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Abstract

With technological advancements in artificial intelligence (AI) and the resulting prevalent po-
sition of this topic outside of academia, the demand to present their work to a broad audience
has increased in institutions conducting research in AI. For example, students at the Centre of
Artificial Intelligence (CAI) at the Zurich University of Applied Sciences (ZHAW) developed an
AI demonstrator using a Unitree A1 quadrupedal robot to recognize hand gestures and perform
corresponding actions. The Bachelor’s thesis at hand integrates this existing gesture recognition
into a modular control system based on the Robot Operating System (ROS) and visualizes the
main algorithms with a graphical user interface (GUI) and the ROS tool RViz. The robot is
equipped with an external ZED2 stereo camera and an Ouster OS1 light detection and ranging
(LiDAR) sensor, improving the robot’s environmental perception to localize itself and avoid
collisions. Moreover, a Kalman filter fuses stereo camera data and inertial measurements, com-
bining relative and absolute state estimations. A LiDAR-based map generated by a simultaneous
localization and mapping (SLAM) algorithm corrects this sensor-fusion-based state estimation.
The software modules that provide this functionality to achieve the aforementioned research
goals were implemented in C++ and Python, employing the corresponding ROS libraries. The
developed position controller enables the robot to move on a path with a maximal deviation of
0.2 m when walking on a 2 m straight line. During this motion, the collision avoidance system
reliably prevents collisions caused by the robot. Furthermore, the robot is already successfully
used for live demonstrations at public events to enhance the understanding of AI. The designed
software platform integrates ROS-based position control and collision avoidance and provides a
modular base for future projects on the utilized robotic platform.

Keywords: Artificial Intelligence, Robot Operating System ROS, Gesture Recognition, Sensor
Fusion, State Estimation, LiDAR
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Zusammenfassung

Mit den technologischen Fortschritten im Bereich der künstlichen Intelligenz (KI) und der da-
raus resultierenden Verbreitung des Themas ausserhalb der Wissenschaft, ist an Institutionen,
die im Bereich der KI forschen, der Bedarf gestiegen, ihre Arbeit einem breiten Publikum zu
präsentieren. Folglich haben Studierende des Zentrums für Künstliche Intelligenz (CAI) der
Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) einen KI-Demonstrator entwick-
elt, der unter Verwendung eines vierbeinigen Unitree A1-Laufroboters Handgesten erkennt und
entsprechende Aktionen ausführt. Die vorliegende Bachelorarbeit integriert diese bestehende
Gestenerkennung in ein modulares Steuerungssystem auf der Basis des Robot Operating Sys-
tem (ROS) und visualisiert die wichtigsten Algorithmen mit einer grafischen Benutzeroberfläche
(GUI) und dem ROS-Tool RViz. Der Roboter ist mit einer externen ZED2-Stereokamera und
einem Ouster OS1 Light Detection and Ranging (LiDAR)-Sensor ausgestattet, der die Umge-
bungswahrnehmung des Roboters verbessert, um eine Lokalisierung zu ermöglichen und Kol-
lisionen zu vermeiden. Darüber hinaus kombiniert ein Kalman-Filter Stereokameradaten und
inertiale Messungen, um relative und absolute Zustandsschätzungen zu generieren. Eine LiDAR-
basierte Karte, die durch einen Simultaneous Localization and Mapping (SLAM)-Algorithmus
erstellt wird, korrigiert diese auf der Sensorfusion basierende Zustandsschätzung. Die Software-
module, die diese Funktionalität bereitstellen, wurden in C++ und Python unter Verwendung der
entsprechenden ROS-Bibliotheken implementiert. Der entwickelte Positionsregler ermöglicht es
dem Roboter, sich auf einer Bahn mit einer maximalen Abweichung von 0.2 m zu aufzuhalten,
wenn eine Bewegung entlang einer 2 m langen Geraden ausgeführt wird. Während dieser Be-
wegung verhindert das Kollisionsvermeidungssystem zuverlässig durch den Roboter verursachte
Kollisionen. Darüber hinaus wird der Roboter bereits erfolgreich für Live-Demonstrationen bei
öffentlichen Veranstaltungen eingesetzt, um das Verständnis für KI zu fördern. Die entwickelte
Softwareplattform integriert eine ROS-basierte Positionsregelung sowie eine Kollisionsvermei-
dung und bietet eine modulare Basis für zukünftige Projekte auf der verwendeten Roboterplat-
tform.
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List of Symbols

Term Definition Unit

db, df , dl, dr Size of collision zone on each side of the robot mm

ex, ey Error in x- and y-axis m

kx, ky Controller gain for the linear x- and y-axis velocity 1
s

kα Controller gain for the angular velocity 1
s

qx, qy, qz, qw Orientation in quaternion notation -

resh Measurements per horizontal slice -

x Position in x-axis m

ẋ Velocity in x-axis m
s

y Position in y-axis m

ẏ Velocity in y-axis m
s

z Position in z-axis m

ż Velocity in z-axis m
s

α Z-angle of the trajectory rad

αrobot Z-angle of the robot rad

αgoal Z-angle goal of the robot rad

α̇ Z-angle velocity rad
s

δ Z-angle between robot and goal angle rad

γ Z-angle between robot and trajectory rad

φ1, φ2, φ3, φ4 Azimuths of corners of the collision zone rad
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List of Abbreviations

Term Definition

AI (KI ) Artificial intelligence (German)

API Application programming interface

CAI Centre for Artificial Intelligence

(C)CW (Counter) Clockwise

EKF Extended Kalman filter

ETH Swiss Federal Institute of Technology

FSM Finite State Machine

GPU Graphics processing unit

GT Georgia Institute of Technology

GUI Graphical user interface

IMU Inertial measurement unit

JSON JavaScript Object Notation

LCM (server) Lightweight Communications and Marshalling (server)

LiDAR Light detection and ranging

MIT Massachusetts Institute of Technology

ML Machine learning

MPC Model predictive control

OS1 Ouster OS1 32 Gen 2 LiDAR device

PC Personal Computer

qre Quadruped (software project name)

rbd Robodog (software project name)

RGB Red, green and blue

ROS Robot Operating System

RRT Rapidly exploring random tree

RSL Robotic Systems Lab

RTOS Real-time operating system

SATW Swiss Academy of Engineering Sciences

SDK Software development kit

SLAM Simultaneous localization and mapping

SSH Secure Shell

UC University of California

UDP User Datagram Protocol

USC University of Southern California

WLAN Wireless Local Area Network

ZHAW Zurich University of Applied Sciences
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Used ROS Messages and Services

For clarity, these ROS messages are mentioned in the following thesis only by their name. For
some of them, fields with no relevance to their understanding have been removed.

Type Name Description Definition Package

Message IMU Inertial
measurement
unit

Orientation (Quaternion),
angular velocity (x, y, z),
linear acceleration (x, y, z)

sensor msgs

PointCloud2 LiDAR
measurements

Array of point
measurements

sensor msgs

Pose Positional state Point (x, y, z),
quaternion (x, y, z, w)

geometry msgs

String String String std msgs

Twist Linear and
angular velocity

Linear velocity (x, y, z),
angular velocity (x, y, z)

geometry msgs

Service GeneratePath Service for path
generation

Request:
Command(string)
Response:
Poses ([pose]),
nr. of poses

rbd msgs

GetLastGesture Service for
receiving the
newest gesture

Request:
None
Response:
Command(string)

rbd msgs

SetPosition Service for setting
the goal pose

Request:
Pose
Response:
None

rbd msgs

SetBodyPose Service for setting
a body pose

Request:
Roll, pitch, yaw,
body height
Response:
None

qre msgs

SetBool Service for setting
a bool

Request:
Bool
Response:
Bool

std srvs
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1 INTRODUCTION

1 Introduction

1.1 Motivation

While concepts of legged robots have been developed as early as the late 1960s, it has taken
decades for technology to reach a level where mobile robots capable of executing adaptive au-
tonomous motion could be created. One of the first examples of a robot capable of reacting
to its environment is the six-legged robot Genghis, developed in the early 1990s by Rodney
Brooks at the Massachusetts Institute of Technology (MIT) [1]. These first-generation legged
robots were mostly controlled by heuristic or model-based controllers where the control policy
is programmed by human intelligence.

With advancements in technology and the development of artificial intelligence (AI), research
in modern quadrupedal robots mostly utilizes some form of machine learning in their control
system [2]–[4]. One of the most advanced commercially available examples is the four-legged in-
spection robot ANYmal, an industrial-grade system developed by the Swiss company ANYbotics
based on years of research at the Robotics Systems Lab (RSL) at the Swiss Federal Institute
of Technology (ETH) Zurich [5]. Contrary to classical robotics, the research conducted at ETH
Zurich focuses on deep reinforcement learning in combination with model-based control policies
[6]. These robots are able to learn adaptive gait patterns to improve motion on uneven terrain,
enhancing adaptability to complex and dynamic environments like inspection sites or disaster
zones [4].

However, the robots available in today’s market mainly utilize artificial intelligence to improve
robustness and productivity. The underlying algorithms are mostly hidden from consumers since
they are part of the proprietary software and not of interest to the user. Nevertheless, it can be
insightful to reveal the inner workings to improve the understanding of AI by the broad public.

The Centre for Artificial Intelligence (CAI) of the Zurich University of Applied Sciences (ZHAW)
is using a Unitree A1 quadrupedal robot as a communication tool to narrow the gap between
humans and machines by developing a robotic system that demonstrates the capabilities of AI.
In a prior project thesis, the robot was used to communicate vision-based methods of AI by
capturing hand gestures with an integrated camera and classifying them accordingly [7]. Ges-
tures are classified based on detected hand key points, which are visualized on an external screen
to increase the comprehensibility of the information generated by the machine learning (ML)
algorithm. These key points are then added to a sequence and processed by another ML model.
The detected gesture is also visualized on the external screen. Additionally, the robot performs
a corresponding action for each identified gesture.

Since this proof of concept executes a sequential C++ script once a gesture is recognized, the
motion cannot be altered depending on environmental influences, thus restraining it in terms
of safety and responsiveness. Formulated differently, the robot executes a predefined motion
without being able to interrupt it, eventually resulting in collisions with obstacles or people.

This thesis aims to build a responsive and expandable robotic software platform serving as a
base for future projects conducted at the CAI to demonstrate the concept of AI. While maintain-
ing the current gesture recognition functionality, the robot is extended with safety features and
additional sensor hardware. One key step to achieving safe and reactive operations is the paral-
lelization of individual software components. Soft real-time operating systems (RTOS) utilizing
Robot Operating System (ROS) allow for the parallel execution of multiple tasks, including
emergency stops and collision avoidance protocols. These improvements lower the safety dis-
tance required at social events, diversifying possible use cases. Additionally, the responsiveness
of the robot enhances the impression of the demonstration.

