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Abstract 

The publication of pre-trained language models enabled the development of various 

speech technologies for low-resource languages such as Swiss German. The training 

data required for this has become available with the creation of the SDS-200 corpus 

and the recent finalisation of the STT4SG-350 corpus. While Swiss German speech-

to-text systems are the main research area, the ability to automatically identify 

Swiss German dialects can help to further improve the performance of such systems. 

In previous work, Swiss German dialect identification systems were already devel-

oped, but recent advancements such as the finalisation of the STT4SG-350 corpus 

and the publication of the Whisper model provided new resources with the potential 

to significantly increase the performance in this area. This thesis evaluated how the 

newly available resources can be leveraged to build the best-performing model for 

Swiss German dialect identification by training and validating models in various 

configurations. It has been found that mixing the SDS-200 and STT4SG-350 corpora 

can achieve promising results, but that the variety of speakers is an important factor 

to reach good generalisation. Speech augmentation has been found as a promising 

technique that can help to further increase the performance by artificially increasing 

the number of samples and the variety of speakers. Additionally, a representation 

learning approach was evaluated, which has not proven satisfactory. Finally, the 

newly available resources combined with the gained knowledge enabled an increase 

of the macro F1 score from 45.95% on classification to four canton groups to 62.76% 

on classification to seven subregions, an even harder task, thereby setting a new 

baseline for future systems.  



 

 

Zusammenfassung 

Die Veröffentlichung von vortrainierten Sprachmodellen ermöglichte die Entwick-

lung verschiedener Sprachtechnologien für ressourcenarme Sprachen wie Schwei-

zerdeutsch. Die dafür notwendigen Trainingsdaten stehen durch die Erstellung des 

SDS-200 Korpus und die kürzlich erfolgte Fertigstellung des STT4SG-350 Korpus 

zur Verfügung. Während schweizerdeutsche Sprache-zu-Text-Systeme das Haupt-

forschungsgebiet sind, kann die Fähigkeit, schweizerdeutsche Dialekte automatisch 

zu identifizieren, dazu beitragen die Leistung von solchen Systemen weiter zu ver-

bessern. In früheren Arbeiten wurden bereits Systeme zur Identifizierung von 

schweizerdeutschen Dialekten entwickelt, aber jüngste Fortschritte wie die Fertig-

stellung des STT4SG-350 Korpus und die Veröffentlichung des Whisper Modells 

stellten neue Mittel bereit, die das Potenzial haben, die Leistung in diesem Bereich 

deutlich zu steigern. In dieser Arbeit wurde evaluiert, wie die neu verfügbaren Mit-

tel genutzt werden können, um das leistungsfähigste Modell für die Identifizierung 

von schweizerdeutschen Dialekten zu erstellen, indem Modelle in verschiedenen 

Konfigurationen trainiert und validiert wurden. Es wurde festgestellt, dass die Mi-

schung der SDS-200 und STT4SG-350 Korpora vielversprechende Ergebnisse erzie-

len kann, dass aber die Vielfalt der Sprecher ein wichtiger Faktor ist, um eine gute 

Generalisierung zu erreichen. Eine weitere vielversprechende Technik ist die Trans-

formierung von Sprachaufnahmen, wodurch sich die Leistung weiter steigern lässt, 

indem die Anzahl der Sprachaufnahmen und die Vielfalt der Sprecher künstlich er-

höht wird. Zusätzlich wurde ein Verfahren zum Lernen von Repräsentationen eva-

luiert, welches sich aber als nicht zufriedenstellend erwiesen hat. Schlussendlich er-

möglichten die neu verfügbaren Mittel in Kombination mit dem gewonnenen Wis-

sen eine Steigerung des Makro-F1-Mass von 45.95% bei der Klassifizierung in vier 

Kantonsgruppen auf 62.76% bei der Klassifizierung in sieben Dialektregionen, was 

eine schwierigere Aufgabe darstellt, und setzt damit einen neuen Massstab für zu-

künftige Systeme.  



 

 

Preface 

Since we are both native Swiss German speakers, the advancement in Swiss German 

language processing is of particular interest to us. We are grateful for the oppor-

tunity to contribute to this research area and we hope that our work will assist in 

advancing Swiss German language processing and generating greater interest in this 

field. A special thanks goes to our supervisors Prof. Dr. Mark Cieliebak and Dr. Jas-

mina Bogojeska, both of whom supported us by sharing their expertise and provid-

ing valuable advice throughout the creation of this thesis. Additional thanks goes to 

the Institute of Applied Information Technology at ZHAW for providing us with the 

necessary computing capabilities and to everyone involved in the creation of the 

SDS-200 and STT4SG-350 corpora at FHNW and ZHAW without whom the creation 

of this thesis would not have been possible.  



 

 

Contents 

1 Introduction .................................................................................................................................. 1 

1.1 Definitions of Terms ........................................................................................................................ 2 
1.2 Related Work ...................................................................................................................................... 2 
1.3 Outline ................................................................................................................................................... 4 

2 Theoretical Framework ........................................................................................................... 5 

2.1 Learning Methods ............................................................................................................................. 5 
2.2 Loss Functions ................................................................................................................................... 6 

2.2.1 Cross-Entropy Loss ....................................................................................................................................... 6 
2.2.2 Negative Likelihood Loss ........................................................................................................................... 6 
2.2.3 Cosine Embedding Loss .............................................................................................................................. 7 

2.3 Large Language Models .................................................................................................................. 7 
2.3.1 Attention............................................................................................................................................................ 7 
2.3.2 Transformer Architecture ......................................................................................................................... 7 
2.3.3 wav2vec ............................................................................................................................................................. 8 
2.3.4 Whisper .............................................................................................................................................................. 9 

2.4 Hierarchical Data Format ........................................................................................................... 10 
2.5 Classification Metrics ................................................................................................................... 11 

3 Experimental Setup .................................................................................................................. 13 

3.1 Corpora .............................................................................................................................................. 13 
3.1.1 SDS-200 Corpus........................................................................................................................................... 13 
3.1.2 STT4SG-350 Corpus .................................................................................................................................. 13 
3.1.3 Corpora Analysis and Comparison ..................................................................................................... 14 

3.2 Data Pre-Processing...................................................................................................................... 17 
3.2.1 Re-Encoding of Audio Files .................................................................................................................... 17 
3.2.2 Decoding of Audio Files ........................................................................................................................... 17 
3.2.3 Removal of Samples with Missing Attributes ................................................................................ 18 
3.2.4 Removal of Corrupt and Long Recordings ...................................................................................... 18 
3.2.5 Addition of Canton Group Label .......................................................................................................... 20 
3.2.6 Addition of Subregion Label to SDS-200 Corpus .......................................................................... 22 

3.3 Train and Test Split ....................................................................................................................... 24 
3.4 Model Architecture ....................................................................................................................... 25 
3.5 Frameworks ..................................................................................................................................... 26 
3.6 Training Procedure ....................................................................................................................... 26 
3.7 Performance Metrics .................................................................................................................... 27 
3.8 Training Parameters ..................................................................................................................... 27 

3.8.1 Optimiser and Learning Rate ................................................................................................................ 27 
3.8.2 Batch Size and Gradient Accumulation ............................................................................................. 28 

3.9 Training Infrastructure ............................................................................................................... 29 

4 Experiments ................................................................................................................................ 31 

4.1 Exploring Models and Corpora ................................................................................................ 31 
4.1.1 Experimental Setup ................................................................................................................................... 31 
4.1.2 Results ............................................................................................................................................................. 33 

4.2 Exploring Mixed Corpora ........................................................................................................... 38 
4.2.1 Creation of the MIX-ALL Corpus .......................................................................................................... 38 
4.2.2 Creation of Balanced Mixed Corpora ................................................................................................. 39 
4.2.3 Experimental Setup ................................................................................................................................... 40 
4.2.4 Results ............................................................................................................................................................. 41 

4.3 Exploring Speaker Recognition ................................................................................................ 42 
4.3.1 Reduction of the MIX-20000 Corpus ................................................................................................. 42 



 

 

4.3.2 Experimental Setup ................................................................................................................................... 45 
4.3.3 Results ............................................................................................................................................................. 46 

4.4 Exploring Speech Augmentation ............................................................................................. 47 
4.4.1 Augmentation Methods ........................................................................................................................... 47 
4.4.2 Extended Batches ....................................................................................................................................... 49 
4.4.3 Dropout Layers ............................................................................................................................................ 49 
4.4.4 Experimental Setup ................................................................................................................................... 50 
4.4.5 Results ............................................................................................................................................................. 51 

4.5 Exploring Contrastive Learning ............................................................................................... 53 
4.5.1 Selection of Sample Pairs ........................................................................................................................ 54 
4.5.2 Experimental Setup ................................................................................................................................... 56 
4.5.3 Results ............................................................................................................................................................. 57 

4.6 Training the Best Model .............................................................................................................. 58 
4.6.1 Experimental Setup ................................................................................................................................... 59 
4.6.2 Results ............................................................................................................................................................. 60 

5 Results .......................................................................................................................................... 62 

6 Discussion .................................................................................................................................... 63 

7 Index .............................................................................................................................................. 65 

7.1 Bibliography..................................................................................................................................... 65 
7.2 Figures ................................................................................................................................................ 70 
7.3 Tables .................................................................................................................................................. 71 
7.4 Equations .......................................................................................................................................... 72 
7.5 Acronyms .......................................................................................................................................... 73 

8 Appendix ...................................................................................................................................... 74 

8.1 Code and Corpora .......................................................................................................................... 74 
8.2 Experiment Details ........................................................................................................................ 75 
8.3 Corpora Overview ......................................................................................................................... 78 
8.4 Corpora Details ............................................................................................................................... 79 
8.5 Mixed Corpora Samples per Speaker..................................................................................... 82 
8.6 Rented Machines from Vast.ai .................................................................................................. 83 

 



 

1 

1 Introduction 

In recent years, numerous efforts have been made to improve speech technologies 

for low-resource languages. The main problem with such languages is the lack of 

sufficient supervised data that can be used for training models. As of now, the pre-

dominant solution for this problem is the use of unsupervised data for training 

speech representations as well as using pre-trained cross-lingual models. Examples 

of such models are the wav2vec family developed by Facebook AI [1]–[4] as well as 

the recently published Whisper model by Open AI [5]. 

Following those advancements, it became possible to develop various speech tech-

nologies for low-resource languages such as Swiss German, a group of Alemannic 

dialects spoken in the German-speaking part of Switzerland and Liechtenstein. To 

collect the necessary supervised data, the FHNW and ZHAW started the <Schweizer 

Dialektsammlung= project, which resulted in the creation of the SDS-200 corpus that 

contains spoken sentences in various Swiss German dialects, including the corre-

sponding transcriptions in Standard High German [6]. To further increase the per-

formance of Swiss German speech-to-text systems, the recently finalised STT4SG-

350 corpus was created [7]. 

This thesis focuses on automatically identifying Swiss German dialects using large 

language models. One of the main uses of such a system is the improvement of reg-

ular speech-to-text systems. The assumption is that the performance of speech-to-

text systems can be improved by training separate models for each dialect. This 

makes it necessary to select the correct model for the spoken dialect, a task that can 

be done using a dialect identification system. 

In previous work, systems for Swiss German dialect identification were already de-

veloped, but recent advancements have the potential to significantly improve the 

performance of such systems [8], [9]. For example, the recently finalised STT4SG-

350 corpus has become available as an additional source for high-quality audio re-

cordings that can be used for training. Additionally, newer pre-trained models, as 

well as libraries and frameworks, have been published. Therefore, the aim of this 

thesis is to evaluate how the newly available resources can be leveraged to build the 

best-performing model for Swiss German dialect identification.  
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1.1 Definitions of Terms 

Accent refers to a particular pronunciation of words. The Cambridge Dictionary de-fines accent as <the way in which people in a particular area, country, or social group pronounce words= [10]. 

Dialect refers to a particular form of language. The Cambridge Dictionary defines dialect as <a form of a language that people speak in a particular part of a country, containing some different words and grammar, etc.= [10]. 

1.2 Related Work 

This chapter will provide an overview of existing literature and previous work 

around Swiss German dialect identification. While dialect identification strictly 

speaking is not the same as language and accent identification, the borders between 

those tasks are not clearly defined and similar methods are used to solve them. How-

ever, it is always important to distinguish between identification tasks performed 

on speech and on written text. While this thesis focuses on spoken dialect identifi-

cation, written dialect identification is closely related and sometimes even com-

bined to increase performance. 

In early works on spoken dialect identification, a Gaussian Mixture Model in combi-

nation with a Support Vector Machine was used. In 2008, this approach was used to 

identify four main Chinese dialects, which reached an accuracy of 92.5% by using a 

corpus containing 40 speakers per dialect [11]. In 2015, a similar approach reached 

a precision of 80.49% on spoken Arabic dialect identification on a corpus containing 

five Arabic Maghreb dialects with a total of 525 speakers [12]. 

Later work mainly shifts toward the usage of neural networks, especially convolu-

tional neural networks. In 2018, an accuracy of 65.55% was reached on the MGB-3 

corpus containing five Arabic dialects by using a convolutional neural network on 

acoustic features and by using speech augmentation the accuracy was even in-

creased to 68.82% [13]. In 2019, a convolutional neural network with variable filter 

sizes was used to achieve a classification accuracy of 90% on native English accents, 

71% on Arabic accents and 50% on Mandarin accents [14]. 

One of the newest works in the field of dialect identification is the paper <Arabic Speech Dialect classification using Deep Learning= [15], which was presented at the 

1st International Conference on Advanced Innovations in Smart Cities and published 

in April 2023. The paper described how eight Arabic dialects were identified with 

an accuracy of 83% by using a convolutional neural network on spectrogram im-

ages. For the experiment, only 84 audio files per dialect with a duration of around 5 

to 20 seconds were used. 
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In previous work, various large language models have already been proven to be 

capable of identifying speakers, languages and accents. In 2020, various deep learn-

ing methods, including the wav2vec model, were compared in language identifica-

tion on the Mozilla9s Common Voice corpus [16]. It was found that while wav2vec 

did not perform best, it still achieved an F1 score of 79% and outperformed the con-

volutional neural network, which achieved an F1 score of 75%. In the same compar-

ison, the SpecAugment augmentation method was tested, which raised the F1 score 

of the convolutional neural network from 75% to 85% [17]. In a bachelor9s thesis from 2021, the wav2vec2-large-xlsr-53 model was tested on 

various speech classification tasks such as English and Spanish accent classification 

as well as age and sex classification in German [18]. The models were trained on 1.5 to 8 hours of speech per class extracted from Mozilla9s Common Voice corpus. It was 

found that while it was possible to use wav2vec models for classification, the scores 

did not yet correspond to the desired values and more samples are needed to further 

increase the performance. 

When it comes to the more recently published Whisper model, not yet many papers 

using it for speech classification tasks have been published [5]. However, from the 

experiments done in the Whisper paper, it is known that Whisper outperforms 

wav2vec when it comes to speech-to-text tasks. 

Most studies have been conducted on non-Germanic languages such as Arabic, Chi-

nese, English, Finnish or Spanish. Only a limited number of studies regarding spoken 

dialect identification are available on Swiss German dialects. The reason for this is 

that Swiss German is not a widely spoken language and therefore only a limited 

number of audio corpora are available, which could be used for dialect identification.  

ArchiMob is a corpus that contains continuous speech with around 555 recordings 

from various places in Switzerland [19]. The Swiss Parliaments Corpus is a collec-

tion of publicly available audio files from the Bernese cantonal parliament [20]. The 

corpus consists of 293 hours of audio in mainly Bernese spoken dialect. Another 

corpus which only covers the region of Valais, is the Radio Rottu Oberwallis corpus 

[21]. It is therefore limited to dialects spoken in upper Valais. The ETH Zürich re-

leased with the SwissDial a corpus with high quality recordings split into 8 different 

dialect regions [22]. A newer corpus is the SDS-200 corpus which contains 200 

hours of spoken sentences recorded in Swiss German by nearly 4,000 participants 

[6]. The STT4SG-350 corpus is the newest available corpus, which contains 343 

hours of spoken Swiss German dialects from 316 speakers [7]. 

For written Swiss German dialect identification, three shared tasks were organised 

as part of the VarDial Evaluation Campaign in the years 2017, 2018 and 2019 [23]–
[25]. In all the three shared tasks, manually created speech transcriptions in the writing system <Schwyzertutschi Dialäktschrift= [26] from the four dialect regions 

Basel, Bern, Lucerne and Zurich were used, which have been extracted from the Ar-

chiMob corpus. In 2017, the best team achieved a weighted F1 score of 66.2% [27]. 

A year later in 2018, the transcriptions were improved, which allowed the best team 
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to achieve a macro F1 score of 68.6% [28]. In the third and last shared task in 2019, 

the participants were additionally allowed to make use of acoustic features, which 

resulted in the best team achieving a macro F1 score of 75.93% [29]. 

Another shared task on written Swiss German but on language identification was 

organised as part of the GermEval in 2020 with the goal of creating a binary classifier 

to decide between tweets written in Swiss German and tweets not written in Swiss 

German [30]. The best team was able to achieve an F1 score of 98.2% [31]. 

For spoken Swiss German dialect identification, which is the topic of this thesis, two 

direct predecessor theses using wav2vec2-xls-r-300m were already performed at 

the Centre of Artificial Intelligence at the ZHAW. The first one is a project thesis done 

in 2021 on the SDS-200 corpus in which the capabilities of wav2vec for Swiss Ger-

man dialect identification were tested [8]. While it was possible to achieve a macro 

F1 score of 45.95% on classification to four canton groups, it was found that there is 

a lack of reproducibility and a certain degree of uncertainty in the results. The sec-ond one is a bachelor9s thesis done in 2022 about pre-training wav2vec using unsu-

pervised Swiss German speech [9]. While it was found that the unsupervised pre-

training was not beneficial for speech translation, it might have a positive impact on 

dialect identification. Both of those theses did find that the SDS-200 corpus was of 

insufficient quality in terms of the amount of data as well as class balance. 

1.3 Outline 

Following this introduction, the second chapter provides a brief overview of the the-

oretical framework used in this thesis. Afterwards, the used experimental setup is 

described, including an analysis of the used corpora, a breakdown of the performed 

data pre-processing as well as general information about the employed experi-

mental environment. The next chapter then contains all the conducted experiments 

with each experiment having separate sections for the applied methods followed by 

the obtained results. The thesis then concludes with a summary of all the results of 

the experiments as well as a short discussion. 
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2 Theoretical Framework 

In this chapter, the theoretical framework, including definitions of key concepts and 

technologies important for our research, is further explained. Readers already fa-

miliar with the content of this chapter might skip it. 

2.1 Learning Methods 

In machine learning, models are trained to predict output for unseen samples. To do 

this, the model learns from the experience provided by a set of training samples. 

Different learning methods are available which can be used to learn from training 

data. 

In Supervised Learning, a model is presented with input samples as well as the 

corresponding target outputs during training [32]. With this information, the model 

can fit itself onto the training data. One of the challenges with supervised learning is 

the lack of high-quality labelled data which can be used for training. 

Unsupervised Learning is a form of learning in which a model is only presented 

with input samples, and no target outputs are available [32]. With this form of learn-

ing, the model needs to fit itself onto the hidden patterns within the data itself. 

Representation Learning, also known as feature learning, refers to the automatic 

discovery of useful representations from raw data such as audio, image, or text [33]. 

The learned representations can then be used for classification or various other 

tasks. 

