
Zurich University
of Applied Sciences www.zhaw.ch/engineering Study

Bachelor thesis (Computer Science)

Claim Extraction

Authors

 Pascal Isliker

Christoph Mathis

Karin Birle

Main supervisor

 Mark Cieliebak

Sub supervisor

 Pius von Däniken

Date

 09.06.2023

I

Formula

DECLARATION OF ORIGINALITY
Bachelor’s Thesis at the School of Engineering

By submitting this Bachelor’s thesis, the undersigned student confirms that this thesis is his/her
own work and was written without the help of a third party. (Group works: the performance
of the other group members are not considered as third party).

The student declares that all sources in the text (including Internet pages) and appendices have
been correctly disclosed. This means that there has been no plagiarism, i.e. no sections of the
Bachelor thesis have been partially or wholly taken from other texts and represented as the
student’s own work or included without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General Academic
Regulations for Bachelor’s and Master’s Degree courses at the Zurich University of Applied Sci-
ences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for disciplinary
action stipulated in the University regulations

City, Date: Name Student:

Winterthur, 09.06.2023 Pascal Isliker

Winterthur, 09.06.2023 Christoph Mathis

Winterthur, 09.06.2023 Karin Birle

II

Abstract

In recent years widespread fake news have become a problem. To tackle this issue, it is nec-
essary to fact-check information. However, manual fact-checking is a time-consuming process.
In order to minimize the amount of information requiring fact-checking, it is important to au-
tomatically identify relevant claims. The objective of this project is to develop a system that
can automatically identify relevant claims. The Conference and Labs of the Evaluation Forum
(CLEF) organizes yearly competitions, one of them being the CheckThat! competition, which
focuses on the issue of fake news. Task 1B of the CheckThat!2023 competition focused on
identifying relevant claims. We participated in the competition and focused on task 1B. The
CheckThat! lab provided data that can be utilized to train a system on the task of predicting
checkworthiness. We have built a system by analysing this data and doing experiments. To
accomplish this, we analyzed the given data and experimented with various transformer models
like BERT and ELECTRA. We also explored the usage of other models such as word2vec. For
our final system, we employed a meta-estimator to consolidate all our predictions into a single
output. We utilized this system to participate in the CheckThat!2023 competition, placing
10th out of 11 teams with an F-score of 0.767. Following the deadline of the CheckThat! com-
petition we further improved our system by adding predictions from ClaimBuster and OpenAI
using their APIs. Additionally, we applied hyperparameter search to the transformer models
we used. The F-score of our final model using the Logistic Regression with cross validation as
a meta-estimator was 0.817.

III

Zusammenfassungen

In den letzten Jahren sind weit verbreitete Fake News zu einem Problem geworden. Um dieses
Problem in den Griff zu bekommen, ist es notwendig, Informationen auf ihre Richtigkeit hin
zu überprüfen. Die manuelle Überprüfung von Fakten ist jedoch ein zeitaufwändiger Prozess.
Um die Menge der zu prüfenden Informationen zu minimieren, ist es wichtig, relevante Be-
hauptungen automatisch zu identifizieren. Ziel dieses Projekts ist es, ein System zu en-
twickeln, das automatisch relevante Behauptungen identifizieren kann. Das Conference and
Labs of the Evaluation Forum (CLEF) organisiert jährlich Wettbewerbe. Einer davon ist der
CheckThat!-Wettbewerb, der sich mit dem Thema Fake News beschäftigt. Aufgabe 1B des
CheckThat!2023-Wettbewerbs konzentrierte sich auf die Identifizierung relevanter Behauptun-
gen. Wir haben an diesem Wettbewerb teilgenommen und uns auf Aufgabe 1B fokussiert.
Das CheckThat!2023-Labor lieferte Daten, die genutzt werden können, um ein System für
die Vorhersage der Prüfwürdigkeit zu trainieren. Wir haben ein System entwickelt, indem
wir diese Daten analysiert und Experimente durchgeführt haben. Dazu analysierten wir die
gegebenen Daten und experimentierten mit verschiedenen Transformer Modellen wie BERT
und ELECTRA. Wir haben auch die Verwendung anderer Modelle wie word2vec untersucht.
Für unser endgültiges System setzten wir einen Meta-Estimator ein, um alle unsere Vorher-
sagen in einer einzigen Ausgabe zusammenzufassen. Mit diesem System nahmen wir am Wet-
tbewerb CheckThat!2023 teil und belegten mit einem F-score von 0.767 den 10. Platz von
11 Teams. Nach Ablauf der Frist für den CheckThat!-Wettbewerb haben wir unser System
weiter verbessert, indem wir weitere Vorhersagen mithilfe der APIs von ClaimBuster und Ope-
nAI hinzugefügt haben. Ausserdem wendeten wir die Hyperparametersuche auf die von uns
verwendeten Transformer-Modelle an. Der F-score unseres endgültigen Modells betrug 0.817.
Dabei haben wir den Logistic Regression mit Cross-Validation als Meta-Estimator verwendet.

IV

Acknowledgements

We would like to thank everyone who has supported us throughout the process of creating our
bachelor thesis. In particular, we want to thank our supervisors Mark Cieliebak and Pius von
Däniken.

We would like to acknowledge the valuable assistance of ChatGPT, an advanced language model
developed by OpenAI. ChatGPT was employed for the purpose of rephrasing sentences and
providing grammatical improvements to enhance the clarity and coherence. The suggestions
contributed to the readability and overall quality of our paper.

Contents
1 Introduction 1

1.1 Starting Position . 1
1.2 Task Definition . 1
1.3 CheckThat! Lab . 1
1.4 Definition of checkworthiness . 1
1.5 Overview . 2

2 Related Work 3
2.1 Checkworthiness for speeches and debates . 3
2.2 Previous Approaches . 3
2.3 Previous Competitions . 4
2.4 Context . 5

3 Theoretical Foundations 6
3.1 Neural Network . 6
3.2 Feature Extraction . 7
3.3 Transformer model . 7
3.4 OpenAI . 8
3.5 Fine-Tuning . 9

4 Datasets and Baselines 10
4.1 Baselines . 11
4.2 Speeches and Debates . 12

5 Data Analysis 14
5.1 Labeling . 14

6 Methods 19
6.1 Approach . 19
6.2 Evaluation . 20
6.3 Basic models . 20
6.4 Transformer models . 21
6.5 Word attributions . 26
6.6 API models . 29
6.7 Meta-Estimators . 31
6.8 Analysis and Comparison . 33
6.9 Final model . 36

7 Results 38
7.1 CheckThat! Lab . 38
7.2 Final results . 40

8 Conclusion and Discussion 42
8.1 Overview . 42
8.2 Potential improvements and Learnings . 42

V

VI

9 Indices 45
Bibliography . 45
List of Figures . 49
List of Tables . 50

10 Appendix 52
10.1 Software and Tools . 52
10.2 Guide . 52
10.3 Word attribution calculation . 54
10.4 Transformer models . 55
10.5 OpenAI . 59

1 Introduction 1

1 Introduction

1.1 Starting Position

Social media’s widespread use for news has exposed the rapid spread of misinformation, as
seen in the 2016 US presidential election [1] and the COVID-19 pandemic [2]. To address this
issue, information must be fact-checked. However, fact-checkers face limitations in manually
examining all content. To aid the process, automatic claim extraction can help to identify
claims requiring verification, allowing fact-checkers to focus on evaluating potentially deceptive
content.

A claim is the key component of an argument [3], "an assertion that deserves our attention"
[4]. For example "Yesterday it was raining in London." is a claim that is usually not a relevant
(not checkworthy) claim. But "In 2022, the unemployment rate in Great Britain was estimated
at around 3.70 percent." is a checkworthy claim. "How do you do?" and "I’d like to mention
one thing." are not claims.

1.2 Task Definition

In this project we provide an overview of existing models and according literature for claim
extraction out of text and detection of checkworthiness. Based on this knowhow a model is
trained, to detect checkworthy claims. To get data to train the model and evaluate how well the
model performs, we work with the datasets from the CheckThat! lab challenge of the current
year.

1.3 CheckThat! Lab

The Conference and Labs of the Evaluation Forum (CLEF) [5] organizes yearly challenges.
Ever since 2018 there has been a lab regarding claim extraction. We participated in task 1B [6]
of this year’s challenge. The goal of task 1B was to predict the checkworthiness of tweets
and transcriptions of speeches and debates in English, Spanish and Arabic. We focused on the
English part of the task 1B which consists exclusively of transcriptions of speeches and debates.

1.4 Definition of checkworthiness

In last years (2022) CheckThat! competition, checkworthiness was described as follows:

"checkworthiness: Do you think that a professional fact-checker should verify the claim in the
tweet? This question asks for a subjective judgment. Yet, its answer should be based on
whether the claim is likely to be false, is of public interest, and/or appears to be harmful. Note
that we stress the fact that a professional fact-checker should verify the claim, ruling out claims
that are easy to fact-check by a layperson." [7]

Therefore, checkworthiness of a Claim is affected by

1 Introduction 2

• Likeliness to be false

• Relevance / Public interest

• Harmfulness

1.5 Overview

Section 2 Related Work references promising approaches and Section 3 explains important
models and provides some theoretical foundations for this work. The datasets we utilized
are described in Section 4 and in Section 5 we explain how we comprehend the task and its
complexity. We accomplished this by manually labeling a small amount of data and comparing
our labels to each other, the labels generated by the models, and the gold labels. This allowed us
to get a better understanding as to how the data was labeled and assess the level of agreement
among ourselves and determine if our performance surpassed that of the models. In Section
6 Methods we show how we solve the task by training different models like the recently best
performing transformer models BERT, ELECTRA, DistilBERT as well as basic models such
as word2vec and n-gram on the provided training dataset. After that, we will let those models
as well as the OpenAI API model and the ClaimBuster API model make predictions on a
secondary dataset. With all those predictions, we will then train a meta-estimator to get
our final model. This final model we use to predict the labels of the test data to see how
well the meta-estimators perform on this dataset. As previous work indicates that even bad
performing models can contribute to combined decisions [8] we expect that the final model
performs best, but we will compare all the models to get a ranking. Based on that ranking, we
will decide which model we will use for the CheckThat! submission. Section 7 Results presents
the intermediate results on the test data, and shows the scores we achieved on the submission
dataset. Afterwards we will analyse our results, improve the model according to our learnings
and give ideas for further improvement in Section 8 Conclusion and Discussion.

2 Related Work 3

2 Related Work

Current research on claims can be separated in three categories as shown in Figure 1. [9]

• Claim detection: Claim detection is the process of extracting claims from a given con-
text. [10]

• Claim checkworthiness: Detected claims can be manually fact-checked. However, fact-
checking claims manually (by professional fact-checkers) is very time-consuming. check-
worthiness is introduced to reduce the number of claims that need to be checked. [11]

• Claim verification: Claim verification is the task of checking if a claim is factual / trust-
worthy. [12]

Figure 1: Shows the three research categories the claims are separated in.

In this paper we will focus on claim checkworthiness.

2.1 Checkworthiness for speeches and debates

The ClaimBuster [13] system was developed to target checkworthiness. Their system was
specifically built based on data from U.S. presidential debates. The system was built to classify
sentences into one of three categories: Non-Factual, Unimportant Factual and Check-worthy
Factual. Later on a system called ClaimRank [11] based on [14] was introduced. ClaimRank
was also trained on political debates. The ClaimRank system can predict the checkworthiness
of a sentence on a scale from 0 (not checkworthy) to 1 (checkworthy).

2.2 Previous Approaches

In previous iterations of the CheckThat! lab there have already been tasks that focused on
predicting checkworthiness. So far they have all focused either on tweets or political debates and
speeches. Initial approaches on solving the problem of checkworthiness involved models such as
Random Forest, Support Vector Machines (SVM), Multinomial Bayes, and features based on
Term Frequency-Inverse Document Frequency (TF-IDF) representation, part-of-speech tags,
sentiment scores, and named entities. [13], [15]. In the case of check-worthy detection of
claims, Recurrent Neural Networks (RNN) produced the best unofficial run in 2018 [15], and
in 2019, a Neural Network (NN) with Long Short-Term Memory (LSTM) also performed the
best. In more recent competitions transformer models have become the state-of-the-art model
for predicting checkworthiness. Starting in 2020 [16] they have been used to achieve the best

2 Related Work 4

results in the CheckThat! competition [7], [17]. The task of predicting checkwothiness in text
inherently includes claim detection. This is because if a text fragment is not a claim, it is never
considered checkworthy.

2.3 Previous Competitions

In this section, we will introduce the methods that achieved the best results in each year’s
respective CheckThat! competition in the according checkwothyness task.

2.3.1 CheckThat!2020

Task 1: Checkworthiness estimation for tweets [18]

Task 1 of the CheckThat!2020 competition involved estimating the checkworthiness of tweets.
The topic and a stream of potentially related tweets were given and had to be ranked according
to their checkworthiness regarding that topic. The topic of focus was COVID-19, and the
manually annotated tweets were collected from March 2020 [18]. Most of the participating
groups used pre-trained models such as BERT and RoBERTa. However, there were also groups
that used traditional models such as SVM and Logistic Regression. The official evaluation
measure was mean average precision (MAP) complemented with further metrics. The best
performing team Accenture [19] used a model based on RoBERTa. They reached a MAP score
of 0.806. Nearly as well performed team Team_Alex with a MAP score of 0.803 by also using
RoBERTa.

2.3.2 CheckThat!2021

In the CheckThat!2021 competition there were two tasks regarding checkworthiness. In one
task, the dataset consisted of tweets, while in the other task, the participants had to classify
sentences of political debates and speeches.

Task 1A: Checkworthiness of tweets [17]

Subtask 1A was offered in Arabic, Bulgarian, English, Spanish, and Turkish. The tweets fo-
cused on COVID-19, vaccines, and politics, and were crawled and manually annotated between
January 2020 and March 2021. The evaluation was performed per language, but it was possible
to use multilingual approaches that leverage information from all available datasets. 15 teams
participated in subtask 1A, the most successful approaches used transformers or a combina-
tion of embeddings, manually engineered features, and NNs. The top performing team on the
English dataset was NLP&IR@UNED with a MAP score of 0.224 using several pre-trained
transformer models. BERTweet, the model they used, performed the best on the development
set and was trained using RoBERTa on 850 million English tweets and 23 million COVID-19
English tweets. The second-best team, Fight for 4230, achieved a MAP score of 0.195. They
utilized BERTweet with a dropout layer as their primary model. Moreover, they implemented
pre-processing techniques and data augmentation methods as part of their approach.

2 Related Work 5

Task 1B: Checkworthiness of debates or speeches [17]

In Subtask 1B previously fact-checked political debates and speeches in English from PolitiFact
were provided. This task has evolved from the first edition of the CheckThat! lab and in each
new edition (2018, 2019, 2020) more training data from increasingly diverse sources has been
added. The original task was defined as follows: "Given a transcript of a speech or a political
debate, rank the sentences in the transcript according to the priority with which they should
be fact-checked." [17]

The task got submissions from two teams and only one of them, team Fight for 4230 with a
MAP score of 0.402, performed better than the n-gram baseline using a RoBERTa model that
was fine-tuned on tweets_hate_speech_detection dataset with one dropout- and one classifier
layer. The baseline had a MAP score of 0.235 [20].

