
Explaining the Decisions of a Multi-Modal Hate
Meme Classifier

Sydney Nguyen
Project Thesis 2

Center for Artificial Intelligence
Zurich University of Applied Sciences

sydneynguye@gmail.com

Abstract—This paper presents an in-depth study on enhancing
and interpreting the GITforHatefulMemes model, a multimodal
system designed for detecting hateful content in memes. Given the
vast volume and complexity of internet memes, which combine
images and text, manual detection poses notable challenges. To
address this, an AI-based approach is utilized, employing a
deep neural network for automatic classification. The research
focuses on various strategies such as enriching text data with
image captions, removing text from images to improve image
captioning, selecting pre-trained models to enhance the accuracy
of image captioning, increasing the dataset size, and balancing
classes in the dataset. The model’s performance is evaluated
using various configurations, with the ”Mix + 10 epochs MAMI,
then Hateful Memes” model exhibiting the highest performance,
achieving an AUROC score of 72.26% and accuracy of 67.1%.
This represents a notable improvement over the baseline model.
To enhance interpretability, the Integrated Gradients method is
employed, providing insights into the decision-making process
of the model for both text and visual components. The findings
underscore the importance of thoughtful data selection, effective
data augmentation, and the utilization of pre-trained models
to achieve enhanced performance in hate speech detection. The
insights gained from this study contribute to the ongoing efforts
to build more robust, transparent, and trustworthy AI models
for hate speech detection and moderation, fostering a safer and
more inclusive digital environment.

Index Terms—Hate Speech Detection, Multimodal System,
Integrated Gradients Method, Data Augmentation, Model Inter-
pretability

I. INTRODUCTION

In the era of digital platforms, the spread of hateful content
has become a pressing issue, necessitating the development
of robust and transparent AI models capable of detecting hate
speech. This challenge has raised interest among researchers
and practitioners alike, as they battle with the complexities of
multimodal data. The background of this research lies in the
domain of machine learning, specifically deep learning models
that have been employed to detect hate speech. However,
these models often lack interpretability, making it difficult to
understand their decision-making process. This opacity can
lead to potential biases, unfairness, and a lack of trust in these
AI systems.

This paper positions its approach at the intersection of
performance enhancement and interpretability. The focus is
on the GITforHatefulMemes model, a multimodal system
designed to identify hate speech across text and visual data in

memes. The approach is to investigate a range of strategies,
such as enriching text data with image captions, removing text
from images to bolster image captioning, selecting pre-trained
models to augment the accuracy of image captioning, expand-
ing the dataset size, and balancing classes within the dataset.
The specific research problem is the improvement of both the
performance and interpretability of the GITforHatefulMemes
model. This paper aims to answer the question: How can the
model’s performance in detecting hate speech in memes be
enhanced while also making its decision-making process more
transparent and understandable?

The paper is structured as follows: After this introduc-
tion, a detailed review of related work in the field of hate
speech detection and interpretability is presented. Then the
methodology, detailing the various strategies employed, is
described. This is followed by an evaluation of the models and
a discussion of the results. The paper is then concluded with a
summary of the findings, their implications, and directions for
future research. This study contributes to the ongoing efforts
to construct more robust and transparent AI models to combat
hate speech on online platforms, fostering a safer and more
inclusive digital environment.

II. RELATED WORK

To provide an understanding of the project’s foundation,
this chapter examines related research and advancements in
multimodal transformers, hate speech detection networks, and
explainability methods used to interpret the predictions of
these systems.

A. Multimodality

Multimodality in AI involves the integration of various types
of data (e.g., text, images, audio) to enhance predictions and
identifications [1]. This process, known as multimodal fusion,
can be performed through early, late, or hybrid fusion methods.
Early fusion integrates data before analysis, either by removing
correlations or combining data at its lower-dimensional latent
subspace. However, it can be challenging to synchronize data
sources with variable sampling rates and convert them into
a fixed representation [2]. Early fusion is depicted in Figure
1. Late fusion as seen in Figure 2 uses individual modality
sources for fusion during decision-making, resembling human
cognitive abilities, and can be integrated to generate a single



common decision. Hybrid fusion, uses deep neural networks

Fig. 1. Early fusion. Fig. 2. Late fusion.

for intermediate fusion, changing input data to a higher-level
abstraction and learning a joint representation of different
modalities [2]. This is illustrated in Figure 3.

Fig. 3. Hybrid Fusion

B. Hate Speech in Networks

Research in recent years has focused on detecting hate
speech in network science [3] and natural language processing
[4] [5] [6]. Several hate speech datasets, primarily from Twitter
[7], have been released, and various classifier architectures
[8] [9] have been proposed. However, hate speech detection
remains challenging and is subject to unwanted bias [10]. One
reason for this is the lack of consensus on the definition of hate
speech, with different terminology used in different studies.

This paper focuses on hate speech as defined in the Hateful
Memes challenge report [11] which refers to speech that
involves attacking individuals based on specific characteristics
such as ethnicity, race, nationality, immigration status, religion,
caste, sex, gender identity, sexual orientation, disability, or dis-
ease. Attacks can manifest as violent or dehumanizing speech,
statements of inferiority, and calls for exclusion or segregation.
Additionally, hate speech includes mocking hate crimes. The
definition draws inspiration from community standards on
hate speech employed by platforms like Facebook. There are
certain subtle exceptions within the hate speech definition. For
instance, attacking individuals or famous people is allowed as
long as the attack is not based on any of the protected charac-
teristics mentioned in the definition. Furthermore, attacking
groups perpetrating hate, such as terrorist groups, is not
considered hate speech. These exceptions provide necessary
context for evaluating and classifying memes accurately.

There has been limited research on multimodal hate speech
[11], with only a few papers considering both images and text.
Yang et al. [12] found that augmenting text with image embed-
dings improves hate speech detection performance. Similarly,
other studies [13] collected datasets of Instagram images and
comments, using image features to enhance classification. The
authors of [11] stand apart from these studies as their dataset is

larger and deliberately designed to challenge unimodal archi-
tectures. The focus is specifically on hate speech and the au-
thors include high-confidence ratings from trained annotators
while carefully balancing the dataset for various multimodal
fusion problems. Vijayaraghavan et al. [14] proposed methods
for interpreting multimodal hate speech detection models using
text and socio-cultural information, while Gomez et al. [15]
introduced a larger Twitter-based dataset, including memes,
which could serve as pretraining data for this task.

