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Abstract

The exponential growth in the amount of textual data generated daily makes it
difficult to keep track of relevant information in everyday discussions, meetings,
and other interactions. While in recent years, Natural language Processing NLP
has been applied to several areas for extracting essential information from large
volumes of text, only a limited amount of research was done in visualizing this
information.

This thesis shows the incorporation of various NLP techniques, such as named
entity recognition, sentiment analysis, and summarization, with a self-developed
algorithm for keyword extraction and focuses on the visual presentation of this
information to understand the critical information in a time-efficient and in-
teractive way. The application is evaluated through a user test on a meeting
transcript, comparing the response time of users utilizing the proposed applica-
tion with those using the transcript only. The results show that with the help of
the supporting application, the response time decreases on average by 15 seconds
and up to over one minute on individual questions.
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Chapter 1

Introduction

Many daily discussions or conversations today are available in some form of tex-
tual way. These discussions include transcriptions of important meetings and
interviews, email threads, and social media interactions. In recent years, the
quantity of those interactions has grown quite significantly. For example, some of
the estimations for one single day is at around 500 million tweets [Livestats, 2022],
100 billion WhatsApp messages [Singh, 2020], 306.4 billion emails [Statista, 2022]
and more than 11 million meetings[Visix, 2022].

With these large amounts of texts, it is often hard to recollect the informa-
tion exchanged or know what was discussed as a non-participant in the discussion.
Usually, more details are provided than needed, and filtering out essential infor-
mation involves, in most cases, a tedious, time-consuming reading of the whole
text.

This thesis focuses on improving this time-consuming process by applying
specific Nature Language Processing architectures to compress and extract the
essential information and visualization techniques to present and interact with
the data.

1.1 Motivation

When we are presented with text in our daily life, how often do we read the text
in its entirety? In many cases, only a short skimming of the text is required to
get the essential information. The technology of text summarization can help
with this knowledge extraction, allowing readers to view many documents for
important information quickly.

Automatic text summarization produces a concise summary while preserving
key information content and overall meaning. In recent years this has been ap-
plied widely in various domains. Examples are search engines that generate snip-
pets as previews of the documents [Turpin et al., 2007] and news websites that
produce condensed descriptions of news topics, usually as headlines, to facilitate
browsing or knowledge extractive approaches [Allahyari et al., 2017]. Automatic
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1. Introduction 2

text summarization is very challenging, even for people. This difficulty comes
from summarization requiring multiple complex natural-language-understanding
components that involve information selection, evaluation, aggregation, and re-
organization, followed by compression, generalization, or paraphrasing. Further,
this must occur on multiple (possibly abstract) levels, such as sentences, para-
graphs, sections, and documents. [Nikolov, 2020] When humans summarize a
text, we usually read it in its entirety to get familiarized with its content and
then write a summary highlighting its main points. However, since computers
lack human knowledge and language capability, automatic text summarization is
challenging and non-trivial.

In practice, there are two main approaches to text summarization. Extrac-

tive summarization extracts and combines text fragments precisely as they
appear in the original document. Thus, the output is a compressed and re-
ordered version of the input, with the original wording usually remaining the
same. In abstractive summarization, the output is typically generated using
a language model to produce novel sentences from information extracted from
the corpus. Thus, summaries may contain new phrases and sentences that may
not appear in the source text. [Nenkova et al., 2011]

In addition to those two distinguishing differences, the summary’s output size
can vary (e.g., a complete paragraph vs. a single sentence, a bullet point, sev-
eral keywords, or even a single word). In return, this can significantly influence
the transferred information and the reading time. Even though modern sum-
marization systems are compelling, they are still far from reaching human-like
performance and fluency. The output from the automated analysis is often too
complex for data analysts to consume. The sense and decision-making based on
the topic results rely on end-users, with the tasks often being exploratory and
iterative.

Different analysis tasks or topics might require a different "level of depth"
in the summarization (e.g., describing an overall topic of a discussion requires
less information than answering a specific question about something mentioned
during the conversation). Text analysis methods should be integrated with in-
teractive visualizations to address this requirement, empowering the user by self-
determining the summary’s length/depth and context based on the information
needed.

