures, further boosting the graph

classification performance.

Chapter 6

Residual Attention and Mixup

Augmentation

“If a graph is too large to be drawn on paper in an informative way, then it contains too

much information to be useful in anything except in an abstract sense.”

— Kary Mullis

6.1 Preamble

This chapter focused on the residual skip connections, attention mechanism, and Mixup

augmentation methods for addressing over-smoothing issues in GNNs and enhancing their

generalization for node classification tasks. The research and findings discussed in this

chapter are based on the following paper:

• Muhammad Affan Abbas, Waqar Ali, Florentin Smarandache, Sultan S Alsham-

rani, Muhammad Ahsan Raza, Abdullah Alshehri, Mubashir Ali. “Residual At-

tention Augmentation Graph Neural Network for Improved Node Classification.”

Engineering, Technology & Applied Science Research (ETASR), 14, no. 2 (2024):

13238-13242 [1].

The author has the following contributions:

88 CHAPTER 6. RESIDUAL ATTENTION AND MIXUP AUGMENTATION

• Performing many experiments.

• Writing a part of the paper.

• Leading the work to improve the quality of the paper.

6.2 Introduction

Graphs are used in many different disciplines, such as social networks, biological systems,

and recommendation engines, to depict intricate relationships and structures. To prop-

erly interpret and utilize graph data, it is critical to learn meaningful node representations

within these complex network topologies. In light of this, GNNs have become a powerful

paradigm that presents a hopeful resolution to this problem [69]. GNNs facilitate effi-

cient node classification, graph classification, and link prediction, among other tasks, by

encoding both the local and global graph structure [15]. However, creating effective GNN

architectures that meet the unique requirements of node classification is still a challenging

issue. Numerous GNN variations have been proposed, each with a unique architectural

design and components, creating a vast array of alternatives [154]. The ongoing research

for the most effective and efficient GNN architectures that can function effectively on a

range of real-world graph data is highlighted by this diversity.

This chapter aims to offer a thorough and workable approach for enhancing GNN per-

formance in the context of node classification in light of these difficulties. The proposed

method aims to improve the capabilities of GNN designs while making them simpler,

drawing inspiration from recent developments in the field. This approach combines graph

convolutional layers with fully connected layers in a simplified architectural layout. It uses

Attention Mechanism (AM) [44] and Data Augmentation (DA) strategies, namely MixUp

[54], to further enhance the performance of GNNs in node classification. Strategically

incorporated into the GNN architecture, these strategies help improve the generalization

of the GNN model. Skip Connections (SCs) are used to reduce the accuracy loss caused

by over-smoothing. Extensive tests were performed on various node classification tasks

6.3. RELATED WORK 89

to thoroughly evaluate the performance of the proposed strategies on known benchmarks,

such as social networks [8] and citation networks [82]. Concisely, this chapter:

• Developed a Residual Attention Augmentation Graph Neural Network (RAA-GNN)

to enhance the evaluation of the node classification task.

• Developed a novel DA method, called MixUpDA, which combines labels and node

attributes to produce synthetic data points and improve the model’s ability to clas-

sify nodes. Additionally, well-designed skip connections and an effective multi-head

attention technique were introduced to improve information aggregation and over-

smoothing issues, which together improve GNN performance for node classification.

• Evaluated the proposed method on the Twitch social network dataset, and the

results showed up to a 1% gain in accuracy, providing further insights for graph-

structured data applications.

6.3 Related work

Several studies have investigated SCs, AMs, and DA in the context of graph-based ma-

chine learning. Although DA has been beneficial in enhancing model performance in

several fields, its implementation in graph-based machine learning has encountered dif-

ficulties. Conventional augmentation methods for graph data, including noise addition

or perturbing node properties [36], frequently fail because they break the natural graph

structure [41]. Furthermore, the addition of synthetic noise can impede the learning and

generalization of the model. The proposed MixUpDA strategy [59] provides a logical

method to enhance graph data by seamlessly combining node attributes and labels.

Attention mechanisms have revolutionized information aggregation in GNNs by allowing

nodes to choose to attend to the relevant neighbors [117]. However, problems with scal-

ability and processing complexity may make them less successful. Current methods are

frequently computationally intensive, and therefore, they are unfeasible for large-scale

graphs. Currently, the SuperHyperGraph presents the most general form of graph [117].

90 CHAPTER 6. RESIDUAL ATTENTION AND MIXUP AUGMENTATION

Fig. 6.1: The RAA-GNN architecture integrates SCs, AMs, and DA for improved node clas-
sification.

These issues are addressed and make it easier to apply attention methods to larger graphs

by introducing a multi-head AM that strikes a compromise between expressive capacity

and computational efficiency. SCs are important in deep learning architectures because

they facilitate the transfer of information between layers [139]. Applying SCs in GNNs

has proven difficult, despite their usefulness. Their poor integration can cause over-

smoothing, reducing classification accuracy by making nodes indistinguishable through

excessive information exchange. This chapter introduces SCs into the GNN design to

mitigate the effects of over-smoothing [109], resulting in improved performance without

sacrificing accuracy. Consequently, SCs, AM, and DA [122, 110] have all been crucial in

the advancement of graph-based machine learning. This chapter addresses these systems’

drawbacks by providing a computationally efficient multi-head AM, a more principled ap-

proach to DA, and a method for preventing over-smoothing using SCs. Together, these

developments enhance node classification in GNNs and enable a greater variety of com-

plicated, real-world graph data to be used in GNNs.

6.4 Methodology

Figure 6.1 shows the architecture of the proposed RAA-GNN model. In the first step, the

MixUp augmentation strategy employs a feature-label augmentation method to increase

the robustness of the training dataset. Then, the AM is used, which permits the adaptive

6.4. METHODOLOGY 91

weighting of pertinent neighbors, boosting the model’s capacity to identify significant

local structures and raising classification accuracy all around. Following this, SCs are

used to solve the over-smoothing problem of GNNs for node classification.

6.4.1 Node Augmentation Mixup Method

GNNs can be designed with MixUp augmentation as a practical and efficient approach to

improve node classification performance. The proposed method is based on meticulous

preprocessing of input data represented by X, which guarantees consistency and stan-

dardization. MixUp augmentation serves as a dynamic catalyst by carefully combining

the training dataset to add robustness and diversity. The amount of augmentation is dy-

namically influenced by the mixing parameter λ. This coefficient highlights the controlled

variability included during training and is randomly generated from a beta distribution

with parameters:

Xmix = λX + (1− λ)Xshuffled (6.1)

MixUp works in unison with the larger GNN design, where SCs and attention processes

are essential building blocks to improve the model’s comprehension of complex graph

structures. The following mathematical formulas capture MixUp’s effect on the data and

explain how original and shuffled features and labels are well combined, which adds to

the model’s flexibility:

Mixed Data = λ · Batch Data + (1− λ) · Batch Data[Indices] (6.2)

Mixed Labels = λ · Batch Labels + (1− λ) · Batch Labels[Indices] (6.3)

Integrating MixUp into the GNN model promotes a more robust and flexible learning

process for node categorization tasks. The proposed GNN architecture is at the fore-

front of node classification research because of this deliberate augmentation, which also

strengthens the model’s ability to generalize across a variety of graph configurations and

92 CHAPTER 6. RESIDUAL ATTENTION AND MIXUP AUGMENTATION

enrich the training dataset.

6.4.2 Attention Mechanism for Node Classification

RAA-GNN is used to represent the attention function, which is essential to the model’s

ability to concentrate on the most pertinent data inside the graph structure. With sixteen

attention heads, the model captures many structural details and complex relationships,

leading to a thorough comprehension.

The ReLU activation function is used to combine the contributions of each attention head,

represented as RAA GNNi(X,A), to get the final attention scores. Each attention head

makes a unique contribution to the overall AM. The adjacency matrix is represented by

A. Intricate graph patterns are captured by 64 hidden dimensions, which balance model

expressiveness and efficiency. The aggregation function combines data from nearby nodes

by applying the summation:

Hagg =
∑
N

HN (6.4)

where N is for the neighbor. By introducing non-linearity, ReLU activation improves the

model’s capacity to learn intricate relationships:

Hactivated = max(0, Hagg) (6.5)

6.4.3 Skip Connections

The SCs, denoted by Hskip, enable the smooth transfer of data between the model’s

layers. These SCs serve to bridge the gap between subsequent layers by integrating the

activated features (Hactivated) with the features of the preceding layer (Hprevious), therefore

facilitating the transfer and retention of crucial information. By ensuring that important

information from previous layers is merged, this additive process improves the model’s

ability to represent both local and global interdependence.

Hskip = Ha +Hp (6.6)

6.5. EXPERIMENTAL RESULTS AND DISCUSSION 93

where a is the activated and p is the previous. The model’s three layers improve node

classification by capturing hierarchical representations:

Houtput = GNN(H
(3)
skip) (6.7)

The output graph, which displays node classifications based on learned features, is gen-

erated by the last layer:

Ypred = Softmax(Houtput) (6.8)

This architecture provides a basis for strong node classification in a variety of datasets

by utilizing cutting-edge methods to address graph-based learning difficulties.

6.5 Experimental Results and Discussion

Extensive simulations were carried out to evaluate the performance of the proposed GNN

with the novel features of DA, AM, and SCs. The findings demonstrate the complex

relationships between these elements and the accuracy of node classification on a variety

of datasets. The results in Table 6.1 shed important light on the relative importance

of the various parts of the proposed GNN model. These features are crucial for accu-

rately capturing complex relationships in graphs, as demonstrated by the model’s strong

performance across a range of datasets. The results advance the knowledge of GNN

architectures and provide useful advice for creating powerful models that are suited to

particular uses.

The experimental results demonstrate that the proposed GNN architecture changes in-

crease the model’s test set accuracy up to 1%. Adam optimizer, with a learning rate of

0.01, DA, AM, SC, and three GCN layers with the ReLU activation function were utilized

in the top-performing design. Table 6.2 shows the reported mean classification accuracy

for the fully supervised node classification task for various graph neural network mod-

els. The bold numbers represent the best results while the second bests are underlined.

The results for GCN, Mix-Hop, and GraphSAGE were obtained from [156]. The results

94 CHAPTER 6. RESIDUAL ATTENTION AND MIXUP AUGMENTATION

For GCNII, NodeAug, FSGNN, GPRGNN, and GEOM-GCN were taken from [29, 87].

Traditionally, GNN models such as GCN and GAT have more efficiency on homophily

datasets, although they give poor results on datasets with heterophily. Advanced mod-

els such as WRGAT, and GPRGNN function are reasonably superior on datasets with

both homophily and heterophily. The proposed model performs significantly better on

heterophily datasets, particularly with a notable boost on the CiteSeer and Chameleon

datasets. Improvements were also noted for the datasets from Actor, Texas, and Cornell.

The proposed model achieves consistent and comparable performance to state-of-the-art

methods on homophily datasets. It also performed exceptionally well in the evaluation of

the new Twitch social network dataset for node classification, demonstrating its flexibility

to various graph architectures [107].

Table 6.1: Node Classification Accuracy (%) for the Proposed Model

Model Cora CiteSeer PubMed Chameleon Wisconsin Texas Cornell Squirrel Actor

Proposed 88.94 78.32 89.14 79.31 86.14 86.21 86.57 72.22 36.71

Without DA 85.33 73.52 87.37 78.30 84.90 85.12 86.21 71.39 34.99

Without AM 86.22 75.59 87.13 79.01 84.90 84.22 84.43 71.35 33.78

Without SC 85.59 77.23 86.97 78.30 83.09 84.32 85.55 71.87 32.34

Table 6.2: Node Classification Accuracy (%) for Different Models on Various Datasets

Model Cora CiteSeer PubMed Chameleon Wisconsin Texas Cornell Squirrel Actor Mean Acc.

GCN 87.28 76.68 87.38 59.82 59.80 59.46 57.03 36.89 30.26 61.62

GraphSAGE 86.90 76.04 88.45 58.73 81.18 82.43 75.95 41.61 34.23 69.50

MixHop 87.61 76.26 85.31 60.50 75.88 77.84 73.51 43.80 32.22 68.10

GEOM-GCN 85.27 77.99 90.05 60.90 64.12 67.57 60.81 38.14 31.63 64.05

GCNII 88.01 77.13 90.30 62.48 81.57 77.84 76.49 N/A N/A –

NodeAug 86.20 75.40 82.10 N/A N/A N/A N/A – – –

GPRGNN 88.49 77.08 88.99 66.47 85.88 86.49 81.89 49.03 36.04 73.37

FSGNN 87.61 77.17 89.70 78.93 87.25 85.90 86.23 73.32 34.89 77.88

RAA-GNN 88.94 78.32 89.14 79.31 86.14 86.21 86.57 72.22 36.71 78.17

Table 6.3: Results on a New Twitch Social Networks Dataset

Dataset Train Loss Train Accuracy Validation Loss Test Accuracy

Twitch Social Networks 0.2463 0.8989 0.9186 0.9046

6.6. CONCLUSION 95

6.6 Conclusion

This chapter presents the RAA-GNN model for node classification that incorporates SC,

AM, and DA, showing that these elements can work together to improve its discriminative

ability. While SCs handle over-smoothing issues, the AMs specifically allow the model to

perform better on graphs for node classification. DA is an essential component that adds

variation to the training dataset and promotes robustness against overfitting. The exper-

iments highlighted each component’s independent effectiveness, as well as their combined

impact on overall performance. The proposed model demonstrated its adaptability by

consistently outperforming

state-of-the-art approaches in node classification across multiple datasets. In summary,

this chapter extends GNN architectures and sheds light on the complex interactions

between SC, DA, and AM. It also sets a new Sota node classification in graph structure

learning through the first attempt to integrate SC, AM, and DA into RAA-GNN, thus

advancing our understanding of GNNS.

6.7 Acknowledge

The authors would like to acknowledge the Deanship of Scientific Research, Taif Univer-

sity for helping with this work.

96 CHAPTER 6. RESIDUAL ATTENTION AND MIXUP AUGMENTATION

Chapter 7

Topology-Aware Augmentation

“Life is a math equation. In order to gain the most, you have to know how to convert

negatives into positives.”

— Unknown

7.1 Preamble

In this chapter, we identified the limitations of the existing random node dropping

augmentation method. We proposed a novel Node-Dropping Augmentation (NDAUG)

method using node degree as a criterion to selectively drop less important nodes (low-

degree nodes) and preserve essential graph structures, generating diverse and informative

augmented graphs. Further, in the case of isolated nodes, we develop a structure learn-

ing method to reconnect these isolated nodes by learning attention-based relationships

between nodes. The research and findings discussed in this chapter are based on the

following paper:

• Waqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo.

“Topology-Aware Node Dropping Augmentation for Graph Classification”; Sub-

mitted to European Symposium on Artificial Neural Networks (ESANN, 2025).

The author has the following contributions:

• Developing the overall pipeline of the algorithm.

98 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

• Writing the complete code.

• Performing all experiments.

• Writing a significant part of the paper.

7.2 Introduction

Recently, GNNs, a specialized form of deep learning designed for graph-structured data,

have shown effectiveness in various tasks of classifying graphs and learning graph repre-

sentations, including predicting chemical molecular properties and analyzing social net-

works [72]. However, similar to deep learning models in image processing, GNNs are

prone to overfitting, particularly when dealing with limited datasets [101]. Data augmen-

tation methods are known for their efficiency and effectiveness in mitigating overfitting

issues in deep learning networks [106]. These methods generate new synthetic samples

from the existing training data, providing a straightforward and cost-efficient method

to enhance the generalization of a deep model. Data augmentation has proven helpful

in the computer vision domain [101], but applying these techniques to graph-structured

data presents unique challenges due to the graphs’ irregular structures. Some recent

works focused on developing node feature-based graph mixup augmentation methods for

node-level tasks [126], others like Kong et al. [73] recommend enhancing node features

through adversarial learning. While graph structural learning augmentation methods

[132, 144, 106] usually modify the graph structure by randomly dropping/adding nodes

or edges and generating new augmented graphs for graph-level tasks. However, current

graph structural learning augmentation methods, such as random node-dropping, often

fail to preserve the original graph’s essential topological structures during the augmenta-

tion process, potentially affecting the performance of the graph classification tasks. This

random node-dropping method can also disconnect closely related nodes, generating iso-

lated nodes in the augmented graph [132], which may affect the efficiency of the GNN’s

message passing mechanism.

To this end, we introduce a novel node-degree based Node-Dropping Augmentation

7.3. RELATED WORK 99

method for graph classification tasks to address the issues in existing augmentation ap-

proaches. The node degree is an important concept in graph theory because nodes with

higher degrees often correspond to critical points in various graphs, such as road, so-

cial, or protein-protein interaction graphs, which are essential to identifying the structure

and functionality of the entire graph [144]. Our method generates augmented graphs

by leveraging the node-degree concept to remove less important low-degree nodes while

preserving significant topological structures formed by high-degree nodes, thereby main-

taining the essential characteristics of the original graph. However, in applications such as

molecular datasets with toxic/non-toxic compounds, the functional groups often contain

low-degree nodes such as benzene or carbon motif ring structures [144]. To handle such

cases, NDAUG identifies and preserves these significant structures, ensuring the retention

of vital low-degree nodes. Additionally, we propose an attention mechanism to reconnect

isolated nodes that may result from the node-dropping process, thus maintaining the

connectivity in the graph and enhancing the performance of GNN layers. To summarize,

the main contributions of this chapter are as follows:

• We propose a novel NDAUG augmentation method that uses node degree to remove

less important nodes while preserving key topological structures.

• We introduce an attention-based structure learning method to reconnect isolated

nodes, maintaining graph connectivity within the augmented graphs and enhancing

GNN performance.

• Experiments on eight benchmark datasets show that NDAUG outperforms existing

augmentation methods with a 2− 5% improvement.

7.3 Related Work

Recently, GNNs [72, 91] have emerged as a powerful tool and attained significant achieve-

ments in graph classification tasks. Despite GNNs’ success, data availability is a signif-

icant limitation in many graph classification problems [144]. For instance, GNNs have

100 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

been widely used in predicting molecular properties, where obtaining labeled molecule

data often involves complex manual laboratory procedures. This leads to a lack of ade-

quately labeled samples for GNNs to attain a promising prediction performance.

Data augmentation methods are noted for their efficiency and effectiveness in generating

new synthetic samples from existing training data, thereby enhancing the generalization

capabilities of deep models. This strategy is preferred over more resource-intensive meth-

ods like gathering extra real data or making significant changes to the model architecture

or training algorithms. Data augmentation methods have proven helpful in the fields

of CV and NLP [101]. However, applying such techniques to graphs is more complex

due to their non-Euclidean nature, where nodes are irregularly connected by edges [153],

presenting unique challenges in augmentation. Recent works have focused on developing

node feature space-based augmentation methods for node-level tasks [126, 132], and a

limited number of attempts [133] have been undertaken for graph classification tasks.

For example, DropEdge [106] employs a random method to remove a uniform portion

of edges and generate augmented graphs to enhance the robustness of the GNN model

during test-time inference, M-evolve [155] methodology uses motif-similarity mapping

methods to add or remove edges connecting nodes that are predicted to have similar

labels with a high level of motif-similarity score, and DropNode [144] randomly drop a

certain portion of nodes from the original graph and generate a new graph. The random

node-dropping method can disconnect closely related nodes, generating isolated nodes in

the augmented graph [132]. This may affect the efficiency of the GNN’s message passing

mechanism.

Furthermore, the authors of [132] develop a GraphCrop method, which generates var-

ious cropped-augmented graphs using a node-centric strategy. However, current graph

augmentation methods, such as random node-dropping, often fail to preserve the origi-

nal graph’s essential topological structures during the augmentation process, potentially

affecting the performance of the graph classification tasks. Hence, this chapter aims to

tackle this issue by introducing a node-dropping augmentation method. This method

removes less important low-degree nodes while preserving the essential topological struc-

7.4. METHODOLOGY 101

Fig. 7.1: The pipeline of the proposed NDAUG method. The initial step identifies the important
structural motifs of the input graph. Step 2 removes the low-degree nodes while maintaining
the key topological structures formed by high-degree nodes. The last step generates the final
augmented graph to preserve the identified significant motif structures of step 1 and applies a
structure learning method to retain the connectivity of the augmented graph by reconnecting any
isolated nodes resulting from the node-dropping process.

tures.