1



1 INTRODUCTION

1.2 Problem Statement and Contribution

The goal of this thesis is to develop a universally usable AI demonstrator to introduce the capa-
bilities and functionality of AI to a broader audience. To showcase this demonstrator at public
events like trade fairs, safety is the highest priority. With the existing demonstrator software,
the responsiveness is limited due to a sequential C++ script, which does not consider environ-
mental factors like objects or people. Consequently, the underlying software structure has to be
reevaluated and fundamentally changed.

These changes should future-proof the software stack using a modular, ROS-based control sys-
tem, allowing the replacement or expansion of individual software elements. However, the al-
ready implemented functionality of gesture recognition and visualization has to remain. Lo-
comotion in space is realized by the development of a localization system as well as a position
controller. With additional sensor hardware in the form of a light detection and ranging (LiDAR)
sensor and a stereo camera, environmental perception can be enhanced, preventing collisions in
advance. The existing visualization of the gesture recognition algorithm is integrated and sup-
plemented by a graphical representation of the collision avoidance system. Furthermore, the
extended graphical user interface (GUI) features an emergency stop button and a preview of
future movements.

Based on the mentioned goals and requirements, the following research question including three
sub-questions is answered in this report:

How can the existing Unitree A1 quadrupedal robotic AI demonstrator be improved to imple-
ment a safer and more responsive behavior during interaction with humans?

i. Based on the already implemented gesture recognition and sequential command execution,
can ROS be used to create a responsive modular control system?

ii. Can a LiDAR sensor be integrated to create a collision detection system?

iii. Based on existing visualization tools, can the inner workings be further visualized to
enhance the comprehensibility of the system?

1.3 Outline

The remainder of this thesis is structured as follows: In Chapter 2, some background of relevant
technical topics needed for this work is illuminated, encompassing both, software and hardware
components. Chapter 3 outlines the implementation of the control system, the collision avoid-
ance, and the visualizations, followed by the achieved performance results and their discussion
in Chapter 4. Chapter 5 interprets the work and gives an outlook for possible future work based
on this project.
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2 FOUNDATIONS

2 Foundations

2.1 Related Work

2.1.1 Preceding Project Thesis

Langdun et. al. developed an interaction-based AI demonstrator at the ZHAW CAI intending
to demystify AI, familiarize people with the topic, and entertainingly convey knowledge about
it. To achieve this, they used a Unitree A1 legged robot to recognize four specific hand gestures
via the integrated camera and execute a corresponding action for each identified gesture. Addi-
tionally, they developed a GUI to efficiently operate the system and to visualize the classification
algorithm and finally presented the prototype to a broad audience at a fair.

The system was designed to run the main algorithms on a host PC and use the robot’s integrated
computers to run hardware drivers, with these two subsystems communicating via a Secure Shell
Protocol (SSH) connection and a WLAN hotspot provided by the robot. The authors employed
a computer vision-based gesture recognition technology to avoid the use of additional special
equipment, such as Marker Gloves. They analyzed three pre-trained, state-of-the-art models for
pose estimation, of which they determined the hand-tracking system MediaPipe Hands to be
the most appropriate one for the given problem.

To identify gestures in video sequences, the authors evaluated various machine learning clas-
sifier algorithms. They utilized 600 samples for each of the 4 hand gestures to be recognized
and 1368 random motion patterns, resulting in a total number of 3768 samples for training the
models. Finally, a logistic regression classifier has proved itself to be the most appropriate one
as it provided the best ratio of accuracy and classification time. The resulting model allowed
examining a queue of hand key point coordinates detected in a sequence of video frames for the
occurrence of a certain hand gesture to obtain a corresponding output.

Langdun et. al. illustrated the gesture classification process in a video stream showing the
recording of the camera integrated at the anterior side of the robot. To visualize the AI ap-
proach, all hand key points detected by the MediaPipe model were displayed, which allowed the
audience to obtain a better understanding of how the algorithm analyzes their hand gestures.
Additionally, in the case of a detected gesture, the classification output as well as the corre-
sponding confidence value were visible in the video stream.

The aforementioned functionality could also be achieved using only a notebook and a camera.
However, to achieve a more captivating demonstrator for AI, Langdun et. al. programmed the
Unitree A1 robot to execute a corresponding action for each recognized gesture. The authors
employed sequential scripts that use the Unitree Legged Software Development Kit (SDK) to
apply the required velocities in each axis to the robot.

Furthermore, they have chosen a Python multiprocessing approach to implement the interaction
of the three encapsulated software components, namely the GUI, the gesture recognition, and
the command executor. Consequently, these processes ran in parallel and were prevented from
blocking each other. This approach furthermore enhanced the system’s modularity, as lean ex-
ternal interfaces were required to communicate with other processes via the WebSocket protocol.

As the execution of the sequential movement scripts could not be interrupted or influenced by
an external source or by software, a safety distance of 2 m to the robot was crucial. The authors
furthermore delivered a series of additional suggestions to improve the demonstrator, such as
enhancing the MediaPipe pose estimation or implementing a 360° gesture recognition via a Li-
DAR sensor. For all suggestions, the recommended ROS as a development platform to enhance
the software’s scalability and implement more complex robot behavior [7].

3



2 FOUNDATIONS

2.1.2 Research Conducted on Unitree A1

Due to its availability at an affordable price, the Unitree A1 quadrupedal robot, as used in this
thesis, serves as a base for a broad variety of research projects. A number of them focus on gait
and motion control based on reinforcement learning. For example, Bellegarda et. al. from the
University of Southern California (USC) have used deep reinforcement learning to improve the
robustness of the robot’s motion, resulting in the ability to carry up to 6 kg of additional load
while moving at 2 m

s [8]. At lower speeds, they were even able to bear up to 11 kg of additional
load (92% of the robot’s weight) [9].

Peng et. al. from Google Research and the University of California (UC), have used a learning-
based approach to mimic motion captured from real animals. Through model predictive control
(MPC), where a model of the robot is used to predict future states of the robot, they were able
to generate motion patterns that allow the Unitree A1 robot to execute this recorded motion,
resulting in a more natural motion [10].

Others have focused their research on localization while using the available motion controller of
the Unitree A1. Chen and Dellaert of the Georgia Institute of Technology (GT) have developed
a ROS-based simultaneous localization and mapping (SLAM) package, allowing localization
without an a priori map of the environment [11]. Contrary to the widely used ROS package
SLAM Toolbox developed by Macenski et. al. [12], [13], the A1 SLAM package is optimized for
the aggressive motion experienced by the Unitree A1 [11].

The control systems of the quadrupedal robot ANYmal, developed by Hutter et. al, are based
on ROS [14]. In ANYmal, the control system is split up into three subsystems responsible for
Locomotion, Navigation, and Inspection, each running ROS on an individual PC. This separation
allows for real-time operations on one PC while less critical tasks like navigation and inspection
are outsourced to the other two PCs. This ensures that errors in the mentioned two subsystems
cannot interfere with critical locomotion operations.

A similar separation of hardware can be found on the Unitree A1, where tasks are split up
on two Ubuntu-based computers (a Raspberry Pi and an NVIDIA Jetson board) as well as a
controller board. Hard real-time tasks are executed on the controller board, only connected to
the Ubuntu-based computers through an Ethernet connection. The Raspberry Pi is responsible
for the soft real-time operation of the Unitree SDK while the NVIDIA Jetson board can be used
for user programs like ROS and sensor interfaces [15].

2.2 Unitree Legged SDK

Out of the box, the Unitree A1 quadrupedal robot is equipped with an SDK which offers both
low-level and high-level control. The SDK incorporates C++ libraries to enable direct real-time
control of the robot [16].

The high-level interface offers the ability to switch between three modes: standing, walking, and
sport mode. For both the walking and sport mode, a set of linear and angular velocity speci-
fications can be programmed, which are then executed by the robot. In addition to the linear
and angular velocities, the orientation of the robot body can be chosen by its roll, pitch, and
yaw angles. This allows for control of the robot with minimal interference to the gait patterns
and locomotion policies.

Should a more fundamental approach be chosen, the low-level control can be used to control the
velocity, position, and torque of each of the 12 joints individually. Therefore the gait movement
can be optimized for special use cases. Additionally, the SDK offers measurements of the four

4



2 FOUNDATIONS

pressure sensors, one in each foot, which can help to determine their contact with the ground.

This SDK is also utilized by the Unitree joystick controller, which allows for the manual move-
ment of the robot. It has to be mentioned that the controller itself simply transmits the input
velocity to the SDK, which then controls the robot. Since the SDK provides no implementa-
tion of collision detection or stability control, the robot often performs movements exceeding its
dynamic abilities, possibly leading to crashes and damage to the robot itself. Even though the
robot is equipped with both an RGB and a depth camera, it cannot detect obstacles, raising
the risk of collision with both static and dynamic obstacles [15].

Moreover, the C++ interface of the SDK is achieved over structs - a custom-named group of
several related variables - instead of function calls. The forward velocity for example can be set
by setting the forwardSpeed variable to a value between -1 and 1.

In the previous project thesis, the Unitree SDK has been used to program pre-defined move-
ment sequences which are executed depending on the given command [7]. This approach has
the drawback of not being able to react to changing circumstances. For example, if an obstacle
is placed in front of the robot, it is not detected and therefore leads to a collision. Additionally,
functions like gesture recognition and emergency stops are blocked by the running script. To
overcome this, a responsive real-time system consisting of path planning, position control, and
collision avoidance has to be implemented.

2.3 ROS

There are several ways to implement the aforementioned functions needed for a responsive real-
time system. ROS, a set of open-source software frameworks and libraries, has established itself
as the industry standard for scientific robotics prototyping [17]. It can even be found in the
ANYmal robot - a commercial-grade autonomous inspection robot for rugged terrains [5].

2.3.1 Basic Principle of Communication

ROS is a message-based communication network where individual nodes can subscribe to and
publish messages on a topic to communicate with each other. Each node - often also called a
package - is a self-contained C++ or Python program which offers functionality in one specific
area. Through messages and services, they can access information shared with other nodes. For
a broad variety of use cases, ranging from path-planning algorithms to motor control, the ROS
libraries offer already existing functionality. Additionally, robots can be simulated and visualized
with tools like RViz and Gazebo which can speed up the development process significantly. For
real-world applications, communication between robot and host over a network is made possible
by setting up a remote single master network. This network then allows communication as if all
components were local to the host [17].

At the core of each ROS network lies the ROS master which coordinates the location of nodes,
subscribing, publishing, and the transmission and timing of messages and services. One fun-
damental principle of ROS is, that every network, even when multiple robots are connected,
features only one master. This allows for a clear hierarchy and permits peer-to-peer communi-
cation between all nodes [18].

