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Abstract

Speech Translation models designed to convert spoken Swiss-German to written German have been
in existence for some time. While these models generally perform well, their performance in various
scenarios remains poorly understood. In this thesis, we explore the influence of audio length on the
performance of Swiss-German speech translation models and identify the necessary factors for achieving
better performance on longer audio segments.

To achieve this, we examined four speech translation models from different institutions. A model from the
Zurich University of Applied Sciences (ZHAW), one from the University of Applied Sciences Northwestern
Switzerland (FHNW), a model from Microsoft, as well as a model from OpenAI called Whisper.

We conducted eight different experiments using a Swiss-German corpus collected by the ZHAW and
FHNW. In the experiments, the audio length was augmented in various ways. From there, we found
that while the ZHAW, FHNW and Microsoft models showed a tendency to perform worse on longer
duration, extending the duration by adding silence did not influence on the performance. Changing
the playback speed has a negative influence on the ZHAW, Microsoft and Whisper models, both when
speeding segments up or slowing them down. The FHNW model exhibited extraordinary robustness to
changes in playback speed, as the results when accelerated by a factor of 1.25 were nearly identical to the
results when the playback speed was not altered. The biggest influence on performance was when adding
more than one sentence to a segment. Without a segmentation of the input audio the ZHAW, FHNW
and Microsoft models performed badly, indicating that segmentation should be introduced as soon as
more than one sentence appears in an audio recording. Training a model specifically on multi-sentence
segments showed promising results, on single sentence segments and multi-sentence segments as well as in
scenarios where sentences are split while segmenting the audio recordings. Comparing a sentence-based
segmentation, which is considered ideal for models trained on single sentence segments, to a fixed-window
segmentation with an overlap showed an almost identical result.

Examining the models on a real-life recording showed that the ZHAW (lowercase) and ZHAW (multi-
sentence) models perform considerably worse than the FHNW, Microsoft and Whisper models. Indicating
that more investigation is required to fully understand what makes a speech translation model work well
in real-life scenarios.
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Zusammenfassung

Speech-Translation Modelle, die gesprochenes Schweizerdeutsch in geschriebenes Deutsch übersetzten,
existieren schon seit einiger Zeit. Obwohl diese Modelle im Allgemeinen gut funktionieren, ist ihre
Leistung in verschiedenen Szenarien noch wenig erforscht. In dieser Arbeit untersuchen wir den Einfluss
der Audiolänge auf die Leistung von Schweizerdeutsch-Sprachübersetzungsmodellen und identifizieren die
erforderlichen Faktoren für eine bessere Leistung bei längeren Audiosegmenten.

Um dieses Ziel zu erreichen, haben wir vier Sprachübersetzungsmodelle von verschiedenen Institutionen
untersucht. Ein Modell von der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), eines von
der Fachhochschule Nordwestschweiz (FHNW), ein Modell von Microsoft sowie ein Modell von OpenAI
namens Whisper.

Wir haben acht verschiedene Experimente mit einem Schweizerdeutsch-Korpus durchgeführt, der von
der ZHAW und FHNW erstellt wurde. In den Experimenten wurde die Audiolänge auf verschiedene
Weise verändert. Dabei stellten wir fest, dass die Modelle von der ZHAW, FHNW und von Microsoft
dazu neigten, bei längerer Dauer schlechter abzuschneiden, während die Verlängerung der Dauer durch
Hinzufügen von Stille keine Auswirkung auf die Leistung hatte. Die Wiedergabegeschwindigkeit zu
verändern scheint bei den Modellen der ZHAW, von Microsoft und bei Whisper einen negativen Einfluss
zu haben, sowohl beim Beschleunigen als auch beim Verlangsamen der Segmente. Das Modell der FHNW
zeigte ein ausserordenliche Robustheit gegenüber einer Veränderung der Wiedergabegeschwindigkeit, so
waren die Resultate beim Beschleunigen mit einem Faktor 1.25 nahezu identisch mit den Resultaten,
bei denen die Wiedergabegeschwindigkeit nicht verändert wurde. Der grösste Einfluss auf die Leistung
ergab sich, wenn mehr als ein Satz zu einem Segment hinzugefügt wurde. Ohne eine Segmentierung der
Aufzeichnung schnitten die Modelle von ZHAW, FHNW und Microsoft schlecht ab, was darauf hinweist,
dass eine Segmentierung eingeführt werden sollte, sobald mehr als ein Satz in einer Aufzeichnung er-
scheint. Das Training eines Modells speziell auf Mehrsatzsegmenten zeigte vielversprechende Ergebnisse
für Einsatzsegmente, Mehrsatzsegmente und Szenarien, in denen Sätze beim Segmentieren der Tonaufze-
ichnungen aufgeteilt werden. Ein Vergleich zwischen einer satzbasierten Segmentierung, die als ideal
betrachtet wird, und einer Fixed-Window-Segmentierung zeigte nahezu identische Ergebnisse.

Die Untersuchung der Modelle anhand einer realen Aufnahme zeigte, dass das ZHAW- und das Mehrsatz-
modell deutlich schlechter abschneiden als die Modelle von FHNW, Microsoft und Whisper. Dies deutet
darauf hin, dass weitere Untersuchungen erforderlich sind, um vollständig zu verstehen, was ein Speech-
Translation Modelle in realen Szenarien gut funktionieren lässt.
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Chapter 1

Introduction

The demand for audio transcription arises in various scenarios, such as recording meeting notes, generating
subtitles, or aiding individuals with hearing impairments to participate in conversations or lectures.
Initially, the focus in speech processing primarily revolved around widely used languages like English or
Spanish. However, a recent shift towards new architectures, like transformers, has enabled training on a
significantly larger number of languages, even those without a lot of labeled data or without a written
form. Notably, Whisper, a language model developed by OpenAI, incorporates 98 languages during
its pre-training phase [1]. Microsoft’s speech-to-text technology supports an impressive 75 languages
encompassing different dialects, totaling support for 487 locales [2]. Significant advancements have been
made in the field of speech transcription, including the improvement of transcribing Swiss-German.

According to [3] Swiss-German is not dividable into a few dialects, instead it is considered a dialect
continuum. While Swiss-German can be used in written form, there does not exist a set of rules like in
standard German. Thus when transcribing Swiss-German it needs to be translated to standard German in
the process. The limited availability of annotated Swiss-German data, combined with its comparatively
low linguistic significance and the absence of a large speaker population proficient in Swiss-German,
classify the language as a low-resource one within the context of speech processing according to [4].
Transcribing low-resource languages successfully can be done using frameworks, such as wav2vec 2.0,
which is pre-trained on a large amount of data and can then be fine tuned on a specific language like
Swiss-German [5]. There exist a handful of models that can transcribe Swiss-German to standard German,
like the ZHAW (lowercase) model described in Chapter 3.1.1 or the Whisper model developed by OpenAI
(Chapter 3.1.5).

This thesis conducts different experiments on the existing models to find out what the influence of audio
duration is on the performance of these speech translation models. The thesis intends to draw conclusions
regarding effective training strategies that can enhance the overall performance of these models.
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1.1. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

1.1 Literature Review

Natural Language Processing (NLP) research exists in the context of AI, which emerged from Linguistics
and aims to empower computers with text, speech, and language comprehension. Within NLP, speech-to-
text and speech translation systems transform spoken language into written text. The field has in recent
years experienced a transition from statistical techniques to neural networks, which has greatly improved
the applications and research on low-resource languages, by lowering the amount of labeled data needed
to create automatic speech recognition (ASR) models.

[6] focused on transcribing over 200 languages with safety and high quality as their main objective. They
developed a model based on sparsely gated mixture of experts, incorporating novel data mining tech-
niques specifically designed for low-resource languages. They proposed human translated datasets such
as FLORES-200 and NLLB-SEED, the later provides bitext for 43 languages. The results demonstrated
a significant 44% BLEU improvement compared to previous state-of-the-art translation systems. The
social impact of this work is substantial, benefiting various stakeholders, including low-resource language
communities by enabling access to content outside of their language.

In their work on multilingual language models for automatic speech recognition, [7] address the chal-
lenges of creating separate models for low-resource languages, which include limited training data, high
computing costs during training, and inefficiency in hosting due to sparse traffic. Instead, they propose a
general and scalable approach based on transformers that surpasses traditional multilingual transformer
models. Their method involves developing large-scale locale-group transformer neural language models
(NNLMs) to support ASR in low-resource languages. Furthermore, they demonstrate that fine-tuning
these models with local-grouping techniques enhances the creation of improved monolingual models for
low-resource languages.

In their study on speech translation, [8] explore various segmentation strategies for audio streams to
achieve a balance between accuracy and latency. These segmentation approaches include segmenting
based on word numbers (such as the win4 four-word window), comma-separated chunks, and conjunction-
word based segments. The authors found that techniques like vocal tract length normalization (VTLN)
and constrained model adaptation (CMA) were effective in improving accuracy, and retaining partial
translations also contributed to increased accuracy. They introduced a novel segmentation method us-
ing conjunction-separated sentence chunks, which yielded high accuracy and low latency comparable to
comma-separated sentence chunks. The study also revealed that noise in sentence and punctuation detec-
tion did not significantly impact the results. Additionally, synchronizing buffers across different pipeline
components was highlighted as a requirement for efficient processing.

[9] conducted a study investigating various audio segmentation approaches for continuous audio transcrip-
tion. They compared human annotated segmentation (gold) with two segmentation methods: (1) SHAS
proposed by [10] and (2) a fixed-window segmentation with and without overlap between the windows.
The study concluded that combining fixed-window segmentation with an overlap, a method for merging
segments, and a context-aware ST model yielded promising results.

In their work on voice activation detection and audio segmentation, [11] highlight the challenge of mis-
match between training data and real-world runtime environments for speech models. While systems
are typically trained on manually segmented corpora, they are often presented with longer audio in
practical scenarios that require segmentation. The study compares voice activation detection (VADs)
to fixed-length and hybrid segmentation methods, proposing a hybrid solution that achieves improved
results without compromising latency. The research emphasizes that the length of audio segments plays

2



1.2. OUTLINE CHAPTER 1. INTRODUCTION

a crucial role in obtaining accurate outcomes. The effectiveness of segmentation approaches depends on
the structural similarity between source and target languages, and segments should neither exceed the
maximum length of training samples nor be excessively short. The proposed hybrid methods consider
audio content and target segment length, with a focus on the latter rather than relying solely on detecting
pauses, similar to the approach by [12]. The authors suggest splitting at the longest pause within the
interval or at the maximum length as two variations of their proposed hybrid methods.

1.2 Outline

The thesis begins by introducing the motivation and objectives of the study in Chapter 1. This also
includes a literature review to highlight related works. In Chapter 2 a comprehensive theoretical back-
ground is summarized, covering relevant concepts from previous research related to speech translations.
In Chapter 3 and 4, the tools and data used to conduct the experiments are introduced. Chapter 5 out-
lines the pipeline utilized to conduct the experiments, explaining the experimental setup as well as each
step in the speech translation pipeline. Chapter 6 is dedicated to the experiments that were conducted.
Each experiment contains an introduction with a hypothesis, a section that explains the methodology
that is used to conduct the experiment, a result section as well as a discussion section in which the results
are discussed. Finally, Chapter 7 combines and summarizes the key findings from the experiments and
gives an outlook of future research that could be conducted to further understand speech translation
models.

3



Chapter 2

Theory

This chapter aims to introduce the theoretical foundations that are relevant to this thesis. The expla-
nations provided should increase the comprehensibility of the subsequent chapters and lead to a better
understanding for the reader.

2.1 N-Gram

N-Grams are a concept in computational linguistics to describe a sequence of n items in a sequence.
These items can consist of letters, syllables, or words. They provide a standardized way of modeling text
structures that can then be used to create statistical and machine learning based models.

It is worth noting how certain n-grams are given special names (Table 2.1) such as ”unigram” when
n equals 1. For n > 3 n-grams are commonly referred to with the name of the number n followed by
”-gram”, for example, ”seven-gram”.

N Title Example
1 unigram Hello
2 bigram Hello everyone
3 trigram Hello my frined
4 four-gram How is everyone doing
5 five-gram I am doing great thanks

Table 2.1: Title and examples for n-grams with n from one to five.

Over the years n-grams have been utilized for many different use cases. In 1994 an n-gram based approach
to categorize large amounts of text based documents [13]. By calculating the n-gram probabilities of the
training data, profiles for each classification were created and used to predict the classification of test
articles. A similar approach was used by [14] to create profiles for different composers. By measuring the
probability of each possible n-gram of n chords appearing in a sequence, profiles for each composer were
created and later used to identify a composition’s style.