Multimodal hate speech detection includes visual ques-
tion answering, image caption generation, visual reasoning,
and multimodal machine translation, among others. However,
many existing tasks [11] focus on autoregressive text gen-
eration or retrieval objectives, relying on bounding boxes
or similar features for performance. Real-world multimodal
classification problems faced by companies like Facebook or
Twitter often involve large-scale, text-dominant multimodal
classification. While there are related multimodal classifica-
tion tasks, such as multimodal sentiment analysis [16] and
various datasets using internet data, there is no agreed-upon
standard dataset or benchmark task for multimodal hate speech
detection. The Hateful Memes dataset [17] addresses this gap,
providing a valuable resource for the research community
to develop and evaluate multimodal hate speech detection
models.

C. Transformer

Transformers, especially the Vanilla Transformer, can be
understood from a geometrically topological perspective. The
self-attention mechanism allows modeling tokenized inputs as
fully-connected graphs in the topological geometry space. This
flexibility sets Transformers apart from other deep networks
like CNNs [18], which are limited to aligned grid spaces.

1) Vanilla Transformer: The Vanilla Transformer serves as
the foundation for Transformer-based research, employing an
encoder-decoder structure. It takes tokenized inputs and uses
Transformer layers/blocks for both encoding and decoding.
Each block contains two sub-layers: multi-head self-attention
(MHSA) and position-wise fully-connected feed-forward net-
work (FFN). Residual connections with normalization layers
aid gradient backpropagation. The output of the MHSA and
FFN sub-layers can be represented as Z ← N(sublayer(Z) + Z),
where sublayer(·) is the sub-layer’s mapping and N(·) denotes
normalization [19].

Input Tokenization: Vanilla Transformer utilizes tokenized
sequences as input, treating each token as a node in a graph.
Tokenization offers advantages such as geometrically topolog-
ical flexibility, flexible information organization, compatibility
with task-specific tokens, and inherent support for multimodal
data processing.

Position Embedding: Vanilla Transformer employs sine and
cosine functions for position embedding. Position embeddings
provide temporal or spatial information to the Transformer.
Their necessity depends on the input type, and they can be
seen as a form of additional information.



Self-Attention (SA) and MHSA: SA is a core component
of the Vanilla Transformer, enabling each element of an input
sequence to attend to all other elements. SA models the input
as a fully-connected graph, providing a global perception
similar to Non-Local Networks. Masked Self-Attention (MSA)
modifies SA to incorporate contextual dependencies and pre-
vent attending to future positions. MHSA stacks multiple SA
sub-layers in parallel, allowing the model to jointly attend to
information from multiple representation subspaces. MHSA
acts as an ensemble mechanism, enhancing the Transformer’s
ability to process diverse information.

Feed-Forward Network (FFN): The output of the multi-
head attention sub-layer in the Transformer passes through
a position-wise FFN. The FFN consists of successive linear
layers with non-linear activation. For example, a two-layer
FFN can be represented as:

FFN(Z) = σ(ZW1 + b1)W2 + b2,

Here, W1, b1, W2, and b2 denote the weights and biases of
the linear transformations, while σ() represents a non-linear
activation function such as ReLU(·) [20] or GELU(·) [21].

2) Multimodal Transformers: The Transformer architecture
can process each input as a fully-connected graph through
self-attention. This allows Transformers to work with various
modalities by treating the embedding of each token as a graph
node. Users only need to tokenize the input and select an
embedding space before inputting the data into Transformers.
Tokenization and embedding approaches are highly flexible,
offering alternatives such as using ROIs and CNN features,
patches and linear projection, or object detection and graph
features [19]. From a geometric topology perspective, each
modality can be seen as a graph. For example, an RGB
image represents a neat grid graph, while video and audio
are clip/segment-based graphs with temporal and semantic
patterns. Both uni-modal and multimodal Transformers utilize
special/customized tokens as placeholders in token sequences.
Common special tokens, such as [CLS] for classification and
[SEP] as a separator, are defined to add semantic meaning to
the token sequences. Token embedding fusion is a technique
used in Transformers to combine multiple embeddings for each
token position which allows for early fusion of embeddings.
Token-wise summing is a common method of fusion, pro-
viding flexibility in various Transformer models, including
multimodal surveillance AI. in In multimodal Transformer
applications, this approach combines different embeddings
using token-wise operators like addition. Examples include Vi-
sualBERT [22], Unicoder-VL [23], VL-BERT [24], InterBERT
[25], and ImageBERT [26], which leverage token embedding
fusion for improved performance in multimodal tasks.

In multimodal Transformers, self-attention and its variants
are used for processing cross-modal interactions such as fusion
and alignment [19].

D. Generative Image-to-text Transformer

The Generative Image-to-text Transformer (GIT) [27] is
a model architecture specifically designed for multimodal

data within the broader framework of transformers. It aims
to unify vision and language tasks, including image/video
captioning and question answering. This project uses GIT as
the base model for the hate speech detection task. The network
architecture as seen in Figure 4 is composed of an image
encoder and a text decoder.