The hypothesis is that by presenting key ideas and abstract aspects of the
text visually, enough information can be extracted to solve analytical tasks (such
as answering questions about the discussion) that would otherwise require a full-
text read-through. Combining visualization techniques and automatic algorithms
should enable an effective and efficient union between the user and the machine-
generated information. However, it is essential to note that this process is not
a one-way road but an iterative process with feedback loops between different
pipeline steps. The human input triggers and guides the steps of the automatic
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analysis, which result in different representations of the data based on this input.

1.2 Application Scenario

A wide range of summarization variants is used in practical applications beyond
the scope to be discussed. Instead, this document focuses on the following appli-
cation scenario, which will influence the design and implementation of the text
summarization models as well as the visualization and evaluation methods:

• The format of the analyzed input is in a multi-participant discussion, fo-
cusing mainly on business meetings, where time and speaker information
are present.

• Content of the discussions is heterogeneous, has various topics, and is in a
single language.

• Depending on the user, different topics are of interest, which makes the
ability to interact dynamically with the data of need.

• Solely text data out of the discussion is used. Preliminary steps involving
the transcription of audio files are not evaluated.

• Information used is static and has no live streaming data. The summariza-
tion and visualization are done as post-analysis.

In addition, discussions are defined utilizing the following characteristics:

• They are interactions between two or more persons.

• The key information of one dialogue is often scattered and spanned over
multiple utterances and turns from different participants (which leads to
low information density)

• The length of individual speaker utterances is not time-bound and can vary,
thus leading to short, fragmented speech when the heat of discussion is high.

• The formality of the discussion depends on its setting and the connection
of its speakers.

– The degree of formality decides the discussion’s level, structure, and
rationality.

– Speaker, topic (topic drifts), and timing can evolve and change spon-
taneously.
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1.3 Goals

The concept presented in this thesis studies the application of text summarization
methods combined with a visual presentation layer. The main goal of this ap-
proach is to understand essential information of discussions in the most

efficient way regarding time. With this in mind, the following subgoals are
considered, which allow a given user to:

• Assess the main topics of the discussion in less than 10 seconds.

• Find out what was discussed and get more context about any particular
topic.

• Find out what a particular user said.

• View the general mood/sentiment of the discussion.

• Control the presented text according to the particular topic of interest.

The steps that are taken to achieve these goals are:

• Prototype and implementation of a parameterized summarization pipeline
that can return the information with different levels of depth (e.g., para-
graph, sentence, n-gram, keyword). The philosophy behind this is that it
is upon the user to decide how much context is needed for a given task and
that the infrastructure should be able to support a dynamic and interactive
experience.

• Design of a visual presentation layer that can incorporate human interaction
as an iterative process based on tests and user feedback.

• Implementation of the visualization on top of the summarization pipeline
and evaluation of benefits and drawbacks. The evaluation of this approach
is two-sided. One side is scoring the summary by standard evaluation met-
rics (ROUGE / BLEU ); the other is defining a text analysis task that
multiple subjects will perform.

• Gather and discuss insights into the NLP summarization process from a
user perspective by knowing what information has to be displayed, what
is essential, and how much information is needed to perform analysis tasks
on an unseen/unknown discussion topic.
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1.4 Challenges

Significant research efforts have been focused on summarizing single-speaker doc-
uments such as text documents, news, or scientific work, automatically summa-
rizing and extracting essential information.

However, dialogue summarization, where multi-document analysis is needed,
has received little attention despite the prevalence of dialogues and the vast ap-
plication potential of dialogue summarization systems (meeting summary gener-
ation, customer service, media monitoring, and newsletters).

Furthermore, since dialogue language is inherently different from written text,
it poses a unique set of challenges, making the development of automated meth-
ods to summarize and visualize this information more complex. Unlike single-
document analysis, multiple-input documents are likely to contain more contra-
dictory, redundant, and complementary information, and their relationships must
be considered. [Ma et al., 2020]

Next to the summarization challenges is the visual aspect of text analysis,
which is still a young field, and many topics still need to be explored. Among
these are:

• Handling varying amounts of data. For example, meetings with a duration
of 5 minutes vs. a 2-hour meeting.

• Displaying information across multiple dimensions, including time, current
speaker, sentiment, and topic relevance.

• Control of granularity and transition between summarization levels and
context.

1.5 Outline

The rest of this document is structured in the following way:

Chapter 2 presents background knowledge about automatic summarization
and text visualization methods, together with essential research and related work
in this field (focusing on the different modeling aspects of the problem and the
visualization/user perspective part). Chapter 3 explains the design process of
the visualization layer with its underlying models and algorithms described in
chapter 4. An evaluation based on a practical experiment in the form of a user
test is presented in chapter 5. Finally, the document concludes with a summary
of the main findings and an outlook on future work in chapter 6.



