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Zusammenfassung

Nicht-invasive Brain-Computer Interfaces (BCIs) versprechen eine intuitive Steuerung,
sind jedoch weiterhin durch erhebliche interindividuelle Variabilitdt und den Aufwand
der benutzerspezifischen Kalibrierung eingeschrankt. Diese Herausforderungen sind
besonders ausgeprigt beim Motor Imagery (MI) Decoding mit niedrig aufgelostem
EEG, bei dem Modelle héaufig nicht auf unbekannte Nutzer generalisieren. Dieses
Projekt verfolgt zwei Ziele: den Aufbau einer robusten Transfer-Learning-Pipeline
fiir das MI-Decoding iiber mehrere Probanden hinweg sowie die Evaluation, wie
sich das vortrainierte Framework auf prospektiv aufgezeichnete Nutzer mit einem
EEG-Headset anpassen lasst — mit dem Ziel, die Kalibrierung zu minimieren und

gleichzeitig die Genauigkeit beizubehalten.

Ein einheitliches Framework wird eingefiihrt, das invariantes Repréasentationslernen
iiber Probanden hinweg sowie schnelle Personalisierung durch drei Komponenten
ermOglicht: (i) konvolutionale Baselines auf Roh-EEG (Deep4Net), (ii) ein Multi-
Task-Modell mit gemeinsamem Feature-Extractor und cluster-spezifischen Képfen
sowie (iii) Transfer-Learning-Protokolle zur Anpassung des vortrainierten Back-
bones an unbekannte Nutzer unter drei Szenarien: Transfer eines gepoolten Modells,
Leave-One-Subject-Out (LOSO) Zero-Shot Transfer und LOSO Few-Shot Kalib-
rierung. Die Experimente erfolgen auf einem harmonisierten MI-Datensatz mit 85
Probanden sowie auf prospektiv aufgenommenen Sitzungen mit strikter Trennung

zwischen Trainings- und Testdaten.

Die Ergebnisse zeigen, dass Common Spatial Pattern (CSP)-Features eine stabile
Struktur im Subjekt-Raum offenbaren, wodurch eine effektive Clusterung der Pop-
ulation ermoglicht wird. Cluster-konditioniertes Multi-Task-Learning verbessert
die Dateneffizienz in Few-Shot-Szenarien: Die Kalibrierung eines leichtgewichtigen
Kopfes mit vier gelabelten Versuchen pro Klasse fiihrt zu konsistenten Verbesserun-
gen gegeniiber gepoolten Transfermodellen. Zero-Shot Transfer allein bringt hinge-
gen nur begrenzten Nutzen, und generische Augmentierungen oder eine erhoéhte

Anzahl an Kalibrierungsversuchen verbessern die Leistung nicht konsistent — was
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die Bedeutung gezielter Anpassung unterstreicht.

Insgesamt zeigt das Projekt, dass das Lernen gemeinsamer Représentationen auf
gepoolten Daten, die Stratifizierung von Subjektclustern und eine leichtgewichtige
benutzerspezifische Kalibrierung eine genaue, reproduzierbare und daten-effiziente

MI-Dekodierung erméglichen.



Abstract

Non-invasive brain—computer interfaces promise intuitive control but remain limited
by substantial inter-subject variability and the cost of per-user calibration. These
challenges are particularly pronounced for motor imagery decoding with low-density
EEG, where models often fail to generalize to unseen users. This project pursues
two objectives: establishing a robust transfer learning pipeline for cross-subject MI
decoding and evaluating how the pretrained framework can be adapted to prospec-
tive users recorded with an EEG headset, aiming to minimize calibration while

maintaining accuracy.

A unified framework is introduced to address subject-invariant representation learn-
ing and rapid personalization through three components: (i) convolutional baselines
on raw EEG (Deep4Net), (ii) a multi-task model with shared feature extraction and
cluster-conditioned heads, and (iii) transfer learning protocols for adapting the pre-
trained backbone to unseen users under three regimes: a pooled model transfer,
leave-one-subject-out (LOSO) zero-shot transfer, and LOSO few-shot calibration.
Experiments are conducted on a harmonized 85-subject MI dataset and prospec-
tively recorded sessions, with strict separation between training and testing sets.
Findings show that common spatial pattern (CSP) features expose a stable subject-
space structure, enabling effective population clustering. Cluster-conditioned MTL
improves data efficiency in few-shot settings, as calibrating a lightweight head with
four labeled trials per class yields consistent gains over pooled TL models. Zero-shot
transfer alone provides limited benefit, and generic augmentations or an increased
number of calibration trials do not consistently improve performance, highlighting

the importance of targeted adaptation.

Collectively, this project demonstrates that learning a shared representation on
pooled data, stratifying subject-level population clusters, and applying lightweight

per-user calibration enables accurate, reproducible, and data-efficient MI decoding.

il
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Chapter 1

Introduction

1.1 Problem Statement

Brain-computer interfaces (BCIs) represent a direct communication pathway be-
tween the human brain and external devices, offering transformative potential in
fields ranging from neurorehabilitation to assistive technologies. Despite decades
of research, practical deployment of BCIs remains severely limited [25, 41]. A cen-
tral obstacle is the high variability in neural signals across individuals and sessions,
which undermines the reliability and usability of current systems. The necessity
for extensive user-specific calibration, often requiring long recording sessions, con-
stitutes a significant barrier to adoption outside controlled laboratory conditions

36, 43].

Electroencephalography (EEG) is the most widely used modality for BCIs due to its
non-invasive, portable, and relatively inexpensive nature. However, EEG signals are
inherently noisy, exhibit significant inter-subject variability, and are highly sensitive
to contextual factors such as electrode placement, physiology, and mental state cite
Cheng2020. This variability causes models trained on one set of users to generalize
poorly to new users. As a result, most BCI systems still rely on subject-specific

training, thereby limiting practical, user-ready deployment [30].

Motor imagery (MI) is a particularly well-studied paradigm in EEG-based BClIs,
offering intuitive control by leveraging users’ mental rehearsal of limb movements.
The challenge of inter-subject variability persists in this paradigm [2, 63]. Conven-
tional machine learning models often fail to generalize across subjects or sessions,

necessitating lengthy per-user calibration to achieve acceptable performance [36, 79].
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Although deep learning techniques have demonstrated stronger within-subject per-
formance, they frequently require retraining for each individual and may still under-
perform on newly encountered users. Some end-to-end deep transfer models fail to
exceed practical accuracy thresholds in subject, independent evaluations [4]. Con-
sequently, motor imagery—based BCIs remain challenging to deploy in real-world

settings where fast and reliable personalization is required.

Addressing this challenge requires more sophisticated strategies that leverage infor-
mation across multiple users while supporting rapid adaptation to new individuals.
Transfer learning and multi-task learning approaches provide a framework to bridge
this gap, enabling shared representations that capture common structure across
subjects while retaining flexibility for individual adaptation [46, 79]. Nonetheless,
successfully deploying such approaches under realistic conditions, for instance, with
a limited number of EEG channels and minimal calibration data, remains challeng-
ing and is a focus of recent work [24, 46, 79]. This project is positioned within
this challenge, aiming to contribute methodological and practical insights towards

creating MI-based BCIs that are both generalizable and deployable.

To this end, the work undertaken in this project develops and evaluates a compre-
hensive framework for improving generalization and reducing calibration time in
motor imagery BCls, with two complementary focuses that together form a single
pathway from population learning to user-specific adaptation (detailed in Subsec-
tion 1.3). These two focuses are connected through a modular pipeline that: (1)
extracts stable subject-level features, (2) stratifies the population via k-means clus-
tering to preserve inter-subject structure, (3) trains a Deep4Net backbone with
cluster-specific heads using multi-task learning, and (4) performs few-shot adapta-
tion using only the head layer for unseen users. This design isolates generalizable
representations while enabling lightweight, calibration-efficient personalization. To-
gether, they establish a complete pathway from population-level learning to subject-

specific deployment.

1.2 Related Work

EEG-based BCIs have demonstrated significant potential in enabling direct com-
munication between the brain and external systems, particularly in motor imagery
(MI) paradigms. However, robust decoding of EEG signals remains a challeng-

ing problem due to the high inter-subject and intra-subject variability of neural
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patterns, low signal-to-noise ratios, and nonstationary dynamics of brain activity.
Consequently, achieving reliable performance across diverse populations and record-
ing sessions requires developing models that generalize effectively while minimizing

the need for extensive subject-specific calibration.

Subject-invariant representation learning has emerged as a promising avenue to ad-
dress these challenges. Studies such as Kostas and Rudzicz (2020) have explored
domain adaptation methods to learn representations that are less sensitive to inter-
subject differences, thereby improving cross-subject generalization [38]. Similarly,
Lawhern et al. introduced EEGNet, a compact convolutional neural network de-
signed to learn features invariant to specific recording conditions, demonstrating
improvements in classification performance across multiple EEG-based paradigms
[40]. Complementary to deep models, Riemannian geometry-based approaches that
operate in covariance space have also shown cross-subject robustness in MI decoding
[74]. These findings underscore the need for representation learning techniques that
can extract stable, transferable features across heterogeneous populations. How-
ever, many evaluations do not explicitly model population structure or apply rig-
orous leave-one-subject-out (LOSO) validation protocols, which might limit how

confidently one can assess subject-independent generalization.

As a result, even the most promising generalization strategies often still rely on some
degree of subject-specific calibration to achieve reliable decoding performance. Cal-
ibration aims to fine-tune models to an individual’s unique neural patterns, thereby
compensating for inter-subject variability. He and Wu (2020) demonstrated that
small amounts of calibration data can substantially enhance decoding accuracy com-
pared to pooled models trained across multiple subjects [28]. While calibration can
improve performance, frequent or extended calibration procedures reduce practical
usability. Moreover, many studies emphasize decoding accuracy but provide lim-
ited details on calibration effort—such as the number of labeled trials, duration,
or consistency over time, making it difficult to assess their viability for real-world

deployment.

Transfer learning (TL) has become a central strategy in addressing this trade-off
between calibration effort and generalization. Approaches such as those proposed
by Jayaram et al. (2016) leverage pre-trained models on large offline datasets and
adapt them to new, unseen subjects using limited calibration data. More recent
work by Fahimi et al. (2019) has shown that TL can significantly outperform mod-
els trained on pooled data alone and even traditional subject-specific training in

low-data regimes, highlighting its utility for MI-BCIs. Nevertheless, these bene-
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fits are strongly dependent on the quality of the pre-trained representations and
the similarity between source and target domains. Recent efforts suggest that in-
troducing structure, such as subgrouping subjects based on shared features, can
enhance transferability by guiding models to adapt using more relevant examples.
This pairing may help reduce calibration time and improve robustness in low-data

conditions.

Multi-task learning (MTL) complements transfer learning by jointly optimizing
across multiple related tasks, such as decoding EEG signals from different subjects
or paradigms. Zhang et al. (2022) demonstrated that MTL can exploit inter-subject
similarities by sharing a common model backbone while allowing subject-specific
adaptations via dedicated task heads, resulting in improved performance relative to
single-task models [85]. Such architectures are particularly suitable for EEG decod-
ing, where population diversity can be exploited to build robust shared represen-
tations while preserving flexibility for individual-specific adjustments. Evaluating
MTL frameworks under deployment-relevant constraints, such as LOSO generaliza-
tion, explicit cluster-based heads, limited channels, and short calibration windows,
could offer deeper insight into how shared backbones and specialized heads con-

tribute to accuracy, efficiency, and adaptability in practical settings.

This project integrates these advances by proposing a framework that combines
population-based clustering, multi-task learning, and transfer learning to optimize
MI decoding in EEG. A pre-trained deep learning model is developed, leverag-
ing population-level feature clustering to define shared representational structures.
Multi-task learning is employed to train a shared backbone with cluster-specific
heads, capturing both invariant and subgroup-specific patterns. The trained model
is subsequently transferred to unseen subjects, where its performance is evaluated
in both zero-shot and few-shot calibration settings. By systematically comparing
cluster-based and pooled approaches, this work addresses the longstanding challenge
of balancing cross-subject generalization with minimal calibration requirements,
contributing to the development of BCIs that are both accurate and practical for
real-world deployment. The main contribution of this work is to leverage popula-
tion structure explicitly, enforce subject-independent validation, and demonstrate

few-shot personalization under deployment-like conditions.
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1.3 Goals

This project aims to develop and evaluate a subject-aware transfer learning frame-
work for motor imagery (MI)— based EEG decoding, with the overarching goal of
improving generalization across users while minimizing the need for subject-specific
calibration. The work is structured around two interconnected objectives: first,
to establish and validate a robust cluster-based transfer learning pipeline using a
publicly available MI-EEG dataset; second, to test this pipeline under realistic de-
ployment conditions on newly acquired user data, assessing its practical viability

for rapid personalization.

Objective 1 focuses on constructing a reliable population-level transfer learning
(TL) framework using a public dataset of 85 subjects recorded under a common
MI protocol. The central question is whether explicitly modeling subject hetero-
geneity through unsupervised clustering can improve cross-subject generalization
and few-shot personalization under realistic data constraints. To address this, sev-
eral subcomponents are investigated. First, candidate feature families, including
CSP, ERD/ERS, FBCSP, and Riemannian representations, are compared in terms
of their ability to produce stable, interpretable subject clusters. CSP with k = 3
clusters is selected as the default basis due to its superior geometric separation and

assignment stability. This representation anchors all subsequent comparisons.

Second, the benefit of clustering is evaluated in two settings. In the strict zero-shot
case, clustering offers a modest yet consistent improvement over pooled models. In
the more practically relevant few-shot setting, where each new subject contributes
only a small number of labeled trials, clustered models substantially outperform
pooled baselines under identical calibration trials. These improvements are espe-
cially pronounced when the support set is restricted to the subject’s assigned cluster,

revealing that the source of adaptation data matters more than its quantity.

Third, the robustness of the clustered pipeline is tested through targeted ablations.
Increasing the number of clusters from 3 to 4 offers no measurable benefit and may
fragment the data; doubling the number of calibration trials degrades performance,
likely due to nuisance variability. Augmentation strategies, such as time warping,
noise, frequency shifts, and mixup, are also evaluated; however, they consistently
fail to improve generalization and, in some cases, even harm it. Finally, a feature-
level analysis reveals that the benefit of clustering cannot be reliably predicted
from scalar EEG features or baseline accuracy, suggesting that its effectiveness

is structural rather than feature-driven. Taken together, these findings establish
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clustered few-shot adaptation, with CSP features and $k=3$ cluster heads, as a

stable and data-efficient default for MI decoding on heterogeneous populations.

Objective 2 transitions from offline benchmarking to in-session evaluation by apply-
ing the pretrained cluster-based pipeline to newly acquired EEG recordings collected
with a consumer-grade Unicorn headset. The goal is to evaluate whether the ben-
efits observed offline persist under real-world conditions and minimal calibration.
Each new subject is routed to a cluster-specific head using unsupervised embedding
assignments, and their performance is tracked as a function of the number of avail-
able calibration trials. Results from two held-out users reveal a consistent pattern:
cluster initialization yields higher accuracy than pooled initialization when only one
labeled trial per class is available, while pooled initialization becomes preferable at
higher calibration trials. These outcomes qualitatively mirror the trends observed
offline, suggesting that the proposed TL framework transfers reliably to new users
and can support subject-specific adaptation with only a handful of labeled exam-

ples.

By jointly validating population-level learning and deployment-realistic personaliza-
tion, the project provides a cohesive demonstration that clustering-based transfer
learning can substantially reduce calibration requirements in MI-BCI pipelines, of-
fering both methodological insight and practical steps toward more deployable EEG

decoding systems.



Chapter 2

Theoretical Background

2.1 Brain—Computer Interfaces

A brain-computer interface (BCI) allows a user to communicate or control external
devices directly through brain signals, bypassing traditional muscle pathways [78].
BClIs have diverse applications, from assistive technologies in healthcare and reha-
bilitation to novel human-computer interaction in entertainment and education [43].
In particular, BCI systems offer hope for people with severe motor impairments by
restoring lost functions, for example, by enabling people with spinal cord injuries

to operate prosthetic limbs or helping stroke survivors regain mobility [43].

BCIs can be implemented with implanted invasive electrodes or non-invasive sen-
sors. Among non-invasive methods, electroencephalography (EEG) is the most
widely used due to its safety, portability, and relatively low cost, although at the ex-
pense of lower spatial resolution compared to invasive techniques [20|. EEG-based
BCIs rely on the measurement of voltage fluctuations generated by synchronous
neural activity and captured via non-invasive scalp electrodes, typically arranged
according to the international 10-20 system. These voltage signals are dominated
by rhythmic oscillations spanning standard frequency bands, delta (0.5-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (> 30 Hz), each reflecting

different cognitive and motor processes.

Different EEG paradigms have been explored in BCI research, including event-
related potentials (ERPs) such as the P300 response, steady-state visual evoked
potentials (SSVEPs) elicited by flickering stimuli, and motor imagery (MI) tasks

that exploit sensorimotor rhythm modulations during imagined movements. These
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paradigms enable users to issue discrete or continuous commands. While SSVEP
offers high information transfer rates, MI provides a more intuitive and natural form

of control, but often requires extensive training to achieve competitive accuracy
[31, 45].

2.2 Electroencephalography (EEG)

Electroencephalography (EEG) is a method of recording brain electrical activity
from the scalp using a collection of electrodes [67]. The measured signal represents
voltage fluctuations generated by neuronal activity, predominantly reflecting the
summed postsynaptic potentials of large populations of cortical pyramidal neurons
firing in synchrony |7, 18, 29, 35].

Despite its advantages, EEG faces several critical limitations that directly affect its
effectiveness in BCI systems. Its spatial resolution is relatively low; scalp recordings
capture a blurred aggregate of neural signals due to volume conduction, leading
to poor localization precision [26] compared to imaging modalities like fMRI [27,
54]. Even with high-density electrode arrays, improvements remain modest and
come at the cost of greater setup complexity, computational burden, and increased

challenges in maintaining a stable signal-to-noise ratio (SNR) across channels [17].

Furthermore, EEG signals are highly susceptible to noise and artifacts. Because
they are typically in the microvolt range, even minor disturbances from eye blinks,
muscle contractions, or environmental electrical interference can obscure relevant
neural activity [61]. As a result, extensive preprocessing, filtering, and artifact
removal are required to extract meaningful information, which remains challenging

in real-world, unconstrained environments.

Another significant challenge is inter-individual variability. Studies indicate that
approximately 15-30% of users fail to produce reliable EEG control signals even
after training, a phenomenon known as BCI illiteracy [19]. These differences arise
from diverse factors, including neurophysiological variations, cognitive strategies,
and attention levels, which can make BCIs effective for some users but less so
for others. Finally, usability issues, such as lengthy calibration procedures and
performance degradation due to motion artifacts, limit the scalability of EEG-based

BClIs outside controlled laboratory settings.

In summary, EEG provides a powerful, non-invasive window into brain activity;

however, its limitations in spatial resolution, noise susceptibility, inter-subject vari-
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ability, and real-world usability pose significant challenges for achieving robust,

generalizable BCI performance.

2.3 EEG-based Motor Imagery

Among EEG-based BCI paradigms, motor imagery (MI) stands out for its intu-
itive, endogenous control mechanism. Unlike paradigms that rely on stimulus-
locked brain responses, such as event-related potentials (ERPs) or steady-state vi-
sual evoked potentials (SSVEPs), MI enables users to initiate control voluntarily
by imagining movements without physical execution [10, 12, 68|. This imagined
movement evokes distinct modulations in the sensorimotor cortex, which can be

non-invasively measured using EEG.

During MI, the mental rehearsal of limb movements, such as clenching a fist or
rotating a wrist, leads to a characteristic decrease in oscillatory power within the
i (8-12 Hz) and B (18-30 Hz) bands over sensorimotor areas, an effect known as
event-related desynchronization (ERD) [60, 77]. After the imagery task concludes,
these rhythms typically rebound in power, resulting in event-related synchronization
(ERS) [58]. The ERD/ERS effects are spatially lateralized; for example, imagining
right-hand movement produces stronger ERD over the left (contralateral) hemi-
sphere, typically observed at channels such as C3 and C4 [59]. This lateralization
enables reliable classification of imagined left versus right-hand movements using
EEG signals.

MI-based BClIs are appealing for their natural and asynchronous control, allowing
users to generate commands at will without external stimuli [77]. However, the
practical realization of MI-BCIs remains challenging. The EEG signatures of MI
vary significantly across individuals, influenced by anatomical, psychological, and
attentional factors 2, 34]. Many users require extensive training to learn how to
modulate their brain rhythms consistently, while the system must calibrate a model
to their individual neural patterns [47, 70]. Even with training, a notable portion
of users often struggle to produce sufficiently discriminable EEG patterns for MI
classification [1, 33, 64, 69, 81, 84].