7.4 Methodology

This section first defines the mathematical notations and problem formulation of graph

classification tasks. Then, we present a detailed description of the proposed NDAUG

method. Figure 7.1 shows the working pipeline of the NDAUG method for generating an

augmentation graph.

7.4.1 Problem Formulation

For the graph classification tasks, each data point in the dataset D = {(Gi, yi)|i =

1, ..., t} consists of a graph Gi and its corresponding label yi. We split the dataset D

into training, validation, and testing sets, depicted as Dtrain, Dval, and Dtest, respectively

(for more detail, see the experimental section 7.5.1). Specifically, we aim to generate

102 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

new data samples for a classifier such as G ∈ Dtrain to a new augmented graph G′ like

f : (G, y) 7→ (G′, y) where y is the label of G. The augmented set D′
train add with Dtrain

to produce the final training set: Dnew
train = Dtrain +D′

train.

7.4.2 Motifs Preservation

Motifs are small, recurrent, and connected subgraphs that play a crucial role in measur-

ing the connectivity patterns of nodes within a graph [45]. The importance of motifs in

the analysis of graphs has been widely recognized since they serve as key indicators in

revealing the fundamental structure and functionality of complex networks [120]. Figure

7.1 illustrates the topological structures of two benzene rings with 5 and 6 nodes, which

we refer to as cyclic motif structures, and these hold substantial chemical significance

in molecular datasets. These cyclic motif structures often determine the structural and

chemical properties of the molecule, impacting its behaviour and interactions [89]. There-

fore, preserving such motifs is critical in graph classification like drug discovery or toxicity

prediction, where losing these structures could lead to inaccurate interpretations of the

molecule’s properties. Current augmentation techniques, like DropNode [144], employ a

random process to drop a substantial number of nodes from the graph without preserv-

ing the underlying graph motif structures. Therefore, our node-dropping method first

preserves these essential topological motif structures during augmentation. Let M(v) be

an indicator function defined as:

M(v) =


1 if v ∈M,

0 otherwise.

(7.1)

A node v is preserved in the augmented graph if M(v) = 1. Here, M denotes the set of

nodes that are part of identified motifs. We implement this M(v) indicator function using

the cycle-basis function of the Netwrokx library to identify all cyclic motif structures of

nodes 4, 5, and 6.

7.4. METHODOLOGY 103

7.4.3 Node Degree-based Dropping

After preserving significant structural motifs in the graph, we use the concept of node

degree to select the most important nodes to generate an augmented graph. In simple

terms, the nodes with a high degree indicate their significance within the entire graph

[144]. For example, high-degree nodes in road networks often correspond to major inter-

sections or hub areas [144]. Similarly, in social and protein-protein interaction networks,

high-degree nodes often represent influential individuals or key connectors within the

community and correspond to crucial proteins that interact with many other proteins.

So, this step removes low-degree nodes from the graph to generate an augmented graph.

The degree of a node d(v), which corresponds to the number of edges connecting to v,

can be formally expressed as:

d(v) = |{u ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E}| (7.2)

The following conditions guide the node-dropping process: nodes are considered to be

removed if their degree is less than or equal to the degree threshold Td, their associated

drop probability probv is below a threshold p, and they are not part of any identified

motifs M :

Vdrop = {v ∈ V : d(v) ≤ Td and probv < p and v /∈M} (7.3)

The augmented graph G′ = (V ′, E ′) is then derived by removing Vdrop from V , and

accordingly adjusting E to exclude edges incident to any node in Vdrop. See Algorithm 2

for more details. Formally, the augmented graph is constructed as follows:

V ′ = V \ Vdrop; E ′ = {(u, v) ∈ E : u /∈ Vdrop ∧ v /∈ Vdrop} (7.4)

7.4.4 Structure Learning Method

This section explains the working pipeline of our proposed structure learning mecha-

nism, which learns a refined augmented graph structure. As mentioned earlier, the node-

104 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

Algorithm 2: Node-Dropping Augmentation NDAUG

Input: A graph G with vertices V and edges E, and Drop Probability P
Output: Augmented graph G′

1 Initialize an empty set D to store nodes to be dropped;

2 Identify the essential topological structural motifs M in G;

3 for each vertex v in V do
4 Calculate node degree deg(v) = |{e ∈ E : v ∈ e}|;
5 Generate a random drop probability probv for node v;

6 if deg(v) ≤ Td and probv < P and v /∈M then
7 Add v to D;

8 Remove the nodes in D from V to get V ′;

9 Update the set of edges E ′ = {e ∈ E : ̸ ∃v ∈ D such that v ∈ e};
10 Re-index nodes in V ′ starting from 1 up to the size of V ′;

11 return G′ = (V ′, E ′);

dropping augmentation operation can lead to the disconnection of closely related nodes

in the augmented graph G′ = (V ′, E ′). This loss of graph structure information further

hinders the message passing procedure of the GNN [132] (also see an example in Figure

7.1). We used a GAT layer, which takes structural information A′ and hidden repre-

sentation X ′ as input to transform node features by aggregating information from their

neighborhoods and resulting attention score vector for each node (as shown in the Equa-

tion 7.5). We use cosine similarity to determine the similarity between the transformed

features of isolated nodes and those in the main graph. For any isolated node i and a

non-isolated node j, their similarity is calculated as follows:

F ′ = GAT(X ′, A′); Sij =
F ′
i · F ′

j

∥F ′
i∥∥F ′

j∥
(7.5)

The process of reconnecting isolated nodes involves identifying these nodes, represented

as the set I ⊆ V ′ in G′. For each isolated node i ∈ I, we search within V ′ \ I to find

a node j that has the highest cosine similarity score with i and then create a new edge

between nodes i and j.

E ′ = E ′ ∪ {(i, j) : i ∈ I, j = argmax
k∈{V ′−I}

Sik, Sij} (7.6)

7.5. EXPERIMENTS AND DISCUSSION 105

Table 7.1: Comparison of NDAUG and baselines. The bold text represents the best perfor-
mances.

Methods BZR COX2 NCI1 MUTAGEN PROTEINS DD IMDB-B RED12K

No Augmentation 79.42±1.97 79.50±1.50 75.50±1.50 77.18±1.86 72.60±3.92 76.50±2.35 68.20±6.55 38.80±3.12

NodeDrop[144] 80.31±6.50 78.39±3.98 76.47±2.03 77.77±2.57 73.86±2.51 76.66±3.89 68.20±4.98 41.13±1.46

EdgeDrop[106] 81.97±3.50 79.88±6.44 77.93±1.33 79.18±1.89 73.41±4.45 74.03±4.09 69.40±4.20 40.53±2.61

GraphCrop[132] 79.84±3.40 79.76±4.64 77.67±2.50 79.54±2.59 73.10±3.50 76.86±3.46 70.87±3.51 40.81±2.71

Gmixup[59] 82.15±4.25 78.34±5.20 77.18±1.56 80.59±2.31 72.10±5.71 75.29±1.69 70.31±3.36 41.10±2.31

M-evolve [155] 79.30±1.53 77.74±3.41 77.37±2.86 78.84±2.25 72.31±3.62 76.81±2.34 69.40±3.81 40.34±3.87

Mixup [133] 81.20±3.51 79.81±4.41 77.08±2.10 79.81±2.13 74.10±3.35 75.40±2.80 69.30±3.20 40.66±2.17

NDAUG 86.16±3.21 81.28±3.37 80.01±2.51 82.01±2.21 75.65±2.54 79.31±3.31 72.40±3.20 45.95±1.61

By effectively reconnecting isolated nodes, we maintain the graph’s connectivity and

ensure the continuity and efficacy of the message passing mechanisms in the GNN, which

are essential for accurate graph classification tasks.

7.5 Experiments and Discussion

This section evaluates the efficacy of the proposed NDAUG method on eight classification

datasets, including BZR, COX2, NCI1, and MUTAGENICITY for molecular compound

classification, DD and PROTEINS for protein categorization, IMDB-M, and REDDIT-

MULTI12K for social network classification [92]. These datasets have been widely used

as benchmarks for graph classification tasks, as demonstrated in this chapter [138]. Our

findings demonstrate that NDAUG consistently outperforms the existing baseline ap-

proaches. Furthermore, a graph visualization comparison and a comprehensive series

of ablation studies are conducted to evaluate the individual contributions of different

components inside the NDAUG method.

7.5.1 Baseline Methods

We follow numerous prior research studies [144, 106] and employ the 10-fold cross-

validation method, dividing the datasets into training, validation, and testing sets with

ratios of 80%, 10%, and 10%, respectively. We report the average test accuracy over ten

different runs. The training process utilizes the early-stop mechanism, which terminates

when the loss value of the validation set does not decrease for 50 consecutive epochs. We

106 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

fine-tune hyperparameters for all models on each dataset within the specified range, as

follows: 1) initial learning rate ∈ {0.01, 0.0005}, 2) embedding dimensions ∈ {64, 128},

3) batch size ∈ {32, 64, 128}, 4) DropEdge and DropNode drop ratio ∈ {20%, 40%}, 5)

node degree value ∈ {1, 2, 3} and number of GNN layers ∈ {2, 3, 4}. We utilize the Adam

optimizer to initialize our model and apply a negative log-likelihood loss function for train-

ing. We compare our NDAUG methods, which do not use any data augmentations, and

six graph augmentation baseline methods, including DropNode [144], DropEdge [106],

GraphCrop [132], Gmixup [59], M-evolve [155] and Mixup [133]. We use the same GNN

model [91] and hyperparameter setting for NDAUG and all baseline augmentation ap-

proaches to ensure a fair comparison. The source code for the NDAUG method will be

available at the given link.

7.5.2 Performance Comparison and Graph Visualization

Table 7.1 compares the performance of our proposed NDAUG and baseline methods

across the eight graph classification benchmark datasets. Significantly, NDAUG demon-

strates superior performance over all baseline methods in all datasets. Specifically, when

comparing with the GCN baseline, NDAUG shows a relative accuracy improvement on

the BZR, NCI, MUTAGENICITY, DD, and REDIT12K datasets by margins of 6.74%,

4.51%, 4.83%, 2.45%, and 7.15%, respectively. This advancement underscores the effi-

cacy of graph data augmentation in enhancing GNN performance for graph classification

tasks. Moreover, NDAUG consistently surpasses traditional augmentation methods like

NodeDrop and EdgeDrop. In the realm of chemical molecule datasets, NDAUG outper-

forms these baselines by an average of 2-4% in BZR, NCI1, and MUTAGENICITY and

by 1.4% in COX2. Across the biological and social network datasets, NDAUG achieves

an average improvement of 2.0%, 4.0%, respectively. Existing augmentation methods,

such as NodeDrop and EdgeDrop, have limited performance because they randomly drop

nodes or edges without preserving the connectivity between the nodes in the augmented

graph. This destroys the original graph’s essential topological structures, leading to the

loss of essential label-related information. We additionally provide graph visualizations

https://anonymous.4open.science/r/Topology-Aware-Node-Dropping-Augmentation-for-Graph-Classification-626D/NDAUG.py

7.5. EXPERIMENTS AND DISCUSSION 107

(a) Training on the NCI1
dataset without any augmen-
tation method obtains an
average testing accuracy of
78.44±2.71.

(b) The random node-
dropping [144] method training
achieves an average testing
accuracy of 76.47±2.03.

(c) Training with our pro-
posed NDAUG method obtains
an average testing accuracy of
80.01±2.51.

Fig. 7.2: A comparison of NDAUG and the random node-dropping method on the NCI1 dataset
shows significant differences. Figure (a) displays a random NCI1 graph with crucial cyclic
carbon structures. Figures (b) and (c) illustrate augmented graphs generated by NDAUG and
Nodedrop [144], respectively. The random DropNode method degrades classification performance
by dropping key nodes from carbon structures. In contrast, NDAUG preserves these structures
and enhances classification performance.

to represent the effect of different augmentation techniques in Figure 7.2. Our analysis,

supported by the success of NDAUG on graph datasets, validates the effectiveness of

our proposed NDAUG method. This advancement not only sets a new standard in graph

augmentation but also opens the potential for future analyses to enhance the performance

of GNNs. The overall time complexity of NDAUG, which depends on determining motifs

and calculating pairwise similarity, is O(|V |c + |V |2d), where |V | is the number of nodes,

d is the dimension of node features, and c represents the complexity of detecting cyclic

motifs.

7.5.3 Ablation Studies

This section performs an ablation study on NDAUG by removing three components to

verify further where the performance improvement comes from. For convenience, we name

the NDAUG method without the node degree measurement, motif structures, and struc-

ture learning components as NDAUG w/o NDM, NDAUG w/o MS, and NDAUG w/o

ST, respectively. For ablation study experiments, we train GCN-based [91] classification

models on four different-scale graph datasets covering small and large graphs and employ

the same parameter setting as Section 7.5.1. The results presented in Table 7.2 highlight

the considerable impact of node degree measurement and motif structures, particularly

108 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

within the domains of chemical molecules, since the preservation of essential motif graph

structures such as cyclic benzene with node degree is especially useful to maintain the

important graph structures within the augmented graphs. Furthermore, removing the

structure learning strategy significantly degrades the performance of NDAUG in NCI

and BZR because these datasets are sparse, resulting in augmented graphs containing

isolated nodes. It is demonstrated that structure learning, node degree measurement,

and preservation of essential graph motif structures are key success factors of NDAUG in

generating augmented graphs.

Table 7.2: Results of ablation studies about different NDAUG components.

Architecture Mutagenicity NCI1 BZR IMDB-B

NDAUG 82.021 ± 2.21 80.34 ± 2.39 86.16 ± 3.21 72.70 ± 2.71

NDAUG w/o ST 80.90 ± 2.27 79.10 ± 2.30 84.31 ± 3.11 71.40 ± 4.01

NDAUG w/o MS 80.30 ± 2.96 79.87 ± 2.10 84.41 ± 3.01 70.80 ± 3.61

NDAUG w/o NDM 78.95 ± 3.01 77.83 ± 3.03 81.61 ± 3.51 70.80 ± 3.61

7.5.4 NDAUG with Different GNN models and Graph Pooling

In addition to the ablation experiments, we extend our analysis of NDAUG to explore

its compatibility and enhancement potential with other Graph Neural Networks. To this

end, we conducted a series of experiments integrating NDAUG into three commonly used

GNN models: GCN [72], GIN [138], and Graphconv [91]. In the experimental settings,

we set all parameters uniform for each of the networks. Each experiment employed a

three-layer GNN model for classification, leveraging a 10-fold cross-validation scheme,

and reported the average accuracy with standard deviation over five runs. The find-

ings, encapsulated in Table 7.3, are quite illuminating. They consistently demonstrate

that NDAUG significantly boosts the performance of each GNN architecture and Min-

cutPool across graph classification tasks. This not only provides evidence for NDAUG’s

adaptability but also highlights its effectiveness as a powerful augmentation method that

can enhance the performance of many GNN models and graph pooling methods such as

MincutPool.

7.6. CONCLUSION AND FUTURE WORK 109

Table 7.3: Performance of NDAUG with graph pooling and different GNN models. The mean
test accuracy (%) with standard deviations from 10-fold cross-validation over 5 runs is reported.
The bold text represents the highest accuracy.

Architecture Mutagenicity NCI1 NCI109 MSRC21 IMDB-B

Vanilla GCN 77.18 ± 1.86 75.50 ± 1.50 75.26 ± 2.92 86.80 ± 4.22 59.90 ± 2.96

NDAUG + GCN 79.89 ± 2.97 77.47 ± 2.38 76.92 ± 1.61 90.23 ± 3.58 61.10 ± 3.45

Vanilla GIN 80.58 ± 1.76 76.52 ± 3.17 75.21 ± 4.06 87.39 ± 4.79 65.80 ± 3.97

NDAUG + GIN 81.19 ± 2.49 78.30 ± 1.98 77.37 ± 2.48 90.92 ± 4.27 69.30 ± 4.24

Vanilla Graphconv 79.78 ± 2.19 78.44 ± 2.71 78.71 ± 2.12 89.40 ±3.40 68.20 ± 6.55

NDAUG + Graphconv 82.01 ± 2.21 80.01 ± 2.51 79.81 ± 2.22 92.03 ±3.23 72.70 ± 2.71

Vanilla MincutPool 76.86 ± 2.86 74.56 ± 2.71 73.52 ± 3.02 87.91 ± 4.65 68.96 ±5.36

NDAUG + MincutPool 78.12 ± 1.94 76.33 ± 2.68 74.58 ± 2.21 90.12 ± 3.12 70.01 ± 4.36

7.6 Conclusion and Future Work

This chapter introduced a novel data augmentation method named NDAUG for graph

classification tasks. At its core, NDAUG used the concept of node-degree measurement

to strategically drop less important low-degree nodes from the original graph. This ap-

proach is carefully balanced to maintain essential topological motif structures within the

augmented graph, even those typically associated with low-degree nodes. Furthermore,

we proposed a structure learning technique that employs an attention mechanism to re-

connect disconnected nodes to maintain graph connectivity within the augmented graphs

and enhance GNN performance. Comprehensive experiments on eight graph classifica-

tion datasets demonstrated a notable enhancement in the accuracy of up to 5% compared

to the existing baselines. In future work, we plan to enhance our NDAUG approach by

incorporating edge perturbation techniques to identify key topological substructures and

extend its application to node-level tasks.

110 CHAPTER 7. TOPOLOGY-AWARE AUGMENTATION

Chapter 8

Community-Hop Mechanism for

Graph Neural Networks

“A representation learning algorithm can discover a good set of features for a simple

task in minutes, or for a complex task in hours to months.”

— Ian Goodfellow

8.1 Preamble

This chapter proposed a Community-HOP-based GNN model for dealing with homophilic

and heterophilic graph structures. Specifically, we incorporated valuable insights from

the graph community structure to guide the feature aggregation process of the GNN

layer, enabling it to learn diverse graph properties and improve performance on node-

level tasks. The research and findings discussed in this chapter are based on the following

paper:

• Ahmed Begga, Waqar Ali, Gabriel Niculescu, Francisco Escolano, Thilo Stadel-

mann, and Marcello Pelillo. “Community-Hop: Enhancing Node Classification

through Community Preference.” Joint IAPR International Workshops on Statisti-

cal Techniques in Pattern Recognition and Structural and Syntactic Pattern Recog-

nition (S+SSPR 2024) [16].

112 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

The author has the following contributions:

• Writing a considerable code.

• Performing a considerable experiments.

• Writing a significant part of the paper.

8.2 Introduction

GNNs have proven to be powerful methods for analyzing graph-based data, finding use

in diverse areas such as social network analysis and predicting molecular properties [72,

125, 56]. However, conventional GNN architectures often face challenges in capturing

complex structural information and relationships between nodes at various distances,

particularly in graphs with heterophilic properties (where connected nodes have dissimilar

labels) [156]. Recent advancements in GNN design have addressed these limitations by

incorporating higher-order neighborhood information. Models such as MixHop [3] and

FSGNN [86] have demonstrated the effectiveness of aggregating features from nodes at

different hop distances. These approaches allow for more flexible feature mixing and

improved performance on various graph datasets.

While these methods have shown promise, they often treat all neighbors equally within

each hop distance, potentially overlooking important structural information encoded in

the graph’s community structure. Community detection in graphs has long been a subject

of study in network science [114, 128], with spectral methods providing powerful tools for

identifying clusters of densely connected nodes [17].

This chapter develops a novel GNN layer that leverages graph community structure to

guide the feature aggregation process. By combining spectral community detection tech-

niques [128] with a modified transition matrix for inter-community hops, our approach

aims to prioritize information flow within and between communities in a more meaning-

ful way. This community-aware feature aggregation strategy allows the model to capture

both local (by just combining community nodes) and global (by using the same GNN for

all the clusters) graph structures more effectively.

8.3. RELATED WORK 113

C
B

A
D

F

I

G

H

E

J

K M

First Hop

Second Hop

Third Hop

N(A) = {A,B,C,F,J}
N(A) = {A,B,C,F,J,D,K,M,I}
N(A) = {A,B,C,F,J,D,K,M,I,E,G,H}

C
B

A
D

F

I

G

H

E

J

K M

First Hop

Second Hop

Third Hop

N(A) = {A,B,C}
N(A) = {A,B,C,D}
N(A) = {A,B,C,D,E}

Fig. 8.1: Traditional Hop vs Community Hop. Evolution of the neighborhood of A, N(A), in
traditional hops (left) and in our approach, Community Hop (right).