Fig. 4. Network architecture of GIT, composed of one image encoder and
one text decoder. (a): The training task in both pre-training and captioning
is the language modeling task to predict the associated description. (b): In
VQA, the question is placed as the text prefix. (c): For video, multiple frames
are sampled and encoded independently. The features are added with an extra
learnable temporal embedding (initialized as 0) before concatenation. [27]

The image encoder uses a contrastive pre-trained model. It
takes a raw image as input and generates a 2D feature map.
This map is flattened into a list of features, which are then pro-
jected into D dimensions using a linear layer and a layernorm
layer. This image encoder is used because recent studies show
that contrastive tasks perform well in this context [27]. The
authors also note that a stronger image encoder boosts Vision-
Language (VL) performance. The text decoder is a transformer
module that generates the text description. The text is tok-
enized, embedded into D dimensions, and then positionally
encoded. The image features and the text embeddings are
then concatenated and input to the transformer module, which
starts decoding from the [BOS] token in an auto-regressive
manner until the [EOS] token or the maximum step limit is
reached. The text token only depends on preceding tokens and
all image tokens, while image tokens can attend to each other.
This is different from a unidirectional attention mask. Instead
of initializing the image encoder, the text decoder is randomly
initialized. This is because random initialization has shown
similar performance compared to BERT [28] initialization in
previous studies. Additionally, the BERT initialization cannot
comprehend the image signal, which is important for VL
tasks. This approach makes it easier to explore different design
choices without being dependent on initialization.

E. Explainable AI

Explainable AI (XAI) involves understanding the working
mechanism and decision-making process of AI systems. It
aims to answer questions like why the system made a par-
ticular prediction (interpretability) and how the system came
to a specific decision (explainability) [29].

Model-specific explanations apply to a specific model, while
model-agnostic methods are independent and irrespective of



the model. Feature attribution-based methods highlight image
regions that are contributors to decision-making. Distillation
methods build an approximate local model or a surrogate
model on top of the original model for interpretation. Intrin-
sic methods are explainable and self-explain using models’
attention mechanisms to focus on important visual and textual
regions. This category includes joint training approaches that
combine predictions and explanations. Figure 5 shows the
taxonomy of various deep explainability methods for both
unimodal and multimodal scenarios [2].

Fig. 5. XAI methods.

1) Explainability Methods for Multimodal Systems: The
following methods [2] aim to provide interpretable explana-
tions for tasks like visual question answering, image caption-
ing, and common sense reasoning.

Attention-based methods assign more weight and impor-
tance to specific factors in multimodal data. They are com-
monly used in tasks like visual captioning and visual ques-
tion answering, where attention mechanisms align and fuse
information from different modalities. These approaches gen-
erate explanations based on attention features and improve
interpretability. However, challenges exist in evaluating and
ensuring consistent explanations.

Counterfactual explanations focus on contrasting decisions
and causal understanding. They recommend actionable in-
sights and minimal changes to achieve desired outcomes.
Counterfactual approaches have been applied in visual ques-
tion answering, visual captioning, and image description tasks
to analyze model behavior and improve predictions.

Interactive explanations involve user feedback by combining
model explanations, user annotations, and active learning to
rectify incorrect predictions and enhance user trust. They have
been applied to tasks like VQA and customer relationship
management.

Graph-based methods leverage scene graphs and knowledge
graphs to improve explanation quality. Scene graphs represent
relationships between objects in an image, while knowledge
graphs incorporate semantic information. These approaches
enhance interpretability in tasks like visual question answering
and neuro symbolic AI.

Attribute-based methods focus on the importance of at-
tributes in generating explanations. They associate visual fea-
tures with attribute information to provide class-discriminative
and concept-explaining explanations. Attribute maps, counter
attributes, and spatiotemporal attention mechanisms are uti-
lized to improve interpretability.

2) Integrated Gradients: Integrated Gradients (IG) is an
attribute-based model interpretability technique that assigns
importance scores to input features. It does so by approximat-
ing the integral of gradients of the model’s output concerning
the inputs along a straight-line path from given baselines to
inputs. IG relies on two fundamental axioms, namely Sensi-
tivity and Implementation Invariance, as stated in Definition 1
and Definition 2 of the paper ”Axiomatic Attribution for Deep
Networks” [30]. These axioms hold significance as they are
believed to be essential traits of all attribution methods.

Definition 1 (Axiom: Sensitivity) states that an attribution
method satisfies Sensitivity if, when presented with two inputs
and baselines that differ in only one feature, resulting in
different predictions, the differing feature is attributed a non-
zero value. In cases where the deep network’s mathematical
implementation does not rely on a particular variable, the
attribution to that variable should always be zero.

Definition 2 (Axiom: Implementation Invariance) defines
functional equivalence between two networks, indicating that
their outputs are identical for all inputs despite varying imple-
mentations. An attribution method satisfying Implementation
Invariance would ensure that attributions remain the same for
functionally equivalent networks.

The sensitivity axiom requires a baseline which is defined
as an absence of a feature in an input. It can be understood
as an ”input from the input space that produces a neutral
prediction.” By treating the baseline as an input, counterfactual
explanations can be generated, exploring how the model
behaves while transitioning from the baseline to the original
image.

The authors contend that gradient-based methods violate
Sensitivity (Def. 1). To illustrate this, they present a simple
function, f(x) = 1 − ReLU(1 − x), as shown in Figure
6. When attempting to generate attribution for x = 2, the
function’s output changes from 0 to 1, but after x = 1,
it becomes flat, resulting in a gradient of zero. Although x
contributes to the result, the flatness of the function at the input
being tested leads to invalid attribution, breaking Sensitivity.
Breaking Sensitivity causes gradients to focus on irrelevant
features [30].

Fig. 6. f(x) = 1−ReLU(1x) where x ∈ [0, 2]



a) Computing Integrated Gradients: In the definition of
IG, function F represents the model, where the input x ∈ Rn

(with n denoting the number of dimensions) and the baseline
x′ ∈ Rn. The method involves computing gradients along a
straight-line path between x and x’. The integrated gradient
along the ith dimension is formally defined as shown in
equation 1.

IGi(x) := (xi − x′
i) ∗

∫ 1

α=0

δF (x′ + α ∗ (x− x′))

δxi
dα (1)

However, since the original definition involves an integral,
it is infeasible to calculate directly. Therefore, the practical
implementation of IG utilizes an approximation by replacing
the integral with a summation, as in equation 2.