To transform raw EEG into actionable commands, MI-BCI systems use multi-stage
pipelines that include signal preprocessing, spatial filtering, feature extraction, and
classification [47]. The quality of each stage has a critical impact on overall per-

formance. Much of the literature has focused on optimizing these components,
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including improving spatial filters such as common spatial patterns (CSP), design-
ing robust features, and tuning classifier hyperparameters, to enhance decoding

accuracy in both subject-specific and cross-subject scenarios [8, 49, 78].

Despite its challenges, MI remains one of the most extensively studied paradigms
for non-invasive BCIs. Its dependence on internally generated signals rather than
external stimuli offers a pathway to more autonomous and personalized neural in-
terfaces. Ongoing research continues to address the key limitations of MI-BCls,
particularly the high inter-subject variability and calibration burden, to make them

more robust, accessible, and deployable.

2.4 Population Clustering & Multi-Task Learning

2.4.1 Population Clustering

EEG recordings from different individuals often exhibit significant variations in
spatial, spectral, and temporal patterns, which impede the generalization of single-
model approaches across subjects. Traditional BCI methods typically develop
subject-specific classifiers, requiring substantial calibration data for each new user,
which is impractical in many real-world applications [11, 48]. To overcome this,
strategies including population clustering and multi-task learning (MTL) have been
increasingly employed, aiming to leverage shared structure across subjects and en-

hance model generalization [32, 48, 80].

Population clustering refers to grouping subjects into clusters based on similari-
ties in their EEG data, thus identifying homogeneous subsets of users who share
common neural activation patterns or features. By grouping individuals with com-
parable brain signal characteristics, clustering reduces the complexity of handling
inter-subject variability, facilitating the development of more robust and generaliz-
able models tailored to each identified group [37, 39]. Krauledat et al. showed that
clustering CSP filters from previous sessions to create prototypical spatial filters,
then combining them with a small amount of data from a new session, can pro-
duce classifiers that generalize across sessions as well as or better than traditional
full-session calibration, significantly reducing the need for lengthy recalibration in
experienced BCI users [39]. Using these clusters, a shared model is trained while
reducing inter-subject differences, achieving performance comparable to individual-

ized (per-subject) models and significantly better than an unclustered inter-subject
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model. Ultimately, population clustering establishes meaningful subpopulations
within diverse EEG datasets. These subpopulations significantly simplify subse-
quent model training, whether through transfer learning or multi-task frameworks,
by effectively isolating and capitalizing on the common neural structures and min-

imizing the negative impact of variability.

2.4.2 Multi-Task Learning

Multi-task learning (MTL) is a machine learning paradigm in which a single model
is trained on multiple related tasks simultaneously, leveraging shared information to
improve both efficiency and generalization. The central hypothesis is that related
tasks share latent structure or representations, and learning them jointly yields

better generalization than learning them in isolation [14, 15, 62].

In the context of EEG-based BCls, the natural formulation of MTL is typically
subject-specific; each subject’s EEG decoding task can be viewed as a separate
but related task, leveraging both shared (across-subject) and task-specific (within-
subject) components of the neural architecture [40]. Alamgir et al. showed that
treating each subject’s decoding as a related task within a hierarchical Bayesian
MTL framework allows effective information sharing across users. By combining
priors from earlier recordings with minimal new data, they achieved high accu-
racy without full subject-specific calibration and demonstrated robust generaliza-

tion across different experimental setups [3].

Deep neural networks have further extended MTL applications in EEG-based BCls
by allowing richer representation learning across subjects. For example, Autthasan
et al. (2021) proposed a multi-task convolutional neural network (CNN) that simul-
taneously optimized EEG feature extraction for motor imagery classification and
additional auxiliary tasks such as signal reconstruction. This approach explicitly
enforced the learning of discriminative, robust, and generalizable EEG representa-

tions, resulting in significantly better performance in unseen subject data [6].

Additionally, recent deep learning frameworks such as the MIN2Net have shown
substantial improvements by jointly learning spatial, temporal, and spectral features
across multiple subjects and classification tasks [6]. These architectures strike a
delicate balance between shared convolutional layers, which capture generalizable
features, and task-specific layers, which adapt the model to individual subjects
or subject groups [15]. Such deep learning frameworks have shown substantial

improvements by jointly learning spatial, temporal, and spectral features across
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multiple subjects and classification tasks.

2.4.3 Clustered Multi-Task Learning Framework

While population clustering and multi-task learning each help mitigate inter-subject
variability on their own, combining these strategies can yield even more robust
EEG-BCI models. Clustering stratifies the subject pool into more homogeneous
groups, reducing gross between-subject differences, and MTL then exploits shared

information within or across those groups to learn generalizable features.

One straightforward approach is a two-stage pipeline: first, cluster the subjects
based on EEG feature similarity, and then train a multi-task model using those

cluster assignments. In practice, this can be implemented as follows:

Cluster Formation: Group users into clusters according to their neural signal charac-
teristics, such as spatial-spectral profiles or activation dynamics. The grouping can
be performed using k-means or spectral clustering on EEG-derived feature vectors,
or with deep metric learning approaches like PRISM, which encodes EEG similar-
ity [85]. The goal is to identify subpopulations of subjects who share consistent

patterns in their brain activity.

Cluster-Specific Multi-Task Learning: For each cluster, train an MTL model in
which each subject is treated as a separate task. The model architecture can include
shared cluster-level parameters (e.g., a common feature extractor) and subject-
specific parameters for individual decoders. This structure ensures that learning
is constrained within each subgroup, preventing negative transfer from unrelated
subjects. In effect, clustered MTL acts as a hierarchical learning framework, cap-
turing generalizable representations at the group level while preserving subject-level

idiosyncrasies.

New Subject Adaptation: For a previously unseen user, a small amount of calibra-
tion data can be used to assign them to the closest cluster, using the same features
employed during clustering. The corresponding pre-trained cluster MTL model can
then be adapted to the new user by fine-tuning only the task-specific decoder, while
keeping the shared cluster backbone fixed. This cluster-conditioned strategy dra-
matically reduces the need for full subject-specific retraining and has been shown

to enable efficient transfer with minimal calibration [44].

This combined strategy leverages multi-level knowledge transfer, sharing informa-

tion globally across all subjects, within each cluster, and individually. Notably,
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machine learning research has shown that automatically discovering task groupings
and incorporating them into MTL can significantly enhance performance. For in-
stance, Liu et al. (2017) introduced a hierarchical clustered MTL approach that
alternates between learning a multi-task model and clustering the tasks, thereby
jointly finding optimal groupings and shared models [44|. Their results demon-
strated that the discovered latent relatedness (task clusters) "aids in inducing the
group-wise multi-task learning and boosts the performance," outperforming ap-
proaches that treat all tasks as either completely independent or identical. In other
words, allowing the model to share parameters only among cluster-related tasks
yields better generalization than sharing across all tasks. This idea directly aligns
with intuition in BCIs; a model should share features among neurologically similar

users, but not necessarily across wildly divergent users.

In summary, population clustering and MTL are complementary; clustering simpli-
fies the inter-subject variability by creating relatively uniform groups, and multi-
task learning harnesses the shared structure within those groups (and across groups
via higher-level shared layers) to train models that generalize well. Emerging BCI
frameworks that integrate both — for example, clustering users by EEG patterns and
then applying a multi-task (or transfer learning) model informed by those clusters
— have demonstrated superior accuracy and reduced calibration time in comparison
to traditional subject-specific training [44, 85]. This combined approach represents
a promising pathway toward reduced-calibration or few-shot BCI systems, as it en-
ables the model to learn how to learn from a population, first by recognizing which
subgroup a new user belongs to, and then by leveraging the pre-learned representa-
tions tuned for that subgroup, thereby drastically minimizing the additional data
needed from the new user. The combination of population clustering and MTL
effectively capitalizes on shared brain-signal structures at multiple scales, pushing
EEG-based BClIs closer to robust, out-of-the-box performance in real-world deploy-
ments [85].

2.5 Transfer Learning

Transfer learning (TL) is a machine learning paradigm in which knowledge gained
from one domain or task (the source) is leveraged to improve learning performance
in a different but related domain or task (the target) [41, 57, 78]. Instead of training
a model from scratch on the target domain, which may be constrained by limited

data, TL adapts models, features, or representations learned from abundant source
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data to new conditions, thereby reducing the need for large labeled datasets and
shortening training time. TL has found wide application across various domains, in-
cluding computer vision, natural language processing, and speech recognition, where
pre-trained models are routinely adapted to new datasets or tasks. In biomedical
signal processing, and particularly in EEG-based systems, TL addresses the chal-
lenges of non-stationarity and inter-subject variability by enabling cross-subject,
cross-session, or even cross-paradigm adaptation, making it a promising approach
for improving generalization and practicality in brain—computer interface applica-
tions [78].

Transfer learning has proven to be a transformative strategy in motor-imagery (MI)
EEG-based brain—computer interfaces (BClIs), addressing the central challenge of
domain adaptation where differences in brain physiology, head anatomy, electrode
configurations, and cognitive strategies across subjects and sessions cause models
trained on one dataset to perform poorly on another [32, 57]. Traditionally, each
user must undergo a lengthy calibration session to collect subject-specific data,
which hampers usability and scalability. Transfer learning mitigates this by lever-
aging data or model parameters from previously recorded subjects (source domains)
to improve performance on new users (target domains), offering a way to generalize
while minimizing calibration time [50]. This trade-off, improving generalization with

less target data, lies at the core of transfer learning’s appeal in MI-BCIs [32, 73].

A variety of transfer learning strategies have been proposed in recent years to ad-
dress the distributional differences between source and target EEG data, which are
caused by inter-subject variability and signal non-stationarity. These approaches
generally fall into three broad categories: (1) preprocessing-based alignment meth-
ods that project data into a common feature space, (2) deep learning frameworks
that learn domain-invariant representations, and (3) optimization techniques de-
signed to preserve the intrinsic structure of EEG data across domains. Within
these categories, techniques such as Riemannian and Euclidean alignment, label
alignment, adversarial domain adaptation, and manifold or optimal transport—based

mappings have consistently improved cross-subject and cross-session performance
in MI-BCI settings [13, 16, 28, 53, 83|.

Another widely adopted approach involves fine-tuning pre-trained deep neural net-
works. In this paradigm, a model, often a convolutional architecture such as EEG-
Net [69], is first trained on a large, diverse subject pool and subsequently adapted
to a new user using only a small number of calibration trials [21, 52]. Shared fea-

ture extraction layers capture population-level EEG patterns, such as sensorimotor
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rhythms, while fine-tuning selectively adjusts higher-level layers to enable rapid

personalization.

More recently, meta-learning approaches, such as Model-Agnostic Meta-Learning
(MAML), have been explored to accelerate adaptation to unseen users further.
By explicitly training models to learn efficiently from limited data, MAML enables
rapid calibration with only a few gradient updates [22]. Similarly, emerging few-shot
learning strategies integrate small labeled datasets with unlabeled data streams via
unsupervised fine-tuning, moving toward reduced-calibration BCIs while preserving

classification accuracy [42].

While existing transfer learning methods have improved cross-subject generalization
in MI-BCIs, many either assume that subjects can be modeled uniformly using a sin-
gle shared representation or require substantial calibration data to achieve reliable
adaptation. Such limitations leave open the challenge of developing strategies that
balance generalizable representation learning with efficient personalization, partic-
ularly under constraints such as limited channels and a small number of labeled

trials.

In conclusion, transfer learning is a key technique in MI-EEG BCI systems, enabling
rapid personalization and enhancing cross-subject generalizability with minimal cal-
ibration effort. Through feature alignment, fine-tuning, and adaptive learning, TL
mitigates the effects of domain shift (i.e., systematic differences between training
and target distributions due to subjects, sessions, or hardware) while harnessing
collective knowledge from prior users. Cluster-based modeling, multi-task learning,
and lightweight subject-specific adaptation are complementary strategies that can
further enhance calibration and facilitate the translation of offline-trained models
to operational settings. While challenges such as negative transfer, limited data,
and non-stationarity must be carefully managed, evidence from foundational and
recent studies underscores the substantial benefits of well-designed TL pipelines for

practical, effective MI-BCI systems.
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Methods

This chapter outlines the methodological framework employed in this project and,
where relevant, presents intermediate results that inform subsequent design choices.
We compare (i) a raw-EEG CNN baseline (Deep4Net), (ii) a multi-task variant with
a shared encoder and lightweight heads, and (iii) a transfer-learning scheme that
adapts the encoder to new users. Across all experiments, transforms are fit on
TRAIN only (no leakage; the held-out subject is excluded from training/validation
in LOSO), and performance is reported on TEST per subject, including accuracy,

Kk, precision, recall, and F1-score.

3.1 EEG Acquisition and Paradigm

Because the EEG acquisition stack and motor imagery (MI) paradigm were adopted
from existing tools and are not novel contributions of this work, only the essential
information necessary to interpret the offline analyses is presented in this section.

Full implementation details are provided in Appendix A for reproducibility.

3.1.1 EEG headset

Prospective recordings were obtained using the Unicorn Hybrid Black [75], an eight-
channel portable EEG system conforming to the international 10-20 montage. Ac-
tive electrodes were placed at Fz, C3, Cz, C4, PO7, Oz, POS8, and Pz, matching the
layout used throughout this project; two adhesive reference electrodes (M1, M2)
were placed on the mastoids. The amplifier sampled at 250 Hz with 24-bit resolu-

16
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tion and an input range of approximately 750 mV, and communicated with the

host computer via Bluetooth.

To ensure stable signal quality, gel-based electrodes were used in all sessions. Before
each recording, electrode seating and contact quality were verified using the vendor’s
impedance/quality indicators, and adjustments were made as needed to minimize

impedance and slow drifts.
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(a) 8-channel wireless EEG headset. (b) Electrode positions according to the 10-20
system.

Figure 3.1: UNICORN HYBRID BLACK SYSTEM [75].

3.1.2 Acquisition Setup and MI Paradigm

EEG data and event markers were transmitted via Lab Streaming Layer (LSL). The
vendor application published the EEG stream, while the paradigm/game emitted
markers on a separate LSL stream. LSL’s time-correction provided a common clock,
enabling alignment of cue onsets and EEG samples at single-sample resolution. All
streams were persisted in MNE-compatible FIF format, with annotations derived

from the marker stream.

Data collection relied on two existing Python-based applications: The recorder (de-
veloped by Manuel Weiss), which handled EEG acquisition, real-time channel mon-
itoring, event labeling, and data persistence; and the paradigm/game (by Annina
Bazzigher and Zoe Widmer), built on Pygame to deliver visual cues for left-hand
MI, right-hand MI, and rest conditions. Although the paradigm supports feedback,
this functionality was not used in this project. Both tools were adopted without
modification. Closed-loop inference was prototyped in the recorder but not em-

ployed for any evaluation reported here. Implementation details are provided in
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Appendix A.

The MI paradigm followed a cue-based design. Each trial began with a visual
cue indicating the required task (left-hand imagery, right-hand imagery, or rest).
Participants performed the task for a fixed period while an EEG was recorded. Trial
timing, cue onset synchronization, and marker emission were fully controlled by the

paradigm/game. The complete acquisition schedule is provided in Appendix A.

3.2 Datasets

This project utilizes two datasets serving complementary roles: a large, harmonized
publicly available dataset (the source dataset) used for model pretraining, cluster-
ing, and evaluation under subject-independent protocols, and a smaller, prospec-
tively acquired dataset (the target dataset) used to evaluate cross-dataset transfer

and rapid personalization.

3.2.1 Source Dataset

The training dataset used in this project was assembled by Bazzigher and Widmer
[9] through the aggregation and harmonization of multiple public motor-imagery
(MI) EEG datasets, utilizing a unified schema. The primary sources comprise
PhysioNet MI [23]| (109 subjects; 5 MI tasks), High-Gamma MI [66] (14 subjects;
4 MI classes), Stieger [72] (62 subjects; 7-11 runs per subject; 4 MI tasks), and
Weibo [82] (10 subjects; 7 MI tasks) (Table 3.1). Additional candidate sets that
met channel-count and quality criteria but lacked explicit rest labels (e.g., Cho, Lee,
Liu, Shin, A, Grosse Wentrup) were excluded to preserve a consistent three-class
label space (left hand, right hand, rest).

Because sources differed in hardware, sampling rates, montages, cueing schemes,
and recording conditions, a standardized harmonization pipeline was applied before
release. Channel subsets were mapped to the eight-channel target montage (with
spatial interpolation/derivation where exact placements were unavailable); sam-
pling rates spanning 160-1000 Hz were normalized by downsampling higher-rate
recordings; and power-line interference was mitigated using dataset-appropriate
notch filters (50 Hz for European/Asian recordings; 60 Hz for U.S. recordings).
Dataset-specific adjustments followed the same principles (PhysioNet [23]: 60 Hz
notch, reduction to 8 channels, retention of left /right /rest; Weibo [82]: 50 Hz notch,
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reduction to 8 channels; Stieger [72| and High-Gamma [66]: notch filtering and re-

duction to 8 channels with subsequent resampling).

After harmonization and curation, the delivered working dataset comprises 85 sub-
jects stored as MNE/FIF files under a unified schema: sampling rate 200 Hz; eight
EEG channels (Fz, C3, Cz, C4, PO7, Oz, POS, Pz); and a three-class label space
with standardized event codes {0 = left hand, 1 = right hand, 2 = rest}. Consistent
annotation names map to these integer labels, simplifying downstream processing.
No additional content changes were made by the present author before analysis;
subsequent transformations (e.g., resampling for model compatibility, epoching,
and standardization) are specified in Section 3.3.1. This harmonized multi-cohort

dataset is referred to as the source dataset throughout this work.

Table 3.1: MI DATASETS USED TO CONSTRUCT THE SOURCE DATASET.

Dataset #EEG ch. Events (subset) fs Total subjects
PhysioNet MI [23] 64 rest, LH, RH, feet, both hands 160 Hz 109
High-Gamma MI [66] 128 rest, LH, RH, feet 250 Hz 14
Stieger [72] 60 rest, LH, RH, both hands 1000 Hz 62
Weibo [82] 60 rest, LH, RH, both hands/feet 200 Hz 10

Composed by Bazzigher and Widmer [9]; values compiled from the original
publications [23, 66, 72, 82].

3.2.2 Target Dataset

Prospective recordings were collected with the Unicorn Hybrid Black [75]. An
acquisition summary is provided in Section 3.1.2 (for full implementation detail see
Appendix A. Two subjects were recorded on two separate days, with two sessions
per day, yielding a total of eight sessions (2 subjects x 2 days x 2 sessions). Signals
were sampled at 250 Hz from eight EEG channels (Fz, C3, Cz, C4, PO7, Oz, POS,
Pz) with mastoid references (M1, M2) and saved per session in MNE-compatible

FIF format, along with annotations, for downstream processing.

Each session followed a fixed motor-imagery schedule, consisting of alternating rest
periods and cued blocks of left- or right-hand imagery. Per session, this produced
12 left-MI and 12 right-MI trials, interleaved with predefined rest intervals. Event
markers were synchronized to cue onset via LSL and fused into the recordings as

annotations to ensure sample-level alignment.

The dataset adopts a three-class label space, left hand, right hand, rest, mapped to



CHAPTER 3. METHODS 20

integer codes {0,1,2} for consistency with downstream analyses; rest trials are not

used for supervised decoding but are retained for diagnostics and clustering.

Basic post-acquisition quality control was performed after each session to confirm
data integrity before preprocessing: (i) visual inspection of raw traces for continu-
ity, amplitude plausibility, and channel ordering; (ii) channel-wise variance/RMS
summaries to identify flat or saturated channels; and (iii) power spectral density
estimates to verify suppression of line interference and the presence of sensorimotor
/B activity (~ 8-30Hz). Sessions passing these checks were retained for analysis.
This dataset is used exclusively for offline adaptation and evaluation; no closed-loop
inference results are reported. This prospectively recorded dataset is referred to as

the target dataset throughout this work.