For Contrastive Learning, a model is given pairs of samples that are either similar 

or dissimilar [34]. During training, the model then learns features that are common 

between similar samples and features which help to differentiate between dissimi-

lar samples. Contrastive learning has proven to be a successful learning method in 

computer vision [35]. 

Deep Learning is a special form of representation learning in which deep neural 

networks with multiple layers are used to learn representations of data at different 

levels of abstraction [36]. This technique brought a breakthrough in computer vi-

sion. 

It is also possible to combine different learning methods. For example, semi-super-

vised learning is a combination of supervised and unsupervised learning.  
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2.2 Loss Functions 

During training, it is necessary to specify the training objective of a model. Typically, 

this takes the form of a loss function. A loss function is a mathematical function 

which maps the produced output of a model together with some information from 

the input sample to a numeric value. Commonly, the objective during training is then 

to minimise the loss function using gradient descent. Most frameworks provide a 

large variety of commonly used loss functions, such as cross-entropy loss or mean 

square error loss. A common representation of a loss function is �(ý, þ), where ý 

stands for the output of the model and þ stands for some information from the sam-

ple. 

2.2.1 Cross-Entropy Loss 

The cross-entropy loss1 is one of the most widely used loss functions. The cross-

entropy measures the difference between two probability distributions. This is use-

ful for measuring the difference between the output probability distribution of a 

model to the expected probability distribution. For classification, the cross-entropy 

loss can be written like in the Equation 1 below. 

�(ý, þ)�� = 2 ∑ log(ý�)�
�=1 þ� 

Equation 1: Cross-Entropy Loss Function 

In the Equation 1 above, � stands for the number of classes, ý and þ are two vectors 

containing a probability for each class.  

2.2.2 Negative Likelihood Loss 

Another loss functions commonly used for multi-class classification tasks is the neg-

ative likelihood loss2. With this loss function, the model can be trained to maximise 

the likelihood that the correct class is predicted by minimising the negative likeli-

hood. The Equation 2 below shows the function of the negative likelihood loss. �(ý, þ)��  =  2 log(ý�) 

Equation 2: Negative Likelihood Loss Function 

In the Equation 2 above, ý is a vector containing a probability for each class and þ is 

the index of the correct class. The negative likelihood loss function is the same as the 

cross-entropy loss function in case samples are assigned to only one correct class.  

 
1 https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html 

2 https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss 

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
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2.2.3 Cosine Embedding Loss 

Models which produce embeddings can be trained using the cosine embedding loss3. 

With this loss function, the cosine similarity of embeddings from similar samples is 

increased while the cosine similarity of embeddings from dissimilar samples is de-

creased. This is mainly useful when using contrastive learning to learn meaningful 

embeddings. The Equation 3 below shows the function of the cosine embedding loss. 

�(ý, þ)�� = {1 2 �ĀĀ(ý1, ý2), þ = 1�ĀĀ(ý1, ý2), þ = 21 

Equation 3: Cosine Embedding Loss Function 

In the Equation 3 above, ý1 and ý2 are two embedding vectors and þ is either 1 in 

case the embeddings are supposed to be similar or 21 in case the embeddings are 

supposed to be dissimilar. 

2.3 Large Language Models 

While no formal definition of large language models exists, they are typically large 

and deep neural networks with millions of parameters trained on large quantities 

of data. A key aspect of large language models is that they are not limited to a specific 

task but rather can be used for multiple different tasks in the field of natural lan-

guage processing. 

2.3.1 Attention 

A key concept introduced by Bahdanau in 2016 is the concept of attention in recur-

rent neural networks [37]. Attention allows a recurrent neural network to automat-

ically highlight parts of an embedding that are more relevant for producing the out-

put. In practice, this works much like cognitive attention. Initially, attention was pro-

posed as a solution to improve the performance in translation tasks when using re-

current neural networks, but since then has been applied much more broadly. 

2.3.2 Transformer Architecture 

In the Google-published paper <Attention Is All You Need= [38] the usage of attention 

was proposed as a replacement for recurrent neural networks, taking the form of an 

encoder-decoder architecture based on self-attention in a multi-head setup. This 

transformer architecture became the state-of-the-art standard in the field of natural 

language processing, especially in sequence-to-sequence tasks such as text-to-text 

or speech-to-text. The strength of the transformer architecture mainly lies within 

the self-attention mechanism, which allows the model to better capture the context 

when encoding an input. Another strength of the transformer architecture is that it 

does not process the input sequentially and therefore can take more advantage of 

 
3 https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html 

https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
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parallelism during training and inference. This allows transformer models to train 

much faster and scale to large numbers of parameters and to large quantities of data. 

The transformer architecture is split into an encoder and a decoder. The former en-

codes an input sequence into hidden states before the latter is repeatedly invoked 

to decode the hidden state and the previous output, thus producing the next output. 

 

Figure 1: Transformer Architecture [38] 

The Figure 1 above, from the original <Attention Is All You Need= [38] paper, visual-

ises the transformer architecture. The input is fed into the encoder network on the 

left to produce an embedding. The decoder network on the right receives the previ-

ous output as well as the embedding from the encoder and produces an output. 

An additional benefit of the transformer architecture is that the encoder produces 

embeddings that can also be used for other downstream tasks such as classification. 

Because of that only the encoder part is used in this thesis. 

2.3.3 wav2vec The wav2vec model was first introduced in the paper <wav2vec: Unsupervised Pre-Training For Speech Recognition= [2] by Facebook AI in 2019. A year later in 2020, 

a major revision was published with the paper <wav2vec 2.0: A Framework for Self-

Supervised Learning of Speech Representations= [1] which integrates parts of the 
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transformer architecture. Throughout this thesis, wav2vec always refers to wav2vec 

2.0. 

The wav2vec models consume raw waveforms and produce an embedding. Inter-

nally, a convolutional neural network is used to extract features from the raw wave-

forms for each timestep. The extracted features are then fed through a context net-

work which produces contextualised representations using self-attention.  

Wav2vec models are pre-trained on large amounts of unsupervised data using con-

trastive learning and can then be fine-tuned for various speech tasks such as speech 

recognition. Most published wav2vec models are pre-trained on English corpora. 

For example, the wav2vec2-base-960h4 model is pre-trained and fine-tuned on 960 

hours from the LibriSpeech corpus [1].  With the publication of the paper <Unsupervised Cross-lingual Representation 

Learning for Speech Recognition= [3] in 2020, a multilingual model called wav2vec2-

large-xlsr-535 trained on 56 thousand hours of speech in 53 different languages was 

released. A year later in 2021, with the publication of the paper <XLS-R: Self-super-

vised Cross-lingual Speech Representation Learning at Scale= [4], even larger multi-

lingual models have become available in different sizes, which were pre-trained on 

436 thousand hours in 53 different languages. One of them called wav2vec2-xls-r-

300m6 with 300 million parameters was used throughout this thesis. 

Because it is possible to fine-tune wav2vec models on different languages to those 

on which they have been pre-trained, the models can be used for solving various 

speech tasks in multiple languages. For example, in this thesis the wav2vec2-xls-r-

300m model will be fine-tuned on Swiss German, a language on which the model has 

not been pre-trained. 

2.3.4 Whisper 

The Whisper model is a recently published transformer-based neural network fea-

turing both an encoder and a decoder [5]. Instead of using unsupervised learning 

like wav2vec models, Whisper was trained to transcribe speech on large amounts of 

supervised data from the web. In total 680k hours of labelled audio data was used 

to train the model. From this 680k hours of data, 117k hours are from 96 languages 

other than English. This allows the model to perform on other languages and to 

translate to English. 

Instead of raw waveforms, Whisper consumes spectrograms with a fixed length of 

30 seconds in which the frequencies have been converted to the mel scale. Inter-

nally, Whisper uses two convolutional layers followed by multiple layers of trans-

former encoders using multi-head self-attention to produce embeddings which are 

 
4 https://huggingface.co/facebook/wav2vec2-base-960h 

5 https://huggingface.co/facebook/wav2vec2-large-xlsr-53 

6 https://huggingface.co/facebook/wav2vec2-xls-r-300m 

https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/facebook/wav2vec2-xls-r-300m
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then decoded by multiple layers of transformer decoders using multi-head self-at-

tention and cross-attention. The Whisper model is available in different sizes as 

shown in the Table 1 below. 

Model Name Layers Width Heads Parameters 

whisper-tiny7 4 384 6 39 million 

whisper-base8 6 512 8 74 million 

whisper-small9 12 768 12 244 million 

whisper-medium10 24 1,024 16 769 million 

whisper-large11 32 1,280 20 1,550 million 

Table 1: Whisper Model Sizes [5] 

In the Table 1 above, the layers column refers to the number of transformer encoder 

and decoder layers, the width column refers to the size of the embeddings produced 

by the encoders and the heads column refers to the number of self-attention and 

cross-attention heads.  

While Whisper has been trained to transcribe audio to text, the created embeddings 

of the encoder can be used for various other speech tasks as well. In this thesis, the 

encoder part of Whisper is used as a drop-in replacement for wav2vec to train 

downstream classification tasks. 

2.4 Hierarchical Data Format 

The hierarchical data format12 (HDF5) is a binary data format designed to store large 

amounts of complex data. Originally the format was developed by the National Cen-

ter for Supercomputing Applications at the University of Illinois Urbana-Champaign. 

The high performance, portability and versatility of the file format make it a com-

mon choice for storing scientific data in academic research or industries such as aer-

ospace, biotech, financial services and automotive. In machine learning the format 

is especially useful when working with large quantities of image or audio files, be-

cause the data can be stored and accessed in a raw format which avoids the addi-

tional decoding overhead during training.  

 
7 https://huggingface.co/openai/whisper-tiny 

8 https://huggingface.co/openai/whisper-base 

9 https://huggingface.co/openai/whisper-small 

10 https://huggingface.co/openai/whisper-medium 

11 https://huggingface.co/openai/whisper-large-v2 

12 https://www.hdfgroup.org/solutions/hdf5 

https://huggingface.co/openai/whisper-tiny
https://huggingface.co/openai/whisper-base
https://huggingface.co/openai/whisper-small
https://huggingface.co/openai/whisper-medium
https://huggingface.co/openai/whisper-large-v2
https://www.hdfgroup.org/solutions/hdf5
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2.5 Classification Metrics 

For classification tasks, the commonly used metrics are accuracy, precision, recall 

and F1 score. These classification metrics are based on the true positives (TP), false 

positives (FP), true negatives (TN) and false negatives (FN) measures [39]. 

Accuracy is the ratio of true positives and true negatives to the total number of sam-

ples expressed as a percentage [39]. It measures how accurately a model makes 

predications. A high accuracy indicates that the model mostly makes correct predic-

tions. 

����ÿ��þ =  �� + ���� + �� + �� + �� 

Equation 4: Accuracy Formula [39] 

Precision is the ratio of true positives to the true and false positives expressed as a 

percentage [39]. It measures how precisely a model predicts the true positives. A 

high precision indicates that most positives were predicted correctly and therefore 

is especially important when it is undesired to predict false positives. 

�ÿ���Ā�Āÿ = ���� + �� 

Equation 5: Precision Formula [39] 

Recall is the ratio of true positives to the true positives and false negatives. It 

measures the percentage of the true positives to the actual positives [39]. A high 

recall indicates that most actual positives were predicted correctly and is therefore 

especially important when it is undesired to predict false negatives. 

������ = ���� + �� 

Equation 6: Recall Formula [39] 

The F1 score is the harmonic mean of precision and recall [39]. When precision and 

recall are equally important, the F1 score should be used as it combines both metrics 

into one. 

�1 = 2 �ÿ���Ā�Āÿ ∗ �������ÿ���Ā�Āÿ + ������ 

Equation 7: F1 Score Formula [39] 
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For multi-class classification tasks, the precision and recall metrics are calculated 

for each class and then averaged to compute the overall metrics for the model. Mul-

tiple averaging methods are available. 

The micro average is computed over all samples and for multi-class classification 

it is equal to the overall accuracy [39]. 

The weighted average of a metric is the mean of the per-class metrics weighted 

by the support of each class [39]. 

The macro average of a metric is the arithmetic mean over all classes [39]. The 

macro average is especially important when the support for each class is not bal-

anced but all classes should be rated equally.  
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3 Experimental Setup 

This chapter contains general information about the experimental setup used for all 

the experiments. This includes an analysis of the given corpora, a description of the 

performed data pre-processing as well as information about used metrics, infra-

structure, frameworks and training parameters.  

3.1 Corpora 

For this thesis, only the SDS-200 and STT4SG-350 corpora were used [6], [7]. The 

Swiss Parliaments Corpus contains mainly Bernese dialect and is therefore not suit-

able for dialect identification [20]. The same applies to the Radio Rottu Oberwallis 

corpus which exclusively contains dialects within Wallis [21]. 

Within this chapter, the SDS-200 and STT4SG-350 corpora will be introduced, ana-

lysed and compared. Both corpora are some of the newest Swiss German speech 

corpora and cover a wide range of Swiss German speaking regions in Switzerland. 

3.1.1 SDS-200 Corpus 

The SDS-200 corpus is a collection of 200 hours of Swiss German dialectal speech 

[6]. The corpus is publicly available on SwissNLP [40]. It contains recordings of 

Swiss German dialectical speech with a wide range of vocabulary. The corpus was 

created with an online web recording tool, which presented volunteers with a sen-

tence in Standard High German that they then had to translate into their correspond-

ing Swiss German dialect. These sentences were chosen from Swiss newspapers. 

The volunteers also provided personal information like their age and the prove-

nance of the dialect. This corpus is well suited for dialect identification. The record-

ings were saved in the MP3 format and validated by other participants which in-

creased the accuracy of the corpus. Finally, a corpus containing 142,545 samples 

from 3,816 speakers was made publicly available. 

3.1.2 STT4SG-350 Corpus 

The STT4SG-350 corpus is the newest corpus available regarding Swiss German di-

alectal speech [7]. It contains 343 hours of speech provided by 316 different speak-

ers who have created 247,527 recordings. 

The corpus was created similarly to the SDS-200 corpus with a web app and a vali-

dation process [6]. In phase 1 of the collection process, recordings were saved in the 

MP3 format, but for phase 2 the format was changed to FLAC. The recorded sen-

tences were chosen from newspapers and parliament minutes. The recordings were 

enhanced with the provenance of the dialect as well as the gender and age of the 

speaker. Instead of creating contests or advertisements on social media like it was 
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done for the SDS-200 corpus, participants for the STT4SG-350 corpus were paid and 

chosen via testingtime13 and seniorsatwork14. 

The corpus is divided into seven subregions15 called Basel, Bern, Grisons, Central 

Switzerland, Eastern Switzerland, Valais, and Zurich [7]. Through the selection of 

speakers during recruitment, the number of speakers per subregion was achieved 

to be well balanced. Finally, a well-balanced corpus of around 45 speakers and 

30,000 to 40,000 recordings per subregion was made available. 

3.1.3 Corpora Analysis and Comparison 

To gain a comprehensive understanding of the coverage of German-speaking parts 

of Switzerland, the location of samples was rendered on a map. For this the zip code 

was used, which is present in both corpora and represents the dialectical prove-

nance of each speaker. To render the samples on a map, we enhanced each sample 

with the longitude and latitude by using the official directory of cities and towns 

provided by the Federal Office of Topography (swisstopo) [41]. 

In case a zip code appeared multiple times within the directory, the latitude and lon-

gitude of the central location was used. For example, the zip code 8471 for which 

entries exist with the names Rutschwil, Dägerlen, Oberwil, Berg and Bänk, each hav-

ing slightly different longitude and latitude. 

Finally, with the help of the Python packages OSMnx16 and Openstreetmap17 a map 

of Switzerland was rendered with the location of each sample for both corpora, 

shown in the Figure 2 on the next page. 

 
13 https://www.testingtime.com 

14 https://www.seniorsatwork.ch 

15 In the latest publication of the STT4SG-350 corpus, the subregion attribute was renamed to dialect 

region. Whenever subregion is mentioned throughout this thesis it is referred to the dialect region. 

16 https://osmnx.readthedocs.io/en/stable 

17 https://www.openstreetmap.org 

https://www.testingtime.com/
https://www.seniorsatwork.ch/
https://osmnx.readthedocs.io/en/stable
https://www.openstreetmap.org/
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Figure 2: Location of Samples in Switzerland 

As seen in the Figure 2 above, a lot of samples are located around Zurich and espe-

cially for the STT4SG-350 around Basel. Unfortunately, the regions Grisons and Va-

lais are quite empty. The publishers of the STT4SG-350 corpus mentioned the chal-

lenges of finding enough participants for the subregion Valais [7]. 

Both corpora contain samples from speakers with different genders and ages, but 

only a few samples for teens and people in their seventies. The gender and age dis-

tribution for both corpora are shown in the Figure 3 and Figure 4 below. 

 

Figure 3: Age and Gender Distribution for SDS-200 

 

Figure 4: Age and Gender Distribution for STT4SG-350 
 

The figures above visualises that the age distribution is more balanced in the SDS-

200 corpus compared to the STT4SG-350 corpus, whereas the gender distribution 

is more balanced in the STT4SG-350 corpus compared to the SDS-200 corpus. 



 

16 

Unfortunately, there is no definitive evidence to confirm whether any participants 

in the data collection for the SDS-200 corpus also participated in the data collection 

for the STT4SG-350 corpus. However, when comparing the available information 

such as zip codes, gender, and age across both corpora, there is a possibility of at 

least 65 speakers being present within both corpora. Upon manual comparison of 

recordings, a high likelihood was observed that at least one participant appears in 

both corpora. The voice of the client 84e1fca6-1a6e-4579-9688-072cc01ec094 from 

the SDS-200 corpus and the client c382ed83-337b-4571-baf3-008518ede862 from 

the STT4SG-350 corpus sound remarkably similar18. Any other client overlaps have 

been ignored for the purpose of this thesis. It is important to note that, under certain 

conditions, the same speaker may be present in both data corpora with different 

client identifiers. 

When it comes to the distribution of samples per speaker, the STT4SG-350 has much 

more samples per speaker as shown in the Figure 5 below. 

 

Figure 5: Distribution of Samples to Speakers per Corpus 

In the SDS-200 corpus most speakers recorded between 100 and 200 samples. But 

overall, the number of samples per speaker has a high variance. Three speakers even 

have more than 10,000 samples in the SDS-200 corpus. In the STT4SG-350 the dis-

tribution of samples to speakers looks quite different, with most speakers having 

between 1,000 and 5,000 samples. In later experiments conducted in this thesis, the 

distribution of samples to speakers proved to be an important factor for dialect iden-

tification.  

 
18 Through all experiments in this thesis, these clients were contained within the same train split. 
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3.2 Data Pre-Processing 

Before training models on the data from the corpora, certain pre-processing steps 

were necessary. The pre-processing includes conversion, normalisation, and enrich-

ment of data. In the following subchapters, the performed pre-processing steps are 

explained in detail. 

3.2.1 Re-Encoding of Audio Files 

The speech recordings from the newer STT4SG-350 corpus were saved in the 

FLAC19 format. With this format, no audio data is lost during encoding but with the 

trade-off of larger file sizes. Unfortunately, the FLAC files of the STT4SG-350 corpus 

were not readable by the various libraries and commonly used media players. For 

example, Windows Media Player and QuickTime Player had difficulties playing these 

files. The other files saved in the MP3 format did not have the same problems. 

The root cause of those problems was missing audio duration information in the 

header of the FLAC files. To fix the issue and allow usage of the files, the missing 

header information needed to be added. To accomplish this, the FFMPEG tool20 was 

used to re-encode all the affected FLAC files, without change the audio itself. 