IGapprox
i (x) := (xi − x′

i) ∗
m∑

k=1

δF (x′ + k
m ∗ (x− x′))

δxi
∗ 1

m

(2)
To obtain the approximated calculation (equation 2), param-

eter m is used to define the number of interpolation steps. For
example, when visualizing the interpolations with m equals
five (see Figure 7), the process can be better understood. In
practice, the number of interpolation steps typically ranges
from 20 to 300, with the most common value being 50. The
results of applying IG can be observed in Figure 8.

Fig. 7. Five-step interpolation between the baseline x’ and the input image
x. The first image on the left (alpha:0.0) is not a part of the interpolation
process [31].

Fig. 8. Visualization of the saliency map by the IG generated for the class
saint-bernard. The result is averaged over 50 interpolation steps [31].

III. METHODOLOGY

A. Problem Statement

The task is to classify memes consisting of an image and
pre-extracted text, into two categories: hateful or non-hateful.
The classification is based on whether the meme aligns with

the definition of hate speech provided in paper [11]. The model
must analyze both the image and text inputs, conditioning
on their joint information to generate the binary classification
output.

B. Dataset Description

1) Hatefulness Dataset: The Hateful Memes dataset is a
multimodal dataset consisting of images and text designed for
hate speech detection [17].

a) Qualitative Analysis: Memes are known for their
subtle nature, where their true underlying meaning may be
easy for humans to detect but challenging for AI systems. The
Hateful Memes dataset is designed to measure true multimodal
understanding and reasoning. By including so-called ”benign
confounders”, where alternative images or captions flip the
label from hateful to not-hateful, the dataset challenges models
to exhibit sophisticated multimodal reasoning. This require-
ment ensures that models must consider both image and text
modalities to accurately classify memes. Examples are seen in
Figure 9.

Fig. 9. Multimodal hateful memes and benign confounders, for illustrative
purposes. Hateful memes (left), benign image confounders (middle) and
benign text confounders (right) [17].

b) Meme Type Distribution: The Hateful Memes dataset
comprises 10’000 memes, divided into test and training sets. It
is balanced, covering multimodal hate, unimodal hate, benign
text confounders, benign image confounders, and random non-
hateful examples. The labels indicate whether each meme is
hateful or not, with the following distribution as plotted in
Figure 10:

• Multimodal Hate: Memes exhibiting hate in both the
image and text modalities. 40%

• Unimodal Hate: Memes demonstrating hate in either the
image or text modality. 10%

• Benign Text Confounders: Memes in which the original
text is replaced with alternative text, leading to a change
in label from hateful to not-hateful. 20%

• Benign Image Confounders: Memes in which the original
image is substituted with an alternative image, resulting
in a change in label from hateful to not-hateful. 20%

• Random Non-Hateful: Memes randomly selected and
classified as non-hateful. 10%

2) Additional Dataset: To address model overfitting, addi-
tional data from external sources is sought. A search on Kaggle



Fig. 10. Hateful Memes dataset meme type distribution.

led to the discovery of several datasets. Three potential datasets
are identified:

• Memotion dataset [32], comprising 7’000 labeled data
points based on offensiveness levels. However, upon
closer examination, it is found that the nature of offen-
siveness in this dataset differs from that of the hateful
memes dataset as their definition of hatefulness is not
aligned with the definition used in this project, making it
unsuitable for this purposes.

• MultiOFF dataset [33] is considered, however, it is not
publicly available, preventing its use in this study.

• The Multimedia Automatic Misogyny Identification
(MAMI) dataset [34] is also evaluated. Due to a par-
tial overlap in the hateful speech definition, the MAMI
dataset is selected for further work.

The search for additional data results in the selection of the
MAMI dataset to supplement the existing data in tackling
model overfitting.

C. GITforHatefulMemes Model Architecture

The model, named GITforHatefulMemes, is built upon the
GIT pre-trained model, implemented using the PyTorch [35]
framework. This architecture includes several key components,
each serving a specific role in the model’s operation:

1) Base Model: The GIT model, pre-trained with ”git-base-
coco” [27] checkpoint, forms the core of the GITforHate-
fulMemes model. This base model is loaded with the
transformers library [36], enabling efficient usage of the
pre-trained weights.

2) Output Layer Modification: To adapt the model for clas-
sification tasks, a fully connected (fc) layer is introduced.
This modification adjusts the output layer to align with
the desired number of classes for classification. The task
involves binary classification, hence the output size is set
to 2.

3) Loss Function: For training, the Cross-Entropy loss [37]
is utilized as the criterion. This loss function efficiently
computes the discrepancy between predicted logits and
the provided labels, driving the model toward accurate
predictions.

4) Forward Pass: The forward method orchestrates the
model’s forward pass. It takes text and image embeddings
as inputs, representing the tokenized input and corre-
sponding image pixel values, respectively. The method
then processes these inputs through the base model,
generating logits, which are the raw predicted scores for
each class. Subsequently, the logits pass through the fc
layer to produce the final predicted probabilities.

5) Loss Calculation: If label information is provided during
training, the loss using the criterion and the predicted
logits are computed in the forward pass. This loss value
guides the model’s learning process. If no labels are
provided (e.g., during inference or evaluation), the loss
is set to None.

6) Prediction Generation: The forward method identifies
the predicted class with the highest probability from
the logits. Furthermore, the softmax function [38] is
applied to obtain normalized probabilities, representing
the model’s confidence in its predictions.

A workflow visualization is depicted in 11.

Fig. 11. GITforHatefulMemes model architecture.

D. Pre-trained Model Selection

The Pre-trained Model selection phase involves evaluating
different pre-trained models available on HuggingFace [39] to
achieve optimal model performance. The focus is on identi-
fying the most suitable model based on its ability to generate
captions that align with the hatefulness definition.

Several pre-trained models are assessed, including GIT-
base trained on 10 million image-text pairs and GIT-base-
coco, which was additionally fine-tuned on 10 million image-
text pairs from the Coco dataset [40]. The evaluation also
considered GIT-large, trained on 20 million image-text pairs,
and GIT-large-coco, fine-tuned on 20 million image-text pairs
from the Coco dataset.

E. Data Preprocessing and Augmentation Techniques

Two main methods are implemented to enhance model
performance:

1) Generating Image Captions: To provide the model with
more contextual information, image captions are gener-
ated for each image. These captions are then concatenated
with the original text data, using the [SEP] token.