2.3.3 CheckThat!2022

Task 1A: Checkworthiness of tweets [7]

Subtask 1A involved labeling tweets with "yes" or "no" in response to the question "Do you
think a professional fact-checker should verify the claim in the tweet?". They provided manually
annotated datasets for Arabic, Bulgarian, Dutch, English and Turkish, which were also used for
the other subtasks, while the Spanish dataset was only used for subtask 1A and provided in a
larger-scale dataset. The tweets were collected in the timeframe from January 2020 until March
2021 by specifying the language and a set of COVID-19 keywords. Retweets, replies, duplicates
and tweets with less than five words were removed and the most frequently liked and retweeted
tweets were selected for annotation. To rank the teams, the F1-measure was utilized with
respect to the positive class ("yes") to account for class imbalance. The best performing team
for the English dataset was AI Rational with a F-score of 0.698 [7]. They conducted experiments
with various transformer models and decided to utilize RoBERTa specifically for the English
dataset. To increase the amount of training data AI Rational used a data augmentation process
based on back-translation [21]. Team Zorros submitted the second-best performing system,
which achieved an F-score of 0.667, based on an ensemble approach combining BERT and
RoBERTa.

2.4 Context

Regarding the identification of checkworthy claims in texts, the previous CheckThat! labs
have been our most important sources of reference. Our most important principles for the
construction and implementation of transformer models [22], [23], NNs [24], and OpenAI [25]
are compiled in the following Section 3 Theoretical Foundations. The most important source on
how even bad performing models can contribute to meta-estimators was [8]. Building upon this
foundation, our study leverages a diverse array of established models to consistently achieve
optimal prediction outcomes.

3 Theoretical Foundations 6

3 Theoretical Foundations

3.1 Neural Network

A Neural Network (NN) is a method in artificial intelligence that teaches computers to process
data. It is a type of machine learning process, called deep learning, that uses interconnected
nodes or neurons in a layered structure that resembles the human brain. NNs are a set of
algorithms that are designed to recognize patterns. The patterns they recognize are numerical
vectors, into which all real-world data, for example text, has to be translated.

Figure 2: ANN with two hidden layers [26]

Artificial Neural Networks (ANNs) are structured as a series of interconnected layers composed
of nodes like shown in Figure 2. These layers consist of an input layer, which receives external
data, one or more hidden layers responsible for intermediate computations and an output layer
that produces the final results. Within this network, each node, or artificial neuron, is linked
to others and possesses a weight and a threshold. When the output of a node exceeds its
threshold, it becomes activated and transmits information to the subsequent layer. Conversely,
if the output does not surpass the threshold, no data is propagated to the following layer.
Feedforward Neural Network (FNN) are ANNs wherein connections between the nodes do not
form a cycle. They are also known as multi-layer perceptrons (MLPs). Convolutional Neural
Networks (CNNs) share similarities with FNNs, but they are predominantly employed for tasks
such as image recognition, pattern recognition, and computer vision. CNNs leverage principles
from linear algebra, specifically matrix multiplication, to effectively detect patterns within an
image. Recurrent Neural Networks (RNNs) are distinguished by their characteristic feedback
loops, which allow them to process sequential and time-series data. These learning algorithms
are particularly well-suited for tasks that involve making predictions about future outcomes
based on historical information [24].

3 Theoretical Foundations 7

3.2 Feature Extraction

Feature extraction is a process that involves transforming raw data into a more compact repre-
sentation, a so-called feature, that captures relevant information from the original data. It aims
to reduce the dimensionality of the data while preserving or enhancing the discriminatory in-
formation. The raw data, such as images, text, or audio signals, often contain high-dimensional
and redundant information. Feature extraction identifies and extracts meaningful patterns,
structures, or characteristics that can represent the data effectively. The extracted features
should possess certain properties, such as relevance, discriminatory power, and robustness,
to be useful for subsequent machine learning tasks. Feature extraction helps to improve the
efficiency and effectiveness of subsequent algorithms by providing more informative and man-
ageable representations of the data [27].

3.3 Transformer model

Transformer models were introduced in 2017 by Google [22]. They are used to solve various NLP
(natural language processing) tasks [23]. The key concept behind transformers is the attention
mechanism as described in [22]. As language models are trained on tokens that consist of text
pieces that often occur together and not on raw text this has an impact on how they perceive
text and prompts as those are sets of tokens. GPT-style models utilize tokenization methods
like Byte Pair Encoding (BPE). Those map all input bytes to token IDs in a greedy manner.
The model is mapping a query and a set of key-value pairs to an output. The query, the keys,
the values, and the output are all described vectors. The output is the weighted sum of the
values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.3.1 BERT

The Bidirectional Encoder Representation Transformer (BERT) is the first bi-directional pre-
trained language model. Learning the deep meaning of words and contexts using self-supervised
learning, the pre-trained model can be adapted to different tasks as well as different datasets
with minimal adjustment.

BERT uses a Masked Language Model (MLM) pre-training objective. It randomly masks some
tokens from the input, so the original vocabulary identifier of the masked word has to be
predicted only based on its context. In addition to the MLM, a "next sentence prediction" task
that jointly pre-trains text-pair representations is used. BERT is widely used as a baseline, but
training can be computationally expensive [28].

3.3.2 DistilBERT

DistilBERT is a distilled version of BERT. It is a smaller, faster, cheaper and lighter version
of BERT [29]. BERT is a large model with 12 or 24 transformer layers, depending on the
variant (BERT-base or BERT-large) and has a number of parameters, typically ranging in
the hundreds of millions or even billions. Designed to have a smaller memory footprint and

3 Theoretical Foundations 8

faster inference times DistilBERT typically has 6 transformer layers and significantly fewer
parameters. DistilBERT does not optimize the performance of BERT, but it reduces the size
and enhances the speed, so it is often used in scenarios where computational resources are
limited or when faster inference is desired [29].

3.3.3 ELECTRA

The Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA) was introduced it as follows: "Instead of masking the input, our approach corrupts it
by replacing some tokens with plausible alternatives sampled from a small generator network.
Then, instead of training a model that predicts the original identities of the corrupted tokens, we
train a discriminative model that predicts whether a token in the corrupted input was replaced
by a generator sample or not." [30] That means while BERT is a bidirectional model trained
with masked language modeling (MLM) and next sentence prediction objectives, Electra is
trained to discriminate between original and replaced tokens using a replaced token detection
task. So Electra achieves comparable or better performance than BERT while requiring fewer
resources.

3.4 OpenAI

3.4.1 GPT-3

GPT-3 [31] is a large language model (LLM) that uses deep learning to generate human like
text. Its base is a Generative Pretrained Transformer (GPT) which uses a transformer neuronal
network to generate text. The capability of LLMs increases as the size of their input datasets
and parameter space increases. GPT models were first launched in 2018 by OpenAI as GPT-
1 [32]. All GPT models use transformer architectures [22].

3.4.2 ChatGPT

ChatGPT is the next iteration of GPT-3 and is trained to be conversational. ChatGPT is
using Reinforcement Learning from Human Feedback (RLHF) and uses the same methods as
InstructGPT with slightly different data collection setups. The RLHF consists of tree steps
described in detail in [25]. In step 1 the Supervised Fine-Tuning (SFT) Model collects demon-
stration data and trains on a supervised policy. In step 2 the Reward Model the responses from
the SFT model are taken and ranked by labelers form best to worst output. The combinations
of the rankings are served to the model as batch datapoint. In step 3 the Reinforcement Learn-
ing Model receives a new prompt from the dataset, the policy generates an output which will
get a reward calculated by the reward model. This reward is used to update the policy using
Proximal Policy Optimization (PPO) introduced by OpenAI in 2017 [33].

3.4.3 Prompt Engineering

In order to engage in meaningful communication with a LLM, it is necessary to formulate a
written query known as a "prompt." Prompt engineering refers to the process of constructing

3 Theoretical Foundations 9

a well-designed prompt that increases the probability of the LLM effectively addressing and
solving the intended task. The prompt can have a range of variations, spanning from a partial
sentence that requires completion by the LLM to an entire paragraph that necessitates summa-
rization by the LLM. The prompt can have explicit instructions regarding the methodology or
approach for solving the given task, as well as incorporate questions that should be answered
by the LLM. Additional contextual information can be provided within the prompt to guide
the LLM in formulating a response that aligns with a specific framing or perspective. Zero-shot
prompting involves presenting the task or objective to the LLM without providing any explicit
instructions or examples, relying solely on the LLM’s ability to infer the desired response based
on its training and understanding of the given task. In one-shot prompting, a single example
of the expected response is provided to the LLM as a reference, allowing the LLM to generate
subsequent responses based on that given example. On the other hand, few-shot prompting
involves presenting multiple examples of the desired response type to the LLM, enabling it to
learn and generalize patterns from the given examples to generate appropriate responses. Only
the Few-shot prompting method was used, as the zero-shot and one-shot approaches have been
shown to be mostly worse [31].

The Prompt Engineering Guide1 serves as a valuable resource for additional readings on the
topic.

3.5 Fine-Tuning

Pre-trained models often need to be fine-tuned [34]. This means taking the pre-trained model
and training it further on a specific task with task-specific labeled data. This process adapts the
model’s knowledge to the target task and typically leads to improved performance compared
to training from scratch.

1https://www.promptingguide.ai/

4 Datasets and Baselines 10

4 Datasets and Baselines

The CheckThat!2023 lab provides us with data in Spanish, Arabic and English. In Spanish and
Arabic the data provided consists of tweets and in English the data consists of sentences from
debates and speeches.

Initially three datasets Train, Dev and Dev-Test were provided for each language. The number
of checkworthy and non-checkworthy sentences per dataset can be seen in the "Yes" (checkwor-
thy) and "No" (not checkworthy) columns of Table 1. There are significantly more sentences
that are not checkworthy ("No") rather than checkworthy ("Yes"). In general there are about
three times as many sentences labeled with "No" than there are labeled with "Yes". That
means that the data provided for the CheckThat! lab has a bias towards sentences that were
considered not to be checkworthy.

After the CheckThat!2023 competition had concluded, we received the Test dataset, which was
used to evaluate the performance of the submitted models. This means that we were not able to
use the Test dataset to improve or evaluate our models in preparation for the CheckThat!2023
competition. The Test dataset has a significantly higher ratio of "Yes" labels, compared to the
datasets that were provided originally, as shown in Table 1.

Language Type Split Yes No Total

English Speech / Debate

Train 4058 12818 16876

Dev 1355 4270 5625

Dev-Test 238 794 1033

Test 108 210 318

Spanish Tweets

Train 2208 5280 7490

Dev 299 2161 2500

Dev-Test 704 4296 5000

Arabic Tweets

Train 1758 4301 6060

Dev 485 789 1274

Dev-Test 411 682 1094

Table 1: Provides an overview of the data that was provided for the CheckThat!2023 competition. The English
data consists of speeches and debates while the data for Spanish and Arabic consists of tweets. The data is
separated in the datasets: Train, Dev, Dev-Test and Test (English only) per language.

4 Datasets and Baselines 11

4.1 Baselines

The CheckThat!2023 lab provides three baselines for task 1B. The results of these baselines
across all languages are shown in Table 2. Overall the n-gram baseline has the best performance
with an F-score of 0.821 on the Dev-Test dataset.

Model 1B - Arabic 1B - Spanish 1B - English

Random Baseline 0.364 0.153 0.220

Majority Baseline 0.000 0.000 0.000

n-gram Baseline 0.202 0.546 0.821

Table 2: Shows the performance (F-score) of the baseline models (Random, Majority, n-gram) on the Dev-Test
dataset.

4.1.1 Random Baseline

The random baseline predicts the labels based on random chance, which means over a large
sample size 50 % of the sentences will be predicted to be checkworthy ("Yes").

4.1.2 Majority Baseline

The majority baseline predicts sentences based on the label that was most frequent in the
training dataset. In this case the Train dataset had more "No" labels. Therefore, the majority
baseline predicted all sentences not to be checkworthy ("No").

The F-score is calculated as follows:

F − score =
(precision · recall)
(precision+ recall)

, precision =
TP

TP + FP
, recall =

TP

TP + FN

Both recall and precision are zero because there are no True-Positives (TP). Therefore, the
F-score is 0 = 0/0 for all datasets as depicted in Table 2.

4.1.3 n-gram Baseline

The n-gram baseline uses the TF-IDF for feature extraction and a SVC for classification.

• Feature Extraction: TF-IDF [35] is used to convert the sentences (features) into a nu-
merical vector representation.

• Classification: To classify the sentences a linear SVC [36] is used.

4 Datasets and Baselines 12

4.2 Speeches and Debates

The data provided for task 1B consists of transcripted sentences from speeches and debates.
There is no information about previous and following sentences. Therefore, there is no con-
textual information that could be used for the prediction of the true labels (also referred to as
gold labels).

4.2.1 Example data

The English datasets that were provided contain sentences ("Text") with the corresponding
gold label ("class_label") and id ("Sentence_id"). Table 3 provides a few examples taken from
the Train dataset.

Sentence_id Text class_label

30313 And so I know that this campaign has caused some questioning
and worries on the part of many leaders across the globe.

No

19099 Now, let’s balance the budget and protect Medicare, Medicaid,
education and the environment.

No

33964 I’d like to mention one thing. No

16871 I must remind him the Democrats have controlled the Congress
for the last twenty-two years and they wrote all the tax bills.

Yes

28916 I’m proud of the fact that violent crime is down in the State of
Texas.

Yes

22058 If we’re $4 trillion down, we should have everything perfect, but
we don’t.

Yes

Table 3: Shows example data from the English Train dataset. The "class_label" column shows the gold label
corresponding to the sentence ("Text"). "Yes" means the sentence is checkworthy and "No" means the sentence
is not checkworthy.

4.2.2 Comparing Dev and Dev-Test

We used the given baselines that were trained on the Train dataset and evaluated with the Dev
and Dev-Test dataset separately. As shown in Table 4 the n-gram baseline model performs
significantly better on the Dev-Test (0.821) than on the Dev (0.601) dataset.

4 Datasets and Baselines 13

Model 1B - English - Dev 1B - English - Dev-Test

Random Baseline 0.241 0.194

Majority Baseline 0.000 0.000

n-gram Baseline 0.601 0.821

Table 4: Shows the performance (F-score) of the baseline models (Random, Majority, n-gram) on the Dev and
Dev-Test datasets.

5 Data Analysis 14

5 Data Analysis

5.1 Labeling

In order to gain a more comprehensive understanding of how the data was labeled, we undertook
some labeling ourselves. We created a script in order to efficiently label our data. The script

• selects 300 random sentences to label,

• prints a single sentence at a time to request the user’s prediction and

• saves all predicted labels in a single *.tsv file.