2.3.2 Example of Nodes, Messages, and Services

Although ROS already offers a vast collection of message types, it can be necessary to define
custom messages which can be achieved through a .msg file. An example of such a file for a
custom position message can be seen in Figure 1. A simple ROS network consisting of two nodes
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can be seen in Figure 1. These two nodes communicate with each other with two messages pub-
lished to the position and velocity topic. The position message, published to the position
topic offers information about the actual position of the robot with respect to a map coordinate
system and the velocity message states the desired velocity of the robot. The controller node
subscribes to the position message, calculates the error in position, and publishes the resulting
control velocity to the velocity message. The robot node, which subscribes to this topic, then
controls the robot’s movement based on the received desired velocity. The resulting position is
then published in the position message. Thus a highly simplified feedback control loop with
minimal dependency is made possible.

Figure 1: Graphical representation of a two-node feedback controller with matching message
definition. The controller node publishes a desired velocity to the velocity topic, which is
then executed by the robot. The resulting change in position is fed back via the position

topic.

In addition to periodically published messages, ROS offers discontinuous communication through
services. These services consist of an array of messages, split up into a request and a subsequent
response. Although many predefined service structures exist, custom service routines can be
defined in a .srv file. The structure of a .srv file and the act of performing a service call is best
explained in the following example. The emergency stop service which can be seen in Figure 2
consists of a request of boolean type, i.e. true or false. This request can be generated by a service
client, either in a separate node or over the command line to perform an emergency stop. The
controller node, which also acts as the service server, then processes this request, performs
the emergency stop, and replies with a message depending on the outcome of the emergency
stop. This response can then again be evaluated by the service client.

Figure 2: Graphical representation of a service call and matching service definition. The
emergency stop service can be requested both from a node and from the command line. After

finishing the emergency protocol, the service provides a response about the outcome.
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2.3.3 ROS Versions and Rosbridge

With the development of ROS, various versions of the system were published. A specific version
of ROS can cause compatibility restrictions when using it together with other software. The
version needed for compatibility with the Unitree SDK, ROS Melodic supports only Python 2.7
and lower. To nevertheless employ Python 3 programs along with older ROS versions, rosbridge
can be used. Rosbridge is a ROS community project, aiming to provide communication with
ROS for non-ROS applications through various front ends and using a JavaScript Object No-
tation (JSON)-based application programming interface (API). The rosbridge protocol enables
the use of various fundamental ROS functionalities such as topics and services [19]. To commu-
nicate with ROS, for example, from a non-ROS Python program, the roslibpy package can be
used. It allows to establish a connection to the rosbridge server via the WebSocket protocol and
provides the use of the aforementioned fundamental ROS functionalities [20].

2.3.4 Existing Software for the Unitree A1

For the Unitree A1 used in this thesis, some basic ROS packages exist. The manufacturer pro-
vides packages consisting of the robot model, control modes, and motor drivers. These can then
be used to spawn the robot in simulation tools like Gazebo and RViz or to control it in real
life through communication with the SDK [21], [22]. On their own, these packages provide no
way of controlling the robot’s velocity through a ROS message. Neither does the simulation
reflect the real configuration of the robot’s position. This is where the qre packages written by
MYBOTSHOP (distributor of robotics and automation technology products) come into place.
They offer a bridge between ROS and the Unitree SDK by translating ROS messages into SDK
commands [23]. Both the linear and angular velocity can be set via a ROS message and the
pose of the robot can be altered through a ROS service. With these two simple commands, a
control system for the robot can be designed to fit the requirements of this thesis.

Since ROS itself is not real-time capable, the Unitree SDK utilizes a Lightweight Communica-
tions and Marshalling (LCM) server which allows for high bandwidth and low latency commu-
nication via the User Datagram Protocol (UDP) [24]. As seen in Figure 3, a separate node is
responsible for receiving ROS messages and converting them into LCM commands to be sent in
real-time to the Unitree SDK and vice-versa. As a result, a maximum real-time communication
bandwidth of 1 kHz can be achieved.

Figure 3: The LCM server enables real-time communication between the ROS node and the
Unitree SDK by converting ROS messages into UDP commands in real-time.

2.4 LiDAR

The abbreviation LiDAR stands for “light detection and ranging” and describes a widely used
type of laser measurement device. LiDARs are active sensors sending and receiving electro-
magnetic waves with wavelengths of typically around 1.5 µm, which differentiates them from
radar sensors using longer wavelengths. Measurements typically contain angular and distance
information, with the latter being obtained for instance by measuring the time of flight of the
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laser beam employed by the sensor. Depending on the type of sensor, additional information
such as the target’s reflectivity or even the velocity of an observed object can be derived by
using physical laws such as the Doppler shift [25].

LiDAR sensors are utilized in a wide range of applications. One of the most important ones is
generating 3D imagery of the environments of autonomously-driving vehicles and mobile robots.
Among various other areas, LiDAR is also widely used in engineering and survey mapping, veg-
etation measurement, mapping in civil and military aerospace applications as well as monitoring
in meteorology [25], [26].
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3 Methods

To fulfill the goal of a responsive and safe operating software package, the open-source platform
ROS has been chosen, which enables running multiple programs (nodes) in parallel while en-
abling communication between them. The developed ROS packages can be split up into four
parts, encompassing position control, localization, a collision avoidance system, and an auxiliary
node for gesture recognition, each consisting of one or more ROS nodes. As non-ROS compo-
nents communicate with ROS via rosbridge, the existing gesture recognition algorithm and the
GUI developed in this thesis run on Python 3.10.

Figure 4 shows how these nodes are connected and interact with each other. Nodes with the
prefix rbd were developed during this thesis, while the nodes marked with a green dot are
open-source nodes available as ROS packages. The ekf localization and slam toolbox nodes
are used in combination with the rbd localization node to determine the global position of
the robot. Finally, the qre ros driver is used to control the robot itself by velocity and pose
commands.

Figure 4: Graphical representation of the ROS system, which shows the used nodes and their
connection by topics and services.

The resulting control flow can be described as follows: First, a gesture is recognized by the cam-
era, which then triggers a command to be executed by the control system. This control system
generates a path to follow and subsequently commands the robot to move to the intermediate
waypoints. During this, a LiDAR-based collision avoidance algorithm prevents collisions with
both static and dynamic objects.

At the center of the system lies the main controller rbd controller which coordinates the con-
trol flow. After launching the system, this controller is in emergency stop mode by default. As
soon as the emergency stop is disabled, a gesture is requested from the gesture recognition node
rbd gestrec, which then waits until a gesture is performed in front of the camera. Based on
the received gesture, a command addressing the rbd navigation node is generated to receive
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a movement path from this node. The navigation node is equipped with predefined movement
patterns for each known command, which are returned upon request as an array of poses.

These poses are then transferred individually to the position controller rbd pos controller

which is responsible for the execution of movement. The position control algorithm first rotates
the robot in the direction of the linear trajectory to ensure minimal side forces while moving.
After orienting, a feedback loop generates velocities in local x- and y-directions, resulting in a
movement toward the desired endpoint. Upon reaching this point, the robot is finally oriented
to the desired orientation in global coordinates. This sequence is then repeated for all remaining
poses of the pose array, during which collisions are monitored by the collision avoidance node
rbd lidar, resulting in an executed choreography of movements.

3.1 Integration of Existing Gesture Recognition

As mentioned earlier, this thesis uses the existing gesture recognition software developed in the
preceding project thesis. In this algorithm, the gesture recognition runs in a parallel process
provided by Python’s multiprocessing library to increase performance. Initially, an image is
obtained from the robot’s integrated camera and subsequently analyzed for the occurrence of
characteristic hand key points using the MediaPipe library. The detected key point coordinates
from a sequence of video frames are first preprocessed and then added to a unidimensional
queue. This queue is then forwarded into a logistic regression model and classified in terms of
the contained gesture [7].

Figure 5: Rosbridge offers an API identical to ROS messages.

The ROS packages required for controlling the Unitree A1 solely operate on ROS Melodic, which
only runs on Python versions up to 2.7. Hence, custom ROS packages required in this thesis
were restricted to Python 2.7. Since the existing gesture recognition software uses recent Python
3 libraries and frameworks such as MediaPipe, the application could not be run directly using
ROS Melodic. To employ the existing gesture recognition application nevertheless, rosbridge,
and the corresponding Python package roslibpy were used as an interface from Python 3 to ROS
Melodic. The rosbridge configuration utilized in this thesis mainly consists of three components:
the Python 3 gesture recognition application using the roslibpy library, the rosbridge itself, and
the rbd gestrec ROS node that receives information about gestures recognized by the Python
3 program. A typical communication process from Python 3 to ROS as employed in this thesis
is conceptually visualized in Figure 5 and can be summarized as follows [19], [20]:

i. In the Python 3 application, a client for the rosbridge server is created. Publishing a ROS
message can be achieved by calling the corresponding method of roslibpy and specifying
the client as an argument.

ii. The message is sent to the rosbridge server via the WebSocket protocol using a JSON API.

iii. After the rosbridge server has received the message, the rosbridge library package,
which is part of rosbridge, converts it from the universal JSON format to the ROS format.

iv. The message is forwarded to the rbd gestrec ROS node by the rosbridge server.
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3.2 Control System Design

The main goal of the control system is to execute a series of movements based on the gesture
received from a user while staying responsive to emergencies. To reach this goal, the main con-
troller node rbd controller coordinates the communication between the task-specific nodes
by requesting information and distributing it to the corresponding nodes. To ensure a clearly
defined control flow, the controller is designed as a finite state machine (FSM), which can only
be in one state at a time [27]. As seen in Figure 6, all states, except for the emergency stop,
can be preempted by both the emergency stop and the collision prevention.

For safety purposes, the Emergency Stop state has been chosen as the first active state after
starting the program. Only if this emergency stop is disabled manually via the command line
by the user, the state is changed to Waiting for Gesture. This safety feature ensures no unex-
pected movements after starting up the robot at a live demonstration. If the emergency stop is
enabled during any of the other states, the state changes to the Emergency Stop state, therefore
requiring user input to continue the control flow.

Figure 6: The state machine diagram shows all possible states and their transition conditions.
Based on the command from the gesture recognition node, an array of poses is generated,

whose elements are then passed individually to the position controller to create a sequence of
movements.

The same applies to the Collision Detected state with only one difference: The state change
is initiated by the rbd lidar node based on the measured distances to the robot’s environment.
If a certain number of measurements surpass the distance threshold, the rbd lidar node auto-
matically stops the movement to prevent collisions. Contrary to the emergency stop, the state
machine can return from the Collision Detected state without user input if the environment
is safe, i.e., no measurements surpass the distance threshold.
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Control Flow
After the emergency stop has been released and if the environment is free of obstacles, the state
machine transitions to the Waiting for Gesture state. On entry, the robot is oriented around
the y-axis to the attentive sitting pose. On one hand, this signals the user that the robot is
ready to receive a gesture. On the other hand, the camera’s field of view is also oriented toward
the user.

