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Abstract—This work presents an implementation of the RAIN-
DROP model to perform classification on 25 clinical care condi-
tions of the MIMIC-IV dataset. The model uses electronic health
record data in order to perform the classification task. Two
models were trained and compared. The first was trained on a
dataset containing multiple Intensive Care Unit (ICU) stays per
patient and the second one on data only containing one ICU stay
per patient. The results showed that the model was not able to
match benchmark scores achieved by previous works, indicating
that further research is necessary to proof the concept of the
approach.

Index Terms—Multivariate Irregular Time Series, Electronic
Health Records, RAINDROP, MIMIC-IV, Phenotype Classifica-
tion

I. INTRODUCTION

Electronic health record (EHR) systems are widely adopted
in hospitals across the United States and help to collect and
store data during clinical routine practice [1]. These EHR
systems help a lot in the collection of digital data and rise
opportunities for machine learning researchers to solve various
problems in health care [2]. Such collected EHR data is often
delivered as multivariate time series data because the data is
collected over the course of time and most of the time multiple
variables are involved since multiple processes are monitored
and administrated during a hospital stay. A problem that is
often associated with multivariate time series are irregularities
that are caused by missing observations [3]. Other issues
with irregular times series are that samples may vary in their
number of observations, the time between observations is not
uniformly distributed across the data set and also not across
each sample and not every observation may contain values
for every feature [4]. The authors of RAINDROP [3] discuss
the problem of modern techniques like RNNs [5], LSTMs [6],
GRUs [7] and transformers [8] because they are restricted to
regular sampling or that they assume aligned measurements
across different modalities. The RAINDROP model tries to
leverage recent advances in graph neural network in order to
take advantage of relational structures among sensors. The
authors justify this approach because a two-stage approach
including the imputation of missing values to obtain regular
time series data and a following optimization of a downstream
model does not seem to be optimal [9],[10]. The goal is to

circumvent the imputation stage and directly apply a model on
irregular times series data. RAINDROP builds on the idea of
learning latent graphs from multivariate irregular times series
and to use neural message passing to model time-varying inter-
sensor dependencies.

This work explores the challenges that are associated with
multivariate irregular time series data. The data particularly
comes from EHR data of the MIMIC-IV [1] dataset. The
work implements the RAINDROP model in order to perform
phenotype classification. For the classification task 25 clinical
care conditions are used and 15 variables were extracted from
the dataset using a pre-processing pipeline which was built by
Hayat et al. [11].

The main experiment was the comparison of a model trained
on all samples with one that was only trained on one sample
coming from a distinct patient. The partial model was trained
on data including at most one ICU stay per patient. The results
showed that the full model outperformed the partial model by
a small margin. However, overall, the achieved results did not
match benchmark performance reported in previous works.

In conclusion, the work provides insights into the challenges
of handling multivariate irregular time series data in healthcare
settings and evaluated the RAINDROP model’s performance
on the MIMIC-IV EHR dataset. In order to achieve state-of-
the-art performance and make a deployment into a practical
setting possible further improvements are necessary.

II. RELATED WORK

This work implements the RAINDROP model in order to
overcome the challenges associated with multivariate irregular
time series. RAINDROP leverages a graph neural network and
neural message passing to model time-varying dependencies
between sensors.

Health care datasets that are publicly available are important
to advance research in the medical field. MIMIC-IV is a freely
available dataset that is sourced from EHR data from real
hospitals. In this work MIMIC-IV is used as clinical time
series dataset. For the predecessor of MIMIC-IV [12] many
papers exist that presented benchmark results or pre-processing
pipelines for the dataset [2], [13]. Harutyunyan et al. [2]
present benchmarks for four clinical prediction tasks, including



modeling risk of mortality, forecasting length of stay, detecting
physiologic decline and phenotype classification. The work is
built on MIMIC-III. Purushotham et al. [13] published another
work that is built on MIMIC-III and present benchmark results
on mortality prediction, length of stay prediction and ICD
code group prediction. The authors propose deep learning
and ensemble machine learning models. The newest version
of MIMIC is less extensively studied but a few papers are
available [11], [14], [15]. Mandyam et al. [14] present COP-
E-CAT, an open-source processing and analysis software for
MIMIC-IV. The proposed software 1 enables users to build
datasets that can be further used for downstream tasks. Gupta
et al. [15] present a pipeline to extract, clean and process the
data of MIMIC-IV. The pipeline 2 covers readmission, length
of stay, mortality and phenotype prediction tasks.