Each of us labeled 300 randomly selected sentences both from the Dev and the Dev-Test dataset.
We then analyzed the results to find the answers to the following:

• Labeling performance: How good were our labels compared to the gold labels?

• Inter-Annotater-Agreement: How much did we agree with each other?

• Model comparison: Were our labels better than the predictions from our models?

5.1.1 Labeling performance

We combined all our annotations into a single annotation using a majority voting. The goal
was to find our best prediction or rather the prediction the majority of us (at least 2 out of 3)
agreed on. To do that for a given sentence, we used the label that was selected by at least two
annotators. The resulting predictions compared to the true labels are shown in Figure 3.

Table 5 provides an overview of how well we labeled the sentences in comparison to the provided
gold labels. It shows that each of us managed to label the Dev dataset with an accuracy of at
least 0.8.

Looking at the F-scores of our combined labels (Majority) for both the Dev and the Dev-Test
dataset we can see that those are very similar to the scores of the n-gram Baseline in Table 4.
The fact that we were only able to label the data as well as the given n-gram baseline shows
that we didn’t managed to label the data very well.

Table 5 also shows that we managed to label the Dev-Test data much better than the Dev
data. This was also the case in the given baselines and will also be the case in the models we
used going forward. It seems that the gold labels of the sentences in the Dev-Test dataset were
easier to predict than the gold labels of other datasets.

5 Data Analysis 15

Annotater F-score Accuracy

Dev Dev-Test Dev Dev-Test

Pascal 0.686 0.829 0.820 0.907

Christoph 0.574 0.839 0.827 0.923

Karin 0.420 0.558 0.807 0.847

Majority 0.612 0.832 0.843 0.923

Table 5: Provides an overview of how well we labeled the sampled data both from the Dev and Dev-Test dataset.
The performance measures used are the F-score and Accuracy. The best scores are marked as bold.

Figure 3 consists of all confusion matrices corresponding to our labeling task for both the
Dev and the Dev-Test dataset. It shows that Karin (Dev: 8.67 % "Yes" labels) and Christoph
(Dev: 16 % "Yes" labels) were much more conservative with labeling a sentence as checkworthy
("Yes") than Pascal (Dev: 32.67 % "Yes" labels). This is indicated by the sum of values on
the right side of each matrix.

Figure 3: Shows the confusion matrices of our labels compared to the gold labels for both the Dev and Dev-Test
dataset. The confusion matrix shows that all annotaters had a similar accuracy of at least 0.8 for both datasets.
It also shows that Pascal labeled the most sentences as checkworthy while Karin labeled fewest sentences as
checkworthy.

5 Data Analysis 16

Table 6 provides a more simple overview of our labeling task. It shows how many sentences
were labeled incorrectly by at least one person, by the majority and by all of us. On the Dev
dataset there were 102 out of 300 sentences that were labeled incorrectly by at least one person.
However, only 15 sentences were classified incorrectly by all of us.

Dev Dev-Test

Wrong by at least one person 102 71

Wrong by majority 47 23

Wrong by everyone 15 3

Table 6: Shows an overview of how many sentences (out of 300) were classified incorrectly by the labelers on
both the Dev and Dev-Test dataset.

We went through several example sentences together for further analysis. When we had differ-
ences, we could come to an agreement after a short discussion in most cases. However, even
after going through the sentences together and looking at the gold label we didn’t agree with
all of them. Table 7 shows two examples of sentences we did not agree with the gold label.

• The first sentence we did not consider to be checkworthy because the term "gone bad"
seems to be difficult to fact check.

• The second sentence we labeled as checkworthy because it is clearly a claim that can be
checked and we considered war to be an important topic.

Gold Labeled Sentence

Yes No Our housing programs have uh - gone bad.

No Yes Well, we, the living Americans, have gone through four wars.

Table 7: Shows two sentences that were labeled incorrectly by all of the annotaters. The column "Gold" shows
the gold label and the column "Labeled" shows the label we consider to be appropriate.

5.1.2 Inter-Annotater-Agreement

The Inter-Annotater-Agreement (IAA) is a measure to show how well multiple annotaters
agreed when labeling the same data. There are multiple metrics to calculate the annotater
agreement as shown in Table 8. The most relevant score is the Fleiss Kappa as it is designed
to be used with more than two annotaters. The Cohen Kappa and the Scott’s Pi measure the
agreement between raters. However, it is possible to calculate the agreement score for Cohen
Kappa and Scott’s Pi by calculating the average of all pairwise agreements (which is what we
did to obtain the score for Cohen Kappa and Scott’s Pi). [37], [38]

5 Data Analysis 17

The score can range from -1 to 1. A score above 0 means there is an agreement (more than
random) and a score of 1 means there is a perfect agreement. Table 9 shows one interpretation
of the scores in Table 8. The scores ranging from 0.37 to 0.41 on the Dev and 0.54 to 0.55 on
the Dev-Test dataset indicate a moderate to fair agreement between all the annotaters.

Metric Score (Dev) Score (Dev-Test) Agreement

Cohen Kappa 0.41 0.55 Moderate

Fleiss Kappa 0.39 0.55 Fair-Moderate

Krippendorffs Alpha 0.38 0.55 Fair-Moderate

Scott’s Pi 0.37 0.54 Fair-Moderate

Table 8: Shows an overview of IAA scores across different metrics for both the Dev and Dev-Test data we
labeled. The IAA scores on the Dev data range from 0.37 to 0.41 and the IAA scores on the Dev-Test data are
all either 0.54 or 0.55. Which means there is a moderate to fair agreement between the annotaters.

Kappa Agreement

< 0 Less than chance

0.01 - 0.20 Slight

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0.80 Substantial

0.81 - 0.99 Almost perfect

Table 9: Shows an interpretation of the IAA Kappa scores [39]. This is just one interpretation for IAA scores,
there are others as shown in [40].

5.1.3 Model comparison

After we had trained all individual models, we went ahead and compared their performance on
the Dev dataset with our labels. To do that we plotted the ROC-curve as shown in Figure 4.
It shows that all transformer models managed to produce better predictions, while the n-gram
model showed a similar performance and only the word2vec model performed worse.

5 Data Analysis 18

Figure 4: Provides a comparison between performance of the models we used and our own (Pascal, Christoph,
Karin) labeling performance.

5.1.4 Learnings and Conclusion

In Section 5.1.1 we have shown that we weren’t able to accurately predict the gold labels man-
ually. Additionally, we have compared our performance to the performance of the transformer
models we employed, which showed that the transformer models were able to make better pre-
dictions than we made when manually labeling the data, as outlined in 5.1.3. Lastly, we showed
that there was only a fair to moderate agreement between us.

Labeling the data proved to be a difficult task, as we weren’t able to make better predictions
than either of the transformer models we used. We tried predicting the labels of a few sentences
in pairs by discussing the sentences, but even then we were unable to predict some labels
correctly.

6 Methods 19

6 Methods

In this section, we are going to discuss the methods we used throughout this project.

6.1 Approach

In the first part of this section, we present an overview of the steps we took throughout our
process, arranged in chronological order. Subsequently, in the following subsections, we delve
into a more comprehensive explanation of our actions. In Section 6.9 (Final model) we then
present the model we used for the CheckThat!2023 submission and our final model.

1. Baselines: Initially we ran the baseline models provided for the CheckThat!2023 compe-
tition. This allowed us to establish a benchmark for comparison and evaluation.

2. Prototype: To tackle the task at hand, we began by developing a prototype system. For
our prototype we used a pre-trained transformer model.

3. Labeling: To get a better idea as of how the given datasets were labeled we decided to
take on the task of labeling ourselves on a subset of the data, as described in Section 5.1
(Labeling).

4. Transformer models: In order to explore different possibilities and improve upon the base-
line results, we experimented with other pre-trained transformer models, to evaluate their
suitability for the CheckThat!2023 competition, as explained in Section 6.4 (Transformer
models).

5. Fine-tuning: In order to enhance the performance of the pre-trained models for our
specific task, we engaged in fine-tuning the models using the training data provided for
the CheckThat!2023 competition, as described in Section 6.4 (6.4).

6. Analysis and Comparison: Once we had trained and fine-tuned multiple transformer
models, we conducted a performance analysis to compare their effectiveness, as explained
in Section 6.8 (Analysis and Comparison).

7. Meta-Estimators: At this point we had three models that provided good results for the
task. Our analysis had shown, that the different models made different mistakes. There-
fore, we thought it might be a good idea to combine the results. To do this we ex-
perimented with different meta-estimators. Further explanation follows in Section 6.7
(Meta-Estimators).

8. Additional predictions: To improve the predictions of our meta-estimator, we added
additional predictions. We added the n-gram baseline and a word2vec model, as well
as predictions from OpenAI and ClaimBuster, as described in Section 6.6 (API models)
and 6.3 (Basic models).

9. Hyperparameter optimization: Finally, we applied hyperparameter optimization to the
transformer models we used as described in Section 6.4.5 (Hyperparameter Optimization).

6 Methods 20

10. Retraining of meta-estimator: In order to incorporate the enhanced hyperparameters,
it was necessary to conduct a retraining process for the transformer models, utilizing
these specific parameters. Additionally, the meta-estimator had to undergo retraining
as well, incorporating the improved predictions from the transformer models, along with
additional predictions from the preceding two steps.

6.2 Evaluation

To evaluate our models we utilized the Dev and Dev-Test datasets. In this section we have
sometimes also included the Test dataset to provide a comparison. However, the Test dataset
was not available prior to the CheckThat!2023 deadline and we were not able to use it to evaluate
our results during our development process. The metric we used to measure the performance
of the models was the F-score. This is because the CheckThat!2023 competition also uses the
F-score for their rankings.

6.3 Basic models

6.3.1 n-gram

An n-gram model, introduced in section 4.1.3, predicts the next word by considering n preceding
words. This model served as a baseline for the CheckThat! competition. Table 10 displays the
performance of the n-gram model on the Dev, Dev-Test, and Test datasets.

Model F-Score

Dev Dev-Test Test

n-gram 0.601 0.821 0.561

Table 10: Shows the performance of the n-gram model on the Dev, Dev-Test and Test dataset. The measurement
that was used is the F-score.

6.3.2 word2vec

Word2vec, short for word to vector, is an algorithm introduced by Google in 2013 [41], [42]
to generate vector representations of words from text. It begins by constructing a vocabulary
from the training text data and then learns vector representations for each word based on their
context. Words with similar meanings are represented by vectors that are close together, while
words with different meanings are represented by vectors that are far apart.

To represent each sentence from a speech or debate transcript, we aggregated the word embed-
dings of individual words into a feature vector. This was done by computing the average of
all individual word vectors within the sentence. We then trained a SVC classifier using these
sentence vectors as input features and the corresponding outcomes as labels.

6 Methods 21

For our word2vec model we utilized the word2vec module from the gensim library2. We trained
the word2vec model with C-SVC on the Train dataset using the library SVM from Sklearn,
which is based on LIBSVM [43], for classification We used this model to predict the labels and
their probabilities for the testing data.

Table 11 presents the performance of the word2vec model evaluated on the Dev, Dev-Test and
Test datasets.

Model F-Score

Dev Dev-Test Test

word2vec 0.542 0.706 0.615

Table 11: Shows the performance of the word2vec model on the Dev, Dev-Test and Test dataset. The F-score
was utilized as the measurement for evaluating performance.

6.4 Transformer models

In general, we extensively relied on the Huggingface transformer library3 throughout our project.
This powerful library provided us with a wide range of transformer models, tokenizers, and util-
ities, simplifying the implementation and experimentation process.

For all transformer models, including BERT, ELECTRA, and DistilBERT, the prediction pro-
cess involves initial tokenization of the input sentence using the respective tokenizer associated
with the specific model. This tokenization step converts the sentence into vectors. Subse-
quently, these vectors are passed through the model to generate the desired prediction, an
example can be found in the Appendix 3 . The same sequence of tokenization and feeding the
vectors into the model is employed during the fine-tuning process of pre-trained models as well.
In our case, all the models were trained on the Train dataset consistently.

6.4.1 BERT

We employed the BERT model [28], specifically bert-base-uncased [44], primarily as a vector-
izer and for generating predictions in conjunction with a LinearSVC classifier. This approach
was guided by a tutorial4 that provided a framework for the implementation. As our work
progressed, we discovered a more suitable pre-trained BERT model called textattack/bert-
base-uncased-yelp-polarity [45], specifically designed for sequence classification tasks. This
model demonstrated improved performance on the Dev-Test dataset compared to the bert-
base-uncased model as shown in Table 12.

2https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
3https://huggingface.co/docs/transformers/index
4https://towardsdatascience.com/build-a-bert-sci-kit-transformer-59d60ddd54a5

6 Methods 22

Model F-Score

Dev Dev-Test Test

bert-base-uncased with SVC 0.709 0.883 0.808

Table 12: Shows the F-Scores that were achieved on the Dev, Dev-Test and Test dataset by using the bert-
base-uncased model with a SVC.

The performance of the fine-tuned BERT transformer model are shown in Table 13.

Model F-score

Dev Dev-Test Test

BERT 0.707 0.893 0.758

Table 13: Shows the performance of the BERT transformer model on the Dev, Dev-Test and Test dataset. To
produce these scores the fine-tuned BERT model was utilized. The measurement that was used is the F-score.

6.4.2 ELECTRA

In a subsequent development, we transitioned from utilizing the BERT model to leveraging the
ELECTRA model. This decision was driven by the fact that the ELECTRA model, being newer,
exhibited superior performance across various sequence classification tasks. We implemented
an initial solution that involved fine-tuning the ELECTRA model, specifically the electra-base-
emotion [46] variant, using the Train dataset. Subsequently, we discovered that the pre-trained
model had six output labels, which did not align with our specific interest in only two labels.
To address this, we made modifications to the output labels and retrained the model to cater
to our specific classification requirements.

The performance of the fine-tuned ELECTRA transformer model are shown in Table 14.

Model F-score

Dev Dev-Test Test

ELECTRA 0.732 0.939 0.783

Table 14: Shows the performance of the ELECTRA transformer model on the Dev, Dev-Test and Test dataset.
To produce these scores the fine-tuned ELECTRA model was utilized. The F-score was utilized as the mea-
surement for evaluating performance.

6 Methods 23

6.4.3 DistilBERT

In order to perform a comparative analysis with the existing models, we incorporated a third
alternative model to assess its performance in relation to the previously implemented models.
To diversify our approach from the prevalent use of RoBERTa in previous CheckThat! com-
petitions, we conducted research to identify alternative models specifically suited for sequence
classification tasks. The selection of the DistilBERT model distilbert-base-uncased [47] was
based on its smaller size compared to the BERT model and its faster training capabilities. This
advantage would allow us to conduct a greater number of experiments.

The performance of the fine-tuned DistilBERT transformer model are shown in Table 15.

Model F-score

Dev Dev-Test Test

DistilBERT 0.757 0.926 0.821

Table 15: Shows the performance of the DistilBERT transformer model on the Dev, Dev-Test and Test dataset.
To produce these scores the fine-tuned DistilBERT model was utilized. The F-score was utilized as the mea-
surement for evaluating performance.