2) Removing Meme Text from Images: Captioning pro-
cesses often include the meme text along with the caption,
even though the meme text may not be directly related



to the actual content depicted in the image. An example
can be found in the appendix in Table III. With the
”inpainted” method, the meme text is ”blurred out” or
removed from the image. This ensures that the text no
longer influences the image captioning process and allows
the model to focus solely on the visual content of the
image.

IV. EXPERIMENTAL SETUP

A. Train and Test Set

The dataset used in the experiments is divided into two main
subsets: the train set and the test set. The official Hateful
Memes Challenge provided the initial split for these sets.
In this project, the initial train set is used in the first few
experiments. In a later iteration, the train set is augmented
by incorporating additional data from the MAMI dataset.
However, the test set remains unchanged, following the same
composition as the original challenge. The mixed train set
comprises two main datasets: the MAMI dataset and the
Hateful Memes dataset. The MAMI dataset contains 1’547
instances labeled as 0 (non-hateful) and 1688 instances labeled
as 1 (hateful). Similarly, the Hateful Memes dataset consists
of 5’874 instances labeled as 0 and 3266 instances labeled as
1: Collectively, the train set contains 7’421 non-hateful and
4’954 hateful labels totally as plotted in Figure 12.

Fig. 12. Train set label distribution.

The test set contains only Hateful Memes data with 510
non-hateful and 490 hateful labels as seen in Figure 13 for all
experiments.

B. Evaluation Protocol

The evaluation of model performance in the experiments
relies on the Area Under the Receiver Operating Characteristic
curve (AUROC) [41] as the primary performance metric.
AUROC provides an assessment of the model’s ability to
discriminate between hateful and non-hateful memes by con-
sidering the trade-off between true positive and false positive
rates.

Fig. 13. Test set label distribution.

C. Implementation Details

The experimental setup for all conducted experiments in
this study follows the configuration described in the paper
GIT [27]. The image encoder is initialized using a pre-trained
contrastive model. The hidden dimension (D) for the network’s
hidden layers is set to 768, and the text decoder is composed
of 6 transformer blocks, which are randomly initialized. The
model contains a total of 0.7 billion parameters. During the
inference stage, a beam size of 4 is used, along with a
length penalty of 0.6. For this study’s specific experiments, the
learning rate is set to 5e-5, and the Adam optimizer is used
during training. Due to hardware constraints, the batch size is
set to 8 for the data loader for each training and evaluation.
To avoid overfitting and optimize training efficiency, early
stopping is implemented to halt training when no performance
improvement is observed. The model is evaluated on the test
set every 5 epochs, and a checkpoint of the model is saved to
enable loading of model weights for future iterations.

V. RESULTS

The results are obtained through a series of experiments
as described in each corresponding subsection. Seven distinct
models are trained and their respective performance metrics
are compared. Hereby, the best AUROC score in any epoch
of each model is compared. The configuration for each model
is determined based on insights gained from the preceding
experiments, with the objective of enhancing overall perfor-
mance. The baseline model, denoted as the ”Base Model,”
serves as the starting point for comparison. The Base Model
is the GITforHatefulMemes model trained on the original
train set containing solely the Hateful Memes dataset. Ta-
ble I summarizes each model’s best performance. All plots
showcasing model performance on the test set are generated
using spline interpolation [42] with a smoothing parameter
(s) set to 1 to ensure a more visually refined representation
for easier analysis. Among all models evaluated, the ”Mix +



Model AUROC [%] Accuracy [%]
Base Model 0.5946 58.1
Base Model + Caption 0.6586 59.5
Base Model + Inpainted Caption 0.6675 62.7
Coco Model + Inpainted Caption 0.6956 64.6
Mix 0.7193 65.8
Mix + 10 epochs MAMI, then
Hateful Memes

0.7226 67.1

Mix + Balanced Classes 0.6804 64.0
TABLE I

MODEL PERFORMANCE

10 epochs MAMI, then Hateful Memes” model achieves the
highest performance, with an AUROC score of 72.26% and
an accuracy of 67.1%. This represents a notable improvement
over the baseline model’s AUROC score of 21.53% and
accuracy of 15.49%. In Figure 14, the AUROC scores are
presented for all the evaluated models.

Fig. 14. AUROC [%] all models.

Figure 15 presents the evaluation results of the ”Base
Model”, including training accuracy, test AUROC, and text
accuracy. A visible gap between training accuracy and test
accuracy is observed, indicating strong overfitting in the
model. The subsequent subsections detail the strategies em-
ployed to address overfitting and enhance model performance.
Comprehensive metric plots for all models are provided in the
appendix for reference.

Fig. 15. Metrics for Base Model.

A. Benefits of enriching text data with image captions

By generating and concatenating captions to the sample text,
the input data was enhanced with additional image descrip-
tions, leading to an improvement in the model’s performance
(”Base Model + Caption”). The results seen in Figure 16
demonstrate an increase of 10.76% in AUROC compared to
the base model.

Fig. 16. AUROC [%] of baseline model and model enriched with captions,
highlighting the efficacy of this data enrichment technique.

B. Benefit of Text Removal on Image Captioning

The removal of text from images improves image caption-
ing, thereby enhancing model performance. By applying the
inpainted method to remove text from the images, a more
reliable image captioning has resulted, leading to improved
model performance (”Base Model + Inpainted Caption”). By
eliminating irrelevant text from the images, the model’s focus
on visual content is enhanced, resulting in a slight increase
of 1.35% in AUROC compared to the model based on the
original captions. This is plotted in Figure 17.

Fig. 17. AUROC [%] of training on original images and inpainted images.