This work uses the data pre-processing pipeline that was
built by the researchers that published MedFuse [11]. The
pipeline 3 is specifically adapted for MIMIC-IV and is based
on the pre-processing pipeline that was developed by Haru-
tyunyan et al. [2].

III. METHODOLOGY

A. RAINDROP

RAINDROP takes samples as input and each sample con-
tains multiple sensors which each consists of irregularly
recorded observations. In the context of the dataset MIMIC-IV
which is used in this work, samples correspond to patients and
sensors correspond to the different variables that were recorded
during the hospital stay at different time steps. The notation
of RAINDROP lets D = {(Si, yi)|i = 1, . . . , N} denote an
irregular time series dataset with N samples. Each sample Si is
associated with a label yi ∈ {1, . . . , C} which indicates which
of the classes C are associated with the sample Si. Each of the
samples contains M sensors that are not uniformly measured.
These sensors are denoted as u, v etc. Each sensor consists out
of a sequence of time ordered observations. A sensor u of a
sample Si has a single observation denoted as a tuple (t, xt

i,u),
meaning that sensor u was recorded with a value xt

i,u ∈ R at a
timestamp t ∈ R+. Since the time series is irregularly sampled,
time intervals between successive observations can vary across
sensors. Ti,u denotes the set of timestamps of sensor u. Given
a dataset D RAINDROP aims to learn a function f : Si → zi
that is able to map Si to a fixed-length representation zi that
is suitable for downstream tasks such as classification.

The aim of the RAINDROP model is to learn an embedding
zi with fixed dimensions for a sample Si and to predict
its associated labels ŷi. The model leverages a hierarchical
architecture which is composed of three levels in order to
generate a sample embedding. The three levels are based on
the modelling of observations, sensors and whole samples.

In a first step RAINDROP constructs a graph for every
sample where nodes correspond to sensors and edges indicate

1https://github.com/aishwarya-rm/cop-e-cat
2https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
3https://github.com/nyuad-cai/MedFuse/tree/

6f827589afd89562813cc5aa915762d054c29efc/mimic4extract

their relationships. Gi denotes a sensor graph for sample Si

and ei,uv is used for the associated edge weights of a directed
graph from sensor u to sensor v. In the beginning all graphs
are initialized as fully-connected graphs.

In a second step RAINDROP generates embeddings of
individual observations. Let u be an active sensor with a
recorded value at timestamp t and let v be an inactive
sensor. An observation embedding denoted as ht

i,u is based
on an observed value xt

i,t at a timestamp t and passes mes-
sages to neighboring sensors in order to generate observation
embedding ht

i,v . The embedding of the active sensor u is
generated using a nonlinear transformation ht

i,u = σ(xt
i,uRu)

where Ru is a trainable weight vector which is shared across
samples. RAINDROP uses information of active sensors at
timestamp t to estimate observation embeddings for non-active
sensors that are neighbors of the active sensor u in the sensor
dependency graph Gi. For an edge between sensor u and sensor
v with an edge weight ei,uv the inter-sensor attention weight
αt
i,uv ∈ [0, 1] is calculated first. It represents how important

the sensor u is to the sensor v. The observation embedding
of the inactive sensor v is then calculated by multiplication of
the observation embedding ht

i,u, two trainable weight matrices
wu and wv , the inter-sensor attention weight αt

i,uv and the
edge weight ei,uv . RAINDROP automatically updates the edge
weights and prunes less important edges. The edge weights are
updated based on the inter-sensor attention weights.