3.3 Experimental Setup

This section formalizes the experimental design used to evaluate cross-subject MI
decoding. We compare (i) a raw-EEG convolutional baseline (Deep4Net), (ii) a
multi-task variant with a shared encoder and lightweight heads, and (iii) a
transfer-learning scheme that adapts the shared encoder to new users. Three pro-
tocols are considered: pooled training with subject-disjoint validation, leave-one-
subject-out (LOSO) zero-shot transfer, and LOSO few-shot adaptation with a small
number of calibration trials per class. Unless stated otherwise, all preprocessing
statistics, feature transforms, clustering (when used), and model selection are de-
rived strictly from TRAIN data; in LOSO protocols, the held-out subject contributes
no samples to training. Performance is reported per subject on TEST with accuracy
as the headline metric, complemented by Cohen’s k and macro-precision /recall /F1-

score, and results are averaged over independent seeds.

3.3.1 Preprocessing

Effective preprocessing is essential for the success of subsequent experiments and
determines the reliability of both decoding and adaptation results. This section
presents the default preprocessing procedures applied throughout the study, which
are standardized to ensure comparability across sources and experiments while pre-
venting train—test leakage. The source dataset is delivered at 200 Hz with eight
EEG channels (Fz, C3, Cz, C4, PO7, Oz, PO8, Pz); the target dataset is recorded
at 250 Hz with the same montage and mastoid references (M1, M2).
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Raw Signal Preprocessing

All analyses operate at a unified sampling rate of 250 Hz. Source dataset files are
resampled from 200 Hz using zero-phase resampling with automatic padding; target
dataset files remain at their native 250 Hz. To avoid double filtering, no additional
notch or band-pass is applied to the source dataset beyond its documented construc-
tion. For the target dataset, a 50Hz notch filter was used to suppress power-line
interference, followed by an 8-30Hz IIR band-pass filter to isolate sensorimotor

rhythms.

Independent component analysis (FastICA, eight components, fixed seed) is config-
ured for the target dataset to support diagnostic visualization; component removal
is not performed in reported runs, and neither dataset includes dedicated EOG
channels. Before epoching, each session undergoes basic integrity checks (conti-
nuity, amplitude plausibility, and channel ordering), channel-wise variance/RMS
screening for flat or saturated channels, and PSD inspection to verify line-noise

suppression and energy in the 8-30 Hz band.

File handling mirrors acquisition structure. Source dataset recordings are processed
separately for each subject and file, without concatenation. Target dataset runs
from the same subject are concatenated before epoching so that cue timing and

rest intervals are preserved across successive runs.

Epoch Preprocessing

Epochs are time-locked to the cue onset for the three classes. For each event,
a window from -1.0 s to +2.0 s is extracted, yielding a 3.0 s analysis segment.
Within each epoch, fixed-length crops of 3.0 s are generated with a 0.5 s hop. This
sliding procedure standardizes input duration and increases the number of training
examples while keeping the temporal context aligned with cue-related activity cite

Schirrmeister2017. No baseline correction is applied.

Channel-wise exponential moving standardization (EMS) is applied to mitigate slow
drifts and changes in variance. To prevent leakage, EMS parameters are estimated
per subject on the TRAIN partition only and then reused unchanged for the corre-
sponding TEST partition.

All preprocessed outputs are persisted as serialized MNE Epochs objects, along with
the configuration that produced them (dataset, sampling rate, channel list, epoch

limits, sliding parameters, standardization settings, and random seed), ensuring the
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exact regeneration of results. After preprocessing, several complementary feature

families are explored to capture both spectral and spatial information from the
EEG.

3.3.2 Feature Extraction

Feature extraction maps preprocessed epochs to fixed-length vectors suitable for
classification and transfer learning. The implementation supports several families
of features whose outputs can be concatenated before dimensionality reduction and
selection. The principal methods are event-related desynchronization /synchroniza-
tion (ERD/ERS) band-power contrasts, common spatial patterns (CSP), filter-bank
CSP (FBCSP), and Riemannian geometry-based representations.

ERD/ERS band-power: ERD/ERS quantifies relative power change between a
baseline and analysis window within physiologically motivated bands. Baseline
and analysis windows are defined on the epoch time axis and clamped to available
samples if necessary. By default, baseline and analysis windows are [0.0,0.5] s and
[0.5,4.0] s, and the pu and B bands are [8,12] Hz and [13,30] Hz. For each band,
epochs are band-limited using MNE'’s filtering, and the mean-squared amplitude
is computed over channels and time for both windows. A per-epoch, per-band
ERD/ERS score is formed as a percent change relative to baseline; the vector length

equals the number of bands.

Common Spatial Patterns (CSP): CSP is applied directly to epoch matrices and
requires at least two classes. The implementation uses MNE’s CSP with a config-
urable number of spatial filters (four retained in the main configuration), no reg-
ularization, and no trace normalization. When preprocessing includes an 8-30 Hz
band-pass, CSP operates on the band-limited signal; otherwise, it uses broadband

epochs.

Filter-Bank CSP (FBCSP): FBCSP extends CSP by decomposing the signal into
contiguous frequency bands and applying CSP within each band. In the reference
configuration, bands cover ranges spanning low to high bera (|4-8]|, [8-12], [12-16],
..., [32, 38|), retaining two spatial filters per band. Outputs are concatenated to

form a single vector. FBCSP is used in ablations to examine the trade-off between
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spectral resolution and complexity; the default pipeline in reported results employs

single-band CSP.

Riemannian features: These features were obtained by estimating a covariance ma-
trix with OAS shrinkage and mapping it to the tangent space at the manifold refer-
ence point to get a Euclidean vector suitable for linear classifiers. Upper-triangular
vectorization without mapping is available; however, the tangent embedding was

preferred in exploratory trials due to its greater stability with small sample sizes.

When multiple methods are enabled, feature outputs are concatenated along the
feature dimension to produce a per-session matrix. For training, per-session ma-
trices from all subjects’ TRAIN partitions are vertically stacked to form a pooled
set. A standard scaler is fitted on this pooled TRAIN set and applied uniformly
to all matrices, including held-out TEST portions, thereby fixing a common affine
normalization learned strictly from training data. Dimensionality reduction uses
PCA fitted on the pooled TRAIN features; unless configured otherwise, the target is
set to retain 95% variance (skipped when dimensionality is below a threshold, 300
by default).

Feature selection uses recursive feature elimination with cross-validation (RFECV)
built around a linear SVC (step size 30; 3-fold CV; accuracy scoring; minimum 10
retained features). RFECV is fit once on the pooled TRAIN features, after applying
the training-fitted scaler and, when enabled, PCA, to produce a boolean mask that

identifies the retained dimensions.

For the target dataset, the exact scaler, PCA projection, and RFECV mask learned
on the pooled TRAIN set is loaded and applied unchanged before any modeling or
analysis. This process projects the features of the target subject into the same space
as the source dataset, thereby preventing leakage from the target subjects into the
feature selection process. In acquisition-only evaluations, these saved transforms
(scaler/PCA /mask) are reused without refitting. Final per-session matrices, there-
fore, consist of standardized, optionally PCA-reduced features, restricted by the
fixed RFECV mask, paired with the original epoch labels. All feature artifacts are

persisted to support exact reproduction of results.
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3.3.3 Population Clustering

Inter-subject variability is a central challenge in EEG-based motor imagery decod-
ing, as differences in brain physiology, electrode placement, and cognitive strategy
can degrade cross-subject generalization. To address this, subject clustering was
explored as a strategy to stratify the population into more homogeneous subgroups
before model training. By grouping subjects with similar EEG representations, the
approach aims to exploit shared structure within clusters while limiting negative

transfer between dissimilar users.

Clusters are formed in the fixed feature space defined by the preprocessing and
feature-extraction pipeline (Section 3.3.1, 3.3.2) using transforms learned only on
the pooled TRAIN subjects to avoid leakage. For each subject, all epoch-level feature
vectors are: (i) standardized with the global scaler, (ii) projected via PCA fitted
on the pooled TRAIN set (when enabled), and (iii) restricted by the RFECV mask
learned on the same TRAIN subset. The resulting vectors are averaged across runs
and splits to produce a single, fixed-dimensional subject-level representation, which

serves as the input to clustering.

The implementation supports centroid-based, hierarchical, and density-based clus-
tering methods. Following results from prior work, k-means is used as the default
method with k-means++ initialization, a maximum of 300 iterations, 10 random
restarts, and a fixed random seed of 42. Agglomerative clustering with Ward link-
age provides a hierarchical alternative when Euclidean structure is appropriate, and
DBSCAN offers a density-based option with Euclidean distance (& = 1.0), a min-
imum of five samples, and a leaf size of 30. All hyperparameters are exposed via
configuration and were varied in exploratory analyses. The special case k = 1 serves
as a pooled baseline, effectively collapsing clustering into a single group to quantify

the marginal value of stratification.

The number of clusters is selected using internal metrics and visual diagnostics.
For k-means, inertia and the silhouette coefficient are computed across candidate
k values, and scree plots of PCA eigenvalues are inspected to estimate intrinsic
dimensionality. Cluster-size distributions are checked to avoid degenerate splits,
while low-dimensional embeddings (such as PCA or t-SNE) overlaid with baseline

subject performance provide qualitative insights into separability.

Cluster assignments are integrated into the multi-task architecture by conditioning
the classifier head on a subject’s cluster identity. During training, each mini-batch

is associated with its corresponding cluster index, and examples are routed through
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the shared backbone to their assigned cluster-specific head. After training, the fitted
clustering model, preprocessing transforms, and cluster assignments are serialized as
part of a cluster wrapper alongside network weights. With k-means, new subjects
are assigned to the nearest centroid using the saved model, enabling consistent
head selection during transfer. (Hierarchical and DBSCAN variants are retained
in implementation for exploratory analyses but do not currently support out-of-
sample assignment.) An optional restriction flag enables evaluation confined to

within-cluster adaptation.

For quantitative validation and model selection, multiple metrics are reported: the
silhouette score (higher is better), the Davies-Bouldin index (lower is better), and
the Calinski-Harabasz score (higher is better), alongside an inertia-based elbow-
curve inspection. Stability is assessed by repeating k-means with different random
seeds and via bootstrap resampling of epochs within subjects; partitions are com-
pared using the adjusted Rand index. Cluster-size balance and baseline subject-
accuracy distributions are also monitored to avoid degenerate solutions. Numerical

results and the selected k for each feature set are presented in the Results section.

3.3.4 Data Augmentation

Augmentation is applied to potentially improve generalization in the presence of
inter-subject differences and limited labeled data. In all experiments, augmentations
are applied only to the TRAIN split; validation and TEST inputs remain unchanged.
Subject clustering is computed from features extracted from unaugmented data
to avoid altering group structure. Raw-signal augmentations are evaluated during
multi-task learning; a batch-level interpolation (mixup) is assessed during transfer
learning. Exactly one augmentation is enabled per run to isolate its contribution,
and comparisons are reported under identical model settings and random seeds in

the pooled-only regime.

Gaussian noise: Gaussian noise models sensor and impedance fluctuations by adding
zero-mean perturbations to each channel. Conceptually, this encourages the encoder
to become invariant to small amplitude variations that do not carry task informa-
tion. Concretely, for an epoch array of shape (channels, time), we compute each
channel’s within-epoch standard deviation and add i.i.d. Gaussian noise scaled by
o times that standard deviation (with a 1078 offset for numerical stability). The

configuration uses o~ = 0.02 (2% of per-epoch channel amplitude). Noise is applied
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on-the-fly at batch construction and never at validation/test time.

Time warping: Time warping introduces local dilations or compressions to emulate
latency jitter and tempo variability in motor imagery. The transformation selects
a single contiguous segment within the epoch by uniformly sampling a start index
and fixing a segment length up to one-half of the epoch duration. That segment is
resampled using SciPy’s resampler to a length scaled by a factor drawn uniformly
from [1 — 0.15,1 + 0.15] and then reinserted at its original location. If resam-
pling shortens the segment, zero-padding restores the original segment length; if it
lengthens the segment, trailing samples are cropped so that the overall epoch length
remains unchanged. This procedure produces small, realistic timing perturbations

while preserving boundaries and label alignment.

Frequency shift: Frequency shifting simulates modest drifts in dominant rhythm
frequencies that can arise from state changes or slight electrode displacements.
The approach computes the analytic signal along the time axis via the Hilbert
transform for each channel, multiplies it by a complex exponential e/?*/" using a
common carrier for all channels, and finally takes the real part. With a sampling
frequency of 250 Hz and a configured shift magnitude of +1 Hz, this results in
a controlled spectral translation without circular wrap-around. The operation is

applied independently to each epoch and preserves phase continuity.

Mixup: Mixup is employed at the transfer stage, as a label-aware interpolation
that augments decision boundaries rather than raw waveforms. For a mini-batch X
with labels y, a coefficient A is sampled from Beta(a, @) with @ = 0.2, and a random
permutation is generated on-device. Training proceeds on X = AX + (1 — )X’ and

the loss is formed as a convex combination of cross-entropy terms,
L=2-CE(f(X),y)+(1-2) - CE(f(X),y)

Mixup is applied during pooled fine-tuning and few-shot calibration of subject-
specific heads, when enabled. Evaluation uses unmodified inputs, and no raw-signal

augmentations are used at the transfer stage.

Each augmentation is toggled in a dedicated run while keeping preprocessing, archi-
tecture, optimizer, subject splits, and seeds fixed. Augmentations are applied only

during batch construction on TRAIN; validation and textsc test remain unchanged.
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Clustering always uses features extracted from unaugmented data. Although the
raw-signal pipeline can compose noise — warp — shift, experiments enable at most
one method at a time. Configuration files record the active augmentation and pa-
rameters (o for noise, warp ratio, and maximum segment fraction for time warping,
shift magnitude for frequency shifting, and @ for mixup) to ensure exact reproduc-

tion.

Table 3.2: AUGMENTATION CONFIGURATIONS USED DURING TRAIN-
ING.

Augmentation  Parameter Value

Gaussian noise o (relative to epoch std) 0.02

Time warp Local warp ratio +0.15

Max warped segment 0.5 of 600-sample epoch
Frequency shift Sampling rate fi; shift 250 Hz; £1 Hz
Mixup Beta parameter a 0.2

The extracted features, with or without augmentation, are then used to train and
evaluate three complementary modeling approaches: a baseline Deep4Net model, a
multi-task learning framework with cluster-specific heads, and a transfer learning

approach that adapts these models to unseen subjects.

3.4 Classification Models

3.4.1 Deep4Net

Deep4Net is a convolutional architecture tailored for raw EEG that stacks four
convolution—pooling blocks and concludes with a dense softmax layer [66]. The
first block factorizes the entrance transformation into a temporal convolution fol-
lowed by a spatial convolution across electrodes without an intervening nonlinearity,
regularizing the input mapping by decoupling temporal filtering from spatial un-
mixing. Subsequent blocks are conventional conv—pool stages. Exponential linear
units (ELUs), batch normalization, and dropout are integral design choices that
have been shown to stabilize optimization in this family of models. The original
work also introduced "cropped training", i.e., learning from dense, sliding windows
within trials, to increase the number of supervised examples and to trade off de-

coding delay against accuracy in online scenarios.

Deep4Net fulfils two complementary functions in this work. First, it serves as a

standalone baseline classifier, trained either separately for each subject or once on
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Figure 3.2: ARCHITECTURE OF DEEP4ANET [65].

the pooled cohort, always using the same raw windows and fixed train-test parti-
tions; trial-level decisions are obtained by averaging window-level logits within a
trial. Second, the same convolutional trunk is reused as a shared encoder in the
subsequent multi-task and transfer settings, where lightweight subject- or cluster-
conditioned heads are attached on top. Localizing adaptation to these heads, while
keeping the trunk frozen or updating it at a markedly slower rate, provides a con-
trolled way to compare a purely supervised baseline against models that leverage
shared representations for cross-subject generalization and rapid per-user calibra-

tion.

The complete training and reporting procedures for the standalone baselines are
specified in Section 3.5. Building on the same encoder, the following subsections
introduce the multi-task and transfer frameworks that overlay subject/cluster heads

and define how adaptation is performed.

3.4.2 Multi-Task Learning Model

In addition to a standalone baseline defined in Sections 3.4.1 and 3.5.2, Deep4Net
also serves as the backbone of the MTL/TL pipeline designed in this work. In the
MTL stage, the Deep4Net trunk is shared across tasks, while cluster-conditioned



CHAPTER 3. METHODS 29

heads specialize in decision boundaries. In TL, the same trunk is reused (optionally
frozen or trained at a reduced learning rate) and augmented with subject or cluster
heads, depending on the transfer mode. Anchoring both MTL and TL against the
single-subject and pooled Deep4Net baselines isolates the contribution of subject-

aware routing and parameter reuse.

The multi-task learning (MTL) phase is a representation-learning stage whose
goal is to train a subject-agnostic convolutional trunk (Deep4Net) while allowing
lightweight specialization at the decision layer. Each "task" is defined by a subject
cluster; consequently, MTL explicitly optimizes a shared backbone on pooled data
and a small classifier head for each cluster. This yields two artifacts that the transfer
stage depends on: (i) a pretrained backbone that encodes motor-imagery structure
shared across users; and (ii) a bank of cluster heads that capture cluster-specific

decision boundaries.

In addition to the shared trunk, the network maintains one lightweight multilayer
perceptron head per cluster. Each head receives the backbone feature vector and
comprises a linear layer with 128 hidden units, ReLU activation, dropout with
a rate of 0.5, and a final linear layer that produces two logits (left vs. right).
These are the cluster heads exported by the MTL stage and later reused by the
transfer-learning (TL) stage for zero-shot inference or as initialization for subject-
specific heads. During a forward pass, each trial carries the integer cluster index of
its subject; mixed-cluster mini-batches are handled by routing each sample to its

corresponding head while sharing the backbone.

Cluster assignments are computed once, before MTL training, from fixed, unaug-
mented features to prevent altering the group structure. Concretely, all epoch-level
feature vectors available for a subject are standardized by the pooled train-fitted
scaler, optionally projected by PCA, and pruned by the RFECV mask (all learned
strictly on the pooled TRAIN set, see Section 3.3.2). Averaging across epochs and
splits yields a single subject-level representation. K-means is then applied to these
representations with configuration-controlled hyperparameters (see Section 3.3.3).
The fitted model, scaler/PCA /mask, subject representations, and the subject—
cluster maps are persisted as a cluster wrapper alongside MTL weights to enable

consistent head selection in TL.

Training uses pooled TRAIN windows across subjects with subject and cluster labels
preserved. Mini-batches are shuffled from the pooled set. When augmentation is
enabled for MTL (see Section 3.3.4), raw-signal transforms are applied on-the-fly to

TRAIN windows only; validation and TEST inputs remain unmodified. Optimization
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uses Adam with weight decay 1073; runs use batch size 64, 100 epochs (no early
stopping), and three independent runs are launched with seeds 42-44. After each
run, evaluation is performed on per-subject TEST splits, and predictions are saved
with ground-truth labels for downstream TL analyses. Model checkpoints include
the shared backbone and all cluster heads.

The MTL stage learns a subject-agnostic temporal-spatial representation in the
shared trunk while allowing cluster heads to specialize decision boundaries for sub-
populations. This produces two artifacts consumed by TL: (i) a pretrained backbone
encoding motor-imagery structure that can be frozen or gently fine-tuned, and (ii)
a set of cluster heads (numeric keys "0".."k-1") that support zero-shot routing
and cluster-conditioned few-shot initialization. In the limit & = 1, MTL reduces to

a standard multi-subject classifier with a single shared head.

The training logs, per-run predictions, MTL weights, and the clustering wrapper
(model, preprocessing transforms, and assignments) are persisted. This ensures
that TL can deterministically recover head indices, can reassign new subjects in
a consistent feature space, and overlay additional subject-specific heads without

disturbing the shared representation.

3.4.3 Transfer Learning Model

Transfer learning in this project builds on a multi-task pretrained Deep4Net back-
bone trained on the source dataset and adapts it to unseen subjects drawn from
either the source or the target dataset. The TL Model wraps the trained MTL Model,
exposing the shared backbone together with a dynamic registry of classification
heads. Unless explicitly disabled, transfer begins from the pre-trained MTL weights,
allowing adaptation to proceed from a trunk that already encodes subject-invariant

motor imagery representations.

Internally, the TL Model retains the pretrained MTL backbone and maintains a
keyed registry of lightweight MLP heads. Each head maps the backbone feature
vector to two logits via a simple architecture (Linear — ReLU — Dropout 0.5
— Linear). Heads can represent individual subjects, entire clusters, or newly
added users. At initialization, the TL model reconstructs the shared backbone
and any cluster heads stored in the MTL checkpoint. If a head does not exist for
the requested subject or cluster, a new one is automatically allocated. This design
localizes adaptation: the backbone can remain fixed or be updated at a reduced rate,

while the newly added heads learn more quickly, minimizing the risk of overfitting
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when calibration data are scarce.