3.2.2 Decoding of Audio Files 

The used neural networks expect to receive the audio data as raw waveforms sam-

pled at 16 kHz. This makes it necessary to decode the audio files from an audio for-

mat such as MP3 or FLAC to raw waveforms sampled at 16kHz before they can be 

fed into the neural networks. 

To avoid doing this multiple times for each experiment, the audio files were decoded 

and then packed into a data file during a pre-processing step. During training or test-

ing, the data was then already prepared to be fed through the neural networks and 

just had to be read from the data file. 

The HDF521 format, as described in the Chapter 2.4 above, was chosen for this as it 

allows fast random access to data regions and supports large amounts of data. The 

same format was already successfully used in a preceding thesis [9]. 

The final data file reached a size of over 118 gigabytes and took multiple hours to 

create. But it only had to be created once on each machine and was then used for all 

the experiments on that machine. 

 
19 https://xiph.org/flac 

20 https://ffmpeg.org 

21 https://www.hdfgroup.org/solutions/hdf5 

https://xiph.org/flac
https://ffmpeg.org/
https://www.hdfgroup.org/solutions/hdf5
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3.2.3 Removal of Samples with Missing Attributes 

In the SDS-200 corpus, numerous samples were deemed unusable and were conse-

quently excluded from this thesis. A critical factor contributing to this exclusion was 

the lack of location metadata for the speakers who recorded these samples. The ab-

sence of location metadata such as zip code and canton rendered approximately 

29,428 data samples from 2,798 speakers unusable for this thesis. Moreover, an ad-

ditional 6,136 clips within the SDS-200 corpus were discarded due to their invalid status, as indicated by the <clip_is_valid= column. 
Within the STT4SG-350 corpus, five speakers had missing zip code attributes. To 

add the missing attributes, we contacted the affected speakers and asked them 

whether they can provide the missing information. Unfortunately, the process of re-

ceiving their contact information, contacting them and receiving their answers took 

an extensive amount of time. Because at this point the first experiments were al-

ready carried out, we decided to not include these samples within the experiments 

of this thesis. However, the samples of those speakers can be used for future work. 

The Table 2 below lists the newly provided zip codes of each affected speaker. 

Affected Client ID of Speaker Newly Provided Zip Code 

3ce6b6dc-6c03-48c1-83bd-024bbecfaf9a 8000 

3e4bf13e-aaa4-454c-9b3e-02de4b8c7b6a 8953 

4bda89af-ea8f-42aa-9f1d-b869843a42fa 3600 

93ca247b-14da-4169-875a-ebb71da3e8de 7000 

fd385e2c-0e92-4a23-914e-420a9106ae33 3007 

Table 2: Speakers with Missing Zip Code Attribute 

3.2.4 Removal of Corrupt and Long Recordings 

When working with variable-length data, the batch size needs to be selected so that 

the batch with the longest sample fits into memory. This means that the maximum 

possible batch size for a given machine depends on the length of the longest sample. 

During the first experiments often <Out of Memory= failures occurred because of 

some very long samples in the train dataset. After an analysis of the clip length dis-

tribution, some outliners with a duration of more than 16 seconds were identified, 

as visualised in the Figure 6 on the next page. 
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Figure 6: Number of Recordings per Length and Corpus 

During a detailed analysis of the outliners, six clips were identified in the SDS-200 

corpus from the same speaker, which seemed to be corrupt. When listening to the 

affected audio files, it appeared as if they had been stretched. Other recordings from 

the same speaker were not affected. The Table 3 on the next page lists the affected 

clips.  
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Client ID of Affected Speaker Affected Clip ID 

bef06101-2800-4a5f-86e4-c169edf667a6 88503 

bef06101-2800-4a5f-86e4-c169edf667a6 88505 

bef06101-2800-4a5f-86e4-c169edf667a6 88506 

bef06101-2800-4a5f-86e4-c169edf667a6 88504 

bef06101-2800-4a5f-86e4-c169edf667a6 88513 

bef06101-2800-4a5f-86e4-c169edf667a6 88507 

Table 3: Corrupt Recordings within SDS-200 Corpus 

Because the recordings appeared to be corrupt and they prevented an increase of 

the batch size, it has been decided to not to use them for this thesis. 

3.2.5 Addition of Canton Group Label The project thesis <Automatic Detection of Swiss German Dialects using Wav2Vec= 

[8] divided the SDS-200 corpus into four canton groups, which are shown in the Ta-

ble 4 below. 

Canton Group Name Cantons 

Highest-Alemannic (HA) GL, NW, OW, SZ, UR, VS 

Western-High-Alemannic (WA) BE, BS, FR, SO 

Central-High-Alemannic (CA) AG, LU, ZG, ZH 

Eastern-High-Alemannic (EA) AI, AR, GR, SG SH, TG 

Table 4: Canton Groups [8]  

For reproducing some of the experiments from the predecessor thesis, the canton 

group label was added to both corpora. The map in Figure 7 on the next page visu-

alises the four canton groups and the location of the samples using the same ap-

proach as in the Chapter 3.1.3 above.  
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Figure 7: Canton Groups and Location of Samples in Switzerland 

Between these four canton groups the number of speakers is not balanced, as shown 

in the Figure 8 below. 

 

Figure 8: Number of Speakers per Corpus and Canton Group 
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The Figure 8 above visualises that the number of speakers per canton groups is more 

balanced in the STT4SG-350 than in the SDS-200 corpus, but the STT4SG-350 corpus 

contains less speakers compared to the SDS-200 corpus. For the Highest Alemannic 

(HA) group within the SDS-200 corpus, only a small number of speakers are availa-

ble compared to the other canton groups.  

3.2.6 Addition of Subregion Label to SDS-200 Corpus 

The STT4SG-350 corpus introduced the subregion label [7]. Compared to the canton 

group label, which is separated into four classes, the subregion separates the sam-

ples into the seven classes Basel, Bern, Grisons, Central Switzerland, Eastern Swit-

zerland, Valais, Zurich. The Figure 9 below visualises the distribution of the samples 

from the corpus SDS-200 and STT4SG-350 into the subregions. 

 

Figure 9: Subregions and Location of Samples in Switzerland 

As the STT4SG-350 corpus does not divide these subregions based on fixed canton 

borders, it was not straightforward to map the subregion label to the SDS-200 cor-

pus. In cases where all samples from the STT4SG-350 corpus were assigned to a sin-

gle subregion within a canton, the corresponding samples from the SDS-200 corpus 

within the same canton were also mapped to that subregion. However, for cantons 

that contained samples from multiple subregions, the samples from the SDS-200 

corpus within those cantons were dropped if there was no possibility of mapping 

them to a zip code from a sample in the STT4SG-350 corpus. As a result, a total of 

14,772 samples from 256 speakers were dropped, which corresponds to approxi-

mately 4.7% of all samples in the SDS-200 corpus. 
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The Figure 10 below visualises the dropped samples and their location. The dropped 

samples are mainly from the cantons Aargau and St. Gallen.  

 

Figure 10: Dropped Samples from SDS-200 Corpus  

During the initial pre-processing of the SDS-200 corpora, the geographical locations 

like longitude and latitude were not yet available. Consequently, it was not possible 

to categorise the regions based on their geographical location at that time. Upon 

later analysis, it became evident that a mapping based on the geographical location 

could have been performed. Fortunately, most of these samples would have been 

assigned to subregions such as Bern, Zurich and Eastern Switzerland, which have a 

high number of samples and speakers available compared to other subregions. 

For the subregions, the number of speakers is well balanced in the STT4SG-350 cor-

pus, but in the SDS-200 corpus, the subregions Zurich and Bern have significantly 

more speakers than other subregions such as Valais, Grisons and Basel. The Figure 

11 on the next page visualises the number of speakers per corpus and subregion. 
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Figure 11: Number of Speakers per Corpus and Subregion 

3.3 Train and Test Split 

To evaluate the performance of a model it is necessary to use different samples for 

training and testing. To accomplish that, corpora are always split into a train and 

test dataset. Depending on the specific task, additional criteria need to be met. This 

chapter will describe how train and test splits were created for this thesis. 

For classification tasks, the distribution of the samples from each class should be 

equal between the train and test dataset. For example, it is not desired to have 90% 

of the samples for one class in the test dataset and only 10% in the train dataset. 

Additionally, for speech tasks it can be important to also separate the speakers. Sam-

ples of a speaker should then either be in the train or test dataset but not in both. If 

this separation is not done, then the performance of the model might be evaluated 

too high as the model learns characteristics of a speaker. In dialect identification this 

proved to be an important topic, which will be covered more deeply in the experi-

ments section of this thesis. 

For the STT4SG-350 corpus, a train-test split is already available which can be used 

[7]. In these splits the classes are distributed equally and the speakers are separated. 

For the SDS-200 corpus, as well as for the mixed corpora which will be introduced 

later in the Chapter 4.2 below, it was necessary to manually create a train and test 

split. 
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To create a train and test split which is both stratified and grouped, the samples are 

first grouped by the group attribute. After that, the created groups are randomly 

split according to a given ratio and then joined again with their samples. This results 

in a split where the samples in a group are guaranteed to be separated. The other 

criteria, such as the effective split ratio and class distribution, are then evaluated 

and a score is assigned to the created split. This is then repeated multiple times to 

create a vast variety of random splits with different scores. Finally, the best-scored 

split is chosen. 

The above-described method was used to create all the splits used in this thesis. The 

client ID from the SDS-200 corpus and STT4SG-350 corpus was used as a group at-

tribute and a split ratio of 80% for train, 10% for valid and 10% for test was used. 

An overview of all the created splits can be found in the Appendix 8.3 below and 

details like the number of samples contained in each split can be found in Appendix 

8.4 below. 

3.4 Model Architecture 

All the used models follow the same generic architecture which was mostly inspired by previous bachelor9s theses in the field of Swiss German dialect identification [9]. 

The main difference is that the implementation was completely revised using newer 

frameworks as described in Chapter 3.5 below. 

Another small difference is the usage of a log-softmax activation function in the last 

layer of the classifier. Because of that difference the negative log-likelihood loss 

function was used instead of the cross-entropy loss function for training the model. 

For multi-class classification maximising the likelihood is the same as minimising 

the cross entropy and therefore those training objectives can be used interchangea-

bly. 

The model receives raw waveforms of speech (S), extracts features (F) and produces 

a probability distribution over the available classes to predict (C). For classification, 

the class with the maximum probability is selected. The Figure 12 below visualises 

the architecture of the models. 

 

Figure 12: Model Architecture 
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The Figure 12 above visualises the modules from which the model is built. The first 

part is a pre-trained model such as wav2vec or Whisper which receives raw wave-

forms of speech (S). Afterwards a single-layer projector projects the output of the 

pre-trained models and then a mean pooling is applied to reduce the dimensionality. 

The result is a one-dimensional feature vector (F). This feature vector (F) is then fed 

into a single-layer neural classifier which uses softmax as its activation function to 

create a probability distribution over the classes. 

3.5 Frameworks 

The code for training and testing the models was written entirely in Python and uses 

the SpeechBrain framework which is a research-centric open-source all-in-one con-

versational AI toolkit based on PyTorch released in 2021 [42]. The decision was 

made to use the SpeechBrain framework because it provides various functionalities 

required for working with speech out-of-the-box. With the SpeechBrain framework 

the hyperparameters are conveniently managed in YAML files. This allows testing 

models in different configurations without any code changes. During the creation of 

this thesis, a major release22 of the PyTorch framework containing the functionality 

to compile models to increase training and inference performance was published. 

By upgrading to this latest framework version and using the compilation for models, 

the training duration was decreased. The Weights & Biases23 machine learning plat-

form was used to monitor the training process and performance of the models. 

3.6 Training Procedure 

The used training procedure was mainly given by the SpeechBrain framework [42]. 

Training was done over multiple epochs. Each epoch had a training and a validation 

phase. During the training phase all the samples in the train dataset were fed 

through the neural network in batches and gradients were accumulated. After sev-

eral gradients had been accumulated, the optimisers updated the parameters of the 

model according to the learning rate and optimiser settings. After the completion of 

one training epoch, the classes for all the samples in the validation dataset were pre-

dicted during a validation phase. Afterwards the performance metrics were com-

puted and reported to the Weights & Biases machine learning platform.  

 
22 https://pytorch.org/blog/pytorch-2.0-release 

23 https://wandb.ai 

https://pytorch.org/blog/pytorch-2.0-release
https://wandb.ai/
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3.7 Performance Metrics 

The validated models are all multi-class classifiers, and therefore the traditional 

metrics for classification such as accuracy, precision, recall and F1 score, as ex-

plained in Chapter 2.4 above, were used to measure the performance of the models. 

For all the conducted experiments both the micro F1 and macro F1 scores were cal-

culated using the classification report utility from the scikit-learn framework24. Be-

cause the aim of this thesis is to evaluate the model which performs best across all 

dialect regions, the macro F1 score was prioritised as it weights all classes equally. 

When models have been validated multiple times during training, the best perfor-

mance metric was considered. 

3.8 Training Parameters 

While training parameters differ from experiment to experiment, certain parame-

ters stayed mostly the same for all the conducted experiments. This chapter de-

scribes these parameters and explains how they were defined. 

3.8.1 Optimiser and Learning Rate 

All the experiments used the Adam optimiser [43]. While different optimisers can 

have a significant effect on the performance of a neural network, this effect was not 

explored in this thesis. The Adam optimiser was chosen as it is a common choice for 

deep learning with quick convergence and great robustness. This is because the 

Adam optimiser uses an adaptive learning rate, which means that the learning rates 

are adapted for individual parameters based on estimates. The specified learning 

rate is only used as an upper limit. 

Apart from the used optimiser, the learning rate plays a significant role in the per-

formance of a model. The learning rate is even described as <the single most im-
portant hyperparameter and one should always make sure that has been tuned= 

[44]. We decided to not play around with the learning rate too much for most exper-

iments nevertheless, so that no unexpected side effects are introduced. 

A common practice is the decay of the learning rate over the training period which 

can help in both optimisation and generalisation. One explanation for why learning 

rate decays are so effective is that an initial high learning rate allows the network to 

escape local minima and decreasing the learning rate over the training period helps 

to settle down and avoid oscillation [45]. It was therefore chosen to use linear learn-

ing rate decay by starting with a high initial learning rate in the first epoch and re-

ducing the learning linearly after every epoch until the final low learning rate is 

reached in the last epoch. 

 
24 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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The pre-trained models require smaller learning rates, because they were already 

trained and just need to be fine-tuned. The other parts of our models however might 

benefit from a higher learning rate to achieve faster convergence. It was therefore 

decided to use two optimisers instead of one. The optimiser for the pre-trained 

model uses a significantly lower learning rate while the other optimiser for the rest 

of the model uses a higher learning rate. 

For the pre-trained model, the initial learning rate was taken over from predecessor bachelor9s thesis <Exploring Wav2Vec2 Pre-Training on Swiss German Dialects us-ing Speech Translation and Classification= [9] from 2022. In that thesis the authors 

used a single optimiser with an initial learning rate of 3 × 1025 and a linear decay to 

zero over 25 epochs. Instead of doing a linear decay to zero which seemed to be too 

extreme, a learning rate of 3 × 1028 was chosen as the final learning rate for the 

linear decay for the experiments in this thesis. 

For the rest of the model, the learning was chosen to be the highest stable learning 

rate possible. Because when using a learning rate decay, the learning rate only goes 

down during training, choosing the highest possible learning rate to start from 

seemed to be a reasonable choice. This evaluation was done experimentally by first 

starting with a high learning rate of 0.1 and then decreasing the learning rate until 

the loss becomes stable and is steadily decreasing. This resulted in the learning rate 

of 1 × 1023 as the initial learning rate. To have a similar decay to the pre-trained 

model, the final learning rate for the decay was chosen to be 1 × 1026. 

To summarise, for most of our experiments, two Adam optimisers configured to the 

default parameters were used. With the default parameters being a �1 of 0.9, a �2 of 0.999, an � of 1 × 1028 and a � of 0. The first optimiser was dedicated to the pre-

trained model and set to an initial learning rate of 3 × 1025 with a linear decay to 3 × 1028 over the epochs. The second optimiser was used for the projector and clas-

sifier and set to an initial learning rate of 1 × 1023 with a linear decay to 1 × 1026 

over the epochs. The specific learning rates used for each experiment can be found 

in the Appendix 8.2 below. 

3.8.2 Batch Size and Gradient Accumulation 

In deep learning, samples are fed through the neural network in batches. The batch 

sizes can have a big impact on the performance of a neural network. While larger 

batches significantly reduce the training duration at the cost of more computing re-

sources, they also lead to poor generalisation [46]. 

The maximum achievable batch size depends on the size of the model and the avail-

able computing resources. By using the training infrastructure described in the 

Chapter 3.9 below, it was not always possible to reach the desired batch size, be-

cause often not enough memory was available. However, by using gradient accumu-

lation, it is possible to train with bigger batch sizes than would fit into memory. In-

stead of stepping the optimiser on every batch, the gradients of multiple batches are 

accumulated, and then the optimiser steps once for all the accumulated batches. 
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For most experiments in this thesis, a low batch size of either 32 or 48 was chosen. 

Some experiments also use larger batch sizes such as 64 or even 256. The specific 

batch sizes used for each experiment can be found in the Appendix 8.2 below. 

3.9 Training Infrastructure 

This chapter describes the various infrastructures used to perform the experiments 

in this thesis. Like previous bachelor9s theses at the ZHAW, the official APU infra-

structure of the ZHAW was used for this thesis. This was a virtual machine on the 

OpenStack cluster from the Institute of Applied Information Technology, which was 

equipped with one NVIDIA Tesla T4 16 GB graphics card. The performance of the 

graphics card, especially the available memory, proved to be insufficient for training 

larger models in a reasonable time. Because of that, the APU infrastructure was 

mainly used for smaller models. 

For larger models, a higher performing infrastructure was needed to reduce the 

training time. While NVIDIA A100 graphics cards are available to the Centre for Ar-

tificial Intelligence at ZHAW, they were not allowed to be used for this thesis because 

of the high demand for those resources and their strict access restrictions. 

In search for an alternative, different cloud providers such as Amazon AWS25, Google 

Cloud26, Microsoft Azure27, Paperspace28, and Vast.ai29 were evaluated. Predomi-

nantly because of the low price and easy access, Vast.ai was selected. 

Vast.ai is an open GPU market and, according to his own advertisement, the market 

leader in low-cost cloud GPU rental. In contrast to the other cloud providers, Vast.ai 

offers consumer grade GPUs such as the NVIDIA GeForce series which are well per-

forming and much lower in price than data centre grade graphics cards such as the 

NVIDIA A100. The reason cloud providers do not offer these graphics cards is be-

cause the NVIDIA GeForce Driver EULA30 explicitly prohibits the deployment of the 

driver software to data centres. Since Vast.ai is an open market for individuals 

where everyone can rent out their personal graphics cards at home and those rent-

ing the graphics cards must bring their own drivers and software, this EULA re-

striction does not apply to graphics cards rented from Vast.ai. 