In a next step RAINDROP aggregates observation em-
beddings into sensor embeddings. Since observation embed-
dings at different timestamps have unequal importance to
the sensor embedding, temporal attention weights are used.
These temporal attention weights represent the importance of
an observation embedding at timestamp t. A slight adaption
from standard self-attention is used in order to calculate the
temporal attention weights. A sensor embedding for sensor
v in generated by the following steps: A concatenation of
observation embedding ht

i,v with a time representation pti.
Then the concatenated embeddings for all t ∈ Ti,v are stacked
into a matrix Hi,v . Then βi,v is calculated by

βi,v = softmax(
Qi,vK

T
i,v√

dk
s)

, where Qi,v and Ki,v are intermediate matrices that are
derived from the stacked observation embeddings Hi,v . s is a
trainable weight that results from the adaptation of the standard
self-attention mechanism. Based on the calculated temporal
attention weights the sensor embedding zi,v calculated by

zi,v =
∑

t∈Ti,v

(βt
i,v[h

t
i,v||pti]W )

, where matrix W is a linear projector shared by all sensor
and samples. || denotes the concatenation of observation em-
bedding with the time representation. All the attention weights
such as αt

i,uv and βi,v can be multi-head.
In a last step RAINDROP generates sample embeddings

for a sample Si. In order to generate sample embeddings, the
sensor embeddings are aggregated across all sensors to obtain

https://github.com/aishwarya-rm/cop-e-cat
https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://github.com/nyuad-cai/MedFuse/tree/6f827589afd89562813cc5aa915762d054c29efc/mimic4extract
https://github.com/nyuad-cai/MedFuse/tree/6f827589afd89562813cc5aa915762d054c29efc/mimic4extract


an embedding zi. The aggregation is performed with a readout
function g with zi = g(zi,v|v = 1, 2, . . . ,M). The readout
function g can be concatenation or averaging aggregation. The
sample embedding zi that is obtained from sample Si can be
used for further downstream tasks such as classification.

RAINDROP projects constant attributes that do not change
over time (e.g. demographic information) to a vector ai with
a fully-connected layer and concatenates it with the sample
embedding zi. For a classification task, the concatenated vector
[zi||ai] is fed into a classifier that maps to the number of
available classes yi ∈ {1, . . . , C}.

It is important to note that the experiments in this work
are based on a multi-label setting, so a sample Si can be
associated with more than one label of yi ∈ {1, . . . , C}. For
all the experiments the model was trained using a Binary Cross
Entropy loss function combined with a sigmoid activation
function at the final classification layer.

B. MIMIC-IV

MIMIC-IV is a freely accessible EHR dataset. The providers
of the dataset extracted data of patients from hospital databases
and created a master patient list. This list contained numbers
that corresponded to all patients that were admitted to the
ICU or the emergency department. The time of the admissions
range from 2008 until 2019. The providers of MIMIC-IV
denormalized tables, removed audit trails and built fewer
tables in order to facilitate retroperspective data analysis. The
providers did not perform data cleaning steps to make sure
that the whole dataset is a good representation of a real-
world dataset. For deidentifiying the dataset, the providers of
MIMIC-IV removed patient identifiers and replaced them with
random ciphers. Deidentification also included random shifting
of date and time and it is important to note that temporal
comparisons between different patients is not possible. The
MIMIC-IV dataset follows a modular structure and consists of
the hosp and icu module. The hosp module contains the data
that was derived from the hospital wide EHR. The icu module
on the other hand contains data that was sourced from clinical
information systems. The version of MIMIC-IV that is used
for this work is version 1.0. The work initially attempted to
use the newest version 2.2 but it order to replicate the the pre-
processing of Medfuse, version 1.0 was used. In this work we
use the same terminology as Harutyunyan et al. [2]. Patients
are called subjects and with each patient one or more hospital
admissions are associated. Further can a patient have one or
more ICU stays per admission and these are called episodes.
Single measurements, observations or treatments are called
events.

