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Abstract

The field of text generation encompasses many tasks, including machine translation,
dialogue systems, automatic summarization, and converting structured data to text.
Recently, we have witnessed stunning advances in these tasks, particularly with the
advent of ever-larger language models, many of which produce outputs that are
difficult to distinguish from human-produced texts. Consequently, the evaluation
of such systems has become an important topic of ongoing research. A primary
challenge in evaluating text generation systems lies in the fact that, unlike other
tasks such as classification, there are often multiple acceptable outputs for a given
input.

Currently, text generation systems are evaluated either through human-based evalu-
ation or automated evaluation. Human evaluation is often considered the gold stan-
dard, but human ratings may suffer from low agreement. In practice, performance
estimates from human ratings exhibit high variance, which is further exacerbated
by the costs and time-consuming nature of human evaluation. This limitation often
renders it impossible to collect a large number of ratings.

In contrast, automated evaluations significantly reduce the cost and time required
for evaluation. However, the primary issue with automated metrics is their unreli-
ability. Their performance is often measured by correlation with human judgments,
which are currently low to moderate. As a result, evaluation using automated met-
rics produces biased estimates of system performance.

The biased estimates derive from the fact that automated metrics can make mis-
takes at the sample level that then propagate to the final system level performance
measure. Throughout this work, we analyze this dynamic for a simplified model
of evaluation under binary metrics. This type of metric only assesses whether a
given output is adequate or inadequate. This makes it relatively easy to define and
quantify sample level errors. In this setting, we have developed a Bayesian model of
evaluation, which lets us recover an unbiased estimate of the true underlying perfor-
mance of a text generation system based on error-prone ratings from an automated
metric and a small number of human ratings.

We explore the properties and utility of our model in two domains: machine trans-
lation and dialogue systems. In particular, we find that current automated metrics
show a surprising variability in their ability to correctly judge the quality of outputs
of different text generation systems. Furthermore, we find that current metrics are
not strong enough to be used for evaluation by themselves and describe the number
of human and automated ratings that are needed to distinguish two text generation
systems. This may prove helpful in the design of future evaluation campaigns.
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Zusammenfassung

Der Forschungsbereich der automatischen Textgenerierung umfasst diverse Auf-
gabenstellungen: unter anderem maschinelle Übersetzung, automatisches Zusam-
menfassen, und Dialogsysteme. Die letzten Jahre haben beträchtliche Fortschritte
in all diesen Bereichen gebracht, unter anderem durch die Entwicklung von immer
grösseren Sprachmodellen, deren erzeugte Texte teils nur schwer von menschlich
verfassten Texten unterschieden werden können. Daher gewinnt die Evaluation
solcher Systeme in der Forschung immer mehr an Bedeutung. Eine der Haupther-
ausforderungen besteht darin, dass es in den meisten Fällen mehrere passende Ant-
worttexte für eine bestimmte Anfrage gibt. Dies steht im Gegensatz zu anderen
Bereichen des maschinellen Lernens, wie der Klassifikation, bei der meist nur eine
korrekte Antwort existiert.

Die Evaluation erfolgt entweder menschlich oder automatisch. Die Evaluation durch
Menschen zählt immer noch als Standard. In der Praxis hat sie jedoch oft eine
grosse Streuung. Zusätzlich ist es teuer und zeitaufwändig eine menschliche Evalua-
tion durchzuführen und darum werden oft nur wenige Bewertungen von Menschen
gesammelt.

Automatische Evaluation kann sowohl die Kosten als auch den Zeitaufwand sub-
stantiell reduzieren. Jedoch sind die Bewertungen von automatischen Metriken oft
unzuverlässig. Die Qualität einer automatischen Metrik wird anhand der Korre-
lation ihrer Bewertungen mit deren von Menschen gemessen. Diese Korrelationen
sind heute oft noch niedrig. Eine Konsequenz davon ist, dass automatische Metriken
verzerrte Systembewertungen nach sich ziehen.

Dies liegt daran, dass automatische Metriken oft einzelne Texte falsch einschätzen.
Solche Fehler fliessen dann in die finale Systemeinschätzung ein. In unserer Arbeit
werden wir diese Dynamik anhand des Beispiels binärer Metriken analysieren. Eine
binäre Metrik, die Texte nur als passend oder unpassend bewertet, ermöglicht eine
einfache Definition und Quantifizierung von Fehlern bei der Beurteilung einzelner
Texte. In diesem Rahmen haben wir ein Bayessches Modell entwickelt, das eine un-
verzerrte Systembewertungen erlangt anhand von fehleranfälligen automatischen
Bewertungen und einer kleinen Anzahl menschlicher Bewertungen.

Wir untersuchen unser Modell anhand von zwei Beispielen: maschinelle Überset-
zung und Dialogsysteme. Wir stellten fest, dass automatische Metriken eine über-
raschend grosse Variabilität bei der korrekten Einordnung von Texten aufweisen,
die von unterschiedlichen Systemen generiert wurden. Darüber hinaus kommen
wir zu dem Schluss, dass automatische Metriken momentan noch nicht zuverlässig
genug sind, um als alleinige Evaluationsmethode zu dienen. Zusätzlich geben wir
an, wie viele automatische und menschliche Bewertungen notwendig sind, um zwei
Textgenerierungssysteme voneinander zu unterscheiden.
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Chapter 1

Introduction

Measurements are a foundational component of science. In the field of text genera-
tion we are interested in measuring the quality of the texts that are produced by a
system. Operationalizing and measuring quality can pose significant challenges in
practice. While measuring the quality of a text generation system is an interesting
problem in and of itself, the primary concern usually lies in being able to compare
systems to each other and telling which one is better. This is fundamental in as-
sessing progress in the field. Traditionally, this process relies on human annotators,
which is cost and time intensive and difficult to scale. As a result, there has been
an overall shift toward using automated metrics as a proxy for human quality as-
sessments. Unfortunately, automated metrics do not perfectly align with human
ratings. This raises a fundamental question: what happens when our measurements
are wrong?

The potential consequences of this problem are severe, as inaccurate assessments
can lead to fundamentally invalid conclusions. To address this issue, our work aims
to define and quantify errors made by automated metrics. We intend to develop an
evaluation methodology that will take these errors into account to produce truthful
evaluation outcomes. We will limit our study to a simplified setting of binary quality
ratings, wherein a generated text is either considered adequate or inadequate. In this
setting, we consider a rating as wrong when an inadequate text is rated as adequate,
and vice versa.

Our main contribution is a statistical model of evaluation based on binary quality
ratings. The performance of a system is then measured as the fraction of adequate
texts it produces. Our model combines error-free ratings from a quality oracle with
error-prone ratings from a metric. It captures three sources of uncertainty of the true
performance of a text generation system: uncertainty stemming from the number of
oracle and metric ratings, uncertainty introduced by errors of the metric, and un-
certainty over the unknown error-rate of the metric. One application of our model
involves the design of evaluation campaigns; given a specific metric with known
error-rates, how many ratings do we have to collect to distinguish two text gener-
ation systems of similar performance? This directly addresses the central issue of
measuring progress in the field. 1

Our findings indicate that current evaluation sets are not large enough for existing

1We have already published the model and sample size study [1]. This work elaborates the model
in more depth.
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metrics to substantially improve the performance estimates compared to human-
only evaluation. Under our model, metrics do not yet offer a substantial advantage.
We further discovered that the ability of current metrics to score texts produced by
different systems is highly variable. This suggests that it is not only important to
improve the performance of these metrics overall, but also to pay particular attention
to their robustness to ensure generalizability.

We will give an overview of the current state of evaluation of text generation sys-
tems in Chapter 2. We then give a short overview of the statistical techniques that
we will use throughout this work in Chapter 3. In Chapter 4, we will formulate and
derive a model of evaluation using binary ratings that combines both error-free rat-
ings from an oracle and error-prone ratings from an automated metric. In Chapter 5,
we will explore the properties and predictions of our model by applying it to two
text generation domains: machine translation and dialogue systems. Finally, we will
discuss our findings, their limitations, and our future work in Chapter 6.
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Chapter 2

Related Work

In this chapter, we will give a brief overview of the current state of text generation
and its evaluation. For a more thorough treatment, we refer the reader to a recent
survey by Celikyilmaz et al. [2].

Informally, we define a text generation task as any task whose solution is a writ-
ten text. This includes, but is not limited to, machine translation, dialogue systems,
automatic summarization, image captioning, generating text from structured data,
and many more. We note that we avoid using the term Natural Language Generation
(NLG), as this is often used to describe tasks involving translating structured data to
text specifically. To solve such a task, a system has to create or retrieve an adequate
textual output for a given input. For instance, in machine translation a system is
provided with a sentence in a source language and has to provide a corresponding
translated sentence in a target language. Similarly, a dialogue system has to find a
good response based on the current conversation history. While many text gener-
ation tasks are based on textual inputs, others tackle different modalities, such as
image inputs in image captioning. One core difficulty in creating and evaluating
such systems is that there can be many different good solutions for the same input.
For example, any good summary of a movie’s plot will probably cover all important
events, but not necessarily describe them using the same words.

2.1 Text Generation

Recent years have seen amazing improvements to the quality of automatically gen-
erated texts. This is mainly due to the transformer architecture [3], which allows
for efficient training of large scale models. One of their key advantages over pre-
vious neural models, such as LSTM [4] and Sequence to Sequence (Seq2Seq), is that
transformers can be parallelized while the latter are inherently sequential. This has
recently culminated in large pre-trained language models with billions of parame-
ters. Among these are the GPT [5], [6] family of models, LLaMA [7] and derivatives
such as Alpaca [8], and BLOOM [9] to name just a few. An important advantage of
these models is their ability to solve many tasks without explicitely being trained for
them. The same model can, for example, provide a translation or a summary when it
is given different written instructions as an input. In this way, they can be considered
general purpose to some extent. In contrast, the systems we will study in this work,
while also based on transformers, are generally single purpose, meaning that they are
built for one specific task such as translation. The specific systems will be discussed
in Section 5.1. While transformer based systems have led to an impressive increase in
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performance across many text generation tasks, they still exhibit a range of problem-
atic behaviours. One such issue are so-called hallucinations [10]. This term describes
cases in which a model invents incorrect factual information in its responses. This
is an issue, for example, for summarization systems [11] where a generated sum-
mary may contain information that is not present in the source documents. Another
issue arises in the context of dialogue systems where it is usually preferable for a
system to feign a consistent persona across multiple responses, which is still an open
problem [12]. Furthermore, a fundamental limitation of the transformer architecture
is its fixed and limited input length, which leads to an emphasis on tasks where the
inputs are relatively short [13]. This poses significant problems for summarization
systems where one naturally wants to summarize long documents [14].

2.2 Human Evaluation

While collecting human ratings to measure the performance of text generation sys-
tems is still considered best practice, there is not a single universally accepted proto-
col and thus a large variety of approaches. Lee et al. [15] provide some best practices
to follow based on a survey of human evaluation practices for text generation con-
ducted in 2018.

The main argument to prefer human evaluation over a purely automated evalua-
tion [15] is that current metrics still exhibit low correlation to human ratings at the
sample level [16], [17]. Indeed, another way to look at the difference between hu-
man and automated evaluation is that human ratings provide an unbiased but high
variance 1 estimate of system performances and automated ratings give a biased but
low variance estimate [18]. This, of course, raises the question of why human eval-
uation exhibits high variance in practice. The first source of variance is the potential
ambiguity of the annotation task. It can be difficult to craft annotation guidelines
that elimininate all potential subjectivity [19]. Another issue is the tendency for hu-
man raters to fatigue over time [15], [19] which leads to ordering effects and errors in
annotations. It is, therefore, common practice to have each sample rated by multiple
human raters. In this case the number of raters per item and total number of raters
are important parameters to choose [20]. In many cases the ratings for an individual
item will be aggregated by averaging or majority, depending on the task, though
more sophisticated aggregation methods exist [21].

Another important question is who exactly provides ratings. Here the main distinc-
tion is between expert and non-expert raters. Experts are usually assumed to have
task specific training, such as an academic background in linguistics. In the case of
machine translation, professional translators can provide expert ratings [22]. Non-
expert raters are usually drawn from the general population on platforms such as
Amazon Mechanical Turk (AMT) 2. Expert ratings are a lot more costly, and they can
inject opinions and biases that differ from those of the general population [19]. Lee
et al. go as far as recommending to prefer non-expert ratings. In the case of machine
translation, Freitag et al. [23] argue that non-expert raters are not capable of distin-
guishing the quality of translations produced by state-of-the-art translation systems
and that expert annotations are therefore a necessity.