C. Benefit of Pre-Trained Model Selection

The selection of pre-trained models positively affects the
accuracy of image captioning for the hate speech detection



task. This experiment employs a qualitative analysis to eval-
uate the quality of generated captions by different pre-trained
models. Captions are compared to the corresponding images to
assess their informativeness and alignment with the hatefulness
definition. Table II shows the results which indicate that ”GIT-
base-coco” provides more informative attributes related to eth-
nicity and gender, which are essential for certain hate speech
classifications. Interestingly, minimal differences are observed
between ”GIT-base-coco” and ”GIT-large-coco”. As a result
of its improved performance and relative simplicity, GIT-base-
coco is selected for all subsequent experiments (”Coco Model
+ Inpainted Caption”). Detailed examples are presented in the
appendix in Table III for reference. Table II summarizes the
findings:

Pre-trained
Model

Dataset Variant Observations

git-base 10M Image-Text –
git-base-coco 10M Image-Text Better attributes recognition
git-large 20M Image-Text –
git-large-coco 20M Image-Text Similar to git-base-coco

TABLE II
SUMMARY OF PRE-TRAINED MODEL SELECTION

The model ”Coco Model + Inpainted Caption” enables
improved model performance compared to model ”Base Model
+ Inpainted Caption” with GIT-base as pre-trained model. To
assess the performance of the two models, both are trained
with captions generated on inpainted images. The results as
seen in Figure 18 show that GIT-base-coco outperforms GIT-
base by an increase of 4.21% in AUROC.

Fig. 18. AUROC [%] of different pre-trained models.

D. Benefit of Data Augmentation on Model Performance

The impact of data augmentation on model performance is
investigated by comparing three different models. The baseline
model used for comparison is the Coco model enriched with
captions and trained on inpainted images (”Coco Model +
Inpainted Caption”), which exhibited the best performance in
previous experiments.

The second model involves the addition of the MAMI
dataset to the training set, which is randomly mixed with

the existing data (”Mix”). The third model undergoes initial
training for 10 epochs on the mixed dataset and then undergoes
fine-tuning solely on the original Hateful Memes dataset (”Mix
+ 10 epochs MAMI, then Hateful Memes”). This approach
is chosen to leverage data augmentation benefits, addressing
overfitting, while ensuring fine-tuning on the original dataset
for optimal results, given that the test set comprises only the
hateful memes dataset.

Figure 19 demonstrates an improvement in model perfor-
mance when augmenting the dataset. The second model en-
hances the baseline by 3.41%, while the third model surpasses
the baseline by 3.88%. These results validate the hypothesis
that increasing the dataset size positively impacts model per-
formance.

Fig. 19. AUROC [%] of models with augmented datasets.

E. No Direct Impact of Class Balance on Model Performance

The hypothesis tested in this experiment is whether better
model performance can be achieved through class balance.
Class balance is implemented by augmenting the train set with
MAMI data labeled as hateful and simultaneously reducing the
Hateful Memes data labeled as non-hateful to attain a perfect
label balance. However, contrary to the initial assumption, the
model’s performance as seen in Figure 20 shows a decline
after this adjustment. This decrease is attributed to the reduced
number of total data instances.

VI. INTERPRETATION OF THE GITFORHATEFULMEMES
MODEL

In this chapter, the outputs of several memes data samples
are interpreted using the IG method. The attribution scores
of both the text and visual components of the GITforHate-
fulMemes model (”Mix + 10 epochs MAMI, then Hateful
Memes”), are analyzed. By employing IG, insights are sought
into how the model makes its predictions and the relative
importance of different data modalities is understood.

The following sections contain visualizations and discus-
sions of potentially sensitive content related to hateful memes
and their interpretation. The content may include offensive
language, images, or themes that could be distressing or
triggering to some readers.



Fig. 20. AUROC [%] of models with and without class balancing method.

A. Implementation

The model architecture can be visualized as a multi-layered
structure comprising two main components, namely the GIT
model which is responsible for encoding both text and image
inputs, and the fc layer which is responsible for the final
classification of the model’s output. The GIT model consists of
three sub-models: the Embeddings layer, the Image-encoder,
and the Encoder. The Embeddings layer embeds the text
and image inputs into a vector space. The Image-encoder
utilizes a transformer architecture to encode the image input,
while the Encoder employs a self-attention mechanism to
encode the text input. For the interpretability implementation,
the Embeddings layer is chosen, as it handles the model’s
multimodal characteristics. The IG method is implemented
following the guidelines in [30], using the PyTorch framework
and the Captum library. To start summing the gradients, a
black image serves as the baseline for the image, and a zero
baseline is used for the text. These baselines represent the
absence of signal, allowing for a clearer interpretation of the
attributions.

B. Visualization of Examples

The legend denotes red for negative, green for positive, and
white for neutral attributions for the text. The ”True Label”
represents the data label and the ”Predicted Label” denotes
the label predicted by the model with a probability score
above 0 and below 0.5 for non-hateful classification and a
probability score between 0.5 and 1 for hateful classification.
The ”Attribution Label” indicates the label for which the
attribution is made. The attribution score [30] reflects that
a positive value means the input in that particular position
positively contributed to the final prediction, while a negative
value means the opposite. The magnitude of the attribution
score indicates the strength of the contribution, and a zero
attribution score signifies no contribution from that particular
feature. Word importance showcases the visualization of at-
tributions for text tokens, which consist of text concatenated
with captions and separated by the [SEP] token. An attribution
map is displayed for the image visualization, where black

pixels correspond to absolute attribution values. The choice
of absolute attribution values is to highlight the importance
of each image pixel. The intensity of the black pixel color
represents the magnitude of the integrated gradients at that
specific pixel, while colorless pixels signify the absence of
gradients at those locations. Both text and image contributions
align with their attribution scores and collectively sum up to
the total contribution, representing their combined impact on
the prediction.

In Figure 21, positive text attributions are observed for the
words ”spinner,” ”woman,” ”seen in,” and ”washing,” indicat-
ing their importance in the model’s prediction. Conversely,
a negative text attribution is found for the word ”machine,”
which is considered redundant as the word ”washing” already
conveys the necessary information. The image visualization
highlights the attribution for the woman in the picture, which
aligns with how a human evaluator would interpret the content.
This particular data sample is correctly classified as ”hate-
ful.” The text contribution has a magnitude of 1.16, which
dominates the overall prediction, while the image contribution
is -0.16. This dominance of text contribution is expected
since the model likely relies heavily on the text to make
accurate predictions, as supported by the hypothesis conducted
in previous evaluation.