8.3 Related Work

Recent years have seen significant advancements in GNN architectures, particularly in

addressing the challenges of heterophily and over-smoothing. These innovations have

largely focused on modifying the feature aggregation process and leveraging higher-order

neighborhood information. Several approaches have been proposed to tackle the het-

erophily problem, where connected nodes may have dissimilar features or labels. H2GCN

[156] introduced ego- and neighbor-embedding separation, along with the exploration

of higher-order neighborhood structures. GPR-GNN [31] minimizes over-smoothing by

integrating the PageRank method with GNNs. Furthermore, GGCN [142] addresses het-

erophily and over-smoothing issues by utilizing degree corrections and signed messages.

Interestingly, studies have revealed that basic models like Multi-Layer Perceptrons

(MLPs) and LINK [83] can occasionally surpass conventional GNN architectures when

dealing with heterophilic datasets. This observation has led to the development of hy-

brid methods that merge node features with graph-based representations. A prominent

example is LINKX [83], which integrates MLPs for node features with LINK regression,

showing promising performance on heterophilic graphs.

Another line of research has focused on aggregating features from neighbors at different

distances. MixHop [3] and FSGNN [86] utilize the transition matrix’s powers to capture

multi-hop neighborhood information. FSGNN uses a regularizer method, such as softmax

and L2-Normalization in GNN’s layers.

114 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

Recent work has also explored novel ways to address the over-smoothing problem in

deeper GNN architectures. Ordered GNN [118] proposes an approach that aligns the

hierarchy of a rooted-tree with ordered neurons in node embeddings, effectively preserving

information from different neighborhood depths.

While these advancements have significantly improved GNN performance on various

graph types, there remains room for innovation in leveraging graph structure more ef-

fectively, particularly in the context of community detection and inter-community infor-

mation flow. Our proposed method builds on these insights by incorporating spectral

clustering and community hops, offering a novel approach to enhance GNN performance

across diverse node-level predictions.

8.4 Preliminaries

In this section, we define the mathematical notations used in this chapter. We use the

adjacency matrix A ∈ {0, 1}N×N to capture the graph’s topological structure, where

Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise.

To account for self-loops, we modify the adjacency matrix to Ã = A+ I, where I denotes

the identity matrix. The features of each node are now represented by a matrix F ∈ Rn×k,

where k indicates the dimension of the feature space.

Additionally, we utilize the diagonal degree matrix D for the graph G, where Dii = di

denotes the degree of node i, calculated by di =
∑

j Aij. The normalized transition

matrix P is then defined as P = D− 1
2AD− 1

2 .

8.4.1 Spectral Clustering

Spectral clustering is a robust method that utilizes the spectral properties of graph Lapla-

cians to achieve clustering [128]. This section covers the essential matrices and concepts

that are fundamental to spectral clustering techniques.

A key component in spectral clustering is the graph Laplacian, which comes in two

primary forms. The unnormalized graph Laplacian is given by L = D −W , where W

8.4. PRELIMINARIES 115

represents the weighted adjacency matrix and D is the diagonal degree matrix, with

Dii =
∑

j wij.

Furthermore, the normalized graph Laplacian can be represented by the following for-

mula: L = D−1/2LD−1/2 = I −D−1/2WD−1/2. Here, L provides a normalized version of

the Laplacian that adjusts for the degree of nodes, facilitating more effective clustering.

These Laplacians have several important properties [32]:

1. They are symmetric and positive semi-definite.

2. The smallest eigenvalue is 0, with corresponding eigenvector 1 for L and D1/21 for

L.

3. They have n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

For any vector f ∈ Rn, we have:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2; fTLf =
1

2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

(8.1)

The multiplicity k of the eigenvalue 0 equals the number of connected components in the

graph. The eigenspace of 0 is spanned by the indicator vectors of these components for

L, and by D1/2-scaled indicator vectors for L [128].

Spectral clustering is closely related to the Normalized Cut (NCut) problem [114]. Given

a partition of V into k disjoint subsets A1, . . . , Ak, the NCut is defined as:

NCut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, V \ Ai)

vol(Ai)
(8.2)

where cut(A,B) =
∑

i∈A,j∈B wij and vol(A) =
∑

i∈A di.

Minimizing NCut is NP-hard, but it can be relaxed to a tractable eigenvalue problem.

This relaxation leads to the spectral clustering algorithm, which computes the first k

eigenvectors u1, . . . , uk corresponding to the k smallest eigenvalues of L (or generalized

eigenvectors of Lu = λDu) [128, 114].

These eigenvectors form a matrix U ∈ Rn×k, where each row represents a node’s k-

dimensional embedding. This embedding enhances cluster properties in the data [128],

116 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

allowing for easier separation in the new representation.

The final step involves clustering these embeddings, typically using the k-means algo-

rithm, to obtain the approximate solution to the NCut problem. This approach effectively

captures important graph properties such as communities and structural characteristics

through the spectrum of the Laplacian, providing a powerful tool for graph partition-

ing [32, 128, 114].

8.4.2 Graph Neural Networks

GNNs have emerged as a significant technique for handling data that is structured as

graphs. These models adapt the concepts of convolutional neural networks to the non-

Euclidean nature of graph data. The core idea behind GNNs is to iteratively update

node representations by collecting and processing information from neighboring nodes.

A typical GNN layer can be formulated as:

H(i+1) = σ(AH(i)W (i)), (8.3)

where H(i+1) denotes the updated node features matrix at layer i+ 1 after applying the

layer transformation, H(i) represents the node features matrix before the transformation,

W (i) is a matrix of learnable parameters and σ is a non-linear activation function. In the

literature [72], it is common to use the normalized adjacency matrix, which is denoted as

Ā = D− 1
2 ÂD− 1

2 .

8.5 Methodology

Our methodology addresses the limitations of existing GNN approaches by combining

spectral graph theory with flexible multi-hop neighborhood aggregation. Figure 8.1 illus-

trates the difference between traditional hops and our community-based approach, which

mitigates oversmoothing by emphasizing communal connections [24].

The foundation of our approach leverages spectral graph clustering to uncover global

community structure. We begin with the eigendecomposition of the normalized Laplacian

8.5. METHODOLOGY 117

L [32]:

L = UΛUT , (8.4)

where U is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The

spectral properties of L are intimately connected to the graph’s structure, with eigenval-

ues in the interval [0, 2] [32].

We focus on the spectral gap, defined as γ = λ2−λ1, where λ1 = 0 and λ2 is the smallest

non-zero eigenvalue. This gap is related to the graph’s connectivity and mixing time [121].

Specifically, the Cheeger constant h(G), which measures the ”bottleneckedness” of the

graph, is bounded by the spectral gap through the Cheeger inequality:

λ2
2
≤ h(G) ≤

√
2λ2, (8.5)

This relationship, known as the Lovász bound [128, 7], provides crucial insights into

the graph’s community structure. A small Cheeger constant indicates the presence of

well-defined communities, while a large constant suggests a more uniformly connected

graph [35].

We select the k leading eigenvectors corresponding to the smallest non-zero eigenvalues,

where k is a hyperparameter. The choice of k can be guided by examining subsequent

spectral gaps (λi+1 − λi), with a large gap suggesting a natural number of clusters [128].

To identify communities, we apply k-means clustering to the rows of the truncated eigen-

vector matrix Uk. This spectral embedding tends to separate nodes into more linearly

distinguishable clusters than in the original graph space.

We then introduce an edge-pruning mechanism to emphasize intra-community connec-

tions:

Aij = Aij · [C(i) = C(j)] , (8.6)

where C(i) denotes the cluster assignment of node i. This pruning creates a block-

diagonal structure in A, aligning with the theoretical expectation of an ideal community

structure in the spectral clustering framework. Following MixHop [3] and FSGNN [86], we

118 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

will use the transition matrix to perform hops but this time with A. Now the transition

matrix can be defined as P = D− 1
2AD− 1

2

Building on this community-aware structure, we incorporate a multi-hop aggregation

scheme with attention-like learnable parameters, inspired by recent GNN advance-

ments [3, 86]. The feature update rule for the (i+ 1)-th layer is:

H(i+1) =
[
α1AH

(i)W
(i)
1 ∥α2P1H(i)W

(i)
2 ∥α3P2H(i)W

(i)
3 ∥ · · · ∥αj+1PjH(i)W

(i)
j+1

]
, (8.7)

where j is the number of hops, H(i) ∈ Rn×di is the node feature matrix at the i-th layer,

with n nodes and di features. P ∈ Rn×n is our community-aware transition matrix, and

W
(i)
j+1 ∈ Rdi×dout are learnable weight matrices for each hop distance j at layer i, and ∥

denotes column-wise concatenation.

We introduce learnable attention-like parameters αj+1 for each hop embedding and the

original node features and adjacency, allowing the model to weigh the importance of

different neighborhood scales adaptively. Importantly, these attention parameters are

constrained to sum to 1:
∑j+1

k=1 αk = 1, αk ≥ 0 ∀k ∈ {0, 1, . . . ,m}:

This constraint ensures that the attention mechanism is a proper weighting system across

different hop distances.

This multi-hop aggregation allows the model to simultaneously capture and weigh infor-

mation from various neighborhood scales, as we illustrate in Figure 8.2. For instance, if

j = 2, the model considers the initial adjacency (α1AH
(i)W

(i)
1), its immediate neighbors

(α2P1H(i)W
(i)
1), and its 2-hop neighbors (α3P2H(i)W

(i)
2) in each layer The use of differ-

ent weight matrices W
(i)
j+1 and attention parameters αj+1 for each hop distance and the

initial adjacency, enables the model to learn the relative importance of information from

different scales while maintaining a balanced aggregation.

This approach generalizes the power iteration method often used in spectral clustering,

allowing the capture of higher-order relationships in the graph while maintaining the

ability to differentiate between local and global structural information. By learning to

assign different importance to various neighborhood scales and preserving the original

feature information, our model effectively captures complex patterns of node similarity

8.5. METHODOLOGY 119

and dissimilarity, adapting to both homophilic and heterophilic graph structures.

Fig. 8.2: Illustration of the spectral clustering and GNN propagation process. The input graph
undergoes spectral clustering to identify communities (Step 1). Then, a community-aware multi-
hop aggregation is performed (Step 2), where information is propagated within communities.
The obtained node representations are concatenated and then passed through a MLP for the
final prediction of node labels.

8.5.1 Computational Complexity

Our approach’s computational complexity is divided into two primary processes: prepro-

cessing and processing.

The preprocessing phase involves calculating the k leading eigenvectors of the normalized

Laplacian matrix. For a graph with n nodes and m edges, this computation has a worst-

case time complexity of O(n3) and a space complexity of O(n2). However, performance

can be enhanced by employing optimized algorithms tailored for sparse graphs.

During the processing phase, k-means clustering and GNN propagation are performed.

This step has a time complexity is O(nk2 + LHmF), where k denotes the number of

clusters and the dimension of spectral embedding, L is the number of GNN layers, H

represents the number of hops, and F is the number of features. The space complexity

for the processing phase is O(n(k + F) +m).

Despite the preprocessing step being computationally intensive, especially for larger

graphs, it provides a comprehensive basis for identifying global community structures.

This trade-off between computational cost and structural insight allows our approach to

effectively capture both global and local patterns in the graph, enabling robust perfor-

mance on both homophilic and heterophilic graph structures.

120 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

Table 8.1: Node-classification accuracies. Top three models are highlighted: First, Second,
Third.

Texas Wisconsin Cornell Citeseer Pubmed Cora

Hom level 0.11 0.21 0.30 0.74 0.80 0.81
Nodes 183 251 183 3,327 19,717 2,708
Edges 295 466 280 4,676 44,324 5,278
Classes 5 5 5 7 3 6

MLP 80.81± 4.75 85.29± 6.40 81.89± 6.40 74.02± 1.90 75.69± 2.00 87.16± 0.37
GCN [72] 55.14± 5.16 51.76± 3.06 60.54± 5.30 76.50± 1.36 88.42± 0.50 86.98± 1.27
GAT [125] 52.16± 6.63 49.41± 4.09 61.89± 5.05 76.55± 1.23 87.30± 1.10 86.33± 0.48
GraphSAGE [56] 82.43± 6.14 81.18± 5.56 75.95± 5.01 76.04± 1.30 88.45± 0.50 86.90± 1.04

H2GCN [156] 84.86± 7.23 87.65± 4.89 82.70± 5.28 77.11± 1.57 89.49± 0.38 87.87± 1.20
Geom-GCN [99] 66.76± 2.72 64.51± 3.66 60.54± 3.67 78.02± 1.15 89.95± 0.47 85.35± 1.57
LINKX [83] 74.60± 8.37 75.49± 5.72 77.84± 5.81 73.19± 0.99 87.86± 0.77 84.64± 1.13

GGCN [142] 84.86± 4.55 86.86± 3.29 85.68± 6.63 77.14± 1.45 89.15± 0.37 87.95± 1.05
CGNN [141] 71.35± 4.05 74.31± 7.26 66.22± 7.69 76.91± 1.81 87.70± 0.49 87.10± 1.35

MixHop [3] 77.84± 7.73 75.88± 4.90 73.51± 6.34 76.26± 1.33 85.31± 0.61 87.61± 0.85
FSGNN [86] 87.30± 5.29 87.84± 3.37 85.13± 6.07 77.40± 1.90 77.40± 1.93 87.93± 1.00
GPRGNN [31] 78.38± 4.36 82.94± 4.21 80.27± 8.11 77.13± 1.67 87.54± 0.38 87.95± 1.18

Community-HOP 89.46± 5.72 89.01± 3.84 82.70± 3.00 78.30± 2.13 89.50± 0.47 88.22± 1.29

8.6 Experiments and discusions

This section evaluates the proposed method’s performance on six node classification

benchmarks. The experimental results reveal that the Community-HOP method achieved

the highest performance on four out of six datasets compared to baselines. This section

describes the datasets and experimental settings, followed by a comprehensive comparison

of the results and a detailed analysis.

To evaluate the efficacy of the Community-HOP, we selected six small to medium real-

world node classification benchmark datasets: Cora, Cornell, PubMed, Texas, and Wis-

consin [99]. A statistical summary of these datasets, including the edge homophily ratio

(HOM LEVEL) [156], offers insight into the dataset’s heterophily. A higher HOM LEVEL

indicates greater heterophily, posing a challenge for vanilla GNN models, which typically

perform worse under these conditions.

For the node classification experiments, we utilized the dataset splits provided by [99].

Each split includes 48% of the data for training, 32% for validation, and 20% for testing.

8.6. EXPERIMENTS AND DISCUSIONS 121

The performance metrics are reported as the average accuracy with standard devia-

tion across 10 different splits. All models were trained for a total of 3000 epochs using

the Adam optimizer and cross-entropy loss function. To optimize the Community-HOP

method, hyperparameter tuning was carried out, focusing on parameters such as learning

rate, dropout rate, number of clusters, number of hops, and hidden dimensions. A grid

search strategy was used to examine different combinations of these hyperparameters.

Detailed information on the hyperparameter settings for each dataset is available at the

following link.

Our experimental findings show that Community-HOP markedly exceeds the performance

of existing methods in accuracy across four diverse datasets, showcasing its effectiveness

and adaptability in node classification tasks with varying degrees of heterophily. The

analysis of edge homophily ratios (HOM LEVEL) emphasizes the difficulties encountered

with higher heterophily levels and highlights the improvements offered by Community-

HOP over conventional GNNs and other state-of-the-art techniques.

However, our method does not achieve superior performance on the Cornell and PubMed

datasets. In the case of Cornell, this limitation can be attributed to difficulties in ac-

curately computing spectral clusters, exacerbated by significant gaps in the dataset’s

homophily structure. For PubMed, the high volume of nodes and edges impedes our

ability to effectively capture the underlying community structure. Consequently, inade-

quate clustering results in suboptimal performance for community-specific hops.

Our method focuses on community nodes by executing multiple hops within the commu-

nity and shows promising results, particularly in homophilic environments where neigh-

bors share the same label. This characteristic is advantageous as it aligns with the as-

sumption that nodes within such environments exhibit high intra-community homophily.

Notably, our Community-HOP also demonstrates effective performance in heterophilic

contexts, suggesting that it can adeptly manage heterophily within communities. This

adaptability contributes to its overall improved classification performance across various

datasets, showing its potential for broader applicability in diverse graph-based tasks.

https://github.com/AhmedBegggaUA/Community_HOP

122 CHAPTER 8. COMMUNITY-HOP MECHANISM FOR GRAPH NEURAL NETWORKS

8.7 Conclusion and Future Work

In this chapter, we introduced a Community-HOP-based GNN model designed to address

the challenge of heterophily in graphs. Central to our approach is the Community-Hop

method, which leverages community structural information to refine the feature aggrega-

tion process within the GNN layers. This technique enhances the relevance of information

flow both within and across communities by integrating spectral community detection

with an adapted transition matrix for inter-community hops. However, a significant

limitation of our approach is its computational cost, particularly for large-scale graphs

and the determination of an optimal parameter k. Future work will focus on addressing

these challenges by advancing spectral clustering techniques and developing methods for

automatic optimization of k.

Chapter 9

Spectral Rewiring: Local-to-Global

Adaptations for GNNs

“Understanding the topology of a graph allows us to reveal hidden structures and

dynamics that govern complex networks.”

— Philip M. Anderson

9.1 Preamble

In this chapter, we introduced a novel graph rewiring method to improve communication

within graphs and generate a new optimized graph. Specifically, our method learns eigen-

functions that are reactive to graph labels and adds a linear number of edges locally to

encourage community structures and globally to facilitate long-range connections. Ad-

ditionally, we utilize the new optimized graph samples as augmented graphs to increase

the training size of the dataset, thereby improving the generalization and robustness of

the GNN. The research and findings discussed in this chapter are based on the following

paper:

• Waqar Ali, Ahmed Begga, Francisco Escolano, Sebastiano Vascon, Thilo Stadel-

mann, and Marcello Pelillo. “Inductive Spectral Theory: Learnable Local-to-Global

Spectral Rewiring in GNNs”; Submitted to the 39th Annual AAAI Conference on

124 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

Artificial Intelligence 2024 (under review).

The author has the following contributions:

• Developing the pipeline of the algorithm.

• Writing a considerable code.

• Performing most of the experiments.

• Writing a significant part of the paper.

9.2 Introduction

GNNs [53, 111, 23] have emerged as powerful tools for analyzing graph-structured data,

driving significant advancements in social network analysis, molecular biology, and rec-

ommendation systems [154, 137]. Most GNN architectures such as GCN [72], GAT [125]

and others [56, 138] operate through message passing, where node features are iteratively

updated by aggregating information from neighboring nodes and generate a new repre-

sentation (node embeddings) for nodes [51]. Further, this node embedding output can

perform various tasks like graph and node classification.

FoSR SDRF LASER OUR

Fig. 9.1: An analysis of various graph rewiring techniques, including FoSR, SDRF, LASER,
and IST(our), for mitigating bottlenecks in the input graph.

However, the GNN’s message passing mechanism faces significant challenges, particularly

in practical applications that require capturing long-range interactions. One prominent

issue is over-smoothing, where node features become indistinguishable as the number of

9.2. INTRODUCTION 125

layers increases [20]. This convergence of features limits the depth of GNNs, thereby re-

stricting their ability to capture complex relationships within the data. Another critical

issue is over-squashing [6], and it occurs when information from an exponentially grow-

ing receptive field must be compressed into fixed-size node representations, potentially

losing important long-range interactions. Over-squashing is closely related to topological

properties of the input graph, such as curvature and effective resistance [7, 66, 19, 14].

One prevalent strategy to address these issues is graph rewiring, which aims to modify the

connectivity of the input graph to improve information flow and alleviate over-squashing.

These methods can be broadly categorized into spatial and spectral approaches. Spa-

tial rewiring often focuses on connecting nodes within a certain hop distance, including

LASER and hopGNN [49, 46, 14] while spectral rewiring optimizes graph-theoretic prop-

erties related to connectivity, including Diffwire and First-order Spectral Rewiring (FoSR)

[7, 66, 19] (see the Figure 9.1). Each approach presents trade-offs between preserving local

structure, maintaining sparsity, and enhancing overall graph connectivity.