IV. EXPERIMENTS

A. Phenotype classification

The conducted experiments in this work are based on a
phenotype classification of 25 clinical care conditions. The
25 labels and their prevalence in the whole dataset after
pre-processing can be found in Table I. The 25 labels are
multi-label, therefore a patient in a given ICU stay can be

associated with more than one label. The dataset in this work
D = {(Si, yi)|i = 1, . . . , N} consists of a sample Si which
contains the extracted EHR data for a patient and a given ICU
admission and yi corresponds to its associated labels. This
work trains RAINDROP to predict labels yi given a specific
sample Si.

TABLE I: Prevalence of diseases

Disease Prevalence
Acute and unspecified renal failure 0.268
Acute cerebrovascular disease 0.055
Acute myocardial infarction 0.075
Cardiac dysrhythmias 0.325
Chronic kidney disease 0.207
Chronic obstructive pulmonary disease and bronchiectasis 0.143
Complications of surgical procedures or medical care 0.188
Conduction disorders 0.101
Congestive heart failure; nonhypertensive 0.254
Coronary atherosclerosis and other heart disease 0.313
Diabetes mellitus with complications 0.114
Diabetes mellitus without complication 0.172
Disorders of lipid metabolism 0.46
Essential hypertension 0.418
Fluid and electrolyte disorders 0.372
Gastrointestinal hemorrhage 0.070
Hypertension with complications and secondary hyperten-
sion

0.216

Other liver diseases 0.125
Other lower respiratory disease 0.095
Other upper respiratory disease 0.049
Pleurisy; pneumothorax; pulmonary collapse 0.067
Pneumonia (except that caused by tuberculosis or sexually
transmitted disease)

0.126

Respiratory failure; insufficiency; arrest (adult) 0.160
Septicemia (except in labor) 0.157
Shock 0.122

B. Pre-processing of MIMIC-IV dataset

MIMIC-IV contains International Classification of Diseases
(ICD) codes of version 9 and 10. The pre-processing pipeline
of Hayat et al. [11] maps all ICD-10 to ICD-9 codes according
to the guidelines of Centers for Medicare & Medicaid Services
4. The pre-processing pipeline then maps the ICD-9 codes
to Clinical Classifications Software (CSS) categories. This
work attempted to use the same 17 clincial variables as
Hayat et al. [11] and Harutyunyan et al. [2]. An overview
about these 17 variables can be found in Table II and in
Table III. Figure 2 and 3 show visualizations of the selected
variables. The variables Capillary refill rate and
Glascow coma scale total only contained NaN val-
ues after further inspection. The authors of Medfuse were
contacted in order to obtain further information but without
success. Therefore this work only makes use of the other
remaining 15 variables. After the pre-processing and one-hot
encoding of the categorical variables a total of 29 variables is

4Centers for Medicare & Medicaid Services, https://www.cms.gov/
Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs

https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs
https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs


obtained. As static variables which do not change over time
Gender, Ethnicity and Age were used.

TABLE II: Summary Statistics continuous variables

Variable Mean STD Range
Diastolic blood pressure 63.015 15.280 0.000-348.000
Fraction inspired oxygen 0.496 0.175 0.210-1.000
Glucose 148.726 66.890 33.000-1967.000
Heart Rate 85.352 18.271 0.000-295.000
Height 169.933 12.295 63.000-198.000
Mean blood pressure 78.814 16.383 14.000-330.000
Oxygen saturation 96.466 4.312 0.000-100.000
Respiratory rate 19.792 6.043 0.000-300.000
Systolic blood pressure 120.090 22.554 0.000-352.000
Temperature 36.939 0.690 26.100-43.056
Weight 85.138 24.553 0.000-249.793
pH 7.361 0.143 6.300-8.350