Chapter 2

Background

The work presented in this document builds on previous work. The following
sections present notable related work in dialogue summarization and document
visualization, together with background knowledge, which aims at helping the
reader to understand the rest of this document.

2.1 Related Work

Since previous related work contains a variety of domain- and application-specific
research, the overview presented is grouped into specific sections:

• Text summarization, which covers general research in the field of single
document summarization.

• Dialogue summarization, focusing on multi-document summarization,
specifically within the domain of meetings.

• Document visualization, showing currently applied techniques and possibil-
ities.

2.1.1 Text summarization

With the breakthrough of "Attention Is All You Need" [Vaswani et al., 2017b],
many subsequent researchers based their models on the introduced transformer
architecture.

In the domain of extractive summarization, [Wang et al., 2019] shows a
solution to dealing with model generalization on data that belongs to unseen
fields. They introduce document categories such as sports or business, by which
the different data distributions can be classified and provide the Multi-SUM
dataset to provide a good multi-domain testbed.

At the same time, within a large-scale evaluation of published models on
newspaper summarization, a key factor for successful extractive summarization

6
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is found by [Zhong et al., 2019]. They compared two different usages of the BERT
[Devlin et al., 2018] architecture on the CNN/ DailyMail dataset 1:

1. Feeding each sentence to obtain sentence encoding

2. Feeding the entire article to BERT and obtaining sentence representation
through mean pooling

With the latter performing significantly better, they showed that the positional
relationship between the sentences has to be present in the encodings to leverage
the full potential of the transformer architecture.

Another way of dissembling text into summaries is by using syntactic com-
pression. The idea is to have rules to remove non-key information within a
sentence. Examples of such rules used in [Xu and Durrett, 2019] are appositive
noun phrases, relative/adverbial clauses, and content within parentheticals. The
authors combine a neural extraction model to score sentences from the document
with a syntactic compression module to achieve robust performance compared
with other state-of-the-art CNN/ DailyMail dataset models.

A different framework utilized in [Wang et al., 2020a] is the Graph Neu-
ral Network. In their approach, the graph consists of two nodes: basic se-
mantic nodes (words, concepts) and supernodes (phrases, sentences, and docu-
ments), which can establish relationships between each other via basic nodes.
The graph updates the nodes during training via Graph Attention Network
[Veličković et al., 2017], and the sentence node representations are extracted to
produce summaries. Shortly after this study and built on the same Graph Frame-
work is [Jia et al., 2020], which proposes a Hierarchical Attentive Heterogeneous
Graph for Text Summarization (HAHSum). They outperform previous extractive
summarizers by introducing a redundancy layer responsible for spotting redun-
dancy dependencies between sentences and modeling different levels of informa-
tion, including words and sentences.

In the domain of abstractive summarization, promising research has been
done in the last couple of years. For example, with a hierarchical RNN en-
coder/decoder structure [Cohan et al., 2018] publish the first model for single,
long-form documents (specifically research papers). However, in a later study
[An et al., 2021], the authors noted a critical point, namely that most scientific
papers are full of uncommon domain-specific terms, which makes it difficult for
the model to understand its true meaning. They propose a citation graph-based
summarization model, which enriches the information of the source paper with
references.

Another relevant subfield of abstractive summarization is query-based sum-
marization. It aims to create a brief, organized and informative summary for

1https://github.com/abisee/cnn-dailymail
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a document with the specifics described in the query. In addition to creating
a large-scale query-focused summarization dataset (WikiRef), [Zhu et al., 2019]
implements a BERT-based model where the query and document are flattened
and concatenated together as a sequence input. As vector representations, they
are fed into the scoring and selection layer to rank the sentence by its relevance
to the query and salience to the document.

One problem with this approach is that the query is a static representation.
As an improvement, [Nema et al., 2017] introduced a query attention model,
which learns to focus on different portions of the query at further time steps.
In addition, they also tackled the challenge of the issue of repeating phrases in
summary with a "diversity-based attention model." As the name reveals, the
diversity model ensures that the current context vector is diverse w.r.t to the
previous context vector; this discourages repetition in the generated summary.