4



2.2. TRANSFORMER CHAPTER 2. THEORY

Sentiment analysis is a part of computational linguistics that involves determining the sentiment or
emotional tone expressed in a piece of text. It can be used to identify whether a text expresses posi-
tive, negative, or neutral sentiment, and often involves techniques such as machine learning and natural
language processing to classify and analyze text data. There exist freely available datasets, such as SEN-
TIWORDNET 3.0 [17], that have collected sentiment scores for a large number of words. [18] proposes
an automatic procedure for creating a general-purpose n-gram lexicon from an existing unigram lexicon.
This new n-gram lexicon would ascribe sentiment score to n-grams for n > 1. With this new approach,
the authors were able to improve the performance of statistical sentiment analysis methods.

2.2 Transformer

Transformer based models replace previous recurrent neural networks (RNN) and convolutional neural
networks (CNN) for processing sequential data since the introduction by [15] in 2017. This architecture
is based on the attention mechanisms that previous best performing RNNs used but with a simplified
network architecture (Figure 2.1) that is also more parallelizable and requires significantly less time to
train.

Encoder

Decoder

Figure 2.1: Illustration of the transformer architecture as described by [15] with additional highlighting
of the encoder and decoder.
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2.3. LANGUAGE MODEL CHAPTER 2. THEORY

Nowadays transformers are widely used in language models such as BERT introduced by [16]. BERT
stands for Bidirectional Encoder Representations from Transformers and is designed to pre-train deep
bidirectional representations from unlabeled data. It can be used in a wide range of language under-
standing tasks, such as chatbot systems or summarization tasks, and can be easily fine-tuned to solve
these tasks.

2.3 Language Model

Language modelling is one of the major approaches advancing language intelligence. It aims to mimic
the probability distribution of words found in human-written text using statistical and machine learning
algorithms. Over time, language models have gone through different stages of development [19].

As early as 1998, statistical language models emerged, utilizing statistical learning techniques to analyze
and predict word probabilities within text [20]. This approach laid the foundation for further advance-
ments in language modelling. Following statistical models were neural language models, employing the
power of neural networks to achieve more accurate language generation and prediction [21]. Another
significant breakthrough came with the introduction of pre-trained language models [22]. These models
employed large, unlabeled datasets in a pre-training stage to learn general language representations. Fol-
lowing pre-training, the models underwent fine-tuning on specific tasks, allowing them to excel in a wide
range of natural language processing tasks. The latest milestone in language modelling is the development
of large language models. These models incorporate extensive computational resources and vast amounts
of training data to achieve unprecedented language understanding and generation capabilities. Notable
examples include OpenAi’s GPT-3 and GPT-4 [23], Google’s BERT [16], and Meta AI’s LLaMA [24].

In [25] the relevant use cases of natural language are listed as speech transcription, speech translation,
speech synthesis, question answering and information retrieval as well as chatbots and dialogue systems.
While all these topics are certainly interesting and worth pursuing, only the relevant topics are described
in more detail.

2.3.1 Speech Transcription

Speech transcription, also known as speech-to-text (STT), is the process of converting spoken words into
written text and is used in a variety of different use cases. Speech transcription can be a useful tool for
people with cognitive or physical impairments. For these people, it may be advantageous to have a written
transcript of something that was spoken. Additionally, speech transcription is used to automatically
generate subtitles for audio and video content. This can help people with hearing impairments and lessen
the manual labour of transcribing audio by hand.

In [26] the authors reviewed literature on the impact of speech transcription on students and their
performance. It was found, that text transcriptions were able to help students with hearing impairments
focus on learning and taking notes and kept them from having to focus on reading lips or watching a
sign language interpreter. The authors also analysed papers testing the use of speech-to-text for students
during online classes. In the experiments, students were able to simultaneously hear the teacher and read
a real time transcript of what was spoken. The test showed how using the transcript of the lecture as a
learning tool was able to significantly improve the performance of the students using it.

6



2.4. BEAM SEARCH DECODING CHAPTER 2. THEORY

Speech transcription, however, is not without its challenges. One prevalent issue is transcribing long audio
recordings. Language models are typically trained on short audio samples due to the computational
expense of training on larger input samples. This stems from using matrices to represent user input
data. As of October 2022, even the most advanced algorithms for speech transcription still exhibit a
time complexity of O(n2.37188) [27], emphasizing the computational challenge associated with training
on larger input samples due to the use of matrices. For that reason, longer audio recordings need to
be transcribed in segments, and the individual transcriptions then have to be properly merged together.
Another challenge is the complex nature of real-life audio. Spontaneous speech can be inconsistent, hectic
and overlapping with the speech of other participants. All these issues, combined with poor audio quality,
can make an audio recording difficult to accurately transcribe.

2.3.2 Speech Translation

When translating text from one language to another, language models are already widely used. These
tools make it possible for people who do not comprehend the language in which a text is written to access
it easily. Using Google Translate alone, 143 billion words are translated every day [28]. Additionally,
language models can aid the conventional translation process by generating a first rough translation on
which experts can further build upon.

Speech translation (ST) is the process of taking spoken language of one language and translating it to a
different language.

This thesis focuses on the speech translation of Swiss-German audio to German text. Speech translation
is used in international communication as it allows people to freely communicate even if they do not share
a common language. Tourists visiting a foreign country can have conversations with local residents and
business meetings can be held without the need of a translator being present.

According to the Swiss national Bureau of Statistics, more than 60% of all Swiss people speak the
German dialect Swiss-German [29]. There exists however no standardised written form of Swiss-German
and spoken word is notated in German as German is one of the four official languages [29]. This makes
tools transcribing Swiss-German audio to German text especially useful. Recapp.ch, a commercially
available tool to create those kinds of transcripts, is already being used by multiple institutions of the
Swiss government [30].

2.4 Beam Search Decoding

Beam search is one of many different search algorithms used to find the most likely output sequence
given a collection of probabilities for different items. When choosing a search algorithm the pros and
cons of each one need to be evaluated. While there are algorithms that always generate the most likely
sequence of text, this certainty comes at a massive cost of computing time. Beam search tries to strike
a balance between pursuing every possible combination of words and not considering too few options
[31]. The earliest mention of beam search was in 1977 [32] and has since then been reintroduced for
sequence-to-sequence [33] and neural network translation [34] models.

7



2.5. CONNECTIONIST TEMPORAL CLASSIFICATION CHAPTER 2. THEORY

Beam search maintains a set of the most promising output sequences, known as the beam, and explores
different possible continuations of each sequence by considering multiple candidates at each step. It
gradually prunes the less promising candidates based on a scoring function until the final output sequence
is determined.

Figure 2.2: Illustration of beam search using two beams to find the most probable combination of char-
acters from [31].

In the book [31], the example of Figure 2.2 is given. In it, the beam search algorithm is performed with
beamsize k = 2. At each time step, the next elements with the highest probability given the previous
elements of the beam are added. From the possible elements, A,B,C,D,E, it is A and C that have the
highest probability at the start of the two beams at time step 1. Next, B has the highest probability
given A as the previous element, and E is selected given C. At time step 2, the two beams are now AB
and CE. The same step is repeated to get the final beam sequences of ABD and CED. From these two,
the one with the higher overall probability can now be picked.

2.5 Connectionist Temporal Classification

When training language models to predict sequences, a problem arises. Generating proper alignment of
labels on the training data. Connectionist Temporal Classification or CTC for short, is a technique that
allows recurrent neural networks to be used for training sequence-to-sequence models without requiring
aligned input-output pairs [35].

[36] provides a formal definition of the alignment process implemented by CTC, which is described in the
next section.

Let X = [x1, x2, x3, ..., xT ] be the input sequence which in the case of audio transcription would be the
raw waveforms. Let Y = [y1, y2, y3, ..., yU ] be the resulting output sequence, in this case, the resulting

8



2.6. WAV2VEC 2.0 CHAPTER 2. THEORY

transcript. Note that T can be different from U and so the two sequences can be of varying lengths. A
language model can then be trained using a loss function p, this loss function should take in X and Y
and return the probability that Y is the corresponding transcript given the sequence X, p(Y |X). To use
gradient descent while training a model, this loss function must be differentiable. To then use the model
to evaluate a new input sequence X and receive transcript Y ∗, another function needs to be defined,
Y ∗ = argmax

Y
p(Y |X). CTC provides cost-efficient solutions for both of these functions.

When given an input sequence X originating from an audio signal and aligning it with an output sequence
Y there are a few steps best explained in this example, also shown in Figure 2.3.

Figure 2.3: CTC alignment process from longer input sequence X to shorter output sequence Y [36].

Given the input sequence X = [h, h, e, ϵ, ϵ, l, l, l, ϵ, l, l, o], ϵ representing no audible letter, the first step is
to merge repeating characters resulting in the sequence [h, e, ϵ, l, ϵ, l, o]. In the next step, any ϵ items are
removed, resulting in the expected sequence [h, e, l, l, o] = Y .

2.6 wav2vec 2.0

Vectorization is a fundamental process, particularly in the field of artificial intelligence (AI) and data
analysis. It is the process of converting data from its initial form into numerical vectors in a latent space,
which can then be effectively utilized by a wide range of algorithms. [37] introduced a framework in
2019 in which during an unsupervised pre-training the hidden representations are learned without the
need for transcribed audio. It is then fine-tuned on a smaller set of transcribed audio. This addresses the
limitation of supervised learning for ASR systems, where a large amount of labeled data is required. While
this amount of data exists for common languages, like English or Spanish, it might not be available for
languages such as Swiss-German. In 2020, [37] introduced an updated version, called wav2vec 2.0. Which
outperforms the previous state-of-the-art semi-supervised methods while offering a conceptually simpler
approach. During both unsupervised training and fine-tuning, spans of the latent speech representation
are masked and the model is evaluated based on its ability to predict the hidden information. CTC
(Chapter 2.5) is used to calculate the loss during training.

9
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Figure 2.4: Illustrating the wav2vec 2.0 framework showing the process of creating a context representa-
tion from the raw waveform using a convolutional neural network [37].

Figure 2.4 shows, the raw audio stream X is initially fed into a multi-layer convolutional feature encoder,
which produces latent speech representations Z. A transformer then takes the latent speech Z as input
and generates context representations C, capturing the context of the input audio.

2.7 Measuring Performance

The transcript, which is created by an ST model, is used to evaluate the performance of a model.
Evaluating the performance is necessary to compare different models and draw a conclusion from them.
The performance is defined in this thesis as the quality of the translated transcript. It does not include
factors such as inference time or CPU utilization.

To measure a transcript produced by an ASR system the word error rate (WER) is commonly used
according to [38]. To measure a translation produced by an ST system other metrics can be used such
as the BLEU or ROUGE score.

Depending on what is important to the scenario a different score can be more important, for example
when creating subtitles the order of the word translated must stay the same. While in meetings notes
the meaning of the words is more important. It is important to note that each performance metric has
different strengths and weaknesses and to examine the performance of a model it is crucial to compare
different metrics and decide depending on the goal which metric is most important.

10
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2.7.1 WER

According to [38] WER or word error rate is a simple metric by which transcripts of ASR systems can
be assessed. The WER describes the Levenshtein distance on a word, instead of a character level. To
calculate the WER, a few variables need to be known.

• S: the number of substitutions

• D: the number of deletions

• I: the number of insertions,

• C: the number of correct words,

The WER is then calculated as follows.

WER =
S +D + I

S +D + C

The WER is simple to calculate and understand, however, its simplicity is also limiting in the value it
provides when evaluating transcriptions. The biggest drawback is how the meaning of the transcription is
not taken into account. A model might transcribe a sentence perfectly but use a synonym in the assumed
truth or restructures the sentence. In both of these cases, the WER increases significantly. The score is
between 0 and 1, 0 meaning no errors, and 1 meaning all words are incorrect.

It is important to note that if a transcript is very short, a single mistake can have a bigger impact on the
WER, than on a longer transcript.

2.7.2 BLEU

BLEU or bilingual evaluation understudy, was first described by [39] in 2002. The goal was to create a
new metric for scoring machine generated translations that more closely resembles human evaluations.
BLEU has since become one of the most popular tools to evaluate translations. It was even awarded the
”Test-of-Time Paper” award by the North American Association for Computational Linguistics in 2018
[40]. At the core of the BLEU score is the idea of n-gram precision. For each possible n-gram in the
generated text, the number of occurrences in the reference is counted and adjusted accordingly. After
combining the precision value a score between 0 and 1 that is commonly also scaled to values between 0
and 100.

Although the BLEU score can theoretically reach up to 100, this score is necessary for a translation to
be ”good”. Table 2.2 gives an overview of the meaning of different BLEU scores according to [41].

11
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BLUE Score Interpretation
< 10 almost useless
10-19 hard to understand underlying meaning
20-29 underlying meaning is understandable, with grammatical errors
30-40 understandable to good translation
40.50 high quality translation
50-60 very high quality, adequate, and fluent translations
> 60 quality often better than human translations

Table 2.2: Interpretation of BLEU scores by [41].