For bigger experiments, an instance with one or two NVIDIA GeForce RTX 3090 

24GB graphics cards was rented on Vast.ai. For the deployment of the instances a 

Docker image was created which contains all the required software components. To 

setup the instances, the training and testing code was cloned from the source code 

repository and the training data was transferred over SSH from the APU server to 

 
25 https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html 

26 https://cloud.google.com/gpu 

27 https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-gpu 

28 https://www.paperspace.com/gpu-cloud 

29 https://vast.ai 

30 https://www.nvidia.com/en-us/drivers/geforce-license 

https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://cloud.google.com/gpu
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://www.paperspace.com/gpu-cloud
https://vast.ai/
https://www.nvidia.com/en-us/drivers/geforce-license
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the Vast.ai instance. Because an instance with two graphics card is cheaper than two 

instances with one graphics card, an instance with two graphics cards was preferred 

to run two experiments in parallel. Conveniently, this also reduced the required 

setup time. 

To use as much of the available computing time, experiments were queued on the 

servers. This allows an experiment to start as soon as another one finishes and was 

accomplished using the stuff command of the Linux utility screen31.  

 
31 https://www.gnu.org/software/screen/manual/screen.html#Paste 

https://www.gnu.org/software/screen/manual/screen.html#Paste
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4 Experiments 

In this chapter the conducted experiments are presented. Each experiment has its 

own dedicated chapter in which the applied methods as well as the obtained results 

are summarised. 

Throughout this chapter, runs are referenced by their unique number denoted by 

an <R=. A detailed overview of all the experiments including the used parameters and 

corpora can be found in the Appendix 8.2 below. 

All the used corpora were split into a train, validation and test dataset. When cor-

pora are referenced as the train or validation dataset of a run, it is always referenced 

to the corresponding train or validation dataset and not to the entire corpus. A da-

taflow diagram giving an overview of all the used corpora and where their data is 

coming from is contained in the Appendix 8.3 below. Additionally, detailed numbers 

on the data contained within the used corpora and their splits can be found in the 

Appendix 8.4 below. 

4.1 Exploring Models and Corpora 

The first experiment explored the capabilities of the available resources such as pre-

trained models and corpora for Swiss German dialect identification. The goal of the 

experiment was to get an impression of the performance which can be achieved by 

using the available pre-trained models and corpora. 

4.1.1 Experimental Setup 

For the experiment multiple deep neural networks were trained and validated using 

the model architecture explained in Chapter 3.4 above. The Table 5 below contains 

the performed runs in this experiment. 

Run Model Train Dataset 

ID Pre-Trained Label Epochs Train Valid 

R01 wav2vec2-xls-r-300m canton group 3 SDS-200 SDS-200 

R02 wav2vec2-xls-r-300m canton group 3 STT4SG-350 STT4SG-350 

R03 wav2vec2-xls-r-300m subregion 3 SDS-200 SDS-200 

R04 wav2vec2-xls-r-300m subregion 3 STT4SG-350 STT4SG-350 

R05 whisper-small canton group 3 SDS-200 SDS-200 

R06 whisper-small canton group 3 STT4SG-350 STT4SG-350 

R07 whisper-small subregion 3 SDS-200 SDS-200 

R08 whisper-small subregion 3 STT4SG-350 STT4SG-350 

R09 whisper-base subregion 3 SDS-200 SDS-200 

R10 wav2vec2-xls-r-300m subregion 20 SDS-200 SDS-200 

R11 wav2vec2-xls-r-300m subregion 20 STT4SG-350 STT4SG-350 

Table 5: Models and Corpora Runs 
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All the above runs used the same optimiser and learning rates as defined in Chapter 

3.8.1 above. The batch size of 48 was chosen for all the runs. More details on the 

exact parameters used can be found in the Appendix 8.2 below. 

For the runs R05-08 in the Table 5 above, the whisper-small model was chosen be-

cause with 244 million parameters it features a comparable number of parameters 

compared to the wav2vec2-xls-r-300m model which has 300 million parameters. 

This allowed for fairer comparison between runs R01-04 and runs R05-08 when 

comparing wav2vec to Whisper. 

To evaluate which performance can be achieved using smaller models, the classifi-

cation to subregions on the SDS-200 corpus was also performed using the whisper-

base model which features only 74 million parameters compared to the 244 million 

parameters of the whisper-small model. The corresponding run is run R09 in the 

Table 5 above. 

The models were trained and validated on both the SDS-200 and STT4SG-350 cor-

pus. Both corpora were pre-processed according to the data pre-processing steps 

described in Chapter 3.2 above. The SDS-200 was split using the train-test-split 

method described in Chapter 3.3 above. For the STT4SG-350, no additional splits 

had to be created since a train and validation dataset already exists. The Figure 13 

below visualises the dataflow of the corpora. 

 

Figure 13: Dataflow of SDS-200 and STT4SG-350 Corpora 
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To have a low training duration, the training was done for only three epochs for most 

of the runs. Except for runs R10 and R11 which were trained for 20 epochs on the 

SDS-200 and STT4SG-350 corpus using the wav2vec2-xls-r-300m model. This was 

done to see if a higher performance can be achieved by training more than three 

epochs. The corresponding runs are R10 and R11 in the Table 5 above. 

4.1.2 Results 

Instead of presenting all the results consolidated into a single table, the result chap-

ter is split into multiple subchapters which go into specific aspects of the obtained 

results. A complete list of all runs and their results can be found in the Appendix 8.2 

below. 

4.1.2.1 Comparison to Predecessor Theses 

In a first comparison, the results on canton group classification on the SDS-200 cor-

pus were compared to the results of the predecessor theses. The Table 6 below sum-

marises the results of the corresponding runs from this experiment as well as the 

results of the project thesis <Automatic Detection of Swiss German Dialects using Wav2Vec= [8] from 2021 (below referenced to as PA-2021) and the bachelor9s thesis <Exploring Wav2Vec2 Pre-Training on Swiss German Dialects using Speech Trans-lation and Classification= [9] from 2022 (below referenced to as BA-2022). 

Run Model Performance 

ID Pre-Trained Micro F1 Macro F1 

PA-2021 [8] wav2vec2-xls-r-300m 52.89% 45.95% 

BA-2022 [9] CH-STT-FromPretrain-300M-Full-132 52.45% 44.38% 

R01 wav2vec2-xls-r-300m 70.36% 49.84% 

R05 whisper-small 67.53% 49.75% 

Table 6: Previous Theses Comparison 

The classification to canton groups trained on the SDS-200 corpus achieved signifi-

cantly higher F1 scores compared to the direct predecessor theses. An explanation 

on why the performance in our experiment was higher compared to the predecessor 

theses may be the use of a different optimisers and learning rates as explained in 

Chapter 3.8.1 above. This experiment was successfully able to reproduce the results 

of the project thesis <Automatic Detection of Swiss German Dialects using Wav2Vec= 
[8], which was in doubt by the authors. 

 
32 This is a wav2vec2-xls-r-300m model pre-trained on the SDS-200 corpus. More details can be found in the referenced bachelor9s thesis <Exploring Wav2Vec2 Pre-Training on Swiss German Dia-

lects using Speech Translation and Classification= [9]. 
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4.1.2.2 Comparison of Canton Group to Subregion Classification 

Apart from the comparison to the previous theses, the classification to canton 

groups is not in scope of this thesis. However, the performed runs allowed to com-

pare the performance in canton group classification to the one of subregion classifi-

cation. The results of this are summarised in the Table 7 below. 

Run Model Dataset Performance 

ID Pre-Trained Label Train Valid Macro F1 

R01 wav2vec2-xls-r-300m canton group SDS-200 SDS-200 49.8% 

R03 wav2vec2-xls-r-300m subregion SDS-200 SDS-200 35.8% 

R02 wav2vec2-xls-r-300m canton group STT4SG-350 STT4SG-350 37.7% 

R04 wav2vec2-xls-r-300m subregion STT4SG-350 STT4SG-350 20.9% 

R05 whisper-small canton group SDS-200 SDS-200 49.7% 

R07 whisper-small subregion SDS-200 SDS-200 43.1% 

R06 whisper-small canton group STT4SG-350 STT4SG-350 37.9% 

R08 whisper-small subregion STT4SG-350 STT4SG-350 26.2% 

Table 7: Canton Group to Subregion Classification Comparison 

From the results, it can be observed that the classification to canton groups gener-

ally performs better than to subregions. This matches the general assumption that 

the higher the number of classes in a classification task, the harder the task. 

4.1.2.3 Comparison of SDS-200 to STT4SG-350 Corpora 

From the performed runs the performance of models trained on the SDS-200 corpus 

can be compared to the models trained on the STT4SG-350 corpus. Because the SDS-

200 is not as balanced as the STT4SG-350 corpus, the macro F1 score is used for this 

comparison. The Table 8 below summarises the macro F1 scores of models trained 

and validated on the SDS-200 corpus against models trained and validated on the 

STT4SG-350 corpus. 

Run Model Dataset Performance 

ID Pre-Trained Label Train Valid Macro F1 

R01 wav2vec2-xls-r-300m canton group SDS-200 SDS-200 49.8% 

R02 wav2vec2-xls-r-300m canton group STT4SG-350 STT4SG-350 37.7% 

R03 wav2vec2-xls-r-300m subregion SDS-200 SDS-200 35.8% 

R04 wav2vec2-xls-r-300m subregion STT4SG-350 STT4SG-350 20.9% 

R05 whisper-small canton group SDS-200 SDS-200 49.7% 

R06 whisper-small canton group STT4SG-350 STT4SG-350 37.9% 

R07 whisper-small subregion SDS-200 SDS-200 43.1% 

R08 whisper-small subregion STT4SG-350 STT4SG-350 26.2% 

Table 8: SDS-200 to STT4SG-350 Corpora Comparison 

As it can be seen from the results in the Table 8 above, the models trained on the 

SDS-200 corpus consistently perform better than the ones trained on the STT4SG-

350 corpus. The models trained on the SDS-200 achieve significantly higher macro 

F1 scores than the ones trained on the STT4SG-350 corpus. Even though the 
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STT4SG-350 corpus contains more samples than the SDS-200 corpus. This is contra-

dicting with the initial assumption that training on the STT4SG-350 corpus can 

achieve a higher performance than training on the SDS-200 corpus since it contains 

more samples and is balanced over all classes. 

One possible explanation for this performance difference is that the samples in the 

validation dataset of the SDS-200 corpus are easier to predict than the ones of the 

STT4SG-350 corpus and therefor a higher performance can be achieved on that val-

idation dataset. To investigate this further, the wav2vec-based runs R01-04 trained 

on the SDS-200 corpus were validated using the validation dataset of the STT4SG-

350 corpus and vice-versa. The Table 9 below summarises the macro F1 scores from 

these cross validations. 

Run Model Dataset Performance 

ID Label Train Valid Macro F1 

R01 canton group SDS-200 SDS-200 49.8% 

R02 canton group STT4SG-350 SDS-200 26.0% 

R01 canton group SDS-200 STT4SG-350 38.0% 

R02 canton group STT4SG-350 STT4SG-350 37.7% 

R03 subregion SDS-200 SDS-200 35.8% 

R04 subregion STT4SG-350 SDS-200 13.5% 

R03 subregion SDS-200 STT4SG-350 29.0% 

R04 subregion STT4SG-350 STT4SG-350 20.9% 

Table 9: SDS-200 and STT4SG-350 Comparison using Cross Validation 

From the above results, it can be observed that the macro F1 scores of the models 

trained on the STT4SG-350 corpus are lower compared to the models trained on the 

SDS-200 corpus when validating on both the SDS-200 and STT4SG-350 corpus. This 

confirms that the models trained on the STT4SG-350 corpus are performing worse 

than the ones trained on the SDS-200 corpus.  

Another explanation for the performance difference between the SDS-200 and the 

STT4SG-350 corpus might be the difference in variety of speakers in the corpora. 

The SDS-200 corpus contains less samples, which are distributed over a larger num-

ber of speakers. The STT4SG-350 corpus on the other hand contains more samples, 

but they are distributed over a small number of speakers. This difference in distri-

bution is visualised in the Figure 5 in Chapter 3.1.3 above. 

We conjecture that the models trained on the STT4SG-350 corpus learn to recognise 

speakers instead of learning to identify dialects because there is not a big enough 

variety of speakers in the STT4SG-350 corpus to generalise the model. Further ex-

periments in the Chapter 4.3.1 below investigate this. 

4.1.2.4 Comparison of wav2vec to Whisper Models 

When comparing the performance of wav2vec2-xls-r-300m to whisper-small it can-

not be concluded whether one performs better than the other. The results of the 
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runs comparing wav2vec2-xls-r-300m to whisper-small are summarised in the Ta-

ble 10 below. 

Run Model Dataset Performance 

ID Pre-Trained Label Train Valid Macro F1 

R01 wav2vec2-xls-r-300m canton group SDS-200 SDS-200 49.8% 

R05 whisper-small canton group SDS-200 SDS-200 49.7% 

R02 wav2vec2-xls-r-300m canton group STT4SG-350 STT4SG-350 37.7% 

R06 whisper-small canton group STT4SG-350 STT4SG-350 37.9% 

R03 wav2vec2-xls-r-300m subregion SDS-200 SDS-200 35.8% 

R07 whisper-small subregion SDS-200 SDS-200 43.1% 

R04 wav2vec2-xls-r-300m subregion STT4SG-350 STT4SG-350 20.9% 

R08 whisper-small subregion STT4SG-350 STT4SG-350 26.2% 

Table 10: wav2vec to Whisper Models Comparison 

As it can be seen from the Table 10 above, in this specific experiment, the whisper-

small performed better in most cases. Interestingly, on canton group classification 

the macro F1 scores were nearly identical for both models while on subregion clas-

sification the performance was considerably better for the whisper-small model. 

In terms of training duration, training whisper-small models was noticeably slower 

than training wav2vec2-xls-r-300m models. The training durations of the runs are 

summarised in the Table 11 below. 

Run Model Dataset Training 

ID Machine Pre-Trained Label Train Duration 

R01 VAST wav2vec2-xls-r-300m canton group SDS-200 0 days 4:16 

R05 VAST whisper-small canton group SDS-200 0 days 06:59 

R02 APU  wav2vec2-xls-r-300m canton group STT4SG-350 1 days 08:47 

R06 APU whisper-small canton group STT4SG-350 2 days 12:32 

R03 VAST wav2vec2-xls-r-300m subregion SDS-200 0 days 03:39 

R07 VAST whisper-small subregion SDS-200 0 days 05:58 

R04 APU wav2vec2-xls-r-300m subregion STT4SG-350 1 days 08:38 

R08 APU whisper-small subregion STT4SG-350 2 days 13:55 

Table 11: wav2vec to Whisper Models Training Duration Comparison 

As it can be seen from the training durations in the Table 11 above, wav2vec2-xls-r-

300m models were consistently training faster. For the models trained on the APU 

instance, which is equipped with a NVIDIA Tesla T4 16GB graphics card, the training 

took an additional day for the whisper-small model. 

The performance difference might be due to the additional mel spectrogram conver-

sion required for Whisper. To reduce the training duration with Whisper models, an 

attempt was made to do the mel spectrogram conversion as a pre-processing step 

and not during training. But this would have required more than 300 gigabytes of 

disk space which was not available during this thesis. 
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4.1.2.5 Comparison to Smaller Whisper Model 

To confirm that a comparable performance can be achieved using the smaller model, 

the classification to subregion was also performed on the SDS-200 corpus using the 

whisper-base model which has only 74 million parameters. The Table 12 below 

summarises the training duration of the runs which were all performed on an Vast.ai 

instance equipped with an NVIDIA RTX 3090 24GB graphics card and ran for 3 

epochs. 

Run Model Performance Training 

ID Pre-Trained Label Micro F1 Macro F1 Duration 

R03 wav2vec2-xls-r-300m subregion 63.1% 35.8% 0 days 03:39 

R07 whisper-small subregion 69.3% 43.1% 0 days 05:58 

R09 whisper-base subregion 55.0% 37.9% 0 days 01:42 

Table 12: Smaller Whisper Model Comparison 

As it can be seen from the Table 12 above, the F1 scores are lower when using the 

whisper-base model. However, the training duration was reduced from nearly 6 

hours to 1h and 42 minutes while still achieving a comparable performance. 

It was found that using the whisper-base model is especially useful to reduce the 

training duration when testing out model configurations. Because of that most of the 

later experiments in this thesis use the whisper-base version of Whisper.  

4.1.2.6 Comparison of Training Epoch Counts 

To further validate the results, the training epoch count of the wav2vec2-xls-r-300m 

model was extended to 20 epochs. This resulted in higher micro F1 and macro F1 

scores which are displayed in the Table 13 below. 

Run Model Dataset Train Performance 

ID Pre-Trained Train Valid Epochs Micro F1 Macro F1 

R03 wav2vec2-xls-r-300m SDS-200 SDS-200 5 63.1% 35.8% 

R10 wav2vec2-xls-r-300m SDS-200 SDS-200 20 66.6% 42.0% 

R04 wav2vec2-xls-r-300m STT4SG-350 STT4SG-350 5 23.9% 20.9% 

R11 wav2vec2-xls-r-300m STT4SG-350 STT4SG-350 20 25.3% 23.2% 

Table 13: Training Epoch Counts Comparison 

As it can be seen from the Table 13 above, the macro F1 scores of the runs training 

for 20 epochs were slightly higher compared to the runs with only 3 epochs. How-

ever, the highest validation micro F1 score was always reached at around 3 to 5 

epochs. This indicates that training beyond 5 epochs is probably not beneficial. The 

higher learning rate and the use of multiple optimisers might explain why more 

epochs were not required compared to previous thesis which were doing 25 epochs 

[8], [9].  
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4.2 Exploring Mixed Corpora 

In the previous experiment the performance which can be achieved on the existing 

SDS-200 and STT4SG-350 corpora was explored. This experiment explored the per-

formance which can be achieved when both corpora are combined to bigger cor-

pora. We anticipated that mixed corpora could benefit from both the high variety of 

speakers in the SDS-200 corpus and the high number of high-quality samples in the 

STT4SG-350 corpus, therefore providing a better train dataset which can achieve 

higher macro F1 scores. 

4.2.1 Creation of the MIX-ALL Corpus 

To create the mixed corpora, first the MIX-ALL corpus was created. It contains all 

the samples from both the SDS-200 and the STT4SG-350 corpus. All the samples 

were taken from the STT4SG-350 corpus and not only the balanced subset. The sam-

ples which have been removed as part of the pre-processing are not present in the 

MIX-ALL corpus. The MIX-ALL corpus served as a base for the creation of further 

mixed corpora. The Figure 14 below visualises this in a dataflow diagram. 

 

Figure 14: Dataflow of MIX-ALL Corpus 

For the mixing, it was necessary to identify clips uniquely over both corpora. For 

this a new identifier was needed because the clip identifier which is already present 

in both corpora was not globally unique and therefore could not be used. The sim-

plest approach to create a deterministic globally unique identifier is to use a hash 

function. To create the unique identifier the dataset name, the clip identifier as well 

as the path to the clip were concatenated and then hashed using the MD5 hash func-

tion. Afterwards, a sanity check was performed to ensure that no hash collisions oc-

curred. 

The MIX-ALL corpus contains in total 339,629 samples from 1,632 speakers. The 

subregion with the least number of samples in the MIX-ALL corpus is the subregion 

Grisons, which only has 29,717 samples compared to Zurich, which has 85,849 sam-

ples. The Table 14 on the next page summarises the total samples as well as the total 

speakers per subregion in the MIX-ALL corpus. 
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Subregion Total Samples Total Speakers 

Grisons 29,717 90 

Basel 33,973 93 

Central Switzerland 39,644 168 

Eastern Switzerland 40,572 196 

Valais 44,628 66 

Bern 50,474 365 

Zurich 85,849 398 

Table 14: Total Samples and Speakers per Subregion in MIX-ALL Corpus 

4.2.2 Creation of Balanced Mixed Corpora 

The distribution of samples to the subregions is not balanced in the MIX-ALL corpus. 