TABLE III: Summary Statistics categorical variables

Variable Categories Counts
Capillary refill rate NaN 7’064’075

Glascow coma scale
eye opening

None 124’605
Spontaneously 694’624
To Pain 57’292
To Speech 201’250
NaN 5’986’304

Glascow coma scale
motor response

Abnormal Flexion 11’106
Abnormal extension 5’518
Flex-withdraws 66’964
Localizes Pain 118’416
No response 72’174
Obeys Commands 798’946
NaN 5’990’951

Glascow coma scale total NaN 7’064’075

Glascow coma scale
verbal response

Confused 125’651
Inappropriate Words 11’378
Incomprehensible
sounds

24’122

No Response 40’903
No Response-ETT 335’284
Oriented 538’433
NaN 5’988’304

The pre-processing of the data was handled with several
scripts which Hayat et al. [11] adapted for MIMIC-IV from
the original scripts for MIMIC-III from Harutyunyan et al. [2].
A graphical overview of the following pre-processing pipeline
and training procedure of RAINDROP can be found in Figure
1 which is based on a similiar figure created by Harutyunyan
et al. [2]. Before pre-processing the critical care database con-
tained 53′150 patients, 69′211 hospital admissions and 76′540
ICU stays. In a first step relevant data is extracted from the raw
tables using the script extract_subjects_iv.py. The
script also excludes admissions that have multiple associated
ICU stays or ICU transfers between different units. The
resulting dataset after this first step consists of 47′046 unique

patients, 59′372 hospital admissions and ICU stays. Further
the resulting dataset contains 294′769′993 events. In a next
step the script validate_events.py script is applied. The
script removes all events without an admission id (hadm_id)
and events with and admissionn id that is not present in
the table stays.csv which links ICU stay properties. The
script also filters all events with an invalid ICU stay id
(stay_id) but makes and attempt to recover these events
based on the admission id. The next script in the pipeline
extract_episodes_from_subjects.py generates a
time series file for each of the remaining ICU stay episodes.
The script makes sure that only the selected variables from
Tables II and III are included. The script extracts the selected
variables across multiple raw tables of the original dataset
and values are cleaned and converted to a unified scale. In a
next step the split_train_and_test.py is applied and
partitions the data into a training- (80%) and a test-set (20%).
The create_phenotyping.py script processes the data
in order to build a dataset that is specific to the task. Further,
the training-set is split into a training- (90%) and validation-
set (10%). In order to arrive at our final dataset for this work
the length_dist.py script gets the distribution of the
length of the time series files. In a next step only files with
a maximum length of 600 (97.5th percentile of distribution)
are generated. In a final step the sanity_check.py script
scans across all the time series files and makes sure that
improper files are removed. The green marked final dataset in
Figure 1 is used for training and evaluating the RAINDROP
model. The get_info.py script calculates the mean and
standard deviations for the continuous variables in order to
perform standardization on the variables when they are fed
into the model. The script also removes outliers according to
a list created by Harutyunyan et al. [2] which should provide
clinically reasonable value ranges for the selected variables.

C. Experimental setup

The main experiment in this work is to compare the per-
formance of a model that was trained on all samples with a
model that was only trained on unique samples. For the second
model the data was reduce to a dataset that only contained at
maximum one ICU stay per unique patient. The particular ICU
stay for a patient was drawn randomly if multiple existed.
The dataset consists of 33′888 samples for the training set,
3′729 for the validation set and 9402 for the test set after
the reduction. Both of the models were trained for 50 epochs
with the parameters for RAINDROP that are visible in Figure
1 and the used optimizer was the ADAM [16] optimizer and
the learning rate was set to 0.0001. As a loss function the
built-in pytorch loss function BCEWithLogitsLoss was
used. After training both of the models were evaluated on
a test set containing mulitple ICU stays per patient and a
test only containing one ICU stay per patient. Due to the
high class imbalance that can be observed in Table I, for
both models an attempt was made to oversample the minority
classes in training batches in order to achieve balanced batches
during the training. The motivation of this experiment was to



Fig. 1: Visualization of the pre-processing pipeline and model training
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Fig. 2: Visualization of continuous variables
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Fig. 3: Visualization of categorical variables

investigate if it has an effect on the models performance if
it is trained on unique samples (partial model) or on samples
that might be correlated due to multiple samples of one patient
(full model). On Figure 1 one can see that distinct ICU stays
are treated as samples and not individual patients.