BLEU’s popularity makes it a must have metric when evaluating and comparing ST models. It is however
not exempt from drawbacks. When matching n-grams to calculate precision, exact matches are expected
and the severity of the miss translations is ignored. A model translating the word uncharacteristic to
uncharacteristically would be scored the same as a model incorrectly translating uncharacteristic to
pineapple as both translations are not perfect. Additionally, translations that contain either too many or
too few words are punished with a lower score even if they are still clear and understandable to humans.
Furthermore, the underlying context of a translation is ignored when evaluating the BLEU score. A
translation could be almost perfect, containing the intended meaning accurately, but still receive a low
score simply because it does not use the same words and sentence structure as the reference text. This
limitation fails to acknowledge that language is a dynamic and flexible system, and different linguistic
expressions can effectively convey the same message.

In 2018, [42] addressed one of the problems with the BLEU score. The BLEU score is a parameterized
metric, which means that it can vary a lot depending on the parameters used during the evaluation. [42]
introduced a unified way to evaluate BLEU scores, making the BLEU score comparable across different
projects.

2.7.3 ROUGE

ROUGE or Recall-Oriented Understudy for Gisting Evaluation is a metric similar to BLEU (Chapter
2.7.2). ROUGE was introduced by [43] in 2004 and has since gained popularity in the field of natural
language processing and text summarizing. It addresses the limitations of previous evaluation methods
by focusing on the recall of important information rather than the precision of n-gram matches.

The core idea behind ROUGE is to calculate the recall of n-gram units between the generated summary
and the reference summaries. The recall is then used to compute the ROUGE score, which represents
the quality of the generated summary. ROUGE evaluates the quality of summaries based on how well
they capture the important content from the reference summaries.

Like any metric, ROUGE has its weaknesses. One limitation is that it solely focuses on the recall of
n-grams, which means that it does not capture the fluency and coherence of the generated summaries.
A summary could achieve a high ROUGE score by simply copying phrases from the reference summaries
without producing a coherent and meaningful summary. Additionally ROUGE, just like BLUE and
WER, relies on the generated text being similar to the provided reference. The generated text might
convey the correct information with words differing from the reference material and therefore receive a
low score.

12
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2.7.4 SemDist

Semantic distance (SemDist) measures how similar two transcripts are to one another. According to [44]
the semantic similarity is defined as the cosine coefficient between two vectors. Those vectors are the
representations of the reference and hypothesis of an ST model. The distance is calculated defined as:

SemDist(A,B) = 1− A ·B
∥A∥∥B∥

Where A is the reference and B the hypothesis created by the ST model. The SemDist is a value
between 0 and 1. 0 implies that two transcripts are identical in meaning and 1 means that the vector
representations are orthogonal.

The SemDist addresses the issues with other performance metrics where the meaning of a transcript is
not taken into account. With this metric only the meaning is relevant and not the sentence structure or
the words used. This is useful when a transcript does not have to be word by word, for example when
transcribing a meeting.
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Chapter 3

Tools

To allow anyone to recreate the experiments (Chapter 6) conducted in this thesis more easily, this chapter
describes the most important tools, how and why they were used.

3.1 Language Models

At the core of every experiment (Chapter 6) conducted in this thesis lays a language model (Chapter 2.3)
used to transcribe some given input. This chapter serves as an introduction to all the language models
used, providing an overview of how they were created, their key features and their capabilities.

3.1.1 ZHAW Model (lowercase)

The ZHAW (lowercase) model is a wav2vec 2.0 (Chapter 2.6) based language model created by the Center
for Artificial Intelligence at the Zurich School of Applied Sciences (ZHAW) during the writing of this
thesis. It has not yet been officially published. The model was trained with single sentence segments
from the STT4SG training dataset 4.2. All input characters were converted to lowercase, and special
characters such as dots and commas were removed to address issues observed in previous models, such
as struggles with capitalization of output words and the inclusion of incorrect special characters.

3.1.2 ZHAW Model (multi sentence)

The ZHAW (multi-sentence) model shares the same architecture as the ZHAW (lowercase) model (Chapter
3.1.1), both developed by the same researchers. A previously created model trained on single sentences
without removing or altering any special and upper case characters was used as a base to further train the
ZHAW (multi-sentence) model. However, instead of training on individual sentences, the ZHAW (multi-
sentence) model was trained on sequences of one to three sentences. The purpose of this approach was
to improve the model’s performance on sentence boundaries and inputs containing multiple sentences.

14
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For the training of both the base model and the multi-sentence training, the STT4SG test data (Chapter
4.2) was employed. The number of parameters remained largely unchanged from the ZHAW (lowercase)
model (Chapter 3.1.1). Nevertheless, the training process incurred higher computational and time costs,
as explained in (Chapter: 2.3.1).

3.1.3 FHNW

In 2022 the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) introduced new
language models capable of transcribing Swiss-German audio to German text [45]. One of the authors
of the aforementioned study, Yanick Schraner from FHNW, graciously provided a demo API for this
research thesis’s experiments.

According to correspondence with Yanick Schraner, the demo API employs a variant of the XLS-R 1B
model described in [45], which has not yet been published. The language model used in the API is
based on FHNW Transformer [45] and incorporates wav2vec 2.0 (Chapter 2.6) with sequence-to-sequence
decoding, differing from the CTC decoding (Chapter 2.5) utilized by the models described in [45]. In
addition to the training data used for the previous models, namely the STT4SG-350 corpus [46] and
the Swiss Parliament Corpus [47], the model was further trained using the common voice 11 corpus
[48]. The API provides two modes of operation. The first mode, referred to as FHNW (short), directly
transcribes audio samples that are less than 20 seconds in length. For audio files longer than 20 seconds,
the second mode, known as FHNW (long), must be used. FHNW (long) internally segments the input
audio, transcribes the segments separately, and returns the merged transcripts.

3.1.4 Microsoft

As part of the Microsoft Azure’s Speech Service line of products, they offer a service to transcribe audio1.
The input audio may include words spoken in a different language than the resulting transcript. In a
blog post by Microsoft [49] it is described, how a transformer based architecture has been to translate
over 100 languages as of October 2021. One of the supported languages [50] is Swiss-German, This makes
Microsoft’s translator a fitting test subject for this thesis. One of the downsides of using the commercial
product provided by Microsoft is the lack of public information about detailed architecture, pre- and
postprocessing and the training data, used to train the model. It has to be assumed that Microsoft did
not use any of the test data, used in the experiments described in this thesis.

Similar to the FHNW model (Chapter 3.1.3), the Microsoft API provides two possible methods of tran-
scribing a piece of audio. Recordings with a duration of under 30 seconds [51] can be directly transcribed
in one step. For inputs exceeding the 30 second limit, Microsoft internally splits the audio into segments,
transcribes them separately and returns the merged transcript. The details of these steps are not publicly
available.

1Available under: https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service
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3.1.5 Whisper

At the end of 2022, OpenAI introduced their new language model called Whisper [1]. Its primary
function was to approach human level robustness and accuracy on English speech recognition. It is
based on an encoder-decoder Transformer architecture with the large-v2 version utilized in this paper
boasting a staggering 1550 Million parameters. To train the model, a vast amount of data consisting of
680,000 hours was used, with a specific preprocessing step of segmenting the test data into 30 second
segments. By employing large-scale weak supervision techniques, the researchers successfully developed a
model that outperforms previous fully supervised models on various standard benchmarks. The training
process encompassed four scenarios. Firstly, the primary function of English to English transcription,
where the model was to predict the English transcript of audio containing spoken word English. Secondly,
any-to-English transcription, where the input audio contains any of the 96 other languages included in
the training data, and the model is made to predict the correct English transcript. Thirdly, non-English
transcription, transcribing audio containing a non-English language and transcribing it to text of that
language. And lastly, the model was trained to generate no transcript in cases where there were no
audible spoken words in the provided input.

Notably, the training data for multilingual speech recognition, made up of 117’113 hours of non-English
audio, included 13,344 hours of German, but reportedly no Swiss-German. While this means the model
was not specifically trained to transcribe Swiss-German audio to German text, initial tests have demon-
strated its capability to produce usable results, warranting its inclusion in this thesis.

3.1.6 SemDist Model

To calculate the SemDist between two sentences a sentence-transformers model was used [52]. Bidirec-
tional Encoder Representations from Transformers or BERT for short, has been a successful language
representation model used for improving many natural language processing tasks [16]. From BERT,
Sentence-BERT or SBERT was developed in August of 2019 [52]. SBERT uses siamese and triplet
network structures to create better sentence embeddings. These embeddings can be compared using
cosine-similarity to calculate a Semantic Similarity Score or Semantic Distance (Chapter 2.7.4).
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3.2 Python Libraries

To avoid compatibility errors when recreating the experiments described in this thesis, this chapter
includes short descriptions and the use cases for important Python packages utilized (Table 3.1).

Package Version Use Case
numpy 1.22.1 Mathematical calculations.
sentence-transformers 2.2.2 Run SemDist language model (Chapter 3.1.6).
openai-whisper 20230314 Run whisper model (Chapter 3.1.5).
librosa 0.9.2 Analysing audio files.
screbleu 2.0.0 Calculate BLEU scores (Chapter 2.7.2).
rouge-score 0.1.2 Calculate ROUGE scores (Chapter 2.7.3).
jiwer 2.3.0 Calculate WER of samples (Chapter 2.7.1).
pydub 0.25.1 Cutting, merging and manipulating audio files.
pyctcdecode 0.3.0 CTC decoding (Chapter 2.5).
Levenshtein 0.20.9 Calculating Levenshtein distances (Chapter 5.3).
kelm github.com2 Manage CTC language model.
azure.cognitiveservices.speech 1.26.0 SDK for Microsoft azure API (Chapter 3.1.4).
supabase 2.2.2 Database to store results.

Table 3.1: Python packages used, their versions and use cases.

2Available under: https://github.com/kpu/kenlm/archive/master.zip
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Chapter 4

Data

This chapter gives an overview of the corpora that were used for the experiments in Chapter 6. It
describes what each dataset contains and how it was collected.

4.1 Manual Transcription

To compare ST models in a real-life scenario, one audio sample was manually transcribed (Appendix A.1).
The audio used was a weather report produced by TeleZüri and uploaded to their YouTube Channel1.
The report is a two minute recording from 2014 spoken by a single person, the former Miss Schweiz
Dominique Rinderknecht. Her dialect is from the eastern region of Switzerland and the spoken text is
most likely scripted. Each word is clearly pronounced and there are no background noises present. The
advertisements present at the start and end of the uploaded video were removed manually.

1Available under: https://www.youtube.com/watch?v=51ieImUZaco
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4.2 STT4SG-350

The STT4SG-350 (Speech-to-Text for Swiss German) corpus was collected in 2022 by [46] and contains
343 hours of Swiss-German audio segment, each annotated and labeled with dialect, canton, zip code,
age and gender of the speaker.

The data was obtained with the help of a web app where Swiss-German speakers were shown a German
sentence, asked to record and translate it to Swiss-German.
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Figure 4.1: Distribution of the audio length within the STT4SG-350 test corpus.

The test set of the corpus consists of 35 hours in 7 different dialects. Figure 4.1 shows that each audio
sample is between 2 and 15 seconds with most samples being around 4 to 6 seconds in length.
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Chapter 5

Experiment Setup

This chapter describes the process used to prepare run and analyze the experiments conducted. This
should help the reader better understand the process used to generate the results and make it easier to
reproduce the results described in this thesis.

5.1 Definitions

To properly describe the experiment setup the following terms need to be defined:

• input files

Input files are all the files that are given as the input of the experiment. Input files can be the
audio files that are to be transcribed, the text files containing the reference transcription or JSON
files containing metadata about the audio file. This metadata could be any information used to
test a hypothesis. For example, if the impact of the gender of the speaker was to be tested, this
information would be included in the metadata file. The input files are linked by having the same
file name excluding the file type.

• run

A run is the process of running one or more sets of input files through the experiment pipeline. A
run is always part of an experiment.

• experiment

An experiment is a collection of one or more runs that aim to evaluate a hypothesis.

• segment

In the case that an input audio file cannot be evaluated by the selected model in one piece, it needs
to be cut into smaller pieces. These pieces are called segments. If the input audio does not need to
be cut, it becomes a single segment.
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• segmentation

The definition, of how an input audio file is to be cut into segments is saved in a segmentation file.
Each input file will have a corresponding segmentation.

5.2 Pipeline Steps

To run an experiment, the pipeline steps shown in Figure 5.1, are completed.

Preprocessor

Segmenter

Single-Segment Fixed-Window Pre-Segmented

Cutter

Transcriber

ZHAW Model FHNW Model Microsoft Model Whisper Model

Merger

Naive Levenshtein

Scorer

Reporter

Archiver

Figure 5.1: Illustration of the pipeline including the individual steps and their different implementations.

1. Preprocessor

The preprocessor’s job is to make sure the audio input files that are used as the input to the
experiment are in the correct form to be transcribed by the model used. Preprocessing includes
changing the audio format and setting the frame rate to the required 16’000 Hz.
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2. Segmenter

Some ST models only transcribe audio that is up to a certain length. If an input audio file is longer
than this maximum length, it has to be cut into segments, transcribed in parts and merged again.
It is the segmenters job to decide how each audio file is to be cut. In the pipeline, three different
options exist to do this.