6.4.4 Fine-Tuning

To fine-tune the transformer models we used the Trainer API5 from Huggingface. Before
initiating the Trainer, it is necessary to create instance of TrainingArguments6, which serve as
input parameters for configuring the training process. The TrainingArguments are responsible
for defining the training settings and specifications that dictate how the Trainer will train the
model. Additionally, they determine the location where the trained model will be stored after
the training process is completed. If you intend to release your models, an alternative option
is to upload them directly to HuggingFace.

During the training process, we enabled the truncation and padding functionalities of the tok-
enizer. This ensures that input sequences are appropriately truncated or padded to a consistent
length. Upon concluding the project, it came to our attention that we did not utilize truncation
and padding during the prediction phase. It is possible that this omission has influenced the
resulting scores.

The initial model we fine-tuned was the ELECTRA model. The ELECTRA model necessitated
fine-tuning as the initial pre-trained model was specifically designed for sentiment analysis on
tweets and generating emotion-based labels [46]. Following the fine-tuning process using the
Train dataset, it was observed that only the first two labels exhibited higher values compared
to the remaining labels. Initially, we disregarded the other four labels and directed our focus
solely on the two relevant labels. Subsequently, we discovered that this approach would alter

5https://huggingface.co/docs/transformers/main/en/main_classes/trainer
6https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/trainer#transformers.TrainingArguments

6 Methods 24

the output of the transformer-interpreter library and in general make the predictions worse.
However, we later realized that by training the model anew and adjusting the num_labels
parameter during the training process, we could effectively modify the model’s output to just
2 labels. This modification resulted in an enhancement of the model’s performance and led to
an improved output from the transformer-interpreter library.

As depicted in the Table 12, it is evident that fine-tuning the models for a specific dataset may
not always yield significant benefits or be worth the expended effort. In the BERT SVC model,
we simply fitted the SVC onto the Train dataset without making any modifications to the
underlying BERT model itself. By solely training the BERT model itself without incorporating
an SVC, we noticed a minimal decrease in the model’s performance compared to when it was
used in conjunction with an SVC. The code for fine-tuning the models can be found in the
Appendix 10.4.3 Fine-Tuning and Hyperparameter Optimization

6.4.5 Hyperparameter Optimization

To enhance the performance of the transformer models, we employed hyperparameter optimiza-
tion techniques on the Train dataset. We used the hyperparameter search from the Trainer
API of Huggingface7 to improve the fine-tuning of the pre-trained models. We focused on the
following four hyperparameters:

• learning-rate: is set to control how the gradients are updated

• per_device_train_batch_size: sets the size of the batch per training device e.g. CPU/GPU

• num_train_epochs: determines the number of iterations we go through the provided
trainings dataset

• weight_decay: is set to control how the gradients are updated

We choose these particular hyperparameters because they can be seamlessly integrated into
the TrainingArguments of the Trainer API, simplifying the implementation and configuration
of the training process. Our objective was to optimize for the maximum F-score, which we
calculated and used as a performance metric during the optimization process. For each model
we conducted 20 trials to explore various configurations and settings. The parameters we ended
up with are shown in Table 16.

7https://huggingface.co/docs/transformers/hpo_train

6 Methods 25

Hyperparameter ELECTRA Distilbert Bert

Learning Rate 2.650e-05 2.251e-05 9.459-05

Weight Decay 91.942e-04 50.479e-04 2.737e-04

Batch Size 32 128 64

Number of Epochs 5 5 4

Table 16: Shows the values of each hyperparameter which was used to train the transformer models.

By utilizing the optimized hyperparameters, we were able to reduce the training time by a
factor of 10. Table 17 shows the performance of our transformer models before and after the
hyperparameter optimization. The specific parameters used for model fine-tuning are listed in
Table 16. In most cases the hyperparameter optimization resulted in a higher F-score. The
largest improvement can be observed on the Test dataset. The Electra model went from an
F-score of 0.783 up to 0.857 and the BERT model went from an F-score of 0.758 up to 0.789. In
the Dev-Test dataset the score of the BERT and DistilBERT models went up, while the score of
the ELECTRA model dropped. This shows that despite conducting a hyperparameter search
and employing improved training techniques, there is no guarantee that the final model will
consistently outperform previous iterations. After completing the training of the transformer
models, all the meta-estimators were retrained.

Model Data F-score F-score (Hyperparameter)

DistilBERT

Dev

0.757 0.765

ELECTRA 0.732 0.738

BERT 0.707 0.711

DistilBERT

Dev-Test

0.926 0.945

ELECTRA 0.939 0.918

BERT 0.893 0.904

DistilBERT

Test

0.821 0.819

ELECTRA 0.783 0.857

BERT 0.758 0.789

Table 17: Shows the performance of transformer models with and without optimized hyperparameters on Test
dataset

6 Methods 26

The code for hyperparameter optimization for the models can be found in the Appendix 10.4.3
Fine-Tuning and Hyperparameter Optimization.

Future Improvements

Given more time, we could increase the number of trials conducted, allowing us to explore a
wider range of combinations and potentially discover better parameter settings. This expanded
search space increases the likelihood of finding optimal hyperparameters for improved model
performance. Additionally, we have the flexibility to fine-tune other hyperparameters or extend
the hyperparameter search to the fitting function of the meta-estimators.

6.5 Word attributions

Transformer models are rather complex, and it is difficult to understand why a model predicted
a certain text to be checkworthy. However, there are methods that allow us to show which words
were important for the models decision. To determine this we used a library called transformer-
interpret [48]. By getting a better understanding of the models we used, we wanted to find out
why these models make mistakes. The goal was to find ways to improve the models based on
our findings.

6.5.1 Transformer-Interpret

Transformer-interpret is built on top of the Captum [49] package, which is designed for model
interpretability. Transformer-interpret is a library developed to provide transformer models
with explainability. It provides an attribution score for each word in a given sentence and
model. The attribution score indicates how much a word contributed to the prediction. To
obtain these scores the model, a tokenizer and the text need to be provided. An example of
these attribution scores are shown Listing 1 for the sentence: "we’re consuming 50 percent of
the world’s cocaine.". A positive score indicates that token contributed towards the predicted
label, which in this case is "Yes".

1 // [(token1 , score1), (token2 , score2) ,...]
2 [
3 (’[CLS]’, 0.0),
4 (’we ’, 0.11201885420961634) ,
5 ("’", 0.25647434238794753) ,
6 (’re ’, 0.05324198527316812) ,
7 (’consuming ’, -0.020812193503298385) ,
8 (’50’, 0.6058883371072958) ,
9 (’percent ’, 0.6342749327159223) ,

10 (’of ’, 0.33569119162550515) ,
11 (’the ’, 0.03863532323688133) ,
12 (’world ’, 0.08869171513703551) ,
13 ("’", 0.00959359866329527) ,
14 (’s’, 0.11580983965201863) ,
15 (’cocaine ’, 0.05045720677664899) ,
16 (’.’, 0.10441309212831708) ,
17 (’[SEP]’, 0.0)

6 Methods 27

18]

Listing 1: Shows the attribution scores of the sentence "we’re consuming 50 percent of the
world’s cocaine."

To visualize these attribution scores we utilized the visualizer from transformer-interpret as
shown in Figure 5 for the previously used sentence. Positive scores are highlighted with a green
background and negative scores with a red background. Therefore, green means that the word
contributed positively towards the predicted label and red means a word contributed negatively
towards the predicted label. The more intensive the color the higher the contribution. The
attribution score shown in 5 is equivalent to the sum of all attribution scores of this sentence.

Figure 5: Shows the word attribution visualization provided by the transformer-interpret visualizer. The true
label is the label that was to be predicted. The attribution score is equivalent to the sum of all scores. The
scores are shown as colors in the "Word Importance" column. Green means that the word contributes positively
towards the predicted label and red means the opposite.

To get a better overview and comparison between the models we used, we implemented our own
visualization, as shown in Figure 6. In addition to what the visualization from transformer-
interpret shows, we also included the model that was used. The idea was to be able to directly
compare the visualization of all the transformer models.

Figure 6: Shows an example of our word attribution visualization. Shows the gold label ("label"), the "model"
that was used, the predicted label "prediction" and its corresponding probability. It also shows the attribution
score (sum of all attribution scores of the sentence) and the word attribution visualization.

Captum

In our case the LayerIntegratedGradients 8 algorithm from Captum was applied. The Integrat-
edGratients algorithm was originally mentioned in [50].

6.5.2 Word attribution analysis

To analyze these attributions we have made a script that creates a Pandas dataframe with an
overview of information per token. The code that was used to produce this overview is shown in

8https://captum.ai/docs/extension/integrated_gradients

6 Methods 28

Section 10.3 of the Appendix. The overview as visualized in Figure 7 and 8 shows the following
information:

• count_neg : number of occurrences of the token with a negative score (< 0)

• avg_neg : average score of tokens with a negative score (< 0)

• count_pos : number of occurrences of the token with a positive score (> 0)

• avg_pos : average score of tokens with a positive score (> 0)

• count_all : number of occurrences of the token, includes tokens with neutral score (= 0)

• avg : average score of all tokens

• avg_abs : average of absolute score of all tokens

Negative numbers indicate that the token contributed towards the label "No" (not checkworthy)
and positive numbers indicate that a token contributed towards the label "Yes" (checkworthy).
Figure 7 shows that the token "?" heavily indicates that a sentence is not checkworthy. This
makes sense considering that a question is not a claim.

Figure 7: Shows the statistics from our token attributions on the Dev-Test dataset with the DistilBERT model.
The information in the red box shows statistics across all words with a negative score, the green box shows all
information with a positive score and the blue box shows statistics across all scores. The table is sorted by the
column "avg" (ascending). The "avg" column shows the average of all scores of the token in this row. The
token with the most negative average score is "?". Only tokens with at least 5 occurrences are shown in this
table.

Figure 8 shows tokens that indicate a positive contribution towards the label "Yes" (checkwor-
thy). The token "democrat" for example generally indicates that a sentence is checkworthy.

6 Methods 29

Figure 8: Shows the statistics from our token attributions on the Dev-Test dataset with the DistilBERT model.
The information in the red box shows statistics across all words with a negative score, the green box shows all
information with a positive score and the blue box shows statistics across all scores. The table is sorted by the
column "avg" (descending). This column shows the average of all scores of the token in this row.

6.5.3 Learnings

We have shown that valuable information about the behavior of a transformer model can be
derived by using Explainable AI [51]. More specifically it is possible to show why a certain
sentence is labeled as checkworthy by looking at the word attributions. By analyzing these word
attributions over an entire dataset we were able to show which tokens generally contribute to
which label.

6.6 API models

6.6.1 OpenAI

When working with OpenAI, we employed various methods to generate predictions regarding
the check-worthiness of the provided sentences.

Chat

Initially, we utilized the web interface of ChatGPT to generate predictions. We attempted
the approach of inserting sentences in large batches after providing an initial instruction to
consistently generate responses in the same format. Completion models exhibit a tendency to
be verbose and generate responses that surpass the specific scope of the prompt. We started
with few shot prompting right away as this seemed to be the most promising approach.

The initial segment of the prompt served as an introductory statement outlining our intended
objectives. Following that, we included the description for evaluating the checkworthiness,
which was provided by CheckThat!2022 [7] to give it more context. Subsequent, we proceeded
to include a demonstration of how the prompt and the appropriately formatted response should

6 Methods 30

appear. Concluding the prompt, we included a statement for the AI agent to generate, indi-
cating its comprehension and understanding of the given task. The complete prompt can be
found in section 10.5.1 ChatGPT Prompt of the Appendix.

The limited context provided by a single chat history proved insufficient for handling large
batches of data. On our initial attempt to input the first batch of the Dev dataset into the
AI model, we encountered a limitation wherein the desired format was not preserved when
attempting to process more than 100 sentences simultaneously. Consequently, we transitioned
to using the API, which facilitated the processing of smaller batches or even individual sentences
with greater ease.

API

Initially, our focus was on utilizing the gpt-3.5-turbo model 9 for chat completion, as it represents
the latest and most cost-effective option available from OpenAI. The pre-existing instruction
segment developed for ChatGPT was utilized as the system message, and two exemplar user
queries along with their respective AI model responses were incorporated as seen in section
10.5.2 API code of the Appendix. Following numerous iterations with the API, we accomplished
the objective of obtaining a consistent output that adhered to the desired JSON format.

The first few predictions have been consistently successful, generating meaningful results in
the desired format that align with our expectations. However, a misinterpretation occurred
when the gpt-3.5-turbo model mistakenly took the sentence "That answer was about as clear
as Boston harbor" as a request to modify the initial system prompt. The model deviated from
adhering to the desired JSON format and instead attempted to defend the correctness of the
initially submitted prompt. This phenomenon is called prompt injection, wherein the system
prompt is disregarded following a new user input, is well described here [52]

Due to the complexity of resolving this issue, we opted to transition to utilizing the text-davinci-
003 model as an alternative approach. The text-davinci-003 model exhibited resilience against
adversarial attacks, as all requests were successfully processed. In some cases the model replied
in the incorrect format which caused an error in our script and we just had to restart it and
to continue after the last successful sentence. The predictions generated by the API exhibited
relatively poor scores in terms of F-score. The F-score on the Dev-Test dataset was 0.632 as
shown in Table 18, is worse than the performance of the baseline n-gram model. In the Section
8.2.5 OpenAI API of the Conclusion and Discussion we will delve into potential strategies for
enhancing and improving the obtained results.

9https://platform.openai.com/docs/guides/gpt/chat-completions-api

6 Methods 31

Model F-score

Dev Dev-Test Test

OpenAI API 0.504 0.632 0.479

Table 18: Shows the F-scores that were achieved on the Dev, Dev-Test and Test dataset by using the OpenAI
API.

6.6.2 ClaimBuster API

ClaimBuster provides a system that was trained on US Debates, Twitter tweets and other
sources and is able to predict checkworthiness of sentences [53]. ClaimBuster provides an API
endpoint ("/api/v2/score/text/<input_text>") that predicts how check-worthy a text is. We
used this API to predict the checkworthiness of the Dev dataset sentences. To make these
predictions the endpoint uses the adversarially trained BERT ClaimSpotter algorithm [54].

Table 19 shows the performance of the predictions obtained by using the ClaimBuster API. On
the Dev dataset the F-score was 0.574 which is worse than F-score of the n-gram baseline. In
section 6.7 we will show how utilized these scores.

Model F-score

Dev Dev-Test Test

ClaimBuster API 0.574 0.706 0.694

Table 19: Shows the F-scores that were achieved on the Dev, Dev-Test and Test dataset by using the ClaimBuster
API.

6.7 Meta-Estimators

By comparing the results of different models we experimented with, we noticed that the models
made different mistakes. Therefore, we thought it might make sense to somehow combine these
models to obtain a single best prediction.

The first approach to this was to take the binary prediction of all models and use a majority
voting classifier to make a final prediction. Our second approach was to use the resulting
probabilities of all models to train another classifier. Hence, it was imperative to ensure that
every preceding classifier generated a probability distribution associated with the assigned label
for a given sentence.