As soon as a gesture is recognized with enough confidence, the robot is moved back to its initial
orientation and a corresponding path is requested from the rbd gestrec node. The gesture
recognition node then responds with an array of poses representing a sequence corresponding to
the requested command. These pose elements can be described as a position with a correspond-
ing orientation.

After receiving a path, each element of the pose array is dequeued and a request for the pose
element is sent to the position controller. As soon as the robot reaches this pose, a signal is sent
back to the main controller and the next element is dequeued, resulting in a continuous motion
to the desired goal points. If either the emergency stop is pressed or a collision is detected
during this motion and subsequently released, the state machine returns to the previous state
to continue the desired motion.

Finally, after all elements have been dequeued and the pose array is empty, the state changes
back to Waiting for Gesture and a new gesture can be performed.

3.2.1 Localization and Path Generation

There are many ways to determine the position of an object, each with its advantages and
drawbacks. For this robotic platform specifically, there is a redundancy of sensors that can be
used. The stereo camera, the LiDAR sensor, and the robot itself feature an inertial measurement
unit (IMU) including an accelerometer, which can measure linear accelerations, and a gyroscope
measuring rotational velocities. These sensors can be used to determine a relative position.
Additionally, the stereo camera and the LiDAR sensor can be used to determine absolute posi-
tions through the identification of features in the environment. The mentioned sensors can be
categorized as follows:

Name Bandwidth Localization Type Error over time

IMU sensor 500 Hz relative large

stereo camera 15 Hz absolute small

LiDAR sensor 0.2 Hz absolute none

Table 1: Categorization of the available sensors through which the position of the robot can be
determined.

IMU sensors are typically high in noise and feature minimal offsets in the measurements, which
lead to a drift in position when integrated over time. With this approach, only a relative position
can be determined, which can lead to noticeable displacements over time.

In contrast, a stereo camera or a LiDAR sensor can be utilized to determine a position based on
environmental features, thus providing an absolute position. Opposite to the relative positions,
absolute positions are free of positional drift while sudden changes in positions can occur when
new landmarks are detected.
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Sensor Fusion
To combine the strengths of the mentioned sensors it can be useful to combine the advantages
of both approaches by using a sensor fusion algorithm which is shown symbolically in Figure 7.
The sensor fusion algorithm used in this thesis is the extended version of a Kalman filter. This
non-linear model-based filter can be fed with an arbitrary number of sensor signals in the form
of 15 states (x, y, z, roll, pitch, yaw, ẋ, ẏ, ż, ˙roll, ˙pitch, ˙yaw, ẍ, ÿ, z̈), which are then combined by
the Kalman algorithm to predict and correct the position measurement. The algorithm used in
this thesis is available as a ROS package under the name robot localization [28]. This ROS
node can be configured to subscribe to an arbitrary number of ROS messages consisting either
of IMU, odometry, twist, or pose data which are combined into an accurate state estimation.

Figure 7: Graphical representation of the working principle of an extended Kalman filter
(EKF). Through sensor fusion, a noisy but consistent IMU signal can be combined with a
low-noise but inconsistent camera position signal to form a consistent low-noise position

measurement.

Furthermore, the accompanying paper by Moore and Stouch [29] shows that combining two
different sensor types results in better estimations than the combination of two identical sensor
types. Therefore, there is no advantage in using more than one of the three IMUs available.
Subsequently, the IMU of the LiDAR sensor has been chosen due to its low noise level and
close positioning to the center of rotation. The IMU measurements are combined with the
pose estimated by the stereo camera’s internal 3D localization, resulting in drift-free state
estimation. In ROS, this estimated position is described as the relationship between the robot
base link and the odom coordinate system.

SLAM
Since the absolute position provided by the stereo camera is not completely accurate and
only uses the camera’s field of view, the LiDAR data are also used as a reference to correct
the pose periodically. LiDAR-based state estimation can be achieved through SLAM, where
a two-dimensional map is created based on two-dimensional laser scans. This map is then
used as a reference for further measurements to determine the absolute position based on
recognized features. This algorithm, also known as loop closure, leads to accurate and reliable
measurements. Its only drawback is the high computational cost, leading to low bandwidth.

In ROS, this correction can be implemented elegantly by adding a map coordinate system.
The odom coordinate system is then transformed to correct the error, resulting in a correct
base link position with respect to the map coordinate system. The ROS package slam toolbox

[12] creates a map from the received LiDAR data and calculates the coordinate transformation
based on SLAM.
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Figure 8 shows a concept of correcting a state estimation featuring drift by periodically
performing loop closure (magenta arrows). In Subfigure 8a, the trajectory estimated from
relative measurements shows a large absolute error after execution of the motion path. By
adding SLAM, the state estimation drifts only between corrections, as seen in Subfigure 8b.

(a) Localization without SLAM. (b) Localization with SLAM.

Figure 8: The conceptual comparison of state estimation with and without SLAM shows how
relative measurements featuring drift can be corrected periodically with an absolute

measurement.

In conclusion, the combination of both fast relative and slow absolute measurements shown in
Subfigure 8b leads to a sufficiently accurate state estimation with high bandwidth and minimal
positional drift over time.
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3.2.2 Position Control

Similar to the main controller, the position controller is realized with an FSM, which is depicted
in Figure 9. A request to the set position service initiates the first state change. The FSM
features not only states but also a status variable, required to display information about the
algorithm in the GUI. In addition to the emergency and collision policy mentioned in Chapter
3.2, the two states Emergency Stop and Collision Detected change all velocities to zero
during the entry of the state. This ensures that the robot stops before colliding with a person
or an object. If either the emergency stop is released or the environment is clear of any
objects, the state is changed to Waiting for Pose and the status to idle, signaling to the
main controller, that a new pose can be requested. Since the position controller node runs in
parallel to the main controller node, this is necessary to ensure a linear control flow. As soon
as the main controller requests a pose from the set position service, provided by the position
controller, the waiting state is left and the status is changed to running.

Figure 9: The state machine diagram shows all possible states of the position controller and
their transition conditions. Based on the requested goal pose the robot is first rotated in the
direction of the trajectory. Subsequently, the linear velocities are controlled to move the robot

to the goal position, where it is oriented to the requested orientation.

The movement control is split up into four parts, each with its own controller policy described
in Equation 1. First, the robot is rotated in the direction of the remaining trajectory to ensure
minimal side forces during movement, which could lead to a vulnerability to instability. In
other words, the angle between the trajectory and the actual angle of the robot (γ) is minimized
each time a new pose measurement is available (in this case 10 Hz). This step is skipped if
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the remaining distance is shorter than 0.4 m, which has been determined empirically. After
the robot is oriented, the forward and side velocities of the robot are controlled relative to the
remaining distance and angle, resulting in smooth movements towards the desired endpoint
and minimizing the Euler distance ρ between the robot and its goal point. If the endpoint
is reached, the robot is rotated towards the desired endpoint angle by minimizing the angle
between the desired angle and the actual angle of the robot (δ). After this step, the robot
is at the desired position and yaw angle. Therefore only the roll and pitch angle needs to be
set. This can be done by requesting the set body pose service of the qre ros node. Finally,
the status is set back to idle, which signals to the main controller, that a new pose can be
requested, and the state is changed back to Waiting for Pose.

The following equations describe how the velocities of the robot have to be controlled based on
the difference in position and orientation:

Pre Rotation min(γ):

Linear Movement min(ρ):

Post Rotation min(δ):

Control Policy

α̇ = γkα

(optional pos. control)

ẋ = ρ kx cos(γ)

ẏ = ρ ky sin(γ)

α̇ = δkα

(optional pos. control)

Geometric Variables

ex = xgoal − x

ey = ygoal − y

ρ =
√

e2x + e2y

α = atan2(ey, ex)

γ = α− αrobot

δ = αgoal − αrobot

(1)

If the robot does not rotate perfectly around its central axis, the position can be controlled
additionally during rotation, leading to a smaller positional error after the rotation. Although
some imperfections are expected, their amount cannot be predicted and will have to be
measured experimentally.

Due to its nature, the high-level robot control by velocities shows integrating behavior on its
own. Hence, even a simple proportional controller will be sufficient in reaching a position with
no remaining static error [30].
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3.3 Collision Detection

As an overarching aim, the collision avoidance system implemented in this thesis must work
reliably and safely, even if ambient conditions like illumination vary. As it is intended to use
the A1 in crowded, unsteady, and indeterministic environments such as trade fairs, 360-degree
responsivity is required. LiDAR sensors fulfill these requirements and are state-of-the-art tech-
nology for various collision avoidance applications. Since a two-dimensional LiDAR would have
constrained the possibilities for more sophisticated analysis of the measurement data in future
projects, such as environment segmentation or object classification, a LiDAR generating three-
dimensional data is deployed.

3.3.1 LiDAR Sensor

In this thesis, an Ouster OS1 32 Gen 2 LiDAR device (OS1) is utilized, delivering three-
dimensional spatial data in a range from 0.3 m to approximately 50 m or 100 m, depending on
the target’s reflectivity. This LiDAR model has already been implemented in various projects
using Unitree A1 robots. A range accuracy of ± 30 mm for Lambertian targets (reflecting
irradiating light in all directions) respectively ± 100 mm for retroreflectors (e.g. mirrors) and
a precision in the low centimeter range can be achieved, depending on the specific conditions.
The amount of data obtained can be adjusted by configurable parameters such as angular
resolution or the sensor’s rotation rate. A 3D-printed fixture enables the installation of the OS1
on the back of the A1, which also powers the sensor with its 19 V output [31].

The OS1 delivers complexly structured data packages at a frequency of 10 Hz or 20 Hz
(configurable) that need to be reliably analyzed in a safety-critical collision avoidance system,
generating the demand for an appropriate method to process the data. Per default, the
measurement information is parsed into measurement blocks consisting of a header, a status
sequence, and the measurement data themselves. Instead of developing a novel algorithm
to explore the measurement blocks, the Ouster SDK can be used. However, as a feature for
robotics applications, Ouster provides the ROS package ouster-ros in addition to the SDK
to process the LiDAR point clouds. The package features three main functionalities with a
corresponding ROS launch file for each of them: In the sensor mode, data from a running
LiDAR sensor can be accessed. This information can be captured and stored in a ROS bag file
by using the recording mode and are subsequently accessible via the replay mode [32], [33].

The ouster-ros package provides various ROS messages that can be processed, either in
real-time by utilizing the sensor mode but also when replaying bag files. A range image is
available on a topic named ouster/range image, data from the IMU are published on the topic
ouster/imu whereas the point clouds are accessible via ouster/points under the message
type PointCloud2. For each 360-degree measurement, one PointCloud2 message is published
as a vector containing different metadata sections with information about the message format
and the measurement itself, as well as a data section containing, among others, spatial point
coordinates, an object reflectivity value, and range information [33].