Four evaluation protocols are supported, each probing a distinct adaptation regime:

e Pooled fine-tuning: labeled training trials from all subjects (including the
target) are pooled to fit a single decision layer on top of the shared backbone.
This provides an optimistic upper bound when extensive calibration data are

available under matched conditions.

e Hold-out zero-shot: the target subject is excluded from training and validation
and is evaluated without any calibration. This directly measures subject-

independent generalization.

e Hold-out few-shot: starting from weights trained on all non-held subjects, a
new subject-specific head is calibrated using only a small, fixed number of
labeled trials per class from the held subject, evaluating the effectiveness of

adaptation under limited calibration.

o In-session transfer: for the target dataset, a brief calibration prefix at the
start of each session is used to fit a subject-specific head; inference then pro-
ceeds in strict temporal order over the remainder of the session. This approx-
imates a deployment scenario where only a short early-session calibration is

available.

All protocols enforce strict subject disjointness between training and validation to
prevent trial-level leakage. Evaluation always uses the held subject’s TEST split,
reporting accuracy, Cohen’s k, and macro-averaged precision, recall, and F1-score.
Training loop details, optimizer configurations, and early-stopping strategies are

described separately in Section 3.5.

Comparing these protocols side by side reveals the performance decomposition:
pooled fine-tuning reflects the optimistic upper bound, zero-shot evaluates subject-
independent generalization without calibration, few-shot assesses the effectiveness of
adaptation under limited calibration, and in-session transfer approximates a realistic
deployment setting. Their relative differences reveal the quality of subject-invariant
representations, the magnitude of domain shift, and the benefit of lightweight, head-

localized adaptation on top of the pretrained backbone.
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3.5 Training and Evaluation Protocols

This section formalizes the training and evaluation of models, as well as the real-
ization of subject transfer on top of the multi-task backbone. All procedures are
aligned with the preprocessing and model definitions introduced earlier, and every
protocol is executed with the same optimizer, batch size, and early-stopping dis-
cipline to ensure comparability. Unless otherwise stated, input windows comprise
eight EEG channels and 750 samples, the number of classes is two, and the classi-
fier is a Deep4Net backbone with an MLP head. Optimization uses Adam with a
weight decay of 0.001, a batch size of 64, and a two-rate schedule in transfer learn-
ing (head learning rate le-3 and backbone learning rate le-5 when the backbone
is unfrozen). Early stopping monitors a subject-disjoint validation split. Random-
ness is controlled through three independent runs, with seeds starting at 42; results
are aggregated per subject across runs for reporting purposes. Augmentation is

disabled by default at transfer time, except when explicitly enabled.

3.5.1 Cross-Subject Partitioning and Transfer Protocols

This subsection specifies the partitioning of trials for training, validation, and test-
ing across multi-task and transfer learning, as well as the safeguards that enforce

cross-subject separation.

MTL split (intra-subject): Each subject’s subepochs are randomly divided into
TRAIN and TEST partitions in a 70/30 ratio using a fixed seed. EMS parameters
are fitted on TRAIN only and applied to the corresponding TEST portion, so normal-
ization statistics never include test samples. When multiple runs exist for the same
subject, the runs are concatenated before splitting, allowing the 70/30 partition to

operate on the combined recording.

Subject-level representations used for optional clustering are computed from the
feature matrices by averaging per-trial feature vectors for each subject. Clustering
does not affect routing and is retained solely for compatibility with multi-cluster
ablations. Under multi-cluster settings, representations should be derived from

TRAIN features only to maintain strict separation.

TL protocols (cross-subject): The TL stage reuses the MTL-pretrained Deep4Net

backbone and evaluates three complementary cross-subject protocols that differ
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only in how the target subject’s data is used:

e (i) Pooled fine-tuning: Training uses the pooled TRAIN trials from all sub-
jects (including target training data), and evaluation is performed on each
subject’s TEST trials. Because the target subject contributes labeled TRAIN
data, this setting provides an optimistic upper bound when a realistic cali-
bration session is available under matched conditions; performance primarily
reflects backbone capacity and the robustness of a single shared decision layer

after exposure to population variability.

e (ii) Hold-out zero-shot: Training uses TRAIN trials from all subjects except
the held subject, and evaluation is performed on that held subject with no
calibration. The gap to pooled fine-tuning indicates the amount of subject-
specific variability that remains after pretraining and pooled adaptation. If
multiple clusters are used, the held subject can be routed to the nearest cluster
head; with a single cluster, inference reduces to applying the shared head

without adaptation.

e (iii) Hold-out few-shot: Starting from the state trained on all non-held sub-
jects, the backbone is frozen and a new subject-specific head is fine-tuned
using a small labeled trial from the held subject (k_shot = 4 per class). Im-
provements over zero-shot can thus be attributed to decision-layer adaptation
rather than representational changes. When clustering is active, the new head
may optionally be initialized from the assigned cluster head before few-shot

calibration.

In addition to these protocols, the pipeline offers an in-session transfer workflow
that remains fully offline, emulating deployment on the target dataset, where the
subject has never been seen during offline training. The system begins with a
population-trained backbone that was learned without the target subject. A short,
initial calibration prefix (the first k labeled trials per class) is used to fit a fresh
subject-specific head, with the backbone kept fixed or updated only at a much
smaller rate if enabled. After this brief calibration, parameters are frozen and in-
ference proceeds over the remainder of the session strictly in temporal order: no
shuffling, no look-ahead, and no further updates. Only post-calibration trials con-
tribute to the reported test metrics. Preprocessing and normalization are performed
based on the estimates obtained from the training cohort and are not refit on the

evaluation data. When clustering is active, the new head may be initialized from
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the nearest cluster head; with a single cluster, it is randomly initialized. This set-
ting approximates a realistic online workflow with minimal early-session calibration

followed by fixed-parameter operation, without requiring live streaming.

Across all modes, leakage safeguards are enforced. Validation subjects are disjoint
from training subjects during pooled fine-tuning and LOSO training; the held sub-
ject contributes no data to training or validation in LOSO protocols; EMS statistics
never use TEST data; and augmentation, when enabled, is applied only to TRAIN
samples. Each experiment is repeated for three runs with seeded randomness (42,
43, 44), and evaluations are computed solely on the fixed TEST partitions produced
by the initial 70/30 intra-subject split. This design yields directly comparable op-
erating points: pooled fine-tuning as an optimistic ceiling with pooled calibration;
LOSO zero-shot as plug-and-play generalization without calibration; and LOSO

few-shot as the speed of per-user adaptation under a fixed, small labeled trial.

3.5.2 Baseline Experiments

All multi-task and transfestandaloneresults reported in this project are evaluated
against a stand-alone DeepdNet baseline trained outside the MTL/TL framework,
using the same raw windows and the same TRAIN/TEST splits to ensure like-for-like

comparisons.

Single-subject baseline: One Deep4Net is trained per subject using only that sub-
ject’s TRAIN windows and evaluated on that subject’s TEST, with Adam optimiza-
tion and three runs with seeds 42-44. Predictions are aggregated to the trial level
by averaging logits over all windows sharing a trial identifier and taking the argmax.
Metrics reported are accuracy, Cohen’s «, precision, recall, and F1-score. This base-
line approximates an upper bound when ample labeled data from the target user is

available and no population information is shared across users.

Pooled baseline: A single Deep4Net is trained on TRAIN windows pooled across
all subjects and evaluated on the pooled TEST. Optimization and evaluation mirror
the single-subject setup. This baseline quantifies what a single, non-clustered model

can learn from the population without subject-specific heads or transfer.

Both single and pooled baseline configurations use identical convolutional hyperpa-

rameters (dropout probability 0.25, 25 temporal and 25 spatial filters in the first
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block, temporal kernel length 10, pooling length 3), differing only in pooling mode
(mean vs. max) to match the training regime; the remainder of the architecture
follows the published design [66].

Table 3.3: MEAN DECODING PERFORMANCE FOR SINGLE-SUBJECT VS.

POOLED MODELS. Single-subject results: mean + SD across N=85 participants. Pooled
results: mean + SD across three independent runs on all subjects.

Metric Single-Subject Pooled

Accuracy 0.577 + 0.096 0.695 + 0.082
K 0.154 £ 0.183 0.390 £ 0.163
Precision 0.528 £+ 0.168 0.745 + 0.019
Recall 0.577 &£ 0.091 0.695 £ 0.081
F1 score 0.483 £ 0.133 0.671 4+ 0.116

These baselines play three roles. First, they sanity-check that the core architec-
ture and preprocessing learn the task under conventional training. Second, the gap
between single-subject and pooled performance reveals whether cross-subject aggre-
gation regularizes beneficially or harms subject-specific decoding on this dataset.
Third, they establish quantitative targets for the subsequent MTL backbone and
TL protocols. Gains over the single-subject baseline indicate benefits from shared
representation learning, whereas gains over the pooled baseline indicate added value
from subject-aware routing or per-user calibration beyond a single global classifier.
The first two roles were examined in prior work that provided the initial prototype
of this pipeline and are not investigated in depth here; in this project, they are

reported primarily as context for interpreting the transfer-learning results.

3.5.3 Evaluation Metrics

To keep results comparable and interpretable across Baseline, MTL, and TL, this
project reports a consistent set of metrics and adopts a clear reporting convention.
All metrics are computed on the held-out TEST split at the trial level and—unless
noted—are averaged per subject and then summarized across three seeds (mean
and standard deviation). When systems are compared (such as MTL vs. Baseline
or TL vs. Baseline), the same per-subject metric vectors are contrasted to avoid

conflating subject and seed effects.

Accuracy serves as the headline number as it is intuitive and stable for binary
MI tasks; however since it might also be misleading under class imbalance, the

following metrics are also reported: balanced accuracy (mean of per-class recalls),
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Cohen’s « (agreement beyond chance), and macro-averaged precision, recall, and
Fl-score (equal class weighting). When posterior probabilities are available, we
include ROC curves and class-wise AUC as diagnostics of ranking quality; these are
not used as headline scores. Confusion matrices are plotted with true labels on the
y-axis and predicted labels on the x-axis and are always constructed over the full
label set (2 2), ensuring comparability even when a class is absent in predictions.
Pooled matrices (aggregating subjects) appear alongside per-subject matrices where

informative, and cluster-wise matrices are shown in MTL summaries when relevant.

For quantitative comparisons, per-subject means and standard deviations are re-
ported and, where appropriate, complemented with paired, non-parametric signifi-
cance tests across subjects (e.g., Wilcoxon signed-rank on per-subject accuracy or
k). When such tests are performed, an effect size is also reported, and any correction
for multiple comparisons is noted in multi-way contrasts. Finally, to ensure repro-
ducibility, all metric computations use the full set of class labels; confusion-matrix
(true=y, pred=x); and every aggregate statistic is traceable to per-subject, per-run
CSVs emitted by the evaluators.
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Results

A comprehensive series of experiments was conducted following the methodologies
detailed in Chapter 3. This chapter presents a structured summary of the experi-
mental findings while also outlining the solution processes that led to these results.
By reporting both the outcomes and the reasoning behind them, the chapter aims
to provide a clear understanding of the cause-and-effect relationships between the

methods investigated and their performance.

Two complementary datasets are used throughout this chapter. The source dataset
is a public MI-EEG dataset comprising N = 85 subjects, used to train and evalu-
ate the offline transfer learning pipeline under cross-subject scenarios. The target
dataset consists of recordings from N = 2 newly acquired subjects collected with
a Unicorn EEG headset, used to assess how well the pretrained source model gen-
eralizes to unseen users and to evaluate the benefits of in-session calibration. To
further support interpretation, supplementary figures, analysis plots, and extended

data tables are provided in Appendix B.

4.1 Subject-Level Representations for Population Cluster-
ing

Establishing the most suitable feature family is a first-order decision for this work, as
it determines the subject-space geometry and stability which influences downstream
cluster-conditioned modelling and transfer learning performance. This section com-
pares four candidate feature extraction methods, CSP, ERD/ERS band-power,
FBCSP, and Riemannian geometry features, by the quality and robustness of the

37
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subject-space they induce. Throughout these experiments, clustering is performed
using k-means (Euclidean distance; k-means++ initialisation) on z-scored per-

subject embeddings.

4.1.1 Candidate Feature Spaces for Subject Embedding

The four candidate methods were evaluated across a shared sweep of cluster counts
(k € {2,3,4,5,6,8}). For each method, the best-performing k was retained based
on an aggregate measure of grouping quality. Evaluation used four complementary
criteria: Silhouette and Calinski-Harabasz indices (higher is better), within-cluster
sum of squares (Inertia; lower is better), and assignment stability under resampling

quantified by the Adjusted Rand Index (ARI) (Table B.1).

Across methods, the composite performance profile clearly favoured CSP. Aggregat-
ing scores across k placed CSP first (composite score 3.0 +0.52), with ERD/ERS as
the only competitive alternative (3.2 + 2.26), while the Riemannian representation
consistently underperformed(7.4 + 0.77). FBCSP occasionally achieved attractive
geometry scores but repeatedly produced singleton clusters, making it unsuitable

for robust population stratification.

At each method’s optimal k (by Silhouette), the contrasts were sharp (Table 4.1).
CSP at k = 3 produced well-separated, stable clusters with manageable size imbal-
ance, making it the most reliable choice. ERD/ERS exhibited sharper boundaries
but suffered from unstable assignments and severely skewed cluster sizes, while the

Riemannian representation failed to separate subjects meaningfully.

These numerical differences are visually reflected in the subject-space embeddings
(Figure 4.2); CSP forms three compact, well-separated clusters with few outliers,
whereas ERD/ERS yields one diffuse majority group with two tiny satellites, and
the Riemannian representation shows almost complete overlap between subjects
(Figure B.1).

Stability curves tell the same story (Figure 4.1); CSP maintains consistently high as-
signment stability across all k, indicating robust group structure, while ERD/ERS
fluctuates strongly and tends to break into highly imbalanced clusters whenever
strong geometric separation is achieved. The trends in Silhouette and ARI across
k consistently support choosing k = 3 as a balanced trade-off between cluster sepa-

ration and stability (Figure 4.1, Figure B.2).

Taken together, these results identify CSP at k = 3 as the most suitable basis for
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subject-level population clustering in the subsequent transfer learning pipeline. It
provides clear separation without tiny clusters and stable assignments under resam-
pling. ERD/ERS at k = 3 is retained as a secondary baseline because of its sharper
boundaries, but its weaker stability and severe imbalance make it a less reliable foun-
dation. Excluding FBCSP and the Riemannian representation avoids unreliable
groupings and prevents data-starved clusters that would undermine downstream

multi-task learning and cluster-based fine-tuning.

This choice matters directly for the remainder of the study. Stable, non-singleton
clusters enable robust cluster-conditioned modelling, reduce variance in per-group
parameter updates, and provide a principled grouping scheme for subject-specific
adaptation. We therefore fix CSP at k = 3 for all downstream experiments so that
later gains can be attributed unambiguously to transfer learning design choices

rather than clustering instability.

Table 4.1: CLUSTERING QUALITY AT EACH METHOD’S OPTIMAL k
(SELECTED BY SILHOUETTE SCORE). CSP achieves balanced clusters with high
agreement under resampling. ERD/ERS provides sharper boundaries but unstable assign-
ments and severe size imbalance. Riemannian features fail to produce meaningful separabil-
ity. FBCSP yields tiny clusters.

Method k Silhouette T ARIT Min size Imbalance Tiny cluster
CSP 3 0.563 0.862 7 8.29 No
ERD/ERS 3 0.652 0.560 5 14.80 No
FBCSP 5 0.587 0.797 1 18.67 Yes
Riemann 2 0.084 0.204 31 1.74 No

Silhouette vs k (train-only, z-scored, PCA) Stability (ARI) vs k

o

=)
o
©

o

~
o
©

o

o
o
~

o

e
o
o

I

IS
o
[

Silhouette
ARI (stability)

s o
N W
o o
w =

o
b

5

(a) Silhouette vs. k (geometry). (b) Stability (ARI) vs. k (resampling).

Figure 4.1: GEOMETRIC SEPARATION AND STABILITY ACROSS CANDI-
DATE FEATURE SPACES AND CLUSTER COUNTS. CSP maintains consistent
stability. CSP (blue), ERD/ERS (orange), FBCSP (green), Riemannian (red).
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Figure 4.2: SUBJECT-SPACE EMBEDDINGS (PCA, FIRST TWO COMPO-
NENTS) FOR CSP AND ERD/ERS. 3 cluster IDs (0, 1, 2) as shown in each panel.

4.1.2 Transfer Learning Performance across Selected Feature Spaces

Building on Section 4.1.1, where CSP and ERD/ERS were identified as the leading
subject-space representations, we evaluated the complete transfer learning pipeline
under two deployment regimes: (i) a pooled baseline (k = 1), meaning a single
model trained on data pooled across all subjects and applied to each subject without
personalisation; and (ii) a clustered few-shot model (k = 3), in which subjects are
first assigned to one of three clusters (subject-level population clustering), cluster-
conditioned heads are trained per cluster on pooled data, and then adapted with a
small number of subject-specific labelled trials while keeping the shared backbone
fixed.

Cross-subject pooled model (k = 1)

The two representations are effectively equivalent. Mean accuracy was virtually
identical (A = —0.002, Wilcoxon p = 0.38), and all other metrics show similarly
negligible differences (see Table 4.2). The paired-accuracy scatter plot (Figure 4.3,
left panel) confirms this: most points lie on the diagonal, indicating that CSP and
ERD/ERS perform indistinguishably when a single pooled model is applied across
subjects (Figure B.4). Overall, these results support that when a single model is
shared by all users, the choice between CSP and ERD/ERS has little consequence

for decoding performance.
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Clustered few-shot model (k = 3)

With the same number of calibration trials, CSP consistently outperforms ERD/ERS
across subjects and metrics (Table 4.2). Mean accuracy improves by ~ 2 percent-
age points (p < 10719), and the effect generalises across Cohen’s «, precision, recall,
and macro-F1. As shown in Figure 4.3, the paired accuracy scatter lies predomi-
nantly below the diagonal across the full performance range, indicating that CSP’s

advantage is not restricted to either weak or strong users but is broadly expressed.

These results reveal a clear interaction between representation and adaptation strat-
egy. When a single pooled model is used (k = 1), representation choice has minimal
impact, as the model averages across inter-subject variability. Once subject-level
population clustering is introduced (k = 3), however, the quality of the represen-
tation becomes critical: CSP’s more stable, non-singleton clusters (Section 4.1.1)
translate into tangible downstream gains accordingly, while ERD/ERS is proposed
only as an alternative in scenarios where data from all subjects are pooled to train
a single shared model, CSP at k = 3 is standardized in this pipeline for all further

analyses.

Table 4.2: PAIRED SUBJECT-WISE COMPARISON OF CSP VS. ERD/ERS
ACROSS TWO TRANSFER LEARNING REGIMES. CSP significantly outperforms
erd/ers across accuracy, Cohen’s «, precision, recall, and macro-F1. N = 85.

(a) Single pooled model across subjects (k = 1).

Metric CSP ERD/ERS A p r
Accuracy 0.679 0.677 -0.0020 0.380 0.114
K 0.358 0.353 -0.0044 0.340 0.120
Precision 0.671 0.671 —-0.0002 0.967 0.005
Recall 0.680 0.678 -0.0023 0.311 0.128
Fl-score 0.642 0.638 -0.0042 0.122 0.193

(b) Few-shot model with cluster-conditioned heads (k = 3).

Metric CSP ERD/ERS A p r
Accuracy  0.655 0.635 —0.0198 1.74x10719 0.811
K 0.310 0.271 -0.0394 2.82x10710 0.792
Precision  0.646 0.638 —0.0079 0.0450 0.250
Recall 0.656 0.636 —0.0201 1.72x10719 0.802

Fl-score 0.607 0.574 —0.0330 6.78x 10" 0.897
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(a) Pooled model across all subjects (k =1). (b) Few-shot model with cluster-conditioned
heads (k = 3).

Figure 4.3: SUBJECT-WISE ACCURACY COMPARISON BETWEEN CSP

AND ERD/ERS ACROSS TWO TRANSFER LEARNING REGIMES.. In the
pooled setting, CSP and ERD/ERS perform equivalently. In the clustered few-shot setting,
most points lie below the diagonal, indicating significantly higher accuracy for CSP.