1Bias here is used in the technical statistical sense, meaning the difference in the expected value of
an estimator and the true value of the estimated parameter.

2https://www.mturk.com/

https://www.mturk.com/
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Next, we have to consider what kind of ratings human raters will provide. A very
common case is to use a Likert scale to assess the quality of a generated text. This
means that a rater has to assign an ordinal rating on a 5-point scale [15] to a given
output. One problem with these types of ratings is the tendency of both raters and
practitioners to misunderstand ordinal ratings as interval ratings. This means that
while ratings such as "fair" or "good" can be encoded as integers 3 and 4, one has to be
careful to interpret their differences [19]. For example, the difference between "very
poor (1)" and "poor (2)" might be interpreted differently from the difference between
"good (4)" and "very good (5)". There are also considerations like the central tendency
bias [24], which can make it difficult to compare Likert ratings across raters. However,
one can go beyond ordinal ratings and collect continuous ratings [25]. Ethayarajh et
al. [26] analyze the implicit assumptions of using Likert and continuous assessments
based on utility theory from economics.

While in many cases one collects only one overall quality rating per item, in reality it
can be difficult to disentangle multiple correlated aspects that characterize the qual-
ity of a text. For example, in the SummEval summarization dataset [27] every item
is rated across four criteria: coherence, consistency, fluency, and relevance. Another
way to assess the quality of a generated text directly is by annotating its errors [23],
[28]. Finally, instead of relying on a direct assessment of quality, we can also gather
relative preference ratings. In such cases, the rater is usually presented with two
responses for the same context and has to choose which one they prefer. Novikova
et al. [29] show that an evaluation using relative ratings exhibits higher agreement
between raters and makes it easier to distinguish the quality of different systems.
The main downside of an evaluation using relative ratings is that it scales quadrati-
cally with the number of systems under consideration and makes it more difficult to
evaluate new systems developed later.

2.3 Automated Evaluation

Given the difficulty and costs associated with human evaluation, there has been a
renewed effort to develop automated metrics for evaluation in recent years. In their
survey, Celikyilmaz et al. [2] distinguish between untrained and trained automated
metrics. A trained metric is based on a machine learning model that has been trained
to predict human ratings. An untrained metric is usually a static program that tries
to measure the quality of a produced text. Depending on the text generation task,
both can be referenced or unreferenced. A referenced metric is one that, in addition to
the input context and the produced output text, also considers one or more (usually
human produced) reference responses to assess the quality of an output. On the
other hand, an unreferenced metric only requires the input and produced output to
compute a quality rating.

Some of the most well-known and popular untrained metrics are BLEU [30] for ma-
chine translation and ROUGE [31] for summarization. Both rely on n-gram overlap
statistics between system outputs and references. While they were developed for
their specific tasks, they are also used to evaluate other text generation tasks such as
data to text [32] and machine reading comprehension [33]. Their main weakness is
that they only take the surface forms of texts to be evaluated into consideration. They
can correlate well with human-likeness [32] but cannot take into account synonyms
and paraphrases [34], in particular when only one reference is provided. Despite the
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increasing push against using BLEU in particular [35], [36], Reiter [17] argues that it
still is a valuable diagnostic tool for developing machine translation systems.

Early trained metrics were developed around the same time as BLEU and ROUGE
at the turn of the millenium [37]–[39]. Their main promise is to more directly model
human quality ratings. In similar manner to text generation systems, trained metrics
have seen considerable improvements with the advent of the transformer archictec-
ture. We will elaborate on some current metrics in Section 5.1. Their overall perfor-
mance, usually measured by correlation to human ratings, is highly task dependent.
Currently, they can perform well for machine translation [22], [36] where references
cover the space of adequate translations relatively well. This is not the case for sum-
marization [27] and dialogue systems [40].

2.4 Statistical Modelling of Evaluation of Text Generation

The overall goal of an evaluation procedure is to compare text generation systems
against each other and determine which one produces the best outputs. This means
that we want to compute a system level quality score that we can compare using a
statistical test of significance. For this purpose, we usually have access to a test set of
task inputs, the outputs of each text generation system under evaluation, and some
reference texts if needed. There are metrics such as BLEU which were originally
intended to be computed over the whole test set at once and give a system level
score directly. Most commonly used metrics produce an individual quality score
for each sample. These sample level scores then have to be aggregated for system
level comparisons. The most common and intuitive approach is to take the sample
average. Peyrard et al. [41] argue that averaging is not always appropriate. This is
due to the sample average not being a robust statistic. For example two systems
can have the same exact average performance while the first beats the second on
every sample except one. They recommend using the Elo [42] or TrueSkill [43] rating
systems instead. These systems were developed to rank players based on outcomes
of games. The Elo system is still in used to rank chess players.

Wei et al. [44] consider a setting where averaging human sample level scalar ratings
gives an unbiased but high variance estimate of the true system performance, while
averaging scalar automated ratings provides a biased but low variance estimator.
They then consider whether human and metric ratings can correctly reproduce sys-
tem level preferences. This means that if system A is better than system B then the
difference between the score of system A and system B should be positive. Their
main finding is that when only a small number of samples are available, automated
metrics have an advantage due to their lower variance and can still accurately reflect
system level preferences.

Chaganty et al. [18] study how to combine both human and automated ratings to de-
rive an unbiased estimate of the performance of a text generation system. They also
consider the setting where both human and metric ratings are on a scalar scale and
where human ratings show intrinsically high variance (e.g. low agreement). Based
on the correlation between human and automated ratings, they derive an unbiased
estimator with lowest possible worst-case variance. Based on this, they study the
data efficiency, meaning the reduction in number of human annotations needed, de-
pending on the variance of human judgements and the correlation of the metric to
human judgments.
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A different approach to combine human and automated evaluation was proposed
by Hashimoto et al. [45]. Their main goal is to create a new metric based on the
observation that human evaluation is well suited for capturing the quality of sys-
tem outputs, whereas automated evaluation can be used to estimate the diversity of
system outputs.

Another important point to consider when trying to perform a statistical test at the
system level is the number of ratings that are available. Card et al. [46] analyze the
statistical power of current evaluation settings, in particular the number of samples
needed to distinguish a 1 point difference in BLEU. They find that many current eval-
uations are underpowered. Wei et al. [47] come to a similar conclusion and propose
a protocol to collect human ratings in a way that increases the power per rating.

2.5 Quantification

In this work, we will study binary quality ratings for text generation, in which a
given response is considered either adequate or inadequate. We will put particular
focus on estimating the number of adequate responses that is produced by a text gen-
eration system. This is related to the problem of binary quantification. Quantification
refers to the task of estimating the relative frequency of a given class in a collection
of unlabeled samples. The straight-forward approach to quantification involves us-
ing a classifier to label all samples and compute the relative label frequencies. This
approach is called classify and count (CC). Forman [48] gives an extensive overview of
CC and related quantification methods. The main problem of CC is that the resulting
prevalence estimate is distorted by the true and false positive rates of the classifier
(see also Section 4.2.2). The model we develop in Chapter 4 can be considered a
Bayesian version of CC.
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Chapter 3

Statistical Background

In this chapter, we will recall some basic concepts from probability and statistics that
we need to develop our model in Chapter 4. Most readers comfortable with basic
Bayesian inference can safely skip this chapter or refer back to it as the need arises.

In general, we notate discrete random variables with capital letters (e.g. N) and
concrete outcomes with lowercase letters (e.g. n). We will use the capital letter P to
express probabilities, e.g. P(N = n) denoting the probability that random variable
N will take the value n. We will use lowercase p for probability densities, e.g. p(ν)
to describe the density of a continuous random variable ν.

3.1 Bayesian Inference

Throughout this work, we will use a Bayesian framework to express our models
and compute quantities of interest. Note that all the derivations in this section can
be found in the early chapters of any introductory text on Bayesian data analysis,
such as [49].

The main workhorse of Bayesian inference is Bayes’ Theorem, which relates the con-
ditional probabilities of two events to each other:

Theorem 1 (Bayes’ Theorem). Given two events, A and B, and assuming that P(B) ̸= 0

P(A|B) = P(B|A)P(A)

P(B)

=
P(B|A)P(A)

P(B|A)P(A) + P(B|Ā)P(Ā)

The second line is a direct application of the law of total probability and P(Ā) de-
notes the probability of event A not happening. Informally, an event is the outcome
of an experiment to which we can assign a probability, such as rolling a 1 on a six-
sided die, or that you will have to wait longer than average in the checkout line. The
main utility of Bayes’ Theorem is when computing P(B|A) is easier than computing
P(A|B) directly.

One such case is when we want to estimate the unknown value of some parameter
θ from data D. For example, θ could be the probability that a coin lands on "heads"
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when flipped and D could be the outcome of a number of flips of said coin. Assum-
ing we have a model for how θ generates a specific outcome D, it is usually relatively
simple to express the likelihood of the data under our model P(D|θ). We will show
2 concrete examples shortly. The final goal is to know which values of θ explain the
observed data D the best, meaning we are interested in p(θ|D). We can apply Bayes’
Theorem to achieve this:

p(θ|D) =
P(D|θ)p(θ)

P(D)

=
P(D|θ)p(θ)∫

domain(θ) P(D|θ)p(θ)dθ

=
P(D|θ)p(θ)

Z
∝ P(D|θ)p(θ)

There are two main difficulties in this approach. First, we have to choose our prior
belief p(θ) of the values of θ. In general, this is one of the key modelling components
in any Bayesian approach. Often times, one chooses the so called uniform prior (i.e.
the uniform distribution over the domain of θ) if we think any value of θ is equally
likely without additional information. Second, the normalization constant Z in the
denominator is usually not easily computable. This constant is needed to make sure
that p(θ|D) integrates to 1 and is therefore a proper distribution. Luckily, it is often
sufficient to be able to work with the unnormalized version. In general, we call p(θ)
the prior, P(D|θ) the likelihood and p(θ|D) the posterior.

One particularly powerful feature of this framework is that it allows us to combine
multiple sources of evidence to iteratively refine our belief over θ. For example, if we
gather a second batch of data D′ then we can plug in the previous posterior p(θ|D)
as our new prior in Bayes’ Theorem to derive a new refined posterior p(θ|D′, D).

We will now show how we can apply this framework to the two specific cases of flip-
ping coins and rolling dice. While these may seem trivial, they will have immediate
application later.

3.1.1 Flipping Coins

Assume we are given a coin that has an unknown probability q to land on heads
when flipped and 1− q to land on tails. Our goal is to determine the value of q. We
can flip it a number of times and count the number of times it lands on heads or
tails. Assume we flip the coin n times. Let K be the random variable expressing the
number of heads we observe out of n flips. Then the probability of seeing exactly
k heads depends on the unknown q: P(K = k|q) = (n

k)q
k(1 − q)n−k. The terms

qk and (1 − q)n−k correspond to the probability of a given outcome with k heads
and n − k tails, and the binomial coefficient (n

k) = n!
k!(n−k)! counts the number of

possible outcomes with k heads and n− k tails. Distributions of this form are called
Binomial distributions and we also write K ∼ Binom(n, q), to mean that K follows
a Binomial distribution with n trials and success probability q. In Bayesian terms,
P(K = k|q) is the likelihood describing how our observed data, namely K, depends
on the parameter of interest q.
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To apply Bayes’ Theorem, we have to choose a suitable prior p(q). We will choose a
general class of distributions called Beta distributions [50] as our prior. This is a choice
of mathematical convenience since the Beta distribution is the so-called conjugate prior
to the Binomial distribution. A conjugate prior to some likelihood is one where the
resulting posterior has the same form as the prior. In our case, applying Bayes’
Theorem with a Beta prior and a Binomial likelihood will result in a Beta posterior,
as we will see shortly. The Beta distribution is defined on the interval [0, 1] and has
two shape parameters a, b > 0. If x ∼ Beta(a, b), its density is defined as p(x) =

1
B(a,b)xa−1(1 − x)b−1. Here B(a, b) is the Beta function [51], used to normalize the

distribution. It is defined as: B(a, b) =
∫ 1

0 xa−1(1− x)b−1dx.