In addition to over-squashing, GNN models often struggle with limited data to per-

form graph classification tasks [155]. For example, GNNs have been extensively used

in predicting molecular properties, a domain where obtaining labeled molecular data is

often labor-intensive and involves complex laboratory procedures. This scarcity of la-

beled samples hinders the GNN’s ability to achieve promising prediction performance.

Data augmentation methods are commonly used to mitigate this issue. These methods

can involve adding new features, creating virtual nodes or edges, or generating multiple

views of the same graph [106, 155, 153]. This augmentation concept aligns closely with

graph rewiring methods, which improve the communication pathways within a graph by

strategically adding edges to reduce bottlenecks, resulting in a new optimized graph.

This chapter proposes a novel graph rewiring method called Inductive Spectral Theory

(IST) that improves graph communication by optimizing its topology. Specifically, our

method learns eigenfunctions that are reactive to graph labels and adds a linear number

of edges locally to encourage community structures and globally to facilitate long-range

connections. Additionally, we utilize the new optimized graph samples as augmented

126 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

graphs to increase the training size of the dataset, thereby improving the generalization

and robustness of the GNN. We summarize our contributions as follows:

• Graph Rewiring for Data Augmentation: We introduce a novel graph rewiring

process to generate augmented views of the original graph, effectively increasing

both the size and diversity of the training dataset.

• Label-Reactive Eigenfunction Learning: Our technique learns eigenfunctions

that are reactive to labels, preserving both label information and structural prop-

erties of the graph.

• Multi-scale Edge Addition: We add edges both locally to encourage community

structures and globally to facilitate long-range connections while maintaining graph

sparsity to avoid over-smoothing.

• Over-squashing Mitigation: Our approach addresses the over-squashing prob-

lem common in graph neural networks by introducing strategic long-range connec-

tions.

• Enhanced Model Performance: These techniques collectively improve model

robustness and generalization capabilities through more diverse and representative

training samples.

9.3 Related Work

9.3.1 Graph Rewiring

Recent research has focused on understanding and mitigating over-squashing in GNN

through various approaches. These methods can be broadly categorized into spectral,

curvature-based, effective resistance, and locality-aware techniques.

Spectral methods, such as FoSR by [66] aim to improve graph connectivity by maximizing

the increase in spectral gap. FoSR adds edges strategically while preserving the original

graph structure using a relational GNN architecture. Similar spectral approaches include

9.3. RELATED WORK 127

the work of [13], who proposed flipping edges based on effective resistance to increase the

spectral gap, and [7], who developed a method to reweight edges leveraging the Lovász

bound.

Curvature-based approaches leverage the geometric properties of graphs. [93] introduced

Batch Ollivier-Ricci Flow (BORF), which uses Ollivier-Ricci curvature to address over-

smoothing and over-squashing simultaneously. Their rewiring algorithm modifies local

graph geometry to improve information flow. This builds upon earlier work by [121] who

used Forman curvature to analyze over-squashing and proposed a rewiring technique

based on increasing edge curvature.

Effective resistance methods, exemplified by [19] utilize total effective resistance as a mea-

sure of over-squashing. Their approach adds edges to minimize total effective resistance,

thereby improving connectivity between all node pairs. This concept is related to the

work of [124], who proposed incorporating effective resistance-based features into GNNs

to capture graph topology information.

Locality-aware methods, such as Locality-Aware SEquential Rewiring (LASER) by [14],

attempt to balance local and global graph properties. LASER uses a sequence of rewiring

operations considering connectivity measures and locality constraints, aiming to preserve

graph sparsity and local structure while reducing over-squashing. This approach shares

similarities with multi-hop aggregation methods proposed by [3] and [130], which also

attempt to capture local and global graph information. These diverse approaches to

Table 9.1: Properties of different types of rewirings.

Method Differentiable Preserve locality

FoSR ✗ ✗

GTR ✗ ✗

Diffwire ✔ ✗

Ours (IST) ✔ ✔

graph rewiring offer various strategies for mitigating over-squashing: FoSR adds edges

based on spectral properties, BORF modifies edge weights to increase curvature, effective

resistance methods add edges to minimize total resistance, and LASER uses a sequential

128 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

process balancing local and global connectivity improvements. Each method provides

unique insights into addressing the over-squashing problem while attempting to preserve

important graph properties (see Table 9.1).

9.3.2 Graph Augmentation

Data augmentation methods aim to improve the generalization and robustness of deep

neural networks, particularly in fields such as CV [115] and NLP [148]. In CV, methods

like image flipping, noise injection, and Cutout have been widely adopted to generate more

varied training datasets. Similarly, generative models like Variational Auto-Encoders

(VAEs) [71] and Generative Adversarial Networks (GANs) [52] can produce new samples

by learning the underlying data distribution. However, applying data augmentation

techniques to graph-structured data presents unique challenges due to the non-Euclidean

nature of graphs, where nodes are irregularly connected by edges [153, 41].

Recent works have focused on developing graph augmentation by revising the graph’s

structures and manipulating node features for node-level and graph-level prediction tasks

[126, 73]. Feature-based augmentation methods manipulate the node features to create

new training samples. Researchers have recently developed Mixup augmentation meth-

ods [126, 59] for graph augmentation, which generates augmented graphs by interpolat-

ing the features of node pairs or through adversarial learning. Nevertheless, the most

commonly used graph augmentation methods are based on randomly modifying graph

structures, where edges and nodes are randomly added or removed [106, 144, 155]. Such

random transformations may destroy the original topological structural characteristics

of the graph and alter label-related information, potentially reducing the effectiveness of

these augmentations for improving graph classification model performance [106].

Our approach of graph rewiring strategically improves the communication pathways

within a graph by adding edges to reduce bottlenecks: it is both local and global. This

results in a new, optimized graph structure that addresses the over-squashing issue and

serves as an augmented view of the graph. By using this rewired graph as an augmented

sample, we can increase the size and diversity of the training data, thereby enhancing

9.4. SPECTRAL GRAPH THEORY 129

the model’s robustness and generalization capabilities.

9.4 Spectral Graph Theory

In a graph G = (V,E) with N = |V | nodes and edges |E|, with E ⊆ V × V the ad-

jacency matrix A ∈ {0, 1}N×N is a square matrix where Aij = 1 if edge (i, j) ∈ E,

and 0 otherwise. The degree matrix D is a diagonal matrix with di = Dii representing

the degree of node i, which is the count of edges connected to i. Then, from A and

D we obtain the graph Laplacian L := D − A. The normalized Laplacian L is given

by L := I − D− 1
2AD− 1

2 , where I is the identity matrix. The eigenvalues of the Lapla-

cian and the normalized Laplacian offer insights into various structural aspects of the

graph, including connectivity, community structure, and information diffusion. Specifi-

cally, the spectrum of the normalized Laplacian L consists of non-negative real numbers

ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. Given the spectrum and the corresponding

eigenvectors ui ∈ RN satisfying Lui = λiui, the spectral decomposition of L is given by

L = Udiag(λ1, λ2, . . . , λn)UT =
∑

i λiuiu
T
i .

Spectral Graph Theory (SGT) [32] addresses the study of the normalized Laplacian’s

spectra and their eigenvectors. The most important of these vectors is v2 (the Fiedler

vector) the one associated with the spectral gap λ2 (which is positive if the graph is

connected). The gap is a fundamental quantity in SGT (e.g. it bounds the graph con-

nectivity and its inverse determines the mixing time of random walks). It is obtained as

follows:

λ2 = min
f⊥D1/21

E(f)∑
i∈V f

2
i di

= min
f

volG · E(f)∑
i,j(fi − fj)2didj

. (9.1)

where ⊥ stands for perpendicular, volG =
∑

i∈V di is the volume of the graph and E(f) :=∑
i∼j(fi − fj)2 is known as the Dirichlet energy of f : V → RN . Actually u2 = D1/2f .

Herein it is key to note that f ⊥ D1/21 where u1 = D1/21.

One key concern in this chapter is spectral clustering. It is well known [114][128] that

E(f)∑
i∈V f

2
i di
≤ Ncut(A,B) :=

cut(A,B)

volA
+

cut(A,B)

volA
, (9.2)

130 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

where V = A ∪ B, A ∩ B = ∅ is the optimal partition in terms of minimizing the

normalized cut Ncut(A,B), which is an NP-Hard problem. In general, if we pack the K

smallest eigenvectors of L in a N ×K matrix U, feeding a K-means clustering with the

rows of this matrix leads to partitioning the graph into K communities C1, C2, . . . , CK .

Interestingly, the squared distances between two rows are bounded as follows [56]:

∥∥∥∥∥Ui,1:K√
di
− Uj,1:K√

dj

∥∥∥∥∥
2

≤ max
M

NK · NCut(CM , CL̸=M) . (9.3)

Therefore, small distances between the rows in U are usually associated with nodes in

the same cluster and larger distances correspond to inter-cluster nodes.

9.5 Methodology

Despite the usefulness of SGT for providing a wide catalog of topologically meaningful

distances (both local and global) to rewire a graph, the computational cost of computing

the eigenvectors is O(N3). This is not feasible for large graphs. In addition, in some

tasks such as graph classification (see below), where several training graphs per class are

provided, SPG is limited. It cannot capture the typical eigenvectors of each class or find

a consensus eigenspace for all classes.

9.5.1 Inductive Spectral Theory

IST studies the expressiveness of the spectral elements of L (eigenfunctions, gaps and

distances) derived from

min
f⊥P

E(f)∑
i∈V fi(A)2di

+ Ltask . (9.4)

Firstly, E(f) :=
∑

i∼j[fi(A)−fj(A)]2 is a Dirichet energy where fi and fj are scalars, the

components of a learnable mapping f : A → RN . The purpose of f is to leverage high-

order (HO) similarities (common neighbors, see below) between a:i and aj:, the columns

in A of the nodes in V linked by the edges (i, j) ∈ E. Then, the eigenvectors f which are

the natural minimizers of the Dirichlet energies incorporate these similarities in a catalog

9.5. METHODOLOGY 131

/ Labeled nodes
Unlabeled nodes

Inductive Spectral Theory

Input Graph Inductive Spectral Embedding

Rewired Graph Distribution of Distances

Sampling from the distribution

8

4

307

8

4

20

21

5

10

Fig. 9.2: Visualization of the IST process for graph rewiring. The figure illustrates the trans-
formation from an input graph to a rewired graph through IST. It shows how labeled and unlabeled
nodes are mapped to an inductive spectral embedding, resulting in a distribution of distances.
The rewired graph is then created by sampling from this distribution, adding both local and
global edges based on the learned spectral properties. When applied to node classification, this
input graph induces over-squashing but this is avoided by clustering the node embeddings. Over-
smoothing is reduced by increasing E guided by Ltask.

of orthogonal functions with respect to an eigenspace P .

On the other hand, Ltask is the task-dependent classification loss. Node classification,

graph classification, and link prediction are downstream tasks where IST may leverage

partially-observed labels to find data-centered eigenvalues and eigenvectors.

IST is rooted in structural semi-supervised learning [119], but herein we incorporate the

recent trend in large graph mining where f(A) is an MLP [83]. Making this MLP reactive

to the task loss Ltask, i.e. minimizing E(f(A)) + Ltask, we transfer the training labels to

the learning of eigenvectors.

Common Neighbors. IST exploits the following observation. Given f(A) ∈ RN×K ,

with f(A) = σ(WA), and the learnable weight matrix W ∈ RK×N , the expansion

(WA)ip =
∑

p∈N(i) Wip means that if a node i has many neighbors p of a given community,

then they i and p belong to the same community and Wip will be large on average. This is

consistent with the friendship paradox (my friends have more friends than me). Therefore,

for the general model f(A) = MLPθ(A), the extension of Eq. 9.4 for computing all the

132 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

empirical eigenfunctions (EE) is

min
θ

Trace[f(A)TLf(A)] + Ltask s.t. f(A)f(A)T = I . (9.5)

We solve such a problem via SGD. Denoting a generic column of f(A), such as the Fiedler

vector f , we have characterized its structure in terms of the weights of the MLP. For a

single-layer MLP we prove that such a structure is dominated by the number of common

neighbors (Theorem 1 and its corollaries in the Appendix A). To give here an intuition

about this fact, note that fi = σ(Wi,:A) with σ = tanh for providing bipolar outputs.

Then the Dirichlet energy
∑

i∼j(gi−gj)2 of the respective logits gi := Wi:A, gj := Wj:A

is expanded as follows:

∑
i∼j

(gi − gj)2 =
∑
i∼j

[
∑

p∈N(i)

Wip −
∑

q∈N(j)

Wjq]
2 , (9.6)

where the weights corresponding to the common neighbors r ∈ N(p)∩N(q) are included

(if they do exist). Note that now we are comparing neighborhoods and their weights

instead of scalars as in
∑

i∼j(fi−fj)2 which is combinatorially richer. The role of common

neighbors allows us to study the particularities of trees vs graphs (with cycles).

Transductive/Inductive Power. Given that we learn a non-linear mapping MLPθ(A),

we can perform both transductive and inductive learning. For instance, when the task

is node classification we can either predict the labels of test nodes or analyze the ro-

bustness of the model under structural attacks. Link prediction is more inductive and

common-neighbors heuristics usually drives it. Finally, graph classification has been usu-

ally addressed via transductive methods, but in this chapter, we show how to provide

out-of-the-sample graphs via structural data augmentation.

Overall, the number of labeled samples needed to achieve a good generalization perfor-

mance depends on the degree distribution. We cover this issue in Theorem 2 and its

corollaries in the Appendix A. Again, to give an intuition, note that the denominator of

9.5. METHODOLOGY 133

Eq. 9.4 as per the logits gi can be expanded as follows:

∑
i∈V

g2i di =
∑
i∈V

[
∑

p∈N(i)

Wip]
2di =

∑
i∈V

W2
ip

∑
p∈N(i)

dp . (9.7)

Since the denominator is maximized, the magnitude of the weights increases proportion-

ally to
∑

p∈N(i) dp instead of di as in Eq. 9.4. This results in more separable weights thus

avoiding close-to-zero entries in the Fiedler vector whenever di is large enough. In gen-

eral, large degrees lead to a small number of labeled samples. In the Appendix, we will

also provide extensive experiments with different types of graphs (trees, SBMs, cycles,

etc).

9.5.2 Method: Graph Classification

Following IST, graph classification is addressed as follows.

1) Consensus EEs. Given a set of training samples T = {(Gi, li)} (graphs and labels),

we feed an MLP with the adjacencies {Ai} (padding ensures a common size) and labels

{li}: f1(A) = MLP1({Ai, li}) minimizes the loss Trace + Ltask in Eq. 9.5 and f1(A)

encodes a consensus eigenspace of K EEs. K is a hyperparameter.

2) Mapping. We train a second MLP, with f1(A) and the labels. Actually, we have

Z = Readout(MLP2(MLP1({Ai, li}))) , (9.8)

where the second MLP maps f1(A) with K eigenvectors to f2(A) with C (number of

classes) eigenvectors. Finally, Readout is a permutation-invariant operation that com-

bines the representations of the nodes (rows of f2(A)).

3) Nodal distances. Now, we freeze the weights of MLP1 and we feed it with the training

adjacencies {Ai}. Each of the predicted eigenspaces f̂(Ai) provides a distribution of

pairwise distances Di between the rows of the predicted eigenspace associated with the

nodes of Gi = (Vi, Ei).

4) Data augmentation. We augment the edges of each training graph Gi = (Vi, Ei) by

sampling Di for adding N/2 local edges, and N/2 global ones, where N is the common

134 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

padding size. We add a local edge if the distance between its nodes (i, j) is smaller or

equal to the median (see Figure 9.2). Otherwise, we have a global edge.

5) GNNs. We train the GNNs both with the original {Gi} and augmented {G̃i} graphs.

Then we perform the test and provide the accuracy. In graph classification, the label

transfer is not as obvious as in node classification. Note that the colored labels in the

input graph of Figure 9.2 are induced by the weights of the MLP when they react to

Ltask.

9.5.3 Computational Efficiency

The computational complexity of IST is primarily determined by the learning of eigen-

functions and the subsequent rewiring process. For a graph with N nodes and E edges,

the space complexity of our method is O(NK), where K is the number of learned eigen-

functions. The time complexity for computing the Dirichlet energy and task-specific loss

is O(EK + NK2), leveraging sparse matrix operations for efficiency. The edge addition

step, both local and global, has a complexity of O(N logN) due to the use of efficient

sampling techniques. Overall, IST’s computational cost scales favorably with graph size,

making it applicable to large-scale graph learning tasks. This efficiency is particularly

noteworthy when compared to traditional spectral methods that often require O(N3)

operations for eigendecomposition. Our approach thus offers a scalable alternative for

graph rewiring and data augmentation in the context of GNNs.

Table 9.2: Comparison of the proposed method and baselines. The bold numbers represent the
highest accuracy score, and OOR is referred to as out-of-resource.

Classification Methods Mutag BZR Mutagen PTCMM PROTEINS ENZYMES IMDB-B COLLAB

None GIN 76.02±0.03 79.45±0.01 79.59±0.03 62.05±0.01 69.23±0.01 30.25±0.01 67.12±0.01 71.77±0.04

Rewiring
SDRF [121] 78.10±0.02 80.20±0.01 79.75±0.03 59.08±0.01 70.31±0.01 31.30±0.02 67.10±0.01 73.20±0.04

FOSR [66] 74.62±0.02 79.50±0.01 79.10±0.03 60.45±0.01 72.41±0.08 24.10±0.01 66.30±0.09 73.01±0.04

GTR [19] 79.45±0.02 80.58±0.02 79.89±0.02 61.45±0.02 70.17±0.01 29.01±0.01 67.21±0.02 OOR

DiffWire [7] 75.21±0.02 78.34±0.01 79.09±0.02 62.17±0.02 69.25±0.01 28.03±0.01 68.30±0.03 73.78±0.04

BORF [93] 77.30±0.02 79.45±0.01 OOR 63.25±0.01 69.75±0.08 29.76±0.01 67.35±0.09 OOR

LASER [14] 72.95±0.02 78.58±0.01 61.48±0.01 59.25±0.02 63.77±0.19 20.73±0.08 69.07±0.09 72.50±0.04

Augmentation
DropEdge [106] 77.58±0.61 79.75±0.57 78.08±0.19 62.82±0.61 74.31±0.27 31.83±0.61 64.90±0.47 60.90±4.47

DropNode [144] 78.80±0.85 79.87±0.48 77.50±0.31 56.21±0.61 72.77±0.53 31.54±0.54 68.50±0.59 68.50±0.47

M-Evolve [155] 75.59±0.94 79.30±0.51 77.84±0.18 58.75±0.71 72.31±0.38 32.35±0.61 67.40±0.67 61.50±0.71

Gmixup [59] 78.10±0.65 80.89±0.42 78.08±0.64 62.30±0.68 65.81±2.13 30.66±4.39 68.10±1.25 73.10±0.59

Ours IST 81.20±0.02 81.02±0.01 80.69±0.03 66.01± 0.01 70.57±0.08 34.68±0.01 69.10±0.01 75.39±0.04

9.6. EXPERIMENTS 135

Table 9.3: Comparison of the proposed method and baselines. The bold numbers represent the
highest accuracy score.