We experimented with these four different classifiers:

• Bagging Classifier: sklearn.ensemble.BaggingClassifier 10

10https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

6 Methods 32

• Random Forest Classifier: sklearn.ensemble.RandomForestClassifier 11

• Logistic Regression: sklearn.linear_model.LogisticRegression 12

• Logistic Regression with Cross-Validation: sklearn.linear_model.LogisticRegressionCV 13

The Bagging Classifier is an ensemble algorithm that operates by creating subsets of the orig-
inal training set and subsequently combining the individual predictions from these subsets to
generate a final prediction. In the Bagging Classifier, we utilized a Logistic Regression Classi-
fier as the base estimator, while maintaining the default settings for the remaining parameters.
The Random Forest Classifier (RFC) is another ensemble algorithm that combines multiple
individual predictions from different models or decision trees. Due to the absence of the ran-
dom_state parameter setting in our approach, certain results may exhibit slight variations and
become more challenging to reproduce consistently. The inherent randomness within the clas-
sifier’s initialization process contributes to these subtle differences in outcomes. The Logistic
Regression and the Logistic Regression with cross-validation have both been initialized with
the default settings for the parameters.

Due to the meta-estimators’ rapid fitting capability on the predictions generated by other
models, we aimed to conduct an extensive testing phase, exploring as many combinations and
configurations as feasible.

Table 20 shows the performance of our meta-estimator on the Dev-Test dataset. The perfor-
mance of the meta-estimator is similar to the performance of the DistilBERT and ELECTRA
models. The Bagging Classifier has an F-score of 0.932 which is 0.006 lower than the F-score
of the ELECTRA model.

Meta-Estimator F-score

Random Forest Classifier 0.915

Bagging Classifier 0.932

Logistical Regression 0.928

Logistical Regression with cross validation 0.930

Table 20: Presents a comparison of the meta-estimators’ performance on the Dev-Test dataset.

As depicted in Table 21, it is evident that the performance of the meta-estimators does not
consistently improve with an increasing number of estimators. The impact of increasing the
number of estimators on performance is dependent on the dataset. As depicted in Table 22,
it is evident that the number of estimators employed can indeed have a substantial impact

11https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
12https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
13https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV

6 Methods 33

on the performance of the meta-estimators as it can lead to a notable improvement in the F-
score, potentially increasing it by up to 0.02. Given that the performance improvement on one
dataset outweighed the performance decline on the other dataset, we maintain the belief that it
is beneficial to include as many estimators as possible. The cumulative effect of incorporating
multiple estimators is anticipated to yield an overall improvement in the F-score across various
datasets.

Meta-Estimator Transformers Transformers + word2vec + n-gram All

Random Forest Classifier 0.944 0.938 0.942

Bagging Classifier 0.947 0.949 0.943

Logistical Regression 0.949 0.949 0.943

Logistical Regression with cross validation 0.949 0.947 0.943

Table 21: Presents a comparison of the meta-estimators’ performance on the Dev-Test dataset. It showcases the
performance achieved when trained using different inputs, including: solely the predictions from transformer
models, predictions from both transformer models and basic models (word2vec and n-gram), and all predictions
including API predictions.

Meta-Estimator Transformers Transformers + word2vec + n-gram All

Random Forest Classifier 0.793 0.800 0.806

Bagging Classifier 0.804 0.804 0.824

Logistical Regression 0.804 0.811 0.824

Logistical Regression with cross validation 0.804 0.791 0.817

Table 22: Presents a comparison of the meta-estimators’ performance on the Test dataset. It showcases the
performance achieved when trained using different inputs, including: solely the predictions from transformer
models, predictions from both transformer models and basic models (word2vec and n-gram), and all predictions
including API predictions.

6.8 Analysis and Comparison

In this section we first provide information about the analysis steps we have taken throughout
the project. Additionally we provide and overview of the models we utilized and compare their
performance.

6.8.1 Analysis

Initially we tried analyze the results of our transformer models manually. To do so, we separated
our predictions into four subsets: True-Positive (TP), False-Positive (FP), True-Negative (TN)
and False-Negative (FN). Our primary focus was on sentences that were predicted incorrectly
(FP and FN). During this process, we took notes and documented common characteristics
among the incorrectly classified sentences. For instance, we observed a notable occurrence of

6 Methods 34

sentences with indirect facts, such as "He said that...," in false predictions from both ELECTRA
and BERT.

Reviewing these predictions and taking notes gave us a better overall understanding of how
the data was labeled and the types of mistakes made by the models. However, it did not offer
insights into the reasons behind these mistakes. Therefore, we decided to utilize a library called
transformer-interpret, as detailed in Section 6.5.1 to help us understand why a sentence was
classified in a particular manner.

Additionally, we compared the overlap of the predictions from different models. We observed
that different models made different mistakes. Table 23 demonstrates that the ELECTRA
model (742) and the BERT model (774) made over 700 incorrect predictions each. However,
the number of sentences that were predicted incorrectly by both models (489) was below 500.
Consequently, more than 35 % of the incorrect predictions could potentially be eliminated, if
both model could be combined perfectly. This conclusion led us to experiment with meta-
estimators, which are explained in Section 6.7.

Dev - Incorrectly predicted sentences (FP + FN)

BERT 774

ELECTRA 742

BERT + ELECTRA 489

Table 23: Shows the number of sentences that were predicted incorrectly by the BERT model, ELECTRA
model and both. The predictions were done on the Dev dataset.

6.8.2 Comparison

In the Dev dataset, the overall best performance was observed among the transformer models.
Among them, DistilBERT achieved the highest F-score of 0.765, followed by ELECTRA with
0.738, and BERT with a score of 0.711. All other models performed at least 0.1 worse than the
BERT model. On the Dev-Test dataset DistilBERT again performed best with an F-score of
0.945, followed by the meta-estimators with 0.942 and 0.943. On the Test dataset ELECTRA
outperformed all other models by a margin of 0.03. Logistic Regression followed closely, slightly
ahead of DistilBERT.

6 Methods 35

Model F-score

Dev Dev-Test Test

BERT 0.711 0.904 0.789

ELECTRA 0.738 0.918 0.857

DistilBERT 0.765 0.945 0.819

n-gram 0.601 0.821 0.561

word2vec 0.542 0.706 0.615

OpenAI API 0.504 0.632 0.479

ClaimBuster API 0.574 0.706 0.694

Random Forest Classifier 0.942 0.806

Bagging Classifier 0.943 0.811

Logistical Regression 0.943 0.824

Logistical Regression with cross validation 0.943 0.817

Table 24: Shows all the F-scores for each model on all datasets. On the Test dataset the performance of the
ELECTRA model was the best with 0.857 while the OpenAI API was the worst with 0.497

In Figure 9 we compare the confusion matrices of all the best and worst models with each
other. We are showcasing the OpenAI API Model (gpt) as it was the worst model of them
all with a difference of almost 0.4 to the best-performing ELECTRA model. In the confusion
matrix you can see, that the OpenAI API model misclassified slightly over 30 % of all sentences
with 10 % labeled as wrongly checkworthy and almost 20 % as wrongly not checkworthy. This
indicates that either the LLM did not fully comprehend the task or it was unable to fulfill it
effectively. Comparing the ELECTRA and DistilBERT models, which were the top performers
among the transformer models, we find that they exhibit similar performance to the Logistic
Regression meta-estimator. While the Logistic Regression model mislabeled fewer sentences as
wrongly checkworthy (FP) compared to the transformer models, it labeled more sentences as
wrongly negative (FN). Considering an unseen dataset, the Logistic Regression model is likely
to provide more consistent predictions compared to the other models, as it consistently ranks
among the top performers across all datasets.

6 Methods 36

Figure 9: Shows the confusion matrix of the different models on the Dev-Test dataset

6.9 Final model

In this section we are going to provide an overview of our final model.

6.9.1 Overview

Figure 10 shows the training process we used to obtain our final model.

1. Train models with Train dataset to obtain trained / fine-tuned models.

• Fine-tuning of transformer models (ELECTRA, BERT, DistilBERT)

• Training of basic models (n-gram and word2vec)

2. Make predictions on the Dev dataset to obtain a single probability for each model.

• Make predictions with fine-tuned transformer models

• Make predictions with the basic models

• Make predictions with OpenAI API

• Make predictions with Claim-Buster API

3. Train meta-estimators based on all predicted probabilities to obtain the final model.

4. Make predictions on the Dev-Test dataset to see how the meta-estimators performed on
the Dev-Test dataset.

6 Methods 37

Figure 10: Shows the entire training and prediction process to obtain the final results. First the Train dataset
is utilized for training and fine-tuning the models. Subsequently, the resulting models are employed to make
predictions on the Dev dataset. The probabilities from these predictions are all passed on and used to train the
meta-estimators. Lastly these meta-estimators are utilized to classify the sentences of the Dev-Test and Test
dataset to obtain the final predictions.

7 Results 38

7 Results

In this section we are going to present the results we were able to achieve in the CheckThat!2023
competition as well as our final results evaluated on the Test dataset.

7.1 CheckThat! Lab

Our Team name for the CheckThat!2023 submission was Pikachu. We selected that name
because at the time of registration we have been heavily working on the ELECTRA model.
The submission was evaluated on the Test dataset, which was released a week prior to the
submission deadline. The Test dataset consists of 318 sentences and without the corresponding
true labels. After the competition was finished the true labels have also be released.

The pipeline we used to achieve these results in the CheckThat!2023 lab did not include any
prediction from API models as we had only done them after the CheckThat!2023 submission.
The hyperparameter tuning was also done after the CheckThat!2023 submission. Aside from
that we used the Pipeline as shown in Figure 10 of Section 6.9.

7.1.1 Competition results

There were 11 teams who participated in task 1B English. We managed to place 10th with
an F-score of 0.767 as shown in 11, outperforming the random baseline (F-score of 0.462) by a
margin of 0.305. The best performing team was OpenFact with an F-score of 0.898.

7 Results 39

Figure 11: Shows the results and ranking of the CheckThat!2023 lab. We (Pickachu) received an F-score of
0.767 and placed 10th out of 11 teams. The best team OpenFact managed to achieve an F-score of 0.898.

7.1.2 All Submissions

The CheckThat!2023 competition allowed us to do multiple submissions. However only the
last one would be considered for the final ranking, as shown in Figure 11. Table 25 shows the
results of all the models we submitted to the CheckThat!2023. The last model we submitted
was the logistical regression meta-estimator with cross validation (in bold). Had we submitted
the DistilBERT predictions as our final submission, we would have achieved one rank higher in
the competition standings.

7 Results 40

Model Description Type F1

DistilBERT Transformer 0.821

Electra Transformer 0.783

Bagging Classifier Meta-Estimator 0.767

Logistical Regression with cross validation Meta-Estimator 0.767

Logistical Regression Meta-Estimator 0.767

BERT Transformer 0.758

Random Forest Classifier Meta-Estimator 0.749

Word2vec Basic Model 0.615

n-gram Basic Model 0.561

Table 25: Shows the results of all submitted models to the CheckThat!2023 competition.

7.2 Final results

Table 26 shows all the models performances on the Test dataset ordered by score. On the
Test dataset ELECTRA outperformed all other models. However this is only the case on the
Test dataset, as depicted in Table 24 of Section 5.1.3, other models performed better on other
datasets. This is why we would recommend to use the Logistic Regression meta-estimator
model as it seems to be the most consistent performer.

7 Results 41

Model Description Type F-score

ELECTRA Transformer 0.857

Logistical Regression Meta-Estimator 0.824

DistilBERT Transformer 0.819

Logistical Regression with cross validation Meta-Estimator 0.817

Bagging Classifier Meta-Estimator 0.811

Random Forest Classifier Meta-Estimator 0.806

BERT Transformer 0.789

Word2vec Basic Model 0.615

n-gram Basic Model 0.561

Claimbuster API API Model 0.694

OpenAI API API Model 0.479

Table 26: Provides an overview of the performance of all models evaluated on the Test dataset ordered by
F-score.

8 Conclusion and Discussion 42

8 Conclusion and Discussion

8.1 Overview

In this paper, a system has been developed to predict the checkworthiness of sentences de-
rived from political speeches and debates. Multiple models have been trained and fine-tuned
specifically for the task of checkworthiness prediction. The predicted probabilities generated
by these models are then utilized to generate a unified prediction through the implementation
of meta-estimators.

As detailed in Section 7.1, our system attained the 10th place out of 11 teams in the Check-
That!2023 competition, with an F-score of 0.767. Following the submission of CheckThat!2023,
we made additional enhancements to our system by applying hyperparameter optimization to
the transformer models and using additional predictions from the ClaimBuster API and Ope-
nAI API. This improvement resulted in a significant increase in the F-score, raising it from
0.767 to 0.817 for the Logistic Regression with cross validation model.

Nevertheless, it is important to acknowledge that the top-performing models employed for these
predictions already had rather high F-scores. The best transformer model ELECTRA had an
F-score of 0.857, which is significantly better than the prediction of the meta-estimator in our
final system.

8.2 Potential improvements and Learnings

In this section we are going to discuss what could potentially be done to improve our results. A
good starting point for improvements will also be the overview paper of all the other solutions
of the CheckThat!2023 competition.

8.2.1 Preprocessing

In our system, we directly input the data into our models without applying any preprocessing
steps to the given data. This approach was adopted because the transformer models already
incorporate a built-in tokenizer that handles the necessary preprocessing tasks. To maintain
consistency and facilitate comparisons across different methods, we decided not to preprocess
the data for other models either.

Data augmentation could be used to generate additional training data, for example by ex-
changing words with synonyms or by applying back translation. This method has previously
successfully been implemented for this task in [19]–[21].

As described in Section 6.4.4 we only used truncation and padding in the prediction process
but not in the training process. This may have influenced our results. To improve this the
truncation and padding should be applied both in the training and prediction process.

8 Conclusion and Discussion 43

8.2.2 Cross validation

To train and evaluate our models we used the predefined datasets Train, Dev and Dev-Test as
they were provided.

During our analysis, we observed that all models trained on the Train dataset exhibited sig-
nificantly better performance when evaluated on the Dev-Test dataset compared to the Dev
dataset. Therefore, we concluded that there is a significant difference between the two datasets
Dev and Dev-Test. However, we have been unable to pinpoint the exact reason behind this
observations. The fact that the results on the Dev-Test dataset were much better than on any
other dataset lead us to believe that our predictions might have been overfitted. To mitigate
the issue of overfitting and potentially enhance the performance of our models one approach
could involve combining all three predefined datasets into a unified dataset and shuffle it. This
new dataset could then be used in a k-fold cross validation procedure [55] to improve the models
performance.

8.2.3 Meta Estimators

As describe in Section 6.7 we experimented with four different meta-estimators to obtain a
single prediction from all predicted probabilities. We choose multiple meta-estimators to be
able to compare their performance. However, it is worth noting that three out of the four
estimators we employed utilized the same method, namely Logistic Regression. It would make
sense to experiment with more different meta-estimators. Conducting further experimentation
with a broader selection of meta-estimators would be reasonable.