We can now derive the posterior for q assuming a Beta prior q ∼ Beta(a, b) and given
that we observe k heads out of n flips using Bayes’ Theorem:

p(q|K = k) =
P(K = k|q)p(q)∫ 1

0 P(K = k|q)p(q)dq

=
(n

k)q
k(1− q)n−k 1

B(a,b)qa−1(1− q)b−1∫ 1
0 (n

k)q
k(1− q)n−k 1

B(a,b)qa−1(1− q)b−1dq

=

(n
k)

B(a,b)qa+k−1(1− q)b+n−k−1

(n
k)

B(a,b)

∫ 1
0 qa+k−1(1− q)b+n−k−1dq

=
1∫ 1

0 qa+k−1(1− q)b+n−k−1dq
qa+k−1(1− q)b+n−k−1

=
1

B(a + k, b + n− k)
qa+k−1(1− q)b+n−k−1

We can see that the resulting posterior is another Beta distribution with updated
shape parameters: Beta(a + k, b + n− k). Finally, we have to choose the initial shape
parameters a and b. We mentioned earlier that the Uniform distribution is often
chosen as a prior when we do not have any idea which values of q are more likely
than others before the experiment. This can be achieved by selecting a = b = 1, since
when q ∼ Beta(1, 1) then p(q) = 1

B(1,1)q1−1(1− q)1−1 = 1, which is the the same as
the uniform density over the interval [0, 1]. This can also be seen in Figure 3.1, where
we show a few examples of Beta distributions.

Finally, putting everything together, if we assume a uniform prior for q and observe
k head of n coin flips, then we get the posterior q ∼ Beta(1 + k, 1 + n− k).

Properties of the Beta distribution

Where Beta distributed variables arise in this work, we will either be working with
samples from the distribution or its density function. It is nevertheless useful to
know the mean, variance, and mode of a Beta distributed variable.
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FIGURE 3.1: Density functions for a few different Beta distributions.

Assume that we have a random variable x following a Beta distribution x ∼ Beta(a, b).
The mean, the variance, and the mode of x are:

E[x] =
a

a + b

V[x] =
ab

(a + b)2(a + b + 1)

argmax
x∈[0,1]

p(x) =
a− 1

a + b− 2

The formula for the mode is only valid in cases where a, b > 1, which will be true in
all cases considered in this work. The variance can be reformulated in terms of the
mean:

V[x] =
E[x](1−E[x])

a + b + 1

If we consider the posterior of the rate at which our coin turns up head that we
derived earlier, q ∼ Beta(1 + k, 1 + n− k), we get:

E[q] =
k + 1
n + 2

V[q] =
E[q](1−E[q])

n + 3

argmax
q∈[0,1]

p(q) =
k
n

In this case, the mode recovers the frequentist estimate of the rate of seeing heads.
We can see that the variance of the posterior decreases with the number of coin tosses
n (since E[q] is bounded ∈ [0, 1]).

3.2 Markov Chain Monte Carlo

We will now give a broad overview of Markov Chain Monte Carlo methods. For a
more thorough introduction we refer the reader to Speagle [52] or Andrieu et al. [53].

The main purpose of Markov Chain Monte Carlo (MCMC) methods is to generate
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a sequence of samples {θ1, . . . , θi, . . . , θn} that can be used to approximate expected
values with respect to the posterior p(θ|D) by a sample average:

Ep(θ|D)[ f (θ)] =
∫

domain(θ)
f (θ)dθ ≈ 1

n

n

∑
i=1

f (θi)

Methods that approximate an integral by a sample average are generally known as
Monte Carlo methods [54]. In case of MCMC methods, samples are generated from a
Markov Chain whose stationary distribution equals the posterior p(θ|D). Informally,
a Markov Chain [55] is a stochastic process defined over some state space with the
crucial property that the probability of ending up in a specific state only depends on
the previous state and not on the history of the process: P(xt+1|xt, xt−1, . . . , x0) =
P(xt+1|xt). A Markov Chain is therefore fully specified by the set of states and
their pairwise transition probabilities. The stationary distribution of the chain corre-
sponds to a probability distribution over its states representing the fraction of time
a random walker visits a specific state during an infinite random walk. A sufficient
condition for a distribution over the states to be a stationary distribution is that it
satisfies the detailed balance equation: P(xt+1|xt)P(xt) = P(xt|xt+1)P(xt+1), or equiv-
alently P(xt+1)

P(xt)
= P(xt+1|xt)

P(xt|xt+1)
. The idea of MCMC methods is then to treat the support of

a posterior distribution as the state space of a Markov Chain such that the stationary
distribution of the Chain corresponds to the posterior distribution.

The most basic MCMC algorithm is the so-called Metropolis Hasting (MH) algorithm
[56], [57]. Its main idea is to factorize the transition probability distribution p(θi+1|θi)
into two steps: p(θi+1|θi) = q(θi+1|θi)t(θi+1|θi). The first step is to generate a new
proposal from an arbitrarily chosen distribution q(θi+1|θi) that is easy to sample
from. The new proposed sample is then accepted with probability t(θi+1|θi). The
acceptance probability has to be chosen in such a way that the detailed balance equa-
tion is satisfied. By substituting into the detailed balance equation, we can derive the
following condition on t:

t(θi+1|θi)

t(θi|θi+1)
=

p(θi+1)q(θi|θi+1)

p(θi)q(θi+1|θi)

The so-called Metropolis criterion [56] satisfies this condition:

t(θi+1|θi) = min
[

1,
p(θi+1)q(θi|θi+1)

p(θi)q(θi+1|θi)

]
Note that under this criterion either t(θi+1|θi) or t(θi|θi+1) is equal to 1. In Algo-
rithm 1 we show the steps of the MH algorithm.

We note that in Algorithm 1, we give the target distribution p as an input. In
practice, the target distribution we want to match is a posterior p(θ|D). We have
already seen that the posterior can be expressed in terms of a prior and a likeli-
hood: p(θ|D) = p(D|θ)p(θ)

Z , where Z is a normalizing constant. The issue with many
Bayesian approaches is that computing Z can become intractable. Luckily, the only
place where we need to evaluate p in Algorithm 1 is when we compute the accep-
tance probability. The acceptance probability in turn computes the fraction between



3.2. Markov Chain Monte Carlo 13

Algorithm 1 Metropolis-Hastings Algorithm

Input: p(θ) ▷ target distribution
Input: θ0 ▷ starting state
Input: q(θi+1|θi) ▷ proposal distribution
Input: n ▷ number of samples to generate

1: for i = 1 ... n do
2: θ

′
i ← SAMPLE(q(·|θi−1)) ▷ propose new sample

3: ti = min
[

1, p(θ
′
i )q(θi−1|θ

′
i )

p(θi−1)q(θ
′
i |θi−1)

]
▷ compute acceptance probability

4: ui ← SAMPLE(U (0, 1))
5: if ti ≤ ui then
6: θi ← θ

′
i

7: else
8: θi ← θi−1
9: end if

10: end for
11: return [θ]n1 = θ1, . . . , θn

the densities at two points, in which case the normalizing constants disappear:

p(θ1|D)

p(θ2|D)
=

p(D|θ1)p(θ1)
Z

p(D|θ2)p(θ2)
Z

=
p(D|θ1)p(θ1)

p(D|θ2)p(θ2)

It is thus enough to be able to evaluate the unnormalized version of the posterior.

An issue that arises with many random walk based algorithms is that depending
on the choice of the starting state θ0, we can spend a disproportionate amount of
time in low density regions of the posterior. This could potentially bias the results.
In practice this means that we will run the algorithm multiple times with different
starting states and discard the first few samples of each chain.

A related issue is that the samples from the algorithm are not independent of each
other and consecutive samples are correlated with each other. This is the case es-
pecially when the proposal distribution q is badly chosen such that the acceptance
probabilities are low. In that case, multiple consecutive samples can have exactly the
same value und therefore be maximally correlated. The more often this happens,
the more correlated the entire chain will be. The main consequence of this is that the
effective sample size of the sample averages we use to approximate intergrals will
be reduced. Therefore, one would need a relatively large number of samples to get
good approximations. One popular extension of MH is the Hybrid or Hamiltonian
Monte Carlo (HMC) algorithm [58] which uses a sophisticated proposal algorithm to
increase the acceptance probabilities. The downside of HMC is that it heavily relies
on hand-tuned hyperparameters. In this work, we will rely on the No U-Turn Sam-
pler (NUTS) [59] algorithm, which is an improvement over HMC as it eliminates the
need for hand-tuning.

In this work, we will rely on the implementations of NUTS provided by the Numpyro 1

[60], [61] package. For all our experiments, we will run 5 parallel chains. From each

1https://num.pyro.ai/

https://num.pyro.ai/
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chain we sample 12000 samples and drop the first 2000. Thus we have 50000 samples
to approximate posterior integrals for each experiment.
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Chapter 4

A Bayesian Model for Evaluation
using Binary Metrics

In this chapter, we will explore how to evaluate text generation systems using rat-
ings from an error-prone metric. In particular, we will consider binary metrics. In
this setting, there are only two possible ratings; a generated text is either adequate or
inadequate. The exact definition of adequacy depends on the task at hand. In the case
of machine translation this could mean that the generated translation captures the
meaning of the source text and does not contain any errors, grammatical or other-
wise. While this setting is somewhat artificial and not yet used in practice, it offers
certain advantages. First, it allows for a relatively straight-forward definition of er-
rors on the sample level (see Section 4.1), mirroring binary classification tasks, which
allows us to reuse insights from that domain. The binary metric setting also captures
the notion that different outputs for a given input can be of the same quality, which
current scalar evaluation settings have difficulty accounting for. Finally, the derived
performance measure for a text generation system, namely how often it produces an
adequate output, can be interpreted in an absolute sense.

We will now give an informal overview of our statistical model of evaluation us-
ing binary ratings. There are two types of ratings: ratings from an adequacy oracle
and ratings from an error-prone binary metric. The adequacy oracle is error-free
by definition. We want to estimate the true rate α at which a text generation sys-
tem produces adequate outputs. Of course, the oracle ratings will depend on this
underlying parameter. We will introduce the parameters ρ and η that quantify the
error-rates of the metric, where ρ stands for its true positive rate, and η for its true
negative rate. We will use three sets of observations. In the first set we only have
oracle ratings. In this case, the estimation of α will be relatively straight-forward.
We will use paired ratings from the oracle and metric to estimate the error rates of
the metric. This is a key aspect of our model, since we can only know about the
errors of a metric by comparing its ratings to a ground truth. Finally, we use a set of
samples for which we only have metric ratings but the oracle ratings are unknown.
We combine observations from all three sets into our model to derive an unbiased
estimate of the true model performance α.

4.1 Definitions

In this section, we introduce basic definitions for text generation and binary metrics.
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Definition 1 (Text Generation Task). A text generation task consists of two (possibly
infinite) sets I and O. Where I are the inputs and O the outputs.

Definition 2 (Text Generator). A text generator (TG) π for a given text generation task
is a function from inputs to outputs:

π : I → O

.

An example of a text generation task is machine translation, where I is the set of
sentences in the source language and O the set of sentences in the target language.
What sets text generation apart from other tasks is the size ofO. In classification, for
example, |O| would be finite and usually relatively small.

Definition 3 (Binary Oracle). The binary oracle is a function Φ : I ×O → {0, 1} that
assesses whether an output o ∈ O is adequate for an input i ∈ I .

Φ(i, o) =

{
1 if o is adequate for i
0 else

As mentioned earlier, the concrete notion of adequacy depends on the text generation
task at hand. Of course, in reality it is unlikely that one can arrive at an unambiguous
notion of adequacy for any given task and we will have to approximate it using
human annotations (see Section 5.1). In the mean-time, we will assume that Φ exists
and is unique axiomatically and define our notions of correctness with respect to it.
The goal of a TG is then to produce an adequate output for any input it is given. This
gives rise to a natural performance measure for a given TG.

Definition 4 (Success Rate). The success rate α of a TG π is the probability that π pro-
duces an adequate output for any given input:

α = P(Φ(i, π(i)) = 1)∀i ∈ I

We will use the shorthand πα for a TG π that has a success rate α.

We note that Definition 4 defines the success rate independently of the specific in-
put, meaning that π has the same probability of returning an adequate response no
matter the input. This is a simplifying assumption that we will use throughout this
work.