But for multi-class classification tasks an unbalanced corpus can lead to substantial 

performance decreases [47]. If the classes are not equally present in the train da-

taset, the model will not be able to perform the same for all classes. Because of that 

the MIX-ALL corpus was reduced into multiple balanced corpora that can be used 

for training. 

The balanced corpora were defined by the number of samples per subregion. This 

resulted in perfectly balanced corpora. To create those corpora, a special selection 

process for the samples was used for each subregion. The goal of the selection pro-

cess was to include the whole variety of speakers. 

During the selection process samples for a subregion were chosen from each 

speaker in turns to fill up the corpus. In case no more samples from a speaker were 

left, the speaker was skipped. This procedure was repeated until the number of sam-

ples within the subregion reached the target size. This approach allowed all samples 

from speakers where only a few samples were available to be included. However, to 

maintain a balanced corpus, the corpus was filled with samples from speakers hav-

ing many samples. 

As a starting point, it was decided to create a MIX-20000 corpus with exactly 20,000 

samples per subregion and a MIX-10000 with exactly 10,000 samples per subregion. 

In theory it would have been possible to create a perfectly balanced mixed corpus 

with up to 29,717 samples per subregion, but this possibility was not further ex-

plored in this thesis, because the MIX-20000 corpus already contains all the samples 

from most of the speakers and further increasing the corpus size would just have 

included more samples from speakers which are already over-present in the corpus. 

The Figure 15 on the next page visualises the dataflow of the MIX-20000 and MIX-

10000 corpora. The MIX-ALL corpus was reduced using the sample selection as de-

scribed above to create a MIX-20000 and MIX-10000 corpora. Afterwards, those cor-

pora were then split using the train-test-split method as described in Chapter 3.3 

above. 
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Figure 15: Dataflow of MIX-20000 and MIX-10000 Corpora 

4.2.3 Experimental Setup 

To explore the performance which can be achieved by using the mixed corpora, runs 

were performed on the corpora MIX-ALL, MIX-20000 and MIX-10000. The Table 15 

below lists the runs of this experiment. 

Run Model Dataset 

ID Pre-Trained Train Valid 

R12 whisper-base MIX-ALL MIX-ALL 

R13 whisper-base MIX-20000 MIX-20000 

R14 whisper-base MIX-10000 MIX-10000 

R15 wav2vec2-xls-r-300m MIX-20000 MIX-20000 

R16 whisper-small MIX-20000 MIX-20000 

Table 15: Mixed Corpora Runs 

The training was done for 20 epochs with a batch size of 48. All the above runs used 

the same optimisers and learning rates as defined in Chapter 3.8 above. More details 

on the exact parameters used can be found in the Appendix 8.2 below. 
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For runs R12-14 the whisper-base model was chosen since it provides reasonable 

performance with a low training duration. But to see which performance can be 

achieved with larger models, the training on the MIX-20000 corpus was also per-

formed with the wav2vec2-xls-r-300m model in run R15 and with the whisper-

small model in run R16. 

4.2.4 Results 

The results of the runs mixed corpora runs are summarised in the Table 16 below. 

Run Model Dataset Performance 

ID Pre-Trained Train Valid Micro F1 Macro F1 

R12 whisper-base MIX-ALL MIX-ALL 61.7% 59.2% 

R13 whisper-base MIX-20000 MIX-20000 53.0% 51.1% 

R14 whisper-base MIX-10000 MIX-10000 61.4% 60.8% 

R15 wav2vec2-xls-r-300m MIX-20000 MIX-20000 54.6% 51.7% 

R16 whisper-small MIX-20000 MIX-20000 49.1% 47.6% 

Table 16: Mixed Corpora Comparison 

From the results in the Table 16 above, it can be observed that the model trained on 

the MIX-ALL corpus reached the highest micro F1 score. But because the MIX-ALL is 

not balanced, the macro F1 score needs to be prioritised. When it comes to macro 

F1 score the models trained on the MIX-ALL and MIX-20000 both achieved lower 

scores than the model trained on the MIX-10000 corpus even though the other cor-

pora contain more samples. However, these results must be viewed with scepticism, 

as the scores are measured on different validation datasets. The samples in the val-

idation dataset of the MIX-10000 might be easier to predict than the ones of the MIX-

ALL and MIX-20000 corpus since they have been randomly selected during the test-

train-split creation. Unfortunately, it is not possible to do a cross validation as it was 

done before with the SDS-200 and the STT4SG-350 corpus in Chapter 4.1.2.3 above, 

because the train and validation datasets of these corpora might contain overlap-

ping speakers. We conjecture that the MIX-10000 corpus achieves higher macro F1 

scores because it delivers the best samples per speaker ratio of all the tested cor-

pora. 

The larger wav2vec2-xls-r-300m and whisper-small models trained on the MIX-

20000 reached lower macro F1 scores than the smaller whisper-base trained on the 

smaller MIX-10000 corpus. Interestingly, the larger whisper-small model trained on 

the MIX-20000 even performed worse than when using the smaller whisper-base 

model. In the end, this even was the worst performing model of this experiment. 
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4.3 Exploring Speaker Recognition 

In the first experiment the existing SDS-200 and STT4SG-350 corpora and in the 

previous experiment the mixed corpora were explored. In both experiments train-

ing on larger corpora with more samples and especially more samples per speaker 

seemed to perform worse than using smaller corpora with fewer samples per 

speaker. We conjecture that this is because the models tend to recognise speakers 

instead of identifying dialects especially when presented with fewer speakers and 

more samples per speaker during training. 

In this experiment our theory of speaker recognition was explored in more detail by 

constructing mixed corpora of increasing size and observing at which corpora size 

models trained on the corpora perform worse on dialect identification and better at 

speaker recognition. This would give an estimate on which corpora size and espe-

cially the number of samples per speaker which is optimal for dialect identification. 

4.3.1 Reduction of the MIX-20000 Corpus 

To test which number of samples per subregion gives the best trade-off between 

variety of speakers and total amount of samples, the train dataset of the MIX-20000 

corpus was reduced to multiple smaller train datasets using the same method as it 

was used before in Chapter 4.2.2 above. These reduced corpora can then use the 

same validation dataset as the MIX-20000 corpus, which makes them easier to com-

pare against each other. The Figure 16 below visualises the dataflow of the reduced 

corpora and from which data source they have been created. 

 

Figure 16: Dataflow of Reduced Corpora 
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The Table 17 below summarises the total samples and speakers as well as the mean 

samples per speaker of the MIX-20000 and the reduced corpora. The sizes of the 

reduces corpora were chosen so that the number of samples per subregion roughly 

doubled. 

Corpus Total Samples Total Speakers Mean Samples per Speaker 

MIX-100R 700 649 1.08 

MIX-200R 1,400 1,011 1.38 

MIX-500R 3,500 1,376 2.54 

MIX-1000R 7,000 1,376 5.09 

MIX-2000R 14,000 1,376 10.17 

MIX-5000R 35,000 1,376 25.44 

MIX-10000R 70,000 1,376 50.87 

MIX-20000 140,000 1,376 101.74 

Table 17: Samples per Speaker of Reduced Corpora 

As can be seen in the Table 17 above, all the available speakers were already in-

cluded with 500 samples per subregion. After that only the number of total samples 

and the mean samples per speaker was increasing. The MIX-20000 contains an 

arithmetic mean of 101.74 samples per speaker. 

The Table 17 above, however, does not illustrate the distribution of the samples to 

the speakers. To better visualise this and the trade-off between the variety of speak-

ers to the total amount of samples, the Figure 17 on the next page visualises the 

number of samples per speaker within each subregion and each reduced corpus. It 

shows that the bigger the corpora, the smaller the number of speakers which con-

tribute the majority of samples to the corpora. The detailed numbers can be found 

in the Appendix 8.5 below. 
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Figure 17: Samples per Speaker in Mixed Corpora 

For example, in the MIX-20000 corpus most samples are from only around 50 speak-

ers per subregion. For the subregion Grisons more than 730 samples were taken 

from 18 speakers. This means that for the subregion Grisons 65% of all samples are 

only from 18 speakers from the total of 89 speakers. 
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To evaluate the performance on speaker recognition, for every mixed corpus an ad-

ditional test dataset was generated containing samples that do not occur in the train 

dataset but are from the same speakers as in the train dataset. With this test dataset 

it was possible to evaluate the capability of the models to recognise the speakers on 

which the models were trained on. 

To create this test dataset, for every speaker in the reduced train dataset at maxi-

mum of five samples from the same speaker were chosen from the MIX-ALL corpus 

which were not included in the reduced train dataset. 

4.3.2 Experimental Setup 

To compare the performance between the reduced corpora a whisper-base model 

was trained on each reduced train dataset and then validated on the validation da-

taset of the MIX-20000 corpus. The Table 18 below lists these runs. 

Run Model Dataset 

ID Pre-Trained Train Valid 

R17 whisper-base MIX-100R MIX-20000 

R18 whisper-base MIX-200R MIX-20000 

R19 whisper-base MIX-500R MIX-20000 

R20 whisper-base MIX-1000R MIX-20000 

R21 whisper-base MIX-2000R MIX-20000 

R22 whisper-base MIX-5000R MIX-20000 

R23 whisper-base MIX-10000R MIX-20000 

R24 whisper-base MIX-20000 MIX-20000 

Table 18: Speaker Recognition Runs 

The models were trained for 5 epochs and use a batch size of 32. The same optimis-

ers and learning rates were used as explained in Chapter 3.8.1 above.  
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4.3.3 Results 

The Figure 18 below visualises the micro F1 scores of the models on the validation 

dataset of the MIX-20000 corpus as well as on the corresponding test dataset with 

the same speakers as in the train dataset of each corpus. 

 

Figure 18: Reduced Corpora Validation to Same Speaker Comparison 

The results show that the performance of the model was increasing with the corpus 

size but after 10,000 samples per class the performance was declining. These results 

confirm that the MIX-10000R corpus achieved the best performance over all dialect 

regions. We conjecture that this is because the MIX-10000R corpus has the best sam-

ples per speaker ratio of all the corpora. 

Overall, the performance on the samples from the same speakers was very high and 

increasing with the corpus size. Because the performance was higher than the one 

on the validation dataset of the MIX-20000 corpus, it seems like the models had an 

advantage when classifying the same speakers. This is a strong indication that the 

model is learning to recognise speakers instead of identifying dialects.  
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4.4 Exploring Speech Augmentation 

The previous experiment showed that when training with more samples per 

speaker, the models tend to recognise speakers instead of identifying dialects. In this 

experiment, various speech augmentation methods were explored on the mixed cor-

pora. We anticipated that speech augmentation can help to overcome the problem 

of learning to recognise speakers instead of identifying dialects by artificially ex-

tending the variety of speakers and increasing model generalisation.  

4.4.1 Augmentation Methods 

For speech augmentation various well-known augmentation methods are available 

to choose from. The augmentations used in this experiment are all directly applied 

to the raw waveforms before feeding them through the network during training. 

During validation and testing no augmentation is applied. 

By computing the augmentation right before feeding the speech signal through the 

network and because the used augmentation methods all make use of some sort of 

randomisation, multiple different versions of the same speech signal are processed 

by the network throughout the training. This essentially multiplies the available 

training samples every epoch. 

4.4.1.1 SpecAugment 

The SpeechBrain framework provides a time-domain approximation of the Spe-

cAugment algorithm [17], [42]. It is called a time-domain approximation because 

originally the SpecAugment algorithm is applied to log mel spectrograms and not to 

signals in time domain. The used algorithm is therefore an approximation of the 

original SpecAugment algorithm which can be directly applied to raw waveforms. 

Whenever SpecAugment is mentioned as a used augmentation method in this thesis, 

it is always referenced to the time-domain implementation of the SpeechBrain 

framework [42]. 

The implementation of Speechbrain features the following augmentations: 

1. Perturb Speed: Speed of speech is altered by resampling the speech signal 

to a slightly higher or lower sampling rate. The speech signal is randomly 

resampled to 80%, 90%, 100%, 110% or 120% of the original sampling rate 

[48]. 

2. Drop Frequencies: Frequencies are dropped from the speech signal by ap-

plying band-drop filters. Between 0 and 3 frequency bands are randomly re-

moved from the speech signal. 

3. Drop Chunks: Chunks of the audio signal are set to zero. Between 0 and 5 

chunks of a length between 62.5ms and 125ms are randomly set to zero in 

the speech signal. 
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The time-domain approximation of the SpecAugment algorithm was chosen because 

it is a simple augmentation algorithm and was easy to adopt as it is part of the frame-

work. 

4.4.1.2 Speech Augmentation 

The audiomentations33 library provides a vast variety of audio augmentation meth-

ods which can be directly applied to raw waveforms. The library is easy to integrate 

and flexible. It allows the creation of custom audio augmentation pipelines and in-

cludes functionalities for randomising the applied augmentations. 

The custom speech augmentation pipeline applies the following augmentations. 

1. Add Gaussian Noise34: Gaussian noise is added to the speech signal with a 

random amplitude between 0.001 and 0.02. 

2. Stretch Time35: The speed of the speech signal is changed without altering 

the pitch or its length. Non-silent parts of the speech signal stretched beyond 

the length are cut off. The stretch factor is randomly chosen between 0.8 and 

1.3. 

3. Shift Pitch36: The pitch of the speech signal is increased or decreased ran-

domly between -4 and +4 semitones. 

4. Shift Signal37: The speech signal is randomly shifted forwards or backwards 

between -50% and +50% of the signal9s length. The part of the signal which 

is shifted off is rolled over to the other side of the signal. 

Every step in the augmentation pipeline has a chance of 80% to be applied on a sam-

ple. This means that for 81.92% of the samples either 3 or 4 augmentations are ap-

plied, for 15.36% of the samples 2 augmentations are applied, for 2.56% of the sam-

ples only one augmentation is applied and for 0.16% of the samples no augmenta-

tion is applied. 

The augmentations for the custom pipeline were chosen so that the dialect of the 

speaker is not altered. It is assumed that slower or faster speaking as well as speak-

ing in higher or lower pitch does not change the dialect of a speaker. The gaussian 

noise as well as the shifting of the sample were chosen to make the model more ro-

bust.  

 
33 https://github.com/iver56/audiomentations 

34 https://iver56.github.io/audiomentations/waveform_transforms/add_gaussian_noise 

35 https://iver56.github.io/audiomentations/waveform_transforms/time_stretch 

36 https://iver56.github.io/audiomentations/waveform_transforms/pitch_shift 

37 https://iver56.github.io/audiomentations/waveform_transforms/shift 

https://github.com/iver56/audiomentations
https://iver56.github.io/audiomentations/waveform_transforms/add_gaussian_noise
https://iver56.github.io/audiomentations/waveform_transforms/time_stretch
https://iver56.github.io/audiomentations/waveform_transforms/pitch_shift
https://iver56.github.io/audiomentations/waveform_transforms/shift
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4.4.1.3 Speaker Mix 

When working with variable length input such as speech signals it is often necessary 

to pad the signals for batching, because samples in the same batch need to fix into 

the same tensor. A common choice is to pad with zeros or white noise. Another op-

tion used for this speech augmentation is to pad the audio signal with other audio 

signals from the same dialect. Our assumption is that this approach helps to gener-

alise the model and reduce the risk of speaker recognition because a sample can no 

longer be assigned to a single speaker. 

The mixing of speakers was implemented as a generic module but was applied like 

other speech augmentations only during training before feeding the speech signals 

through the model. 

The padding was done by filling up the speech signal using randomly selected 

chunks from other samples in the train dataset until a target length is reached. For 

Whisper models, a target length of 30 seconds was chosen because that is the speech 

signal length required by Whisper models [5]. For wav2vec models, the target length 

was set to 20 seconds because otherwise it would have required too much GPU 

memory. The samples for filling up the speech signal were chosen at random from 

the used train dataset but are from the same dialect subregion. 

4.4.2 Extended Batches 

Instead of applying the augmentation to the speech signal and then using the aug-

mented signal during training, the batch can be extended with the augmented signal 

to create a larger batch. With this form of augmentation, the original speech signal 

is feed through the network together with the augmented signal. Effectively, this will 

double the amount of training data used in a single epoch. 

4.4.3 Dropout Layers 

With the addition of augmentation to the model, dropout layers were added since 

they can help to reduce the risk of overfitting [49]. The dropout layers were added 

after every module of the model. The Figure 19 on the next page visualises the model 

architecture as described in Chapter 3.4 above including the added dropout layers 

and their corresponding dropout rates. 
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Figure 19: Drop Out Layers 

The dropout rates were chosen to be decreasing from 40% to 10% with every layer. 

A dropout rate of 40% is not too aggressive and provides a reasonable starting point. 

In later layers of the neural network, the dropout rates were chosen to be lower 

since losing a neuron in those layers has a more significant effect on the final output 

of the network. 

4.4.4 Experimental Setup 

To evaluate the performance of the chosen augmentation methods, a whisper-base 

model was trained on the MIX-10000R train dataset and then validated on the MIX-

20000 validation dataset for each augmentation method. The Table 19 below lists 

the performed runs in this experiment. 

Run Model Training 

ID Pre-Trained Augmentation Dropout Batch Size 

R25 whisper-base SpecAugment YES 32 

R26 whisper-base Speech Augment YES 32 

R27 whisper-base Speaker Mix (1s Chunks) YES 32 

R28 whisper-base SpecAugment YES 64 

R29 whisper-base Speech Augment YES 64 

R30 whisper-base Speaker Mix (1s Chunks) YES 64 

R31 whisper-base Speaker Mix (Full Length) YES 64 

R32 whisper-base Combined Augmentations YES 64 

R33 whisper-base None YES 32 

R34 whisper-base SpecAugment NO 32 

Table 19: Speech Augmentation Runs 

As in the previous experiment, the models were trained for 5 epoch and the same 

optimisers and learning rates were used as explained in Chapter 3.8.1 above. 

To evaluate whether combining the original samples together with their augmented 

version in an extended batch helps to improve the generalisation of the models, the 

runs were performed once with a batch size of 32 in which the model is trained only 

with the augmented speech signal in runs R25-27 and a batch size of 64 in which 

both the original speech signal as well as the augmented signal are combined in an 

extended batch in runs R28-31. 
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In runs R27 and R30 the speaker mix augmentation was applied by filling up the 

speech signal with random 1 second chunks as explained in the Chapter 4.4.1.3 

above. In the run R31, instead of only using 1 second chunks, the full length was used 

to fill up the speech signal. 

Run R32 combines all the augmentation methods. First, the SpecAugment augmen-

tation method was applied to the original speech signal and then used in-place of 

the original speech signal in the batch. Then the speech augmentation, as described 

in Chapter 4.4.1.2 above, was applied to the original speech signal followed by the 

speaker mix augmentation to fill up the augmented speech signal and then this 

speech signal was added to the batch. More details on why this approach might be 

helpful will be given in the results chapter below. 

The last two runs R33 and R34 were performed to verify the effect of the added 

dropout layers. Run R33 used no augmentation but has dropout layers and run R34 

used the SpecAugment augmentation but does not have any dropout layers. 

4.4.5  Results 

The Table 20 below summarises the results of the runs in this experiment. Addition-

ally, the run R23 from the previous experiment is also included as a baseline since it 

uses the same parameters, but without augmentation and dropout layers. 