4.2 Transform-Based Augmentation

This section investigates whether lightweight, label-preserving transformations im-
prove motor imagery decoding under two deployment regimes: (i) a pooled baseline
(k=1) and (ii) a clustered few-shot model (k=3). Augmentations are aimed to enrich
the training distribution with plausible temporal and spectral variability so that the
model learns useful invariances and becomes less sensitive to non-task-related vari-
ability across trials and subjects. Three transformations, Gaussian noise (0-=0.02),
nonlinear time warping (£15%, < 50% window), and frequency shift (+1 Hz), are
applied to the raw signals during the multi-task learning stage to perturb the shared
backbone. A fourth augmentation, mixup (@=0.2), is evaluated separately at the
transfer learning stage as a label-aware batch interpolation. Each augmentation is
applied in isolation. Features for clustering are always extracted from unaugmented

data to avoid biasing group assignments.

Cross-subject pooled model (k = 1)

Here a single cross-subject classifier is trained on data pooled from all available
subjects and evaluated per subject, without any per-subject calibration. Across all
four augmentations, a consistent pattern emerged; none produced a systematic im-

provement. As shown in Figure 4.4a, per-subject differences between the augmented
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and baseline models are clustered near zero, with overlapping accuracy distributions
and similar medians. While a few subjects benefited from certain transformations, a
larger subset showed small decrements, resulting in an overall effect that was neutral
to slightly negative (Table B.2). For a pooled classifier trained on heterogeneous

subject data, the tested augmentations added no consistent value.

Clustered few-shot model (k = 3)

In this evaluation, one subject was held out; training was restricted to the subject’s
similarity cluster (as defined in Section 4.1.1), and three labeled trials per class
were provided for calibration. Since temporal warping appeared most promising
under pooled evaluation, it was tested directly against the non-augmented baseline
in this regime. However, as illustrated in Figure 4.4b, performance consistently
deteriorated: most subjects experienced reduced accuracy, and statistical testing

confirmed a significant drop across both accuracy and Fl-score scores (Table 4.3,
Table B.3).

Taken together, these experiments show that none of the tested augmentations
improved decoding performance. When training a pooled model on pooled multi-
subject data, adding variability neither consistently helped nor hurt. In the clus-
tered few-shot regime, even the augmentation that initially seemed most promising,
temporal warping, reliably degraded performance. These findings suggest that in
low-density, cue-locked MI paradigms, naive augmentation strategies are ineffective
and may harm transferability, likely due to distortions that violate physiological
plausibility. Consequently, augmentation is disabled by default for all subsequent
experiments.

Table 4.3: EFFECT OF TIME WARPING ON CSP-BASED DECODING UN-

DER CLUSTERED FEW-SHOT ADAPTATION REGIME. Temporal warping sig-

nificantly reduces accuracy and macro-F; scores, despite appearing promising under pooled

evaluation. Negative A values indicate performance drops. Holm-adjusted p-values confirm
statistical significance; r denotes rank-biserial effect size.

Metric Baseline + Time warp A PHolm r

Accuracy  0.6551 0.6321 -0.0230 5.10x 107 0.799
F1-score 0.6068 0.5697 —0.0372 3.08 x 10712 0.899
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Universal pooled baseline vs. single-augmentation variants

>,0.9

1o}

o

308

o

@© P —_— - -

507

Q

€

5 0.6

X

g

905 i i

9] { i

a i 1 : :
baseline GN T™W FS MX

(a) Effect of four augmentations on a single pooled model (k = 1). Per-subject
accuracies for baseline versus Gaussian noise (GN), time warping (TW), fre-
quency shift (FS), and mixup (MX). Nearly identical means show that one of
the augmentations provides systematic benefits when training a pooled classi-
fier.
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(b) Impact of time warping in clustered few-shot
adaptation (k = 3). Paired accuracies for base-
line versus time-warped training. Most points
lie below the identity line, indicating reduced
accuracy with time warping.

Figure 4.4: AFFECT OF TRANSFORM-BASED AUGMENTATIONS ON MO-
TOR IMAGERY DECODING.
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4.3 Cross-Subject Transfer on the Source Dataset

In this section, cross-subject transfer on a publicly available MI EEG dataset is
examined, relative to the first objective of this project. Specifically, the analysis
evaluates whether explicitly modelling inter-subject heterogeneity through subject-

level clustering improves personalization under realistic calibration constraints.

EEG responses in MI BCI vary substantially across users, creating challenges for
generalization. This objective therefore compares a pooled model against a clus-
tered approach that groups subjects based on similarity, assessing whether cluster-

conditioned heads provide a better starting point for rapid adaptation.

All analyses use a leave-one-subject-out (LOSO) protocol to emulate deployment
to unseen users. To isolate clustering effects, all other components are held fixed:
clusters formed on CSP features (Section 4.1), identical preprocessing, and no data
augmentation. Throughout this section, A denotes the paired difference clustered

— pooled), so positive values indicate a benefit of clustering.

4.3.1 Few-Shot Personalization with Clustered and Pooled Models

Because practical onboarding often affords only a few labeled calibration trials per
class, this analysis evaluates whether modelling cross-subject structure via cluster-
ing improves personalization compared to a pooled model when only limited labeled

data are available from the target subject.

Two CSP-based decoding pipelines were compared under a LOSO evaluation pro-
tocol using a fixed set of four labeled calibration trials per class from the held-out
subject. In the clustered regime, the remaining training subjects were partitioned
into k = 3 data-driven groups (fit on training data only), and one head was trained
per cluster using only its members. In the pooled regime (k = 1), a single head was
trained on all training subjects combined. At test time, both models were calibrated
on the same support set and evaluated on the same disjoint test split, ensuring a

perfectly paired comparison.

Across subjects, clustering provides a clear and statistically robust benefit. The
clustered few-shot model achieves higher mean accuracy (0.655) than the pooled
model (0.616), yielding a mean paired improvement of A = +0.0389 (p ~ 1.1x107'2;
Table 4.4). Secondary metrics follow the same pattern, with significant gains in

Cohen’s k, precision, recall, and F; (Table B.4).
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As shown in Figure 4.5, most subjects achieve higher accuracy under clustering,
with paired points lying predominantly above the identity line. The ordered distri-
bution of subject-wise differences A is strongly right-skewed (Figure 4.6), reflecting
widespread gains and only small losses. Notably, subjects who perform best under
clustering tend to exhibit the largest drops under pooling, suggesting that clustering
especially benefits subpopulations whose neural patterns are not well represented

by a single decision boundary (Figure B.5).

In practical terms, when only a few labeled trials are available for personaliza-
tion, cluster-conditioned training substantially improves decoding performance over
pooled training for the vast majority of users. This indicates that clustering might
particularly benefit subpopulations whose neural response patterns deviate from the
global average. In other words, clustering recovers structure that would otherwise
be obscured by pooled models, an effect that contributes disproportionately to the
overall performance gains.

Table 4.4: FEW-SHOT PERSONALIZATION: CLUSTERED VS. POOLED

TRAINING. Subject-level mean accuracies for clustered (k = 3) and pooled (k = 1)

training are reported, along with the mean paired difference (A = clustered — pooled), 95%

bootstrap confidence interval, and Wilcoxon signed-rank statistics. Positive A values favor
clustering.

Aclustered Apooled A 95% CI w p
Accuracy  0.6551  0.6162 +0.0389 [0.0313, 0.0470] 175.0 1.08 x 10~'2

4.3.2 Effect of Clustering on Zero-Shot Transfer

This subsection examines whether clustering subjects during training improves zero-
shot cross-subject generalization, where performance is evaluated on a previously
unseen subject without using any subject-specific calibration data. Models are
trained on the public MI-EEG dataset using a CSP-based decoding pipeline with
k=3 cluster-conditioned heads derived from k-means grouping. At test time, the
held-out subject is assigned to one of the cluster heads using an unsupervised rule
based on similarity to training subjects. The clustered model is compared against

a single pooled model trained on all subjects combined.

Clustering provides a small but statistically reliable advantage over the pooled base-
line. Mean accuracy increases from 0.633 (pooled) to 0.640 (clustered), correspond-
ing to an average gain of A ~ +0.64 pp (Wilcoxon p = 0.0091; rank-biserial r = 0.33).

As shown in Figure 4.7, the paired accuracies lie slightly above the identity line for
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accuracy: POOLED-FS (k=1) vs CLUSTERED-FS (k=3)
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Figure 4.5: FEW-SHOT PERSONALIZATION: CLUSTERED VS. POOLED
TRAINING. Each point represents a subject’s accuracy (N = 85). The dashed line marks
parity. Points above the line indicate better performance under clustering.

Per-subject A accuracy

0.150 1

1))

0.125 4

0.100

0.075 4

0.050 -
e IIIII,__......n.|||||||||IIII|||||| _____
-0.025 1 ‘I

3) — POOLED-FS (k:

A accuracy (CLUSTERED-FS (k

—0.050 A
I eI e ot ot P B e T S P o A ST St L Y
8833RR8R835R909330RSRERA , 358 FEERES R

Figure 4.6: SUBJECT-WISE BENEFIT FROM CLUSTERING IN FEW-SHOT
PERSONALIZATION. Bars show the ordered per-subject difference A = clustered —
pooled. The strong right skew highlights broad, consistent gains.
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most subjects, indicating modest benefits overall. Subject-level effects are hetero-
geneous: H5 of 85 subjects improve, 29 decline, and one ties, with A ranging from

approximately —6.5pp to +5.2 pp (Figure B.6).

Table 4.5: ZERO-SHOT CROSS-SUBJECT TRANSFER PERFORMANCE.
Mean accuracy, paired difference (A = clustered — pooled), 95% bootstrap confidence inter-
vals, and Wilcoxon p-value. Clustering provides a small but statistically significant average
improvement.

Metric Pooled Clustered Mean A 95% CI(A) p I/D/T
Accuracy 0.6333 0.6397  40.00637 [0.107, 0.01161] 0.0091 55/29/1

Secondary metrics show a consistent, though not uniform, pattern of improvement.
Precision increases most strongly (+2.69 pp; p = 3.8 x 1077), while Cohen’s «, recall,
and F1-score-score exhibit smaller but significant gains for many subjects (Table 4.5,
Table B.5). Figure 4.7 illustrates these improvements at the subject level: although
the effect size is modest, clustering tends to tighten decision boundaries, reducing

misclassifications even when overall accuracy changes are small (Figure B.6).

These findings indicate that clustering during training can modestly improve zero-
shot transfer to unseen subjects. Still, the benefits are heterogeneous and con-
siderably smaller than those observed in the few-shot setting (Section 4.3.1). In
practical terms, clustered training is preferable to pooling when no calibration data
are available, but the most substantial personalization benefits emerge when even

a small labeled support set is provided.

4.3.3 Cluster-Conditioned Support in Few-Shot Adaptation

Building on earlier results, where clustering yielded modest zero-shot gains and
larger improvements once a few labeled trials were available, this analysis isolates
whether the few-shot advantage genuinely arises from cluster conditioning; that is,
drawing the support set from the test subject’s assigned cluster, rather than from
other procedural factors such as number of heads, representation choice, adaptation

schedule, or class balance.

Both settings use the same pipeline with kgnot = 4 calibration trials, differing only
in how the support examples are selected: the pooled regime draws support from
all training subjects, whereas the clustered regime restricts support to the held-out

subject’s assigned cluster (k = 3).
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accuracy: POOLED LOSO vs CLUSTERED LOSO (k=3)
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Figure 4.7: ZERO-SHOT TRANSFER PERFORMANCE PER SUBJECT.
Paired accuracies for pooled (x-axis) vs. clustered (y-axis) training. Points above the dashed
identity line indicate subjects show a modest but consistent benefit from clustering without
calibration.

Crucially, this isolates why clustering works in the few-shot regime. Because cal-
ibration examples are drawn from subjects with similar signal statistics and class
balance, the adapted classifier starts from a more appropriate initialization. This
improves both head selection and the calibration of CSP filters and thresholds.
In contrast, when calibration examples are mixed from unrelated subjects (pooled
support), adaptation often overfits to mismatched patterns, leading to unstable or

suboptimal decision boundaries.

Importantly, the benefit of cluster-conditioned support is broad but heterogeneous;
74/85 subjects improve when support is cluster-conditioned, but the size of the
gain varies across individuals (Table 4.6, Figure 4.8; Table B.6, Figure B.8). Decile
analyses based on baseline accuracy under the pooled model show consistent im-
provements across most performance groups, tapering only at the very top. A small,
non-significant correlation between pooled baseline accuracy and benefit (Spearman
o =0.12) p = 0.26) suggests that subjects with both low and high baseline perfor-

mance under pooled training benefit on average (Figure B.9).

Together, these results demonstrate that the substantial gains observed in clus-
tered few-shot adaptation arise specifically from using cluster-conditioned support.
Restricting the support set to the assigned cluster stabilizes calibration, whereas

pooled support can degrade performance.
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Table 4.6: FEW-SHOT ADAPTATION: ACCURACY WITH CLUSTER-
CONDITIONED VS. POOLED SUPPORT. Positive A values favor clustering. (im-
proved/declined /tied: 74/8/3)

Pooled Clustered A (pp) p (Holm)

Accuracy  0.624 0.655 +3.07 1.7x10713
95% CI for A: [2.49, 3.67] pp; rank-biserial r = 0.95.

accuracy: POOLED-FS (k=3) vs CLUSTERED-FS (k=3)
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Figure 4.8: PAIRED SUBJECT ACCURACIES FOR FEW-SHOT ADAPTA-
TION: POOLED VS. CLUSTER-CONDITIONED SUPPORT. Each point repre-
sents one subject; the dashed line marks y = x. Most points lie above the line, indicating
improved accuracy when support examples are drawn from the assigned cluster.
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4.3.4 Effect of Calibration Trials

To assess whether performance improves with greater supervision, this analysis
investigates whether increasing the number of labeled calibration trials further im-
prove personalization. This subsection isolates this aspect by comparing adaptation
outcomes when the per-class support set is doubled, from 4 to 8 trials, while all

other components of the pipeline remain unchanged.

Surprisingly, the larger support set consistently degrades generalization. Subject-
level deltas are predominantly negative, indicating that most subjects perform worse
at 8 shots than at 4. The paired scatter (Figure 4.9) confirms this trend, with the
vast majority of points falling below the identity line (Figure B.10).

A likely explanation is that larger calibration sets introduce harmful variance.
Within-subject fluctuations, such as temporary attentional shifts, label noise, or
low-frequency drifts, can push the adapted decision boundary away from the stable
test-time distribution. Since the adaptation rule treats all support trials equally,
adding more data does not necessarily yield more useful information; rather, it
can dilute the signal and compromise calibration. This effect appears strongest
for subjects with already high accuracy under 4-shot adaptation, as seen in the
Figure B.11; the largest losses are concentrated among the best-performing sub-
jects, suggesting a regression effect where useful initial generalization is disrupted
by overfitting to spurious patterns (Figure B.11). These results suggest that, under
the current calibration strategy, increasing the number of support trials (beyond
4 per class) introduces enough unwanted variation to degrade generalization. Po-
tentially, more accurate and label-efficient performance is achieved with smaller,
well-targeted support sets.
Table 4.7: FEW-SHOT PERFORMANCE WITH 4 VS. 8 SUPPORT TRIALS

PER CLASS. A is accuracy at kgnot=8 minus kghot=4. Performance declines with more
support data (improved/declined/tied: 11/73/1).

k=4 k=8 A (pp) p (Holm)

Accuracy 0.655 0.633 -2.24 < 10710
95% CI for A: [-2.72, —1.78] pp; rank-biserial r = —0.91.

4.3.5 Feature-Centric Analysis of Clustering Benefit

This section investigates whether specific subject-level features predict who benefits

most from clustered few-shot adaptation. To isolate this effect, subjects were strati-
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accuracy: k=3, k_shot=4 vs k=3, k_shot=8
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Figure 4.9: FEW-SHOT ACCURACY PER SUBJECT COMPARING SUP-
PORT SETS OF 4 VS. 8 TRIALS PER CLASS. Each point is a subject; most lie
below the y=x line, indicating lower accuracy when using larger support sets.

fied into deciles based on multiple neurophysiological and feature-derived indicators,
and the paired performance gain (A) between clustered and pooled models was com-
puted. Positive A indicates improved accuracy under clustering. While no single
feature achieves a strong monotonic correlation with clustering benefit, decile-based

trends reveal informative heuristics for prioritizing cluster-based personalization.

Baseline accuracy (pooled)

Clustering benefit varies substantially across the accuracy spectrum. Subjects in the
lowest accuracy decile show near-zero or slightly negative A, while those in deciles
2 through 8 exhibit progressively larger benefits, peaking at A = 0.056 in decile 8.
A drop is observed at the top decile, likely due to ceiling effects. These findings
suggest that subjects with mid-to-high accuracy under pooled models stand to gain
most from cluster-conditioned adaptation. Presumably, their MI patterns might
already be decodable to some extent, and clustering could further tune by removing
cross-subject variance. This trend is illustrated in Figure 4.10, with corresponding

statistics reported in Table 4.8.

Beta-band power
Across most deciles, clustering benefit remains mildly positive, with A values typi-

cally in the 0.03-0.05 range. However, the overall Spearman correlation is small and
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Table 4.8: CLUSTERING BENEFIT (A) BY DECILE OF POOLED ACCU-
RACY IN THE FEW-SHOT SETTING. Mean subject-wise benefit with 95% bootstrap
confidence intervals. Positive values indicate improved accuracy under clustering. The high-

est benefit occurs in decile 8.

Mean A with 95% CI

Figure 4.10:

0.08 A

0.06 -

0.04 -

0.02 A

0.00

Decile

A [95% CI] n
0 0.007 [-0.003, 0.020] 9
1 0.036 [0.015, 0.061] 8
2 0.049 [0.026, 0.077] 10
3 0.046 [0.019, 0.070] 11
4 0.042[0.017, 0.076] 6
5 0.046 [0.026, 0.067] 7
6 0.042 [0.019, 0.065] 8
7 0.048 [0.026, 0.071] 11
8 0.056 [0.032, 0.083] 6
9 0.019 [0.008, 0.031] 9

A by accuracy_A decile

accuracy_A decile (low - high)

CLUSTERING BENEFIT BY DECILE OF POOLED ACCU-

RACY. Subjects are stratified into deciles based on their accuracy under the pooled model.
Bars show the mean improvement A in each decile, with error bars indicating 95% confidence
intervals. Clustering provides the greatest benefit for subjects with mid-to-high baseline ac-
curacy (deciles 2-8), while those in the lowest or highest deciles benefit less.

53
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non-significant (p ~ —0.06, p ~ 0.61), and variability across subjects is substantial.
While beta power may relate to motor cortex activation, these results suggest that
it provides only a weak and inconsistent signal of clustering responsiveness. At
best, beta power may serve as a soft heuristic when combined with other indicators

(Appendix B.8).

Mu-band power

Mu power shows a similar pattern: modest positive benefit in most deciles, with
mild peaks in the mid-range (A ~ 0.05) (Figure 4.11). Yet, the correlation between
mu power and benefit is weak and statistically insignificant (p ~ —0.10, p ~ 0.34).
These results imply that although mu power is neurophysiologically relevant to
motor imagery, it does not reliably predict who will benefit from clustering. It may

still offer some prioritization value when used in conjunction with other features.

A by mu_power decile

0.08

0.06

0.04

Mean A with 95% CI

0.02

0.00 .  — ——

mu_power decile (low — high)

Figure 4.11: CLUSTERING BENEFIT BY MU-BAND POWER DECILES.
Subjects were stratified into deciles based on their absolute mu-band power, and the mean
paired improvement A in few-shot accuracy was computed for each decile.

CSP component mean (component 1)

CSP components 1 and 2 refer to the first two spatial filters extracted via CSP;
component 1 corresponds to the projection maximizing variance for one class, and
component 2 for the opposite class. Each captures a symmetric but class-specific
motor pattern across trials. The mean of the first CSP component exhibits a non-
monotonic but structured trend. Benefit peaks at decile 2 (A ~ 0.06) and again
around decile 7, with a dip in the middle. This suggests that very low or very
high CSP mean projections may be less useful for clustering, whereas moderate
values reflect more discriminable spatial filters. Although the correlation is weak

(p = —0.09, p ~ 0.41), the decile-based trends are sufficiently stable to suggest
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heuristic value (Figure B.12).

CSP component variability.