Definition 5 (Binary Metric). We call binary functions of inputs and outputs binary met-
rics: Mb : I ×O → {0, 1}.

Definition 5 is formulated very broadly and we do not assume any specific structure
for binary metrics. This means we do not distinguish whether a metric is based on
a trained neural network or deterministic. One particular case of note is machine
translation, where the vast majority of metrics do not only consume input source
text and an output translation, but also a reference translation. In these cases, we
consider the references to be a be part of the functional form of the metric. Therefore,
BLEU with reference A is considered a different metric from BLEU with reference B.
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By definition, the oracle Φ is a special type of binary metric that others will be mea-
sured against. Therefore, a perfect binary metric will match Φ.

Definition 6 (Perfect Binary Metric). We call a binary metric M∗b perfect iff it is equal to
the oracle for all inputs and outputs:

∀i ∈ I , o ∈ O M∗b (i, o) = Φ(i, o)

.

Based on this, any metric that does not match Φ for at least one pair of input and
output is imperfect. In general, there are two types of errors: false positives and false
negatives. A false positive is when the metric rates an output as adequate when it
is not, and a false negative is when an adequate response gets rated as inadequate.
True positives and negatives are defined analogously in cases where the predictions
match. We will now introduce a restricted class of binary metrics that have constant
true positive and true negative rates for all inputs and outputs.

Definition 7 (Binary Metric with constant error rates). A binary metric with constant
error rates Mρ,η

b is characterised by its true positive rate ρ and true negative rate η such that

ρ = P(Mρ,η
b (i, o) = 1|Φ(i, o) = 1)

η = P(Mρ,η
b (i, o) = 0|Φ(i, o) = 0)

∀i ∈ I , o ∈ O

For this class of metrics the errors do not depend on the individual inputs and out-
puts. Note that M1,1

b corresponds to a perfect binary metric.

Finally, we have to address the fact that real world metrics do not generate binary
ratings but usually produce scalars. For our experiments, we will have to derive
binary ratings from scalar ratings. This can be achieved by introducing a decision
threshold θ.

Definition 8 (Scalar Metric). We call real valued functions of inputs and outputs scalar
metrics: Ms : I ×O → R.

Without loss of generality, we assume that larger values of Ms correspond to outputs
rated as more adequate for a given input and vice versa. Based on this, we can derive
a binary metric from a given scalar metric:

Definition 9 (Derived Binary Metric). The derived binary metric Mθ of a scalar metric
Ms with decision threshold θ ∈ R is defined as:

Mθ(i, o) =

{
1 Ms(i, o) ≥ θ

0 else

Definition 9 means that we can derive many binary metrics from a given scalar met-
ric depending on the choice of threshold θ. In particular, the derived metrics will
have different error rates. We will discuss the choice of θ in more detail in Section 5.2.
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The definitions in this section will serve as a scaffold to derive the model of evalua-
tion using binary ratings, described at the start of this chapter, more formally in the
next section.

4.2 Model

Our main goal is to estimate the success rate α of a text generator π. We will show
how we can use both oracle ratings and ratings from a metric Mρ,η

b to achieve this. In
Table 4.1 we show an example of a potential evaluation setup. We have a test set of
inputs to evaluate a TG π. For each input ij we get an output from the TG: oj = π(ij).
For some input output pairs we receive either an oracle rating ϕj, a metric rating mj,
or both. This results in three distinct subsets, depending on whether we only get one
kind of rating or both. On a high-level, when we have access to oracle ratings, we
can estimate α directly. When we have paired ratings, we can estimate the rates ρ
and η. Finally, we can use the knowledge of ρ and η to refine our estimate of α using
metric ratings. We note that we choose this setup to make the next few sections
easier to follow and will address potential deviations in Section 4.2.5.

Input Output Oracle Φ Metric Mρ,η
b

i1 o1 = π(i1) ϕ1 = Φ(i1, o1) m1 = Mρ,η
b (i1, o1)

i2 o2 ϕ2 m2
i3 o3 ϕ3 -
i4 o4 - m4
i5 o5 - m5
i6 o6 ϕ6 -
i7 o7 ϕ7 m7
i8 o8 ϕ8 -
... ... ... ...

in−2 on−2 - mn−2
in−1 on−1 ϕn−1 mn−1
in on ϕn mn

TABLE 4.1: Example dataset for our setting. We assume that we are
given a test set of n inputs and compute the corresponding outputs of
the text generator π. We collect ratings from both the oracle Φ and an
error-prone metric Mρ,η

b . For some samples, we have access to ratings
from both the oracle and metric, oracle only, or metric only.

4.2.1 Direct estimation of α from oracle ratings

Assume we are given a set of inputs of size NΦ, the corresponding outputs of a given
TG π, and oracle ratings for each pair of input and output:

TΦ = {( ii, oi = π(ii), ϕi = Φ(ii, oi))|∀1 ≤ i ≤ NΦ}.

According to Definition 4, we have that P(ϕi = 1) = α. The main quantity of interest
is the number of adequate outputs ∑NΦ

i=1 ϕi, which we will call N+. Note that N+

is a random variable 1 which has a concrete outcome n+. Since N+ is a count of
binary random variables, it follows a binomial distribution: N+ ∼ Binom(NΦ, α)
(see Section 3.1.1 for details). Since at this point, we do not have any additional

1The randomness comes from the outputs of π; the oracle is of course deterministic.
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knowledge of α, we will choose an uniform prior for α and the resulting posterior is:

α ∼ Beta(n+ + 1, NΦ − n+ + 1) (4.1)

In the following sections, we will notate α ∼ Beta(aα, bα), where aα = n+ + 1 and
bα = NΦ−n++1.

4.2.2 Estimating α from ratings of an error-prone metric

Assume we are given a set of inputs of size NM, the corresponding outputs of a given
TG π, and the ratings of an error-prone metric Mρ,η

b :

TM =
{
(ik, ok = π(ik), mk = Mρ,η

b (ik, ok))|∀1 ≤ k ≤ NM
}

.

Assume for now that the true positive and negative rates, ρ and η, are known and
fixed. We can count the number of outputs that are rated as adequate by Mρ,η

b ,
∑NM

k=1 mk, which we will call M+. Note that in general, since Mρ,η
b is imperfect and

makes mistakes with respect to the oracle Φ, M+ will have a different value from the
true number of adequate outputs in TM, ∑NM

k=1 Φ(ik, ok).

To determine the distribution of M+, we have to know P(mk = 1), which we can
derive from Definitions 4 and 7 and the Law of Total Probability [62]:

P(mk = 1) = P(mk = 1|ϕk = 1)P(ϕk = 1) + P(mk = 1|ϕk = 0)P(ϕk = 0)
= ρα + (1− η)(1− α)

= ρα + 1− η − α + ηα

= α(ρ + η − 1) + (1− η)

We will notate the quantity α(ρ + η− 1) + (1− η) as α̃, since it can be interpreted as
a transformed version of the true success rate α.

Since M+ is a sum of binary random variables with success probability α̃, we have
that M+ ∼ Binom(NM, α̃) (see Section 3.1.1).

Since our main goal is to derive an estimate for the true success rate α, we would
like to apply Bayes’ Theorem, as laid out in Section 3.1, to derive a posterior over
α, p(α|M+ = m+). Unfortunately, we cannot follow the approach in Section 3.1.1 to
derive a closed form of this posterior. In fact, to the best of our knowledge, there is
no prior distribution for α that would let us derive a closed form posterior based on
the likelihood of M+. We will therefore choose a Beta prior for α ∼ Beta(aα, bα) with
aα and bα computed as in Section 4.2.1 or set to 1 (i.e. uniform prior).

α ∼ Beta(aα, bα)

M+|α ∼ Binom(NM, α(ρ + η − 1) + (1− η))

p(α|M+ = m+) ∝ P(M+ = m+|α)p(α)
(4.2)

Equation 4.2 shows the high-level Bayesian model of evaluation for fixed ρ and
η. While we cannot directly compute the posterior, we can sample from it using
Markov Chain Monte Carlo (MCMC) sampling (see Section 3.2).
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4.2.3 Estimating ρ and η from paired ratings

In practice, it is unlikely that we know the exact values of ρ and η. Therefore we will
have to estimate them from data. Since ρ and η are defined with respect to the oracle
Φ (see Definition 7) we have to estimate them from samples where ratings from both
Φ and Mρ,η

b are available.

Assume we are given a set of inputs and outputs of size Nρ,η , and the corresponding
ratings from both Φ and Mρ,η

b :

Tρ,η =
{
(ij, oj, ϕj = Φ(ij, oj), mj = Mρ,η

b (ij, oj))|∀1 ≤ j ≤ Nρ,η
}

Note that we explicitely do not assume anything about the provenance of oj here.

Since ρ and η are defined as conditional probabilities depending on the oracle rating
ϕj, we will split Tρ,η into two subsets depending on the value of ϕj:

Tρ =
{
(ij, oj, ϕj, mj) ∈ Tρ,η |ϕj = 1

}
Tη =

{
(ij, oj, ϕj, mj) ∈ Tρ,η |ϕj = 0

}
The main quantities of interest are the number of times mj and ϕj agree:

Nρ = ∑
(ij,oj,ϕj,mj)∈Tρ

mj

Nη = ∑
(ij,oj,ϕj,mj)∈Tη

1−mj

Here Nρ counts the number of times where mj = ϕj = 1 and Nη counts the number
of times where mj = ϕj = 0.

For a sample taken from Tρ we know that ϕj = 1 and for those samples we have that
P(mj = 1|ϕj = 1) = ρ by Definition 7. Analogously, we know for a sample taken
from Tη that ϕj = 0 and therefore P(mj = 0|ϕj = 0) = η by Definition 7. Since Nρ

counts the number of times we see mj = 1 in Tρ we have that Nρ ∼ Binom(|Tρ|, ρ)
and by the same reasoning Nη ∼ Binom(|Tη |, η). Finally, we can apply Bayes Theo-
rem as in Section 3.1.1 using a uniform prior for both ρ and η to derive the following
posteriors:

ρ ∼ Beta(aρ, bρ) ∼ Beta(nρ + 1, |Tρ| − nρ + 1)
ρ ∼ Beta(aη , bη) ∼ Beta(nη + 1, |Tη | − nη + 1)

4.2.4 The Full Model

We will now bring together the previous sections to express our full Bayesian model
of evaluation using binary ratings. The model is expressed in Equation 4.3. The pa-
rameters aα and bα are computed as described in Section 4.2.1 or set to 1 if we do not
have access to a set TΦ. Similarly, aρ, bρ, aη , and bη are computed as in Section 4.2.3
or set to 1 in the absence of paired data Tρ,η . Equation 4.3 derives in the same way
as Equation 4.2 in Section 4.2.2, but we derive a joint posterior over all unknown
variables ρ, η, and α:
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α ∼ Beta(aα, bα)

ρ ∼ Beta(aρ, bρ)

η ∼ Beta(aη , bη)

M+|α, ρ, η ∼ Binom(NM, α(ρ + η − 1) + (1− η))

p(α, ρ, η|M+ = m+) ∝ P(M+ = m+|α, ρ, η)p(ρ)p(η)p(α)

(4.3)

While we cannot compute a closed form of posterior, we can sample from it using
MCMC sampling.

4.2.5 Practical Considerations

When applying our model to real world data, there are some additional things to
consider. First, we note that, when defining the set of paired ratings Tρ,η in Sec-
tion 4.2.3, we did not specify that the outputs oj have to come from the TG un-
der consideration. Indeed, according to Definition 7 it should not matter how the
outputs oj are chosen. For now, we will assume the more restricted setting where
oj = π(ij). We will discuss this in more detail in Section 5.2.

We have seen that to estimate ρ and η we split Tρ,η into Tρ and Tη based on ϕj. Ideally,
we would like to choose ij and oj such that the two subsets are of roughly the same

size, i.e. |Tρ| ≈ |Tη | ≈
|Tρ,η |

2 . This is to ensure that we get a relatively low variance
estimate for both ρ and η, because the variance of our posterior for ρ decreases with
the number of samples |Tρ| and similarly for η based on |Tη |. Since we have to use
oj = π(ij) in practice, these sample sizes will depend on α: E[|Tρ|] = α|Tρ,η | and
E[|Tη |] = (1− α)|Tρ,η |. This can lead to the issue described when α is close to 0 or
1. Let us consider for example when α = 0.99 and |Tρ,η | = 1000. In that case, we
will have only around 10 samples for which ϕj = 0, meaning that we only have 10
samples to estimate η but 990 to estimate ρ. Therefore, our uncertainty for η will be
very large, which leads to an increased overall uncertainty for our estimate of α.