In this thesis, the range data field is accessed and analyzed to detect objects encountering near
the A1. As an already integrated feature, the ouster-ros package contains a launch file for
RViz, which is automatically called when launching Sensor or Replay. RViz allows for a broad
range of modification actions on the visual aspects of the point cloud, which is utilized in this
application for the visualization of collision-prone objects near the A1.
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3.3.2 Collision Avoidance Algorithm

For the collision avoidance system, the package rbd lidar was implemented. The collision
avoidance node aims to detect and visualize objects within a critical zone (illustrated in Figure
10) of the A1, where the critical zone describes a cuboid-shaped volume in which no person or
object should be located while the robot is performing actions.

Figure 10: The critical zone around the Unitree A1 is rectangular from a top view and
vertically constrained by curved edges due to the polar measurement of the LiDAR sensor.
The cuboid’s center of mass is offset from the LiDAR’s center since per default, the robot’s

front critical zone (700 mm) is larger than the rear zone (550 mm).

The rbd lidar node receives a PointCloud2 message containing the LiDAR measurements
published by the Ouster ROS node. The algorithm generates both a new PointCloud2 message
containing only the points within the critical zone and a PointCloud2 message with the central
LiDAR scan slice to be converted into a LaserScan message for subsequent SLAM localization.
Additionally, the algorithm executes a service call if too many points are detected inside the
critical zone.

Conceptional Description of the Algorithm
The following paragraphs are a conceptional description of how the algorithm functions and
Figure 11 visualizes its main subtasks.

To facilitate manipulating the point cloud, the PointCloud2 data are converted into a
pcl::PointXYZI data type provided by the pcl C++ library. Using this data type, spatial
coordinates, and an intensity value can be specified for each measurement point. For the
subsequent steps, a two-dimensional array containing the range information for each point in the
point cloud is created. The array possesses the dimension 32× resh, where each of the 32 rows
describes one of the horizontal slices in the point cloud and with resh describing the horizontal
resolution configured for the OS1, which can be either 512, 1024, or 2048 measurement points
per slice. This two-dimensional array, representing polar coordinates, increases the utility of the
measurements for programming purposes since the raw PointCloud2 data are simply stored
inside a unidimensional vector, which does not allow row- and angle-based access to single
points inside the point cloud.

Based on the two-dimensional range array, the actual classification of the measurements is
executed. The critical zone can be chosen asymmetrically by specifying a perpendicular distance
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to each side of the robot. These values can be defined in the default.yaml file of the rbd lidar

package and are per default set to 350 mm for the left and right side of the robot. Since many
of the robot’s movements are forward with a higher velocity, the critical distance in front of the
robot is set to 700 mm whereas the zone rear to the robot is set to 550 mm as a standard. The
aforementioned four values have been determined empirically through experimental testing and
have proven to be suitable for enabling unimpeded interaction with the robot while effectively
avoiding collisions. Based on these values (db, df , dl, dr), the collision avoidance algorithm first
calculates four azimuths φ1...φ4 (depicted in Figure 12) for the angular sections around the
robot, each standing for one side of it.

Figure 11: The collision detection algorithm generates three main outputs, all of which are
derived from the PointCloud2 message obtained from the OS1 measurements.
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For each section, the aforementioned range array is investigated in terms of points within a
perpendicular distance lower than the critical value for the corresponding side of the A1. Points
within the critical zone are counted and marked via the point’s intensity attribute, which enables
the subsequent visualization in RViz. Since the OS1 has a minimum range of 0.3 m, a corre-
sponding spherical blind zone is defined. Measurements within this zone are ignored as they fall
below the specified minimum range and are therefore considered unreliable. Points beyond the
collision zone are discarded to finally obtain a point cloud that contains the critical points only.
As this point cloud is not yet available in a ROS-compatible format, it must be reconverted to
the PointCloud2 format and is subsequently published as a ROS message, which can then be
accessed for visualization purposes.

Figure 12: The four angular sections of the critical zone are defined by the four distance values
specified in the default.yaml file [34].

Since the OS1 is not only used for collision detection but also for SLAM, the horizontal LiDAR
scan slice at the height of the OS1 itself is required as input for the SLAM algorithm. To achieve
this, the mentioned slice is, in addition to the PointCloud2 containing collision points, stored in
an additional PointCloud2 data structure. The corresponding message is then converted by the
PointCloudToLaserScanNode node of the pointcloud to laserscan package and republished
as a LaserScan message, enabling the SLAM algorithm to construct a map from it [35].

Finally, the total number of points within the collision zone is checked, and the collision status
is refreshed if necessary. If the collision status has changed, the corresponding service of the
controller node is called, enabling collision stop reactions.
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3.4 Visualization

As an interface between software logic and the human audience, the visualization has the
important task of intuitively depicting the system’s process logic. Since the AI demonstrator
developed in this thesis is meant to not only be presented to trained professionals but to a
broader public, it must hide complex program logic and illustrate the main ideas behind the
employed algorithms. The visualization of the gesture recognition, which displays detected
hand key points and the gesture classification with a probability value, serves as the central
visualization element. It is adapted from the preceding project thesis [7] and incorporated into
this work. In addition to this visualization of the main AI component, further illustrations are
necessary to make the inner workings of the system graspable. The following sections outline
how a GUI and a point cloud visualization have been implemented to reach this goal.

3.4.1 GUI

Figure 13 illustrates the GUI, which features a software emergency stop button and feedback
on the current and future states, enhancing the transparency of the decision process inside the
robot. While the LiDAR point cloud and the camera image offer information on how the robot
perceives its environment, the GUI displays the decisions the robot’s control system derives from
the sensor data.

The GUI utilizes the Python framework CustomTkinter, allowing fast development of modular
graphical user interfaces with a modern appearance [36]. This change of frameworks is necessary
because the GUI developed in the preceding project thesis is programmed using the framework
PyQt5 [7], [37]. Unfortunately, compatibility issues with PyQt5, Linux Ubuntu, and the en-
vironment used for the gesture recognition software exist and could only be fixed by choosing
another framework.

(a) User interface with enabled emergency stop.

(b) Collision state.

(c) Idle state.

(d) Running state.

Figure 13: The graphical user interface displays both the status of the robot as well as the
next five planned movements. For safety purposes, a software emergency button is available to

stop the robot in emergencies.

Similar to the gesture recognition software, the GUI utilizes rosbridge to communicate with
ROS. If the emergency stop, located on the upper left, is pressed, the em stop service is called
via rosbridge, interrupting the robot’s motion. The resulting change of states updates the dis-
played state, informing the user of a successful emergency stop. As seen in Subfigures 13a to
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13d, the GUI displays all four possible states of the position controller. To enhance its visibility,
the background color of the state label changes corresponding to the current state. Red signals
an emergency stop, orange a collision, blue the idle state, and green that the position con-
troller is running.

Additionally, the next five movements are displayed, on the right half of the GUI seen in Figure
13, to communicate how the robot plans its motion. Path elements are dequeued from the bot-
tom once they are reached successfully, similar to how the main controller processes the pose
array. This visualization provides additional information on how the robot plans and navigates
through the environment. In some cases, the robot’s motion is not directly comprehensible at
first glance, and additional information is required.

3.4.2 Collision Detection

The collision avoidance algorithm is illustrated using the ROS tool RViz. This application
enables, among others, the efficient visualization of PointCloud2messages. To make the analysis
of the point cloud accessible to an audience, two main requirements are to be fulfilled:

i. The point cloud delivered by the OS1 must be illustrated in a way that allows a direct
understanding of the depicted spatial information and a quick orientation inside the envi-
ronment.

ii. Points inside the critical zone around the A1 must be visually accentuated unambiguously.

To fulfill these goals, the original data provided by the OS1 are represented by a rainbow
color-mapped point cloud, with colors changing depending on the distance of a point to the
sensor, to provide depth information. Furthermore, the collision avoidance algorithm of the
rbd lidar package delivers a point cloud containing only the points within the critical zone
around the robot. Figure 14a illustrates a typical point cloud as it is obtained from the OS1
with the aforementioned RViz settings in a crowded environment. The manipulated point cloud
containing the measurements within the critical zone is overlaid over the aforementioned data
and colored in red for differentiation and accentuation. Figure 14b displays how a person
surpassing the critical distance thresholds is highlighted by red color.

(a) Point cloud without collisions. (b) Point cloud with a detected collision.

Figure 14: The raw point cloud obtained from the OS1 in a crowded environment is visualized
in RViz using a color mapping. As a person surpasses the thresholds of the critical zone, the

corresponding points are visually accentuated by applying red coloring.
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3.4.3 SLAM

Additionally, RViz is utilized to visualize the map created by the slam toolbox to offer insight
into the SLAM algorithm. The center slice of the three-dimensional point cloud is converted to
a two-dimensional LaserScan message. The slam toolbox then creates a map based on this
message, representing the environment in two-dimensional space [12]. As seen in Figure 15,
the odom coordinate frame is transformed with respect to the map frame by its error each time
features of the new laser scan measurements fit the available map. The total distance between
the odom and map frame is representative of the total long-time error of the state estimation
without SLAM. By choosing the robot’s pose with respect to the map frame instead of the odom
frame, state estimation without drastic long-time error is possible. In conclusion, continuous
visualization of the map generation and frame transformation offers insight into an otherwise
complex algorithm.

(a) Orbit view. (b) Top view.

Figure 15: The three-dimensional point cloud is first converted to a two-dimensional
LaserScan topic. The slam toolbox then utilizes this laser scan to create a map of the

environment. New laser scan messages are continuously compared to the existing features to
determine the correct position of the robot.
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4 Results and Discussion

This Chapter describes the experimental testing of the implemented software features. First, the
experimental setup is explained to give information about how these experiments were carried
out and the type of results that can be expected. Subsequently, the results are described in
detail and discussed in terms of reliability and importance to this thesis.

4.1 Control System

4.1.1 Localization

To measure the performance of the localization algorithm, it is tested for positional accuracy
and long-term positional error (drift). The mentioned results refer to a motion combining linear
and angular motion. From the starting position (0,0) the robot walks forward to (1,0), rotates
180° to move to (-1,0), where it rotates 180° to finally return to the starting point. During this
motion, the positional accuracy and performance of the localization are supervised qualitatively.
The measured difference in position between the final and the starting position is used to derive
the long-term positional error.

This setup has been chosen because the linear movement allows for better supervision while the
angular rotation brings the localization to its limits. These experiments were conducted in a
static environment with multiple types of features of different sizes and complexities like walls,
windows, tables, and chairs.

Localization through Sensor Fusion
At first, localization relying solely on the data from the LiDAR’s IMU and the position provided
by the stereo camera was tested. In theory, the combination of relative IMU measurements and
the absolute pose calculated from environmental features should be sufficient for reliable state
estimations. Therefore, the Kalman filter has been configured to receive the LiDAR’s IMU data
as relative measurements to be corrected by the absolute pose from the stereo camera.