In the projections of the first two CSP components, trial-to-trial variability is quan-
tified, which represents symmetric discriminative filters for the two MI classes. Vari-
ability in the CSP component 2 shows a clear positive association with clustering
benefit, increasing steadily across deciles and peaking at A = 0.06. In contrast,
variability in the CSP component 1 shows no consistent trend and has a negative
regression weight, indicating limited predictive value. This suggests that subjects
with more dynamic or expressive CSP components may benefit more from cluster-
ing (Figure 4.12, Figure B.12). In contrast, CSP component 1 shows mixed results:
while some mid-to-high deciles yield positive A, its regression coefficient is negative
and correlation weak (p ~ —0.08, p =~ 0.46), indicating limited standalone predictive
value (Appendix Table B.12).

A by feat_std_1 decile

0.08 A

o o
o o
IS =

Mean A with 95% CI

o
o
]

0.00

feat_std_1 decile (low — high)

Figure 4.12: CLUSTERING BENEFIT BY DECILE OF CSP FEATURE VARI-
ABILITY. Subjects are grouped by decile of the standard deviation of their second CSP
component across trials. Clustering benefit A increases steadily with higher variability,
peaking above 0.06 in the top deciles. This suggests that subjects with more expressive or
dynamic CSP patterns benefit most from cluster-conditioned few-shot adaptation.

Taken together, these findings support the use of subject-level features as indicators
(not deterministic rules) for prioritizing the use of clustered few-shot adaptation.
While no feature is strongly predictive in isolation, combinations such as moderate
pooled accuracy, high CSP component 2), and elevated mu or beta power form
useful heuristics for identifying responsive users, this is consistent with the policy
curve analysis (Figure 4.14), which shows that even weak predictors can improve

model selection when used for subject ranking.

Table 4.9 summarizes the key subject-level predictors of clustering benefit. While in-

dividual correlations are weak and mostly non-significant, certain decile trends and



CHAPTER 4. RESULTS 56

regression coefficients reveal useful heuristics, Table B.8. In particular, feat_std_1
emerges as the strongest candidate predictor, whereas measures such as ERD or

spectral entropy contribute little.

Benefit classifier ROC (AUC=0.428)

TPR

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure 4.13: ROC CURVE FOR CLASSIFYING CLUSTERING BENEFIT
FROM SUBJECT-LEVEL FEATURES. The area under the curve (AUC) falls below
0.5, indicating that no linear combination of the analyzed features is sufficient to separate
"benefit" vs. "no benefit" users with high accuracy. This supports the conclusion that bene-
fit prediction should rely on ranking (e.g., policy-based targeting) rather than classification.

4.3.6 Concluding Remarks on Cross-Subject Transfer

The cross-subject transfer experiments explored three questions: (i) whether clus-
tered models consistently outperform pooled ones under zero- and few-shot calibra-
tion, (ii) whether using support trials from a subject’s assigned cluster provides a
better inductive bias than pooled calibration across all subjects, and (iii) whether

subject-level features can explain or predict those gains.

Clustering resulted in broad and reliable advantages in the few-shot setting. At
fixed calibration trials, accuracy improvements were observed across most baseline-
performance groups and feature deciles, with positive trends visible in both scalar
and distributional comparisons. Zero-shot gains were smaller and more variable;
present for some subjects, particularly those with stronger baselines, but not reliably
predictable. Crucially, no single scalar feature (including baseline accuracy) showed
a monotonic or generalizable association with benefit. These findings support three

conclusions: (1) clustering improves few-shot personalization across diverse users,
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Policy curve
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Figure 4.14: POLICY CURVE: MEAN CLUSTERING BENEFIT A AS A
FUNCTION OF SUBJECT COVERAGE. Subjects are ranked by predicted benefit
from a weak feature-based model. The y-axis shows the average actual A achieved within
the top x% of subjects (coverage). Even with weak predictors, targeted selection yields
substantial gains: the top 20% of users achieve nearly double the population-average benefit.
This supports the practical use of soft prioritization policies.

Table 4.9: SUMMARY OF PREDICTIVE INDICATORS FOR CLUSTERING
BENEFIT (A) Correlation and regression statistics reflect subject-level relationships.
The "Decile Trend" column summarizes observed patterns in clustering benefit across deciles.

Feature P p-val  Coef. Decile Trend
Baseline accuracy 0.123 0.261 -0.182 U-shaped: mid-high benefit
CSP variability (2nd comp.) 0.112  0.306 +0.396 Rising monotonic trend
CSP mean (1st comp.) -0.091 0.409 +0.057 Non-monotonic (peaks at 2, 7)
Mu-band power -0.105 0.339 -0.238 Mild mid-decile peaks
Beta-band power -0.056 0.612 -0.259 Weakly positive
Mu-band ERD +0.068 0.537 —0.406 Flat

Beta-band ERD -0.008 0.939 -0.087 Flat

Spectral entropy -0.042 0.701 -0.020 None

CSP variability (1st comp.) -0.082 0.457 —0.596 Inconsistent

CSP mean (2nd comp.) +0.026 0.811 -0.416 No trend
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offering a reliable advantage even with minimal labeled data, (2) clustered few-shot
decoding is a robust and label-efficient default, and (3) zero-shot gains are modest,

uneven, and unlikely to be well-targeted using simple heuristics.

4.4 Personalized Decoding on the Target Dataset

This section evaluates in-session transfer (i.e., adapting a pretrained model to a
new subject using data from the same recording session) on target subjects recorded
with the Unicorn headset using the pretrained TL model fit on the public cohort.
While previous sections focused on offline generalization across subjects and group-
level effects, this section shifts to deployment in realistic, session-based conditions,

corresponding to the second objective of this project.

In-session transfer is evaluated on two genuinely unseen subjects (Subject 1 and
Subject 2) to assess (i) whether subject-specific calibration improves performance
beyond zero-shot transfer, and (ii) whether the initialization source, a pooled head

versus a cluster-matched head, modulates the outcome of few-shot adaptation.

The pretrained model comprises a shared feature extractor and a set of cluster-
specific heads obtained via k-means clustering (k=3) on CSP-based subject embed-
dings. For each new subject, the stored pipeline is reused to compute the CSP
representation (via the pretrained projection and scaler), which is then assigned to

the nearest cluster centroid—without using any labels.

Two zero-calibration baselines are evaluated: a pooled baseline given by the head
trained on all public subjects (head-0), and a cluster baseline that routes the subject
to the head associated with their assigned cluster. Few-shot adaptation is then
performed with kg0t € {1,2,3,4} labeled trials, starting either from the pooled
head (pooled initialization) or the matched cluster head (clustered initialization).
Evaluation is performed on held-out trials from the same session, with accuracy
as the primary outcome and secondary metrics (kappa, precision, recall, Fl-score)

reported for completeness.

4.4.1 Subject 1 Results

A pretrained backbone paired with a set of cluster-specific heads was deployed on
an in-session MI recording obtained from Subject 1. The subject was assigned to

Cluster 1 using the pretrained clustering model, based on their projected position
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in CSP transform space; the Euclidean distance to the nearest centroid was 0.552.

To establish a baseline for zero-calibration performance, two routing strategies were
compared: the pooled head, trained on all public subjects, and the zero-shot clus-
ter head, obtained by assigning the subject to a cluster and directly applying the
corresponding head without adaptation. Both routes resulted in identical accu-
racy (0.654), suggesting that cluster-based routing, without further tuning, had no

immediate effect for this subject.

Subject-specific adaptation was then performed using kg0t € {1,2,3,4} labeled
trials per class, with two initialization strategies: (i) pooled initialization (copying
the pooled head) and (ii) cluster initialization (copying the assigned cluster head,
Cluster 1).

Cluster 1 mates (N=57) vs Subject_1
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Figure 4.15: SUBJECT 1: POSITION WITHIN CLUSTER-LEVEL PER-
FORMANCE. Violin plot of offline accuracies for Cluster 1 subjects. Blue dot marks
Subject 1’s pooled zero-shot accuracy; red star shows their final calibrated performance
(kshot=4). Dashed lines indicate quartiles of the offline distribution.

With a single labeled trial (kghot=1), cluster initialization achieved the highest ob-
served accuracy (0.800), outperforming pooled initialization (0.720) and exceed-
ing both zero-shot baselines. As the calibration trials increased, the two trajec-
tories diverged: pooled initialization improved monotonically, while the cluster-
initialized path dipped between one and three trials, only partially recovering with
four shots. At kghot = 4, pooled initialization reached 0.773 whereas cluster initial-
ization plateaued at 0.682. Relative to their respective baselines, cluster initializa-
tion yielded a modest gain (+0.028), while pooled initialization produced a sub-
stantial improvement (40.119). Secondary metrics (k, precision, recall, F1-score)

mirrored this pattern.
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Online TL (online): Accuracy vs # Calibration Trials — subject_001
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Figure 4.16: SUBJECT 1: CALIBRATION ACCURACY AS A FUNCTION

OF kgyor. Accuracy vs. number of labeled trials per class (kshot), for cluster-based and
pooled initialization. Lines show mean accuracy over repeated stratified draws on disjoint
test data.

The calibration curve (Figure 4.16) shows an early advantage for cluster initializa-
tion that diminishes and reverses by k=4. A violin plot of offline accuracies for
Cluster 1 peers places Subject 1’s pooled baseline slightly below the cluster median,
with the final calibrated point moving toward the center of the distribution (Fig-
ure 4.15). A scatter of cluster-mate similarity versus offline accuracy (Figure 4.17b)
shows no monotonic trend, indicating that geometric proximity alone does not pre-

dict performance for this subject.

Subject 1 illustrates a clear tradeoff between early gains and long-term stability.
Clustered initialization offers a strong inductive prior, yielding the highest accuracy
in the one-shot setting. However, this early advantage erodes with additional cali-
bration data: while pooled initialization starts lower, it improves steadily and ulti-
mately surpasses the cluster-based path, achieving the best performance at kgpot=4.
Cluster-based head assignment without any subject-specific labels provides no bene-
fit in the zero-shot case. Effective personalization emerges only through progressive

adaptation for this subject.
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Original Clusters + New Subjects
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(a) Feature-space placement (PCA). Projec-
tion of CSP-based subject embeddings onto the
first two principal components. Each point is a
source dataset subject. The star marks Subject
1
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(b) Within-cluster similarity vs. performance. For
each Cluster 1 peer, the x-axis shows its Euclidean
distance to Subject 1 in the same PCA+scaler space;
the y-axis shows that peer’s offline accuracy. The star
marks Subject 1’s calibrated point (shown for refer-
ence at x=0).

Figure 4.17: SUBJECT 1: FEATURE-SPACE PLACEMENT AND CLUSTER
DIAGNOSTICS.
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Table 4.10: SUBJECT 1: ACCURACY AND CALIBRATION GAIN UNDER
TWO INITIALIZATIONS. Calibrated accuracies and baseline-relative improvements for
cluster- and pooled-initialized models across increasing kshot values. Aciuster and Apgoled
quantify gains relative to the assigned zero-shot head. Accuracies are means over repeated
stratified draws on disjoint test sets. Bold values indicate the better initialization at each k.

Accuracy A vs. baseline
Setting Cluster init Pooled init  Acluster  Apooled
Assignment: cluster id = 1;
distance = 0.552
Zero-shot baselines 0.654 0.654 — —
kshot=1 0.800 0.720 +0.146  +0.066
kshot=2 0.665 0.625 +0.011  -0.029
kshot=3 0.651 0.651 -0.003 -0.003
kshot=4 0.682 0.773 +0.028 +0.119

4.4.2 Subject 2 Results

For the second target subject, the two zero-calibration baselines were identical
(0.480). The subject was assigned to Cluster 2 with a transform-space distance
of 0.956 to the nearest centroid, substantially larger than for Subject 1, indicating
that the subject’s representation lies farther from the known manifold. The PCA
overlay places Subject 2 within the Cluster 2 region but not near its densest core,
while the violin plot shows that both the pooled baseline and final calibrated results

fall below the cluster median, consistent with a generally more difficult recording.

Few-shot calibration yielded modest but interpretable gains. At kgnhot=1, cluster
initialization reached 0.500 accuracy (40.020 vs. the cluster baseline), while pooled
initialization underperformed at 0.417 (-0.063 vs. the pooled baseline). At kgpot=2,
both paths converged at 0.478, showing no net improvement. At kghot=3, pooled ini-
tialization surpassed the cluster path with 0.545 (40.065), while the cluster path re-
mained flat at 0.500 (+0.020). At kgsnot=4, cluster initialization improved slightly to
0.524 (40.044), whereas pooled initialization regressed to 0.476 (—0.004). Secondary
metrics (k, Fl-score) followed the same trajectory, confirming that the changes are
not attributable to class imbalance. The calibration trajectories are visualized in
Figure 4.19, showing the early advantage of cluster initialization at kg,ot=1, followed

by a crossover and peak performance under pooled initialization at k=3.

The diagnostics support these trends. The violin plot places Subject 2 in the lower
tail of Cluster 2’s offline distribution (Figure 4.18), while the PCA map shows the
subject lying on the cluster periphery (Figure 4.20a). A similarity—accuracy scatter

among Cluster 2 members reveals no monotonic association between transform-
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space proximity and offline performance (Figure 4.20b), reaffirming that geometric

closeness does not predict adaptation quality.
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Figure 4.18: SUBJECT 2: POSITION WITHIN CLUSTER-LEVEL PER-
FORMANCE. Violin plot of offline accuracies for Cluster 2 subjects. Blue dot marks
Subject 2’s pooled zero-shot accuracy; red star shows their best calibrated result (0.545 at
kshot=3, pooled initialization). Dashed lines indicate quartiles of the offline distribution.

Overall, Subject 2 reflects a challenging in-session case. Cluster-based routing pro-
vides no benefit over the pooled baseline. Cluster initialization offers a small gain
only in the one-shot setting. Pooled initialization becomes superior at kgnot=3, but
shows no stable upward trend. This pattern echoes the findings from Objective 1:
clustering rarely improves performance in zero-shot settings, cluster initialization
may offer value at a small number of calibration trials, and the largest gains typically
stem from supervised calibration—mnot from routing alone. For difficult subjects like
this one, non-monotonic responses to k are to be expected. A detailed breakdown of

calibrated accuracies and baseline-relative improvements is provided in Table 4.11

4.4.3 Concluding Remarks on Personalized Decoding

With two genuinely unseen subjects evaluated under the same online protocol, this
section synthesizes the effects of in-session calibration. Zero-shot routing to the
nearest cluster head offered, at best, parity with the pooled head and did not
yield measurable benefit for either subject—reinforcing that subject-specific gains
arise from calibration rather than routing alone. Calibration was evaluated across
kshot € {1,2,3,4} under two initialization strategies: a pooled head and the sub-
ject’s assigned cluster head. Across both cases, the pattern echoes the results from
Objective 1. In the one-shot setting, clustered initialization yielded better perfor-

mance than pooled initialization, suggesting a stronger inductive prior encoded in
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Online TL (online): Accuracy vs # Calibration Trials — subject_001
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Figure 4.19: SUBJECT 2: CALIBRATION ACCURACY AS A FUNCTION
OF kgpor. Accuracy vs. number of labeled trials per class (kshot), for cluster-based and
pooled initialization. Lines show mean accuracy over repeated stratified draws on disjoint
test data.

Table 4.11: SUBJECT 2: ACCURACY AND CALIBRATION GAIN UNDER
TWO INITIALIZATIONS. Calibrated accuracies and baseline-relative improvements for
cluster- and pooled-initialized models across increasing kgpot values. Baseline accuracies
(no calibration) are equal here (0.480). Acluster and Apooled quantify gains relative to the
assigned zero-shot head. Accuracies are means over repeated stratified draws on disjoint
test sets. Bold values indicate the better initialization at each k.

Accuracy A vs. baseline
Setting Cluster init Pooled init  Aciuster  Apooled
Assignment: cluster id = 2;
distance = 0.956
Zero-shot baselines 0.480 0.480 - -
kshot=1 0.500 0.417 +0.020 -0.063
kshot=2 0.478 0.478 -0.002 -0.002
kshot=3 0.500 0.545 +0.020 +0.065
kshot=4 0.524 0.476 +0.044 —-0.004
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(a) Feature-space placement (PCA). Projec-
tion of CSP-based subject embeddings (after
stored scaling) onto the first two principal com-
ponents. Each point is a source dataset subject.
The star marks Subject 2

Similarity vs. Accuracy

cluster mates
new calibrated

Offline Accuracy
I e = o o
o [+2] ~1 co 4=]

=
'S

0.0 0.5 1.0 1.5 2.0 2.5
Distance to New Subject

(b) Within-cluster similarity vs. performance. For
each Cluster 2 peer, the x-axis shows its Euclidean dis-
tance to Subject 2 in the PCA-+scaler space; the y-axis
shows that peer’s offline accuracy. The star marks Sub-
ject 1’s calibrated point (shown for reference at x = 0.

Figure 4.20: SUBJECT 2: FEATURE-SPACE PLACEMENT AND CLUSTER
DIAGNOSTICS.
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the cluster head. However, this advantage attenuated as more calibration data be-
came available: by k=2, the pooled path matched or exceeded the cluster-initialized
path, and at a higher number of calibration trials, pooled initialization consistently
delivered better or more stable performance. These findings are descriptive (N=2),
meant to validate the online deployment pipeline and its qualitative consistency

with prior results, rather than to support generalizable inferences.

Taken together, the two case studies suggest a practical operating rule that aligns
with Objective 1: clustered initialization is most valuable when only one labeled
example per class can be collected at onboarding, while a pooled head initialization
becomes competitive and often preferable once two or more labeled trials are avail-
able. This rule-of-thumb is supported here by consistent directional effects across
both subjects and will be refined as additional users are acquired.

Table 4.12: IN-SESSION CALIBRATION: CLUSTER VS. POOLED INITIAL-

IZATION. Accuracy and the paired difference A = cluster — pooled for each subject at each
number of calibration trials. Subjects are abbreviated as S1 and S2.

S1 (Cluster 1, d=0.552) S2 (Cluster 2, d=0.956)
kshot Cluster Pooled A Cluster Pooled A

1 0.800 0.720  +0.080  0.500 0.417  +0.083 +0.082
0.667 0.625 +0.042  0.478 0.478  +0.000 +0.021
0.652 0.652  +0.000  0.500 0.546 -0.046 -0.023
0.682 0.773  -0.091  0.525 0.476 +0.049 -0.021

Mean A

=W N




Chapter 5
Discussion and Future Work

This chapter interprets the findings of this project in the context of the stated
objectives and situates them relative to prior work. Section 1 connects the empirical
results from both the source dataset (Objective 1) and the target dataset (Objective
2) back to the objectives of this work and earlier literature, while Section 2 outlines

promising directions for future work.

5.1 Discussion

This project pursued two main objectives: Objective 1: Establish a robust trans-
fer learning pipeline for cross-subject MI decoding on a harmonized multi-subject
dataset; Objective 2: Evaluate whether the pretrained framework generalizes effec-
tively to prospectively recorded users under minimal calibration using an 8-channel
EEG headset. The results are discussed below in the context of these objectives

and contrasted with related studies.

Representation choice and stable population structure.

A core finding under Objective 1 is that CSP features revealed the most reliable
and interpretable subject-space structure. Clustering based on CSP achieved sta-
ble partitions (high silhouette, strong ARI) with three clusters providing optimal
separability while avoiding singleton or imbalanced groups. These findings par-
tially align with prior work; Zhang et al. (2022) demonstrated that CSP-derived
embeddings facilitate stratification for clustered MI-BCI modeling, but their exper-
iments used 32-channel setups [85]. The findings of this work extend these obser-

vations to a low-density, 8-channel montage, demonstrating that stable population
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structure can still be uncovered under more constrained hardware conditions. Con-
versely, Riemannian geometry-based embeddings, widely used in cross-subject BCIs
[28, 83], failed to yield meaningful separability in the source dataset, likely due to
the limited spatial resolution available in this context. Similarly, FBCSP represen-
tations frequently collapsed into tiny groups, contradicting their reported benefits
in denser, high-SNR contexts [5]. For low-density MI-BCIs, simple, task-informed
representations, such as CSP, seem to outperform more generic or geometry-driven

embeddings. This insight sets the stage for downstream benefits.

Clustering with few-shot calibration enables effective personalization.