Next, let us consider the relationship between the inputs and outputs in the differ-
ent sets TΦ, Tρ,η , and TM. One of the key advantages of automated metrics is that it
is more cost-effective to get ratings from them compared to human ratings (which
serve as a proxy for oracle ratings, see Section 5.1). Therefore, for the datasets we
consider, we have metric ratings for all available samples. Thus, the set of sam-
ples for which we only have oracle ratings is empty, TΦ = ∅. Similarly, since we
have metric ratings for all samples, the set of inputs and outputs for which we
have paired ratings is a strict subset of the set for which we have metric ratings:{
(ij, oj)|(ij, oj, ϕj, mj) ∈ Tρ,η

}
⊂ {(ik, ok)|(ik, ok, mk) ∈ TM}. In practice, we will there-

fore use the oracle ratings from Tρ,η to estimate α, meaning

T ′Φ =
{
(ij, oj, ϕj)|(ij, oj, ϕj, mj) ∈ Tρ,η

}
On the other hand, we have to be careful not to use the metric ratings mj from
Tρ,η to estimate α as well, since α is independent of mj conditioned on ϕj, α ⊥
mj|ϕj ∀(ij, oj, ϕj, mj) ∈ Tρ,η . Consequently, we have to redefine

T ′M =
{
(ik, ok, mk)|(ik, ok, mk) ∈ TM ∧ ∀ϕk ∈ {0, 1}(ik, ok, ϕk, mk) /∈ Tρ,η

}
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We also have to acknowledge thatthere currently are no metrics that produce binary
ratings to our knowledge. All real-world metrics considered in this work produce
scalar ratings, which we have to convert based on Definition 9. We have already
mentioned that we have to make a decision on the threshold θ to convert scalar
ratings to binary ratings. For our experiments, we will choose θ such that ρ and η
are as close as possible, i.e. ρ ≈ η. This is mainly a choice of convenience, reducing
the number of free parameters for the analysis in Section 5.3. In Section 5.2 we will
give some more insight into the choice of θ. Forman [48] discusses different ways to
choose θ.

Finally, we have assumed that there is an oracle Φ that we can query. However, in a
real world setting there is no such adequacy oracle and we have to resort to human
annotations. In Section 5.1, we will lay out the datasets and annotations we used to
explore our model. In particular, we will lay out how we derive binary ratings from
human annotations that we believe are a reasonable proxy for a true oracle.
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Chapter 5

Applications

5.1 Datasets

We will now give an overview of the datasets we use to explore some applications
of our model of binary evaluation. We consider two tasks: machine translation and
conversational dialogue systems.

5.1.1 Machine Translation

The Workshop on Machine Translation (WMT) is a long running series of workshops
and conferences dedicated to statistical and neural machine translation dating back
to 2006. In this work, we focus on the 2021 1 edition [63] and the metrics subtask [22]
in particular. The main WMT21 translation task consisted of translating short sen-
tences from online news items. It included many language pairs, with the majority
having English as the source or target language. Participating machine translation
systems were rated by collecting human direct assessment (DA) [25] ratings. For
DA, the raters were asked to rate how adequately a given translation matches either
the source text or a reference translation on a scale from 1 to 100.

The organizers of the metrics sub-task collected another set of human ratings based
on Multidimensional Quality Metrics (MQM) [28]. They argue that MQM ratings
are needed since some automated metrics already outperform human DA ratings
from crowd workers based on findings from [23].

Concretely, they asked a number of expert translators to annotate error spans in the
translations and assign an error severity label to each error span. Each error severity
is assigned a non-zero numerical value. The values for each annotated error span
were summed for each annotator and then averaged over all three annotators to get
the final scalar human quality rating.

Therefore, a translation can only receive a score of 0, if all three experts agree that
there are no error-spans in the translation. Based on this, we will consider a response
adequate if it gets a human rating of 0, meaning adequate outputs are those that are
error-free as assessed by expert translators, which we consider a reasonable proxy
for the oracle Φ.

In this work, we will restrict ourselves to the English-German language pair and the
news domain of the metrics sub-task. The test set for the English-German language

1This work was developed before data from the 2022 edition became available.
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pair consisted of 1002 samples. Each machine translation system provided transla-
tions for all samples. All metrics scored all samples for each machine translation sys-
tem. Human MQM annotations were provided for a subset of 527 samples for each
machine translation system. Based on our observations in Section 4.2.5, we have the
following sample sizes as default: |TΦ| = |Tρ,η | = 527 and |TM| = 1002− 527 = 475.

We note that the data provided by the metrics shared task organizers included all
the human and metric ratings used in this work, and we did not have to run any
metrics ourselves.

Systems and Metrics

For the English-German news translation task the participating metrics had to eval-
uate 8 machine translation systems from the main task: Facebook-AI [64], HuaweiTSC
[65], Nemo [66], Online-W (anonymous)2, UEdin [67], eTranslation [68], and VolcTrans-
AT and VolcTrans-GLAT [69]. Furthermore, 3 human references were included for
evaluation: ref-A, ref-B, and ref-D, while one reference (ref-C) was used as the refer-
ence input for referenced metrics. Finally, the metrics task organizers included trans-
lations from their own neural machine translation system at various checkpoints to
simulate evaluating a system in development. We will not consider these in this
work for simplicity.

While there were at least 9 teams contributing one or more metrics to the shared
task, we will focus on 4 in particular. The metrics we will consider are: COMET [70]–
[72], BleuRT [73], BERTScore [74], and BLEU [30]. We chose this subset because they
represent the most popular metrics and display a diversity in both approaches and
performance.

The main idea of COMET is to get embeddings for source, reference and candi-
date translation from a pre-trained multi-lingual language model, such as XLM-
RoBERTa [75]. The embeddings are then combined and used as input to a feed-
forward network. The whole system is trained either by directly predicting human
ratings and minimizing MSE loss, or human ratings are used to find pairs of transla-
tions of differing quality, which are then used to train the system using a contrastive
loss. In this work, we will use the scores from the COMET-MQM_2021-ref-C 3 sub-
mission, which is trained on the DA ratings available for the task and then fine-
tuned for 1 epoch on the MQM ratings from 2020. We include COMET because
it performed well in the shared task, has an accessible code repository with many
checkpoints, and is therefore popular.

BleuRT follows a similar approach. They use Rebalanced mBERT [76] as their en-
coder. They follow a contrastive learning approach and pre-train on synthetic data
before fine-tuning on human ratings. We will use the scores from the bleurt-20-ref-C 4

submission in our work. We included BleuRT for the same reasons as COMET.

BERTScore uses a BERT [77] model to get token-level contextual embeddings for both
reference and candidate translation. They then compute the pairwise cosine similar-
ity matrix between tokens, representing a soft alignment of tokens between reference

2The main task organizers anonymously included translations from online translation services.
3This should correspond to the wmt21-comet-mqm checkpoint of the COMET repository at https:

//unbabel.github.io/COMET/html/index.html
4see also https://github.com/google-research/bleurt

https://unbabel.github.io/COMET/html/index.html
https://unbabel.github.io/COMET/html/index.html
https://github.com/google-research/bleurt
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and candidate. Based on this soft alignment, BERTScore produces a Precision, Recall,
and F1 score. The task organizers included BERTScore as a baseline and used the F1
score output. We include BERTScore since it has established itself as a popular neural
network based baseline for text generation tasks.

Finally, we also use BLEU [30], which is a de-facto standard to evaluate machine
translation systems. It considers the n-gram overlap between the candidate and the
reference translation. We refer the reader to the metrics task overview paper for the
detailed settings [22].

For the shared task, metrics were evaluated by measuring pairwise accuracy [78].
For this, they first computed system-level scores by averaging over all sample-level
scores for a given system and language-pair. They then measured whether the dif-
ference in system-level scores has the same sign as the difference in average human
MQM scores for each language-pair and system-pair.

5.1.2 Dialog

Disclaimer. The dataset described in this section has been produced by Jan Deriu.
This includes generating additional bot-bot conversations, training metrics and run-
ning them. The only contribution of the author was the conversion of the Spot the
Bot ratings into binary ratings.

For the conversational dialogue system task we rely on data from the Spot the Bot
(STB) [79] framework. The main idea behind STB is to measure how long a chatbot
can maintain human-like behavior. For this the authors generated bot-bot conversa-
tions of differing lengths. Crowd workers were then asked to read the conversations
and decide for both interlocutors whether they are human, a bot, or undecided 5. Bot
A is said to perform better than bot B if it consistently takes longer to be recognized
as a bot. This is measured in two ways. First, by comparing direct win-rates between
bots. A win is scored if for a conversation of a certain length bot A is considered hu-
man while bot B is recognized as a bot. Additionally, the authors provide a survival
analysis, which measures the probability that a bot is not recognized after a certain
number of turns.

In the original STB setting each annotation item consisted of the same number of
turns for each bot and crowd-sourced annotations for both bots. To use the data
for our purpose, we consider the last response in a specific item. We collect ratings
from different metrics (see Section 5.1.2) where the conversation without the last
response is the input and the last response is the output to be rated. We will consider
a response as adequate if all annotators unanimously agree that the bot who produced
the last response is human. Even though crowd workers were employed in this
setting, based on the setup of STB, we still believe that our derived binary ratings
are a decent stand-in for oracle ratings. 6

5The authors also inject human-human conversations to make sure that the crowd workers do not
pick up on the fact that there are only bot-bot conversations

6The author of this work is a co-author of STB. Anecdotally, we have verified that its result remain
consistent when the annotation procedure is repeated with a new pool of crowd workers. We believe
this is a good indicator that STB ratings are of high enough quality.
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The STB evaluation was run on three domains. In this work we will focus on sys-
tems trained on the data from the Second Conversational Intelligence Challenge (Con-
vAI2) [80]. 7 In this domain, the STB data includes 670 8 ratings for each dialog
system. We collect ratings from different metrics for all of those items. We then
generated additional bot-bot conversations to be rated by the metrics. This resulted
in 9090 additional metric ratings for each dialog system. This means we have the
following sample sizes as default: |TΦ| = |Tρ,η | = 670 and |TM| = 9090.

Systems and Metrics

We use the same pool of dialogue systems as in STB. Huggingface [83] and Lost
in Conversation [84] were selected for their performance in the ConvAI2 challenge.
KVMemNN [85] was used as a baseline model in the ConvAI2 challenge. The STB
authors additionally included a Blender [86] model, as well as a BERTRank and a
weak Seq2Seq (Sequence to Sequence) model based on the ParlAI [87] framework.
The latter were all fine-tuned on the ConvAI2 challenge data. For the further details
we refer the reader to the STB publication [79].

We use the following metrics: USR [88], ATT [89], and Maude [90].

The USR metric is based on a RoBERTa [91] language model. It consists of two sub-
metrics. For the first, the RoBERTa model is fine-tuned on in-domain dialog data
using masked language modeling (MLM). To compute the metric score, they con-
catenate the dialog context and response and mask each word of the response before
computing its likelihood. They then sum the response token likelihoods. We call this
sub-metric USR-MLM. They then continue fine-tuning the RoBERTa model using a
classification target. Given a dialog context, the model is trained to predict whether
the response corresponds to the true response from the dataset. Negative example
responses are randomly sampled. We call this sub-metric USR-DR9. The full USR
metric is then a regression model combining the two sub-metrics and trained to pre-
dict human ratings. We refer the reader to [92] for details on how USR was trained
for the ConvAI data.

ATT follows a similar approach to Generative Adversarial Networks (GAN) [93] for
image generation. They train a discriminator model that has to distinguish human
generated responses from responses generated by a adversarial generator model.
The adversary is trained via reinforcement learning to fool the discriminator. This
process continues iteratively until convergence. The final discriminator model is
used as the metric.

Maude is based on contrastive learning. They use a dialog encoder that first produces
an embedding for each utterance using BERT [77], which are then used as the input
into a bi-directional LSTM [4] to get the final representation. For contrastive training
they produce negative examples by applying syntactic and semantic perturbations
to the original response.