While single-document summarization has some applications, the need for a
solution to a multi-document setting has become ever more prevalent in recent
years. Introducing query-based summarization in the multi-document setting
[Baumel et al., 2018] shows the first solution as an iterative method to embed
abstractive models within a multi-document query-focused summarization. Fur-
thermore, by first sorting the input documents by their overall TF-IDF cosine
similarity to the query and then iteratively summarizing them, they also show
how the summary length can be explicitly controlled.

With introducing the topic of multi-document settings, it is crucial to look at
this specific field of summarization since it has gained some traction in the last
few years.

2.1.2 Dialogue summarization

Dialogues in multi-party meetings differ widely from traditional single documents.
For example, the input often consists of ill-formed text fragments (utterances)
instead of grammatical, well-segmented sentences. On top of that also, additional
noise can be introduced through ASR transcription and segmentation.

One of the first approaches of combining multiple previous published models
into a fully unsupervised end-to-end meeting summarization framework is shown
in [Shang et al., 2018]. Their pipeline consists of the following:

• Text preprocessing: Reducing unigrams and bigrams to single terms.

• Utterance community detection: TF-IDF weighting of utterances, reduced
with LSA and clustered with k-means. The goal is to group utterances that
a typical abstractive sentence should summarize.

• Multi-sentence compression: Word importance scoring and graph building
via word co-occurrence network [Tixier et al., 2016].
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• Budgeted submodular maximization: To select a subset of abstractive sen-
tences that are within the maximum size allowed.

They show that their approach outperforms all of the existing baselines on
the AMI 2 and ICSI 3 corpus.

The researchers in [Zhu et al., 2020] take it further by leveraging the encoder-
decoder transformer architecture. As a novel contribution, they introduce cross-
domain pretraining by collecting summarization data from the news domain and
converting them into the meeting format: Groups of several news articles from
a multi-person meeting, and each sentence becomes a speaker’s turn. For sim-
ulating a mixed order of speakers, the turns are shuffled. To incorporate the
role of each speaker, they train a role vector for each meeting participant to
represent the speaker’s information during encoding. In addition, a hierarchical
structure is introduced with a word-level and a turn-level transformer. The idea
here is that the computational complexity is very high during long transcripts,
and splitting the transformer into a two-level transformer can incorporate the
natural multi-turn structure of a meeting.

What is often overlooked and investigated in [Koay et al., 2020] is the impact
of jargon in meeting summarization. Jargon is the specialized terminology as-
sociated with a particular domain, which might not be understood outside that
context. Their study compares models trained with and without jargon, extend-
ing the ICSI meeting corpus with human annotations of expressed jargon terms.
Their finding is that summarizing with jargon can substantially boost meeting
summarization performance (absolute gain of +4.3 % in R-2 F-score). However,
it is difficult to obtain and inject this domain terminology in a semi-automatic
way.

With the success of BART [Lewis et al., 2020] in neural abstractive summa-
rization, [Koay et al., 2021] extends its framework for meeting and producing
meeting minutes. Using a sliding-window approach to break down lengthy tran-
scripts into small local windows lets them find salient content while reducing the
complexity of processing long documents. On the ICSI dataset, they achieve the
best result with a window size of 1024 (large context window) and a stride of
128.

Especially in meetings, users might be interested in different facets of the
meeting. With QMSum 4, a new query-based, multi-domain meeting summa-
rization dataset was developed, consisting of 1800 query pars with over 232
meetings. In their paper, [Zhong et al., 2021] also provides a baseline for fu-
ture work, comparing previous models such as BART [Lewis et al., 2020] and
HMNet [Zhu et al., 2020].

2https://groups.inf.ed.ac.uk/ami/corpus/
3https://groups.inf.ed.ac.uk/ami/icsi/
4https://github.com/Yale-LILY/QMSum
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The possibility of supervising the granularity is researched by
[Wu et al., 2021]. The authors propose a method for abstractive dialogue sum-
marization and simultaneously enable granularity control. The two stages of their
approach are as follows: First, summary sketches containing information about
user intent and essential key phrases are created. Then, summarization frag-
ments based on the summary sketches are generated to represent the dialogue’s
summary. With this, they achieve state-of-the-art performance on the SamSUM
[Gliwa et al., 2019], messenger, dataset.

In the recently published paper Tweet Stream Summarization Using BERT
[Dusart et al., 2021], the authors propose an approach to "...automatically esti-
mate the appropriate size of the summary to propose at a given time. . . " in the
context of tweet summarization. They have a two-folded pipeline with a flexible
summary size to achieve this.