Run Model Training Performance 

ID Augmentation Dropout Batch Size Micro F1 Macro F1 

R23 None NO 32 52.1% 50.5% 

R25 SpecAugment YES 32 57.1% 54.6% 

R26 Speech Augment YES 32 52.4% 48.9% 

R27 Speaker Mix (1s Chunks) YES 32 35.9% 30.6% 

R28 SpecAugment YES 64 55.4% 52.6% 

R29 Speech Augment YES 64 55.4% 53.4% 

R30 Speaker Mix (1s Chunks) YES 64 52.7% 50.9% 

R31 Speaker Mix (Full Length) YES 64 53.7% 50.5% 

R32 Combined Augmentations YES 64 60.1% 57.5% 

Table 20: Speech Augmentation Comparison 

For the runs R25-R27 without extended batches, the SpecAugment augmentation 

method achieved the highest F1 scores. The other augmentation methods both per-

formed worse than the baseline which did not use any augmentation or dropout lay-

ers. 

Contrary to the assumption that mixing speakers together in a sample would result 

in improved generalisation, the speaker mix augmentation method did not perform 

very well in run R27, achieving the lowest F1 scores of all the augmentation meth-

ods. 
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Interestingly, the usage of extended batches decreased the performance on the Spe-

cAugment augmentation method. An explanation for this might be that the SpecAug-

ment augmentation method does not hide characteristics of a speaker enough, so 

the variety of speakers does not increase but the amount of samples doubles. This 

probably results in the model learning again to recognise speakers instead of iden-

tifying dialects. 

When using extended batches in runs R29-31, the results show an improvement in 

F1 scores for both the speech and speaker mix augmentation methods. By using ex-

tended batches both models were able to perform better than the baseline. 

The usage of extended batches significantly increased the F1 scores on the speaker 

mix augmentation method in the runs R30-31. The assumption is that this is because 

when using the mix augmentation method, the model is always trained on fixed-

length input and then performs not well during validation on variable-length input. 

And by using extended batches, the model also trains on the original variable-length 

samples. 

The mix augmentation was tested with randomly selected 1 second chunks as well 

as with the full speech signal. With 1 second chunks the model achieved a higher 

macro F1 score whereas with the full speech signal the model achieved a higher mi-

cro F1 score. 

Since the SpecAugment augmentation method does seem to give better results when 

used instead of the original samples and the other speech augmentations performed 

better when using them in addition to the original samples. Combining both aug-

mentations seemed to be a reasonable strategy since the effects might be combined. 

Additionally, the speaker mix can also be applied on top of the other augmentation 

methods. The results of this strategy can be seen in run R32 which performed best 

compared to all the other augmentation methods. This shows that the effects of the 

SpecAugment augmentation method can be combined with other speech augmenta-

tion methods for better performance. 

The runs R33 and R34 show the effect of the added dropout layers. The results of 

those runs including the results of the baseline run R23 and the run R25 are dis-

played in the Table 21 below. 

Run Model Training Performance 

ID Augmentation Dropout Batch Size Micro F1 Macro F1 

R23 None NO 32 52.1% 50.5% 

R33 None YES 32 50.5% 47.3% 

R34 SpecAugment NO 32 61.6% 59.5% 

R25 SpecAugment YES 32 57.1% 54.6% 

Table 21: Effect of Dropout Layers 

Contrary to the initial assumption, the added dropout layers harm the generalisation 

of the models. As it can be seen from the results in the Table 21 above, the run R33 
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with no augmentation but added dropout layers performed worse than the baseline 

run R23 without augmentation and dropout layers. 

The same effect can be seen when comparing the runs R34 and R25 in the Table 21 

above. The run R25 with augmentation and dropout layers performed worse than 

the run R34 with augmentation but without dropout layers. 

To summarise, from the runs performed in this experiment, the run R34 with the 

SpecAugment algorithm and without dropout layers seemed to perform best. How-

ever, the run R32 which used SpecAugment in combination with other augmenta-

tion methods as an extended batch seemed to be a promising strategy which could 

even perform better when trained without dropout layers. 

4.5 Exploring Contrastive Learning 

The previous experiment explored speech augmentation as a method for preventing 

models to recognise speakers instead of identifying dialects. In this experiment su-

pervised contrastive learning was explored as another option to prevent speaker 

recognition. The idea was to learn useful representations of speech that capture di-

alect specific features by using supervised contrastive learning. These representa-

tions were then used to train a classifier for the dialect regions. We anticipated that 

by using contrastive learning the models learn more to identify dialects instead of 

recognising speakers. 

Other applications of contrastive learning already proved to be successful, especially 

in computer vision for image classification [35]. In the paper <Contrastive Learning 
of General-Purpose Audio Representations= [50], contrastive learning shows prom-

ising results for learning audio representations. As outlined in Chapter 2.3.3 above, 

wav2vec is also trained using a contrastive learning approach. 

For representation learning, the same model architecture was used as described in 

Chapter 3.4 above. The training was split into two phases. In the first phase, the pre-

trained model together with the projector layer were trained to project speech into 

a latent feature space. During training, the model received pairs of speech samples 

which were either specified to be similar or dissimilar. Both samples were then fed 

through the neural network in parallel to produce two feature vectors. This setup is 

also known as Siamese networks. The training objective was then to optimise the 

cosine similarity of feature vectors from similar pairs and reduce the cosine similar-

ity of feature vectors from dissimilar pairs. To accomplish this, the cosine embed-

ding loss function was used as described in Chapter 2.2.3 above. This learning 

method is also known as contrastive learning. In the second phase, the model was 

trained with an added classification head to classify the learned representations into 

the seven dialect subregions. 

To summarise, in the first phase of the training, contrastive learning was used to 

train the pre-trained model and the projector. In the second phase, only the classifier 

was trained, and the pre-trained model as well as the projector were frozen. 
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4.5.1 Selection of Sample Pairs 

One benefit of contrastive learning is that the latent feature space can be controlled 

by the selection of sample pairs. The samples which are selected to be either similar 

or dissimilar have a major effect on the learned representations. It is therefore im-

portant that pairs are carefully selected for learning the desired representations. In 

this thesis, two strategies for pair selection were tested. 

4.5.1.1 Speaker Separation Strategy 

The focus of the first strategy was to prevent the model from learning to detect 

speakers. For every sample, one sample from the same speaker was chosen to form 

a dissimilar pair and another sample with the same dialect subregion but from a 

different speaker was chosen to form a similar pair. The idea behind choosing sam-

ples from the same speaker as dissimilar pairs was to prevent the network from 

learning representations which help to recognise speakers. The network should not 

be rewarded for recognising the same speaker. 

The Figure 20 below visualises five samples in the latent feature space. Samples with 

the same colour are from the same speaker and samples in the same circle are from 

the same dialect subregion. The two shades of blue represent different speakers. 

  

Figure 20: Speaker Separation Strategy 

For the sample 1 in the Figure 20 above, two pairs were formed. Samples 1 and 3 

form a similar pair since they are from different speakers but in the same dialect 

subregion, and sample 1 and 2 formed a dissimilar pair since they are from the 

same speaker. The idea was that the similar pair will be pulled closer in the latent 

feature space, which is represented by arrows pointing to each other, and the dis-

similar pair will be pushed apart in the latent feature space, which is represented 

by arrows pointing away from each other.  
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4.5.1.2 Dialect Separation Strategy 

In the first strategy, no dissimilar pairs with different dialects were used. To allow 

the model to learn dissimilarities between dialects, dissimilar pairs from different 

dialects were formed in the dialect separation strategy. 

Additionally, the speaker separation might have caused a conflicting training objec-

tive to the clustering of dialects. A speaker is associated with a single dialect and 

therefore, those samples should be close together in the latent feature space. But by 

adding samples of the same speaker as dissimilar pairs, they will be pushed apart 

from each other in the latent feature space even though they are from the same dia-

lect and should therefore be somehow close together in latent feature space. To sim-

plify the training, those dissimilar pairs were left out with this strategy. 

With the dialect separation strategy, for every sample, a similar pair was formed 

with another sample from the same dialect subregion but from a different speaker 

and for every other dialect subregion a sample was selected to form dissimilar pairs. 

The Figure 21 below is an updated version of Figure 20 above. It visualises the same 

similar pair of samples 1 and 3 as before, but new dissimilar pairs for the other dia-

lect subregions between sample 1 and 5 and 1 and 4 were formed. 

 

Figure 21: Dialect Separation Strategy 

The idea was that samples 1 and 3 from the same dialect will be pulled together in 

the latent feature space, whereas samples 4 and 5 will be pushed away from sam-

ple 1. This pulling and pushing of samples is represented using arrows.  
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4.5.2 Experimental Setup 

To create the sample pairs, the train dataset of the MIX-10000R corpus was used. 

The speaker separation strategy was evaluated 5 times per sample which resulted 

in 10 pairs per sample. For the dialect separation strategy, the evaluation was done 

2 times which resulted in 14 pairs per sample. These newly created train datasets 

containing sample pairs were called MIX-10000RS5 and MIX-10000RD2, respec-

tively. Both train datasets were quite large with 560,000 sample pairs in the MIX-

10000RS5 train dataset and 784,000 sample pairs in the MIX-10000RD2 train da-

taset. 

Four pre-training runs were performed in this experiment. The first run R35 was 

using the MIX-10000RS5 train dataset and the other two used the MIX-10000RD2 

train dataset. These pre-train runs are listed in the Table 22 below. 

Run Model Dataset 

ID Pre-Trained Notes Train 

R35 whisper-base  MIX-10000RS5 

R36 whisper-base  MIX-10000RD2 

R37 whisper-base Added Encoder Layer MIX-10000RD2 

Table 22: Contrastive Learning Pre-Train Runs 

For all three models the whisper-base model was used. The SpecAugment augmen-

tation method and the drop-out layers from the previous experiment were used. A 

single Adam optimiser with the same parameters as described in Chapter 3.8.1 

above and a learning rate of 3 × 1024 was used. The batch size was set to 256 which 

was achieved using an accumulation factor of 64. 

To further increase the performance of the model, for run R37 an additional encoder 

head was added after the pooling. The used encoder head was a three-layered linear 

network with leaky rectified linear activation functions. The purpose of the encoder 

was to make the model more flexible after the pooling layer. 

After the pre-training, three train runs were performed to train the classification 

head based on the learned representations. Those runs are listed in the Table 23 

below. 

Run Model Dataset 

ID Pre-Trained Notes Train Valid 

R38 R36 Single Layer Classifier MIX-10000R MIX-20000 

R39 R36 Extended Classifier MIX-10000R MIX-20000 

R40 R37 Extended Classifier MIX-10000R MIX-20000 

R41 R37 Not Frozen, Same as R25 MIX-10000R MIX-20000 

Table 23: Contrastive Learning Classification Runs 
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The first run R38 used a single layer classifier as used in the previous experiments 

and described as part of the model architecture in Chapter 3.4 above. The other ex-

periments used an extended classifier with three additional linear layers with leaky 

rectified linear activation functions. The purpose of the extended classifier was to 

give the network more flexibility during training, since the representations learned 

during pre-training were frozen. 

4.5.3 Results 

Overall, the results from the representation learning were not as anticipated. And 

because the training took a significant amount of time, no further trainings were 

performed. 

The Table 24 below summarises the results of the pre-training runs R35-37 includ-

ing the achieved mean loss of the last training stage. 

Run Model Dataset Performance 

ID Pre-Trained Notes Train Stage Loss 

R35 whisper-base  MIX-10000RS5 0.50 

R36 whisper-base  MIX-10000RD2 0.19 

R37 whisper-base Added Encoder Layer MIX-10000RD2 0.18 

Table 24: Contrastive Learning Pre-Train Results 

The representation learning with the speaker separation strategy in run R35, did 

not seem to learn anything. The training loss did fluctuate a lot for run R35, but over-

all stayed right in the middle at around 0.5. This indicates that the cosine similarity 

of the representations was random. The second phase of training the classifier was 

therefore not ran for this model. 

With the dialect separation strategy, the models were able to reduce the mean loss 

slightly below 0.2. This means that the mean cosine similarity of samples which are 

supposed to be similar approached 0.8 and 0.2 for dissimilar samples. With the ad-

dition of an encoder head in run R37, the loss was reduced even more. 

During training, a high fluctuation of the loss was observed. However, the mean loss 

was slowly decreasing and did not appear to have reached convergence after 3 

epochs. Due to long training times the training was aborted. 

In the second phase, the pre-trained representations were used to train a classifier 

by adding a classification head. During training only, the classification head was 

trained, and the representations were frozen. The Table 25 on the next page sum-

marises the results of those runs.  
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Run Model Performance 

ID Pre-Trained Notes Micro F1 Macro F1 

R38 R36 Single Layer Classifier 18.5% 17.2% 

R39 R36 Extended Classifier 14.3% 10.0% 

R40 R37 Extended Classifier 18.1% 14.7% 

Table 25: Contrastive Learning Classification Results 

Overall, the runs achieved very low F1 scores. With the best run R38 only reaching 

a micro F1 score of 18.5%. Using an extended classifier with more layers did not 

help to improve the performance of the model. The added encoder layer during rep-

resentation learning in run R37 did not improve the performance. 

In another run R41, the whole model was trained without frozen representations. 

With this setup the model was able to achieve a micro F1 score of 20.3%. This is only 

slightly better than with frozen representations. Interestingly, the run R41 without 

frozen representations uses the same layers, datasets and speech augmentation 

method as the run R25 from the previous experiment in Chapter 4.4.4 above. Despite 

their equal model architecture and dataset, the run R41 reached only a micro F1 

score of 20.3%, whereas run R25 achieved a micro F1 score of 57.1%. The only dif-

ference between these two runs is that the run using representation learning started 

from the pre-trained checkpoint. This is an indication that during pre-training the 

model did not learn any useful representations. A possible explanation for this might 

be that the Siamese neural networks collapsed during representation learning de-

spite the usage of contrastive learning. 

4.6 Training the Best Model 

In previous experiments various techniques to improve the performance for Swiss 

German dialect identification were explored. This experiment combined the learn-

ings of the previous experiments with the goal to create a single model that achieves 

the highest performance for Swiss German dialect identification with the available 

resources. 

The used model architecture proved to be capable of identifying Swiss German dia-

lects, therefore the model architecture was kept. When it comes to wav2vec and 

Whisper there is not yet enough evidence to decide between one or another. Be-

cause of that, for this experiment both models were evaluated again. 

The mixed corpora experiment showed that models trained on a mixed but reduced 

corpora achieved the best macro F1 scores and generalisation. For this experiment 

the model was therefore trained on mixed corpora containing samples from both 

the SDS-200 and STT4SG-350 corpus. 

The speech augmentation experiment showed that using speech augmentation is a 

successful technique to improve performance on Swiss German dialect identifica-

tion. From the evaluated augmentation methods, the SpecAugment augmentation 
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method without extended batches as well as the combination of all augmentation 

methods performed best and were therefore evaluated in this experiment. 

Since it was not possible to learn useful representations using contrastive learning 

in the previous experiment, no contrastive learning was used in this experiment. 

4.6.1 Experimental Setup 

A total of five runs were performed, in this experiment. The first three runs R42-44 

used the SpecAugment augmentation method without extended batches. This 

means that the augmented version of the speech signal was used in place of the orig-

inal speech signal in the batch. The last two runs R45 and R46 used all augmentation 

methods combined as explained in the Chapter 4.4.4 above. The Table 26 below lists 

all the runs from this experiment. 

Run Model Training 

ID Pre-Trained Augmentation Batch Size 

R42 wav2vec2-xls-r-300m SpecAugment 32 

R43 whisper-small SpecAugment 32 

R44 whisper-medium SpecAugment 32 

R45 wav2vec2-xls-r-300m Combined Augmentations 64 

R46 whisper-small Combined Augmentations 64 

Table 26: Best Model Runs 

All the runs were trained for 5 epochs and used the same optimisers and learning 

rates as explained in Chapter 3.8.1 above. As in previous experiments, all the runs 

were trained on the train dataset of the MIX-10000R corpus and validated on the 

validation dataset of the MIX-20000 corpus. 

To see which pre-trained model performed best, both the wav2vec2-xls-r-300m and 

whisper-small were trained and validated for each augmentation method. Addition-

ally, the even larger whisper-medium with 769 million parameters was trained with 

the SpecAugment augmentation method. 

After the above runs were completed, a hyperparameter tuning was performed for 

the best performing model. Both learning rates as well as the batch size were tuned 

over 5 epochs using Sweeps38 from Weights & Biases. Bayesian hyperparameter op-

timisation was used to find the best hyperparameters [51]. No learning rate decay 

was used during hyperparameter tuning. The batch size was searched in the range 

from 2 to 64. This was done by setting the batch size to 2 and tuning the gradient 

accumulation factor in the range from 1 to 32. The learning rate of the pre-trained 

model was searched in the range from 3 × 1025 to 3 × 1028 and the learning rate of 

the rest of the model was searched in the range from 1 × 1023 to 1 × 1026. Which 

corresponds to the initial and final learning rates used for the learning rate decay as 

described in Chapter 3.8.1 above. After the tuning of the hyperparameters, the 

 
38 https://wandb.ai/site/sweeps 

https://wandb.ai/site/sweeps
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model was then trained over 20 epochs using the tuned hyperparameters to achieve 

the final scores. 

Contrary to the results of the speech augmentation experiment, all runs in this ex-

periment used the added dropout layers. This was because, the effect of the dropout 

layers was uncovered after the above runs were already performed and no time was 

left to repeat the runs in this experiment. However, the hyperparameter tuning and 

the training of the final model over 20 epochs were performed without added drop-

out layers. 

4.6.2 Results 

From the results in the Table 27 below it can be seen that the wav2vec2-xls-r-300m 

model performed best for both augmentation methods. The run R25 and run R32 

were added as a baseline to the Table 27 below for easier comparison.  

Run Model Training Performance 

ID Pre-Trained Augmentation Batch Size Micro F1 Macro F1 

R25 whisper-base SpecAugment 32 57.1% 54.6% 

R42 wav2vec2-xls-r-300m SpecAugment 32 59.3% 57.2% 

R43 whisper-small SpecAugment 32 58.2% 54.7% 

R44 whisper-medium SpecAugment 32 50.4% 46.8% 

R32 whisper-base Combined Augmentations 64 60.1% 57.5% 

R45 wav2vec2-xls-r-300m Combined Augmentations 64 58.0% 54.0% 

R46 whisper-small Combined Augmentations 64 56.4% 52.8% 

Table 27: Best Model Results 

Interestingly, using the SpecAugment augmentation method, the whisper-medium 

model performed significantly worse than the whisper-small model. This indicates 

that the whisper-medium model is most likely too big for the used training data, so 

that the model overfits to the trainings data or tends to recognise speakers. 

Another interesting observation is that the runs R45 and R46 using larger models 

with the combined augmentation methods performed worse than the baseline run 

R32 using the whisper-base model. 

Because the wav2vec2-xls-r-300m model with the SpecAugment augmentation 

method consistently performed best and the combined augmentation method re-

quired a high training duration, it was decided to tune the hyperparameters of the 

run R42. As already stated in the experimental setup above, no dropout layers were 

added to the model used in the hyperparameter optimisation.  
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During hyperparameter tuning a total of 29 runs were performed with different hy-

perparameters. The Figure 22 below visualises all the performed runs, their hy-

perparameters and their results. Every line represents a run and every bar a hy-

perparameter. The colour gradient on the right indicates the achieved macro F1 

score of the runs. 