7The other two domains were DailyDialog [81] and Empathetic Dialogues [82].
8The exact numbers range from 669 to 673, which we will gloss over for simplicity.
9Here DR stands for Dialog Retrieval.
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5.2 Comparing Metrics

We will now turn our attention toward how real-world scalar metrics fit into our
framework. In particular, we will focus on the selection of the conversion threshold
θ and show how it naturally relates to the Receiver Operating Characteristic (ROC), a
diagnostic tool for assessing the quality of binary classifiers.

In the following we assume that we have access to a set of size Ns consisting of
inputs, outputs and paired ratings from the binary oracle Φ and a scalar metric Ms:

TS =
{
(ij, oj, ϕj = Φ(ij, oj), sj = Ms(ij, oj)|∀1 ≤ j ≤ NS)

}
Note that at this point, we do not make any assumptions on how oj are produced.

Given a threshold θ we can convert the scalar ratings to binary ratings, mj ≥ θ, and
derive the set Tρ,η as described in Section 4.2.3. We can then compute our estimates
for ρ and η based on this conversion.

We note that if θ only changes slightly then most, if not all, of the converted ratings
will stay the same. Based on this observation, we note that the only values of θ which
lead to a change in estimates of ρ and η are when θ ∈ sj|(ij, oj, ϕj, sj) ∈ TS.

We can therefore enumerate all the scalar ratings sj in TS and compute the estimates
for ρ and η when using sj as threshold. Instead of considering the full distributions
for ρ and η, we will work with their mode (see Section 3.1.1).

5.2.1 Receiver Operating Characteristic

The receiver operating characteristic (ROC) graph is a tool to assess and compare the
performance of binary classifiers. A ROC graph is a two-dimensional plot where the
y-axis shows the true positive rate and the y-axis the false positive rate of a binary
classifier. In this case, we assume that the binary classifier has to make a decision
between a positive and a negative class (for example cancer and not cancer). The
true positive rate (TPR) is the ratio between correctly classified positive cases and
the total number of positive cases in the test set. Similarly, the false positive rate
(FPR) is the ratio between negatives that were falsely classified as positive and the
total number of negative cases. The TPR and FPR of a given classifier can easily be
computed from a given set of predictions and their associated ground truth labels
and plotted as a point on the ROC graph. Since many classification models produce
probabilistic predictions that have to be thresholded, we can plot the TPR and FPR
as a function of the threshold on the ROC graph. The resulting curve in ROC space
is called the ROC curve. We refer the reader to [94] for more details.

We note the similarities between computing the ROC curve for a binary classifier
and the thresholding of scalar metrics described above. Indeed, by Definition 7, ρ
corresponds to the true positive rate of the metric in relation to the oracle. In the
same way, η was defined to be the true negative rate of the metric in relation to the
oracle. Since the total number of negative cases (meaning samples rated inadequate
by the oracle) is the sum of true negatives and false positives, we have that the false
positive rate of the metric is 1 − η. We can, therefore, create ROC graphs for our
metrics in the same way as for binary classifiers. Figure 5.1 shows the ROC curves
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for the metrics in our two domains. To compute the ROC curve for a given metric
we pooled together the scalar ratings for all outputs of all TG in the domain.

(A) WMT21 (B) STB

FIGURE 5.1: ROC curves for metrics in the WMT21 and STB domains.
The ratings for all TG systems in a given domain were combined to
compute the curves. AUC stands for the area under the curve. We
also show the curve for a random classifier (blue diagonal). The red
diagonal shows points where ρ = η and we marked the points we

selected for our experiments with black crosses.

In ROC space, a perfect classifier would be placed in the top left corner where the
TPR and FPR are both 1. A random classifier would lie on the diagonal from bottom
left to top right (drawn in blue in Figure 5.1). This is because a classifier that ran-
domly predicts positives at a certain rate r will have both a true and false positive
rate of r. Any classifier above this diagonal performs better than chance. In general,
the closer a ROC curve gets to the perfect classifier, the better. This is the reasoning
behind using the area under the curve (AUC) to compare classifiers. Of course, the
AUC, like any single number measure, does not tell the full story. For example, in
Figure 5.1a we can see that BleuRT has a higher AUC than COMET. Nevertheless,
there are areas where the ROC curve of COMET is above the curve for BleuRT. Both
of them clearly dominate BERTScore. Similarly, BLEU is dominated by all the others.
For the dialog domain, we see that USR-DR performs best. This might be due to it
being trained as a binary classifier (see Section 5.1.2).

We have already noted in Section 4.2.5 that for our experiments, we will use a thresh-
old such that ρ ≈ η. In practice, this means choosing the candidate threshold which
minimizes |ρ− η|. The points where ρ = η lie on the diagonal from the top left to
bottom right (drawn in red). We marked the concrete operating point of the thresh-
old we have selected.

5.2.2 Metrics have variable performance

We will now turn our attention to what we consider the most important finding of
this work.
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In Definition 7, we define a class of binary metrics with constant error rates. Their key
property is that their error rates remain constant no matter the inputs and outputs.
Naturally, it is naive to assume that real world metrics would strictly adhere to this
definition. It is a simplifying assumption to derive the model in Section 4.2. Nev-
ertheless, it is a desirable property for a metric to have. If the error rates can vary
depending on the inputs, we have to be careful about how to select our test sets.
Ideally, inputs that the metrics can handle well. Since we only consider one dataset
for each domain, we cannot measure whether ρ and η for a given metric depend on
the inputs. On the other hand, we can observe that a given metric will have varying
performance when assessing the outputs of different TG.

(A) WMT21 COMET (B) WMT21 BleuRT (C) WMT21 BERTScore

(D) WMT21 BLEU (E) STB ATT (F) STB Maude

(G) STB USR (H) STB USR-MLM (I) STB USR-DR

FIGURE 5.2: ROC curves for each metric. Each subplot shows the
ROC curves that a specific metric produces for each TG system in

their domain.

In Figure 5.2 we show the ROC curves for each individual TG for each metric in
each domain. We observe that every metric has a large variability in their AUC for
different TG. For example, in Figure 5.2b, the performance of BleuRT ranges from
barely better than random for ref-B (AUC 0.51) to an AUC of 0.74 for Nemo. It is
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important to stress that this is purely measuring how good the metric is at assessing
the outputs of a given TG and not how well the TG performs. Indeed, the machine
translation metrics seem to consistently struggle with rating human outputs (ref-{A,
B, D}) which produce adequate outputs at the same rate as the best TG (see Sec-
tion 5.3). Similarly, the dialog metrics cannot properly assess outputs from Blender,
which outperforms the other dialog systems.

This can lead to problems when relying on these metrics for evaluation. The differ-
ing error rates lead to inconsistent evaluation outcomes when naively aggregating
ratings. Even when applying our model, the varying error rates lead to vastly dif-
ferent sample efficiencies as we will discuss in Section 5.3.

5.3 Comparing Text Generation Systems

We will finally focus on the main question of interest: how well does a given TG
perform? In the setting of binary evaluation, this means finding out what the rate of
adequate responses α is for a given TG π. In Section 4.2.1 we have seen how we can
estimate α directly from oracle ratings. In Section 4.2.2 we have seen that if we apply
the same approach naively to an error-prone metric, we measure a corrupt version
α̃ = α(ρ + η − 1) + (1− η). We show this in Tables 5.1 and 5.2.

Human COMET BleuRT BERTScore BLEU
µ σ µ σ µ σ µ σ µ σ

Facebook-AI 0.67 0.020 0.50 0.016 0.50 0.016 0.52 0.016 0.51 0.016
HuaweiTSC 0.58 0.021 0.47 0.016 0.49 0.016 0.49 0.016 0.48 0.016
Nemo 0.64 0.021 0.49 0.016 0.53 0.016 0.52 0.016 0.49 0.016
Online-W 0.64 0.021 0.49 0.016 0.48 0.016 0.51 0.016 0.50 0.016
UEdin 0.59 0.021 0.47 0.016 0.49 0.016 0.51 0.016 0.49 0.016
VolcTrans-AT 0.61 0.021 0.49 0.016 0.50 0.016 0.52 0.016 0.50 0.016
VolcTrans-GLAT 0.64 0.021 0.48 0.016 0.48 0.016 0.51 0.016 0.50 0.016
eTranslation 0.51 0.022 0.47 0.016 0.49 0.016 0.50 0.016 0.49 0.016
ref-A 0.65 0.021 0.47 0.016 0.48 0.016 0.48 0.016 0.51 0.016
ref-B 0.68 0.020 0.45 0.016 0.44 0.016 0.44 0.016 0.44 0.016
ref-D 0.64 0.021 0.47 0.016 0.48 0.016 0.51 0.016 0.51 0.016

TABLE 5.1: Estimates of α derived from different metrics for WMT21
systems by naively aggregating ratings without considering errors. µ
stands for the mean and σ for the standard deviation of the posterior

for α.

Human ATT Maude USR USR-MLM USR-DR
µ σ µ σ µ σ µ σ µ σ µ σ

Huggingface 0.18 0.015 0.53 0.005 0.42 0.005 0.43 0.005 0.48 0.005 0.43 0.005
LostInConv. 0.30 0.018 0.52 0.005 0.44 0.005 0.44 0.005 0.45 0.005 0.46 0.005
KVMemNN 0.24 0.016 0.53 0.005 0.43 0.005 0.42 0.005 0.46 0.005 0.44 0.005
Blender 0.38 0.019 0.49 0.005 0.52 0.005 0.47 0.005 0.49 0.005 0.45 0.005
BERTRank 0.07 0.009 0.48 0.005 0.44 0.005 0.44 0.005 0.46 0.005 0.43 0.005
Seq2Seq 0.04 0.008 0.43 0.005 0.40 0.005 0.52 0.005 0.45 0.005 0.57 0.005

TABLE 5.2: Estimates of α derived from different metrics for STB sys-
tems by naively aggregating ratings without considering errors. µ
stands for the mean and σ for the standard deviation of the posterior

for α.
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We can see that the mean values of α estimated by the metrics deviate strongly from
the values of humans. Moreover, especially for STB, the metrics are a lot more con-
fident10 in their (biased) estimates due to the larger number of metric ratings. The
standard deviation stays constant for all metrics in a domain, mainly because they
are all based on the same number of metric ratings.

To compute the estimates, we applied Equation 4.1 from Section 4.2.1 for both hu-
man and metric ratings. The metrics were converted from scalar to binary using a
threshold as described in Section 5.2. To be consistent with the rest of this section,
we sampled from this posterior as described in Section 3.2 and computed mean and
standard deviation based on these samples.

In Tables 5.3 and 5.4, we show the mean and standard deviation of the estimates
for α we get when applying our model from 4.2.4. For both WMT21 and STB, we
can see that while we now get mean estimates for α that are consistent with human
evaluation, we do not get any reduction in standard deviation by including ratings
from the metrics. In the next section, we will explore how the standard deviation
depends on the number of human ratings, the number of metric ratings, and the
performance of the metric (i.e. ρ and η).

Human COMET BleuRT BERTScore BLEU
µ σ µ σ µ σ µ σ µ σ

Facebook-AI 0.67 0.020 0.67 0.020 0.67 0.020 0.67 0.020 0.67 0.020
HuaweiTSC 0.58 0.021 0.58 0.021 0.58 0.021 0.58 0.021 0.58 0.021
Nemo 0.64 0.021 0.63 0.020 0.63 0.020 0.64 0.021 0.64 0.021
Online-W 0.64 0.021 0.63 0.021 0.63 0.021 0.64 0.021 0.64 0.021
UEdin 0.59 0.021 0.58 0.021 0.58 0.021 0.59 0.021 0.59 0.021
VolcTrans-AT 0.61 0.021 0.61 0.021 0.61 0.021 0.61 0.021 0.61 0.021
VolcTrans-GLAT 0.64 0.021 0.64 0.021 0.64 0.021 0.64 0.021 0.64 0.021
eTranslation 0.51 0.022 0.51 0.021 0.51 0.021 0.51 0.021 0.51 0.021
ref-A 0.65 0.021 0.65 0.021 0.65 0.021 0.65 0.021 0.65 0.021
ref-B 0.68 0.020 0.67 0.020 0.68 0.020 0.68 0.020 0.68 0.020
ref-D 0.64 0.021 0.64 0.021 0.64 0.021 0.64 0.021 0.64 0.021

TABLE 5.3: Estimates of α derived from different metrics for WMT21
systems by applying our model from Section 4.2.4. µ stands for the

mean and σ for the standard deviation of the posterior for α.