GCN GIN

None SDRF FoSR BORF IST None SDRF FoSR BORF IST

Cora 86.7 ± 0.3 86.3 ± 0.3 85.9 ± 0.3 87.5 ± 0.2 88.1 ± 0.3 76.0 ± 0.6 74.9 ± 0.1 75.1 ± 0.8 78.4 ± 0.4 78.6 ± 0.3

Citeseer 72.3 ± 0.3 72.6 ± 0.3 72.3 ± 0.3 73.8 ± 0.2 74.1 ± 0.2 59.3 ± 0.9 60.3 ± 0.8 61.7 ± 0.7 63.1 ± 0.8 63.4 ± 0.4

Texas 44.2 ± 1.5 43.9 ± 1.6 46.0 ± 1.6 49.4 ± 1.2 52.4 ± 1.0 53.5 ± 3.1 50.3 ± 3.7 47.0 ± 3.7 63.1 ± 1.7 66.9 ± 1.3

Cornell 41.5 ± 1.8 42.2 ± 1.6 40.2 ± 1.6 50.8 ± 1.1 50.1 ± 0.9 36.5 ± 2.2 40.0 ± 2.1 35.6 ± 2.4 48.6 ± 1.2 48.4 ± 1.8

Wisconsin 44.6 ± 1.4 46.2 ± 1.2 48.3 ± 1.3 50.3 ± 0.9 51.1 ± 0.7 48.5 ± 2.2 48.8 ± 1.9 48.5 ± 2.1 54.9 ± 1.2 56.0 ± 1.1

Chameleon 59.2 ± 0.6 59.4 ± 0.5 59.3 ± 0.6 61.5 ± 0.4 62.0 ± 0.5 58.1 ± 2.1 58.4 ± 2.1 56.3 ± 2.2 65.3 ± 0.8 66.8 ± 1.3

9.6 Experiments

This section provides an empirical evaluation of IST’s effectiveness across various

tasks, such as node classification and graph classification, in comparison to other

rewiring techniques like curvature-based methods, spectral gap approaches, and

locality-aware strategies. The code used for these experiments can be found at

https://anonymous.4open.science/r/IST-24C6.

Datasets: We conduct experiments on a range of standard node and graph clas-

sification tasks, following the same methodology as BORF [93] to ensure a fair

comparison. For node classification, we report our findings using datasets such as Cora,

Citeseer [113], Texas, Cornell, Wisconsin [99], and Chameleon [108], comparing BORF

against both the baseline of no graph rewiring and two other rewiring techniques.

For graph classification, we evaluate well-established benchmarks like PROTEINS,

ENZYMES, COLLAB, MUTAG, and IMDB-BINARY [92], which are known for

requiring long-range interactions as discussed in [66]. Additionally, we incorporate three

more datasets—BZR, PTCMM, and MUTAGENICITY [155]—to further assess the

effectiveness of our approach, particularly in scenarios involving varied dataset sizes and

complexities. More detailed information about all the datasets used can be found in the

Appendix.

Baselines: For graph classification, we benchmark IST against several state-of-

the-art rewiring approaches. These include no graph rewiring as a baseline, SDRF [121],

https://anonymous.4open.science/r/IST-24C6

136 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

which leverages discrete Ricci curvature for graph rewiring, and BORF [93], another

curvature-based rewiring method. We also compare against FoSR [66], which optimizes

the spectral gap of the graph, and Locality-aware LASER [14], which focuses on

preserving local structure during rewiring. These comparisons aim to verify the efficiency

and effectiveness of our IST method across various graph structures. To further assess

the performance of IST in an augmentation setting for graph classification, we extend

our evaluation to include several widely used graph augmentation techniques. These

include DropEdge [106], which randomly removes a certain fraction of edges from the

input graph, and DropNode [144], which randomly removes nodes and their associated

edges. We also consider Mevolve [155], which generates new graphs through a graph

evolution process, and Gmixup [59], which creates new graphs by interpolating between

existing ones.

For node classification tasks, we specifically focus on rewiring methods that have proven

effective in this context. We compare IST with a baseline without rewiring, SDRF

[121], FoSR [66], and BORF [93]. These methods represent some of the few approaches

that have addressed node classification through graph rewiring, making them crucial

baselines for our evaluation. While many other methods exist in the state-of-the-art for

node classification, we specifically concentrate on those employing rewiring techniques

to maintain consistency with our approach.

Experiment setup: For our graph classification experiments, we implement each

augmentation technique as a preprocessing step on all graphs within the training

dataset. This process generates new graph structures that are then integrated into

the training set, forming the final dataset for model training. To ensure a fair and

consistent comparison across all baseline methods in graph classification, we employ two

distinct architectures: GCN and GIN. We maintain consistent hyperparameters across

all baselines for the GIN model, utilizing 64 hidden units, a dropout rate of 0.5, and 4

layers, aligning with established research practices.

Our training protocol for graph classification involves a learning rate of 0.001, weight de-

9.6. EXPERIMENTS 137

cay set at 0.00001, and a maximum of 1000 epochs, with early stopping implemented after

100 epochs of no improvement. We conduct 100 random trials to ensure the robustness

of our results in this task.

In contrast, for node classification experiments, we adhere to the experimental setup

proposed by BORF to maintain fairness in comparisons. This includes running each

experiment 10 times with a data split of 60% for training, 20% for validation, and 20%

for testing. Importantly, we refrain from hyperparameter tuning in node classification

tasks, instead using the conditions suggested by BORF across all methods, including our

proposed IST rewiring technique.

This comprehensive approach allows us to rigorously evaluate the performance of our

IST rewiring method against existing techniques across different graph neural network

architectures and tasks, ensuring a balanced and equitable comparison in both graph

classification and node classification scenarios.

Results: Our comprehensive evaluation on graph classification tasks, as illus-

trated in Table 9.2, demonstrates the exceptional efficacy of our proposed method. IST

consistently achieves superior accuracy compared to existing rewiring and augmenta-

tion techniques across a diverse array of datasets encompassing molecular structures,

bioinformatics, and social networks. The performance gains are particularly notable,

with IST yielding an average improvement of 2.0% across most datasets, with the

sole exception being the proteins dataset. The success of IST can be attributed to its

nuanced approach to edge addition. Unlike methods such as SDRF, which rely solely on

local curvature and often lead to suboptimal modifications, or FoSR and GTR, which

may add edges indiscriminately based on global connectivity, IST employs a balanced

strategy. By considering local and global graph properties, IST introduces linear edges

that enhance structural cohesion and optimize information flow throughout the graph.

Extending our analysis to node classification tasks, we observe similarly impressive per-

formance from IST. Table 9.3 presents the results across various benchmark datasets,

comparing IST against other prominent rewiring methods such as SDRF, FoSR, and

138 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

BORF, as well as a baseline without rewiring. IST demonstrates remarkable consistency,

achieving the highest accuracy scores across all evaluated datasets for both GCN and GIN

architectures. Notably, on the Cora dataset, IST achieves accuracies of 88.1% and 78.6%

for GCN and GIN respectively, surpassing the next best method by significant margins.

Similar trends are observed for other datasets, with IST showing particular strength on

challenging datasets like Texas and Wisconsin. These results underscore IST’s versatility

and effectiveness in enhancing node representations, facilitating more accurate classifica-

tions even in complex network structures. The method’s ability to improve performance

across different graph neural network architectures further highlights its robustness and

broad applicability in node classification tasks.

Ablation Study: To dissect the contributions of various components within IST, we

conducted an ablation study across four representative graph classification datasets of

varying sizes. We examined the impact of local edge addition (IST w/o Local), global

edge addition (IST w/o Global), augmentation (IST w/o augmentation), and label in-

formation in eigenfunctions (IST w/o Label). The results, presented in Table 9.4, offer

valuable insights into the method’s efficacy. Our findings reveal that the optimal edge

addition strategy varies depending on the dataset characteristics. For instance, local edge

addition within communities proved most beneficial for Enzymes and PTCMM datasets,

while global edge addition for enhanced long-range connections was superior for Mutag

and IMDBB. This variability underscores the importance of IST’s adaptive approach

in addressing dataset-specific structural needs. Furthermore, the augmentation compo-

nent of IST demonstrated significant performance enhancements, particularly on smaller

datasets such as Mutag, Enzymes, and PTCMM. This observation highlights the crucial

role of IST in mitigating over-squashing effects, thereby improving the overall perfor-

mance of GNN models across diverse graph structures.

9.7. CONCLUSION 139

Table 9.4: Ablation studies about different IST components.

Architecture Mutag ENZYMES PTCMM IMDB-B

IST 81.20 ±0.02 34.68±0.01 66.01 ± 0.01 69.10± 0.01

IST w/o Local 80.45±0.02 33.76±0.01 64.64±0.02 68.52±0.01

IST w/o Global 80.07±0.02 34.21±0.01 65.64±0.01 68.38±0.01

IST w/o Augmen 77.39±0.02 33.03 ±0.01 63.22±0.01 69.06±0.01

IST w/o Label 80.85±0.02 34.11±0.01 64.94± 0.02 69.03±0.02

9.7 Conclusion

In this chapter, we have introduced Inductive Spectral Theory (IST) as a novel approach

to address the limitations of traditional graph rewiring techniques in GNNs. By making

spectral quantities and functions learnable (e.g., eigenfunctions), IST provides a data-

centered framework that adapts to the specific requirements of node, edge, and graph-

level tasks. Our approach mitigates common issues such as over-squashing and over-

smoothing by balancing long-range connectivity and locality and enhances scalability and

applicability in diverse contexts, including graph classification. Furthermore, IST offers a

principled methodology for graph data augmentation, pushing the boundaries of current

graph rewiring techniques. Our results demonstrate that IST advances state-of-the-art

graph rewiring and establishes a robust foundation for future research in graph-based

learning tasks.

140 CHAPTER 9. SPECTRAL REWIRING: LOCAL-TO-GLOBAL ADAPTATIONS FOR GNNS

Chapter 10

Conclusion and Discussion

“There is no real ending. It’s just the place where you stop the story.”

— Frank Herbert

10.1 Summary of Key Findings

This thesis presented numerous contributions to advance the field of graph representation

learning by addressing the key challenges outlined in Chapter 1’s problem statement.

In Chapter 3, we introduced a Quasi-Clique pooling method and showed that it overcomes

clique pooling’s limitations and outperforms several competitive baselines on graph clas-

sification tasks.

In Chapter 4, we developed a novel DSMVPool inspired by the dominant set theory.

This method used edge weights to extract all possible clusters within a graph without

relying on a predefined cluster parameter. We also designed an attention-based fusion-

view convolution layer that integrated different sources of information, including local

topology, coarser graph structure, and node features, to improve the graph representa-

tions. DSMVPool showed state-of-the-art performance in their respective category of the

taxonomy.

Chapter 5 introduced a novel HGLA-Pool method to rank and select the most important

cliques based on graph structural information and node features. We also developed a

rule-based method to handle overlapping nodes between cliques of the same size. Addi-

142 CHAPTER 10. CONCLUSION AND DISCUSSION

tionally, a multi-attention LocalPool is developed to capture local node properties.

Chapters 6 and 7 focused on graph augmentation methods that generate weak labelled

data samples to improve the generalization and robustness of the GNN model and han-

dle over-smoothing issues. Chapter 6 addressed the over-smoothing issues in GNNs by

exploring residual skip connections, Mixup augmentation methods, and attention mech-

anisms. This led to the design of the RAA methodology, which demonstrated superior

performance on node-level prediction tasks. Specifically, in Chapter 7, we introduced the

NodeDropping Augmentation method, which selectively removes nodes with lower impor-

tance based on their degree while maintaining key topological structures. Additionally,

in the case of isolated nodes, we developed a structure learning method to reconnect

these isolated nodes by learning attention-based relationships between nodes, resulting

in state-of-the-art performance.

In Chapter 8, we improved the message passing mechanism of GNNs by incorporating

valuable insights from community detection algorithms. This addressed the heterophily

issue in graphs (dissimilar labels among connected nodes) and enhanced the performance

on node classification tasks. Finally, in chapter 9, we proposed a novel IST based graph

rewiring method to improve communication within graphs and generate a new optimized

graph. Specifically, the IST method learns eigenfunctions that are reactive to graph

labels and adds a linear number of edges locally to encourage community structures and

globally to facilitate long-range connections. Additionally, we utilize the new optimized

graph samples as augmented graphs to increase the training size of the dataset, thereby

improving the generalization and robustness of the GNN.

10.2 Future Directions

The research work in this thesis covered several different topics of graph representation

learning and uncovered some interesting directions for future research work.

The novel graph pooling methods proposed in this thesis have shown notable effectiveness,

specifically in their ability to leverage clique structures, extract overlapping nodes between

10.2. FUTURE DIRECTIONS 143

cliques, utilize dominant sets clustering, and integrate local and global topology structures

with node feature information during pooling operation. These contributions underscore

these elements’ critical role in enhancing the representational power of GNNs. While

our experimental results provide valuable guidance on selecting suitable pooling meth-

ods, they also show an exciting direction for future research: exploring adaptive pooling

strategies capable of extracting and utilizing graph structures beyond the cliques. Addi-

tionally, the possible applications of our graph pooling methods extend into areas such as

protein structure analysis. By applying these methods, researchers could more accurately

identify key regions within proteins, facilitating the design of drugs that bind specifically

to targeted areas. Furthermore, Our Global Local Graph Pooling method, which lever-

ages attention mechanisms within GNNs, has demonstrated success in identifying and

ranking significant clique structures within graphs. This promising capability suggests

a potential application in conjunction with Large Language Models (LLMs), where our

pooling method could be employed to rank documents or queries more effectively [88]. By

integrating our pooling approach with GNN-enhanced Retrieval-Augmented Generation

(RAG-GNN) frameworks, we could significantly improve the accuracy and relevance of

responses generated by LLMs, thereby enhancing their overall performance in information

retrieval and query-answering tasks.

Our pipeline for augmentation using node degree and attention in GNNs has demon-

strated promising results across various graph classification tasks, including those in social

networks, chemistry, and biology, particularly in scenarios with limited labelled data. Our

results are encouraging that further research is necessary to validate the broader applica-

bility and effectiveness of these augmentation methods. Additionally, while our current

augmentation methods have been tailored to specific datasets, future work could focus

on developing adaptive or automated augmentation techniques that generalize across

different domains, reducing the need for manual adjustments.

Finally, our IST-based graph rewiring method has shown significant potential to improve

communication within graphs and address the over-squashing issue in GNNs. While our

rewiring method has focused on specific graph types, future studies could explore it across

144 CHAPTER 10. CONCLUSION AND DISCUSSION

various graph domains, including heterogeneous and multi-modal graphs. We can extend

this approach to a wide range of real-world applications, such as biomedical and genomics

networks, where optimizing long-range connections and community structures can assist

in identifying functional modules and disease pathways [134, 149, 80]. Additionally, its

applicability can extend to transportation and infrastructure networks, optimizing routes

and improving network resilience, as well as telecommunications and sensor networks,

where enhanced graph communication can lead to better signal propagation and data

reliability [134].

10.3 Final Remarks

This thesis set out to enhance the capabilities of graph learning by designing advanced

graph representation learning approaches, such as graph pooling, community-based mes-

sage passing, augmentations, and graph rewiring. Even though our contributions rep-

resent just a fraction of the extensive field of graph representation learning, we believe

they reflect the evolving landscape of GNNs and underscore the importance of continual

innovation in understanding complex graph-structured data.

The diverse scope of this research highlights the depth and expansive landscape of graph

representation learning, and we hope it will encourage the scientific community to develop

innovative artificial intelligence solutions for real-world problems.

Appendix A

Theoretical and Experimental

details for Spectral Rewiring

A.1 Summary of Results

The results below explore the expressive power of the learnable weights w. Each compo-

nent of the Fiedler vector f is encoded as fi =< w, a:i >=
∑

p∈N(i) wp, i.e. a projection

of the corresponding column in the adjacency matrix (permutation-invariant).

Theorem 1 shows that the Fiedler vector f and, consequently, the spectral gap λ2

can be expressed in terms of common neighbors.

Corollary 1 shows that the denser the graph the closer the learnable weights w to

the Fiedler vector provided by the standard Spectral Graph Theory (SGT). This is

enabled by the large amount of common neighbors arising in dense graphs.

Corollary 2 reveals that graph cuts are relaxed in IST with respect to their coun-

terparts in SGT. This is due to the second-order constraints (neighbor of neighbor)

imposed on the weights.

Corollary 3. Notable nodes tend to have larger components in terms of their

magnitude w2
i .

146APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

Corollary 4. Extremal nodes in paths or leaves in trees (unit degree) tend to have

small w2
i .

Corollary 5. However, when these extremal nodes and leaves are linked to preced-

ing nodes in the structure (path or tree) their weight magnitude becomes similar

to that of the nodes in the same loop. In other words, loops smooth magnitudes.

Lemma 1 shows that the weight vector must be orthogonal to the vector of local

volumes: w ⊥ dN . This explains the usual condition f ⊥ D1. However, the

new condition has deeper implications since local volumes are typically larger than

individual degrees. This also explains cut relaxation with respect SGT.

Lemma 2 adapts the Harnack equality to explain label diffusion. In other words,

the Fiedler vector is a harmonic function (the value of a component is the neigh-

boring average). This results in weights and labels being related by the inverse of

the degree.

Theorem 2 Leverages Lemma 2 to show that label diffusion leads to uncertainty

(components fi ≈ 0) as the unlabeled node is far from the labeled one in terms of

shortest paths.

Corollary 6 is a ”positive” version of Theorem 2: large degrees favor label propaga-

tion. Therefore, there is a trade-off between small degrees which limit uncertainty,

and large degrees which favor label propagation. In other words, the degree distri-

bution drives label propagation.

Corollary 7 leverages Lemma 2 to show the need for both positive and negative

labels. In other words, in the absence of negative labels, the available information

on positive labels overrides the min-cut principles of standard SGT in most of cases.

A.2. RESULTS 147

A.2 Results

Theorem A.2.1. For a linear mapping fi =< w, a:i >, where a:i is the i−th column of

A and w ∈ RN is a learnable vector, the IST spectral gap λ2 is dominated by the maximal

number of common neighbors.

Proof. Following Chung1, the spectral gap λ2 is given by

λ2 = min
f⊥D1

∑
i∼j(fi − fj)2∑

i∈V f
2
i di

, (A.1)

where di denotes the degree of node i. From the fact that

fi =< w, a:i >=
∑
p∼i

wp (A.2)

we obtain ∑
i∼j

(fi − fj)2 =
∑
i∼j

[
∑

p∈N(i)

wp −
∑

q∈N(j)

wq]
2 . (A.3)

Then, we proceed to rewrite the denominator as

∑
i∈V

f 2
i di =

∑
i∈V

w2
i

∑
p∈N(i)

dp (A.4)

Then,

λ2 = min
f⊥D1

=

∑
i∼j[
∑

p∈N(i) wp −
∑

q∈N(j) wq]
2∑

i∈V w2
i

∑
p∈N(i) dp

(A.5)

which uncovers the second-order constraints on the components wi leading to the Fiedler

vector f . Then, expanding the numerator, the structure of each term i ∼ j is given by

∑
i∼j

(fi − fj)2 = [
∑
U(p)

wp −
∑
U(q)

wq + (wj −wi)]
2 (A.6)

Where U(p) = {p ∈ N(i), p ̸= j, p ̸∈ CNij} and U(q) = {q ∈ N(j), q ̸= i, q ̸∈ CNij},

where CNij is the set of common neighbors of nodes i and j. As a result, the existence

of common neighbors determines the structure of the IST Fiedler vector.

1Fan R.K. Chung: Spectral Graph Theory, AMS, 1994.

148APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

Corollary A.2.1.1. For the complete graph (clique) KN , with N > 2, the IST Fiedler

vector is coincident with that of the standard Spectral Theory and it is mirrored by the

optimal weights w.

Proof. For KN every node has N − 1 neighbors and N − 2 common neighbors for each

edge i ∼ j. As a result, in Eq. A.6 we have that U(p) = U(q) = ∅ for all edges.

λ2 = min
f⊥D1

=

∑
i∼j(wi −wj)

2∑
i∈V w2

i

∑
p∈N(i) dp

. (A.7)

Since in KN any node i is linked with any other p ̸= i, we have

∑
p∈N(i)

dp =
∑
p∈V

dp = volG , (A.8)

which is a constant.

Therefore, the IST Fiedler’s vector and value for KN are almost equal to those provided

by the standard Spectral Theory:

λ2 = min
w⊥D1

∑
i∼j(wi −wj)

2∑
i∈V w2

i

. (A.9)

where volG is the volume of the graph (sum of degrees). In other words, for KN , the

learnable weights wi mirror the Fiedler vector (they can be interpreted in this way).

Corollary A.2.1.2. The Barbell graph B2N of 2N nodes, is formed by linking two cliques

of N nodes each by a unique link which is viewed as a relaxed cut in IST.

Proof. Given the link i′ ∼ j′ the edge that links the two cliques. Consider i ∼ j and

internal edge Eint in any of the two cliques if j ̸= i′ (left clique) or j ̸= j′ (right clique).