(a) Single Segment forces one segment even if the length exceeds the maximum length that the
ST model can transcribe.

(b) Fixed-Window segments the audio into fixed length sizes with a defined overlap. This overlap
can also be 0 seconds.

(c) Pre-Segmented offers the option to manually segment the audio before and include a file in
the pipeline, input that defines the segmentation already.

For each audio input file, the segmenter creates a corresponding JSON file including an array of all
the details for every segment of that file.

{

"index": 0,

"start_time_in_s": 0,

"duration_in_s": 0,

"input_file": "<path to the audio file>"

}

3. Cutter

The cutter cuts the input audio file into the segments defined by the segmenter. The input audio
files are copied, cut into the defined segments and stored in a dedicated folder.

4. Transcriber

An ST model creates a transcript for each audio segment. These transcriptions are grouped for
each original audio input file and saved into a JSON file. The index matches the index in the JSON
object generated by the segmenter for the respective audio segment. The output of the transcriber
looks like this:

[

{

"index": 0,

"text": "<transcript>"

}

]

5. Merger

If the input audio files are cut into segments and transcribed separately, the generated transcript for
this one audio file needs to be merged again. Two merging algorithms are offered in this pipeline:

(a) Naive concatenates each audio segment. This approach can achieve good results if the input
audio file is cut at optimal places but might struggle with segments created with fixed sizes.

(b) Levenshtein this approach is described in Chapter 5.3.
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6. Scorer

To evaluate the performance of the transcriber the generated transcriptions are scored using different
metrics such as the BLEU, ROUGE, WER and SemDist. The scores are then collected in a JSON
file.

[

{

"type": "<name of the metric>",

"value": 0,

"file": "<path to the transcript>"

}

]

7. Reporter

To save the results of a pipeline run a reporter sends the results to a database that can be accessed
from another device.

8. Archiver

The archiver cleans up the files generated by the experiment and stores them locally in a separate
folder.

5.3 Levenshtein Merger

In certain experiments, the input audio may be too long to be evaluated by a model as a whole. In that
case, the audio is cut into smaller segments with a fixed size and a set amount of overlap between seg-
ments. Each segment is then evaluated separately, and the resulting transcripts need to be merged again.
To create the possibility of merging two transcripts by considering the similarity between consecutive
segments, this algorithm was developed.

To better explain the process, the following two hypothetical transcriptions were created:

1. this is an algorithm based on the minimum average

2. based on the minimum average Levenshtein distance of two sentences

It is easy to see what the merged sentence should be this is an algorithm based on the minimum av-
erage Levenshtein distance of two sentences. However, the automation of this process calls for a more
quantifiable way of achieving this result.

The basic idea of this algorithm is to look at each possible way to overlap the two transcriptions and
calculate a score for each possible number of words overlapped. This score should represent how similar
the overlapped words are to each other. The overlap with the best score is most likely to be the actual
overlap of the two transcriptions. With the best overlap known the two segments can then be combined
into one.
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In the field of linguistics and computer science, there are many different ways to calculate the similarity
of two strings [53]. One particular metric is the Levenshtein distance [54]. The Levenshtein distance is
the minimum number of edits needed to convert one string into the other or vice versa. An edit can
be the deletion, insertion or substitution of one character in a string, each associated with a cost of 1.
The combined cost of all edits needed represents the Levenshtein distance. The fewer edits are needed to
change one string into the other, the more similar they are to each other.

As an example, here is the minimum number of edits needed to turn nothing into something.

1. substitute n with s → sothing

2. insert m → somthing

3. insert e → something

The Levenshtein distance is now calculated by adding the costs of all steps together.

distance = Costsubstitution + Costinsertion + Costinsertion

distance = 1 + 1 + 1 = 3

To use the similarity of two words to find the optimal overlapping of two sentences, every possible
overlapping is analyzed. For each possibility, the Levenshtein distance of every word to its overlapping
opposite is calculated and averaged. This average Levenshtein distance is used as a score of how good
this overlapping is. An example overlapping of three words is shown in Table 5.1.

Sentence 1 algorithm based on the minimum average
Sentence 2 based on the minimum average
Levenshtein Distance 4 6 6
Average Distance 5.33

Table 5.1: Calculating the average Levenshtein distance of two sentences with three words overlapping.

This calculation is then repeated for each possible number of overlapping words as shown in Table 5.2.
Now it is clear to see how overlapping the two sentences with five words is the optimal solution just like
predicted. This process still results in optimal overlap even if the two transcripts contain incorrectly
transcribed words.

Overlap Average Distance this in an algorithm based on the minimum average
9 5.67 based on the minimum average levenshtein distance of two
8 6.25 based on the minimum average levenshtein distance of
7 6.14 based on the minimum average levenshtein distance
6 6.33 based on the minimum average levenshtein
5 0 based on the minimum average
4 5.5 based on the minimum
3 5.33 based on the
2 7 based on
1 6 based

Table 5.2: Calculation of the average Levenshtein distance for every possible number of words overlapping
for two example sentences.
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Assume the two sentences contain incorrectly transcribed words and are now as follows:

1. this in a algorithm base on they minimum over

2. based of the min average levelstein difference on two senses

The same process still concludes with the result that the overlap of five words is the optimal solution
(Table 5.3). Now the minimum average distance is no longer 0 but the correct overlap is still the one
with the lowest score.

Overlap Average Distance this in a algorithm base on they minimum over
9 5.67 based of the min average levelstein difference on two
8 5.75 based of the min average levelstein difference on
7 5.71 based of the min average levelstein difference
6 5.83 based of the min average levelstein
5 2.2 based of the min average
4 5 based of the min
3 4.67 based of the
2 5 based of
1 4 based

Table 5.3: Calculation the average Levenshtein distance for every possible number of words overlapping
for two example sentences containing mistranscriptions.

The process of finding the optimal overlap of two transcripts can be formally defined as follows:

Let A be a series of words [a1, a2, . . . , an] and B be a series of words [b1, b2, . . . , bm] representing two
consecutive segmentation’s with some overlap.

Let lev(a, b) be a function that returns the Levenshtein distance between the words a and b.

Let avg lev(A,B, v) be a function returning the average Levenshtein distance when overlapping v elements
of A and B.

avg lev(A,B, v) =

{
1
o

∑v
i=1 lev(an−v+i, bi), if 1 ≤ v ≤ min(n,m)

undefined, otherwise

And finally, let best overlap(A,B) be a function returning the number of overlapping words resulting in
the lowest average Levenshtein distance for any A and B.

best overlap(A,B) = argmin
1≤v≤min(n,m)

avg lev(A,B, v)

After the optimal overlap has been determined, the two sentences need to be merged into one text. This
is achieved by looking at the overlapping words and using the first half of the first sentence and the
second half of the second sentence (Table 5.4).
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Words used 2 2
Sentence 1 this is an algorithm based on the minimum average
Sentence 2 on the minimum average levenshtein distance of two sentences
Merged this is an algorithm based on the minimum average levenshtein distance of two sentences

Table 5.4: Merging two sentences with an even number of words overlapping.

In case the number of overlapping words is uneven, one more word is taken from the first sentence (Table
5.5).

Words used 3 2
Sentence 1 this is an algorithm based on the minimum average
Sentence 2 based on the minimum average levenshtein distance of two sentences
Merged this is an algorithm based on the minimum average levenshtein distance of two sentences

Table 5.5: Merging two sentences with an odd number of words overlapping.

When cutting audio files into segments with a set size, the resulting audio may include partial words at
the start and end of the segment. These partial words have a low likelihood of being correctly transcribed
at the end and start of two consecutive segments. To avoid these like mistranscriptions from influencing
the average Levenshtein distance a set number of words are removed at the start and end of each segment
before calculating the optimal overlap, and are added back again before merging.
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Chapter 6

Experiments

The experiments in this chapter investigate the influence of audio length on the performance of Swiss-
German ST models. It starts by comparing the performance of different models on a set of test sentences
with various lengths (Chapter 6.1). After that, the length of the audio segments in the test set is increased
by adding some extra padding (Chapter 6.2). To further modify the audio length the segments are sped
up and slowed down (Chapter 6.3). To extend the duration, multiple sentences are combined into one
audio segment (Chapter 6.4) and then padding between two sentences is introduced (Chapter 6.5). With
the findings from experiments, a new model is trained and tested on the experiments 1 to 4 (Chapter 6.6).
To further compare the merging methods, which are required for long audio recordings, the ST models are
subjected to an experiment in which the theoretical limit of the merging methods are compared (Chapter
6.7). Finally, the models are tested on a real-life audio recording which requires segmentation before
transcribing and merging after it (Chapter 6.8).
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6.1 VARLEN - Variable Length

This experiment aims to examine the relationship between the duration of an audio segment and the
performance of individual models. There is reason to believe that the quality of transcripts tends to
decrease as the duration of the audio segments increase. This can be explained by the distribution of
the audio segment’s duration within the corpora that were used to train some of the ST models that are
under observation. This experiment is designed to gain further insights into the behavior of ST models
across different audio segment durations.

6.1.1 Hypothesis

Speech translation models perform better on shorter audio segments.

6.1.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not been
used during the training of any of the ST models. From the test set 10’000 audio segments of lengths
between 1 and 15 seconds were sampled, translated and evaluated. Each audio segment contains exactly
one sentence and no segmentation has been applied to the audio samples because all ST models under
observation are developed to work with audio samples up to 15 seconds. This experiment is conducted
on the ZHAW (lowercase), FHNW (short), Microsoft (short) and Whisper models. To evaluate the
performance of the ST models the BLEU and ROUGE scores were calculated as well as the WER and
SemDist.

6.1.3 Results

For each ST model, the performance metrics are plotted using four scatter plots arranged in a grid of
two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in the second
the WER and SemDist are plotted. For this experiment, a scatter plot is created for each performance
metric. Each audio segment is represented by a dot. The location of the dot depends on the performance
metric using the y-axis and the duration using the x-axis.

To get a better understanding of the distribution within one axis a histogram is shown on top of each
plot for the x-axis. It shows the distribution of the audio segment’s duration. And on the right side of
the plot, a histogram is shown that highlights the distribution of the performance metric. In addition to
the histograms, a linear regression line has been fitted to the scatter plot to reveal any tendencies and
help to prove or disprove the hypothesis.
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Figure 6.1: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the ZHAW (lowercase) model.

In Figure 6.1 the ZHAW (lowercase) model shows a decreasing BLEU and ROUGE score on longer audio
segments. The WER increases for longer audio segments. The duration seems to have no effect on the
SemDist.
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Figure 6.2: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the FHNW model.

In Figure 6.2 the FHNW model also shows a decreasing BLEU and ROUGE score on longer audio
segments. Compared to the ZHAW (lowercase) model in Figure 6.1 it shows an overall better performance.
Similar to the WER and SemDist, the WER increases for longer audio segments and is compared to the
ZHAW (lowercase) model lower and the SemDist seems to be stable.
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Figure 6.3: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the Microsoft model.

In Figure 6.3 the Microsoft model shows a decreasing BLEU and ROUGE score on longer audio segments.
The WER increases for longer audio segments however the duration seems to have little to no effect on
the SemDist.
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Figure 6.4: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the Whisper model.

In Figure 6.4 the Whisper model shows a slightly improving BLEU and ROUGE score on longer audio
segments. The WER and SemDist decrease on longer audio segments.

Comparing the average scores across the different ST models (Table 6.1) shows that the FHNW model
performs the best in this scenario with one sentence per audio segment. The ZHAW (lowercase) models
and Whisper score alike while the Microsoft model seems to perform the worst in this experiment.
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Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW (lowercase) 60.09 0.81 0.23 0.1
FHNW 75.86 0.9 0.13 0.04
Microsoft 53.13 0.78 0.29 0.1
Whisper 60.33 0.8 0.25 0.1

Table 6.1: Comparison of the average BLEU, ROUGE, WER and SemDist performance scores on the
ZHAW (lowercase), FHNW, Microsoft and Whisper model.

6.1.4 Discussion

In this experiment, the relationship between the audio duration and the model performance was examined.
The results show decreasing BLEU and ROUGE scores and increasing WER on longer audio segments for
the ZHAW (lowercase), FHNW and Microsoft models. The SemDist on the ZHAW (lowercase), FHNW
and Microsoft models showed no significant change on longer audio segments.

The Whisper model shows an increasing BLEU and ROUGE score as well as a decreasing WER and
SemDist on samples with a longer duration. In this scenario the behavior can be explained by the
training process of the Whisper Model, explained in Chapter 3.1.5. Where the training data is split into
30 second segments.

The hypothesis, that speech translation models perform better on shorter audio segments, is accepted
for the ZHAW (lowercase), FHNW and Microsoft models. However, for the Whisper model, it cannot be
verified with this experiment.