Human ATT Maude USR USR-MLM USR-DR
µ σ µ σ µ σ µ σ µ σ µ σ

Huggingface 0.18 0.015 0.18 0.015 0.17 0.014 0.18 0.015 0.18 0.015 0.17 0.014
LostInConv. 0.30 0.018 0.30 0.018 0.30 0.017 0.30 0.018 0.30 0.018 0.30 0.018
KVMemNN 0.24 0.016 0.24 0.016 0.24 0.016 0.24 0.016 0.24 0.016 0.24 0.016
Blender 0.38 0.019 0.38 0.019 0.38 0.019 0.38 0.019 0.38 0.019 0.38 0.019
BERTRank 0.07 0.009 0.07 0.009 0.07 0.009 0.06 0.009 0.07 0.009 0.06 0.009
Seq2Seq 0.04 0.008 0.04 0.008 0.04 0.008 0.04 0.008 0.04 0.008 0.04 0.008

TABLE 5.4: Estimates of α derived from different metrics for STB sys-
tems by applying our model from Section 4.2.4. µ stands for the mean

and σ for the standard deviation of the posterior for α.

10lower standard deviation
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5.3.1 Variance Reduction

One motivation to use automated metrics for evaluation is that getting a large num-
ber of ratings is affordable. The reason one usually wants many ratings (i.e. a large
test set) is that more ratings lead to lower variance estimators of performance. In-
tuitively, if we flip a coin 10 times and see 5 heads we cannot be as certain that it
is fair, as if we flipped it 10000 times and saw 5000 heads. We have seen in the
previous section that without applying our model we can indeed get low variance
estimates from our metrics, especially in the STB domain where we have many met-
ric ratings. Unfortunately, the resulting estimators are deviate strongly from human
ratings, meaning they have high bias. By applying our model, we can correct the
estimate at the cost of losing out on variance reduction.

In this section, we will explore how the number of human and metric ratings and
the performance of the metric relate to the variance of the estimate derived from our
model.

Simulation Experiments

So far, we have considered ρ, η, and α unknown variables that we want to estimate
from observations. Since we are interested in how the variance of our estimators
depends on these values, we will simulate observations based on given, fixed values
of ρ, η, and α.

Let us recall notations from Section 4.2. We have three sets of ratings: the set of
oracle ratings TΦ, the set of paired ratings Tρ,η , and the set of metric ratings TM. As
discussed in Section 4.2.5, we always have |Tρ,η | = |TΦ|, since we reuse the paired
samples as our oracle samples by dropping the metric ratings. To apply our model,
we additionally need the following counts. First, n+, the number of times the oracle
rated an output adequate out of TΦ. Next, m+, the number of times the metric rated
an output as adequate out of TM. Finally, recall that in Section 4.2.3 we counted the
number of times the metric and oracle agreed on either type of rating. The resulting
counts were nρ, the number of times the metric and oracle agreed that an output is
adequate, and nη , the number of times they agreed that an output is inadequate.

To simulate these observations for some given values of ρ, η, α, |TΦ| = |Tρ,η |, and
|TM|, we proceed as follows. First, we note that all counts follow Binomial distribu-
tions based on these parameters. For example, we know that N+ ∼ Binom(|TΦ|, α).
We can therefore simulate it by sampling: nsim

+ ← sample(Binom(|TΦ|, α)). Simi-
larly, we simulate msim

+ ← sample(Binom(|TM|, α(ρ + η − 1) + (1− η))). Since we
share samples between Tρ,η and TΦ, we already know that the number of paired
samples for which the oracle gives an adequate rating is |Tρ| = nsim

+ and similarly
|Tη | = |TΦ| − nsim

+ . We can therefore compute nsim
ρ ← sample(Binom(nsim

+ , ρ)) and
nsim

η ← sample(Binom(|TΦ| − nsim
+ , η)). We can then use all these counts to get the

posterior for α as in Equation 4.3.

We note that in our original publication [1], we simulated the counts by their ex-
pected values. For example we used ⌊α|TΦ|+ 1

2⌋ to simulate n+. Unfortunately, this
does not take into account that we can get different outcomes based on the same
parameters due to the sampling variance. In simple terms, the original approach
would always assign 5 heads out of 10 tosses for a fair coin, even though we could
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get different results based on luck. We therefore corrected the procedure by sam-
pling all the counts from their generating distributions. To account for the sampling
variance, we have to run the simulation multiple times and have averaged the val-
ues of interest. We show how we estimate the bias and variance of our estimator in
Algorithm 2.

Algorithm 2 Simulating Bias and Variance of our estimator of α

Input: α
Input: ρ
Input: η
Input: NΦ ▷ |TΦ| = |Tρ,η |
Input: NM ▷ |TM|
Input: NR ▷ number of repetitions
Input: NMCMC ▷ number of MCMC samples
Output: mean and standard deviation of the bias and variance of our estimator

1: biases← ∅
2: vars← ∅
3: for i = 1 ... NR do
4: n+ ← SAMPLE(Binom(NΦ, α))
5: nρ ← SAMPLE(Binom(n+, ρ))
6: nη ← SAMPLE(Binom(NΦ − n+, ρ))
7: m+ ← SAMPLE(Binom(NM, α(ρ + η − 1) + (1− η)))
8: posterior← Equation 4.3
9: [s]NMCMC

1 ← MCMC(posterior) ▷ see Section 3.2
10: b← MEAN([s]NMCMC

1 ) −α

11: v← STD([s]NMCMC
1 )

12: biases← biases ∪ {b}
13: vars← vars ∪ {v}
14: end for
15: return MEAN(biases), STD(biases), MEAN(vars), STD(vars)

In Figures 5.3 and 5.4 we show the results of running Algorithm 2 for a few different
values of α, ρ, η, NΦ, and NM. For each configuration we ran NR = 50 simulations. In
Figure 5.3 we show how the standard deviation of our estimate of α decreases with
additional ratings from metrics of varying quality. We can see that for weak metrics
with ρ = η ≤ 0.65 the curves stay almost flat, meaning that the additional metric
samples are barely useful. We note that most metrics studied in this work operate
in this range (see also Figure 5.2). This explains why we do not see any reduction
in σ in Tables 5.3 and 5.4 when including ratings from the different metrics. Indeed,
we can only expect to see a substantial decrease when ρ = η ≥ 0.95. This indicates
that considerable improvements in the quality of metrics is needed in order to reap
potential benefits.

In Figure 5.4 we show the bias of our estimator. We can see that it is centered around
0 for all configurations, indicating that our procedure indeed produces unbiased
estimates of α. We note that depending on the number of oracle samples NΦ the bias
can have a relatively high dispersion, but is still 0 in expectation.
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5.3.2 Distinguishing the Performance of Text Generation Systems

The main reason we want to decrease the variance of our estimate of α as much as
possible is so we can differentiate between systems of similar quality. In other words,
we want to know whether the success rate α1 of system π1 is larger than success rate
α2 of system π2. If we had access to the full closed form posterior distributions for
α1 and α2, we could try computing the probability that α1 > α2:

P(α1 > α2) =
∫ 1

0

∫ 1

α2

p(α1)p(α2)dα1dα2

Since we can only get samples from these posteriors, we will rely on normal approx-
imations instead.

For this, let us assume that we have computed the mean µ1 and standard devia-
tion σ1 of α1 and µ2 and σ2 of α2 as in previous sections. Based on these values
we can define the normal approximations to α1 and α2: αNi ∼ N (µi, σ2

i ). One
property of independent normal random variables is that their sum will follow
also follow a normal distribution and in particular the difference αN1 − αN2 follows
N (µ1− µ2, σ2

1 + σ2
2 ). To show that there is a difference between αN1 and αN2 , we need

to show that µ1− µ2 ̸= 0. We can express this as a hypothesis test where the null hy-
pothesis H0 is µ1 = µ2 and the alternative H1 is µ1 ̸= µ2. Under H0 we have that the
normalized difference d = µ1−µ2√

σ2
1+σ2

2
follows a standard normal distribution N (0, 1).

To reject H0 at a certain significance level γ, we need to show that |d| > Φ−1(1− γ
2 ).

Here Φ−1 is the inverse cumulative distribution function of the standard normal dis-
tribution. Note that this is a two-sided test to see whether µ1 is significantly larger
or smaller than µ2.

We apply this test to all pairs of TG in both domains for different values of γ and
show the results in Tables 5.5, 5.6, and 5.7. Table 5.5 shows the results for WMT21
based on human ratings only. We can see that even though most systems have dif-
ferent means, a majority of comparisons do not result in a rejection of H0 meaning
their difference is not significant. While we cannot expect systems with almost equal
performance such as Nemo, Online-W, VolcTrans-GLAT, or ref-D to be distinguishable,
it would be desirable to be able to determine whether the difference of 0.03 between
them and Facebook-AI is significant. Unsurprisingly, adding ratings from COMET in
Table 5.6 does not change anything, due to a relatively small sample size and low
performance of WMT21 metrics in general. In the STB domain in Table 5.7, on the
other hand, almost all pairwise comparisons are significant based on human ratings
alone since there are larger gaps in performance between systems.

Facebook-AI (0.67) HuaweiTSC (0.58) Nemo (0.64) Online-W (0.64) UEdin (0.59) VolcTrans-AT (0.61) VolcTrans-GLAT (0.64) eTranslation (0.51) ref-A (0.65) ref-B (0.68) ref-D (0.64)
Facebook-AI (0.67) - ** ** ***
HuaweiTSC (0.58) ** - * * * ** *
Nemo (0.64) - ***
Online-W (0.64) - ***
UEdin (0.59) ** - * * **
VolcTrans-AT (0.61) - *** *
VolcTrans-GLAT (0.64) * - ***
eTranslation (0.51) *** * *** *** * *** *** - *** *** ***
ref-A (0.65) * * *** -
ref-B (0.68) ** ** * *** -
ref-D (0.64) * *** -

TABLE 5.5: Pairwise significance tests for systems in WMT21 based
on human ratings only. We write *, **, *** to denote the significance

levels γ 5%, 1%, and 0.1%.

Given these findings, we will now ask ourselves how many human and metric rat-
ings we would need to distinguish two systems with a small performance difference
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Facebook-AI (0.67) HuaweiTSC (0.58) Nemo (0.63) Online-W (0.63) UEdin (0.58) VolcTrans-AT (0.61) VolcTrans-GLAT (0.64) eTranslation (0.51) ref-A (0.65) ref-B (0.67) ref-D (0.64)
Facebook-AI (0.67) - ** ** * ***
HuaweiTSC (0.58) ** - * * * *** *
Nemo (0.63) - ***
Online-W (0.63) - ***
UEdin (0.58) ** - * * **
VolcTrans-AT (0.61) * - *** *
VolcTrans-GLAT (0.64) * - ***
eTranslation (0.51) *** * *** *** * *** *** - *** *** ***
ref-A (0.65) * * *** -
ref-B (0.67) *** ** * *** -
ref-D (0.64) * *** -

TABLE 5.6: Pairwise significance tests for systems in WMT21 based
on human and COMET ratings. We write *, **, *** to denote the sig-

nificance levels γ 5%, 1%, and 0.1%.

Huggingface (0.18) LostInConv. (0.30) KVMemNN (0.24) Blender (0.38) BERTRank (0.07) Seq2Seq (0.04)
Huggingface (0.18) - *** ** *** *** ***
LostInConv. (0.30) *** - * ** *** ***
KVMemNN (0.24) ** * - *** *** ***
Blender (0.38) *** ** *** - *** ***
BERTRank (0.07) *** *** *** *** -
Seq2Seq (0.04) *** *** *** *** -

TABLE 5.7: Pairwise significance tests for systems in STB based on
human ratings only. We write *, **, *** to denote the significance levels

γ 5%, 1%, and 0.1%.

ϵ = |α1 − α2| at a given significance level γ.

Sample Sizes Needed for Significant Outcomes

One potential application for our model is to determine the number of human and
metric ratings needed to distinguish two TG with a very similar success rate. This
is important when designing the test set for a shared task, for example. Ideally, we
would be able to say that the best performing system has a larger α than all other
systems at a given significance level γ.