Fig. 21. Example of a correctly classified hateful data sample.

In Figure 22, a goat image is displayed along with positive
text attributions for the words ”im” and ”sky.” The image
attribution is focused on the goat’s head. However, these
contributions are challenging to interpret, especially given
the model’s prediction of ”hateful” for a data sample that
is actually non-hateful. One possible explanation for this
misclassification is that the training set contains several hateful
examples featuring goats. As a result, the model might have
learned to associate the appearance of goats with hateful
classifications, leading to misattributions in this particular case.

Figure 23 presents another incorrectly classified non-hateful
example. In this case, it is suspected that the misclassification
is primarily attributed to the text part. The positive attributions
are found in words such as ”retarded” and ”people,” among



Fig. 22. Example of an incorrectly classified non-hateful data sample with a
focus on the visual feature.

others. On the other hand, the image attributions do not
provide a clear attribution map, resulting in a negative image
contribution. The text tokens with the highest attribution values
might be considered hateful by a human evaluator, and this
could be influenced by the model’s pretraining data. However,
it’s important to note that the specific definition of hatefulness
used for this classification task does not classify these tokens
as hateful.

Fig. 23. Example of an incorrectly classified non-hateful data sample with a
focus on the text feature.

Figures 24 and 25 showcase data samples representing
benign confounders. These samples come with the same
original text but different images, leading to different labels.
Figure 24 is correctly classified as non-hateful, while Figure
25 is incorrectly classified as non-hateful. The differences
between the two are their generated captions and images, with
identical text. The misclassification in Figure 25 is presumed
to occur because the model fails to recognize the ethnicity of
the two individuals depicted in the image. Consequently, the
hatefulness definition does not apply in this context.

Fig. 24. Benign confounder example of a correctly classified non-hateful data
sample.

Fig. 25. Benign confounder example of an incorrectly classified hateful data
sample.

VII. CONCLUSION AND OUTLOOK

This study has contributed to research in hate speech detec-
tion in multimodal data by employing various strategies such
as enriching text data with image captions, improving image
captioning by removing text from images, using pre-trained
models, increasing dataset size, and balancing classes. A key
focus was on interpretability, using the Integrated Gradients
method to understand the model’s decision-making process
and the relative importance of different data modalities. The
best-performing GITforHatefulMemes model achieved an AU-
ROC score of 72.26%, improving the baseline model by
21.53%. Despite the presence of overfitting, the study demon-
strated that the used strategies improved hate speech detection.
However, the complexity of interpreting deep learning models
and some misclassifications highlight the need for careful
application of such models. Future research can explore ad-
ditional interpretability methods, advanced data augmentation
techniques, and incorporating contextual information to refine
the model’s performance and address challenges in hate speech
classification.



VIII. ACKNOWLEDGMENT

I’d like to express my sincere gratitude to my supervisor,
Dr. Jasmina Bogojeska. Her support, especially in providing
key literature and valuable feedback, significantly contributed
to the successful completion of my project. Thank you, Dr.
Bogojeska. Your guidance was instrumental.



REFERENCES

[1] P. Xu, X. Zhu, and D. A. Clifton, “Multimodal learning with transform-
ers: A survey,” 2023.

[2] G. Joshi, R. Walambe, and K. Kotecha, “A review on explainability in
multimodal deep neural nets,” CoRR, vol. abs/2105.07878, 2021.

[3] M. H. Ribeiro, P. H. Calais, Y. A. Santos, V. A. F. Almeida, and W. M. J.
au2, “Characterizing and detecting hateful users on twitter,” 2018.

[4] Z. Waseem, T. Davidson, D. Warmsley, and I. Weber, “Understanding
abuse: A typology of abusive language detection subtasks,” in Proceed-
ings of the First Workshop on Abusive Language Online, (Vancouver,
BC, Canada), pp. 78–84, Association for Computational Linguistics,
Aug. 2017.

[5] A. Schmidt and M. Wiegand, “A survey on hate speech detection using
natural language processing,” in Proceedings of the Fifth International
Workshop on Natural Language Processing for Social Media, (Valencia,
Spain), pp. 1–10, Association for Computational Linguistics, Apr. 2017.

[6] P. Fortuna and S. Nunes, “A survey on automatic detection of hate speech
in text,” ACM Comput. Surv., vol. 51, jul 2018.

[7] Z. Waseem, “Are you a racist or am I seeing things? annotator influence
on hate speech detection on Twitter,” in Proceedings of the First
Workshop on NLP and Computational Social Science, (Austin, Texas),
pp. 138–142, Association for Computational Linguistics, Nov. 2016.

[8] R. Kumar, A. K. Ojha, S. Malmasi, and M. Zampieri, “Benchmarking
aggression identification in social media,” in Proceedings of the First
Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
(Santa Fe, New Mexico, USA), pp. 1–11, Association for Computational
Linguistics, Aug. 2018.

[9] S. Malmasi and M. Zampieri, “Challenges in discriminating profanity
from hate speech,” 2018.

[10] T. Davidson, D. Bhattacharya, and I. Weber, “Racial bias in hate speech
and abusive language detection datasets,” 2019.

[11] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, C. A. Fitzpatrick,
P. Bull, G. Lipstein, T. Nelli, R. Zhu, N. Muennighoff, R. Velioglu,
J. Rose, P. Lippe, N. Holla, S. Chandra, S. Rajamanickam, G. Antoniou,
E. Shutova, H. Yannakoudakis, V. Sandulescu, U. Ozertem, P. Pantel,
L. Specia, and D. Parikh, “The hateful memes challenge: Competition
report,” in Proceedings of the NeurIPS 2020 Competition and Demon-
stration Track (H. J. Escalante and K. Hofmann, eds.), vol. 133 of
Proceedings of Machine Learning Research, pp. 344–360, PMLR, 06–12
Dec 2021.