Then i ∼ i′ and i ∼ j′ are called external edges Eext.

Now, leveraging again Eq. A.6 in Theorem A.2.1 we have that for internal edges i ∼ j

the corresponding term in the Fiedler equation is expanded as follows:

(fi − fj)2 = (wj −wi)
2 . (A.10)

A.2. RESULTS 149

However, for external edges, j′ and i′ are reachable from their opposite cliques. Then,

defining ∆wi := wi′ −wi we have

(fi − fi′)2 = [∆wi −wj′]
2 . (A.11)

and similarly

(fi − fj′)2 = [wj′ −∆wi]
2 . (A.12)

Then, we expand
∑

i∼j(fi − fj)2 as follows:

∑
i∼j∈Eint

(wi −wj)
2 + (wi′ −wj′)

2 +
∑

i∼j∈Eext

(∆wi −wj′)
2 . (A.13)

Each clique has N(N − 1)/2 edges, half internal and half external. therefore, we have

N(N − 1)/2 internal edges and N(N − 1)/2 external. Internal edges and the linking one

behave as in the standard theory. However, the term corresponding to external edges

includes the reaching of i′ and j′ from opposite cliques. This enforces the minimization

of (∆wi−wj′)
2 = (wi′ −wi−wj′)

2 which makes i close to i′ (for i in the left clique) and

close to j′ (for i in the right one).

As per the numerator of the Fiedler equation, we have that the degree of all nodes except

i′ and j′ is di = N − 1, whereas di′ = dj′ = N . Then, the denominator becomes

∑
i ̸=i′,i ̸=j′

2(N − 1)2w2
i +N2w2

i′ +N2w2
j′ , (A.14)

where all the magnitudes are O(N2) and the numerator dominates the minimization.

Corollary A.2.1.3. For the star graph SN with a central node i0 linked to N outer nodes

j not linked between them, then w2
i0
> w2

j ∀j ̸= i0.

Proof. Instantiating Eq. A.5 for this graph and considering that the peripheral nodes

have unit degree, we obtain

λ2 = min
f⊥D1

∑
i0∼j(wj −Nwi0)

2∑
j ̸=i0

w2
j +Nw2

i0

(A.15)

150APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

As we must maximize the denominator, the weight of the central node is larger than that

of the peripheral ones.

Corollary A.2.1.4. Path graph PN of N nodes. Given the sorted nodes i1, i2, . . . , iN ,

for 1 < k < N we define the increments ∆wk := (wik −wik+1
). Then wi1 < wik , k > 1.

Proof. Instantiating Eq. A.5 and isolating terms, we discover that w2
i1

must be minimal:

λ2 = min
f⊥D1

w2
i1

+
∑

ik∼ik+1
(∆wk + ∆wk+1)

2 + w2
iN−2

w2
i1

+
∑

1<ik<N 2w2
ik

+ w2
iN

. (A.16)

Corollary A.2.1.5. Cycle graph CN . For 1 ≤ k ≤ N we define the increments ∆wk :=

(wik −w(ik+1 mod N)). Then all w2
i have a similar magnitude.

Proof. Now the last node wiN is linked with the first wi1 and all the nodes have degree

2. Then

λ2 = min
f⊥D1

∑
ik∼ik+1

(∆wk + ∆wk+1)
2∑

i∈V 2w2
i

. (A.17)

Lemma 1. In IST, the condition f ⊥ D1 is rewritten as w ⊥ dN , where dN(i) :=∑
p∈N(i) dp is the local volume of i ∈ V excluding di.

Proof. The condition f ⊥ D1 (Fiedler vector must be orthogonal to the degree vector)

means
∑

i∈V fidi = 0. Then, by rewriting the denominator in the spectral gap (see

Theorem A.2.1) we have

∑
i∈V

fidi =
∑
i∈V

[
∑

p∈N(i)

wi]di

=
∑
i∈V

wi

∑
p∈N(i)

dp

=
∑
i∈V

widN(i) = 0 . (A.18)

A.2. RESULTS 151

Therefore, w ⊥ dN and λ2 is rewritten as follows:

λ2 = min
w⊥dN

∑
i∼j[
∑

p∈N(i) wp −
∑

q∈N(j) wq]
2∑

i∈V w2
idN(i)

. (A.19)

As a result, the decision boundary provided by w must be orthogonal to the local volume

not to individual degrees.

Lemma 2. The IST Harnack equality shows a principle for label propagation relying on

weight neighborhoods.

Proof. The Harnack equality shows that f is Harmonic, i.e. given λ2, we have that fi

satisfies

1

di

∑
j∈N(i)

(fi − fj) = λ2fi . (A.20)

Then, each component fi of the Fiedler vector is defined (up to the scale given by λ2) as

the average discrepancies between its neighbors.

Working on the above equation we obtain

fi
di
−
∑

j∈N(i) fj

di
= λ2fi

fi
di
− λ2fi =

∑
j∈N(i) fj

di

fi(1− λ2)di =
∑

j∈N(i)

fi

fi =

∑
j∈N(i) fj

(1− λ2)di
(A.21)

A straightforward translation to learnable weights yields

∑
p∈N(i)

wp =

∑
p∈N(i)

∑
q∈N(p) wq

(1− λ2)dp
(A.22)

Now, suppose that fi = li, i ∈ V where li ∈ {−1, 1} is a label. Then, if all the neighbors

q ∈ N(p) but i are labeled (we denote it by li = 0) we have

∑
p∈N(i)

wp =

∑
q∈N(p),p∈N(i) lq

(1− λ2)di
. (A.23)

152APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

Therefore, each label has a fractional contribution to the weights. This is the neural

version of Laplacian learning.

Theorem A.2.2. Data labels lead to optimal partitions, but their transductive power

decays with the shortest-path (SP) distance between labeled and unlabeled nodes.

Proof. Suppose that fi = li, i ∈ V where li ∈ {−1, 1} is a label. Let P = {x0 =

i, x1, . . . , xN = j} be the shortest path of length L between i and j. From Lemma 2,

Eq. A.21 results in

fx1 =

∑
p∈N(x1)

lp

(1− λ2)dx1

(A.24)

If all the nodes k ̸= i are unlabeled (lk = 0, which indicates maximal uncertainty in the

Fiedler partitioning), then we have the succession

fx1 =
1

(1− λ2)dx1

· li

fx2 =
l2i

(1− λ2)2dx2dx1

...

fj =
lLi

(1− λ2)L
∏L

i=1 dxi

(A.25)

which results in fj → 0 for a moderate L even for a small degree (for instance degree 2

in a Path graph).

Translating the succession in Eq. A.25 to the weights notation, we skip x1 and get the

label of x0 when visiting x2 (second-order neighbor). Then we have

∑
q∈N(j)

wq =
lN−1
i

(1− λ2)N−1
∏N

i=2 dxi

, (A.26)

with similar results.

Corollary A.2.2.1. The injection of a label l at level r may relax the decay if it is

compatible with li (same sign) or enforce it if it is not compatible.

A.3. PRACTICAL FINDINGS 153

Proof. The status of a label at level r can be modified by a single ”informed” adjacent

node:

fxr =
lri + l

(1− λ2)r
∏r

i=1 dxi

. (A.27)

Corollary A.2.2.2. In general, we need both positive and negative labels to induce con-

sistent partitions in the IST Fiedler vector.

Proof. At this point, it is interesting to leverage Lemma 1 which states that the weights

are orthogonal to local volumes, i.e.

∑
i∈V

widN(i) = 0 (A.28)

Since, we have also w ̸= 0, at least one weight is negative.

However, if all our labels are positive, these negative weights come from flipping the sign

of small labels of distant nodes or of close nodes with a very high degree, which results

in uncertainty fi ≈ 0.

An exception to this rule is the star graph SN where the largest magnitude wi is assigned

to the central node. In this case, a single positive label is enough.

A.3 Practical Findings

The above results emerge from a blend of classical SGT and experimentation. Herein,

we summarize our experiments when trying to set the minimum number of labels needed

to provide full accuracy in several prototypical graphs.

Barbell graph B2N links two cliques of size N with a single edge. Minimal labeling

puts positive and negative edges at the extremes of the cutting edge. Local high density

(large degree) in the clique’s block label propagation but small SPs (unit length) make

the difference.

When modifying the Barbell graph so that one community is ”absorbed” by the other,

we need only two more labels. Again, the unit length of SPs makes it work.

154APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

Path Graph PN suffers from label uncertainty for large values of N. We start by labeling

the extremes of the central edge in the path as (−1,+1). This is a good heuristic to set

a ”polarized edge”: evaluate how powerful it is in terms of minimizing the NCut of the

induced partition.

The central polarized edge at position O(N/2) bisects the graph in two halves and de-

pending on N further labels are needed to bisect each half at positions O(N/4) and

O(3N/4). In addition, two more labels are needed at the two extremes of the path.

Cycle Graph CN behavior is similar to PN with the ”polarized edge” at O(N/2). nodes

N and 1. Adding labels at O(N/4) and O(3N/4) we reach an accuracy of 92.5%.

Star Graph. In SN , where half of the peripheral nodes and the central one belong to

the same class, a single label placed at the central node yields full accuracy.

Balanced Tree. A balanced tree BR,T with branching factor R > 1 and T levels has

N = RT − 1 nodes where RT−1 are leaves (with unit degree) and the remaining interior

nodes have degree R + 1). For R = 2 (binary) we have adopted the following labeling

strategy: the root of each of the subtrees is labeled with opposite signs., and the root of

the full tree (belonging to one of the classes) is not labeled. For T = 2 levels, we achieve

an accuracy of 89%: a single subtree including leaves is misclassified. If in addition,

we label correctly the first level of the subtrees we have full accuracy. This graph is

interesting because it exemplifies the over-squashing issue.

SBMs. Stochastic Block Models, with probability p = 0.75 of intra-cluster linkage and

probability q = 0.25 of inter-cluster linkage. This is a hard case where we want to test

the IST cut relaxation. Having O(N/3) samples (half in each cluster) we only achieve an

accuracy of 50%. Setting now p = 0.80 and q = 0.20 we peak an accuracy of 90% with

O(2N/3) labels.

A.4. DATASET ANALYSIS AND EXPERIMENTAL SETUP 155

A.4 Dataset Analysis and Experimental Setup

A.4.1 Dataset Statistics

We present a comprehensive overview of the datasets utilized in our experiments, en-

compassing both node classification and graph classification tasks. Tables A.1 and A.2

provide detailed statistics for these datasets.

Table A.1: Statistics of node classification datasets.

Cornell Texas Wisconsin Cora Citeseer Chameleon

#NODES 140 135 184 2485 2120 832

#EDGES 219 251 362 5069 3679 12355

#FEATURES 1703 1703 1703 1433 3703 2323

#CLASSES 5 5 5 7 6 5

DIRECTED TRUE TRUE TRUE FALSE FALSE TRUE

HOMOPHILY 0.11 0.30 0.21 0.81 0.74 0.23

AVG DEGREE 1.77 1.62 2.05 3.89 2.73 15.85

DENSITY 0.009 0.008 0.008 0.014 0.008 0.007

Table A.2: Characteristics and Statistics of eight graph classification datasets.

Classification Datasets #Graphs Avg Nodes Avg Edges Classes

Biological
PROTEINS 1,113 39.06 72.82 2

ENZYMES 600 32.63 62.14 6

Chemical

MUTAGENICITY 4,337 30.32 30.77 2

MUTAG 188 17.93 19.79 2

BZR 405 35.75 38.36 2

PTCMM 336 13.97 14.32 2

Social
Networks

COLLAB 5000 74.49 2457.78 3

IMDB-BINARY 1000 19.77 96.53 2

For node classification datasets (Table A.1), we report additional metrics such as ho-

mophily, average degree, and density. These metrics provide insights into the structural

properties of the networks. Homophily indicates the tendency of nodes to connect with

156APPENDIX A. THEORETICAL AND EXPERIMENTAL DETAILS FOR SPECTRAL REWIRING

others of the same class, average degree shows the typical number of connections per

node, and density reflects the overall connectedness of the graph.

Graph classification datasets (Table A.2) are categorized into biological, chemical, and

social network domains. We present the total number of graphs, the average number of

nodes and edges per graph, and the number of classes for each dataset.

A.4.2 Experimental Environment

All experiments were conducted using the hardware specifications outlined in Table A.3.

Concerning software, we have used PyTorch Geometric (PyG), NetworkX and scikit learn

as main Python libraries.

Table A.3: Hardware specifications for experimental setup.

Component Specification

CPU AMD 7742 64-Core @ 2.25 GHz

GPU NVIDIA A100 Tensor Core (40GB VRAM)

RAM 1024GB DDR4

Storage 2TB NVMe SSD

Operating System Ubuntu 20.04.5 LTS

Bibliography

[1] M. A. Abbas, W. Ali, F. Smarandache, S. S. Alshamrani, M. A. Raza, A. Al-

shehri, and M. Ali. Residual Attention Augmentation Graph Neural Network for

Improved Node Classification. Engineering, Technology & Applied Science Re-

search, (ETASR), 2024. URL https://etasr.com/index.php/ETASR/articl

e/view/6844/3504.

[2] R. Abboud, R. Dimitrov, and I. I. Ceylan. Shortest path networks for graph prop-

erty prediction. In Proceedings of the 1st Learning on Graphs Conference, pages 1–5.

PMLR, 2022. URL https://proceedings.mlr.press/v198/abboud22a.html.

[3] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyun-

yan, G. Ver Steeg, and A. Galstyan. Mixhop: Higher-order graph convolutional

architectures via sparsified neighborhood mixing. In international conference on

machine learning, 2019. URL https://arxiv.org/abs/1905.00067.

[4] W. Ali, S. Vascon, T. Stadelmann, and M. Pelillo. Quasi-cliquepool: Hierarchical

graph pooling for graph classification. In Proceedings of the 38th ACM/SIGAPP

Symposium on Applied Computing, pages 544–552, 2023. URL https://dl.acm.o

rg/doi/abs/10.1145/3555776.3578600.

[5] W. Ali, S. Vascon, T. Stadelmann, and M. Pelillo. Hierarchical glocal attention

pooling for graph classification. Pattern Recognition Letters, 2024. URL https:

//www.sciencedirect.com/science/article/pii/S016786552400271X?dgcid=

author.

[6] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical

https://etasr.com/index.php/ETASR/article/view/6844/3504
https://etasr.com/index.php/ETASR/article/view/6844/3504
https://proceedings.mlr.press/v198/abboud22a.html
https://arxiv.org/abs/1905.00067
https://dl.acm.org/doi/abs/10.1145/3555776.3578600
https://dl.acm.org/doi/abs/10.1145/3555776.3578600
https://www.sciencedirect.com/science/article/pii/S016786552400271X?dgcid=author
https://www.sciencedirect.com/science/article/pii/S016786552400271X?dgcid=author
https://www.sciencedirect.com/science/article/pii/S016786552400271X?dgcid=author

158 BIBLIOGRAPHY

implications. arXiv preprint arXiv:2006.05205, 2020. URL https://arxiv.org/

abs/2006.05205.

[7] A. Arnaiz-Rodŕıguez, A. Begga, F. Escolano, and N. Oliver. Diffwire: Inductive

graph rewiring via the lov\’asz bound. arXiv preprint arXiv:2206.07369, 2022.

URL https://arxiv.org/abs/2206.07369.

[8] P. H. Avelar, A. R. Tavares, M. Gori, and L. C. Lamb. Discrete and continuous

deep residual learning over graphs. arXiv preprint arXiv:1911.09554, 2019. URL

https://arxiv.org/abs/1911.09554.

[9] D. Bacciu, A. Conte, R. Grossi, F. Landolfi, and A. Marino. K-plex cover pooling

for graph neural networks. Data Mining and Knowledge Discovery, 35(5):2200–

2220, 2021. URL https://link.springer.com/article/10.1007/s10618-021

-00779-z.

[10] D. Bacciu, A. Conte, and F. Landolfi. Graph pooling with maximum-weight k-

independent sets. In Thirty-Seventh AAAI Conference on Artificial Intelligence,

2023. URL https://deepai.org/publication/graph-pooling-with-maximum

-weight-k-independent-sets.

[11] J. Baek, M. Kang, and S. J. Hwang. Accurate learning of graph representations with

graph multiset pooling. In International Conference on Learning Representations,

2021. URL https://openreview.net/forum?id=JHcqXGaqiGn.

[12] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang. Simgnn: A neural network

approach to fast graph similarity computation. In Proceedings of the twelfth ACM

international conference on web search and data mining, pages 384–392. WSDM,

2019. URL https://dl.acm.org/doi/10.1145/3289600.3290967.

[13] P. K. Banerjee, K. Karhadkar, Y. Wang, U. Alon, and G. Montúfar. Oversquashing

in gnns through the lens of information contraction and graph expansion. In 58th

Annual Allerton Conference on Communication, Control, and Computing, pages 1–

8. IEEE, 2022. URL https://doi.org/10.1109/Allerton49937.2022.9929363.

https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2206.07369
https://arxiv.org/abs/1911.09554
https://link.springer.com/article/10.1007/s10618-021-00779-z
https://link.springer.com/article/10.1007/s10618-021-00779-z
https://deepai.org/publication/graph-pooling-with-maximum-weight-k-independent-sets
https://deepai.org/publication/graph-pooling-with-maximum-weight-k-independent-sets
https://openreview.net/forum?id=JHcqXGaqiGn
https://dl.acm.org/doi/10.1145/3289600.3290967
https://doi.org/10.1109/Allerton49937.2022.9929363

BIBLIOGRAPHY 159

[14] F. Barbero, A. Velingker, A. Saberi, M. Bronstein, and F. Di Giovanni. Locality-

aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023. URL https:

//arxiv.org/abs/2310.01668.

[15] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Re-

lational inductive biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261, 2018. URL https://arxiv.org/abs/1806.01261.

[16] A. Begga, W. Ali, G. Niculescu, F. Escolano, T. Stadelmann, and M. Pelillo.

Community-hop: Enhancing node classification through community preference. In

Community-Hop: Enhancing Node Classification through Community Preference.

Joint IAPR International Workshops on Statistical Techniques in Pattern, 2024.

URL https://iris.unive.it/handle/10278/5072541.

[17] F. M. Bianchi, D. Grattarola, and C. Alippi. Mincut pooling in graph neural

networks. arXiv, abs/1907.00481, 2019. URL https://arxiv.org/abs/1907.004

81.

[18] F. M. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neu-

ral networks for graph pooling. In International conference on machine learning,

ICML, pages 874–883. PMLR, 2020. URL https://arxiv.org/abs/1907.00481.

[19] M. Black, Z. Wan, A. Nayyeri, and Y. Wang. Understanding oversquashing in gnns

through the lens of effective resistance. In International Conference on Machine

Learning, ICML, pages 2528–2547. PMLR, 2023. URL https://proceedings.ml

r.press/v202/black23a.html.

[20] J. Bober, A. Monod, E. Saucan, and K. N. Webster. Rewiring networks for graph

neural network training using discrete geometry. In International Conference on

Complex Networks and Their Applications, pages 225–236. Springer, 2023. URL

https://link.springer.com/chapter/10.1007/978-3-031-53468-3_19.

https://arxiv.org/abs/2310.01668
https://arxiv.org/abs/2310.01668
https://arxiv.org/abs/1806.01261
https://iris.unive.it/handle/10278/5072541
https://arxiv.org/abs/1907.00481
https://arxiv.org/abs/1907.00481
https://arxiv.org/abs/1907.00481
https://proceedings.mlr.press/v202/black23a.html
https://proceedings.mlr.press/v202/black23a.html
https://link.springer.com/chapter/10.1007/978-3-031-53468-3_19

160 BIBLIOGRAPHY

[21] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and

H.-P. Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(1):

i47–i56, 2005. URL https://doi.org/10.1093/bioinformatics/bti1007.

[22] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric

deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34

(4):18–42, 2017. URL https://ieeexplore.ieee.org/document/7974879.

[23] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs. In International Conference on Learning Represen-

tations ICLR, 2014. URL http://arxiv.org/abs/1312.6203.

[24] C. Cai and Y. Wang. A note on over-smoothing for graph neural networks. arXiv

preprint arXiv:2006.13318, 2020. URL https://arxiv.org/abs/2006.13318.