We were able to improve the prediction of our meta-estimator by adding additional predictions.
Even adding bad models helped to improve the prediction of our meta-estimators. Therefore
it would make sense to add predictions from other models (transformer or basic models), that
have not been utilized thus far.

8.2.4 Hyperparameter optimization

We have applied hyperparameter optimization to the transformer models. However, we did
not have much time to experiment with too many parameters. Doing this could lead to an
improvement in performance of our transformer models. Additionally, it would make sense
to find optimal parameters not only for the transformer models but also for the n-gram and
word2vec models, as well as for the meta-estimators.

8.2.5 OpenAI API

The performance of the OpenAI API has exhibited poor results. There are multiple approaches
to improve the performance of the OpenAI API model. First you could look into adding more
examples of sentences, create clearer instructions about the task or define the context around
checkworthiness better. Second, it would make sense to use other prompting techniques as
already mentioned in Section 3.4.3. We could also use Chain-of-Thought Prompting [56] as

8 Conclusion and Discussion 44

this has also proven to be quite effective in making the decisions of LLMs better. We also did
not try the ReAct [57] or the CARP [58] methods as these came to our attention at a later time,
when we already had our predictions made. Given these alternative prompting techniques, it
would be prudent to explore whether the gpt-3.5-turbo model is able to make predictions.
Lastly, there would also be the possibility to fine-tune the OpenAI models itself. Considering
the potential high costs involved, we made the decision not to pursue this approach.

8.2.6 Analysis

In order to gain more insight into the decision-making process of the transformer models we
utilized, we employed transformer-interpret, a library specifically designed for this purpose. We
built a script that summarizes these decisions per token as described in Section 6.5.1. To further
enhance our the transformer models, it is recommended that this information be analyzed, and
the acquired insights should then be utilized to improve the models.

8.2.7 Labeling

To obtain a more precise comprehension of the data labeling process, we took the initiative to
label a portion of the data ourselves, as described in Section 5.1. Subsequently, we compared
our labels with the gold labels and achieved an accuracy of approximately 0.8 and an F-score
of around 0.6 when compared to the gold labels. These results indicate that the predictions
from our final model were significantly better than own predictions when compared to the gold
labels.

There were several occurrences where our team members held contrasting viewpoints regarding
the classification of specific sentences, which is worth highlighting. This demonstrates the chal-
lenging nature of predicting checkworthiness, as it is not always clear when exactly a sentence
should be considered checkworthy. Additionally, different annotators may not consistently agree
on whether a sentence should be considered checkworthy.

References 45

9 Indices

References

[1] H. Allcott and M. Gentzkow, “Social Media and Fake News in the 2016 Election,”
Journal of Economic Perspectives, vol. 31, no. 2, pp. 211–236, May 2017,
issn: 0895-3309. doi: 10.1257/jep.31.2.211. (visited on 05/08/2023).

[2] J. Y. Cuan-Baltazar, M. J. Muñoz-Perez, C. Robledo-Vega, M. F. Pérez-Zepeda, and
E. Soto-Vega, “Misinformation of COVID-19 on the Internet: Infodemiology Study,”
JMIR Public Health and Surveillance, vol. 6, no. 2, e18444, Apr. 2020.
doi: 10.2196/18444. (visited on 05/08/2023).

[3] J. Daxenberger, S. Eger, I. Habernal, C. Stab, and I. Gurevych,
“What is the Essence of a Claim? Cross-Domain Claim Identification,” in Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, Comment:
Published at EMNLP 2017: http://www.aclweb.org/anthology/D/D17/D17-1217.pdf,
2017, pp. 2055–2066.
doi: 10.18653/v1/D17-1218. arXiv: 1704.07203 [cs]. (visited on 02/28/2023).

[4] S. E. Toulmin, The Uses of Argument, Updated ed., reprinted.
Cambridge: Cambridge University Press, 2008, isbn: 0-521-82748-5.

[5] N. Ferro, >Conference and Labs of the Evaluation Forum (CLEF),
https://www.clef-initiative.eu/. (visited on 03/07/2023).

[6] CheckThat! https://checkthat.gitlab.io/clef2023/task1/. (visited on 03/07/2023).

[7] P. Nakov, A. Barrón-Cedeño, R. Míguez, et al., “Overview of the CLEF-2022
CheckThat! Lab Task 1\\ on Identifying Relevant Claims in Tweets,”

[8] M. Cieliebak, O. Dürr, and F. Uzdilli,
“Meta-Classifiers Easily Improve Commercial Sentiment Detection Tools,”
in Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14),
Reykjavik, Iceland: European Language Resources Association (ELRA), May 2014,
pp. 3100–3104. (visited on 05/11/2023).

[9] M. Sundriyal, A. Kulkarni, V. Pulastya, M. S. Akhtar, and T. Chakraborty,
Empowering the Fact-checkers! Automatic Identification of Claim Spans on Twitter,
Comment: Accepted at EMNLP22. 16 pages including Appendix, Oct. 2022.
arXiv: 2210.04710 [cs]. (visited on 02/07/2023).

[10] R. Levy, Y. Bilu, D. Hershcovich, E. Aharoni, and N. Slonim,
“Context Dependent Claim Detection,” in Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers,
Dublin, Ireland: Dublin City University and Association for Computational Linguistics,
Aug. 2014, pp. 1489–1500. (visited on 02/07/2023).

https://doi.org/10.1257/jep.31.2.211
https://doi.org/10.2196/18444
https://doi.org/10.18653/v1/D17-1218
https://arxiv.org/abs/1704.07203
https://arxiv.org/abs/2210.04710

References 46

[11] I. Jaradat, P. Gencheva, A. Barron-Cedeno, L. Marquez, and P. Nakov,
ClaimRank: Detecting Check-Worthy Claims in Arabic and English,
Comment: Check-worthiness; Fact-Checking; Veracity; Community-Question Answering;
Neural Networks; Arabic; English, Apr. 2018.
doi: 10.48550/arXiv.1804.07587. arXiv: 1804.07587 [cs]. (visited on 02/27/2023).

[12] S. Zhi, Y. Sun, J. Liu, C. Zhang, and J. Han, “ClaimVerif: A Real-time Claim
Verification System Using the Web and Fact Databases,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, ser. CIKM ’17,
New York, NY, USA: Association for Computing Machinery, Nov. 2017, pp. 2555–2558,
isbn: 978-1-4503-4918-5. doi: 10.1145/3132847.3133182. (visited on 02/27/2023).

[13] N. Hassan, C. Li, and M. Tremayne,
“Detecting Check-worthy Factual Claims in Presidential Debates,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
Melbourne Australia: ACM, Oct. 2015, pp. 1835–1838, isbn: 978-1-4503-3794-6.
doi: 10.1145/2806416.2806652. (visited on 05/09/2023).

[14] R. Mitkov and G. Angelova, Eds., Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2021).
Held Online: INCOMA Ltd., Sep. 2021. (visited on 05/15/2023).

[15] P. Atanasova, L. Marquez, A. Barron-Cedeno, et al., “Overview of the CLEF-2018
CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task
1: Check-Worthiness,”

[16] M. Hasanain, F. Haouari, R. Suwaileh, et al., “Overview of CheckThat! 2020 Arabic:
Automatic Identification and Verification of Claims in Social Media,”

[17] S. Shaar, M. Hasanain, B. Hamdan, et al., “Overview of the CLEF-2021 CheckThat!
Lab Task 1 on Check-Worthiness Estimation in Tweets and Political Debates,”

[18] S. Shaar, A. Nikolov, N. Babulkov, et al., “Overview of CheckThat! 2020 English:
Automatic Identification and Verification of Claims in Social Media,”

[19] E. Williams, P. Rodrigues, and S. Tran, “Accenture at CheckThat! 2021: Interesting
claim identification and ranking with contextually sensitive lexical training data
augmentation,”

[20] X. Zhou, B. Wu, and P. Fung, “Fight for 4230 at CheckThat! 2021: Domain-Specific
Preprocessing and Pretrained Model for Ranking Claims by Check-Worthiness,”

[21] A. Savchev, “AI Rational at CheckThat! 2022: Using transformer models for tweet
classification,”

[22] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention Is All You Need,
Comment: 15 pages, 5 figures, Dec. 2017.
doi: 10.48550/arXiv.1706.03762. arXiv: 1706.03762 [cs]. (visited on 03/02/2023).

[23] F. A. Acheampong, H. Nunoo-Mensah, and W. Chen, “Transformer models for
text-based emotion detection: A review of BERT-based approaches,”
Artificial Intelligence Review, vol. 54, no. 8, pp. 5789–5829, Dec. 2021, issn: 1573-7462.
doi: 10.1007/s10462-021-09958-2. (visited on 05/15/2023).

https://doi.org/10.48550/arXiv.1804.07587
https://arxiv.org/abs/1804.07587
https://doi.org/10.1145/3132847.3133182
https://doi.org/10.1145/2806416.2806652
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/s10462-021-09958-2

References 47

[24] K. Suzuki,
Artificial Neural Networks - Methodological Advances and Biomedical Applications.
Apr. 2011, isbn: 978-953-307-243-2.

[25] L. Ouyang, J. Wu, X. Jiang, et al.,
Training language models to follow instructions with human feedback, Mar. 2022.
arXiv: 2203.02155 [cs]. (visited on 05/16/2023).

[26] A. Dertat, Applied Deep Learning - Part 1: Artificial Neural Networks,
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-
d7834f67a4f6, Oct. 2017. (visited on 06/08/2023).

[27] H. Liu and H. Motoda, Eds., Feature Extraction, Construction and Selection.
Boston, MA: Springer US, 1998, isbn: 978-1-4613-7622-4 978-1-4615-5725-8.
doi: 10.1007/978-1-4615-5725-8. (visited on 06/09/2023).

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,
May 2019.
doi: 10.48550/arXiv.1810.04805. arXiv: 1810.04805 [cs]. (visited on 05/24/2023).

[29] V. Sanh, “DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter,”

[30] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning,
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators,
Comment: ICLR 2020, Mar. 2020.
doi: 10.48550/arXiv.2003.10555. arXiv: 2003.10555 [cs]. (visited on 03/01/2023).

[31] T. B. Brown, B. Mann, N. Ryder, et al., Language Models are Few-Shot Learners,
Comment: 40+32 pages, Jul. 2020. arXiv: 2005.14165 [cs]. (visited on 05/26/2023).

[32] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language
Understanding by Generative Pre-Training,”

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
Proximal Policy Optimization Algorithms, Aug. 2017.
doi: 10.48550/arXiv.1707.06347. arXiv: 1707.06347 [cs]. (visited on 05/23/2023).

[34] Fine-tuning a Neural Network explained,
https://deeplizard.com/learn/video/5T-iXNNiwIs. (visited on 06/09/2023).

[35] Z. Yun-tao, G. Ling, and W. Yong-cheng, “An improved TF-IDF approach for text
classification,”
Journal of Zhejiang University-SCIENCE A, vol. 6, no. 1, pp. 49–55, Aug. 2005,
issn: 1862-1775. doi: 10.1007/BF02842477. (visited on 05/21/2023).

[36] R. Gandhi, Support Vector Machine — Introduction to Machine Learning Algorithms,
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-
learning-algorithms-934a444fca47, Jul. 2018. (visited on 05/21/2023).

[37] L. de Bruijn, Inter-Annotator Agreement (IAA),
https://towardsdatascience.com/inter-annotator-agreement-2f46c6d37bf3, Jul. 2020.
(visited on 05/20/2023).

https://arxiv.org/abs/2203.02155
https://doi.org/10.1007/978-1-4615-5725-8
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/BF02842477

References 48

[38] Inter-rater Reliability Metrics: An Introduction to Krippendorff’s Alpha,
https://www.surgehq.ai//blog/inter-rater-reliability-metrics-an-introduction-to-
krippendorffs-alpha. (visited on 05/20/2023).

[39] A. J. Viera and J. M. Garrett, “Understanding Interobserver Agreement: The Kappa
Statistic,” Family Medicine,

[40] S. AI, Inter-Annotator Agreement: An Introduction to Cohen’s Kappa Statistic,
Dec. 2021. (visited on 05/20/2023).

[41] Google Code Archive - Long-term storage for Google Code Project Hosting.
https://code.google.com/archive/p/word2vec/. (visited on 06/09/2023).

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
Efficient Estimation of Word Representations in Vector Space, Sep. 2013.
arXiv: 1301.3781 [cs]. (visited on 06/09/2023).

[43] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, Apr. 2011,
issn: 2157-6904, 2157-6912. doi: 10.1145/1961189.1961199. (visited on 05/25/2023).

[44] Bert-base-uncased · Hugging Face, https://huggingface.co/bert-base-uncased, Jun. 2023.
(visited on 06/07/2023).

[45] Textattack/bert-base-uncased-yelp-polarity · Hugging Face,
https://huggingface.co/textattack/bert-base-uncased-yelp-polarity.
(visited on 05/24/2023).

[46] Bhadresh-savani/electra-base-emotion · Hugging Face,
https://huggingface.co/bhadresh-savani/electra-base-emotion. (visited on 06/03/2023).

[47] Distilbert-base-uncased · Hugging Face, https://huggingface.co/distilbert-base-uncased,
Apr. 2023. (visited on 05/24/2023).

[48] C. Pierse, Introducing Transformers Interpret — Explainable AI for Transformers,
https://towardsdatascience.com/introducing-transformers-interpret-explainable-ai-for-
transformers-890a403a9470, Feb. 2021. (visited on 05/09/2023).

[49] PyTorch, Introduction to Captum — A model interpretability library for PyTorch,
Mar. 2020. (visited on 05/21/2023).

[50] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic Attribution for Deep Networks,
Jun. 2017. arXiv: 1703.01365 [cs]. (visited on 06/05/2023).

[51] N. Ankarstad, What is Explainable AI (XAI)?
https://towardsdatascience.com/what-is-explainable-ai-xai-afc56938d513, Jan. 2022.
(visited on 06/09/2023).

[52] K. Greshake, S. Abdelnabi, S. Mishra, C. Endres, T. Holz, and M. Fritz,
Not what you’ve signed up for: Compromising Real-World LLM-Integrated Applications
with Indirect Prompt Injection, May 2023.
arXiv: 2302.12173 [cs]. (visited on 06/01/2023).

[53] ClaimBuster, https://idir.uta.edu/claimbuster/. (visited on 05/15/2023).

https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/1961189.1961199
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/2302.12173

[54] K. Meng, D. Jimenez, F. Arslan, J. D. Devasier, D. Obembe, and C. Li,
Gradient-Based Adversarial Training on Transformer Networks for Detecting
Check-Worthy Factual Claims, Comment: 11 pages, 4 figures, 6 tables
paperswithcode, May 2020. arXiv: 2002.07725 [cs]. (visited on 03/01/2023).

[55] J. Brownlee, A Gentle Introduction to k-fold Cross-Validation, May 2018.
(visited on 06/09/2023).

[56] J. Wei, X. Wang, D. Schuurmans, et al.,
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Jan. 2023.
doi: 10.48550/arXiv.2201.11903. arXiv: 2201.11903 [cs]. (visited on 06/08/2023).