D. Experimental results

In Figures 4a and 4b the loss curves of both models were
plotted in order to analyze the models’ training behaviour. In
the plots one can see the training and validation loss over

epochs, illustrating the models’ convergence and generaliza-
tion capability. The red dot indicates the epoch where the best
checkpoint of the model was saved according to the lowest
validation loss.

Figure 4a shows the loss curves for the model that was
trained on the full dataset. One can see that the training loss
is continually decreasing and the model is able to learn based
on the training data. In the beginning the validation loss is also
decreasing but towards the end of training it start to plateau
and even increase. Figure 4b displays the loss curves for the
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Fig. 4: Comparison of Loss curves

TABLE IV: Model evaluation on full test-set and test-set with unique patients only

Model Full test-set Test-set with unique patients only
macro AUROC micro AUROC AUPRC macro AUROC micro AUROC AUPRC

Full 0.663 0.669 0.297 0.669 0.678 0.292
Partial 0.661 0.669 0.295 0.668 0.680 0.289

model that was only trained on a subset of the full dataset.
The curves show a similar behaviour than for the full model.
The validation loss is plateuing towards the end of training
and might even start to increase.

Several attempts (learning rates from 1e−1 to 1e−6, weight
decay from 1e−1 to 1e−7, weighted loss, different values for
β1, β2 in ADAM) were made in order to try to improve the
training behaviour of the model. Further other hyperparameters
of RAINDROP were adjusted (d_model, nhead, dropout,
nhid, n_layers) but without success and the best models
are reported in this work.

Table IV shows the evaluation metrics for both models on
the test set containing patients with multiple ICU stays and on
the test set only containing unique patients.

For the evaluation AUROC and AURPRC were used. AU-
ROC is a widely used metric to evaluate classification perfor-
mance. It is well suited for imbalanced datasets. AURPRC is a
performance metric that provides information about precision
and recall trade-off, especially when the positive classes are
rare.

For both models the macro and micro averaged AUROC
and the macro averaged AUPRC were calculated and reported
in Table IV. Besides of the micro averaged AUROC score on
both datasets the full model outperforms the partial model by
a small margin. It is not trivial to evaluate if the different
dataset had an influence on the scores of the model. Given
the small difference it is possible that the full model reaches
slightly better scores due to the fact that it was trained on
more samples.

In general the results are not satisfying and do not even

TABLE V: AUROC for each disease

Disease AUROC
Acute and unspecified renal failure 0.683
Acute cerebrovascular disease 0.671
Acute myocardial infarction 0.665
Cardiac dysrhythmias 0.683
Chronic kidney disease 0.698
Chronic obstructive pulmonary disease and bronchiectasis 0.662
Complications of surgical procedures or medical care 0.679
Conduction disorders 0.671
Congestive heart failure; nonhypertensive 0.699
Coronary atherosclerosis and other heart disease 0.750
Diabetes mellitus with complications 0.602
Diabetes mellitus without complication 0.622
Disorders of lipid metabolism 0.697
Essential hypertension 0.651
Fluid and electrolyte disorders 0.655
Gastrointestinal hemorrhage 0.595
Hypertension with complications and secondary hyperten-
sion

0.707

Other liver diseases 0.652
Other lower respiratory disease 0.584
Other upper respiratory disease 0.602
Pleurisy; pneumothorax; pulmonary collapse 0.634
Pneumonia (except that caused by tuberculosis or sexually
transmitted disease)

0.712

Respiratory failure; insufficiency; arrest (adult) 0.740
Septicemia (except in labor) 0.682
Shock 0.739



come close to other reported benchmark results [2] (MIMIC-
III), [11].