[12] F. Yang, X. Peng, G. Ghosh, R. Shilon, H. Ma, E. Moore, and
G. Predovic, “Exploring deep multimodal fusion of text and photo for
hate speech classification,” in Proceedings of the Third Workshop on
Abusive Language Online, (Florence, Italy), pp. 11–18, Association for
Computational Linguistics, Aug. 2019.

[13] H. Hosseinmardi, S. A. Mattson, R. I. Rafiq, R. Han, Q. Lv, and
S. Mishra, “Detection of cyberbullying incidents on the instagram social
network,” 2015.

[14] P. Vijayaraghavan, H. Larochelle, and D. Roy, “Interpretable multi-
modal hate speech detection,” 2021.

[15] R. Gomez, J. Gibert, L. Gomez, and D. Karatzas, “Exploring hate speech
detection in multimodal publications,” 2019.

[16] S. Lai, X. Hu, H. Xu, Z. Ren, and Z. Liu, “Multimodal sentiment
analysis: A survey,” 2023.

[17] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, P. Ringshia, and
D. Testuggine, “The hateful memes challenge: Detecting hate speech in
multimodal memes,” 2021.

[18] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” 2015.

[19] P. Xu, X. Zhu, and D. A. Clifton, “Multimodal learning with transform-
ers: A survey,” 2023.

[20] A. F. Agarap, “Deep learning using rectified linear units (relu),” 2019.
[21] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2023.
[22] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert:

A simple and performant baseline for vision and language,” 2019.
[23] G. Li, N. Duan, Y. Fang, M. Gong, D. Jiang, and M. Zhou, “Unicoder-

vl: A universal encoder for vision and language by cross-modal pre-
training,” 2019.

[24] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert:
Pre-training of generic visual-linguistic representations,” 2020.

[25] J. Lin, A. Yang, Y. Zhang, J. Liu, J. Zhou, and H. Yang, “Interbert:
Vision-and-language interaction for multi-modal pretraining,” 2021.

[26] D. Qi, L. Su, J. Song, E. Cui, T. Bharti, and A. Sacheti, “Imagebert:
Cross-modal pre-training with large-scale weak-supervised image-text
data,” 2020.

[27] J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu, C. Liu, and
L. Wang, “Git: A generative image-to-text transformer for vision and
language,” 2022.

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[29] XxAI - Beyond Explainable AI: International Workshop, Held in Con-
junction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and
Extended Papers, (Berlin, Heidelberg), Springer-Verlag, 2020.

[30] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” 2017.

[31] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in First Workshop on Fine-
Grained Visual Categorization, IEEE Conference on Computer Vision
and Pattern Recognition, (Colorado Springs, CO), June 2011.

[32] S. Mishra, S. Suryavardan, P. Patwa, M. Chakraborty, A. Rani, A. Re-
ganti, A. Chadha, A. Das, A. Sheth, M. Chinnakotla, A. Ekbal, and
S. Kumar, “Memotion 3: Dataset on sentiment and emotion analysis of
codemixed hindi-english memes,” 2023.

[33] S. Suryawanshi, B. R. Chakravarthi, M. Arcan, and P. Buitelaar, “Mul-
timodal meme dataset (MultiOFF) for identifying offensive content in
image and text,” in Proceedings of the Second Workshop on Trolling,
Aggression and Cyberbullying, (Marseille, France), pp. 32–41, European
Language Resources Association (ELRA), May 2020.

[34] E. Fersini, F. Gasparini, G. Rizzi, A. Saibene, B. Chulvi, P. Rosso,
A. Lees, and J. Sorensen, “SemEval-2022 task 5: Multimedia automatic
misogyny identification,” in Proceedings of the 16th International Work-
shop on Semantic Evaluation (SemEval-2022), (Seattle, United States),
pp. 533–549, Association for Computational Linguistics, July 2022.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[36] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Huggingface’s transformers:
State-of-the-art natural language processing,” 2020.

[37] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions:
Theoretical analysis and applications,” 2023.

[38] T. Pearce, A. Brintrup, and J. Zhu, “Understanding softmax confidence
and uncertainty,” 2021.

[39] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Huggingface’s transformers:
State-of-the-art natural language processing,” 2020.

[40] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[41] D. Zhu, X. Wu, and T. Yang, “Benchmarking deep auroc optimization:
Loss functions and algorithmic choices,” 2022.

[42] H. Hornbeck, “Fast cubic spline interpolation,” 2020.



APPENDIX

Fig. 26. Metrics for Base Model. Fig. 27. Metrics for Base Model + Caption.

Fig. 28. Metrics for Base Model + Inpainted Caption. Fig. 29. Metrics for Coco Model + Inpainted Caption.

Fig. 30. Metrics for Mix. Fig. 31. Metrics for Mix + 10 epochs MAMI, then Hateful Memes.



(I) git-base-coco II) git-base-coco inpainted (III) git-large-coco inpainted

cartoon of a man and a woman
talking to each other

cartoon of a man and a woman
dancing

a man in a top hat and a top hat
is walking away from a man in
a top hat.

{”label”: 0, ”text”: ”laughs in [majority of U.S. crime rate]”} (train set)

this is the US state of the US
state

a couple laughing together with
their arms around each other.

a man and a woman laughing.

{”label”: 1, ”text”: ”laughs in [majority of U.S. crime rate]”} (test set)

a young boy dressed as a police
officer

a young boy in uniform giving
a thumbs up.

a boy in a blue uniform giving
the thumbs up.

{”label”: 0, ”text”: ”good guy police officer capturing them young”} (train set)

a group of young people shak-
ing hands with a man shaking
hands.

a group of children shaking
hands.

a teacher shakes hands with a
student.

{”label”: 1, ”text”: ”good guy police officer capturing them young”} (test set)

a young boy with a serious look
on his face

a young black boy with his hand
on his chin.

a boy with his hand on his chin.

{”label”: 1, ”text”: ”a new target for entry-level police academy”} (train set)
TABLE III

CAPTION TEXT GENERATED BY DIFFERENT PRE-TRAINED MODELS.