The audio samples have a length between approximately 1 and 15 seconds. It would be interesting to test
single sentences that are longer than 15 seconds, however, this is not available in the dataset that was used
to conduct the experiment. Since longer audio segments are not available, an experiment (Chapter 6.2)
has been designed in which audio segments are artificially increased by adding silence at the beginning
and the end of an audio segment.
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6.2 PADDIN - Added Padding

In this experiment, the relation between the amount of padding added to the beginning and end of an
audio segment and the performance of individual ST models is examined. The results of a previous
experiment (Chapter 6.1) showed that the ZHAW (lowercase), FHNW and Microsoft model performance
decreased on longer audio segments. This experiment aims to find out if artificially increasing the duration
of audio segments influences the performance of the ST models. With this, it can be determined whether
the duration is decisive for the decreasing performance or some other factor.

6.2.1 Hypothesis

The amount of added padding to an audio segment does not influence the performance of speech trans-
lation models.

6.2.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not
been used during the training of any of the ST models. 10’000 audio segments of various lengths were
sampled from the test set and grouped into ten categories. To each category, a specific amount of padding
consisting of silence between 0 and 4’500 ms was added. The padded audio segments were then translated
and evaluated by the chosen ST models. This experiment is conducted on the ZHAW (lowercase), FHNW
(short), Microsoft (short) and Whisper models. Each audio segment contains exactly one sentence and
no segmentation has been applied to the audio samples because all ST models under observation are
developed to work with audio samples up to 15 seconds. To evaluate the performance of the ST models
the BLEU and ROUGE scores were calculated as well as the WER and SemDist.

6.2.3 Results

For each ST model, the performance metrics are plotted using four groups of box plots arranged in a grid
of two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in the second
the WER and SemDist are plotted.

Each box plot represents one of ten categories of padding added. The first category shown in blue is
the reference case to which no padding has been added. In each other category, a specific amount of
padding between 0 and 4’500 ms has been added. The categories are sorted by the amount from smallest
to largest.
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Figure 6.5: Comparison between the amount of padding added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the ZHAW (lowercase) model.

In Figure 6.5 the ZHAW (lowercase) model shows that the padding has no significant influence on the
BLEU and ROUGE score. However, we see a small difference between padding below 1’000 ms and
above. The WER shows a similar trend, below 1’000 ms padding it is consistently lower than above. The
padding seems to have no significant effect on the SemDist.
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Figure 6.6: Comparison between the amount of padding added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the FHNW model.

In Figure 6.6 the FHNW model shows that the padding has a small influence on the BLEU and ROUGE
score. Longer padding tends to have slightly lower BLEU and ROUGE scores. The WER also increases
if more padding is added. However, the padding has very little influence on the SemDist.
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Figure 6.7: Comparison between the amount of padding added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the Microsoft model.

In Figure 6.7 the Microsoft model shows that the padding does not influence any of the scores.
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Figure 6.8: Comparison between the amount of padding added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the Whisper model.

In Figure 6.8 the Whisper model shows that the padding does not influence any of the scores.

Comparing the average scores across the different ST models (Table 6.2) shows that all models perform
well with little difference between them. The Whisper model performs the best overall while the ZHAW
(lowercase) model exhibits the lowest scores on all performance metrics.
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Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW (lowercase) 56.29 0.78 0.26 0.12
FHNW 73.11 0.89 0.16 0.05
Microsoft 52.65 0.77 0.29 0.1
Whisper 59.74 0.8 0.26 0.1

Table 6.2: Comparison of the average BLEU, ROUGE, WER and SemDist performance scores on the
ZHAW (lowercase), FHNW, Microsoft and Whisper model.

6.2.4 Conclusion

In this experiment, the relation between the amount of padding added to the beginning and end of an
audio segment and the performance of a ST model was examined. The results showed no significant
change in performance when padding was added to an audio segment. Which is to be desired from any
ST model. It is therefore conclusive, that the duration itself is not the sole reason for a decrease in
performance on longer audio segments.

Thus, the hypothesis, that the amount of added padding to an audio segment does not influence the
performance of ST models, is accepted.

It remains uncertain whether an increased duration has any impact on the performance of the ST models.
To further investigate this the playback speed is modified to increase and decrease the duration of audio
segments (Chapter 6.3).
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6.3 SPEEED - Variable Playback Speed

The previous experiments suggest that there is a worsening performance if the audio duration is increased.
This behavior is further investigated in this experiment by changing the playback speed of the tested
audio segments to increase and decrease the audio duration.

6.3.1 Hypothesis

Modifying the playback speed has a negative influence on the performance of ST models.

6.3.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not
been used during the training of any of the ST models. From the test set, 10’000 samples were selected
and grouped into seven different groups. To each segment in a group, a specific factor is applied to the
playback speed. The factors range from 0.25 to 1.75 and include factor 1 as a reference group.

To change the playback speed of the selected audio samples two methods were employed. When slowing
down audio, pydub (Chapter 3.2) already provides an appropriate function. To speed up the audio, the
sample rate was increased and the pitch was adjusted down to compensate for the changed speed.

The created samples are then transcribed by the ZHAW (lowercase), FHNW (short), Microsoft and
Whisper models without the need to segment the samples. To evaluate the performance of the ST
models the BLEU and ROUGE scores were calculated as well as the WER and SemDist.

6.3.3 Results

For each ST model, the performance metrics are plotted using four groups of box plots arranged in a grid
of two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in the second
the WER and SemDist are plotted.

Each box plot represents one of seven factors that are applied to the playback speed. The fourth factor,
one, is the reference case to which no factor has been applied.

40



6.3. SPEEED - VARIABLE PLAYBACK SPEED CHAPTER 6. EXPERIMENTS

Figure 6.9: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the ZHAW (lowercase) model.

The ZHAW (lowercase) model shows (Figure 6.9) that the BLEU, ROUGE, WER and SemDist are best
when the playback speed is not adjusted. If the audio segments are slowed down the decrease in all
performance metrics is worse than when the segments are sped up. When the audio segments are sped
up with factor 1.25 the results are still at a usable level.
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Figure 6.10: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the FHNW model.

The FHNW model shows (Figure 6.10) a really high performance on all playback speeds except when
slowing it down by a factor of 0.25 and when speeding it up by a factor of 1.75. Otherwise, the BLEU
and ROUGE score is very high while the WER and SemDist are low. It is also visible that when audio
segments are slowed down the decrease in all performance metrics is worse than when the segments are
sped up.
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Figure 6.11: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the Microsoft model.

The Microsoft model shows (Figure 6.11) that the BLEU, ROUGE, WER and SemDist are best when the
playback speed is not adjusted. If the audio segments are slowed down the decrease in all performance
metrics is worse than when the segments are sped up. When the audio segments are sped up with factor
1.25 the results are still at a usable level. Compared to the ZHAW (lowercase) and FHNW model the
decrease in performance is not as drastic and the difference between factor 1 and 1.25 is very small.
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Figure 6.12: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the Whisper model.

Figure 6.12 shows that the BLEU, ROUGE, WER and SemDist on the Whisper model are best when the
playback speed is not adjusted. If the audio segments are slowed down the decrease in all performance
metrics is worse than when the segments are sped up. When the audio segments are sped up with factor
1.25 and 1.5 the results are still at a usable level.

Comparing the average scores over all models the FHNW model seems to be the most robust when it
comes to playback speed changes (Table 6.3).
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Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW (lowercase) 32.97 0.51 0.55 0.36
FHNW 70.80 0.87 0.17 0.07
Microsoft 35.87 0.59 0.50 0.27
Whisper 49.94 0.70 0.36 0.17

Table 6.3: Comparison of the average BLEU, ROUGE, WER and SemDist performance scores on the
ZHAW (lowercase), FHNW, Microsoft and Whisper model.

6.3.4 Conclusion

In this experiment, the duration has been modified by changing the playback speeds.

It revealed that slowing down audio segments yields worse results compared to speeding them up. This
might be attributed to the algorithm that is used to slow down audio, where additional data is inserted to
lengthen the segment. Increasing the playback speed by a factor of 1.25 results in usable transcriptions.
The FHNW model demonstrated the most robust handling of speed changes. Compared to the other
models it performed extraordinarily on all speed factors except 0.25.

The hypothesis that adjusting the playback speed has a negative influence on the performance of the ST
models, can be accepted.

In this experiment, the time it takes to change the playback speed and the time to transcribe the segments
has not been recorded. It would be interesting to see if increasing the speed by a factor of 1.25 would lead
to an overall shorter inference time and thus lead to a lower resource consumption while still producing
usable results.

Instead of changing the duration of audio segments with padding or by slowing it down, it could be
changed by increasing the amount of sentences. The impact of more content in an audio segment is
examined in the next experiment (Chapter 6.4).
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6.4 NRSENT - Number of Sentences

A previous experiment (Chapter 6.2) showed that by increasing the duration with additional silence the
ST models performance does not change. This experiment examines if increasing the duration by adding
more sentences to an audio segment has an impact on the performance of ST models.

6.4.1 Hypothesis

The performance of a model decreases if more sentences appear within an audio segment.

6.4.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not been
used during the training of any of the ST models. This experiment is conducted on the ZHAW (lowercase),
FHNW (long), Microsoft (short), Microsoft (long) and Whisper models. 10’000 audio segments between
2 and 30 seconds were created to execute the experiment, these belong into one of four groups (Figure
6.13).
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Figure 6.13: Duration distribution per sentence count group of the audio segments used to run the
experiment NRSENT.

Audio segments in group one contain one sentence, in group two contain two sentences and so on. A
sample from the test set might appear in multiple groups or audio segments but each sentence within
one audio segment is distinct.
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The FHNW and Microsoft models offer a version of their model that is capable of transcribing audio
segments longer than 15 seconds. This is possible by splitting the audio segments, transcribing them
individually and merging them before returning the results. For the Microsoft model, both versions are
used during this experiment. Ideally, the threshold at which the duration is too long and the audio should
be segmented can be found. For the FHNW model only the version that segments the audio is used to
get the best possible result. For the ZHAW and Whisper models no segmentation is applied to the audio
samples.

To evaluate the performance of the ST models the BLEU and ROUGE scores were calculated as well as
the WER and SemDist.

6.4.3 Results

For each ST model, the performance metrics are plotted using four groups of box plots arranged in a grid
of two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in the second
the WER and SemDist are plotted.

Blue represents the audio segments that contain one sentence, yellow the ones with two sentences, green
segments with three sentences and read the segments with four sentences.
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Figure 6.14: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the ZHAW (lowercase) model.

The ZHAW (lowercase) model shows a significant drop in performance in Figure 6.14 as soon as more
than one sentence appears within a segment. The BLEU and ROUGE scores decrease the more sentences
are present in an audio segment. The WER and SemDist increase with more sentences being present. For
all scores, the largest variation in the result appears to be in audio segments that contain one sentence.
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Figure 6.15: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the FHNW model.

The FHNW model also shows a significant drop in performance in Figure 6.15 as soon as more than
one sentence appears within a segment. The BLEU and ROUGE scores decrease the more sentences are
present in an audio segment. The WER and SemDist increase with more sentences being present. For
all scores, the largest variation in the result appears to be in audio segments that contain one sentence.
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Figure 6.16: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the Microsoft (short) model.

The Microsoft model without segmentation shows the largest drop in performance in Figure 6.16 as soon
as more than one sentence appears within a segment. The BLEU and ROUGE scores decrease the more
sentences are present in an audio segment. The WER and SemDist increase with more sentences being
present. For all scores, the largest variation in the result appears to be in audio segments that contain
one sentence.
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Figure 6.17: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the Microsoft (long) model.

The Microsoft model with segmentation shows a very consistent performance on the BLEU and ROUGE
scores as well as the WER and SemDist no matter the number of sentences in an audio segment. Only
the variation in the results for the BLEU and ROUGE scores changes (Figure 6.17).
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Figure 6.18: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the Whisper model.

The Whisper model also shows a consistent performance of all performance metrics on audio segments
with multiple sentences. On the BLEU and ROUGE scores as well as the WER a decrease in variation
is visible for segments with more sentences (Figure 6.18).

Comparing the average scores across the different ST models (Table 6.4) shows that the Whisper model
performs the best in this scenario. The Microsoft model without segmentation scores the worst.
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Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW (lowercase) 34.99 0.64 0.44 0.21
FHNW (long) 48.64 0.74 0.36 0.17
Microsoft (short) 21.95 0.51 0.61 0.35
Microsoft (long) 51.02 0.77 0.29 0.10
Whisper 62.15 0.83 0.22 0.08

Table 6.4: Comparison of the average BLEU, ROUGE, WER and SemDist performance scores for the
NRSENT experiment on the ZHAW (lowercase), FHNW (long), Microsoft (short), Microsoft (long) and
Whisper model.

6.4.4 Conclusion

In this experiment, the relationship between the audio duration and the model performance was examined.