Table V shows the AUROC scores of the model that was
trained on the full dataset for each class. It is evaluated on
the test set than contains multiple ICU stays per patient. The
model differs in the AUROC scores for different diseases but
there is no clear pattern that can be observed depending on
the prevalence or the kind of disease.

E. Interpretation of lower dimensional embeddings
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Fig. 5: Disease vs no Diseases
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Fig. 6: Chronic vs non chronic diseases

The main principle of RAINDROP is to learn representative
sample embeddings zi. In order to analyze the embeddings
and check if the meaning of them is interpretable, a Prin-
cipal Component Analysis (PCA) to three dimensions was
performed. Figure 5 displays the reduced embeddings and
compares embeddings that correspond to samples with no
diseases with samples that are associated with some diseases.
Figure 6 compares embeddings of samples that are associ-
ated with chronic diseases (Chronic kidney disease, Chronic

obstructive pulmonary disease, Coronary atherosclerosis and
related, Diabetes mellitus without complication, Disorders of
lipid metabolism, Essential hypertension and Hypertension
with complications) with samples that are not associated with
chronic diseases. In both scenarios one can see a grouping of
the two classes but the clusters do not have clear boundaries. It
seems like RAINDROP was able to learn sample embeddings
based on some characteristics. It would be interesting to see
if the representational capacity of the embeddings would have
more meaning if the model learned better on the classification
task.

V. DISCUSSION

This work explored the RAINDROP model to tackle the
difficulties of multivariate irregular time series data. The data
used in this work was extracted EHR data from the MIMIC-IV
dataset. The goal was to predict clinical care conditions that
are associated with patients from the dataset. The RAINDROP
model leverages the strengths of graph neural networks and
neural message passing in order to model time-vaying depen-
dencies between sensors. This allows the model to avoid an
imputing stage to obtain a regular sampled time series.

The main experiment in this work was based on a compar-
ison between two models: one was trained on a full dataset,
which included multiple ICU stays per patient, and the other
model was trained on a reduced dataset, only containing
one ICU stay per patient. The motivation of this comparison
was to investigate whether the correleation between multiple
samples of the same patient has an impact on the models’
performance. The full model performed slightly better than
the partial model. This result suggests that training on a larger
dataset might slightly improve the performance of the model.
Overall the the performance of both models is not satisfying
and the obtained scores are relatively low compared to other
benchmark results.

As mentioned in Section IV-D several attempts were made
in order to boost the performance of the model. The code
in the RAINDROP repository 5 is not well organized and
documented and this made it hard to asses whether the imper-
fections arose due to the model or if there were other issues.
Further the work of Hayat et al. [11] does not really well
document the preprocessing steps of their apdapted pipeline
which made it hard to check whether the data was successfully
pre-processed in the same way. Another problem of the dataset
was the high class imbalance, which is also not discussed
by Hayat et al. [11]. Balancing the batches improved the
performance of the model model but other approaches that
took the imbalanced into consideration were without success.
A limitation of the MIMIC-IV dataset is the absence of
timestamps which indicate when a disagnosis with a particular
disease was made. This makes it impossible to perform a
reliable disease forecasting with the given EHR data. Further
approaches to check the sanity of the model and the data
pre-processing would include training the model on different

5https://github.com/mims-harvard/Raindrop/tree/main
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datasets and using baseline models on the pre-processed data.
It might also be useful to use different pre-processing pipelines
or to develop a new one.

Despite the limitations of this work, it offers a possibil-
ity for further research and improvements. The approach of
RAINDROP is promising and needs to be explored further. In
conclusion this work provides insights into using RAINDROP
for phenotype classification based on multivariate irregular
time series from EHR data of the MIMIC-IV dataset but
more research is needed in order to optimize the models’
performance and enable practical use cases and deployment
to real-world scenarios.
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