We will illustrate this for the case of WMT21. In this setting, we have seen that the
best performing TG, Facebook-AI, has a success rate α ≈ 0.67. The best performing
metrics, such as COMET and BleuRT, have ρ = η ≈ 0.6. We will work with a signif-
icance threshold γ = 0.05. We have seen that based on 527 human and 475 metric
ratings, we could not say that a difference of |0.67− 0.64| = 0.03 was significant (see
Table 5.6). We will use the variance simulations and normal approximations from
the previous sections to determine the smallest difference in performance we can
say is significant for different combinations of of human and metric ratings.

Recall that we need |d| = | µ1−µ2√
σ2

1+σ2
2
| > Φ−1(1− γ

2 ) to say that the difference is signifi-

cant. This means that |µ1−µ2| becomes significant if it is larger than
√

σ2
1 + σ2

2 Φ−1(1−
γ
2 ). We are interested in the smallest possible ϵ = |µ1 − µ2|, which we call ϵγ =√

σ2
1 + σ2

2 Φ−1(1− γ
2 ). Since we are interested in cases where |µ1 − µ2| ≈ 0 and we

assume that the means and standard deviations were estimated on the same test
set, or based on equal numbers of human and metric ratings, we will assume that
σ1 = σ2 = σ. In this case, ϵγ simplifies to ϵγ = σ

√
2Φ−1(1− γ

2 ). We note that we can
simulate σ using Algorithm 2 in order to get estimates for ϵγ.

In Table 5.8, we show ϵγ for different numbers of human and metric ratings. We
note that increasing the number of metric ratings does not change ϵγ, which is to be
expected from the results we have seen in Figure 5.3. In Table 5.9 we repeated the
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|TM|

|T
ρ

,η
|=
|T

Φ
|

0 500 1000 2500 5000 10000 100000
0 1.000 0.517 0.516 0.517 0.517 0.516 0.518

100 0.090 0.089 0.089 0.089 0.089 0.089 0.088
250 0.058 0.057 0.057 0.057 0.057 0.057 0.057
500 0.041 0.041 0.041 0.040 0.040 0.040 0.040
1000 0.029 0.029 0.029 0.029 0.029 0.028 0.029
2000 0.021 0.020 0.020 0.020 0.020 0.020 0.020
5000 0.013 0.013 0.013 0.013 0.013 0.013 0.013

TABLE 5.8: Simulated ϵγ for the WMT21 setting. We used fixed α =
0.67, ρ = η = 0.60, and γ = 0.05.

|TM|

|T
ρ

,η
|=
|T

Φ
|

0 500 1000 2500 5000 10000 100000
0 1.000 0.531 0.530 0.530 0.530 0.530 0.531

100 0.090 0.064 0.063 0.060 0.058 0.059 0.058
250 0.058 0.045 0.042 0.040 0.038 0.037 0.037
500 0.041 0.034 0.032 0.029 0.028 0.027 0.026
1000 0.029 0.026 0.024 0.022 0.020 0.019 0.018
2000 0.020 0.019 0.018 0.017 0.015 0.014 0.013
5000 0.013 0.013 0.012 0.012 0.011 0.010 0.008

TABLE 5.9: Simulated ϵγ for the WMT21 setting assuming the use of
an improved metric. We used fixed α = 0.67, ρ = η = 0.90, and

γ = 0.05.

simulation for an improved metric with ρ = η = 0.9. In this case, we can see that
additional metric ratings do decrease ϵγ.
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(A) α = 0.20 NΦ = 100 (B) α = 0.60 NΦ = 100

(C) α = 0.20 NΦ = 250 (D) α = 0.60 NΦ = 250

(E) α = 0.20 NΦ = 500 (F) α = 0.60 NΦ = 500

(G) α = 0.20 NΦ = 1000 (H) α = 0.60 NΦ = 1000

FIGURE 5.3: Standard Deviation of the posterior for α from Equa-
tion 4.3 based on simulated data. Each plot shows how the standard
deviation changes with additional metric samples depending on the
performance of the metric. In the left column we show an example
for α = 0.20 and in the right column for α = 0.60. Descending rows

increase the number of human annotations used.
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(A) α = 0.20 NΦ = 100 (B) α = 0.60 NΦ = 100

(C) α = 0.20 NΦ = 250 (D) α = 0.60 NΦ = 250

(E) α = 0.20 NΦ = 500 (F) α = 0.60 NΦ = 500

(G) α = 0.20 NΦ = 1000 (H) α = 0.60 NΦ = 1000

FIGURE 5.4: Bias of the mean of the posterior for α from Equation 4.3
based on simulated data. Each plot shows how the bias changes with
additional metric samples depending on the performance of the met-
ric. In the left column we show an example for α = 0.20 and in the
right column for α = 0.60. Descending rows increase the number of

human annotations used.
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Chapter 6

Discussion

6.1 Contributions and Findings

Our main contribution is the model of evaluation using binary metrics developed
in Chapter 4. It is closely related to classify and count algorithms developed for bi-
nary quantification [48]. Our model incorporates three main sources of uncertainty:
uncertainty stemming from the number of oracle and metric ratings, uncertainty in-
troduced by the errors of the metric, and uncertainty over the unknown true error
rates of the metric. One of the key features of the model is that it allows us to com-
bine human and automated ratings into a single evaluation procedure. We have
used simulation experiments to show that the performance estimates produced by
the model are unbiased, meaning that they produce the correct value in expectation.

We applied the model to two real world settings: machine translation and dialogue
systems. We have observed that the ability of a metric to accurately judge outputs
depends strongly on the text generation system that produced said outputs in both
domains. This is problematic in a few different ways. First, this means that the
error rates of a given metric have to be estimated for each system independently.
In particular, it is a-priori not possible to know anything about the error rate of a
metric on texts produced by a previously unseen system. This poses a problem when
trying to evaluate a text generation system at various stages of training, where texts
produced early on can be fairly different from those produced toward the end of
training. Since the utility of a metric ratings depends on its error rates, this also
means that for some text generation systems we can get a larger variance reduction
of their performance estimate than for others.

We also used our model to estimate the difference in performance between two text
generation systems that we can measure for a given evaluation setting. We have seen
that current automated metrics are not strong enough to substantially improve per-
formance estimates considering current test set sizes. Therefore, we either have to
improve the performance or increase the size of our test sets by orders of magnitude,
to reap the aspired benefits of automated metrics.

6.2 Limitations

One of the principal limitations of this work is that it only concerns itself with binary
ratings. Since, to our knowledge, there are currently no modes of evaluation in use,
either human or automated, that are based on binary ratings, this setting remains
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artificial. The core motivation of this work was to serve as a first attempt at study-
ing how sample level errors influence system level evaluation. For this the binary
setting is particularly well suited, as it is easy to define and count the number of
sample level errors. Nevertheless, it would be preferable to have a model that can
deal with scalar metric ratings directly. One way to approach this while keeping bi-
nary oracle ratings would be to adapt a version of the probabilistic quantify and count
algorithm [48] which involves averaging calibrated classifier scores to get a preva-
lence estimate. One interesting argument in favor of running a binary evaluation is
that the resulting performance measure α is directly interpretable; it tells us what
fraction of outputs we can expect to be adequate, or of good quality. Other absolute
evaluation measures, such as direct assessment, are not intrinsically interpretable.
For example, it is not immediately clear what an average direct assessment score of
80 means for the quality of a translation. Similarly, for Likert scales one has to know
the exact question that was asked to interpret a given average rating.

In Chapter 4 we assumed the existance of an adequacy oracle to derive our model
and in Chapter 5 we argued that the way we aggregate human ratings is a reason-
able approximation of the adequacy oracle. In practice, it would be preferable to
treat individual human ratings as random variables in our model instead of assum-
ing that an aggregation thereof can serve as a gold standard [19], [95]. Therefore,
we somehow have to account for the fact that human ratings are not error-free. This
problem can likely be solved by an improved model. Unfortunately, the fact that we
rely on human ratings at all can not be solved easily. In a sense, our approach can
be considered as post-processing applied to already existing metrics. In this setting,
we would desire a model that is able to get unbiased performance estimates without
the need to collect any additional human ratings. Unfortunately, the whole premise
of our approach hinges on the quantification of the error rates of the metric. The
error rates have to be measured with respect to some ground truth. In practice, we
cannot easily avoid collecting human ratings to estimate ρ and η. When developing
quantification methods [48], one usually circumvents this by trying to estimate the
true and false positive rates during training time using cross-validation. Unfortu-
nately, this is unlikely to work in our case. As we have discussed already, the true
and false positive rates (ρ and 1− η) vary massively for texts produced by distinct
text generation systems. It is highly unlikely that any error rates estimated during
training would accurately reflect the error rates for texts from a previously unseen
text generation system. Another approach involves optimizing a quantification ob-
jective directly [96]. This assumes control over the training process and would give
rise to a new type of metric.

In this work, we study a relatively restrictive class of error-prone binary metrics. We
assume that the error rates are independent of both inputs and outputs (see Defini-
tion 7) and only depend on the true oracle rating. If one had access to the oracle,
one could construct such a metric by observing the oracle rating and then flipping
a coin with success rate ρ or 1− η, without ever considering the concrete input and
output. In reality, this assumption cannot hold. Similar to how some sentences are
harder to translate than others [97], [98], it is reasonable to assume that not all pairs
of inputs and outputs are equally difficult to rate. Unfortunately, it is unclear how to
formalize the notion of difficulty in a uniform manner and include it in our model.
In Chapter 5, this problem is somewhat mitigated by the fact that all systems in a
domain are evaluated on the exact same pool of samples, meaning they all see the
same distribution of difficulties for inputs. Naturally, the outputs depend on the text
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generation system under consideration. We found that all metrics seem to have sys-
tematic issues correctly assessing human generated outputs in the case of machine
translation (see Section 5.2.2).

6.3 Open Questions and Future Work

We have recently generalised the model described in this work to the setting of pref-
erence ratings [99]. In that case, a metric is presented with an input and two outputs
and has to decide whether one of them is better or whether they are of equal quality.
The errors of such metrics can be characterised by a 3× 3 confusion matrix that takes
on the same role as ρ and η in this work. All components of the model of preference
evaluation have direct correspondents to the model in this work.

We still intend to develop a similar model that uses scalar ratings directly. The main
modelling difficulty to overcome is that scalar errors have both a sign and a mag-
nitude. Consequently, overrating an output by 0.2 is worse than overrating it by
0.1. In the long term, it would be ideal to be able to pair any kind of human rating
with scalar metric ratings. Due to the architecture of modern automated metrics,
they will always produce scalar ratings, even if trained on a classification target. In
Chapter 2, we have seen that the types of human ratings are more diverse. A toolbox
that lets practitioners mix and match human evaluation and automated metrics to
get theoretically sound outcomes could be very valuable.

An important open problem is the treatment of human ratings as random variables
in the model to capture human errors. There are already systems such as MACE [21]
that use a Bayesian approach to aggregate human ratings. It should be possible to
apply a similar approach to extend our model. This is made more difficult due the
fact that many datasets that include human ratings have already performed some
kind of aggregation of all human ratings for a given sample. For this extension we
would need access to the raw ratings from all individual annotators.

Another potential extension of the model would be to incorporate multiple error-
prone metrics. In the case where a second metric scores a set of samples independent
from the first one, we can extend the Equation 4.3 of the full model by additional
terms, accounting for the ratings from the new metric. In the case where both met-
rics score the same samples, the situation becomes more complicated as we have to
account for their correlation.

One of the more immediate questions is whether we can somehow leverage our
work to create improved metrics. As we have seen, metrics should be improved
both in terms of overall performance and robustness. One potential path could be
to use a modified training objective to train a metric as a quantifier, in the hope
that this might improve the robustness toward outputs generated by different text
generation systems. Since we are often interested in system level comparisons it
might be beneficial to train metrics that produce system level scores directly without
the need to aggregate sample level scores.

Finally, there also is a need for diagnostic tools which make problematic behaviors
of automated metrics obvious. Often times a single criterion to measure the perfor-
mance of a metric is not enough to catch all of its idiosyncracies. Therefore, it can
be useful to perform a careful error analysis. We have seen that machine translation
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metrics systematically perform worse on human generated texts. We have found
similar behaviors in the preference based evaluation setting where we show that
this can lead to systematically overrating certain systems. To address this, we have
developed a diagnostic score [100].
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