According to the results from the ZHAW (lowercase) model, when a segment contains more than one
sentence, its performance deteriorates to a point where it becomes practically unusable. It is worth
noting that the ZHAW (lowercase) model was not exposed to segments with more than one sentence
during training. The FHNW model showed the same pattern as the ZHAW (lowercase) model, however,
the average performance scores were higher. The performance of the Microsoft (short) model was also
notably inadequate when it came to segments comprising multiple sentences. Surprisingly, even in two-
sentence segments, which are below 15 seconds, the model’s performance remained subpar. This suggests
that the model is likely not trained on segments containing multiple sentences. The Microsoft (long)
model demonstrates remarkable stability in its performance. This suggests that there is a good method
of segmenting longer audio samples into smaller chunks and merging them correctly. The Whisper model
even showed an increasing performance, when a segment contains more than one sentence. This can be
explained by the training process of the model where it was exposed to segments with 30 seconds length
and almost none of the test samples from this experiment exceeded the 30 second length.

In conclusion, the findings indicate that the decline in performance observed in longer audio segments
cannot be solely attributed to the increased duration. Rather, it predominantly arises from the increased
number of sentences within the segments. This issue is inherent to the training approach of the ST
models. Consequently, in order to achieve optimal outcomes, the application of segmentation and merging
techniques becomes imperative when dealing with multi-sentence segments. Moreover, when a model is
exclusively trained on single sentence segments, it becomes crucial to accurately identify the sentence
boundaries during the segmentation process.

Thus the hypothesis can be accepted for the ZHAW (lowercase), and Microsoft (short) models. Whenever
more than one sentence appears in an audio segment the performance drops significantly. For the Whisper
model the hypothesis cannot be accepted, its performance stays consistent even with more than one
sentence per segment.

Unfortunately, due to time constraints, the FHNW (short) version could not be tested, it would be
interesting to see if it showed the same behavior as the ZHAW (lowercase) and Microsoft (short) mod-
els. Furthermore, it would also be insightful to test the ZHAW (lowercase) model with some kind of
segmentation and merging to compare it to the FHNW (long) and Microsoft (long) versions.

The poor performance of the ZHAW (lowercase) and Microsoft short models can be attributed to their
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training methodology. However, it is worth considering whether there exists a potential solution to
enhance their performance by incorporating padding between the sentences (Chapter 6.5). The results
suggested to also explore the use of a model specifically trained on audio segments containing multiple
sentences to improve the performance in such cases. By training the model on data that more closely
matches real-world scenarios, better results can be achieved for speech translation tasks involving multiple
sentences (Chapter 6.6).
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6.5 SENPAD - Padding between Sentences

The previous experiment (Chapter 6.4) examined the relationship between the number of sentences
and the performance. It demonstrated that without some kind of segmentation of the audio files the
performance of the ST models drops significantly. This experiment tries to improve the performance of
the ST models without segmenting the input audio segments but instead by adding padding between two
sentences.

6.5.1 Hypothesis

The performance of a model increases if additional padding between two sentences is added.

6.5.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not been
used during the training of any of the ST models. 10’000 audio segments containing each two sentences
and a varying amount of padding between 0 and 1000 ms were created for this experiment. There are
five groups of padding each increasing the padding size by 250 ms. The padded audio segments were
then translated by the ZHAW, FHNW (short), Microsoft (short) and Whisper models. To evaluate the
performance of the ST models the BLEU and ROUGE scores were calculated as well as the WER and
SemDist.

6.5.3 Results

For each ST model, the performance metrics are plotted using four groups of box plots arranged in a grid
of two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in the second
the WER and SemDist are plotted.

Each box plot represents one of five categories of padding added. The first category shown in blue is
the reference case to which no padding has been added. In each other category, a specific amount of
padding between 0 and 1000 ms has been added. The categories are sorted by the amount from smallest
to largest.
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Figure 6.19: Comparison between the amount of padding added between two sentences and the perfor-
mance (BLEU, ROUGE, WER and SemDist) of the ZHAW (lowercase) model.

In Figure 6.19 the ZHAW (lowercase) model shows that the padding has no significant influence on the
BLEU and ROUGE scores as well as the WER and SemDist.
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Figure 6.20: Comparison between the amount of padding added between two sentences and the perfor-
mance (BLEU, ROUGE, WER and SemDist) of the FHNW model.

In Figure 6.20 the FHNW model shows that the padding has no significant influence on the BLEU and
ROUGE scores as well as the WER and SemDist.
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Figure 6.21: Comparison between the amount of padding added between two sentences and the perfor-
mance (BLEU, ROUGE, WER and SemDist) of the Microsoft model.

In Figure 6.21 the Microsoft (short) model shows that the padding has no significant influence on the
BLEU and ROUGE scores as well as the WER and SemDist.
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Figure 6.22: Comparison between the amount of padding added between two sentences and the perfor-
mance (BLEU, ROUGE, WER and SemDist) of the Whisper model.

In Figure 6.22 the Whisper model shows that the padding has no significant influence on the BLEU and
ROUGE score as well as the WER and SemDist.
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6.5.4 Conclusion

In this experiment, it was investigated whether the performance of the ST models on two sentence
segments could be improved by adding additional padding between two sentences.

None of the models under observation showed an improvement with the added padding. This shows again
that just because the duration of the audio segments changed the performance does not have to change.

The hypothesis, that the performance of a model increases if additional padding between two sentences
is added, cannot be accepted.
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6.6 MULSEN - Improved Multi Sentence Model

The previous experiments have shown that the ZHAW (lowercase), FHNW and Microsoft models cannot
handle segments with multiple sentences well without some kind of segmentation. In this experiments, a
model was specifically trained on multi-sentence segments and compared to the ZHAW (lowercase) model
which is exclusively trained on single sentence segments.

6.6.1 Hypothesis

The performance of a model on multi-sentence segments increases if it was trained on audio segments
containing multiple sentences.

6.6.2 Method

For this experiment the VARLEN (Chapter 6.1) and NRSENT (Chapter 6.4) experiments are conducted
on the newly trained ZHAW (multi-sentence) model. The dataset, preprocessing and performance evalu-
ations are the same as on the previous experiments. The only difference is the model used to transcribe
the data.

6.6.3 Results

The performance metrics from the VARLEN experiment are plotted using four scatter plots arranged in
a grid of two by two. The plots for the BLEU and ROUGE scores are plotted in the first row and in
the second the WER and SemDist are plotted. For this experiment, a scatter plot is created for each
performance metric. Each audio segment is represented by a dot. The location of the dot depends on
the performance metric using the y-axis and the duration using the x-axis.

To get a better understanding of the distribution within one axis a histogram is shown on top of each
plot for the x-axis. It shows the distribution of the audio segments duration. And on the right side of
the plot, a histogram is shown that highlights the distribution of the performance metric. In addition to
the histograms, a linear regression line has been fitted to the scatter plot to reveal any tendencies and
help to prove or disprove the hypothesis.
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Figure 6.23: Comparison between the duration of audio segments and the performance (BLEU, ROUGE,
WER and SemDist) of the ZHAW (multi-sentence) model.

The BLEU, ROUGE, WER and SemDist for the ZHAW (multi-sentence) model (Figure 6.23) are almost
identically to the ones from the ZHAW (lowercase) model on the VARLEN experiment (Figure 6.1).
The BLEU and ROUGE scores tend to decrease on segments with a longer duration, while the WER
increases. The SemDist is stable across different durations.

For the results of the NRSENT experiment, the performance metrics are plotted using four groups of box
plots arranged in a grid of two by two. The plots for the BLEU and ROUGE scores are plotted in the
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first row and in the second the WER and SemDist are plotted.

Figure 6.24: Comparison between the number of sentences added to audio segments and the performance
(BLEU, ROUGE, WER and SemDist) of the ZHAW (multi-sentence) model.

The BLEU and ROUGE scores seem to decrease lightly (Figure 6.24) and the WER and SemDist increase
the more sentences appear in a segment. However, compared to the ZHAW (lowercase) Model (Figure
6.14) the decrease is less drastic and the results are in a usable range.

Compared to the ZHAW (lowercase) model the new ZHAW (multi-sentence) model performs equally on
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Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
VARLEN ZHAW (lowercase) 60.09 0.81 0.23 0.10
VARLEN ZHAW (multi-sentence) 60.12 0.81 0.23 0.10

NRSENT ZHAW (lowercase) 34.99 0.64 0.44 0.21
NRSENT ZHAW (multi-sentence) 55.39 0.79 0.26 0.12

Table 6.5: List of the average BLEU, ROUGE, WER and SemDist performance scores on the VARLEN
and NRSENT experiment for the ZHAW (multi-sentence) model.

the VARLEN experiment and much better on the NRSENT experiment as shown in Table 6.5.

6.6.4 Conclusion

In this experiment a model specifically trained on multi-sentence segments is tested on the VARLEN and
NRSENT experiments.

The ZHAW (multi-sentence) model exhibits comparable performance to the ZHAW (lowercase) model
in the VARLEN experiments. As expected, the ZHAW (multi-sentence) model outperforms the ZHAW
(lowercase) model in the NRSENT experiment. This experiment shows something quite obvious, if a
model is trained on a specific task, it performs well on said task. However, while it does perform well on
multi-sentence segments it also performs very well on single sentence segments.

The hypothesis, that the performance of a model on multi-sentence segments increases if it was trained
on audio segments containing multiple sentences, can be accepted.

In this experiment, no segmentation has been applied. To investigate if the ZHAW (multi-sentence)
model is useful in real-life scenarios it also needs to perform well on segmented audio where sentences
might be cut. This is further explored in the MERGER experiment (Chapter 6.7).
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6.7 MERGER - Compare Merging

Previous experiments have shown that it is crucial to segment longer audio recordings before transcribing
them. In this experiment, two segmentation methods are compared.

(1) A sentence-based segmentation that segments audio recordings by sentences. This is considered an
ideal approach for models that have been trained on audio segments containing exactly one sentence.
With a sentence-based segmentation, the transcribed sentences can be joined one by one without any
special algorithm for combining them.

(2) A fixed-window segmentation where audio recordings are split into fixed lengths with an overlap
between the segments. This splits sentences which might not be ideal for a model trained solely on full
sentences. This approach also requires a merging algorithm that combines two adjacent segments based
on their overlap.

It is expected that the fixed-window segmentation approach performs worse, however, if a model can
handle incomplete sentences then it might still result in very similar results as the sentence-based sentence.

6.7.1 Hypothesis

The performance of an ST model decreases if a fixed-window segmentation is used compared to a sentence-
based segmentation.

6.7.2 Method

For this experiment, the test set of the STT4SG corpus (Chapter 4.2) was chosen because it has not been
used during the training of any of the ST models. From the test set 1’000 audio recordings have been
created with each containing 30 different sentences.

The experiment is conducted on the ZHAW (lowercase), ZHAW (multi-sentence), Microsoft and Whisper
models. Unfortunately due to time constraints the FHNW model could not be tested. For each model,
both segmentation methods are tested.

For the sentence-based segmentation, each of the 30 sentences is transcribed individually before combining
the results in a final transcript which is used to evaluate the BLEU, ROUGE, WER and SemDist scores.

For the fixed-window segmentation, a window size of 10 seconds with 5 seconds overlap is used on the
ZHAW (lowercase), ZHAW (multi-sentence) and Microsoft model. For the Whisper model, a 30 second
window with 10 second overlap is chosen, because it has been trained on 30 second segments. Each
segment is then transcribed and merged with the next segment. The performance metrics are evaluated
on the final merged transcript.
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6.7.3 Results

To compare the two segmentation methods the average BLEU, ROUGE, WER and SemDist scores are
collected per method.

Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW (lowercase) 59.73 0.80 0.24 0.10
ZHAW (multi-sentence) 60.27 0.81 0.23 0.10
Microsoft 52.24 0.78 0.29 0.09
Whisper 60.93 0.81 0.24 0.08

Table 6.6: Average BLEU, ROUGE, WER and SemDist performance scores for a sentence-based seg-
mentation on the ZHAW (lowercase), ZHAW (multi-sentence), Microsoft and Whisper model.

Table 6.6 shows that the sentence-based segmentation averages the same as the models scored on the
VARLEN experiment (Chapter 6.1).

Model Avg. BLEU Avg. ROUGE Avg. WER Avg. SemDist
ZHAW 24.10 0.56 0.55 0.27
ZHAW (multi-sentence) 54.22 0.77 0.29 0.13
Microsoft 51.61 0.77 0.30 0.09
Whisper 63.28 0.83 0.22 0.01

Table 6.7: Average BLEU, ROUGE, WER and SemDist performance scores for a fixed-window segmen-
tation with 10 s windows and 5 s overlap on the ZHAW (lowercase), ZHAW (multi-sentence), Microsoft
and Whisper model.

The fixed-window based segmentation shows (Table 6.7) that the ZHAW (lowercase) model performs the
worst on all performance metrics while Whisper reaches the best scores across all performance metrics,
even exceeding the sentence-based segmentation.

6.7.4 Conclusion

The objective of this experiment was to figure out how well a fixed-window segmentation works compared
to a sentence-based segmentation, which is considered ideal because the models are trained on sentences
containing a complete sentence.