The bias of the IMU led to noticeable drifts in the pose prediction, which were then corrected
by the pose of the stereo camera. This problem can be resolved by either filtering the IMU
measurement prior to the state estimation or entirely removing the IMU from the Kalman filter
setup. Since the bias of the IMU is arbitrary, removing it can be challenging and successes are
not guaranteed. However, the ZED2 stereo camera already offers sensor fusion with the internal
precalibrated IMU of the camera resulting in almost drift-free state estimations.

Figure 16: After a linear motion with two 180° rotations and only using the sensor fusion via
EKF, the robots home position drifted to the left by 0.6 m.

24



4 RESULTS AND DISCUSSION

Even if the stereo camera is fused with its IMU, the resulting pose is far from perfect. For small
movements in high-contrast environments, the stereo camera is able to detect enough features to
match and extract a position from. Contrary, if the environment consists of low-contrast objects
like plain white walls or if the robot rotates rapidly or explores new territory, the camera simply
does not possess enough features to perform loop closure. Another disadvantage is the limited
field of view, resulting in the inability to detect features on the sides or back of the robot. In
practice, this has led to the positional error of up to 0.6 m for a simple linear motion with two
180° rotations which can be seen in Figure 16.

Localization with Added Mapping
In contrast to the stereo camera, the OS1 delivers spatial information 360° around the robot,
resulting in more reliable state estimation. To extract features from the three-dimensional point
cloud, the central horizontal slice is converted into a two-dimensional laser scan. Based on the
laser scan the SLAM package slam toolbox constructs a map of the environment. New laser
scans are then compared to this map and if reoccurring features are recognized the current po-
sition is calculated.

Figure 17: The SLAM algorithm creates and updates a two-dimensional map (gray/black)
based on laser scans (white). The correction of the state estimation (red arrow) is performed
by updating the transformation of the odom frame with respect to the map frame. A video of

the SLAM visualization can be found here.

An example of the mapping and the resulting state estimation can be seen in Figure 17. The
white pixels represent the measurements of the latest laser scan with respect to the map coor-
dinate frame. These pixels are then converted by the SLAM algorithm, resulting in the black
and gray map. Features are marked black on the map, while the space in between is filled with
gray pixels. If enough features of the laser scan match the environmental map, the pose of the
robot (red arrow) is corrected by transforming the odom frame with respect to the map frame.
Consequently, new pose estimations of the stereo camera, which are calculated with respect to
the odom frame, are corrected by the aforementioned transformation.

In most cases, the mapping resulted in a successfully corrected pose while producing a correct
map of the environment. The quality of the map and the corresponding state estimation is
highly dependent on the complexity of the environment. Clearly defined objects like walls or
large boxes result in larger and less complex features, resulting in better performance of the
state correction. Environments with more diverse objects, like the example in the last para-
graph, propose a larger challenge to the SLAM algorithm. Smaller reoccurring features are
more likely to be mismatched, leading to incorrect corrections, subsequently propagating into
the map. In consequence, the positional drift measured less than 0.2 m as long as the map was
corrected successfully. In cases where the robot’s velocity was too high or too many features
changed during the motion, the resulting error was larger than without SLAM.
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4.1.2 Position Control

In the following Subchapter, the mentioned velocities refer to the local coordinate system of the
robot while desired positions and orientations are described in the global coordinate system.
Specifically, velocities in the x-axis refer to forward or backward motion, and velocities in the
y-axis to sideways motion.

Since the absolute position of the robot in space cannot be measured without additional measure-
ment equipment, the position generated by the localization algorithm without SLAM, mentioned
in the last Subchapter is used. An environment with optimal features has been chosen to reduce
localization errors, which would propagate into the position control measurements.

Step Responses
To gain information about the latency of the velocity control system, a step response mea-
surement can be performed. From these measurements, valuable information about the system
characteristics can be determined which later influence the controller design. Since only the x-
and y-axis linear velocity and the z-axis angular velocity can be controlled, three-step measure-
ments have been performed. As seen in Figure 18, the latency of the control system is lower than
0.1 seconds. Since this latency already includes the latency of the LCM server in combination
with the Unitree SDK, it will be sufficient for this application. Apart from the latency, the
system response shows integrating behavior - in other words, for a constant input velocity the
output position or angle increases constantly. As a result, a controller which only controls the
input velocity proportional to the positional error is sufficient to reach the goal position without
any static error.

(a) Step response in the x-axis. (b) Step response of z-axis rotation.

Figure 18: The step response compares the input velocity with the robot’s output position and
angle. Both linear and angular step responses show integrating behavior with minor latency.

If applied to the real system, the saturated proportional controller mentioned in Equation 1
performs as seen in Figure 19. The controller was programmed to rotate the robot to 180° and
back. First, the error between the desired and actual orientation is larger than the saturation
threshold. Therefore the controller output is set to its maximum of 36

◦

s . After around 2.5
seconds, the controller starts lowering the output velocity relative to the remaining angular dis-
tance, ensuring a smooth approach to the desired orientation. To reach the initial position of
0°, the negative error in orientation leads to a negative angular speed, again resulting in the
movement towards the goal orientation. It has to be noted that the control parameters for
this example have been chosen lower than for the final controller configuration to improve this
visualization.
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Figure 19: Angular velocity and resulting orientation
during a 180° rotation with a saturated P-controller

(tuned to less dynamic motion for visualization
purposes).

Figure 20: The deviation in the
end position after a 180° rotation
can be reduced by more than a

factor of two with additional y-axis
control.

Positional Drift During Rotation
Due to variations between the model used by the Unitree SDK and the real robot, the robotic
kinematics and the resulting movements contain significant deviations. Assuming a perfect
model, if only the angular velocity is controlled to rotate the robot by 180°, there should be no
error in position afterward. In the real system, however, this error is as large as 0.4 m for a
rotation of 180°, leading to unwanted deviations from the path. To restrain this behavior the
linear velocity of the robot has to be controlled during the rotation. As seen in Figure 20, this
lowers the positional error significantly by more than a factor of two. Experimental testing has
shown that additionally manipulating the x-axis linear velocity does not improve the positional
error. This could be due to the fact, that the robot generally drifts only in y-direction.

Walking on a Straight Line
Based on the findings mentioned in the previous paragraphs, the controller has been tuned
empirically to perform steady motion with minimal deviations from the desired path while still
moving dynamically. This has been achieved with the following parameters:

Parameter Variable Gain Saturation
Value

Unit

Linear velocity gain for movement in x-axis kx 2.5 ±0.3 m
s

Linear velocity gain for movement in y-axis ky 2.0 ±0.12 m
s

Angular velocity gain for rotation around z-axis kα 1.0 ±36
◦

s

Table 2: Empirically determined controller parameters and their saturation limits for the
controller described in Equation 1.

The resulting behavior can be seen in Figure 21a, where the motion to three desired end-points
((1,0), (-1,0), and (0,0)) is performed. With a maximum deviation of around 0.2 m the motion
pattern of the controller can be considered sufficient. When observed by eye, the deviation from
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the desired path is almost negligible. More importantly, the robot reaches the desired position
quickly and efficiently without unnecessary movements. As seen in Figure 21b this maneuver
takes no longer than 30 seconds.

(a) Position on xy-plane. (b) Linear and angular velocities.

Figure 21: The executed path on the xy-plane shows a maximal deviation of 0.2 m during the
desired motion (0,0) →(1,0)→(-1,0)→(0,0). The corresponding control velocities show how this

motion has been achieved efficiently with a saturated p-controller.

Both linear (x) and angular output (z) velocities of the position controller are set to their
maximum for most of the time, resulting in fast and dynamic movement. These thresholds have
been chosen to ensure safe movements and prevent overshooting the target position.

While the linear velocity in the x-direction is responsible for forward motion and the angular
velocity around the z-axis controls the orientation, the linear motion in the y-direction minimizes
positional errors due to either drift or misalignment. Without this correction, the controller
would never be able to reach the desired position if the initial orientation or the linear movement
shows imperfections.

4.1.3 Discussion

Both the localization and position control satisfy the requirements of dynamically conducting
motion from one point to another while compensating for errors. Through feedback control, the
robot is able to dynamically adapt to mechanical imperfections and reach the desired position
nevertheless. Although deviations of up to 0.2 m occur during linear motion over 2 m, they are
barely visible. Long-term positional drift however is critical during prolonged periods of live
demonstrations. If the robot has to be manually reset after performing a few tricks, the overall
impression of the robot is compromised. The added SLAM algorithm successfully solves this
problem by contributing absolute measurements and resetting the positional error periodically.
In static environments, these corrections led to less than 0.2 m of drift after performing mul-
tiple motion sequences, thus satisfying the requirements for a stable demonstration. However,
dynamic environments like crowds pose potential difficulties to both the SLAM algorithm and
the stability of the ZED2 camera. These rapid changes in features have to be tested further,
ideally during a live demonstration.
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4.2 Collision Detection

To prevent the robot from accidentally coming into conflict with objects or people when per-
forming actions, the rbd lidar package implements a collision detection algorithm to recognize
points within a critical zone around the A1. This zone is cuboid-shaped and defined by four
perpendicular distances in the x and y direction to the OS1, which can be specified via the
default.yaml file. Measurements within the critical zone are counted and cause the robot to
halt if a certain numerical threshold of points is exceeded. As default values for the collision
zone, the front critical distance is set to 700 mm, the back distance to 550 mm, and the lat-
eral spacing amounts to 350 mm on each side. These values were determined empirically and
proved to allow unobstructed interaction with the robot while still effectively avoiding collisions.
However, if the robot is used in more uncommon environments, for example with numerous
reflective surfaces, the distance thresholds might need to be readjusted, as these surfaces cause
an accuracy reduction in the LiDAR measurements.

The following paragraphs outline and discuss the experimental validation of the collision detec-
tion algorithm. As measures of its quality, these experiments fathom the shape of the critical
zone and the algorithm’s reliability. Video proof of the collision detection and its visualization
can be found here

4.2.1 Shape of Critical Zone

To consider the location of the OS1 and the robot’s dimensions, a cuboid-shaped collision
zone was defined. Since the robot moves the fastest in the forward direction while performing
its actions, the critical distance is chosen as the longest in this direction. Due to the polar
measurement mode of the OS1, the zone is vertically bounded by curved edges. The correctness
of the expected geometry of the collision zone was verified experimentally by measurements.
The goal of these measurements was to obtain a spatial representation of the zone, within which
measurement points are effectively detected as collisions. For this purpose, the robot was placed
on a free surface and the collision detection was launched. In RViz, the measured LiDAR point
cloud was displayed and points within the critical zone were accentuated. The illustration was
configured to preserve these points for one minute while displaying the remaining point cloud
in real-time.

(a) Shape of the collision zone. (b) Spherical blind zone.