A central contribution of this work is showing that cluster-conditioned few-shot
adaptation consistently outperforms pooled baselines when calibration data are
scarce. Under LOSO, few-shot experiments on the source dataset, conditioning
a lightweight subject head on three CSP-based clusters improved test accuracy by
~ +4% on average relative to a pooled TL baseline trained with the same support
size. These gains extended to k, macro-F1, precision, and recall, underscoring ro-
bustness across evaluation metrics. This result extends the findings of Liu et al.
(2017), who reported the benefits of hierarchical clustered multi-task learning [44],
by showing that three clusters suffice to balance specialization against data suffi-
ciency per head. Moreover, the framework presented in this project goes further by
testing generalization on new users, providing a deployment-oriented perspective
absent in most earlier works. In contrast, meta-learning approaches such as Model-
Agnostic Meta-Learning [22] and prototypical networks [42, 71] attempt to acceler-
ate personalization by optimizing explicitly for rapid adaptation. While such meth-
ods report strong few-shot performance, they require meta-trained initializations
and often dense calibration episodes. Here, positive few-shot gains were achieved
without meta-training, simplifying deployment for low-density MI-BCIs. For this
8-channel MI setting, structure first, light calibration second approach emerges as an
effective and reproducible recipe. Stable CSP-based clustering provides meaningful

priors.

Limited Benefits from Zero-Shot Transfer

Contrary to optimistic claims in parts of the EEG-TL literature [13, 28|, assigning
unseen users directly to pretrained cluster heads without calibration produced no
consistent improvement over pooled zero-shot models. Although minor uplifts were
observed for some subjects, these effects were heterogeneous and not statistically ro-

bust. This finding aligns with predictive coding intuitions: inter-subject variability
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in sensorimotor rhythms (topography, frequency tuning, activation latency) intro-
duces latent factors that a purely static mapping cannot resolve. By contrast, even
tiny calibration trials (14 trials per class) consistently unlocked substantial per-
formance gains. While clustering enhances initialization, minimal subject-specific
adaptation remains critical. A purely "plug-and-play" MI-BCI remains elusive due

to current modeling capacity limitations.

Augmentation and Calibration: When More Data Doesn’t Help

One surprising result is that common augmentations reported as beneficial else-
where, such as Gaussian noise, time-warping, small frequency shifts, and mixup,
did not improve performance in this setting, and sometimes degraded it. For ex-
ample, time-warping, which often helps in continuous BCI paradigms [84], consis-
tently reduced accuracy under clustered few-shot adaptation here. This contradicts
prior findings [28, 40| and highlights task-specific dependencies. Short cue-locked
epochs limit tolerance for temporal distortion, small calibration heads are prone
to overfitting variability injected by augmentation, and the constrained 8-channel
montage restricts the representational bandwidth, where augmentation typically
helps. Augmentation strategies could be physiologically informed to avoid harming

performance.

Similarly, increasing the number of calibration trials per class unexpectedly reduced
accuracy on average. This effect is likely due to strategy drift, user fatigue, or intra-
session variability outweighing benefits from extra labels, a nuance rarely discussed
in prior TL studies. For low-density, cue-locked MI-BClIs, less might be more; short,

high-quality calibrations outperform larger, noisier ones.

In-Session Personalization on Target Dataset

The in-session evaluations on the two prospectively recorded subjects provide a
crucial reality check on the practical feasibility of clustered transfer learning un-
der Objective 2. These experiments approximate a realistic deployment scenario:
starting from a pretrained backbone learned on the source dataset, each new user is
assigned to the closest population cluster based on their feature representation. A
lightweight subject-specific head is then calibrated using a small number of labeled
trials, enabling a direct comparison between cluster-initialized and pooled-initialized

transfer paths under zero-shot and few-shot trials.

For Subject 1, results illustrate both the promise and limitations of clustering in

practice. Zero-shot accuracy was identical under both pooled and cluster-initialized
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heads (0.654), indicating that routing to a pretrained cluster alone provides no
benefit without supervision. However, with only one labeled trial per class, cluster
initialization achieved an accuracy of 0.800, substantially outperforming pooled
initialization at 0.720. This shows that cluster-specific heads offer more effective
starting points than pooled models, as they are pre-adapted to subjects with similar
neural patterns. Interestingly, this advantage was dampened as more data became
available: with four trials per class, pooled initialization achieved an accuracy of

0.773, while clustered initialization regressed to 0.682.

Subject 2, by contrast, exhibited uniformly lower accuracies and negligible gains
from calibration under either initialization strategy. While early cluster-based cali-
bration offered a slight edge at k = 1, pooled initialization became superior at k = 3,
though neither path showed stable improvement. Embedding diagnostics confirmed
that Subject 2’s representation fell farther from the cluster centroid (distance =
0.956), located near the periphery of Cluster 2 and close to bordering regions in the
feature space. This spatial position likely weakened the relevance of the assigned
cluster prior, explaining the limited benefits of clustering. Combined with lower
signal quality or session-specific factors, this suggests that cluster-conditioned de-
coding may be less effective for edge-case users unless the clusters themselves are

refined or augmented during deployment.

Together, these cases highlight the heterogeneity of adaptation success in MI-BCIs
and clarify when clustered personalization is most beneficial. For subjects whose
neural representations align closely with one of the discovered population clusters,
as is the case with Subject 1, cluster-conditioned initialization provides measur-
able advantages when only one or two labeled trials per class are available. For
others, such as Subject 2, pooled initialization becomes more robust once slightly
more calibration data can be collected, while clustering provides little added value.
While Objective 1 showed consistent benefits of clustered few-shot transfer across
calibration sizes, the in-session evaluations reveal that individual factors, such as
representational alignment or signal quality, can limit the practical advantage of

clustering in deployment.

These patterns suggest a broader principle: structure and inductive bias are most
valuable when supervision is scarce, while flexible adaptation becomes essential as
more data become available. Rather than viewing clustered and pooled strategies
as mutually exclusive, future work could explore hybrid strategies that interpolate
between inductive priors and learned capacity depending on calibration availability.

This perspective helps reconcile the tension between efficiency and flexibility in
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real-world BCI deployment.

Together, these results reveal a clear deployment guideline; cluster-conditioned per-
sonalization is most valuable when calibration resources are minimal, but pooled
initialization becomes the safer and more consistent option once additional labeled
trials are feasible. Compared to earlier transfer-learning studies in EEG-based BCIs
[28, 32, 83|, which evaluated adaptation only offline, these findings extend prior con-
clusions by demonstrating that clustered few-shot personalization can generalize
prospectively to unseen users while also exposing its current limitations. Zero-
shot transfer remains unreliable; subject-specific calibration, even if minimal, is
almost always necessary, and individual differences can still significantly impact
performance. These insights suggest promising extensions, such as adaptive rout-
ing, meta-learned initialization strategies, and uncertainty-aware calibration mech-
anisms, to handle challenging subjects better and further close the gap between
offline benchmarks and real-world BCI deployment. This contrast is summarized
in Table 4.12, where the one-shot advantage of clustered heads and later crossover

to pooled superiority is shown across both subjects.

Concluding Remarks and Limitations

This project establishes a reproducible framework for label-efficient MI-BCIs by in-
tegrating representation learning, population clustering, and few-shot transfer learn-
ing. The findings demonstrate that learning a shared representation on pooled data,
stratifying subjects into three CSP-based clusters, and calibrating a lightweight
subject-specific head with only four labeled trials per class provides a practical

pathway to accurate and data-efficient decoding.

Several limitations point toward opportunities for future work. These results build
on an eight-channel montage and a binary MI paradigm; extending the framework
to multi-class decoding, richer control schemes, and hybrid BCIs would test its
generality. Zero-shot performance remains limited by simplistic k-means routing;
probabilistic assignment or embedding-aware gating could better exploit population
structure without supervision. Likewise, future research should revisit augmenta-
tion with physiologically constrained perturbations, integrate stronger priors into
subject models, and explore meta-learning approaches or prototypical adapters to

reduce calibration costs further.

Additional limitations include the small number of newly recorded subjects (N=2),
which restricts the statistical generalizability of Objective 2 findings. While these
case studies support the feasibility of the proposed pipeline, broader deployment
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studies are required to validate its reliability across diverse users. Moreover, the
adaptation module used here is deliberately lightweight, and more expressive or
meta-learned heads may offer improved personalization under non-stationary or
noisy conditions. Future systems may benefit from embedding-aware cluster pre-
diction and routing at onboarding, enabling more personalized adaptation paths
and maximizing calibration efficiency under real-world constraints. Finally, while
closed-loop prototypes were developed, they were not evaluated in this project;
real-time studies are essential to quantify latency, stability, and user experience in

operational BCls.

In summary, this work demonstrates the value of CSP-based embeddings for reveal-
ing stable population structure, establishes that clustered few-shot calibration con-
sistently outperforms pooled transfer under tight calibration trials, and challenges
common assumptions that data augmentation and larger calibration sets universally
improve performance. By validating these findings both offline and prospectively,
this study bridges a critical gap between controlled cross-subject benchmarks and

real-world BCI deployment, paving the way toward accurate, efficient, and repro-
ducible MI-BCI systems.

5.2 Future Work

This section outlines concrete project proposals derived from the findings and
limitations of this project. Each project proposal builds directly on the insights
gained here and addresses open questions that remain critical for advancing subject-
invariant MI decoding in EEG-based BCIs. The projects are organized by priority
and designed to strike a balance between experimental feasibility and scientific im-

pact.

Project 1: Adaptive Calibration and Transfer Learning for Personalized MI-BCIs
A key outcome of this project is that cluster-conditioned few-shot calibration sub-
stantially improves decoding performance compared to pooled transfer when cali-
bration data are scarce. However, the results also revealed marked heterogeneity
across users in the target dataset. This suggests that a fixed calibration trial and

uniform transfer strategy are insufficient for practical deployment.

Future work should focus on designing adaptive transfer learning frameworks where

the degree of feature reuse, model fine-tuning, and calibration trial are dynamically
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optimized per subject. One promising direction is to integrate subject similarity
measures derived from deep feature embeddings into the transfer process. For ex-
ample, subjects located close to a cluster centroid in the CSP-based latent space
can reuse more pre-trained features with minimal calibration. In contrast, subjects
farther away may require deeper fine-tuning of early convolutional layers. Such sim-
ilarity measures may include cosine distance in CSP- or Deep4Net-derived latent
spaces, enabling fine-grained routing decisions based on representational proximity:.
Bayesian optimization or reinforcement learning agents could automatically select
the optimal transfer configuration for each subject, eliminating the need for manual

hyperparameter tuning.

In addition, incorporating uncertainty-aware calibration strategies would allow the
system to stop collecting labels once confidence thresholds are met adaptively. Such
systems could be evaluated in closed-loop setups to determine how quickly confi-
dence thresholds can be reached without degrading user experience. By combining
similarity-based routing, adaptive model reuse, and confidence-driven calibration,
this project targets a central bottleneck for real-world MI-BClIs: delivering person-
alized decoding performance with minimal user burden. The outcome would be a
highly flexible transfer pipeline that generalizes across diverse users while providing

plug-and-play usability in practice.

Project 2: Hierarchical Multi-Task Learning with Adaptive Routing

This project demonstrated that population clustering into three CSP-based groups
enabled effective few-shot personalization while avoiding over-fragmentation and
instability. However, the results also highlighted a limitation: hard k-means as-
signments may fail for subjects that lie near cluster boundaries, forcing them into
suboptimal priors. Moreover, the current framework uses a flat architecture, with
a single shared encoder feeding either pooled or cluster-specific heads, limiting its
flexibility.

A natural extension is to develop a hierarchical MTL framework that explicitly
models variability at three levels: the population, clusters, and individuals. At the
top level, a shared population encoder learns broadly generalizable features that
apply to all subjects. At the intermediate level, cluster-adaptive layers specialize
representations for homogeneous subgroups, refining the population encoding while
preserving statistical power. Finally, subject-specific heads are fine-tuned with few-
shot calibration to capture individual differences. This tiered structure mirrors the

nested variability observed in this work, characterized by strong between-cluster
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separation and subtle within-cluster diversity.

To address the limitations of hard clustering, soft probabilistic routing can be in-
troduced. Instead of assigning each subject to a single cluster, the model would
compute posterior probabilities over multiple cluster heads and weight predictions
accordingly. Soft routing could also be implemented via attention mechanisms that
dynamically weight cluster heads during inference, enabling differentiable, end-to-
end learning of the optimal adaptation path. For subjects near cluster boundaries,
this approach leverages information from multiple priors rather than forcing a bi-
nary choice, mitigating one of the significant weaknesses revealed by the in-session

experiments.

Such a hierarchical framework would not only improve decoding accuracy for chal-
lenging users but also provide neuroscientific insight by disentangling population-,
cluster-, and subject-level sources of variability. Variants could further experi-
ment with mixture-of-experts gating, allowing context-dependent selection of ei-
ther shared, cluster-adapted, or subject-specific routes. It represents a principled
approach to integrating global invariance with local specialization, thereby extend-

ing the strengths of this project into a more flexible and interpretable architecture.

Project 3: Physiologically Constrained Data Augmentation for Robust Personal-
ization

One of the more interesting findings of this project is that standard data augmenta-
tion techniques failed to improve performance and often degraded clustered few-shot
calibration. These results contradict earlier studies, where such augmentations have
been shown to enhance generalization in EEG decoding. The discrepancy highlights
a critical gap: in cue-locked MI tasks with short 3-second windows and only 8 EEG
channels, naive augmentation strategies seem to violate label invariances and intro-

duce physiologically implausible variability.

Future work could therefore explore physiologically constrained augmentation tech-
niques tailored to MI-BCIs. Rather than indiscriminately perturbing the signal,
augmentations should preserve the neurophysiological meaning of motor imagery
patterns. Examples include: Phase-preserving narrow-band amplitude modulation,
which perturbs oscillatory power without disrupting ERD/ERS dynamics. Latency-
aware temporal jittering, introducing small timing shifts while respecting cue-locked
epochs. Generative modeling approaches, such as variational autoencoders (VAEs)
or diffusion models trained to synthesize realistic, label-consistent EEG. Addition-

ally, augmentation strategies should be adaptable to the calibration regime. For
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example, when only one or two trials per class are available, augmentation can help
expand limited datasets; conversely, under larger calibration trials, stronger regu-
larization techniques (e.g., mixup on latent embeddings) may prevent overfitting

without corrupting the label structure.

By grounding augmentation techniques in neurophysiological constraints, this project
addresses a limitation exposed by this work and opens a pathway toward improv-
ing robustness without sacrificing label fidelity. Such methods could substantially
enhance personalization, particularly for subjects whose signals deviate subtly from

the training distribution.

Project 4: Cross-Hardware Robustness and Domain Generalization

All experiments in this project were conducted on a harmonized 8-channel dataset
and validated on prospectively recorded users using a single Unicorn EEG headset.
While this provided validity within a controlled setting, the results leave open a
significant limitation: how well does the proposed pipeline generalize across different
hardware, montages, and acquisition protocols? To quantify inter-device domain
shifts, statistical measures such as Wasserstein distance or t-SNE cluster overlap

can be used to assess representational drift and guide the need for adaptation.

Future work could systematically evaluate cross-hardware robustness and develop
domain generalization techniques to enhance transferability across various acquisi-
tion setups. A first step involves curating a multi-center MI-EEG dataset combining
recordings from diverse headsets, electrode configurations, and sampling rates. The
proposed pipeline could then be benchmarked against naive pooling baselines to

quantify performance degradation under domain shifts.

To mitigate these shifts, domain-invariant representation learning techniques could
be incorporated into the training process. Examples include adversarial alignment
methods, where a domain discriminator is trained jointly with the encoder to en-
courage indistinguishable latent representations across devices, as well as maxi-
mum mean discrepancy (MMD) losses that enforce statistical similarity between
distributions. Alternatively, unsupervised domain adaptation approaches could be
explored, leveraging unlabeled data from new devices to refine model parameters

without additional calibration labels.

Such work is essential for scaling MI-BCI systems beyond tightly controlled labo-
ratory environments. By combining cluster-conditioned few-shot adaptation with

domain-robust representations, this project aims to produce pipelines capable of
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seamless transfer across hardware platforms and acquisition conditions—a key re-

quirement for real-world deployment.

Project 5: Interpretable Clustering and Neurophysiological Feature Attribution

This project established that CSP-based embeddings reveal a stable, interpretable
subject-space structure, enabling population clustering that drives effective few-shot
personalization. However, the underlying neurophysiological basis of these clusters
remains unexplored. Why do specific subjects group together, and which brain
rhythms or spatial patterns define these distinctions? Answering these questions
would both deepen our understanding of neuroscience and improve cluster-based

modeling strategies.

Future work could integrate explainable Al (XAI) techniques to uncover the fea-
tures driving cluster formation. For example, layer-wise relevance propagation or
integrated gradients could be applied to CSP-derived embeddings or intermediate
model activations to identify the most influential time-frequency components and
electrode locations. To improve interpretability, cluster-wise spectral fingerprints
or averaged topographical maps could be computed, providing direct visualizations
of the neurophysiological signatures associated with each cluster. These analyses
would clarify whether clusters reflect distinct ERD/ERS patterns, spectral peaks,
or spatial lateralization effects, providing biologically meaningful interpretations of

inter-subject variability.

Insights from these analyses could also inform better cluster-based calibration strate-
gies. For instance, subjects identified as sharing strong contralateral mu desyn-
chronization patterns could be initialized with priors optimized explicitly for that
feature set. Beyond technical improvements, interpretable clustering bridges the
gap between machine learning and neuroscience, linking latent model structure to

underlying brain dynamics.

This approach would transform clustering from a purely algorithmic tool into a
neuroscientific instrument, offering both improved model personalization and richer

insights into the variability of motor imagery across individuals.
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Appendix A

Supplementary Methods

A.1 Acquisition and External Tooling

This subsection describes the tools adopted for the acquired subject recordings

(target dataset) via the Unicorn Headset.

Communication between the independent services is handled by the Lab Streaming
Layer (LSL) [51], an open-source middleware framework for networked acquisition
that supports streaming, reception, time-synchronization, and recording of neural,
physiological, and behavioral signals. The vendor application published the EEG
stream; the recorder subscribed via mne-1sl, while the paradigm/game emitted
event markers over a dedicated marker stream using pylsl. Tooling was imple-
mented in Python with widely supported libraries to maximize portability and
maintainability: MNE for I/O, filtering, epoching, and visualization; NumPy/S-
ciPy for numerical routines; scikit-learn for baseline machine-learning utilities; and
Pygame for the paradigm interface. Configuration was managed via structured con-
figuration files to enable repeatable runs and explicit parameter recording. Record-
ings were persisted in an MNE-compatible format with annotations derived from

the marker stream so that EEG and events remained aligned at sample resolution.

A.2 Recorder Application

The recorder used in this study was originally developed by Manuel Weiss [76].
The architecture separates concerns into (i) paradigm/data generation, (ii) sig-

nal acquisition, (iii) preprocessing, (iv) optional training/inference, and (v) de-
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vice control. Earlier iterations incorporated a motor-imagery paradigm and pro-
vided standard preprocessing options (such as CSP, PCA) with conventional clas-
sifiers (such as SVM). Subsequent extensions introduced runtime configuration via
a simple Ul, template configurations for common tasks (training, inference), and a
continuous-recording mode that appends labeled data segments at fixed intervals,
designed to support both interactive session logging and structured data collec-
tion blocks. Subject-clustering utilities (e.g. k-means, Ward, GMM) and hooks
for transfer-learning workflows were also integrated to facilitate base-model selec-
tion per cluster. For the purposes of this thesis, the recorder functioned as the
acquisition and labeling hub. A prototype integration of the thesis decoder was
explored; closed-loop processing was not adopted for evaluation due to unresolved
hardware issues. All collected signals and markers were persisted for subsequent
offline preprocessing and analysis. Recordings were saved per session with accom-
panying metadata (subject identifier, session index, montage, sampling rate, start
time), and event markers were fused into the same file as annotations to preserve

synchronization.

A.3 Game Application

The paradigm/game application was developed by Annina Bazzigher and Zoe Wid-
mer. It provides structured cueing for motor imagery and, when enabled, interactive
feedback within a simple 2-D interface where a cyclist moves laterally to avoid ob-
stacles. EEG is streamed from the headset to the recorder via LSL, while event
markers for left-hand motor imagery (MI), right-hand MI, and rest are emitted
from the game over a dedicated LSL marker stream. When inference is active, direc-
tional control can be derived from a configurable majority vote over recent classifier
outputs; in this thesis, closed-loop control was prototyped but not used for eval-
uation. Two operating modes are available. Gameplay mode enables closed-loop
interaction and logs intended directions as markers. Recording mode delivers a
fixed, labelable schedule suitable for supervised data collection. Each recording ses-
sion followed a standardized sequence designed to produce time-aligned labels: an
on-screen countdown preceded each block; a 10-s rest interval established a baseline;
a motor-imagery block then presented cued trials in which the road segment indi-
cating the impending obstacle was highlighted in blue and an arrow specified the re-
quired imagery direction. Participants sustained the corresponding hand-movement

imagery while the arrow remained visible. Within each MI block, six trials per direc-
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tion (left and right) were presented for a fixed duration configured in the application
(held constant across trials); the MI block was repeated once within the session. A
final 10-second rest interval concluded the sequence. Thus, per session, the sched-
ule yielded 12 left-MI trials and 12 right-MI trials, interleaved with three 10-s rest
periods. Marker emission was synchronized to cue onset so that labels and EEG
remained aligned at sample resolution via LSL’s time-correction mechanism. In
this thesis, the application was employed primarily in recording mode to generate
precisely time-stamped labels for the acquisition-only dataset used in offline analy-
ses. The application also exposes exploratory metrics (e.g., accuracy, F1l-score, and
information-transfer rate) to support rapid prototyping; these diagnostics were not

used for the primary evaluations reported later.