 

Figure 22: Hyperparameter Tuning Runs 

The best performing hyperparameters were a gradient accumulation factor of 1, 

which corresponds to a batch size of 2, a wav2vec learning rate of 1.16 × 1025 and 

a learning rate for the rest of the model of 8.28 × 1024. Those hyperparameters re-

sulted in a micro F1 score of 64.72% and macro F1 score of 62.76%. Extending the 

training epochs to 20, did not further improve the F1 scores in run R47.  
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5 Results 

The detailed results for each experiment were already presented in the dedicated 

results chapters. This chapter serves as a summary for the results from all the ex-

periments. 

Our experiments showed that models trained on the SDS-200 corpus reached higher 

F1 scores than models trained on the recently finalised STT4SG-350 corpus, even 

though the STT4SG-350 corpus contains more samples across all dialect regions. We 

conjecture that models trained on the STT4SG-350 corpus tend to recognise speak-

ers instead of identifying dialects as there is not a big enough variety of speakers in 

the corpus.  

Mixing the SDS-200 and STT4SG-350 corpora proved to be a promising strategy 

since a mixed corpus can take advantage of both the high variety of speakers in the 

SDS-200 corpus and the high number of samples in the STT4SG-350 corpus. While 

models trained on mixed corpora generally performed better than models trained 

only on the SDS-200 or STT4SG-350 corpus, smaller mixed corpora seemed to per-

form better than larger ones.  

During further investigations of our speaker recognition theory, the experiments 

with mixed corpora of different sizes revealed that having too many samples of the 

same speaker and not enough variety can harm the generalisation of the model as it 

leads to speaker recognition. In our experiments a mixed corpora with 10,000 sam-

ples per subregion and a mean of around 50 samples per speaker seemed to perform 

best. 

Our experiments with various augmentation methods showed that the generalisa-

tion of dialect identification systems can be improved by artificially increasing the 

number of samples and the variety of speakers. While some augmentation methods 

heavily benefited from using augmentation speech signals as additional samples, 

others were performing worse when using this approach.  

While some experiments in the field of representation learning were conducted, it 

was not possible to learn useful representations for dialect identification with the 

employed setup. 

When comparing wav2vec and Whisper models both have similar performance and 

can be used interchangeably. One benefit of the Whisper models is that smaller sizes 

are available which can be useful for prototyping because of the lower training du-

rations but still reasonable performance. 

In our final experiment, the wav2vec-large-xlsr-53 model in combination with a 

mixed corpora of 10,000 samples per subregion and speech augmentation was used 

for the best performing model which achieved a micro F1 score of 64.72%.  
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6 Discussion 

During our pre-processing, some samples and speakers were removed from the 

SDS-200 corpus because the mapping to subregions was not straightforward. For 

future work, it is recommended to look for other ways to include those samples for 

experiments related to subregions. The paper <A quantitative approach to Swiss 
German - Dialectometric analyses and comparisons of linguistic levels= [52] de-

scribes a clustering method, which was utilised during the creation of the STT4SG-

350 corpus and can assist in mapping the samples from the SDS-200 corpus to the 

subregions. 

While the results showed that models trained on the MIX-10000 performed better 

than models trained on the MIX-20000 corpus, a balanced mixed corpora up to the 

size of 29,717 samples per dialect region would have been possible. However, this 

possibility was not further explored in this thesis, because the MIX-10000 corpus 

seemed to perform better than the MIX-20000 corpus, nonetheless. 

The evaluated reduced corpora were restricted to the initially created MIX-20000 

corpora and due to the chosen train-test-split strategy for the mixed corpora, no 

common validation dataset was available to compare the models trained on the MIX-

ALL between ones trained on the MIX-20000 or MIX-10000. A better strategy would 

have been to do a train-test-split on the MIX-ALL corpus and then reducing the train 

dataset to different sizes. 

Speech augmentation proved to be a successful tool for improving the performance 

in dialect identification. However, there are still a lot of augmentation methods 

which have not been explored yet. While combining augmentation methods 

achieved good results, more tests would need to be carried out to validate the effect 

of combining augmentations. 

The effect of the added dropout layers was not evaluated in the beginning. Because 

of that dropout layers were present in later models without having a positive effect. 

Unfortunately, not enough time was left to repeat all the experiments without added 

dropout layers. 

With the employed contrastive learning setup, it was unfortunately not possible to 

learn useful speech representations. However, contrastive learning might still be a 

promising strategy. There are a lot of possibilities in this area which have not been 

explored yet. For example, a promising strategy would be the use of contrastive 

learning on the same sentence spoken in different dialects. However, only 8,988 of 

304,141 samples from both SDS-200 and STT4SG-350 corpora have the same sen-

tence which corresponds to only 2.95%. 

For most experiments, the tuneable hyperparameters such as the used optimiser, 

the learning rate and the batch size were the same. This was intentional to allow for 
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easier comparison between models. However, this may have given an unfair ad-

vantage to some of the models as they could have benefited from the selected hy-

perparameters while other models would have performed better with other hy-

perparameters. A better option would have been to optimise the hyperparameters 

for every model individually, but doing a hyperparameter optimisation on every 

model would have been too resource intensive for this thesis. 

By mixing the available corpora and applying speech augmentation, the best model 

from this thesis performed significantly better than models from previous work on 

Swiss German dialect identification, especially when it comes to macro F1 scores, 

thereby setting a new baseline for future systems.  
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8 Appendix 

8.1 Code and Corpora 

The code for the experiments is available on: 

https://github.zhaw.ch/FS23-BA-freicla4-schneph5/swiss-german-dialect-identi-

fication 

The code including all used data and experiment results is available on: 

https://zhaw-my.sharepoint.com/:f:/g/personal/schneph5_stu-

dents_zhaw_ch/EpQPXXl8cRZNp8BUzi4OsKMBp0yLfSkPQrpVBVN7J4DJHQ 

  

https://github.zhaw.ch/FS23-BA-freicla4-schneph5/swiss-german-dialect-identification
https://github.zhaw.ch/FS23-BA-freicla4-schneph5/swiss-german-dialect-identification
https://zhaw-my.sharepoint.com/:f:/g/personal/schneph5_students_zhaw_ch/EpQPXXl8cRZNp8BUzi4OsKMBp0yLfSkPQrpVBVN7J4DJHQ
https://zhaw-my.sharepoint.com/:f:/g/personal/schneph5_students_zhaw_ch/EpQPXXl8cRZNp8BUzi4OsKMBp0yLfSkPQrpVBVN7J4DJHQ
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8.2 Experiment Details 

The table on the next page contains the details of all the performed experiments 

during this bachelor9s thesis. 
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Training

ID Name Started at Machine Pre-Trained Label Notes Train Valid Epochs Duration

R01 wav2vec-run-0025 28.03.23 10:30 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m canton group SDS-200 SDS-200 3 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 66.6% - 70.4% 39.6% - 49.8% 0 days 04:16:26

R02 wav2vec-run-0029 04.04.23 07:44 APU (Tesla T4 16GB) wav2vec2-xls-r-300m canton group STT4SG-350 STT4SG-350 3 48 2 x 24 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 34.3% - 39.6% 33.6% - 37.7% 1 days 08:47:17

R03 wav2vec-run-0024 28.03.23 06:06 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion SDS-200 SDS-200 3 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 53.1% - 63.1% 32.4% - 35.8% 0 days 03:39:19

R04 wav2vec-run-0028 02.04.23 18:34 APU (Tesla T4 16GB) wav2vec2-xls-r-300m subregion STT4SG-350 STT4SG-350 3 48 2 x 24 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 20.9% - 23.9% 19.1% - 20.9% 1 days 08:38:35

R05 whisper-run-0004 28.03.23 15:18 VAST (RTX 3090 24GB) whisper-small canton group SDS-200 SDS-200 3 48 8 x 6 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 57.9% - 67.5% 48.5% - 49.7% 0 days 06:59:17

R06 whisper-run-0002 27.03.23 17:37 APU (Tesla T4 16GB) whisper-small canton group STT4SG-350 STT4SG-350 3 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 38.1% - 38.6% 37.2% - 37.9% 2 days 12:32:32

R07 whisper-run-0007 03.04.23 21:56 VAST (RTX 3090 24GB) whisper-small subregion SDS-200 SDS-200 3 48 8 x 6 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 59.2% - 69.3% 37.4% - 43.1% 0 days 05:58:15

R08 whisper-run-0005 30.03.23 12:42 APU (Tesla T4 16GB) whisper-small subregion STT4SG-350 STT4SG-350 3 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 25.5% - 25.9% 24.6% - 26.2% 2 days 13:55:20

R09 whisper-run-0006 03.04.23 20:07 VAST (RTX 3090 24GB) whisper-base subregion SDS-200 SDS-200 3 48 16 x 3 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 48.0% - 55.0% 33.6% - 37.9% 0 days 01:42:54

R10 wav2vec-run-0031 13.04.23 17:50 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion SDS-200 SDS-200 20 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 48.2% - 66.6% 29.5% - 42.0% 1 days 00:11:25

R11 wav2vec-run-0032 13.04.23 17:52 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion STT4SG-350 STT4SG-350 20 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 15.9% - 25.3% 14.9% - 23.2% 2 days 01:17:29

R12 whisper-run-0053 25.05.23 18:53 VAST (RTX 3090 24GB) whisper-base subregion MIX-ALL MIX-ALL 20 48 8 x 6 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 50.7% - 61.7% 47.4% - 59.2% 1 days 10:58:20

R13 whisper-run-0008 09.04.23 20:36 APU (Tesla T4 16GB) whisper-base subregion MIX-20000 MIX-20000 20 48 8 x 6 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 45.0% - 53.0% 41.8% - 51.1% 3 days 00:04:09

R14 whisper-run-0009 13.04.23 11:59 APU (Tesla T4 16GB) whisper-base subregion MIX-10000 MIX-10000 20 48 8 x 6 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 54.5% - 61.4% 52.3% - 60.8% 1 days 12:20:12

R15 wav2vec-run-0033 15.04.23 20:14 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion MIX-20000 MIX-20000 20 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 44.2% - 54.6% 41.8% - 51.7% 1 days 10:59:40

R16 whisper-run-0010 15.04.23 08:45 VAST (RTX 3090 24GB) whisper-small subregion MIX-20000 MIX-20000 20 48 4 x 12 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 39.3% - 49.1% 33.9% - 47.6% 2 days 02:39:47

R17 whisper-run-0013 17.04.23 13:31 APU (Tesla T4 16GB) whisper-base subregion MIX-100R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 14.4% - 29.3% 7.5% - 26.8% 0 days 00:49:29

R18 whisper-run-0014 17.04.23 14:25 APU (Tesla T4 16GB) whisper-base subregion MIX-200R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 11.8% - 31.3% 3.3% - 27.4% 0 days 00:52:51

R19 whisper-run-0015 17.04.23 15:19 APU (Tesla T4 16GB) whisper-base subregion MIX-500R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 19.9% - 37.9% 14.9% - 32.9% 0 days 01:13:00

R20 whisper-run-0016 17.04.23 16:33 APU (Tesla T4 16GB) whisper-base subregion MIX-1000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 34.1% - 45.0% 30.6% - 42.8% 0 days 01:32:10

R21 whisper-run-0017 17.04.23 18:06 APU (Tesla T4 16GB) whisper-base subregion MIX-2000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 34.0% - 48.2% 32.9% - 47.4% 0 days 02:22:31

R22 whisper-run-0018 17.04.23 20:30 APU (Tesla T4 16GB) whisper-base subregion MIX-5000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 40.2% - 51.3% 40.8% - 48.5% 0 days 05:05:33

R23 whisper-run-0019 18.04.23 01:39 APU (Tesla T4 16GB) whisper-base subregion MIX-10000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 40.4% - 52.1% 39.4% - 50.5% 0 days 09:00:03

R24 whisper-run-0020 18.04.23 10:42 APU (Tesla T4 16GB) whisper-base subregion MIX-20000 MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 41.7% - 51.7% 40.8% - 47.6% 0 days 17:42:13

whisper-run-0021 19.04.23 20:20 APU (Tesla T4 16GB) whisper-base subregion MIX-5000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-04 - 1.00E-06 43.7% - 50.5% 42.8% - 48.7% 0 days 04:57:30

whisper-run-0022 20.04.23 04:52 APU (Tesla T4 16GB) whisper-base subregion MIX-5000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 3.00E-05 - 2.60E-05 42.7% - 47.7% 41.9% - 46.0% 0 days 04:46:49

R25 whisper-run-0024 20.04.23 09:43 APU (Tesla T4 16GB) whisper-base subregion SpecAugment MIX-10000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 49.5% - 57.1% 49.8% - 54.6% 0 days 09:34:14

R26 whisper-run-0049 23.05.23 15:25 VAST (RTX 3090 24GB) whisper-base subregion Speech Augment MIX-10000R MIX-20000 5 32 16 x 2 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 47.7% - 52.4% 45.2% - 48.9% 0 days 10:28:59

R27 whisper-run-0042 22.05.23 01:47 VAST (RTX 3090 24GB) whisper-base subregion Speaker Mix (1s Chunks) MIX-10000R MIX-20000 5 32 16 x 2 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 21.0% - 35.9% 14.2% - 30.6% 2 days 05:02:58

R28 whisper-run-0052 25.05.23 00:15 VAST (RTX 3090 24GB) whisper-base subregion SpecAugment MIX-10000R MIX-20000 5 64 16 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 49.7% - 55.4% 47.7% - 52.6% 0 days 03:53:03

R29 whisper-run-0050 24.05.23 10:22 VAST (RTX 3090 24GB) whisper-base subregion Speech Augment MIX-10000R MIX-20000 5 64 16 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 51.4% - 55.4% 48.8% - 53.4% 0 days 12:27:11

R30 whisper-run-0051 24.05.23 10:55 VAST (RTX 3090 24GB) whisper-base subregion Speaker Mix (1s Chunks) MIX-10000R MIX-20000 5 64 16 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 45.8% - 52.7% 44.7% - 50.9% 2 days 07:18:10

R31 whisper-run-0054 27.05.23 11:52 VAST (RTX 3090 24GB) whisper-base subregion Speaker Mix (Full Length) MIX-10000R MIX-20000 5 64 16 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 43.6% - 53.7% 43.9% - 50.5% 0 days 14:50:43

R32 whisper-run-0057 28.05.23 14:06 VAST (RTX 3090 24GB) whisper-base subregion Combined Augmentations MIX-10000R MIX-20000 5 64 16 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 53.3% - 60.1% 52.9% - 57.5% 2 days 00:34:34

R33 whisper-run-0058 30.05.23 19:39 VAST (RTX 3090 24GB) whisper-base subregion None Augment, Dropout MIX-10000R MIX-20000 5 32 16 x 2 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 40.2% - 50.5% 39.7% - 47.3% 0 days 01:51:33

R34 whisper-run-0061 01.06.23 20:43 VAST (RTX 3090 24GB) whisper-base subregion SpecAugment, No Dropout MIX-10000R MIX-20000 5 32 16 x 2 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 49.6% - 61.6% 49.7% - 59.5% 0 days 01:58:16

whisper-run-0025 20.04.23 19:58 APU (Tesla T4 16GB) whisper-base subregion SpecAugment MIX-10000R MIX-20000 20 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 50.8% - 59.1% 48.2% - 55.6% 1 days 14:37:46

whisper-run-0026 22.04.23 23:23 APU (Tesla T4 16GB) whisper-base subregion SpecAugment MIX-10000R MIX-20000 20 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-04 - 1.00E-06 44.6% - 55.0% 42.1% - 51.0% 1 days 23:10:41

Model Dataset

Batch Size LR Pre-Trained

Exploring Models and Corpora

Exploring Mixed Corpora

Exploring Speech Augmentation

Run

Exploring Speaker Recognition

Macro F1

PerformanceTraining Parameters

Micro F1LR Model
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Training

ID Name Started at Machine Pre-Trained Label Notes Train Valid Epochs Duration

R35 whisper-run-0029 25.04.23 15:53 APU (Tesla T4 16GB) whisper-base MIX-10000RS5 3 256 4 x 64 3.00E-04 - 2.69E-04 3.00E-04 - 2.69E-04 4 days 04:44:25

R36 whisper-run-0030 05.05.23 22:18 APU (Tesla T4 16GB) whisper-base MIX-10000RD2 3 256 4 x 64 3.00E-04 - 2.69E-04 3.00E-04 - 2.69E-04 5 days 12:37:43

R37 whisper-run-0035 14.05.23 22:03 APU (Tesla T4 16GB) whisper-base Added Encoder Layer MIX-10000RD2 3 256 4 x 64 3.00E-04 - 2.69E-04 3.00E-04 - 2.69E-04 5 days 11:55:40

R38 whisper-run-0031 11.05.23 11:10 APU (Tesla T4 16GB) whisper-run-0030 subregion Single Layer Classifier MIX-10000R MIX-20000 13 32 4 x 8 3.00E-05 - 1.11E-05 1.00E-03 - 3.69E-04 13.1% - 18.5% 12.4% - 17.2% 0 days 09:47:25

R39 whisper-run-0034 14.05.23 20:33 APU (Tesla T4 16GB) whisper-run-0030 subregion Extended Classifier MIX-10000R MIX-20000 1 32 4 x 8 3.00E-05 - 3.00E-05 1.00E-03 - 1.00E-03 14.3% - 14.3% 10.0% - 10.0% 0 days 00:46:58

R40 whisper-run-0036 20.05.23 11:14 APU (Tesla T4 16GB) whisper-run-0035 subregion Extended Classifier MIX-10000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 1.00E-06 16.6% - 18.1% 12.2% - 14.7% 0 days 03:41:46

R41 whisper-run-0032 11.05.23 21:26 APU (Tesla T4 16GB) whisper-run-0035 subregion Not Frozen, Same as R25 MIX-10000R MIX-20000 5 32 4 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 11.2% - 20.3% 8.7% - 16.7% 0 days 09:15:06

R42 wav2vec-run-0045 22.05.23 07:53 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion SpecAugment MIX-10000R MIX-20000 5 32 2 x 16 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 44.3% - 59.3% 44.0% - 57.2% 0 days 05:20:42

R43 whisper-run-0046 22.05.23 14:42 VAST (RTX 3090 24GB) whisper-small subregion SpecAugment MIX-10000R MIX-20000 5 32 8 x 4 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 53.8% - 58.2% 51.2% - 54.7% 0 days 06:36:39

R44 whisper-run-0056 28.05.23 10:19 VAST (RTX 3090 24GB) whisper-medium subregion SpecAugment MIX-10000R MIX-20000 5 32 1 x 32 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 47.4% - 50.4% 44.1% - 46.8% 0 days 21:17:15

R45 wav2vec-run-0048 29.05.23 22:58 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion Combined Augmentations MIX-10000R MIX-20000 5 64 2 x 32 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 49.4% - 58.0% 46.9% - 54.0% 2 days 14:28:23

R46 whisper-run-0060 30.05.23 22:05 VAST (RTX 3090 24GB) whisper-small subregion Combined Augmentations MIX-10000R MIX-20000 5 64 8 x 8 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 52.1% - 56.4% 47.9% - 52.8% 2 days 09:13:28