Figure 22: The verification of the critical zone displays all the expected characteristics. These
measurements illustrate the cuboid-shaped geometry vertically constrained by curves and a

spherical blind zone in the center of the point cloud.

To verify the geometry of the collision zone, a diffuse reflective, planar surface was moved
around the robot to record collision points. The time-delayed fading of the measurements
resulted in a three-dimensional image of all points detected as collisions. The corresponding
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result is shown in Figure 22a. The measurements illustrate, that the collision zone perceived
by the system is cuboid-shaped and vertically constrained by curved edges. The blind zone
defined by the minimum measurement distance of the OS1 is visible in Figure 22b and can be
recognized in the center of the point cloud as a spherical void. The verification of the zone’s
dimensions is addressed in the subsequent Subchapter.

4.2.2 Reliability

Accuracy
To verify the accuracy of the collision detection, measurements on a planar test target angled by
45° were conducted with the experimental setting illustrated in Figure 23a. The test plane was
clothed in fabric (non-ideal Lambertian target) to simulate a target surface, such as a person’s
pants, when demonstrating the robot to an audience. The OS1 reaches a range accuracy of ±30
mm for Lambertian targets and ±100 mm for retroreflectors, with a precision of ±7 mm for
targets closer than 1000 mm. To account for non-idealities, a tolerance of ±80 mm was defined
within which the boundary found in the experiment between points detected as collisions and
those not detected must lie. For a distance of 700 mm (default critical distance at the front of
the A1), the corresponding output point cloud of the collision avoidance algorithm is shown in
Figure 23b. In accordance with the aforementioned tolerance, the effective threshold must lay
in a range of 620 mm to 780 mm. The illustration indicates that the effective critical threshold
perceived from the LiDAR measurements is located at around 750 mm instead of 700 mm, which
fulfills the requirement. For all other tested distances (350 mm and 550 mm), the algorithm
showed similar or better results.

(a) Experimental setting for distance
verification.

(b) Resulting point cloud from a top view.

Figure 23: With the experimental setting displayed in Figure 23a, the point cloud from Figure
23b is obtained. This result illustrates that the effective critical threshold perceived by the

system is offset from the target distance by approximately 50 mm.

Reaction Time
The reaction time of the LiDAR-based collision stop is a quantity for the reliability of the
collision detection since the robot needs to be stopped from moving into people or objects.
This parameter was analyzed by rapidly moving a fabric surface into the A1’s critical zone and
measuring the time for the robot to not displace itself anymore. As not only the reaction time
of the software is relevant, but also the delay caused by mechanical inertia, the system’s overall
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reaction time was evaluated by hand using a stopwatch. In twenty measurements, a reaction
time of 0.44 s ± 0.09 s has been found. This standard deviation of 0.09 s contains the deviations
caused by the mechanical system as well as those of the time measurements. Statistically, more
than 99.7% of the measurements lie within a three-times standard deviation from the mean
value. Therefore, the maximum reaction time of 0.44 s plus three times the measured standard
deviation of 0.09 s (0.70 s) must lie within the robot’s maximum allowed reaction time.

As mentioned in the previous Subchapter, for fabric surfaces, a maximum deviation of the
LiDAR measurements of approximately 50 mm was measured. Considering this deviation, the
robot’s dimensions, and the currently implemented robot movements, a sideways motion with
the maximum lateral controller output speed of 120 mm

s is the most critical movement. With
the robot’s width of 400 mm and the lateral critical distances of 350 mm on each side, a critical
space of 350 mm− 400 mm

2 = 150 mm to the left and right of the A1 can be obtained. Therefore,
a maximum reaction time of 150 mm−50 mm

120 mm
s

= 0.83 s is allowed (considering the maximum LiDAR

measurement deviation of 50 mm). Since this is higher than the achieved 0.70 s, the achieved
reaction time can be considered appropriate, which is consistent with the circumstance that no
collisions occurred during the laboratory tests.

4.2.3 Discussion

To achieve safe and reactive behavior during the interaction with humans, a collision detection
algorithm was implemented in the ROS package rbd lidar. For each side of the robot, the
distance below which a person or object is detected as being at risk of collision can be specified
dynamically at each restart. These critical distances result in a cuboid-shaped collision zone
with a blind zone given through the minimum range of the OS1.

While the OS1 sensor is capable of providing a large amount of information at a high rate, it is
subject to certain limitations in terms of accuracy, which is why range measurement deviations
of up to 100 mm can be expected depending on the target material. For fabric surfaces, accuracy
was found to be in the range of approximately 50 mm, which was sufficient for collision prevention
in all laboratory tests. However, if safety requirements have to be increased, the critical distances
should be chosen correspondingly higher to compensate for measurement inaccuracies. Due to
latencies in various parts of the system, the reaction time is limited to around 0.44 s ± 0.09 s,
during which the robot continues to move at its current velocity. In laboratory experiments,
the default values set for the critical distances were sufficient to prevent all possible collisions.
However, if the robot is moved more dynamically in an application or if highly reflective objects
are located nearby, it may be appropriate to enlarge the collision zone to guarantee a high degree
of safety.

Through the collision detection algorithm implemented in the rbd lidar package, a LiDAR-
based collision avoidance capable of detecting points within a critical zone around the A1 is
realized. This allows the safe execution of movements without accidentally coming into conflict
with people or objects near the robot. Depending on parameters such as movement velocity
and security requirements, the dimensions of the critical zone can be enlarged to enhance the
security level.

4.3 Visualization and Live Demonstrations

4.3.1 Visualization

The overall goal of this work is to provide a demonstrator that conveys AI to a broad public.
To make the system intuitively understandable, visualization measures are required to illustrate
the main AI logic as well as the most important auxiliary processes, which is achieved by using
existing graphical visualization tools.
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The final visualization used when demonstrating the robot to an audience consists of three main
elements interacting with each other:

i. Detecting and classifying hand gestures was implemented in the previous project thesis
and the corresponding visualization is integrated in this work.

ii. The GUI implemented in this thesis allows the audience to grasp which state the robot
is currently in and what its next planned actions are. For example, the state changes to
collision if a person approaches the robot too close and a collision is detected. The
comprehensibility of the system’s inner workings is further enhanced by a visualized queue
of the next tasks the robot intends to perform. Thus, the robot’s reaction to a gesture
does not simply remain a physical movement, but it becomes a logical sequence of control
actions.

iii. Finally, the point cloud obtained by the LiDAR measurements is displayed in RViz using
rainbow color mapping to provide depth information. Objects or people entering the
critical zone around the robot are highlighted in red color.

Figure 24 illustrates the interaction and individual tasks of the three subcomponents that build
the final visualization. Figure 24a displays the gesture recognition procedure: To register a
gesture, the robot lowers its hips and thereby enters the attentive pose. The controller is now in
the idle state, which is acknowledged with a corresponding blue label in the GUI. The camera
stream for gesture recognition is running and ready to register a video sequence.

(a) Gesture recognition procedure. (b) Reaction to a prevented collision.

Figure 24: While in the idle state (blue label in the GUI), the key points used to determine a
gesture are visualized live in the video window. If a person or an object enters the collision
zone, the state changes to collision (orange label), and the colliding points in the point

cloud are marked red.

If a person moves in front of the robot to perform a gesture, the gesture recognition implemented
in Python 3.10 detects hand key points, classifies the gesture presented, and displays the classifi-
cation output in the same window, as shown in the upper left of Figure 24a [7]. Using rosbridge,
the detected gesture is forwarded from Python 3.10 to ROS running on the A1. The waypoints
calculated based on the recognized gesture are added to the GUI’s action queue, which is visible
in the lower left of Figure 24b. During the execution of the corresponding action, the robot
is in running state. As soon as a person approaches the robot, or vice versa, the rbd lidar

node detects a possible collision and the rbd controller node executes a stop reaction. The
collision is visualized in the corresponding point cloud by red color and causes a state change to
collision, visible as an orange label in the GUI display. An example of the three visualization
components in the case of a collision is displayed in Figure 24b.
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4.3.2 Live Demonstrations

In order to verify the control system, the comprehensibility of the created visualizations, and the
collision detection as well as to get feedback for the optimization of the system, the developed
robotic AI demonstrator was presented at the Swiss Academy of Engineering Sciences (SATW)
annual congress in the context of a trade fair. Gestures were performed in front of the robot,
causing it to carry out the corresponding actions. The illustration of the system’s workings was
done both by the robot’s physical movements and the visualizations of the main algorithms on
an external monitor.

System Performance
The large number of people at the trade fair resulted in an unsteady environment in which the
robot had to localize itself. However, the fusion of the stereo camera data and the LiDAR scan
allowed the A1 to successfully determine its position, even among a significant number of moving
spectators. Highly dynamic environmental conditions were found to disturb the stereo camera
localization and to sporadically cause noticeable repositioning due to the SLAM algorithm of
more than 0.3 m, which is enabled by the LiDAR scan data.

Throughout the entire period of the demonstration, moving the robot into objects or people was
prevented through the collision detection algorithm. The chosen default values for the collision
zone dimensions proved to be appropriate to detect collisions, considering measurement inaccu-
racies of the OS1 and reaction time of the collision stop.

Overall, the robot was able to arouse a significant amount of interest from a broad audience with
solid basic technical knowledge but varying levels of expertise in the field of robotics. Through-
out the entire audience, the visualizations were perceived as intuitively understandable. The
hand key points displayed in the illustration of the gesture recognition algorithm were intuitively
linked with the topic of AI. Associating the robot’s physical reaction with the processes in the
software was supported by the task queue corresponding to the robot’s next actions. Using red
as an alarm color to visualize points causing the detection of a collision, proved to be intuitively
graspable for the majority of people.

Feedback and Observations
In the course of the presentation at the SATW annual congress, feedback of various kinds was
obtained, reflecting the interests of the audience. It became apparent that additional status dis-
plays can prove useful to enhance the comprehensibility of the processes in the robot. Therefore,
additional label colors for the states (collision, idle, and running) have been integrated into
the GUI after the presentation.

With the current implementation, the robot is prevented from actively moving into objects or
people. However, a frequently asked question was whether the robot was able to dodge ap-
proaching individuals, which should be considered in future projects based on this thesis.

As mentioned in the preceding project thesis, illumination changes can affect the reliability of
the gesture detection [7]. Additionally, exactly reproducing the movement patterns that had
been used to train the logistic regression model that classifies the gestures caused issues in some
cases. Furthermore, various visitors attempted to perform gestures exceeding the pre-trained
four gestures.
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4.3.3 Discussion

To guarantee secure interaction with humans, a control system using LiDAR-based collision
detection was implemented in this thesis. Additionally, visualization measures have the purpose
to provide diverse information about the system’s functionality and, therefore, act as a human-
machine interface. Both could be presented at the SATW annual congress in the context of a
trade fair.