[57] S. Yao, J. Zhao, D. Yu, et al.,
ReAct: Synergizing Reasoning and Acting in Language Models,
Comment: v3 is the ICLR camera ready version with some typos fixed. Project site with
code: https://react-lm.github.io, Mar. 2023.
arXiv: 2210.03629 [cs]. (visited on 05/26/2023).

[58] X. Sun, X. Li, J. Li, et al., Text Classification via Large Language Models,
Comment: Pre-print Version, May 2023.
doi: 10.48550/arXiv.2305.08377. arXiv: 2305.08377 [cs]. (visited on 05/26/2023).

List of Figures
1 Shows the three research categories the claims are separated in. 3
2 ANN with two hidden layers [26] . 6
3 Shows the confusion matrices of our labels compared to the gold labels for both

the Dev and Dev-Test dataset. The confusion matrix shows that all annotaters
had a similar accuracy of at least 0.8 for both datasets. It also shows that Pascal
labeled the most sentences as checkworthy while Karin labeled fewest sentences
as checkworthy. 15

4 Provides a comparison between performance of the models we used and our own
(Pascal, Christoph, Karin) labeling performance. 18

5 Shows the word attribution visualization provided by the transformer-interpret
visualizer. The true label is the label that was to be predicted. The attribution
score is equivalent to the sum of all scores. The scores are shown as colors in the
"Word Importance" column. Green means that the word contributes positively
towards the predicted label and red means the opposite. 27

6 Shows an example of our word attribution visualization. Shows the gold label
("label"), the "model" that was used, the predicted label "prediction" and its
corresponding probability. It also shows the attribution score (sum of all attri-
bution scores of the sentence) and the word attribution visualization. 27

49

https://paperswithcode.com/paper/gradient-based-adversarial-training-on
https://arxiv.org/abs/2002.07725
https://doi.org/10.48550/arXiv.2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://doi.org/10.48550/arXiv.2305.08377
https://arxiv.org/abs/2305.08377

7 Shows the statistics from our token attributions on the Dev-Test dataset with
the DistilBERT model. The information in the red box shows statistics across all
words with a negative score, the green box shows all information with a positive
score and the blue box shows statistics across all scores. The table is sorted by
the column "avg" (ascending). The "avg" column shows the average of all scores
of the token in this row. The token with the most negative average score is "?".
Only tokens with at least 5 occurrences are shown in this table. 28

8 Shows the statistics from our token attributions on the Dev-Test dataset with
the DistilBERT model. The information in the red box shows statistics across all
words with a negative score, the green box shows all information with a positive
score and the blue box shows statistics across all scores. The table is sorted by
the column "avg" (descending). This column shows the average of all scores of
the token in this row. 29

9 Shows the confusion matrix of the different models on the Dev-Test dataset . . . 36
10 Shows the entire training and prediction process to obtain the final results. First

the Train dataset is utilized for training and fine-tuning the models. Subse-
quently, the resulting models are employed to make predictions on the Dev
dataset. The probabilities from these predictions are all passed on and used
to train the meta-estimators. Lastly these meta-estimators are utilized to clas-
sify the sentences of the Dev-Test and Test dataset to obtain the final predictions. 37

11 Shows the results and ranking of the CheckThat!2023 lab. We (Pickachu) re-
ceived an F-score of 0.767 and placed 10th out of 11 teams. The best team
OpenFact managed to achieve an F-score of 0.898. 39

List of Tables
1 Provides an overview of the data that was provided for the CheckThat!2023

competition. The English data consists of speeches and debates while the data
for Spanish and Arabic consists of tweets. The data is separated in the datasets:
Train, Dev, Dev-Test and Test (English only) per language. 10

2 Shows the performance (F-score) of the baseline models (Random, Majority,
n-gram) on the Dev-Test dataset. 11

3 Shows example data from the English Train dataset. The "class_label" column
shows the gold label corresponding to the sentence ("Text"). "Yes" means the
sentence is checkworthy and "No" means the sentence is not checkworthy. 12

4 Shows the performance (F-score) of the baseline models (Random, Majority,
n-gram) on the Dev and Dev-Test datasets. 13

5 Provides an overview of how well we labeled the sampled data both from the
Dev and Dev-Test dataset. The performance measures used are the F-score and
Accuracy. The best scores are marked as bold. 15

6 Shows an overview of how many sentences (out of 300) were classified incorrectly
by the labelers on both the Dev and Dev-Test dataset. 16

7 Shows two sentences that were labeled incorrectly by all of the annotaters. The
column "Gold" shows the gold label and the column "Labeled" shows the label
we consider to be appropriate. 16

50

List of Tables 51

8 Shows an overview of IAA scores across different metrics for both the Dev and
Dev-Test data we labeled. The IAA scores on the Dev data range from 0.37 to
0.41 and the IAA scores on the Dev-Test data are all either 0.54 or 0.55. Which
means there is a moderate to fair agreement between the annotaters. 17

9 Shows an interpretation of the IAA Kappa scores [39]. This is just one interpre-
tation for IAA scores, there are others as shown in [40]. 17

10 Shows the performance of the n-gram model on the Dev, Dev-Test and Test
dataset. The measurement that was used is the F-score. 20

11 Shows the performance of the word2vec model on the Dev, Dev-Test and Test
dataset. The F-score was utilized as the measurement for evaluating perfor-
mance. 21

12 Shows the F-Scores that were achieved on the Dev, Dev-Test and Test dataset
by using the bert-base-uncased model with a SVC. 22

13 Shows the performance of the BERT transformer model on the Dev, Dev-Test
and Test dataset. To produce these scores the fine-tuned BERT model was
utilized. The measurement that was used is the F-score. 22

14 Shows the performance of the ELECTRA transformer model on the Dev, Dev-
Test and Test dataset. To produce these scores the fine-tuned ELECTRA model
was utilized. The F-score was utilized as the measurement for evaluating perfor-
mance. 22

15 Shows the performance of the DistilBERT transformer model on the Dev, Dev-
Test and Test dataset. To produce these scores the fine-tuned DistilBERT model
was utilized. The F-score was utilized as the measurement for evaluating perfor-
mance. 23

16 Shows the values of each hyperparameter which was used to train the transformer
models. 25

17 Shows the performance of transformer models with and without optimized hy-
perparameters on Test dataset . 25

18 Shows the F-scores that were achieved on the Dev, Dev-Test and Test dataset
by using the OpenAI API. 31

19 Shows the F-scores that were achieved on the Dev, Dev-Test and Test dataset
by using the ClaimBuster API. 31

20 Presents a comparison of the meta-estimators’ performance on the Dev-Test
dataset. 32

21 Presents a comparison of the meta-estimators’ performance on the Dev-Test
dataset. It showcases the performance achieved when trained using different
inputs, including: solely the predictions from transformer models, predictions
from both transformer models and basic models (word2vec and n-gram), and all
predictions including API predictions. 33

22 Presents a comparison of the meta-estimators’ performance on the Test dataset.
It showcases the performance achieved when trained using different inputs, in-
cluding: solely the predictions from transformer models, predictions from both
transformer models and basic models (word2vec and n-gram), and all predictions
including API predictions. 33

10 Appendix 52

23 Shows the number of sentences that were predicted incorrectly by the BERT
model, ELECTRA model and both. The predictions were done on the Dev
dataset. 34

24 Shows all the F-scores for each model on all datasets. On the Test dataset the
performance of the ELECTRA model was the best with 0.857 while the OpenAI
API was the worst with 0.497 . 35

25 Shows the results of all submitted models to the CheckThat!2023 competition. . 40
26 Provides an overview of the performance of all models evaluated on the Test

dataset ordered by F-score. 41

10 Appendix

10.1 Software and Tools

To do our experiments and train our models we used the programming Language Python. The
most important libraries we used were Pandas, Sklearn and Transformers (from HuggingFace).
We also used Git to manage our code.

10.2 Guide

All our Transformer models are uploaded to Hugging Face: https://huggingface.co/ba-claim

Clone GitHub repository: https://github.com/BA-Claim-Extraction/code

Note: The repository was originally setup to be used for all languages. However, as we started
focusing primarly on English, we didn’t make sure everything was working for all languages
anymore.

10.2.1 Setup environment

• Setup project locally

• Install Python 3.8

• Install Python plugin in Intellij

• Create virtual Python env (files -> project structure -> add sdk -> add python skd ->
create virtual env and select Python 3.8)

• switch to the directory check_that_task1

• Install requirements: pip install -r requirements.txt

• Upgrade pip: python.exe -m pip install –upgrade pip

• create .env file with OpenAI API key and Claimbuster API key as seen in Appendix
10.2.3 Repository usage.

https://huggingface.co/ba-claim
https://github.com/BA-Claim-Extraction/code

10 Appendix 53

10.2.2 Repository structure

All our code and data is located in the check_that_task1 folder.

The following are the most important directories:

• baselines: Contains a class for each model (meta-estimators are grouped in a single class)
to make predictions on a certain dataset.

• core: Contains the core classes

• data: Contains all data, the original data, our predictions, submissions...

• preprocessing: Contains preprocessing tasks.

• training: Contains classes to train / fine-tune the transformer models we used. The results
of this training are saved as checkpoints (not saved on GitHub due to their size). These
checkpoints are later used to make predictions (using the baseline classes).

• utils: Contains helper functions and classes.

10.2.3 Repository usage

trainer.py

Python script that can be run to train the transformer models. The main method contains
several variables that act as parameters to decide which model train, what data to train on,
etc. Running this might take several hours.

runner.py

Python script to make predictions on any model. Similarly to the trainer, the runner has a
main method that can be used to select the model, etc. All results are saved in tsv files. If the
override flag is set, the results are only shown and not predicted again.

labeler.py

Python script, that we used to label some randomly selected data ourselves.

analyzer.ipynb

This jupyter notebook uses our result files (saved when running the runner.py) to analyze the
results and provide an overview. It shows several different graphics (ROC-Curve and confusion
matrix) and overviews.

analyze_labels.ipynb

This jupyter notebook provides an overview of our labelings. It shows how good our labels
were compared to the gold labels and shows how much we agreed with each other.

10 Appendix 54

playground.ipynb

This jupyter notebook provides an overview of our methods to make predictions. It shows all
the used methods and provides a place to test them.

trainer_script.py

Python script that can be run to fine-tune the transformer models and to do hyperparameter
search. This was the second approach for fine-tuning. Now it also included the hyperparameter
search and was easier to use then the trainer.py Its a CLI script which will ask you what you
would like to do and you can select the modes. Running this might take several hours as the
process of finding hyperparameters and fine-tuning can be quite resource intensiv. Parts of this
file can be found in Appendix 10.4.3 Fine-Tuning and Hyperparameter Optimization.

/core/chatgpt_classification_model.py

Python class to make prediction over the OpenAI API. Includes the prompt and all the settings
to use the API. With the methods classify_text or classify_with_chat you can switch between
the text-davinci-003 and gpt-3.5-turbo model. This class can be found in the Appendix 10.5.3
OpenAI API Classifier Class.

/core/text_classification_model.py

Python class is able to make prediction of the label and the corresponding probability. It has to
be initialized with a transformer model from Huggingface. It will also automatically generate
the word attributions. This class can be found in the Appendix 10.4.2 Classifier Class.

.env

You can generate a new api key here: https://platform.openai.com/account/api-keys

You can find your OpenAI Org here: https://platform.openai.com/account/org-settings
1 OPENAI_API_KEY=<api_key >
2 OPENAI_ORG=<org_key >
3 CLAIMBUSTER_API_KEY=<api_key >

Listing 2: Environment File to access the OpenAI API and Claimbuster API

10.3 Word attribution calculation

This script analyzer_word_attr.ipynb can be used to produce an overview of the word attri-
butions per token as shown in Figures 7 and 8. The following code is used for the calculations
shown in section 6.5.2, which is also included in the analyzer_word_attr.ipynb script.

1 df_attr = pd.DataFrame(columns =[’Token’, ’avg_neg ’, ’sum_neg ’, ’count_neg ’,
’avg_pos ’, ’sum_pos ’, ’count_pos ’, ’avg_abs ’, ’sum_abs ’, ’avg’, ’sum’, ’
count_all ’])

2

3 for key , value in token_scores_dict.items():

https://platform.openai.com/account/api-keys
https://platform.openai.com/account/org-settings

10 Appendix 55

4 pos_val = np.array([score for score in value if score > 0])
5 neg_val = np.array([score for score in value if score < 0])
6

7 new_row = {
8 ’Token ’: key ,
9 ’avg_neg ’: np.mean(neg_val),

10 ’sum_neg ’: np.sum(neg_val),
11 ’count_neg ’: np.size(neg_val),
12

13 ’avg_pos ’: np.mean(pos_val),
14 ’sum_pos ’: np.sum(pos_val),
15 ’count_pos ’: np.size(pos_val),
16

17 ’avg_abs ’: np.mean(np.array(np.abs(value))),
18 ’sum_abs ’: np.sum(np.array(np.abs(value))),
19

20 ’avg’: np.mean(np.array(value)),
21 ’sum’: np.sum(np.array(value)),
22

23 ’count_all ’: np.size(np.array(value)),
24 }
25 df_attr = df_attr.append(new_row , ignore_index=True)
26

27 df_attr = df_attr.fillna (0)

10.4 Transformer models

10.4.1 Make predictions

To make predictions using our the transformer models you can use this code from the utils/ex-
ample_prediction.py.