R47 wav2vec-run-0049 06.06.23 02:43 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion SpecAugment MIX-10000R MIX-20000 20 2 2 x 1 49.5% - 64.6% 44.5% - 62.1% 1 days 01:27:35

wav2vec-run-0046 26.05.23 22:10 VAST (RTX 3090 24GB) wav2vec2-xls-r-300m subregion SpecAugment MIX-10000R MIX-20000 20 32 2 x 16 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 45.7% - 60.6% 45.8% - 57.5% 0 days 21:43:54

whisper-run-0048 22.05.23 22:19 VAST (RTX 3090 24GB) whisper-base subregion SpecAugment MIX-20000 MIX-20000 20 32 16 x 2 3.00E-05 - 3.00E-08 1.00E-03 - 1.00E-06 45.5% - 55.5% 43.5% - 54.0% 0 days 15:01:17

LR Model

Run Model Dataset Training Parameters Performance

Training the Best Model

1.16E-05 8.28E-04

Micro F1 Macro F1

Exploring Contrastive Learning

Batch size LR Pre-Trained
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8.3 Corpora Overview 

The figure below visualises the data flow between all the used corpora. The data 

initially comes from the SDS-200 and STT4SG-350 corpora and then multiple trans-

formations such as pre-processing, splits, joins and reductions were performed to 

obtain each corpus and the associated train, valid and test datasets. In the figure 

below, <Pre-Process= refers to the pre-processing steps described in Chapter 3.2 

above, <Split= refers to the train-test-split method described in Chapter 3.3 above 

and <Reduce= refers to the corpora reduction method described Chapter 4.2.2.  
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8.4 Corpora Details 

The table on the next page contains the details of all the corpora and their train-test 

splits used during this bachelor9s thesis.
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SDS-200 RAW Original corpus 155,271 4,207 - - - - - - - - - - - - - - - - - - - - - -

SDS-200 Corpus SDS-200 RAW Pre-processed as described in Chapter 3.2 122,599 1,397 592 316 95 394 65,722 16,572 16,021 24,284 61 333 56 136 159 30 366 3,621 20,664 3,565 7,055 6,041 11,760 55,121

Train SDS-200 Corpus subregion Splitted as described in Chapter 3.3 (80%) 89,409 912 369 172 63 308 47,223 7,316 14,528 20,336 55 255 43 107 129 26 297 3,213 17,143 2,923 5,509 4,393 11,596 44,626

Valid SDS-200 Corpus subregion Splitted as described in Chapter 3.3 (10%) 7,740 114 42 23 7 42 4,564 1,457 164 1,555 1 41 8 13 15 2 34 36 1,519 501 389 956 69 4,270

Test SDS-200 Corpus subregion Splitted as described in Chapter 3.3 (10%) 10,684 115 40 20 13 42 6,307 833 1,170 2,374 5 37 5 16 15 2 35 372 2,002 141 1,157 692 95 6,225

Train SDS-200 Corpus canton group Splitted as described in Chapter 3.3 (80%) 101,434 1,117 470 252 72 323 53,677 12,931 14,401 20,425 49 274 45 107 130 24 293 1,476 18,950 2,632 5,566 4,711 11,053 47,576

Valid SDS-200 Corpus canton group Splitted as described in Chapter 3.3 (10%) 10,889 140 53 33 11 43 6,752 1,956 628 1,553 8 35 3 11 14 3 30 488 1,065 721 324 344 510 3,278

Test SDS-200 Corpus canton group Splitted as described in Chapter 3.3 (10%) 10,276 140 69 31 12 28 5,293 1,685 992 2,306 4 24 8 18 15 3 43 1,657 649 212 1,165 986 197 4,267

STT4SG-350 RAW Original balanced corpus 217,030 240 - - - - - - - - 32 34 35 32 37 36 34 30,654 32,168 27,416 32,887 34,667 32,942 32,188

STT4SG-350 Corpus STT4SG-350 RAW Pre-processed as described in Chapter 3.2 190,739 208 48 64 39 57 46,715 54,047 36,950 53,027 30 28 34 28 30 30 28 28,273 25,857 26,152 28,221 27,895 28,044 26,297

Train Original balanced train dataset 167,646 187 43 58 35 51 41,261 47,417 32,546 46,422 27 25 31 25 27 27 25 24,966 22,559 22,824 24,925 24,593 24,716 23,063

Valid Original validation dataset 23,093 21 5 6 4 6 5,454 6,630 4,404 6,605 3 3 3 3 3 3 3 3,307 3,298 3,328 3,296 3,302 3,328 3,234

All STT4SG-350 RAW Pre-processed as described in Chapter 3.2 217,030 235 54 71 47 63 53,337 60,683 43,951 59,059 32 32 34 32 37 36 32 30,352 29,810 26,152 32,589 34,531 32,868 30,728

MIX-ALL Corpus
SDS-200 Corpus, 

STT4SG-350 All
Merged pre-processed corpus SDS-200 and STT4SG 339,629 1,632 646 387 142 457 119,059 77,255 59,972 83,343 93 365 90 168 196 66 398 33,973 50,474 29,717 39,644 40,572 44,628 85,849

Train MIX-ALL Corpus subregion Splitted as described in Chapter 3.3 (80%) 262,293 1,100 412 229 103 356 91,076 56,895 48,528 65,794 81 278 71 134 158 51 327 29,395 37,522 23,144 32,372 33,751 35,741 70,368

Valid MIX-ALL Corpus subregion Splitted as described in Chapter 3.3 (10%) 32,592 138 54 27 12 45 10,383 7,629 5,809 8,771 4 41 7 15 20 6 45 1,298 7,473 3,701 5,091 3,928 3,539 7,562

Test MIX-ALL Corpus subregion Splitted as described in Chapter 3.3 (10%) 29,972 138 39 30 15 54 9,972 5,765 5,476 8,759 8 46 12 19 18 9 26 3,280 5,479 2,872 2,181 2,893 5,348 7,919

MIX-20000 Corpus MIX-ALL 140,000 1,376 505 286 130 455 33,198 40,000 27,109 39,693 93 365 90 168 196 66 398 20,000 20,000 20,000 20,000 20,000 20,000 20,000

Train MIX-20000 Corpus subregion 112,000 1,100 405 236 101 358 27,381 31,653 20,617 32,349 76 285 74 135 162 50 318 17,129 15,527 15,860 16,064 15,793 14,661 16,966

Valid MIX-20000 Corpus subregion 13,961 138 53 26 16 43 3,009 3,449 4,532 2,971 10 33 10 20 16 9 40 1,439 1,532 1,814 1,786 1,635 3,932 1,823

Test MIX-20000 Corpus subregion 14,039 138 47 24 13 54 2,808 4,898 1,960 4,373 7 47 6 13 18 7 40 1,432 2,941 2,326 2,150 2,572 1,407 1,211

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 3,322 901 - - - - - - - - - - - - - - - - - - - - - -

MIX-10000 Corpus MIX-ALL 70,000 1,376 505 286 130 455 16,538 20,000 13,555 19,907 93 365 90 168 196 66 398 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Train MIX-10000 Corpus subregion 56,113 1,100 406 226 100 368 13,401 15,687 11,342 15,683 77 294 71 136 155 52 315 7,946 7,830 7,710 8,420 7,977 8,509 7,721

Valid MIX-10000 Corpus subregion 6,611 138 47 30 11 50 1,644 1,916 864 2,187 10 40 10 15 20 6 37 949 1,238 957 900 959 622 986

Test MIX-10000 Corpus subregion 7,276 138 52 30 19 37 1,493 2,397 1,349 2,037 6 31 9 17 21 8 46 1,105 932 1,333 680 1,064 869 1,293

HA – Highest-Alemannic (cantons: GL, NW, OW, SZ, UR, VS)

WA – Western-High-Alemannic (cantons: BE, BS, FR, SO)

CA – Central-High-Alemannic (cantons: AG, LU, ZG, ZH)

EA – Eastern-High-Alemannic (cantons: AI, AR, GR, SG SH, TG)

Corpus Details Total

SDS-200

STT4SG-350

Mixed Corpora

Samples

Subregion Label

SpeakersSamples

Canton Group Label

Speakers
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Name Type Corpus create from Split Notes Samples Unique Speakers
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MIX-10000R Corpus 70,000 1,376 505 286 130 455 16,548 20,000 13,553 19,899 93 365 90 168 196 66 398 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Train MIX-20000 Train subregion 56,000 1,100 405 236 101 358 13,152 16,000 10,949 15,899 76 285 74 135 162 50 318 8,000 8,000 8,000 8,000 8,000 8,000 8,000

Valid MIX-20000 Valid subregion 7,000 138 53 26 16 43 1,662 2,000 1,338 2,000 10 33 10 20 16 9 40 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Test MIX-20000 Test subregion 7,000 138 47 24 13 54 1,734 2,000 1,266 2,000 7 47 6 13 18 7 40 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 3,326 902 - - - - - - - - - - - - - - - - - - - - -

MIX-10000RS5 Train MIX-10000R Train subregion Speaker separation strategy as described in Chapter 4.5.1.1 560,000 1,100 - - - - - - - - - - - - - - - - - - - - - -

MIX-10000RD2 Train MIX-10000R Train subregion Dialect separation strategy as described in Chapter 4.5.1.2 784,000 1'100 - - - - - - - - - - - - - - - - - - - - - -

MIX-5000R Corpus 35,000 1,376 505 286 130 455 8,236 10,000 6,804 9,960 93 365 90 168 196 66 398 5,000 5,000 5,000 5,000 5,000 5,000 5,000

Train MIX-20000 Train subregion 28,000 1,100 405 236 101 358 6,569 8,000 5,471 7,960 76 285 74 135 162 50 318 4,000 4,000 4,000 4,000 4,000 4,000 4,000

Valid MIX-20000 Valid subregion 3,500 138 53 26 16 43 824 1,000 676 1,000 10 33 10 20 16 9 40 500 500 500 500 500 500 500

Test MIX-20000 Test subregion 3,500 138 47 24 13 54 843 1,000 657 1,000 7 47 6 13 18 7 40 500 500 500 500 500 500 500

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 3,521 914 - - - - - - - - - - - - - - - - - - - - - -

MIX-2000R Corpus 14,000 1,376 505 286 130 455 3,263 4,000 2,754 3,983 93 365 90 168 196 66 398 2,000 2,000 2,000 2,000 2,000 2,000 2,000

Train MIX-20000 Train subregion 11,200 1,100 405 236 101 358 2,616 3,200 2,201 3,183 76 285 74 135 162 50 318 1,600 1,600 1,600 1,600 1,600 1,600 1,600

Valid MIX-20000 Valid subregion 1,400 138 53 26 16 43 333 400 267 400 10 33 10 20 16 9 40 200 200 200 200 200 200 200

Test MIX-20000 Test subregion 1,400 138 47 24 13 54 314 400 286 400 7 47 6 13 18 7 40 200 200 200 200 200 200 200

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 4,561 1,032 - - - - - - - - - - - - - - - - - - - - - -

MIX-1000R Corpus 7,000 1,376 505 286 130 455 1,625 2,000 1,383 1,992 93 365 90 168 196 66 398 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Train MIX-20000 Train subregion 5,600 1,100 405 236 101 358 1,305 1,600 1,103 1,592 76 285 74 135 162 50 318 800 800 800 800 800 800 800

Valid MIX-20000 Valid subregion 700 138 53 26 16 43 165 200 135 200 10 33 10 20 16 9 40 100 100 100 100 100 100 100

Test MIX-20000 Test subregion 700 138 47 24 13 54 155 200 145 200 7 47 6 13 18 7 40 100 100 100 100 100 100 100

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 5,046 1,083 - - - - - - - - - - - - - - - - - - - - - -

MIX-500R Corpus 3,500 1,376 505 286 130 455 814 1,000 690 996 93 365 90 168 196 66 398 500 500 500 500 500 500 500

Train MIX-20000 Train subregion 2,800 1,100 405 236 101 358 654 800 550 796 76 285 74 135 162 50 318 400 400 400 400 400 400 400

Valid MIX-20000 Valid subregion 350 138 53 26 16 43 82 100 68 100 10 33 10 20 16 9 40 50 50 50 50 50 50 50

Test MIX-20000 Test subregion 350 138 47 24 13 54 78 100 72 100 7 47 6 13 18 7 40 50 50 50 50 50 50 50

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 5,259 1,099 - - - - - - - - - - - - - - - - - - - - - -

MIX-200R Corpus 1,400 1,011 306 284 130 291 326 400 276 398 93 200 90 168 194 66 200 200 200 200 200 200 200 200

Train MIX-20000 Train subregion 1,120 815 246 234 101 234 262 320 220 318 76 160 74 135 160 50 160 160 160 160 160 160 160 160

Valid MIX-20000 Valid subregion 140 105 33 26 16 30 33 40 27 40 10 20 10 20 16 9 20 20 20 20 20 20 20 20

Test MIX-20000 Test subregion 140 91 27 24 13 27 31 40 29 40 7 20 6 13 18 7 20 20 20 20 20 20 20 20

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 4,001 815 - - - - - - - - - - - - - - - - - - - - - -

MIX-100R Corpus 700 649 167 190 100 192 167 200 134 199 93 100 90 100 100 66 100 100 100 100 100 100 100 100

Train MIX-20000 Train subregion 560 520 134 154 77 155 134 160 107 159 76 80 74 80 80 50 80 80 80 80 80 80 80 80

Valid MIX-20000 Valid subregion 70 69 16 20 13 20 16 20 14 20 10 10 10 10 10 9 10 10 10 10 10 10 10 10

Test MIX-20000 Test subregion 70 60 17 16 10 17 17 20 13 20 7 10 6 10 10 7 10 10 10 10 10 10 10 10

Same Speakers MIX-ALL subregion Same speaker test dataset as described in Chapter 4.3.2 2,574 520 - - - - - - - - - - - - - - - - - - - - - -

HA – Highest-Alemannic (cantons: GL, NW, OW, SZ, UR, VS)

WA – Western-High-Alemannic (cantons: BE, BS, FR, SO)

CA – Central-High-Alemannic (cantons: AG, LU, ZG, ZH)

EA – Eastern-High-Alemannic (cantons: AI, AR, GR, SG SH, TG)

Unique Speakers Samples Unique Speakers Samples

Mixed Corpora Reduced

Corpus Details Corpus Total Canton Group Label Subregion Label
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8.5 Mixed Corpora Samples per Speaker 

The table below contains the number of samples per speaker within each subregion 

and dataset. 

 

 

subregion 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800

Basel 93

Bern 100

Graubünden 90

Innerschweiz 100

Ostschweiz 100

Wallis 66

Zürich 100

Basel 93

Bern 200

Graubünden 90

Innerschweiz 168

Ostschweiz 194

Wallis 66

Zürich 200

Basel 93

Bern 365

Graubünden 90

Innerschweiz 168

Ostschweiz 196

Wallis 66

Zürich 398

Basel 41 52

Bern 365

Graubünden 32 58

Innerschweiz 168

Ostschweiz 196

Wallis 11 55

Zürich 398

Basel 31 15 6 41

Bern 365

Graubünden 32 11 4 39 4

Innerschweiz 50 112 6

Ostschweiz 73 123

Wallis 11 6 13 4 32

Zürich 398

Basel 31 15 3 3 2 3 1 1 1 33

Bern 156 147 62

Graubünden 32 11 4 1 1 1 1 1 1 4 33

Innerschweiz 47 39 16 7 5 49 5

Ostschweiz 68 41 7 24 18 34 4

Wallis 11 6 2 3 1 1 9 1 1 31

Zürich 174 213 11

Basel 31 15 3 3 2 3 1 1 1 3 26 2 2

Bern 155 84 21 20 20 2 6 15 38 4

Graubünden 32 11 4 1 1 1 1 1 1 1 5 31

Innerschweiz 47 39 16 7 4 4 6 2 2 1 37 3

Ostschweiz 68 41 7 14 3 3 5 3 7 6 36 3

Wallis 11 6 2 3 1 1 1 1 1 1 12 24 2

Zürich 174 82 30 15 7 7 78 1 4

Basel 31 15 3 3 2 3 1 1 1 3 1 1 28

Bern 155 84 21 20 7 3 7 5 2 1 17 43

Graubünden 32 11 4 1 1 1 1 1 1 1 5 3 6 2 20

Innerschweiz 47 39 16 7 4 4 6 2 2 1 5 2 33

Ostschweiz 68 41 7 14 3 3 5 3 6 1 9 4 32

Wallis 11 6 2 3 1 1 1 1 1 1 5 1 1 1 30

Zürich 174 82 30 15 7 6 6 4 6 5 20 43   

MIX-20000

MIX-500R

MIX-200R

MIX- 100R

Number of Recordings per Speakers

MIX-1000R

MIX-2000R

MIX-5000R

MIX-10000R



 

83 

8.6 Rented Machines from Vast.ai 

 

 

Invoice Item Quantity Rate Amount

24278 Instance 6034927 GPU charge: hours * $/hr 0.13 0.60$  0.08$        

24278 Instance 6034790 storage charge: hours * $/hr 0.52 0.02$  0.01$        

24278 Instance 6034746 GPU charge: hours * $/hr 0.14 0.25$  0.04$        

24278 Instance 6031961 GPU charge: hours * $/hr 0.26 0.25$  0.07$        

24278 Instance 6031961 storage charge: hours * $/hr 2.57 0.02$  0.05$        

24278 Instance 6028960 GPU charge: hours * $/hr 3.88 0.25$  0.98$        

24278 Instance 6028960 storage charge: hours * $/hr 14.63 0.02$  0.25$        

24278 Instance 6028960 download charge: GB * $/GB 2.65 0.01$  0.03$        

24278 Instance 6034966 GPU charge: hours * $/hr 20.43 0.60$  12.26$     

24278 Instance 6034966 storage charge: hours * $/hr 21.42 0.09$  1.86$        

24278 Instance 6034966 download charge: GB * $/GB 11.9 0.02$  0.24$        

24279 Instance 6102251 GPU charge: hours * $/hr 12.08 0.26$  3.18$        

24279 Instance 6102251 storage charge: hours * $/hr 12.56 0.02$  0.26$        

24279 Instance 6102251 download charge: GB * $/GB 1.63 0.01$  0.02$        

24279 Instance 6150518 storage charge: hours * $/hr 0.41 0.04$  0.02$        

24279 Instance 6150559 GPU charge: hours * $/hr 92.08 0.36$  33.15$     

24279 Instance 6150559 storage charge: hours * $/hr 146.51 0.01$  2.04$        

24279 Instance 6150559 download charge: GB * $/GB 6.6 0.01$  0.07$        

24279 Instance 6150559 upload charge: GB * $/GB 0.63 0.03$  0.02$        

24280 Instance 6293139 GPU charge: hours * $/hr 3.09 0.30$  0.93$        

24280 Instance 6293139 storage charge: hours * $/hr 3.15 0.04$  0.13$        

24280 Instance 6292692 GPU charge: hours * $/hr 1.61 0.30$  0.48$        

24280 Instance 6292692 storage charge: hours * $/hr 1.61 0.01$  0.02$        

24280 Instance 6293520 GPU charge: hours * $/hr 242.95 0.32$  77.74$     

24280 Instance 6293520 storage charge: hours * $/hr 242.96 0.04$  10.13$     

24280 Instance 6293520 download charge: GB * $/GB 22 0.01$  0.22$        

24280 Instance 6293520 upload charge: GB * $/GB 2.01 0.03$  0.06$        

24281 Instance 6293520 GPU charge: hours * $/hr 152.46 0.32$  48.79$     

24281 Instance 6293520 storage charge: hours * $/hr 152.99 0.04$  6.38$        

24281 Instance 6293520 download charge: GB * $/GB 12.5 0.01$  0.13$        

24281 Instance 6293520 upload charge: GB * $/GB 27.89 0.03$  0.84$        

Total: 200.48$  