The results obtained from the sentence-based segmentation align with the results from the VARLEN
experiment (6.1) in which one sentence segment have been tested. The results from the fixed-window
segmentation show that a nearly similar score can be reached. Except for the ZHAW (lowercase) model
performed poorly on the fixed-window segmentation possibly due to the lack of incomplete or multi-
sentence segments used during training.

The Whisper model showed better performance on the fixed-window segmentation than on the sentence-
based segmentation. This is again due to the way the model was trained. Whisper was trained on 30
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second segments [1] and not on sentence-based segments. Interestingly the Microsoft sentence-based seg-
mentation and the fixed-window segmentation performed almost identically. This suggests that the fixed-
window size in addition to the Levenshtein Merger (Chapter 5.3) performs comparable to the sentence-
based segmentation.

The hypothesis, that the performance of an ST model decreases if a fixed- window segmentation is used
compared to a sentence-based segmentation, can be accepted, except for the Whisper model. However,
to which degree the performance decreases depends on other factors such as that the model can handle
incomplete sentences.

This experiment does not reflect real-life scenarios because each sentence is from a different speaker and
there is always a clear separation between two sentences, such scenarios are evaluated in the RLLIFE
experiment (Chapter 6.8).
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6.8 RLLIFE - Real-Life Scenario

The previous experiments were conducted under tightly controlled scenarios, in which for example seg-
ments contained only complete sentences. However, this does not reflect real-life scenarios. In order to
bridge this gap and obtain insights into the performance of the ST models, it is necessary to evaluate
their effectiveness on real-life recordings. From the findings of previous experiments, it is expected that
some of the models might not perform particularly well on real-life recordings. However, ideally, the
findings of the NRSENT (Chapter 6.4) and MERGER (Chapter 6.7) should indicate how well a model
performs on real-life recordings.

6.8.1 Hypothesis

Speech translation models that perform well on the NRSENT and MERGER experiments will perform
comparably on real-life recordings.

6.8.2 Method

Real-life recordings are recordings that contain multiple sentences from one or more speakers. The
sentences are coherent and mostly complete and clearly spoken. For this experiment, a recording from a
weather report (Chapter 4.1) is used.

The original audio was segmented and transcribed by the ZHAW (lowercase), ZHAW (multi-sentence),
FHNW (long), Microsoft (long) and Whisper models. The ZHAW (lowercase), ZHAW (multi-sentence)
and Whisper models all used the same fixed-window segmentation and merging with a window size of 20
seconds and 5 seconds of overlap. The Microsoft and FHNW model used their proprietary segmentation
and merging methods.

To evaluate the performance of the ST models the BLEU and ROUGE scores were calculated as well as
the WER and SemDist.

6.8.3 Results

The BLEU, ROUGE, WER and SemDist performance measures were collected during the experiment.

Model BLEU ROUGE WER SemDist
ZHAW (lowercase) 35.75 0.49 0.80 0.28
ZHAW (multi-sentence) 39.75 0.70 0.39 0.16
FHNW 67.73 0.85 0.20 0.05
Microsoft 78.94 0.92 0.10 0.003
Whisper 74.24 0.88 0.15 0.06

Table 6.8: BLEU, ROUGE, WER and SemDist calculated for the transcript produced by the ZHAW
(lowercase), ZHAW (multi-sentence), FHNW, Microsoft and Whisper models.
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The results show (Table 6.8) that the ZHAW (lowercase) model performs the worst on all metrics. The
ZHAW (multi-sentence) has a slightly higher BLEU and ROUGE score and a much better WER and
SemDist than the ZHAW (lowercase) model. The FHNW model shows a good performance on all metrics.
The Microsoft and Whisper model achieved a very high score on the BLEU and ROUGE metrics while
also having a minimal WER and SemDist.

6.8.4 Conclusion

In this experiment, the models are tested on a real-life recording to see how well the results from the
previous experiments translate into the real world. And more importantly to see if they are useful in
scenarios that they most likely will be used in, creating transcripts from video or audio recordings.

The results show that while the ZHAW (multi-sentence) model performed very well in the MERGER
experiment (Chapter 6.7) it does not perform well in this real-life scenario. Why this is happening is
unclear but it indicates, that while it is arguably an improved version of the ZHAW (lowercase) model it
is still missing a crucial piece to perform as well as the FHNW, Microsoft and Whisper model.

The result of the Whisper model also shows that the poor performance of the ZHAW (lowercase) and
ZHAW (multi-sentence) models can not be attributed to the segmentation or merging.

The hypothesis that speech translation models that perform well in the NRSENT and MERGER exper-
iments will perform comparably on real-life recordings, can not be accepted because while the ZHAW
(multi-sentence) model performed well in the NRSENT and MERGER experiment it performed badly in
this experiment.

In this experiment, only one real-life sample has been tested. To make a relevant observation a lot more
samples would be needed which unfortunately are not as widely available as the datasets used in other
experiments. Future experiments would either need to create more realistic scenarios with the existing
datasets or collect more transcripts from real-life scenarios.
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Chapter 7

Discussion and Outlook

Whether the duration of an audio segment has an influence or not was investigated in the experiments.
The results provide valuable insights into the performance of various ST models under different conditions,
as well as some suggestions on how to improve the results of these models.

The VARLEN experiment revealed that the ZHAW (lowercase), FHNW, and Microsoft models tended
to perform worse on longer audio segments, while the Whisper model showed an improvement in per-
formance with increasing audio segment duration. The PADDIN experiment demonstrated that adding
padding before and after an audio segment had no impact on performance. In the SPEEED experiment,
it was observed that changing the playback speed of the audio showed a decreasing performance. Slowing
down audio had a worse effect compared to speeding it up. The FHNW model performed well across a
range of speed adjustments. The NRSENT experiment indicated that the ZHAW (lowercase), FHNW,
and Microsoft models performed poorly when multiple sentences appeared in an audio segment, but
the performance remained consistent when using the version of the FHNW and Microsoft models that
segmented the audio. The SENPAD experiment revealed that adding padding between two sentences
had no effect on performance. Training a model on multi-sentence segments, as shown in the MULSEN
experiment, improved performance on audio segments with more than one sentence while maintaining
performance on single sentence segments. The MERGER experiment demonstrated that fixed-window
segmentation yielded comparable results to a sentence-based segmentation for the Multi-Sent, Microsoft,
and Whisper models, while the ZHAW (lowercase) model performed subpar. Lastly, the RLLIFE exper-
iment highlighted that the findings from the ZHAW (multi-sentence) model did not directly translate
to real-life recordings, with the FHNW model performing well and the Microsoft and Whisper models
excelling in performance.

From these results, the following can be concluded:

(1) While audio length has an influence on the score it is not the decisive factor on the performance.
Other factors include sentence count and playback speed.

(2) On the ZHAW (lowercase), FHNW and Microsoft model it is crucial to apply segmentation even on
audio segments below 15 seconds if they contain more than one sentence.
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(3) Increasing the playback speed by a factor of 1.25 can lead to results that are comparable to the ones
without a playback speed adjustments.

(4) By training a model on multi-sentence segments the performance of an ST model can be improved in
a scenario where segmentation of the input audio is required.

(5) A fixed-window segmentation approach with the Levenshtein Merger (Chapter 5.3) achieved compa-
rable results to a sentence-based segmentation, which is considered ideal.

In the SPEEED experiments, the inference times of the ST models were not recorded. In future research,
it would be interesting to see how much time it takes to speed up an audio file and transcribe it. Then
compare it to transcribing with the original playback speed. If transcribing a sped up recording is faster
it could be used to reduce resource consumption.

The RLLIFE experiment (Chapter 6.8) demonstrates that while the newly trained ZHAW (multi-sentence)
model performed very well in the experiments, it does not mean that it works well on real-life recordings.
Further testing on more real-life samples has to be conducted to manifest this point. There is potentially
another missing piece to make ST models perform well in real-life scenarios that have yet to be discovered.
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Acronyms

AI Artificial Intelligence
ASR Automatic Speech Recognition
BLEU Bilingual Evaluation Understudy
CMA Constrained Model Adaptation
CNN Convolutional Neural Network
CTC Connectionist Temporal Classification

FHNW University of Applied Sciences Northwestern Switzerland
MT Machine Translation
NLP Natural Language Processing

NNLM Natural Network Language Model
RNN Recurrent Neural Network

ROUGE Recall-Oriented Understudy for Gisting Evaluation
SemDist Semantic Distance
SST4SG Speach-to-Text for Swiss-German

ST Speech-Translation
STT Speech-to-Text
VAD Voice Activation Detection
VTLN Vocal tract length normalization
WER Word Error Rate
ZHAW Zurich University of Applied Sciences
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Appendix A

Transcripts

A.1 TeleZüri Reference Transcript

Guten Abend miteinander. Ich bin leider kein Komiker, kein Wetterschmöcker und schon gar kein Zoodi-
rektor. Dafür kann ich ihnen als Miss Schweiz etwas darüber erzählen, wie sie auch bei schlechtem Wetter
gestylt durch den Tag kommen. Heute Abend müssen Sie sich diesbezüglich keine Sorgen machen, denn
in der Nacht kommen Sternchen hervor, die Wolken verziehen sich. Morgen Vormittag ist es dann abge-
sehen von ein bisschen Nebel und Wolken recht sonnig. Temperaturen morgen morgen nur bei 5 - 7 Grad,
am besten legen Sie schon mal den Strick Pullover bereit, weil die sind nämlich im Moment sowieso der
letzte Schrei. Am Nachmittag geht es sonnig weiter, es gibt nur ein paar Wolken. Die Temperaturen
klettern bis auf 18 Grad, dann liegt für die coolen vielleicht sogar der t Shirt look drinnen. 0 Grad Grenze
liegt morgen auf 3500 Meter tshirt Look funktioniert dort halt nur für dich hart Gesottene. Am Sam-
stagmorgen kann es im Flachland Nebel haben, sonst ist es strahlend schön, unbedingt die Sonnenbrille
einpacken. Am Sonntag ist erst Nebel möglich, es geht aber mit viel Sonnenschein weiter. Ab und zu
ziehen ein paar Wolkenfelder vorbei. Der Wochenstart ist recht sonnig und warm, ab dem Dienstag tut
es leider wieder zu. Am Mittwoch ist es bewölkt und nass, zum Glück sind aber Regenstiefel immer noch
total im Trend. So das war es mit dem Wetter, morgen an dieser Stelle die beiden Nationalräte Daniel
Jositsch und Christof Mörgeli. Vermutlich gibt es dann Hagel von links und Gewitter von rechts. Einen
schönen Abend miteinander.

A.2 RLLIFE ZHAW (lowercase) Transcript

guten abend miteinander ich bin leider kein komiker keine wetter schmecker und schon gar kenzenundi-
rektedafür kann ich sind nämlich moment sowieso el letzten schrei am nachmittag an sonnig weiter gibt
nur ein paar wochen temperaturen klettern bis auf achtzehn grad tag für die coolen vielleicht sogar den
tschartloktrei null grad grenze liegt morgen auf 350 meter der t sat lok funktioniert im flachland in im
flachland in nebel sonst ist strahlend schön und bringt sonnen sie einpacken am sonntag ich ihnen als
miss schweiz etwas darüber erzählen wir sie auch bei zuerst schnebel mögliches geht aber mit viel son-
nenschein weiter in und a sind ein paar wolkenfelder vorbei den wochen start ist wochenstart ist recht
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sonnig und warm ab dienstag trotzden leider wieder zu auch der mittwoch ist bewölkt und nas zum glück
sind aber regenstiefel immer noch total soderswert mit mit dem wetter morgen an dieser stelle die beiden
nationalräte daniel josic und christoph mergeln vermutlich gibt es den hagel von links und gewitter von
auch bei schlechtem wetter gesellt mit sich diesbezüglich keine sorgen machen weil in der nacht kommen
sternde für ein verziehe sch morgen vormittag ist es dann abgese von nebel sieben grad am besten legen
sie schon mal den streckpoliperat weil die sind nämlich aeiomeneodser

A.3 RLLIFE ZHAW (multi-sentence) Transcript

Guten Abend mittichen leider kein Komiker keine wetter schmöcker und schon gar keinen Dafür kann ich
Ihnen als Miss Schweiter etwas darüber erzählen, wie sie auch bei schlechtem Wetter eilt durch den Tag
. Heute Abend muss diesbezüglich keine Sorgen machen, weil in der Nacht kommen Sternchen für eine
Wolke verziehen. Morgen Vormittag ist es dann abgesehen, von Nebel und Wolkenrecht, Temperaturen,
messen Morgen nur bei fünf G sieben Grad, am besten legen sie schon Strekttolleparat, weil diese nämlich
im Moment sowieso delle Schrei. Am Nachmittag geht Sonic weiter gibt nur ein paar Wochen Temper-
aturen klettern bis auf achtzehn Grad dann liegt für die coolen vielleicht sogar den Null Grad Grenze
morgen auf Fr. 3’500 Teshetlokfunktionität halt nur für zur . Am Samstagmorgen kann es im Flachland
Nebela sonst ist eine Strahlen und bringt Sonnenbrille einpacken. Am Sonntag ist ehrschnbenmöglich,
geht aber mit er schnell möglich, geht aber mit viel Sonnenschein weiter, ab und zu sind ein paar Wochen
felder vorbei. Der Wochen startische Recht, sonnig und warm ab Dienstag trotzdem leider wieder zu.
Auch der Mittwoch ist bewölkt und nass zum Glück sind aber Regenstiefel immer noch total en. Sondern
wärs mit dem Wetter mon an dieser Stelle die beiden Nationalräte Daniel Josig und Christoph Mörgeli,
vermutlich gibt es dann handel Links und Gewitter von rechts einen schönen am