The system proved its stability, also in a dynamic environment. Even in dynamic surroundings,
the combination of stereo camera and OS1 enabled localization, while the collision detection
algorithm enhanced the system’s security level significantly.

The audience is notified about details of the gesture recognition process, which supported users
in understanding how and when their hand movements were observed by the robot. As the
robot performs an action, the understanding of why and how it behaves in a certain way is
enhanced by a state display and a task queue. The visualization of the point cloud obtained
from LiDAR measurements displays how the robot perceives its environment and allows a direct
link between a person’s presence near the robot and its reaction, which was well-comprehensible
for the audience.

New and helpful feedback was obtained at the aforementioned trade fair, providing various
system optimization proposals, one of which has already been integrated.
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5 Conclusions and Outlook

5.1 Main Achievements and Interpretation of the Results

First and foremost, the sequential motion control script was successfully replaced by a modular
soft real-time system able to tackle more complex tasks efficiently. Through parallel execution
of multiple programs, i.e. ROS nodes, the control system is able to handle multiple tasks at
once. Multitasking is crucial for the safe execution of motion in a public space where collisions
cannot be tolerated. The collision avoidance algorithm prevents all collisions caused by the
robot’s movement by stopping if an object is detected within a safety bounding box. During
all of the conducted testing and live demonstrations, the developed safety system has proven its
reliability and no collision has occurred.

During the live demonstrations, the robot impressed people with different levels of expertise.
Due to its resemblance to a real dog, the robot dog caught the attention of most of the spectators
quickly. People outside of the field of robotics understood the goal of the robot - executing a
trick based on a gesture - intuitively. Nevertheless, the chosen approach of a ROS-based control
system also caught the interest of experts in robotics and AI.

With the addition of a stereo camera and a LiDAR sensor, environmental perception allows the
robot to not only prevent collisions but also to estimate its position and orientation. A Kalman
filter fuses the stereo camera data with the inertial measurements to generate a pose with higher
bandwidth and lower long-time error than a pose generated by one of them individually. Ad-
ditionally, a SLAM algorithm creates a map based on the horizontal slice of the LiDAR point
cloud. If features of the newest LiDAR measurements match existing map features, the localiza-
tion node corrects the pose estimation accordingly. This correction with absolute measurements
allows the robot to perform longer without having to be restarted. Furthermore, the overall
impression is improved since the robot accurately returns to its initial position.

Extending the existing visualization of the key points generated by MediaPipe, the ROS-based
visualization tool RViz allows visualizations of all ROS topics. Namely, the visualization of the
three-dimensional raw point cloud as well as the illustration of the detected collisions provides
insight into how the collision algorithm decides when to stop. Furthermore, RViz visualizes the
two-dimensional laser scan based on the identical raw point cloud data and the resulting map.
This map offers information on how the robot perceives its environment and how the current
location is determined. Not only do they offer insight during live demonstrations, but these
visualizations are also valuable during the development phase. Complex data structures like
point clouds or coordinate frame transformations can be visualized intuitively without the need
for additional code development.

In conclusion, the change to a modular ROS-based control system proved to be the right choice.
Although this change required additional work to achieve the same high-level goal that the
project thesis already had achieved, the resulting software stack allows for faster development
in the future. This has also been the case for the features added in this thesis. The collision
avoidance system was developed segregated from the control system and tested on its own. After
these tests were successfully completed, the integration was possible with minimal effort due to
clearly defined communication interfaces i.e. ROS messages and services.
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5.2 Limitations

The limiting factor during live demonstrations is the runtime of the two available batteries. Since
the WLAN hotspot turns off after a discharge of around 60%, and the communication between
the gesture recognition on the host laptop and the robot depends on this WLAN connection, the
battery cannot be utilized to its full potential. In combination with the added LiDAR sensor
and stereo camera, the demonstration can be conducted for a maximum of 20 minutes until
the battery has to be changed. As a partial solution to this problem, a third battery has been
ordered.

A less common problem during live demonstrations is that the robot has to be restarted due
to the fact that it cannot actively walk away from obstacles. If the robot comes too close to a
static object e.g. a wall, it will stop to prevent a collision. With the current implementation of
the collision avoidance system, the robot will remain stationary forever. However, thanks to the
LiDAR measurements and the map created by the SLAM algorithm, information about where
the robot could move is already available.

5.3 Ideas for Future Projects

Feedback Hardware

Live demonstrations have shown that the audience focuses more on the robot than the visualiza-
tion when interacting with it. Therefore, feedback could be integrated into the robot hardware
via a status LED. Through different colors, this LED could signal the same information as the
status in the GUI. For example, if a gesture is recognized but the hand of the user is in the
collision area, the robot does not move until the hand is removed from the collision area. This
lack of motion can be interpreted as an unrecognized gesture. However, the GUI shows that
the state has changed to collision instead of idle. A LED could signal that the gesture is
recognized while also recognizing a collision through a change of color.

In addition to the software emergency stop in the GUI, a physical emergency stop button would
add haptic feedback. Even though there is no reliability issue with the software emergency stop,
a physical button could improve the perception of safety and ease of use.

Gesture Recognition

The conducted live demonstrations have shown that the margin of error for the performed ges-
tures is very low, i.e. if the gesture does not match the training data, it is not recognized. To
improve this, more diverse training data needs to be collected to train the existing classifier.
Furthermore, additional gestures corresponding to different motion patterns - tricks - could be
trained. During the live demonstrations, people tried a wide variety of gestures, some of them
not among the trained ones. Alternatively, a different machine-learning approach to processing
the key points could be chosen.

However, the internal camera image will always be limited by its performance in high-contrast
light situations. On the contrary, the depth image generated by the LiDAR scanner does not
rely on available light. This depth image could replace or be combined with the RGB image.

Active Collision Avoidance

Although the implemented collision avoidance system reliably prevents collisions caused by the
robot’s motion by stopping it, the robot’s reaction is limited if the obstacle remains. Active
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collision avoidance by moving away from the colliding object could improve this. As a result,
the robot would not have to be reset, if it comes too close to a static object e.g. a wall.

This could be either achieved with a low-level algorithm, simply moving the robot away from
the colliding object, or with a more sophisticated, map-based algorithm. The map created by
the SLAM algorithm could help to achieve this by changing the motion path depending on the
environment. If this environment changes, the path can easily be recalculated and the object
evaded.

The needed path between two points on a map can be computed with conventional algorithms
like rapidly exploring random trees (RRT) or probabilistic roadmaps. This path can then be
changed dynamically if the environment changes. However, a more modern approach relying on
machine learning would fit this AI demonstrator even better.

Reinforcement Learning

In terms of new machine learning algorithms, reinforcement learning poses fascinating opportu-
nities for improving the gait motion of the robot. Instead of relying on fixed, predefined gait
patterns, an agent can be trained to control the robot based on a learned policy. This training
can be done in existing simulation tools like the NVIDIA Omniverse Isaac SimTM [38] or the
MuJoCo advanced physics simulations [39].

While MuJoCo offers cross-platform compatibility through C++ and Python and a simple API,
the NVIDIA Isaac SimTM is more advanced but requires proprietary hardware. However, the
Unitree A1 is equipped with a compatible NVIDIA Jetson board with a powerful graphics pro-
cessing unit (GPU), currently not used to its full potential. The NVIDIA Isaac SimTM also
offers a ROS interface and can simulate measurements from the ZED2 camera. Robot models
of the Unitree A1 are available for both options, reducing the amount of work required to get
started.
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7 Appendix

To lower the amount of work needed to understand the developed code base in subsequent
projects, the documentation of the code itself, as well as high-level concepts are available.

7.1 Code Base

The code base itself can be found on GitHub. The code offers comments and additional
README files, informing about the main purpose of the corresponding package. The code
is split up into three parts, each corresponding to a different environment:

Environment Packages Description

rbd local GUI

utilities

zhaw pa robodog

These files require Python 3.10 and have
therefore to be executed in a conda en-
vironment with the required dependen-
cies. They communicate via the rosbridge
with the ROS packages. utils contains
files to start all of the software by running
./rbd startup.sh.

rbd ros local rbd gestrec ROS packages running on the local Ubuntu
VM on a Laptop connected via the WLAN
Hotspot. They feature the auxiliary ROS
node for gesture recognition and the RViz
configurations.

rbd ros pointcloud to laserscan

rbd controller

rbd template

rbd lidar

rbd localization

rbd msgs

rbd navigation

rbd pos controller

utils

ROS packages running on the robot. They
can simply be copied into the catkin ws

folder of the NVIDIA Jetson to be built
on target.
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7.2 Documentation

The high-level concepts of the ROS-based system can be found on a dedicated website. Addi-
tionally, documentation on how to install the available virtual machine (VM), the steps needed
to get the robot up and running, the needed dependencies for developing, specifications and
datasheets, a guide on how to replace the NVIDIA Jetson board and information useful for the
software development can be found there. The following chapters are available:

· Introduction

· Quickstart Guide

· Introduction to ROS

· Introduction to the System

· Available Nodes

· Style-Guide & Clean Code

· Hardware

· Datasheets and Specifications

· Disassembling the Unitree A1

· Software

· Creating a Node

· Working with the Ouster OS1

· Working with the ZED2

· A Remark on Time Zones

· Connecting the A1 to the Internet

43

https://robodog.gitbook.io/robodog-docs/


7 APPENDIX

7.3 Project Task

Deep Learning has revolutionized the way pattern recognition problems like image analysis can
be solved today in practice, and is thus permeating industry and society. Yet, the technology
behind the success stories remains vague and mysterious to most, to a large degree because it all
happens ”in the virtual world” (inside a computer) and is less tangible than other technological
artifacts involving customer-facing hardware like cars, robots, etc ”in the real world”.

Based on our ”Unitree A1” 4-legged robotic platform (equipped with cameras, microphones,
and powerful onboard computers) and foundational work of a prior thesis, the goal of this BA
is to identify and implement tangible demonstrators of the kind of work (in computer vision,
pattern recognition and/or natural language processing) that the ZHAW Centre for AI (CAI)
is carrying out in research. Possible examples include

- the robot to follow a specified person indoors

- the dog listening to spoken commands and performing respective actions

- visualizing the inner workings of the algorithms running on the robot on an attached screen
(explainable AI)

- learning the locomotion of certain animals by imitating videos (reinforcement learning)

The result shall be used by the CAI at exhibitions like the ”Nacht der Technik”.

Work packages:

- Review of related work (prior thesis, blogs, scientific literature, public GitHub repos, other
computer vision demonstrators like e.g. link)

- Define the final use case and scope together with supervisors

- Set up the development environment (locally, on the robot, and on our GPU cluster)

- Build an initial prototype, iterate (focus on functionality, ”wow”-factor, usability)

- Write a scientific report with a focus on motivation, argumentation, methods, evaluation
& results (the BA thesis)
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