1 from transformers import AutoTokenizer , AutoModelForSequenceClassification
2 from scipy.special import softmax
3

4 tokenizer = AutoTokenizer.from_pretrained("ba -claim/electra")
5 model = AutoModelForSequenceClassification.from_pretrained("ba-claim/electra

")
6

7 text = "I don’t want to go back to malaise and misery index."
8

9 inputs = tokenizer(text , return_tensors="pt", padding=True , truncation=True ,
max_length =60)

10 outputs = model (** inputs)
11

12 probabilities = softmax(outputs.logits [0]. detach ().numpy (), axis =0)
13 label_index = outputs.logits.argmax ().item()
14 label = model.config.id2label[label_index]
15 print(f"label: {label} --- pro: {probabilities} --- text: {text}")

Listing 3: Script to use our Hugging Face model to create predictions for a sentence

10 Appendix 56

10.4.2 Classifier Class
1 import numpy as np
2 from sklearn.base import BaseEstimator , ClassifierMixin
3 from transformers_interpret.explainers.text import

SequenceClassificationExplainer
4 from scipy.special import softmax
5

6

7 class TextClassificationModel(BaseEstimator , ClassifierMixin):
8 def __init__(self , model , tokenizer , name):
9 self.model = model

10 self.tokenizer = tokenizer
11 self.cls_explainer = SequenceClassificationExplainer(model ,

tokenizer)
12 self.name = name
13 self.embedding_func = lambda x: x[0][:, 0, :]. squeeze ()
14

15 def classify_text(self , text , class_name=""):
16 inputs = self.tokenizer(text , return_tensors="pt")
17 outputs = self.model (** inputs)
18 probabilities = softmax(outputs.logits [0]. detach ().numpy (), axis =0)
19 label_index = outputs.logits.argmax ().item()
20 label = self.model.config.id2label[label_index]
21 word_attributions = self.cls_explainer(text , class_name=class_name)
22 print(f"label: {label} --- text: {text}, pred = {self.cls_explainer.

predicted_class_name}")
23 return label , probabilities[label_index], word_attributions
24

25 ###
26 # https :// captum.ai/
27 # https :// towardsdatascience.com/introducing -transformers -interpret -

explainable -ai-for -transformers -890 a403a9470
28 # https :// pypi.org/project/transformers -interpret/
29 ###
30 def get_explanation(self , text , class_name):
31 word_attributions = self.cls_explainer(text , class_name=class_name)
32 print(word_attributions)
33 self.cls_explainer.visualize ()
34

35 def fit(self , X, y):
36 return self
37

38 def predict(self , X):
39 return [self._tokenize_and_predict_label(string) for string in X]
40

41 def predict_proba(self , X, y=None):
42 return [self._tokenize_and_predict_probability(string) for string in

X]
43

44 def _tokenize_and_predict_label(self , text: str):
45 inputs = self.tokenizer(text , return_tensors="pt")
46 outputs = self.model (** inputs)
47 label_index = outputs.logits.argmax ().item()
48 print(f"label: {label_index} --- text: {text}")
49 return label_index

10 Appendix 57

50

51 def _tokenize_and_predict_probability(self , text: str):
52 inputs = self.tokenizer(text , return_tensors="pt")
53 outputs = self.model (** inputs)
54 probabilities = softmax(outputs.logits [0]. detach ().numpy (), axis =0)

[0:2]
55 print(f"label: {np.around(probabilities ,2)} --- text: {text}")
56 return probabilities

Listing 4: Class for making predictions with a transformer model

10.4.3 Fine-Tuning and Hyperparameter Optimization

For the hyperparameter search and the following fine-tuning we used the trainer_script.py. We
only highlight the important part of the script here.

1 if selected_model == ’distilbert ’:
2 hyper= {’learning_rate ’: 2.250831270949427e-05, ’

per_device_train_batch_size ’: 128, ’num_train_epochs ’: 5, ’weight_decay ’:
0.005047876524611274}

3 tokenizer = DistilBertTokenizer.from_pretrained("distilbert -base -
uncased")

4 model_init = model_init_distilbert
5

6 elif selected_model == ’bert’:
7 hyper= {’learning_rate ’: 9.458979436773355e-05, ’

per_device_train_batch_size ’: 64, ’num_train_epochs ’: 4, ’weight_decay ’:
0.0002736731745285213}

8 tokenizer = AutoTokenizer.from_pretrained("textattack/bert -base -
uncased -yelp -polarity")

9 model_init = model_init_bert
10

11 else:
12 hyper = {’learning_rate ’: 2.6496325134477252e-05, ’

per_device_train_batch_size ’: 32, ’num_train_epochs ’: 5, ’weight_decay ’:
0.009194238497066992}

13 tokenizer = AutoTokenizer.from_pretrained("bhadresh -savani/electra -
base -emotion")

14 model_init = model_init_electra

Listing 5: Hyperparameter settings used for the training

1 dataset_train_tokens = dataset_train.map(
2 lambda text: tokenizer.encode_plus(text["Text"], add_special_tokens=

True , truncation=True , padding=True))
3 dataset_dev_tokens = dataset_dev.map(
4 lambda text: tokenizer.encode_plus(text["Text"], add_special_tokens=

True , truncation=True , padding=True))
5

6 data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Listing 6: Here we enable truncation and padding for the tokenization

1 if selected_action == ’hyperparameter ’:

10 Appendix 58

2 training_args = TrainingArguments(per_device_train_batch_size =4,
3 num_train_epochs =1,
4 ** default_args)
5 else:
6 print(’training -> starts ’)
7 training_args = TrainingArguments(
8 learning_rate= hyper[’learning_rate ’],
9 per_device_train_batch_size= hyper[’per_device_train_batch_size

’],
10 num_train_epochs= hyper[’num_train_epochs ’],
11 weight_decay= hyper[’weight_decay ’],
12 ** default_args)
13

14

15 trainer = Trainer(model=None , args=training_args ,
16 model_init=model_init ,
17 eval_dataset=dataset_dev_tokens ,
18 data_collator=data_collator ,
19 train_dataset=dataset_train_tokens ,
20 compute_metrics=compute_metrics ,tokenizer=tokenizer)
21

22 if selected_action == ’hyperparameter ’:
23 best_trial = trainer.hyperparameter_search(
24 direction="maximize",
25 backend="optuna",
26 hp_space=optuna_hp_space ,
27 n_trials =20,
28)
29 print(f"best_trial: {best_trial}")
30 else:
31 trainer.train ()

Listing 7: Initialization of the Trainer API with the TrainingArguments and running either the
hyperparameter search or the training

1 def compute_metrics(eval_pred):
2 predictions , labels = eval_pred
3 predictions = np.argmax(predictions , axis =1)
4 return f1.compute(predictions=predictions , references=labels)

Listing 8: Shows the method which is used for calculating the f-score for evaluation between
searching and training cycles

1 def model_init_electra(trial):
2 return ElectraForSequenceClassification.from_pretrained("bhadresh -savani

/electra -base -emotion", num_labels =2, ignore_mismatched_sizes=True).to("
cuda")

3

4 def model_init_bert(trial):
5 id2label = {0: "No", 1: "Yes"}
6 label2id = {"No": 0, "Yes": 1}
7 return BertForSequenceClassification.from_pretrained("textattack/bert -

base -uncased -yelp -polarity", num_labels =2,
8

id2label=id2label , label2id=label2id).to("cuda")

10 Appendix 59

9

10 def model_init_distilbert(trial):
11 return DistilBertForSequenceClassification.from_pretrained("distilbert -

base -uncased", num_labels =2).to("cuda")

Listing 9: Initializing each Huggingface model with the right amount of labels

1 def optuna_hp_space(trial):
2 return {
3 "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4,

log=True),
4 "per_device_train_batch_size": trial.suggest_categorical("

per_device_train_batch_size", [16, 32, 64]),
5 "num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5),
6 "weight_decay": trial.suggest_float("weight_decay", 4e-5, 0.01)
7 }

Listing 10: Method which sets the hyperparameter space in where the search is made

10.5 OpenAI

10.5.1 ChatGPT Prompt

The following prompt demonstrates our approach to generate predictions using ChatGPT.
1 I would like you to simulate an AI model which is classifing if a sentence

is Checkworthy.
2 This is how checkworthy is defined:
3 Check -worthiness: Do you think that a professional fact -checker should

verify the claim in the tweet? This question asks for a subjective
judgment. Yet , its answer should be based on whether the claim is likely
to be false , is of public interest , and/or appears to be harmful. Note
that we stress the fact that a professional fact -checker should verify
the claim , ruling out claims that are easy to fact -check by a layperson.

4

5 Prompt:
6 30313 And so I know that this campaign has caused some questioning and

worries on the part of many leaders across the globe.
7 19099 Now , let ’s balance the budget and protect Medicare , Medicaid ,

education and the environment.
8 33964 I’d like to mention one thing.
9 16871 I must remind him the Democrats have controlled the Congress for the

last twenty -two years and they wrote all the tax bills.
10 13150 And to take a chance uh - now be - and not make every effort that we

could make to provide for some control over these weapons , I think would
be a great mistake. 13386 Well , what he is saying there in effect , we’re
going to have inflation.

11 28916 I’m proud of the fact that violent crime is down in the State of Texas
.

12 10612 You know , you may have seen your health care premiums go up.
13 22058 If we’re $4 trillion down , we should have everything perfect , but we

don ’t.
14 18005 And I made some tough decisions.
15

10 Appendix 60

16 Output:
17 30313 No chatgpt
18 19099 No chatgpt
19 33964 No chatgpt
20 16871 Yes chatgpt
21 13150 No chatgpt
22 13386 No chatgpt
23 28916 Yes chatgpt
24 10612 No chatgpt
25 22058 Yes chatgpt
26 18005 No chatgpt
27

28 if you understand just anwser with: ’i understand ’

Listing 11: Shows the example prompt used with the ChatGPT Web interface

10.5.2 API code

1 #This was the system prompt
2

3 system_content = "I would like you to simulate an AI model which is
classifing if a sentence is Checkworthy.This is how checkworthy is
defined :\n Check -worthiness: Do you think that a professional fact -
checker should verify the claim in the tweet? This question asks for a
subjective judgment. Yet , its answer should be based on whether the claim
is likely to be false , is of public interest , and/or appears to be

harmful. Note that we stress the fact that a professional fact -checker
should verify the claim , ruling out claims that are easy to fact -check by
a layperson .\n You response always in Json , with the label and the

probability for the Yes label. The User is only giving sentences to
classify\n"

4

5 # These are the two given examples:
6

7 first_user_content = "And if it’s rape , how do you draw moral judgments on
that?"

8 fist_assistent_content = "{\" label \":\" No\",\" probability \":0.267}"
9 second_user_content = "And many of the public schools are meeting the call."

10 second_assistent_content = "{\" label \":\" Yes\",\" probability \":0.854}"
11

12 # And we had 3 different test phrases to test the output.
13 test_no_content = "We’ve had enough of that , ladies and gentlemen."
14 test_yes_content = "Well , Mr. Ford is - is uh changing uh considerably his

previous philosophy."
15 test_attack_content = "That answer was about as clear as Boston harbor."
16 # api call to the chat completion endpoint
17 response = openai.ChatCompletion.create(
18 model="gpt -3.5- turbo",
19 messages =[
20 {"role": "system", "content": f"{system_content}"},
21 {"role": "user", "content": f"{first_user_content}"},
22 {"role": "assistant", "content": f"{fist_assistent_content}"},
23 {"role": "user", "content": f"{second_user_content}"},
24 {"role": "assistant", "content": f"{second_assistent_content}"},

10 Appendix 61

25 {"role": "user", "content": f"{test_attack_content}"}
26]
27)
28 # api call to the completion endpoint
29 response = openai.Completion.create(
30 model="text -davinci -003",
31 prompt=f"{self.system_content }\nUser:{self.first_user_content }\n"
32 f"{self.fist_assistent_content }\n"
33 f"User:{self.second_user_content }\n"
34 f"{self.second_assistent_content }\n"
35 f"User:{text}\n",
36 temperature =0.6,
37 max_tokens =150,
38 top_p=1,
39 frequency_penalty =1,
40 presence_penalty =1
41)

Listing 12: Shows how the OpenAI API is used to make predictons

10.5.3 OpenAI API Classifier Class

1 import os
2 import time
3

4 from dotenv import load_dotenv
5 import openai
6 import json
7

8 class ChatGPTClassificationModel:
9 system_content = "I would like you to simulate an AI model which is

classifing if a sentence is Checkworthy.This " \
10 "is how checkworthy is defined :\n Check -worthiness: Do

you think that a professional " \
11 "fact -checker should verify the claim in the tweet?

This question asks for a subjective " \
12 "judgment. Yet , its answer should be based on whether

the claim is likely to be false , " \
13 "is of public interest , and/or appears to be harmful.

Note that we stress the fact that a " \
14 "professional fact -checker should verify the claim ,

ruling out claims that are easy to " \
15 "fact -check by a layperson .\n You response always in

Json , with the label and the probability " \
16 "for the Yes label.\n"
17 first_user_content = "And if it’s rape , how do you draw moral judgments

on that?"
18 fist_assistent_content = "{\" label \":\" No\",\" probability \":0.267}"
19 second_user_content = "And many of the public schools are meeting the

call."
20 second_assistent_content = "{\" label \":\" Yes\",\" probability \":0.854}"
21

22 def __init__(self):
23 load_dotenv ()

10 Appendix 62

24

25 OPENAI_API_KEY = os.getenv(’OPENAI_API_KEY ’)
26 OPENAI_ORG = os.getenv(’OPENAI_ORG ’)
27

28 if not OPENAI_API_KEY:
29 print(’Error: OPENAI_API_KEY is not set in .env file’)
30 if not OPENAI_ORG:
31 print(’Error: OPENAI_ORG is not set in .env file’)
32

33 openai.organization = OPENAI_ORG
34 openai.api_key = OPENAI_API_KEY
35

36 def adjust_probability(self , prob , label):
37 if label == ’Yes’:
38 prob = (float(prob) / 2) + 0.5
39 else:
40 prob = 0.5 - (1-float(prob) / 2)
41 prob = 1-prob
42 return prob
43

44 def classify_text(self , text):
45 label , probability = self.classify_with_completion(text)
46 return label , self.adjust_probability(probability , label)
47

48 def classify_with_chat(self , text):
49 response = openai.ChatCompletion.create(
50 model="gpt -3.5- turbo",
51 messages =[
52 {"role": "system", "content": f"{self.system_content}"},
53 {"role": "user", "content": f"{self.first_user_content}"},
54 {"role": "assistant", "content": f"{self.

fist_assistent_content}"},
55 {"role": "user", "content": f"{self.second_user_content}"},
56 {"role": "assistant", "content": f"{self.

second_assistent_content}"},
57 {"role": "user", "content": f"{text}"}
58]
59)
60 content = response["choices"][0]["message"]["content"]
61 json_res = json.loads(content)
62 return json_res[’label ’], json_res[’probability ’]
63

64 def classify_with_completion(self , text):
65 time.sleep (2)
66 response = openai.Completion.create(
67 model="text -davinci -003",
68 prompt=f"{self.system_content }\nUser:{self.first_user_content }\n

"
69 f"{self.fist_assistent_content }\n"
70 f"User:{self.second_user_content }\n"
71 f"{self.second_assistent_content }\n"
72 f"User:{text}\n",
73 temperature =0.6,
74 max_tokens =150,
75 top_p=1,

10 Appendix 63

76 frequency_penalty =1,
77 presence_penalty =1
78)
79 print(response)
80 content = response["choices"][0]["text"]
81 json_res = json.loads(content)
82 return json_res[’label ’], json_res[’probability ’]

Listing 13: Class for making predictions with the OpenAI API

	Introduction
	Starting Position
	Task Definition
	CheckThat! Lab
	Definition of checkworthiness
	Overview

	Related Work
	Checkworthiness for speeches and debates
	Previous Approaches
	Previous Competitions
	Context

	Theoretical Foundations
	Neural Network
	Feature Extraction
	Transformer model
	OpenAI
	Fine-Tuning

	Datasets and Baselines
	Baselines
	Speeches and Debates

	Data Analysis
	Labeling

	Methods
	Approach
	Evaluation
	Basic models
	Transformer models
	Word attributions
	API models
	Meta-Estimators
	Analysis and Comparison
	Final model

	Results
	CheckThat! Lab
	Final results

	Conclusion and Discussion
	Overview
	Potential improvements and Learnings

	Indices
	Bibliography
	List of Figures
	List of Tables

	Appendix
	Software and Tools
	Guide
	Word attribution calculation
	Transformer models
	OpenAI