[25] L. Cai, J. Li, J. Wang, and S. Ji. Line graph neural networks for link prediction.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. URL ht

tps://ieeexplore.ieee.org/document/9431673?denied=.

[26] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò. Towards sparse hi-

erarchical graph classifiers. arXiv preprint arXiv:1811.01287, 2018. URL https:

//arxiv.org/abs/1811.01287.

[27] F. Cazals and C. Karande. A note on the problem of reporting maximal cliques.

Theoretical computer science, 407(1-3):564–568, 2008. URL https://www.scienc

edirect.com/science/article/pii/S0304397508003903.

[28] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving

the over-smoothing problem for graph neural networks from the topological view.

In Proceedings of the AAAI conference on artificial intelligence, pages 3438–3445,

2020. URL https://api.semanticscholar.org/CorpusID:202539008.

[29] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph con-

volutional networks. In H. D. III and A. Singh, editors, Proceedings of the

https://doi.org/10.1093/bioinformatics/bti1007
https://ieeexplore.ieee.org/document/7974879
http://arxiv.org/abs/1312.6203
https://arxiv.org/abs/2006.13318
https://ieeexplore.ieee.org/document/9431673?denied=
https://ieeexplore.ieee.org/document/9431673?denied=
https://arxiv.org/abs/1811.01287
https://arxiv.org/abs/1811.01287
https://www.sciencedirect.com/science/article/pii/S0304397508003903
https://www.sciencedirect.com/science/article/pii/S0304397508003903
https://api.semanticscholar.org/CorpusID:202539008

BIBLIOGRAPHY 161

37th International Conference on Machine Learning, volume 119 of Proceedings

of Machine Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020. URL

https://proceedings.mlr.press/v119/chen20v.html.

[30] Y. Chen and Y. R. Gel. Topological pooling on graphs. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 37, pages 7096–7103, 2023. URL

https://dl.acm.org/doi/10.1609/aaai.v37i6.25866.

[31] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pager-

ank graph neural network. In International Conference on Learning Representa-

tions, 2021. URL https://openreview.net/forum?id=n6jl7fLxrP.

[32] F. R. Chung. Spectral Graph Theory. American Mathematical Society, 1997. URL

https://bookstore.ams.org/cbms-92.

[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,

2014. URL https://arxiv.org/abs/1412.3555.

[34] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks

on graphs with fast localized spectral filtering. Advances in neural information

processing systems, NIPS, 29, 2016. URL https://dl.acm.org/doi/10.5555/3

157382.3157527.

[35] S. Deng, S. Ling, and T. Strohmer. Strong consistency, graph laplacians, and the

stochastic block model. Journal of Machine Learning Research, 22(117):1–44, 2021.

URL https://dl.acm.org/doi/abs/10.5555/3546258.3546375.

[36] A. DeptuCa. Application of the dependency graph method in the analysis of auto-

matic transmission gearboxes. Engineering, Technology & Applied Science Research,

11(2):7033–7040, 2021. URL https://etasr.com/index.php/ETASR/article/vi

ew/4098.

https://proceedings.mlr.press/v119/chen20v.html
https://dl.acm.org/doi/10.1609/aaai.v37i6.25866
https://openreview.net/forum?id=n6jl7fLxrP
https://bookstore.ams.org/cbms-92
https://arxiv.org/abs/1412.3555
https://dl.acm.org/doi/10.5555/3157382.3157527
https://dl.acm.org/doi/10.5555/3157382.3157527
https://dl.acm.org/doi/abs/10.5555/3546258.3546375
https://etasr.com/index.php/ETASR/article/view/4098
https://etasr.com/index.php/ETASR/article/view/4098

162 BIBLIOGRAPHY

[37] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural

networks with cutout. arXiv preprint arXiv:1708.04552, 2017. URL https://ar

xiv.org/abs/1708.04552.

[38] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors

a multilevel approach. IEEE transactions on pattern analysis and machine intelli-

gence, 29(11):1944–1957, 2007. URL https://ieeexplore.ieee.org/document

/4302760.

[39] F. Diehl. Edge contraction pooling for graph neural networks. arXiv preprint

arXiv:1905.10990, 2019. URL https://arxiv.org/abs/1905.10990.

[40] F. Diehl, T. Brunner, M. T. Le, and A. Knoll. Towards graph pooling by edge con-

traction. In ICML 2019 workshop on learning and reasoning with graph-structured

data, 2019. URL url={https://api.semanticscholar.org/CorpusID:

208144770}.

[41] K. Ding, Z. Xu, H. Tong, and H. Liu. Data augmentation for deep graph learning:

A survey. ACM SIGKDD Explorations Newsletter, 24(2):61–77, 2022. URL https:

//dl.acm.org/doi/10.1145/3575637.3575646.

[42] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes

without alignments. Journal of molecular biology, 330(4):771–783, 2003. URL http

s://www.sciencedirect.com/science/article/abs/pii/S0022283603006284.

[43] J. Du, S. Wang, H. Miao, and J. Zhang. Multi-channel pooling graph neural net-

works. In Proceedings of the Thirtieth International Joint Conference on Artificial

Intelligence, (IJCAI), pages 1442–1448, 2021. URL https://doi.org/10.24963

/ijcai.2021/199.

[44] A. Elhassouny and F. Smarandache. Trends in deep convolutional neural net-

works architectures: A review. In International conference of computer sci-

ence and renewable energies, ICCSRE, pages 1–8. IEEE, 2019. URL https:

//ieeexplore.ieee.org/document/8807741.

https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://ieeexplore.ieee.org/document/4302760
https://ieeexplore.ieee.org/document/4302760
https://arxiv.org/abs/1905.10990
url={https://api.semanticscholar.org/CorpusID:208144770}
url={https://api.semanticscholar.org/CorpusID:208144770}
https://dl.acm.org/doi/10.1145/3575637.3575646
https://dl.acm.org/doi/10.1145/3575637.3575646
https://www.sciencedirect.com/science/article/abs/pii/S0022283603006284
https://www.sciencedirect.com/science/article/abs/pii/S0022283603006284
https://doi.org/10.24963/ijcai.2021/199
https://doi.org/10.24963/ijcai.2021/199
https://ieeexplore.ieee.org/document/8807741
https://ieeexplore.ieee.org/document/8807741

BIBLIOGRAPHY 163

[45] R. Elhesha and T. Kahveci. Identification of large disjoint motifs in biological

networks. BMC bioinformatics, 17:1–18, 2016. URL https://doi.org/10.1186/

s12859-016-1271-7.

[46] J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How powerful are k-hop message

passing graph neural networks. In Advances in Neural Information Processing Sys-

tems, NIPS, 2022. URL https://dl.acm.org/doi/10.5555/3600270.3600615.

[47] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt. Scalable

kernels for graphs with continuous attributes. Advances in neural information pro-

cessing systems, NIPS, 26, 2013. URL https://dl.acm.org/doi/10.5555/29996

11.2999636.

[48] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geo-

metric. arXiv preprint arXiv:1903.02428, 2019. URL https://arxiv.org/abs/19

03.02428.

[49] R. B. Gabrielsson, M. Yurochkin, and J. Solomon. Rewiring with positional en-

codings for graph neural networks. CoRR, abs/2201.12674, 2022. URL https:

//arxiv.org/abs/2201.12674.

[50] H. Gao and S. Ji. Graph u-nets. In international conference on machine learning,

pages 2083–2092. PMLR, 2019. URL https://api.semanticscholar.org/Corp

usID:153311899.

[51] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message

passing for quantum chemistry. In International conference on machine learning,

pages 1263–1272. PMLR, 2017. URL https://dl.acm.org/doi/10.5555/33053

81.3305512.

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. Communications of the

ACM, 63, 2020. URL https://dl.acm.org/doi/10.1145/3422622.

https://doi.org/10.1186/s12859-016-1271-7
https://doi.org/10.1186/s12859-016-1271-7
https://dl.acm.org/doi/10.5555/3600270.3600615
https://dl.acm.org/doi/10.5555/2999611.2999636
https://dl.acm.org/doi/10.5555/2999611.2999636
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/2201.12674
https://arxiv.org/abs/2201.12674
https://api.semanticscholar.org/CorpusID:153311899
https://api.semanticscholar.org/CorpusID:153311899
https://dl.acm.org/doi/10.5555/3305381.3305512
https://dl.acm.org/doi/10.5555/3305381.3305512
https://dl.acm.org/doi/10.1145/3422622

164 BIBLIOGRAPHY

[53] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph

domains. In IEEE international joint conference on neural networks, volume 2,

pages 729–734. IEEE, 2005. URL https://ieeexplore.ieee.org/document/155

5942.

[54] H. Guo, Y. Mao, and R. Zhang. Mixup as locally linear out-of-manifold regu-

larization. In Proceedings of the AAAI conference on artificial intelligence, pages

3714–3722, 2019. URL https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.3

3013714.

[55] A. Haghighian Roudsari, J. Afshar, W. Lee, and S. Lee. Patentnet: multi-label

classification of patent documents using deep learning based language understand-

ing. Scientometrics, 127(1):207–231, 2022. URL url={https://api.semanticsc

holar.org/CorpusID:245343990}.

[56] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. Advances in neural information processing systems, 30, 2017. URL https:

//dl.acm.org/doi/10.5555/3294771.3294869.

[57] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:

Methods and applications. arXiv preprint arXiv:1709.05584, 2017. URL https:

//arxiv.org/abs/1709.05584.

[58] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu. Vision GNN: An image is worth

graph of nodes. Advances in NIPSs, 35:8291–8303, 2022.

[59] X. Han, Z. Jiang, N. Liu, and X. Hu. G-mixup: Graph data augmentation for graph

classification. In International Conference on Machine Learning, pages 8230–8248.

PMLR, 2022. URL https://api.semanticscholar.org/CorpusID:246863555.

[60] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016. URL https://ieeexplore.ieee.org/document/7780459

?denied=.

https://ieeexplore.ieee.org/document/1555942
https://ieeexplore.ieee.org/document/1555942
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33013714
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33013714
url={https://api.semanticscholar.org/CorpusID:245343990}
url={https://api.semanticscholar.org/CorpusID:245343990}
https://dl.acm.org/doi/10.5555/3294771.3294869
https://dl.acm.org/doi/10.5555/3294771.3294869
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://api.semanticscholar.org/CorpusID:246863555
https://ieeexplore.ieee.org/document/7780459?denied=
https://ieeexplore.ieee.org/document/7780459?denied=

BIBLIOGRAPHY 165

[61] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[62] F. Hu, Y. Zhu, S. Wu, L. Wang, and T. Tan. Hierarchical graph convolutional

networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667,

2019. URL https://arxiv.org/abs/1902.06667.

[63] J. Huang, Z. Li, N. Li, S. Liu, and G. Li. Attpool: Towards hierarchical fea-

ture representation in graph convolutional networks via attention mechanism. In

Proceedings of the IEEE/CVF international conference on computer vision, pages

6480–6489, 2019. URL https://ieeexplore.ieee.org/document/9009471.

[64] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman. Zinc:

a free tool to discover chemistry for biology. Journal of chemical information and

modeling, 52(7):1757–1768, 2012. URL https://pubs.acs.org/doi/10.1021/c

i3001277.

[65] M. I. K. Islam, M. Khanov, and E. Akbas. Mpool: Motif-based graph pooling. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 105–117.

Springer, 2023. URL https://link.springer.com/chapter/10.1007/978-3-0

31-33377-4_9.

[66] G. M. Kedar Karhadkar, Pradeep Kr. Banerjee. Fosr: First-order spectral rewiring

for addressing oversquashing in gnns. In The Eleventh International Conference on

Learning Representations ICLR. OpenReview.net, 2023. URL https://openrevi

ew.net/pdf?id=3YjQfCLdrzz.

[67] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann. Benchmark

data sets for graph kernels. 2016.

[68] B. Khemani, S. Patil, K. Kotecha, and S. Tanwar. A review of graph neural net-

works: concepts, architectures, techniques, challenges, datasets, applications, and

future directions. Journal of Big Data, 11(1):18, 2024. URL https://journalofb

igdata.springeropen.com/articles/10.1186/s40537-023-00876-4.

https://arxiv.org/abs/1902.06667
https://ieeexplore.ieee.org/document/9009471
https://pubs.acs.org/doi/10.1021/ci3001277
https://pubs.acs.org/doi/10.1021/ci3001277
https://link.springer.com/chapter/10.1007/978-3-031-33377-4_9
https://link.springer.com/chapter/10.1007/978-3-031-33377-4_9
https://openreview.net/pdf?id=3YjQfCLdrzz
https://openreview.net/pdf?id=3YjQfCLdrzz
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00876-4

166 BIBLIOGRAPHY

[69] S. Khoshraftar and A. An. A survey on graph representation learning methods.

ACM Transactions on Intelligent Systems and Technology, 15(1):1–55, 2024. URL

https://dl.acm.org/doi/abs/10.1145/3633518.

[70] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio

and Y. LeCun, editors, 3rd International Conference on Learning Representations,

ICLR, 2015. URL http://arxiv.org/abs/1412.6980.

[71] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013. URL https://arxiv.org/abs/1312.6114.

[72] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016. URL https://arxiv.org/abs/

1609.02907.

[73] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein.

Flag: Adversarial data augmentation for graph neural networks. arXiv, 2020. URL

https://arxiv.org/abs/2010.09891.

[74] K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S. Gerber, and L. E.

Barnes. Hdltex: Hierarchical deep learning for text classification. In 2017 16th

IEEE international conference on machine learning and applications (ICMLA),

pages 364–371. IEEE, 2017. URL https://ieeexplore.ieee.org/document/826

0658.

[75] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou. Rethinking

graph transformers with spectral attention. Advances in Neural Information Pro-

cessing Systems, 34:21618–21629, 2021. URL https://dl.acm.org/doi/10.5555

/3540261.3541915.

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60, 2017. URL https:

//dl.acm.org/doi/10.1145/3065386.

https://dl.acm.org/doi/abs/10.1145/3633518
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2010.09891
https://ieeexplore.ieee.org/document/8260658
https://ieeexplore.ieee.org/document/8260658
https://dl.acm.org/doi/10.5555/3540261.3541915
https://dl.acm.org/doi/10.5555/3540261.3541915
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386

BIBLIOGRAPHY 167

[77] J. Lee, I. Lee, and J. Kang. Self-attention graph pooling. In International conference

on machine learning, pages 3734–3743. PMLR, 2019. URL https://api.semant

icscholar.org/CorpusID:119314157.

[78] X. Lei, H. Pan, and X. Huang. A dilated cnn model for image classification. IEEE

Access, 7:124087–124095, 2019. URL https://ieeexplore.ieee.org/abstract

/document/8756165.

[79] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as deep

as cnns? In Proceedings of the IEEE/CVF international conference on computer

vision, pages 9267–9276, 2019. URL https://www.deepgcns.org/arch/deep.

[80] H. Li, Z. Han, Y. Sun, F. Wang, P. Hu, Y. Gao, X. Bai, S. Peng, C. Ren, X. Xu, et al.

Cgmega: explainable graph neural network framework with attention mechanisms

for cancer gene module dissection. Nature Communications, 15(1):5997, 2024. URL

https://doi.org/10.1038/s41467-024-50426-6.

[81] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural

networks. arXiv preprint arXiv:1511.05493, 2015. URL https://arxiv.org/abs/

1511.05493.

[82] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel. Lanczosnet: Multi-scale deep

graph convolutional networks. arXiv preprint arXiv:1901.01484, 2019. URL https:

//arxiv.org/abs/1901.01484.

[83] D. Lim, F. M. Hohne, X. Li, S. L. Huang, V. Gupta, O. P. Bhalerao, and S.-N.

Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong

simple methods. In Advances in Neural Information Processing Systems, 2021. URL

https://dl.acm.org/doi/10.5555/3540261.3541859.

[84] E. Luzhnica, B. Day, and P. Lio. Clique pooling for graph classification. arXiv

preprint arXiv:1904.00374, 2019. URL https://arxiv.org/abs/1904.00374.

[85] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang. Graph convolutional networks with

eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference

https://api.semanticscholar.org/CorpusID:119314157
https://api.semanticscholar.org/CorpusID:119314157
https://ieeexplore.ieee.org/abstract/document/8756165
https://ieeexplore.ieee.org/abstract/document/8756165
https://www.deepgcns.org/arch/deep
https://doi.org/10.1038/s41467-024-50426-6
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1901.01484
https://arxiv.org/abs/1901.01484
https://dl.acm.org/doi/10.5555/3540261.3541859
https://arxiv.org/abs/1904.00374

168 BIBLIOGRAPHY

on knowledge discovery & data mining, pages 723–731, 2019. URL https://dl.a

cm.org/doi/10.1145/3292500.3330982.

[86] S. K. Maurya, X. Liu, and T. Murata. Improving graph neural networks with

simple architecture design. arXiv preprint arXiv:2105.07634, 2021. URL https:

//arxiv.org/abs/2105.07634.

[87] S. K. Maurya, X. Liu, and T. Murata. Simplifying approach to node classification

in graph neural networks. Journal of Computational Science, 62:101695, 2022. URL

https://api.semanticscholar.org/CorpusID:244102809.

[88] C. Mavromatis and G. Karypis. Gnn-rag: Graph neural retrieval for large language

model reasoning. arXiv preprint arXiv:2405.20139, 2024. URL https://arxiv.or

g/abs/2405.20139.

[89] E. A. Meyer, R. K. Castellano, and F. Diederich. Interactions with aromatic rings

in chemical and biological recognition. Angewandte Chemie International Edition,

42(11):1210–1250, 2003. URL https://doi.org/10.1002/anie.200390319.

[90] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Ter-

zopoulos. Image segmentation using deep learning: A survey. IEEE transactions

on pattern analysis and machine intelligence, 2021. URL https://ieeexplore.i

eee.org/document/9356353.

[91] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and

M. Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.

In Proceedings of the AAAI conference on artificial intelligence, pages 4602–4609,

2019. URL https://dl.acm.org/doi/10.1609/aaai.v33i01.33014602.

[92] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann.

Tudataset: A collection of benchmark datasets for learning with graphs. arXiv

preprint arXiv:2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

https://dl.acm.org/doi/10.1145/3292500.3330982
https://dl.acm.org/doi/10.1145/3292500.3330982
https://arxiv.org/abs/2105.07634
https://arxiv.org/abs/2105.07634
https://api.semanticscholar.org/CorpusID:244102809
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://doi.org/10.1002/anie.200390319
https://ieeexplore.ieee.org/document/9356353
https://ieeexplore.ieee.org/document/9356353
https://dl.acm.org/doi/10.1609/aaai.v33i01.33014602
https://arxiv.org/abs/2007.08663

BIBLIOGRAPHY 169

[93] K. Nguyen, N. M. Hieu, V. D. Nguyen, N. Ho, S. Osher, and T. M. Nguyen.

Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-

ternational Conference on Machine Learning, ICML, pages 25956–25979. PMLR,

2023. URL https://dl.acm.org/doi/10.5555/3618408.3619488.

[94] Y. Pang, Y. Zhao, and D. Li. Graph pooling via coarsened graph infomax. In

Proceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 2177–2181, 2021. URL https://dl

.acm.org/doi/10.1145/3404835.3463074.

[95] J. Park, H. Shim, and E. Yang. Graph transplant: Node saliency-guided graph

mixup with local structure preservation. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 7966–7974, 2022. URL url={https://api.sema

nticscholar.org/CorpusID:243938320}.

[96] A. Paszke, S. Gross, S. Chintala, G. Chanan, Z. Yang, Edward, A. Lin, Zeming,

L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[97] M. Pavan and M. Pelillo. A new graph-theoretic approach to clustering and seg-

mentation. In 2003 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE, 2003. URL

https://ieeexplore.ieee.org/document/1211348.

[98] M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE transactions

on pattern analysis and machine intelligence, 29(1):167–172, 2006. URL https:

//ieeexplore.ieee.org/document/4016559.

[99] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph

convolutional networks. arXiv preprint arXiv:2002.05287, 2020. URL https:

//arxiv.org/abs/2002.05287.