A.4 RLLIFE FHNW Transcript

Guten Abend, Miteinander, ich bin leider kein Komiker, kein Wetterschmecker und schon gar kein Zoo-
Direktor, dafür kann ich Ihnen als Miss-Schweiz etwas darüber erzählen, wie sie auch bei schlechtem
Wetter gesteilt durch den Tag kommen. Heute Abend müssen Sie sich diesbezüglich keine Sorgen machen,
denn in der Nacht kommen die Sterne nach vorne, die Wolken verziehen sich. Morgen Vormittag ist es
abgesehen von etwas Nebel und Wolken recht sonnig, die Temperaturen morgen Vormittag nur bei 5 bis
7 Grad, am besten legen sie den Strickpuli , denn diese sind im Moment sowieso, der letzte Schrei. Am
Nachmittag geht es sonnig weiter, es gibt nur ein paar Wolken, die Temperaturen klettern bis auf 18
Grad, dann liegt für die coolen vielleicht sogar der Te-Shirt-Look drin. Die Nullgradgrenze liegt morgen
auf 3500 Meter, der T-Shirt-Lok funktioniert nur für die hart gestoten. Am Samstagmorgen kann es im
Flachland Nebel haben, sonst ist es strahlend schön, unbedingt die Sonnenbrille einpacken. Am Sonntag
ist zuerst Nebel möglich, es geht aber mit viel Sonnenschein weiter, ab und zu ziehen ein paar Wolkenfelder
vorbei, der Wochenstart ist recht sonnig und warm, ab Dienstag wird es leider wieder geschlossen. Auch
der Mittwoch ist bewölkt und nass, zum Glück sind aber Regenstiefels immer noch total inne. So, das
wäre es mit dem Wetter, morgen an dieser Stelle die beiden Nationalräte, Daniel Josetsch und Christoph
Mörgeli, vermutlich gibt es dann Hagel von links und von rechts einen schönen Abend.
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A.5 RLLIFE Microsoft Transcript

Guten Abend miteinander, ich bin leider kein Komiker, kein Wetterschmöcker und schon gar kein Zoodi-
rektor, dafür kann ich ihnen als Miss Schweiz etwas darüber erzählen, wie sie auch bei schlechtem Wetter
geteilt durch den Tag kommen. Heute Abend müssen Sie sich diesbezüglich keine Sorgen machen, denn
in der Nacht kommen Sternchen hervor. Die Wolken verziehen sich. Morgen Vormittag ist das denn
abgesehen von ein bisschen Nebel und Wolken recht sonnig. Temperaturen morgen morgen nur bei 5 bis
7 Grad. Am besten legen Sie schon mal den Strick Pullover bereit. Weil die sind nämlich im Moment
sowieso der letzte Schrei. Am Nachmittag geht es sonnig weiter, es gibt nur paar Wolken, Temperaturen,
klettern bis auf 18 Grad, dann liegt für die coolen, vielleicht sogar den t Shirt, lockt Rehm die 0 Grad
Grenze liegt morgen auf 3500 Meter tshirt Look funktioniert dort halt nur für dich hart gesottene am
Samstagmorgen kann im Flachland Nebel haben, sonst ist es strahlend schön, unbedingt Sonnenbrille
einpacken am Sonntag ist zuerst Nebel möglich. Es geht aber mit viel Sonnenschein weiter. Ab und zu
ein paar Wolkenfelder vorbei. Der Wochenstart ist recht sonnig und warm, ab Dienstag wird es dann
leider wieder zu. Auch Mittwoch ist bewölkt und nass, zum Glück sind aber regenstiefel immer noch
total an so, das wärs gewesen mit dem Wetter morgen an dieser Stelle die beiden Nationalräte Daniel
Jositsch und Christoph Mörgeli. Vermutlich gibt dann Hagel von links und Wetter von rechts einen
schönen Abend miteinander.

A.6 RLLIFE Whisper Transcript

Guten Abend miteinander. Ich bin leider kein Komiker, kein Wetterschmöcker und schon gar kein Zood-
irekter. Dafür kann ich Ihnen als Miss Schweiz etwas darüber erzählen, wie Sie auch bei schlechtem
Wetter durch den Tag kommen. Heute Abend müssen Sie sich keine Sorgen machen, denn in der Nacht
kommen die Sternchen, die Wolken verziehen sich. Morgen Vormittag ist es dann abgesehen von Nebel
und Wolken recht sonnig. Temperaturen morgen Morgen nur bei 5 bis 7 Grad. Am besten legen Sie schon
mal den Streckpulli bereit, denn die sind im Moment sowieso der letzte Schrei. Am Nachmittag geht es
sonnig weiter, es gibt nur ein paar Wolken. Die Temperaturen klettern bis auf 18 Grad, dann liegt für
die coolen vielleicht sogar der T-Shirt-Look drin. Die Null-Grad-Grenze liegt morgen auf 3500m. Der
T-Shirt-Look funktioniert dort nur für die Härtgesottenen. Am Samstagmorgen kann es im Flachland
Nebel haben, sonst ist es strahlend schön. Unbedingt die Sonnenbrille einpacken! Am Sonntag ist zuerst
Nebel möglich, es geht aber mit viel Sonnenschein weiter. Ab und zu ziehen ein paar Wolkenfelder vorbei.
Der Wochenstart ist recht sonnig und warm, aber am Dienstag tut es dann leider wieder zu. Auch der
Mittwoch ist bewölkt und nass. Zum Glück sind aber Regenstiefel immer noch total in. So, das wäre es
gewesen mit dem Wetter. Morgen an dieser Stelle die beiden Nationalräte Daniel Josic und Christoph
Mörgeli. Vermutlich gibt es dann Hagel von links und Gewitter von rechts. Einen schönen Mittenand.
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Code & Manual

All code required to run the experiments is available on github.zhaw.ch: https://github.zhaw.ch/

ba-vandenik-saarofel/exp_pipeline

B.1 Experiment: Pipeline

B.1.1 Setup

1. Install python and pip

apt update

apt install python3-pip cmake libsndfile1 ffmpeg

2. Install requirements

pip install -r ./requirements.txt

3. Create a .env file containing the following variables:

• SPEECH KEY and SPEECH REGION are used for the Microsoft transcriber. They can be obtained from
the Azure Portal after creating a Speech service resource.

• HF TOKEN is used when the speaker diarization segmentation is active. During the segmentation
a model is downloaded from HuggingFace. The token can be obtained on the profile page of your
HF account

• SUPABASE URL and SUPABASE KEY are used for the SupabaseReporter to store the result in a su-
pabase1 instance. Check the Supabase section on how to set it up correct.

4. Set the python path in the start run.sh to use the correct python environment
5. Optionally: To use supabase as a datastore for the experiments the database should be initalized

using the ./supabase/init.sql script and the ./supabase/stored-procedures.sql script.
6. Optionally: To view the results in a web application the Vox Visor (https://github.com/MrF3lix/vox-

visor) can be used.

1https://supabase.com/
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B.1.2 How to run the pipeline

1. Check the configuration and set it according to your needs.
2. Add the audio input files and the reference transcripts to the path to wavs folder configured in the

preprocessor config.json file (./data by default).
3. Run ./start run.sh from the console to run the pipeline in the background.
4. Check the ./output.log to see the pipelines console output.

To monitor the pipeline process more closely, the ./pid.log file contains its process id.

If something goes wrong during a pipeline step the run can be stopped with the ./stop run.sh script.
To resume the pipeline, uncomment the completed pipeline steps in the pipeline.py file and start the
pipeline again with the ./start run.sh script.

B.1.3 Configuration

The configuration files in the /config folder provide a way to customize the pipeline and set the param-
eters used by each pipeline step.

The config json files are loaded into python dataclasses. Each configuration dataclass object contains all
configurations needed for a pipeline step. Described in this chapter are the most relevant attributes, and
their default value.

The detailed configuration allows for the possibility of each pipeline step to be run on its own and with
great controll given to the user.

pipeline config.json

{

"segmenter_class_id": "<Segmenter Class>",

"transcriber_class_id": "<Transcriber Class>",

"merger_class_id": "<Merger Class>"

}

The values <Segmenter Class>, <Transcriber Class> and <Merger Class> must match the string
defined in the class id variable in each implementation of a pipeline step.

Options for the segmenter class id include:

• single segment

• set size

• pre segmented

• shas

• speaker diarization

Options for the transcriber class id include:
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• zhaw

• fhnw

• microsoft

• whisper

Options for the merger class id include:

• naive

• levenshtein

preprocessor config.json

{

"path_to_wavs": "./data",

"path_to_output": "./results/data/",

"sample_rate": 16000

}

• path to wavs sets the path to the input files.
• path to output sets the path in which the files gets stored after the prepocessing. It should be
consistent with the path to wavs configuration from the segmenter config.json.

• sample rate sets the sample rate which the segments are set to. The models all require a SR of
16’000 Hz to work properly.

segmenter config.json

{

"path_to_checkpoint": "./models/sfc/mult_sfc_model_epoch-4.pt",

"path_to_segmentations": "./results/segmenter/",

"path_to_wavs": "./results/data/",

"pre_segmented_path_to_segmentations": "./data/",

"set_size_window_size_s": 30,

"set_size_overlap_size_s": 10

}

• path to checkpoint is used for the shas segmenter. It references a model to automatically segment
the audio files.

• path to segmentations is the output path of the segmentation step.
• path to wavs is the path to the .wav files to be segmented.
• pre segmented path to segmentations is the path in which the pre-segmenter looks for the
manually created segmentations.

• set size window size s is configuration for the fixed-window segmentation. It defines how large
the windows are in seconds.

• set size overlap size s is configuration for the fixed-window segmentation. It defines how large
the overlap between the windows is in seconds.
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cutter config.json

{

"path_to_segmentations": "./results/segmenter/",

"path_to_cut_segments": "./results/cutter/",

"path_to_wavs": "./results/data/",

}

• path to segmentations is the path the segmentations generated by the segmenter.
• path to cut segments is the path to where the cut audio files are created.
• path to wavs is the path to the .wav files to be cut.

transcriber config.json

{

"path_to_checkpoint": "./models/ch_mix/multi-sent/checkpoint-21000",

"path_to_vocab": "./models/ch_mix/multi-sent/checkpoint-21000/vocab.json",

"path_to_kenlm_model": "./models/language-model/full.binary",

"path_to_wavs": "./results/cutter/",

"path_to_output": "./results/transcriber/",

"device": "cuda",

"ms_long_audio": true,

"fhnw_long_audio": false,

"fhnw_delay_s": 10

}

• path to checkpoint sets the path to the ZHAW model folder.
• path to vocab sets the path to vocabulary.
• path to kenlm model path to the kenlm language model.
• path to wavs is the path to the .wav files to be transcribed.
• path to output is the path to where the generated transcription files are created.
• device is the device used to run language models (CPU / GPU).
• ms long audio defines if the version of microsoft is used that automatically segments the input.
Should be set to true if the input files are longer than 10 seconds.

• fhnw long audio defines if the version of fhnw is used that automatically segments the input.
Should be set to true if the input files are longer than 15 seconds.

• fhnw delay s is the delay in seconds in between each call to the FHNW API.

merger config.json

{

"path_to_input": "./results/transcriber/",

"path_to_output": "./results/merger/",

"levenshtein_edge_words_to_remove": 2

}
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• path to input is the path to the transcript files generated by the transcriber.
• path to output is the output path to where the merged transcripts are created.
• levenshtein edge words to remove is the number of words that are removed at the edges of a
transcription when using the levenshtein merger.

scorer config.json

{

"path_to_merged_output": "./results/merger/",

"path_to_ground_truth": "./results/data/",

"path_to_score_output": "./results/scorer/"

}

• path to merged output is the path to the merged transcript files generated by the merger.
• path to ground truth is the folder in which the ground truth references are stored.
• path to score output is the path to where the generated score files are created.

reporter config.json

{

"experiment_id": "67d912f0-6ab0-44bf-ac6b-d9cf4684e90f",

"path_to_references" : "./results/data/",

"path_to_scores": "./results/scorer/"

}

• experiment id should be set if the supabase reporter is used. It defines to which experiment the
results should be added.

• path to references is the folder in which the ground truth references are stored.
• path to scores is the folder in which the score files generated by the scorer are stored.
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