User

. LSL
Application — Recorder
Marker of expected classification

0: Left
1: Right

Feedback: game state Multi channel EEG signal

Classification result (S( Raw data
Preprocessing and
classification pipeline

(a) Interactive loop connecting user, data recorder, and game inter-
face.

0: Left
1: Right

rest right left right left right left right left right left right left

t

(b) Interactive loop connecting user, data recorder, and game interface.

Figure A.1: OVERVIEW OF USER INTERACTION AND DATA FLOW IN
THE RECORDING SETUP |[9].
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A.4 Hyperparameter Configurations

Table A.1: DEEP4NET ARCHITECTURE USED ACROSS ALL EXPERI-
MENTS. The only variation is the pooling mode: mean for single-subject and maz for
pooled training.

Parameter Value
Dropout 0.25
Temporal filters 25
Spatial filters 25

Temporal kernel length 10
Temporal pooling length 3

Epochs 100

Batch size 64

Learning rate 0.0005
Optimizer Adam

Loss Cross-entropy
Weight decay 0.001

Pooling mode

mean (single)
max (pooled)

Table A.2: HYPERPARAMETERS FOR MULTI-TASK LEARNING MODEL.
Pooled model uses a single head (k = 1), while clustered uses one head per cluster (k = 3).

Parameter Value
Dropout (backbone) 0.5
Temporal filters 25
Spatial filters 25
Temporal kernel length 10
Temporal pooling length 3
Hidden dimension (head) 128
Dropout (head) 0.5
Optimizer Adam
Learning rate 0.0001
Weight decay 0.001
Epochs 100
Batch size 64

Number of clusters (k)

1 (pooled), 3 (clustered)
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Table A.3: HYPERPARAMETERS FOR TRANSFER LEARNING MODEL.
Across zero-shot, few-shot, and pooled modes; Each TL model initializes from the pretrained
clustered MTL backbone and adapts a lightweight subject-specific head.

Parameter Value
Pretrained model MTL (clustered, k=3)
Freeze backbone False
Backbone learning rate 1x107°
Head learning rate 1x1073
Hidden dimension (head) 128
Dropout (head) 0.5
Optimizer Adam
Weight decay 0.001
Epochs 100
Batch size 64

Transfer modes

Zero-Shot, Universal, Few-Shot (kgpot = 4)

Table A.4: HYPERPARAMETERS FOR IN-SESSION TRANSFER LEARN-
ING. The backbone remains frozen; only the head is updated using a small learning rate

for 10 calibration epochs.

Parameter

Value

Calibration trials per class (kcalip) 4

Calibration epochs 10
Calibration learning rate 0.0005
Fine-tuned component Head only

Dropout (head)

0.5
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Appendix B

Supplementary Results

B.1 Extended Results for Subject-Level Representations

for Population Clustering

This subsection provides additional tables and figures supporting the representation
and clustering analyses from subsection 4.1. It includes comparative metrics across
feature families (CSP, ERD/ERS, Riemannian), quantitative clustering indicators
(Silhouette, ARI, Calinski-Harabasz, Inertia), and subject-space visualizations via
t-SNE projections. These results reinforce the selection of CSP-based embeddings as

the most stable and compact feature representation for cross-subject stratification.

t-SNE of csp (k=3) t-SNE of erd (k=3) t-SNE of reim (k=2)

(a) CSP (k=3) (b) ERD/ERS (k=3) (¢) Riemannian (k=2)

Figure B.1: T-SNE VISUALISATIONS OF THE SAME SUBJECT-SPACE
EMBEDDINGS USED FOR CLUSTERING.
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Table B.1: FULL CLUSTERING QUALITY METRICS ACROSS ALL
FEATURE EXTRACTION METHODS AND CLUSTER COUNTS. SilhouetteT,
Calinski-Harabasz (CH)T, Inertial, ARI mean (u)7, ARI std (o). Cluster sizes lists the
number of subjects per cluster. Tiny cluster (T/F) indicates whether any cluster has < 5

subjects.
Method &  Silh. CH Inertia ARI u ARI o Imbal. Cluster sizes Tiny
csp 2 0544 61.574 195.194 0.863 0.160 2.864 [63,22] F
csp 3 0563 62979 134.066  0.862 0.095 8.286 [58,20,7] F
csp 4 0.558 57.096 109.162  0.848 0.096 8.286 [58,11,7,9] F
csp 5 0.561 55.424 90.157 0.855 0.089 18.667 [56,11,6,9,3] T
csp 6 0486 55.110 75.758  0.791 0.076 16.667 [50,9,4,9,3,10] T
csp 8 0473 56.123 55.719  0.797 0.057 23.000 [46,6,5,6,10,2,7,3] T
ers/ers 2 0.504 55.556 101.836 0.264 0.313 5.071 [71,14] F
ers/ers 3 0.652  87.348 54.306  0.560 0.214 14.800 [74,6,5] F
ers/ers 4 0.510 116.050 32.087  0.673 0.230 28.000 [21,6,2,56] T
ers/ers 5 0.406 120.003 24.285  0.507 0.206 37.000 [34,6,1,37,7] T
ers/ers 6 0.444 154.733 15.751  0.573 0.151 33.000 [30,6,1,33,4,11] T
ers/ers 8 0.448 203.476 8.719 0.764 0.144 26.000 [22,6,4,13,1,11,2,26] T
fbesp 2 0.801 38.208 931.288  0.167 0.288 84.000 [84,1] T
fbesp 3 0.550 58.167 562.286  0.915 0.118 63.000 [63,1,21] T
fbesp 4 0573 58485  429.548  0.909 0.105 63.000 [63,1,9,12] T
fbesp 5 0.587 52321 376.101 0.797 0.156 63.000 [63,1,4,9,8] T
fbesp 6 0.579 49.874 327.191 0.821 0.120 61.000 [61,1,2,7,7,7] T
fbesp 8 0.468 56.009 223.252  0.835 0.085 55.000 [55,3,1,7,6,1,1,11] T
reim 2 0.084 7.668 2408.853  0.204 0.295 1.742 [31,54] F
reim 3 0.066 6.245 2283.600 0.177 0.121  2.786 [14,39,32] F
reim 4 0.079 6.354 2130.152  0.293 0.149 4.714 [7,33,23,22] F
reim 5 0.082 6.057 2019.767 0.372 0.149 4.500 [6,27,21,23,8] F
reim 6 0.079 6.362 1876.042  0.335 0.118 27.000 [7,27,19,23,8,1] T
reim 8 0.058 7.392 1573.819  0.366 0.092 22.000 [7,12,21,20,1,1,1,22] T

Inertia vs k

2500

2000

1500

1000

Inertia (WCSS)

500

Figure B.2: INERTIA (WITHIN-CLUSTER SUM OF SQUARES) VERSUS

CLUSTER COUNT k FOR ALL FEATURE TYPES. As expected, Inertia decreases
monotonically. No sharp knee is visible, supporting the decision to rely on Silhouette and
ARI for choosing k.
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Figure B.3: PER-SUBJECT A ACCURACY IN THE POOLED SETTING

(k = 1). Accuracy differences between ERD/ERS and CSP representations are small and
balanced. Confirms that under pooled modeling, representation choice has minimal effect
on decoding performance.
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Figure B.4: PER-SUBJECT A ACCURACY IN THE CLUSTERED FEW-

SHOT REGIME (k = 3). Difference in decoding accuracy between ERD/ERS and CSP
representations (A = ERD — CSP). Negative values favor CSP. CSP outperforms ERD/ERS
for 70 of 85 participants (3 ties), with A ranging from —6.85 to +3.87 percentage points.
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B.2 Extended Results for Subject-Level Representations

for Population Clustering

This subsection provides supplementary results for subsection 4.2, evaluating the
effects of four signal-space augmentations (Gaussian noise, time warping, frequency
shift, mixup) on decoding accuracy. Tables report subject-wise performance changes
under both pooled and clustered few-shot regimes, with significance tests and effect

sizes. These analyses support the main finding that naive augmentations fail to

improve and can even impair MI decoding performance.

Table B.2: POOLED CROSS-SUBJECT MODEL (k=1): EFFECT OF EACH
AUGMENTATION ON DECODING ACCURACY. Each augmentation was applied
individually during multi-task training on pooled data and compared to a non-augmented
baseline across N=85 subjects. A denotes the accuracy difference (augmented — baseline),
reported as mean and median. p-values are Holm-adjusted from Wilcoxon signed-rank tests.
Effect size is Cliff’s 6. Only frequency shift shows a statistically significant degradation.

Augmentation A A W  puom Effect Size Sig.
Gaussian noise —0.0067 —0.0069 1379  0.185 6 =-0.129 X
Time warp -0.0017 -0.0069 1597 0.629 ¢ =-0.047 X
Frequency shift -0.0132 -0.0139 1210.5 0.0156 6 =-0.224 /
Mixup -0.0022 -0.0069 1641 0.643 6 =-0.082 X

Table B.3: CLUSTERED FEW-SHOT ADAPTATION (k=3): IMPACT OF
TIME WARPING ON CSP-BASED DECODING. Subjects were clustered into k=3

groups; each test subject was given three labeled trials per class. Time warp (TW) was

applied to the cluster-specific training data.
significant degradation under augmentation.

signed-rank tests; r is the rank-biserial effect size.

All performance metrics show statistically
p-values are Holm-adjusted from Wilcoxon

Metric Baseline with TW A PHolm Effect size (r)
Accuracy  0.6551 0.6321 —0.0230 5.10x 1071 0.799
F1-score 0.6068 0.5697 —0.0372 3.08 x 10712 0.899
K 0.3100 0.2640 —0.0470 3.41x 10710 0.796
Precision 0.6460 0.6190 -0.0270 1.74 x 1077 0.719
Recall 0.6560 0.6330 —0.0240 4.04x 10710 0.802
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B.3 Extended Results for Cross-Subject Transfer on the

Source Dataset

B.3.1 Extended Results for Few-Shot Personalization with Clustered
and Pooled Models

A vs baseline (accuracy)
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Figure B.5: SUBJECT-WISE CLUSTERING BENEFIT AS A FUNCTION OF
POOLED BASELINE ACCURACY. Under the LOSO few-shot regime (kshot = 4), each
point represents a participant. The x-axis shows the subject’s baseline (pooled) accuracy;
the y-axis shows the performance gain from clustering (A = clustered —pooled). The majority
of subjects show positive A across the baseline range, indicating that clustering benefits both
low- and high-performing participants.
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Table B.4: AGGREGATED COMPARISON OF CLUSTERED VS. POOLED
FEW-SHOT MODELS ACROSS MULTIPLE METRICS. Under the LOSO few-shot
regime (kshot = 4, N = 85), this table reports mean performance for pooled and clustered
models across five metrics. A is the mean paired difference (clustered — pooled). Confidence
intervals are 95% bootstrap CIs. Wilcoxon signed-rank tests assess statistical significance;
r is the rank-biserial effect size. Abbreviations: Pooled = pooled mean, Clust. = clustered
mean, I/D/T = improved / decreased / tied subjects.

101

Metric Pooled Clust. A 95% CI w p r

I/D/T

Accuracy 0.616 0.655 +0.039 [0.031, 0.047] 175.0 1.08 x 10~'2 0.900
Cohen’s k  0.233  0.310 +0.077 [0.062, 0.092] 175.5 7.07 x 10713 0.902

Precision  0.599 0.646 10.047 [0.036, 0.057] 306.0 2.61 x10~'* 0.833
Recall 0.617 0.656 +0.039 [0.031, 0.047] 175.0 6.96 x 10713 0.902
Fl-score  0.549 0.607 +0.058 [0.048, 0.067] 98.0 3.50x 10714 0.946

75/8/2
74/10/1
70/15/0
73/11/1
77/8/0

B.3.2 Extended Results for Effect of Clustering on Zero-Shot Transfer

3) — POOLED LOSO)
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Figure B.6: ORDERED PER-SUBJECT CLUSTERING BENEFIT IN ZERO-
SHOT TRANSFER. Bars show the subject-wise accuracy difference A = clustered — pooled
under LOSO zero-shot training (k = 3). While most subjects benefit from clustering, the
effect is modest and heterogeneous, ranging from —6.5 to +5.2 percentage points.
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A vs baseline (accuracy)
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Figure B.7: CLUSTERING BENEFIT AS A FUNCTION OF BASELINE PER-
FORMANCE IN ZERO-SHOT TRANSFER. Each point represents a subject under
LOSO zero-shot evaluation. The x-axis is pooled model accuracy; the y-axis is the clustering
uplift (A = clustered — pooled). Gains from clustering are observed across a wide baseline
range.
Table B.5: AGGREGATED COMPARISON OF POOLED VS. CLUSTERED
ZERO-SHOT MODELS ACROSS MULTIPLE METRICS. Under LOSO zero-shot
evaluation (k=3 clusters, N=85), this table reports mean performance, paired differences
(A), bootstrap 95% confidence intervals, Wilcoxon test statistics, effect sizes (r), and subject
counts. Clustering improves most metrics, though effect sizes are moderate. Abbreviations:
Pooled = pooled mean, Clust. = clustered mean, I/D/T = improved / declined / tied.
Metric Pooled Clust. A 95% CI w p r 1/D/T
Accuracy 0.633 0.640 +40.0064 [0.0011, 0.0116] 1200 0.0091  0.328 55/29/1
Cohen’s « 0.267 0.281 +0.0140 [0.0045, 0.0232] 1093 0.00129 0.402 60/25/0
Precision 0.622 0.649 +0.0269 [0.0172, 0.0362| 668 3.76x1077 0.634 65/20/0
Recall 0.634 0.641 +40.0069 [0.0020, 0.0116] 1123 0.00202 0.385 59/26/0
Fl-score score 0.570 0.582 +0.0125 [0.0062, 0.0186] 954 0.000129 0.478 63/22/0
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B.3.3 Extended Results for Cluster-Conditioned Support in Few-Shot
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Figure B.8: SUBJECT-WISE IMPROVEMENT FROM CLUSTER-
CONDITIONED SUPPORT. Paired accuracy differences (A) under LOSO few-shot
adaptation (k = 3), sorted by subject. Most participants exhibit positive gains when support
examples are drawn from their assigned cluster.

Table B.6: AGGREGATE RESULTS FOR FEW-SHOT ADAPTATION USING
CLUSTER-CONDITIONED VS. POOLED SUPPORT (N = 85) All models were
trained using k = 3 clusters and kghot = 4. A indicates the mean subject-wise improvement
(clustered — pooled, in percentage points). Large effect sizes and highly significant p-
values confirm the robustness of cluster conditioning across multiple evaluation metrics.
Abbreviations: Pooled = pooled mean, Clust. = clustered mean, I/D/T = improved /
declined / tied.

Metric Pooled Clust. A (pp) 95% CI (pp) W p r I/D/T
Accuracy 0.624 0.655 +3.07 [2.49,3.67] 88.0 8.6x107'* 0.948 74/8/3
Cohen’s k  0.248 0.310 +6.16 [5.09, 7.25] 91.0 4.2x107' 0.949 76/8/1
Precision  0.595 0.646 +5.09 [4.27,5.91] 124.0 1.3x107'3 0.931 75/9/1
Recall 0.625 0.656 +3.12 [2.57,3.67] 84.5 3.4x107'* 0.953 76/8/1

Flscore 0.563 0.607 +4.43 [3.76,5.09] 40.0 7.1x107' 0.978

79/5/1
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A vs baseline (accuracy)
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Figure B.9: CLUSTERING BENEFIT AS A FUNCTION OF BASELINE PER-

FORMANCE (FEW—SHOT, k = 3) Each point denotes one subject. X-axis: accuracy
under pooled support; Y-axis: gain from switching to cluster-conditioned support. The lack
of strong correlation indicates that benefits are not restricted to low-performing subjects.

B.3.4 Extended Results for Effect of Calibration Trials
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Figure B.10: SUBJECT-WISE IMPACT OF INCREASING SUPPORT SET
SIZE FROM 4 TO 8 TRIALS PER CLASS. Bars show the accuracy difference
(A = Accg=g — Accg=q) under LOSO few-shot adaptation. Values are sorted in descending
order. The left-skewed distribution confirms that most participants experience performance
degradation when given more calibration data.
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Figure B.11: PERFORMANCE CHANGE DUE TO INCREASED SUPPORT

SIZE VS. BASELINE PERFORMANCE. Each point represents a subject. X-axis:
accuracy at k = 4; Y-axis: change in accuracy when increasing to k = 8. The negative
slope indicates that subjects who initially performed well are disproportionately harmed by
additional calibration data.
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B.3.5 Extended Results for Feature-Centric Analysis of Clustering

Benefit

Table B.7: CLUSTERING BENEFIT (A) BY DECILES OF CSP FEATURE

STATISTICS IN THE FEW-SHOT SETTING.

Left:

standard deviation of CSP

component 2 (feat_std_1), which captures dominant class-discriminative variance. Right:
mean of CSP component 1 (feat_mean_0), reflecting average projection magnitude across
trials. Values represent mean A = accuracy iystered ~ 3CCUIaACY pooled With 95% bootstrap

confidence intervals.A = accuracy jystered — CCUTACY pooled With 95% bootstrap CI.

feat_std_1 (variability)

feat_mean_0 (mean)

Decile A [95% CI] n A 195% CI| n
0 0.011 [-0.007, 0.030] 9  0.031 [0.010, 0.056] 9
1 0.025 [0.004, 0.049] 8  0.053 [0.029, 0.074] 8
2 0.035 [0.012, 0.060] 9  0.062 [0.039, 0.089] 9
3 0.042 [0.017, 0.067] 9  0.035 [0.014, 0.059] 9
4 0.047 [0.021, 0.070] 9  0.030 [0.008, 0.055] 8
) 0.044 [0.018, 0.069] 8  0.037 [0.014, 0.064] 8
6  0.053[0.029, 0.076] 9  0.041 [0.018, 0.068] 8
7 0.057 [0.035, 0.080] &8  0.059 [0.033, 0.082] 7
8 0.061 [0.038, 0.085] 8  0.034 [0.012, 0.059] 9
9 0.067 [0.044, 0.092] 7  0.021 [0.003, 0.043] 9
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Figure B.12: SUPPLEMENTARY DECILE OVERLAYS FOR CSP FEATURES.
Each bar shows the mean clustering benefit A across subjects grouped into deciles of a CSP-
derived feature, with 95% bootstrap confidence intervals. (a) Mean of CSP component
1 shows two benefit peaks in mid ranges. (b) Variability of CSP component 1 shows no
consistent trend and weak standalone predictive value.
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Table B.8: FULL SPEARMAN CORRELATION ANALYSIS OF CLUSTER-
ING BENEFIT A WITH SUBJECT-LEVEL PREDICTORS. Zero-shot and few-
shot settings are reported side by side, with rank correlations (rg), exact p-values, and
Benjamini-Hochberg FDR-adjusted g-values (¢ < .10 = significant). No predictor achieves
significance after FDR correction. Baseline accuracy (accuracy_A) is included as a pseudo-

predictor.
Zero-shot Few-shot
Predictor rg p q Ts p q
accuracy 0.190 0.081 0.405 0.123 0.261 0.652
beta power 0.121 0.271 0.677 -0.056 0.612 0.764
mu_ power 0.082 0.454 0.757 -0.105 0.339 0.678
feat _std 1 0.046 0.675 0.844 0.112 0.306 0.663
mu__erd 0.061 0.581 0.814 0.068 0.537 0.764
feat _std 0 -0.077 0.486 0.757 -0.082 0.457 0.739

feat mean 0  -0.061 0.578 0.814  -0.091  0.409  0.722
feat mean 1 -0.029  0.790  0.877 0.026  0.811  0.811
beta erd 0.034  0.761 0.877  -0.008 0.939 0.939
spec__entropy 0.004 0.972 0.972 -0.042 0.701 0.811
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