[100] M. Pelillo and A. Torsello. Payoff-monotonic game dynamics and the maximum

clique problem. Neural Computation, 18(5):1215–1258, 2006.

https://dl.acm.org/doi/10.5555/3618408.3619488
https://dl.acm.org/doi/10.1145/3404835.3463074
https://dl.acm.org/doi/10.1145/3404835.3463074
url={https://api.semanticscholar.org/CorpusID:243938320}
url={https://api.semanticscholar.org/CorpusID:243938320}
https://ieeexplore.ieee.org/document/1211348
https://ieeexplore.ieee.org/document/4016559
https://ieeexplore.ieee.org/document/4016559
https://arxiv.org/abs/2002.05287
https://arxiv.org/abs/2002.05287

170 BIBLIOGRAPHY

[101] L. Perez and J. Wang. The effectiveness of data augmentation in image classification

using deep learning. arXiv preprint arXiv:1712.04621, 2017. URL https://arxi

v.org/abs/1712.04621.

[102] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe

for a General, Powerful, Scalable Graph Transformer. arXiv:2205.12454, 2022. URL

https://arxiv.org/pdf/2205.12454.pdf.

[103] M. Réau, N. Renaud, L. C. Xue, and A. M. Bonvin. Deeprank-gnn: a graph neural

network framework to learn patterns in protein–protein interfaces. Bioinformatics,

39(1):btac759, 2023. URL https://doi.org/10.1093/bioinformatics/btac759.

[104] S. Rhee, S. Seo, and S. Kim. Hybrid approach of relation network and localized

graph convolutional filtering for breast cancer subtype classification. arXiv preprint

arXiv:1711.05859, 2017. URL https://arxiv.org/abs/1711.05859.

[105] K. Riesen and H. Bunke. Iam graph database repository for graph based pattern

recognition and machine learning. In Joint IAPR International Workshops on

Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic

Pattern Recognition (SSPR), pages 287–297. Springer, 2008. URL https://link

.springer.com/chapter/10.1007/978-3-540-89689-0_33.

[106] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph con-

volutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

URL https://arxiv.org/abs/1907.10903.

[107] B. Rozemberczki and R. Sarkar. Twitch gamers: a dataset for evaluating prox-

imity preserving and structural role-based node embeddings. arXiv preprint

arXiv:2101.03091, 2021. URL https://arxiv.org/abs/2101.03091.

[108] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding.

Journal of Complex Networks, 9(2):cnab014, 2021. URL https://arxiv.org/ab

s/1909.13021.

https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/1712.04621
https://arxiv.org/pdf/2205.12454.pdf
https://doi.org/10.1093/bioinformatics/btac759
https://arxiv.org/abs/1711.05859
https://link.springer.com/chapter/10.1007/978-3-540-89689-0_33
https://link.springer.com/chapter/10.1007/978-3-540-89689-0_33
https://arxiv.org/abs/1907.10903
https://arxiv.org/abs/2101.03091
https://arxiv.org/abs/1909.13021
https://arxiv.org/abs/1909.13021

BIBLIOGRAPHY 171

[109] T. K. Rusch, M. M. Bronstein, and S. Mishra. A survey on oversmoothing in graph

neural networks. arXiv preprint arXiv:2303.10993, 2023. URL https://arxiv.or

g/abs/2303.10993.

[110] H. Sasaki, S. Yamamoto, A. Agchbayar, and N. Nkhbayasgalan. Extracting problem

linkages to improve knowledge exchange between science and technology domains

using an attention-based language model. Engineering, Technology & Applied Sci-

ence Research, 10(4):5903–5913, 2020. URL https://doi.org/10.48084/etasr

.3598.

[111] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph

neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

URL https://ieeexplore.ieee.org/document/9869643.

[112] F. M. Schmitt-Koopmann, E. M. Huang, H.-P. Hutter, T. Stadelmann, and

A. Darvishy. FormulaNet: A benchmark dataset for mathematical formula de-

tection. IEEE Access, 10:91588–91596, 2022. URL https://ieeexplore.ieee.or

g/document/4700287.

[113] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Col-

lective classification in network data. AI magazine, 29(3):93–93, 2008. URL

https://ojs.aaai.org/index.php/aimagazine/article/view/2157.

[114] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. URL https:

//dl.acm.org/doi/10.1109/34.868688.

[115] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for

deep learning. Journal of big data, 6(1):1–48, 2019. URL https://journalofbig

data.springeropen.com/articles/10.1186/s40537-019-0197-0.

[116] M. Simonovsky and N. Komodakis. Dynamic edge-conditioned filters in convo-

lutional neural networks on graphs. In Proceedings of the IEEE conference on

https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://doi.org/10.48084/etasr.3598
https://doi.org/10.48084/etasr.3598
https://ieeexplore.ieee.org/document/9869643
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://dl.acm.org/doi/10.1109/34.868688
https://dl.acm.org/doi/10.1109/34.868688
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

172 BIBLIOGRAPHY

computer vision and pattern recognition, pages 3693–3702, 2017. URL https:

//ieeexplore.ieee.org/document/8099494.

[117] F. Smarandache. Extension of hypergraph to n-superhypergraph and to plithogenic

n-superhypergraph, and extension of hyperalgebra to n-ary (classical-/neutro-/anti-

)hyperalgebra. Neutrosophic Sets and Systems, 33:290–296, 2020. URL https:

//api.semanticscholar.org/CorpusID:219486503.

[118] Y. Song, C. Zhou, X. Wang, and Z. Lin. Ordered GNN: Ordering message passing

to deal with heterophily and over-smoothing. In The Eleventh International Con-

ference on Learning Representations, 2023. URL https://arxiv.org/abs/2302

.01524.

[119] Z. Song, X. Yang, Z. Xu, and I. King. Graph-based semi-supervised learning:

A comprehensive review. IEEE Transactions on Neural Networks and Learning

Systems, 34(11):8174–8194, 2022. URL url={https://ieeexplore.ieee.org/do

cument/9737635}.

[120] M. Sun, M. Yang, Y. Li, D. Mu, X. Wang, and Y. Wang. Structural-aware motif-

based prompt tuning for graph clustering. Information Sciences, 649:119643, 2023.

URL https://doi.org/10.1016/j.ins.2023.119643.

[121] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein. Un-

derstanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint

arXiv:2111.14522, 2021. URL https://arxiv.org/abs/2111.14522.

[122] D. D. Van. Application of advanced deep convolutional neural networks for the

recognition of road surface anomalies. Engineering, Technology & Applied Science

Research, 13(3):10765–10768, 2023. URL https://doi.org/10.48084/etasr.589

0.

[123] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information

processing systems, 30, 2017. URL https://arxiv.org/abs/1706.03762.

https://ieeexplore.ieee.org/document/8099494
https://ieeexplore.ieee.org/document/8099494
https://api.semanticscholar.org/CorpusID:219486503
https://api.semanticscholar.org/CorpusID:219486503
https://arxiv.org/abs/2302.01524
https://arxiv.org/abs/2302.01524
url={https://ieeexplore.ieee.org/document/9737635}
url={https://ieeexplore.ieee.org/document/9737635}
https://doi.org/10.1016/j.ins.2023.119643
https://arxiv.org/abs/2111.14522
https://doi.org/10.48084/etasr.5890
https://doi.org/10.48084/etasr.5890
https://arxiv.org/abs/1706.03762

BIBLIOGRAPHY 173

[124] A. Velingker, A. K. Sinop, I. Ktena, P. Veličković, and S. Gollapudi. Affinity-aware

graph networks. arXiv preprint arXiv:2206.11941, 2022. URL https://arxiv.or

g/pdf/2206.11941.pdf.

[125] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph

attention networks, 2017. URL https://arxiv.org/abs/1710.10903.

[126] V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Kannala, and J. Tang.

Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings

of the AAAI conference on artificial intelligence, 2021. URL https://arxiv.org/

abs/1909.11715.

[127] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for

sets. arXiv preprint arXiv:1511.06391, 2015. URL https://arxiv.org/abs/1511

.06391.

[128] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:

395–416, 2007. URL https://arxiv.org/abs/0711.0189.

[129] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chem-

ical compound retrieval and classification. Knowledge and Information Systems, 14

(3):347–375, 2008. URL https://api.semanticscholar.org/CorpusID:2596211.

[130] G. Wang, R. Ying, J. Huang, and J. Leskovec. Multi-hop attention graph neu-

ral networks. In Proceedings of the Thirtieth International Joint Conference on

Artificial Intelligence, IJCAI, pages 3089–3096. ijcai.org, 2021. URL https:

//doi.org/10.24963/ijcai.2021/425.

[131] X. Wang, B. Qian, and I. Davidson. On constrained spectral clustering and its

applications. Data Mining and Knowledge Discovery, 28:1–30, 2014. URL https:

//link.springer.com/article/10.1007/s10618-012-0291-9.

[132] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. Graphcrop: Subgraph cropping

for graph classification. arXiv preprint arXiv:2009.10564, 2020. URL https:

//arxiv.org/abs/2009.10564.

https://arxiv.org/pdf/2206.11941.pdf
https://arxiv.org/pdf/2206.11941.pdf
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1909.11715
https://arxiv.org/abs/1909.11715
https://arxiv.org/abs/1511.06391
https://arxiv.org/abs/1511.06391
https://arxiv.org/abs/0711.0189
https://api.semanticscholar.org/CorpusID:2596211
https://doi.org/10.24963/ijcai.2021/425
https://doi.org/10.24963/ijcai.2021/425
https://link.springer.com/article/10.1007/s10618-012-0291-9
https://link.springer.com/article/10.1007/s10618-012-0291-9
https://arxiv.org/abs/2009.10564
https://arxiv.org/abs/2009.10564

174 BIBLIOGRAPHY

[133] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. Mixup for node and graph

classification. In Proceedings of the Web Conference 2021, pages 3663–3674, 2021.

URL https://doi.org/10.1145/3442381.3449796.

[134] Y. Wang, W. Hou, N. Sheng, Z. Zhao, J. Liu, L. Huang, and J. Wang. Graph

pooling in graph neural networks: methods and their applications in omics studies.

Artificial Intelligence Review, 57(11):294, 2024. URL https://link.springer.co

m/article/10.1007/s10462-024-10918-9.

[135] Z. Wang, M. Liu, Y. Luo, Z. Xu, Y. Xie, L. Wang, L. Cai, Q. Qi, Z. Yuan,

T. Yang, et al. Advanced graph and sequence neural networks for molecu-

lar property prediction and drug discovery. Bioinformatics, 38, 2022. URL

https://doi.org/10.1093/bioinformatics/btac112.

[136] J. W. Weibull. Evolutionary game theory. MIT press, 1997.

[137] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey

on graph neural networks. CoRR, abs/1901.00596, 2019. URL http://arxiv.or

g/abs/1901.00596.

[138] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural net-

works? arXiv preprint arXiv:1810.00826, 2018. URL https://arxiv.org/abs/18

10.00826.

[139] K. Xu, M. Zhang, S. Jegelka, and K. Kawaguchi. Optimization of graph neural

networks: Implicit acceleration by skip connections and more depth. In Interna-

tional Conference on Machine Learning, pages 11592–11602. PMLR, 2021. URL

https://proceedings.mlr.press/v139/xu21k.html.

[140] Y. Xu, J. Wang, M. Guang, C. Yan, and C. Jiang. Multistructure graph classifica-

tion method with attention-based pooling. IEEE Transactions on Computational

Social Systems, 10(2):602–613, 2022. URL https://ieeexplore.ieee.org/docu

ment/9767199.

https://doi.org/10.1145/3442381.3449796
https://link.springer.com/article/10.1007/s10462-024-10918-9
https://link.springer.com/article/10.1007/s10462-024-10918-9
https://doi.org/10.1093/bioinformatics/btac112
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://proceedings.mlr.press/v139/xu21k.html
https://ieeexplore.ieee.org/document/9767199
https://ieeexplore.ieee.org/document/9767199

BIBLIOGRAPHY 175

[141] T. Yamamoto. Crystal graph neural networks for data mining in materials science.

Research Institute for Mathematical and Computational Sciences, LLC, 2019. URL

https://api.semanticscholar.org/CorpusID:198989570.

[142] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra. Two sides of the same

coin: Heterophily and oversmoothing in graph convolutional neural networks. In

IEEE International Conference on Data Mining (ICDM), pages 1287–1292. IEEE,

2022. URL https://ieeexplore.ieee.org/document/10027737.

[143] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical

graph representation learning with differentiable pooling. Advances in neural in-

formation processing systems, 31, 2018. URL https://dl.acm.org/doi/10.5555

/3327345.3327389.

[144] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive

learning with augmentations. Advances in neural information processing systems,

33:5812–5823, 2020. URL https://dl.acm.org/doi/10.5555/3495724.3496212.

[145] H. Yuan and S. Ji. Structpool: Structured graph pooling via conditional random

fields. In Proceedings of the 8th International Conference on Learning Representa-

tions, 2020. URL https://openreview.net/forum?id=BJxg_hVtwH.

[146] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. Advances in neural

information processing systems, 17, 2004. URL https://www.researchgate.net

/publication/215721835_Self-Tuning_Spectral_Clustering.

[147] M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning ar-

chitecture for graph classification. In In Proceedings of the Association for the

Advancement of Artificial Intelligence, (AAAI), 2018. URL https://dl.acm.org

/doi/abs/10.5555/3504035.3504579.

[148] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text

classification. Advances in neural information processing systems, 28, 2015. URL

https://arxiv.org/abs/1509.01626.

https://api.semanticscholar.org/CorpusID:198989570
https://ieeexplore.ieee.org/document/10027737
https://dl.acm.org/doi/10.5555/3327345.3327389
https://dl.acm.org/doi/10.5555/3327345.3327389
https://dl.acm.org/doi/10.5555/3495724.3496212
https://openreview.net/forum?id=BJxg_hVtwH
https://www.researchgate.net/publication/215721835_Self-Tuning_Spectral_Clustering
https://www.researchgate.net/publication/215721835_Self-Tuning_Spectral_Clustering
https://dl.acm.org/doi/abs/10.5555/3504035.3504579
https://dl.acm.org/doi/abs/10.5555/3504035.3504579
https://arxiv.org/abs/1509.01626

176 BIBLIOGRAPHY

[149] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang. Graph neural networks and their

current applications in bioinformatics. Frontiers in genetics, 12:690049, 2021. URL

https://doi.org/10.3389/fgene.2021.690049.

[150] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and C. Wang.

Anrl: attributed network representation learning via deep neural networks. In

In International Joint Conferences on Artificial Intelligence, (IJCAI), volume 18,

pages 3155–3161, 2018. URL https://ijcai.org/proceedings/2018/438.

[151] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang. Hierarchical

graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019. URL

https://arxiv.org/abs/1911.05954.

[152] Z. Zhang, J. Bu, M. Ester, J. Zhang, Z. Li, C. Yao, H. Dai, Z. Yu, and C. Wang.

Hierarchical multi-view graph pooling with structure learning. IEEE Transactions

on Knowledge and Data Engineering, 35(1):545–559, 2021. URL https://ieeexp

lore.ieee.org/document/9460814.

[153] T. Zhao, W. Jin, Y. Liu, Y. Wang, G. Liu, S. Günnemann, N. Shah, and M. Jiang.

Graph data augmentation for graph machine learning: A survey. arXiv preprint

arXiv:2202.08871, 2022. URL https://arxiv.org/abs/2202.08871.

[154] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.

Graph neural networks: A review of methods and applications. AI open, 1:57–81,

2020. URL https://doi.org/10.1016/j.aiopen.2021.01.001.

[155] J. Zhou, J. Shen, S. Yu, G. Chen, and Q. Xuan. M-evolve: structural-mapping-

based data augmentation for graph classification. IEEE Transactions on Network

Science and Engineering, 8(1):190–200, 2020. URL https://arxiv.org/abs/20

07.05700.

[156] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily

in graph neural networks: Current limitations and effective designs. In Proceedings

https://doi.org/10.3389/fgene.2021.690049
https://ijcai.org/proceedings/2018/438
https://arxiv.org/abs/1911.05954
https://ieeexplore.ieee.org/document/9460814
https://ieeexplore.ieee.org/document/9460814
https://arxiv.org/abs/2202.08871
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/2007.05700
https://arxiv.org/abs/2007.05700

BIBLIOGRAPHY 177

of the 34th International Conference on Neural Information Processing Systems,

NIPS, 2020. URL https://dl.acm.org/doi/10.5555/3495724.3496377.

[157] C. Zhuang, N. J. Yuan, R. Song, X. Xie, and Q. Ma. Understanding people lifestyles:

Construction of urban movement knowledge graph from gps trajectory. In Interna-

tional Joint Conferences on Artificial Intelligence, IJCAI, pages 3616–3623, 2017.

URL https://www.ijcai.org/proceedings/2017/506.

https://dl.acm.org/doi/10.5555/3495724.3496377
https://www.ijcai.org/proceedings/2017/506

	Introduction
	Motivation
	Problem Statement
	Contribution
	Thesis Structure
	Publications

	Background
	Preamble
	Definition and Notations
	Graph Neural Networks
	Node Embeddings in Graph Neural Networks
	Graph Neural Network Architectures
	Tasks in Graph Learning

	Graph Pooling Operations
	Graph Augmentation
	Over Squashing
	Conclusion

	Quasi-Clique Pooling for Graph Neural Networks
	Preamble
	Introduction
	Related work
	Graph Neural Network Models
	Graph Pooling Methods

	Limitations in Existing Graph Poolings
	Quasi-Clique Graph Pooling
	Replicator Dynamics, Maximal and Quasi Clique
	Graph Coarsening with Quasi-CliquePool
	Quasi-CliquePool Algorithm

	Result and Discussion
	Dataset Setup
	Baselines and Experimental Settings
	Performance on Graph Classification
	Ablation Study

	Conclusion

	Dominant Sets: A Multi-View Approach to Graph Pooling
	Preamble
	Introduction
	Related Work
	Proposed Methodology
	Local Topology Pooling (View 1)
	Global Topology Pooling (View 2)
	Node Feature Pooling (View 3)
	Fusion-View Attention Convolution
	Pooling Aggregation Operation
	Hierarchical DSMVPool Architecture and Readout Layer
	Complexity Analysis

	Experiments
	Competitors and Experimental Settings
	Performance Comparison with state-of-the-art
	Ablation Study
	Graph Visualization

	Conclusion and Future Work

	Glocal Attention: Hierarchical Pooling for Graph Learning
	Preamble
	Introduction
	Related Work
	Methodology
	Global Topological Structure Learning
	Local Topological Structure Learning
	Hierarchical HGLA-Pool Architecture and Readout Layer

	Experiments and Analysis
	Baselines and Experimental Settings
	Performance Comparison
	Ablation Study
	Parameter Sensitivity Analysis
	Graph Visualization for Comparison

	Limitations
	Conclusion and Future Directions

	Residual Attention and Mixup Augmentation
	Preamble
	Introduction
	Related work
	Methodology
	Node Augmentation Mixup Method
	Attention Mechanism for Node Classification
	Skip Connections

	Experimental Results and Discussion
	Conclusion
	Acknowledge

	Topology-Aware Augmentation
	Preamble
	Introduction
	Related Work
	Methodology
	Problem Formulation
	Motifs Preservation
	Node Degree-based Dropping
	Structure Learning Method

	Experiments and Discussion
	Baseline Methods
	Performance Comparison and Graph Visualization
	Ablation Studies
	NDAUG with Different GNN models and Graph Pooling

	Conclusion and Future Work

	Community-Hop Mechanism for Graph Neural Networks
	Preamble
	Introduction
	Related Work
	Preliminaries
	Spectral Clustering
	Graph Neural Networks

	Methodology
	Computational Complexity

	Experiments and discusions
	Conclusion and Future Work

	Spectral Rewiring: Local-to-Global Adaptations for GNNs
	Preamble
	Introduction
	Related Work
	Graph Rewiring
	Graph Augmentation

	Spectral Graph Theory
	Methodology
	Inductive Spectral Theory
	Method: Graph Classification
	Computational Efficiency

	Experiments
	Conclusion

	Conclusion and Discussion
	Summary of Key Findings
	Future Directions
	Final Remarks

	Theoretical and Experimental details for Spectral Rewiring
	Summary of Results
	Results
	Practical Findings
	Dataset Analysis and Experimental Setup
	Dataset Statistics
	Experimental Environment

	Bibliography