1. Salience prediction - deciding if a tweet should be kept in the event summary
(Utilizing the insights from a preceding paper [Li and Zhang, 2021]) having
its focus on generating salience predictions on events.

2. Tweet selection - For each tweet in the existing summary, its similarity
with the candidate tweet is computed. If the similarity score is lower than a
similarity threshold for all the tweets in the existing summary, the candidate
tweet is kept for the summary.

For the task of Email summarization, [Zhang et al., 2021] propose an abstrac-
tive email thread summarization dataset, EMAILSUM, that contains 2,549 email
threads with human-written short and long summaries. Furthermore, they eval-
uate models such as T5, Oracle, and TextRank and achieve the best results with
semi-supervised T5 training. The key finding is that human evaluation reveals
that the model fails to understand the sender’s primary intention. The roles of
different speakers and automatic metrics could be better correlated with human
judgment.
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2.1.3 Document visualization

An enormous amount of different approaches can be found when researching visu-
alizations of documents. The following selection focuses mainly on visualizations
that involve evolving documents over time and having heterogeneous documents,
such as conversations between people.

In Visual Document Analysis: Towards a Semantic Analysis of Large Doc-
ument Collections, [Oelke, 2010] provides a holistic overview of text’s charac-
teristics and semantic properties and shows how different visualization methods
can support the process of document analysis. In addition, with the help of vo-
cabulary measures (such as specific word frequencies, vocabulary richness, and
sentence lengths), the author shows how visual analysis can aid authorship attri-
bution and help spot different topical segments of longer texts. In the visualiza-
tion example in figure 2.1, the author shows how longer sentences can point to
a more formal report segment within a text. In contrast, shorter segments often
tend to point to a dialogue.

Figure 2.1: "Fingerprints" of two novels that show the different structures of the
two novels. The inhomogeneity of the first novel can be explained with different
text forms: dialogues, narrative parts, and quoted documents [Oelke, 2010].

Next to the vocabulary measures, the author also proposes a readability mea-
sure, defining how difficult it is to read a specific sentence. Additionally, a dis-
crimination measure of overlap terms and methodologies for visually analyzing
sentiment and opinion.

With a particular focus on the time dimension, [Liu et al., 2009a] published
TIARA around the same time, a tool to interpret and examine the summarized
text from multiple perspectives. First, they use a Latent Dirichlet Allocation
to extract a set of topics, shown as a layer within a time-oriented visual text
summary.
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Figure 2.2: TIARA-created visual summary of 10’000 emails. Each layer repre-
sents a topic generated by LDA [Liu et al., 2009a].

Then, as a validation scenario, they design a set of email analysis tasks re-
quiring users to answer specific questions using email correspondence between
two people. They report that according to their evaluations, the visualization
tool was favored by users, especially for more complex tasks.

Building upon the previous "topic stream" visualization, [Dörk et al., 2010]
extends the application for a visual backchannel of large-scale ongoing conversa-
tions on Twitter. They integrate the topic stream with a people spiral, represent-
ing participants and their activity, and an image cloud, encoding the popularity
of event photos by size.

Figure 2.3: Visual backchannel interface representing Twitter posts. Created by
[Dörk et al., 2010].
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Twitter has been increasingly used for exchanging knowledge and thoughts
about events across different parts of the world. Identifying when and where
an idea is dispersed is the topic of [Cao et al., 2012]. They propose a novel
visualization design, Whisper, based on a sunflower metaphor, whose seeds are
often dispersed far away. Social media responses are summarized based on how
tweets were retweeted by a group of users, tracing sentiments and retweets on a
hierarchical layout.

The design is as follows: The dots in the sunflower’s center represent tweets
about topics of interest (topic disc). The sunflower florets’ lines represent the
diffusion pathways, tracing the path from the information source tweet to different
groups of users who retweet the information. User groups are then represented
by cluster icons at the end of the florets.

Figure 2.4: Visualization of Whisper, showing diffusion of information on
Twitter regarding an earthquake and a series of aftershocks and tsunamis
[Cao et al., 2012].
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As another tool for visualizing Twitter data, [Humayoun et al., 2017] focuses
on a new aspect of analyzing people’s reactions to a particular event or prod-
uct. With TextVis, they provide a method to not only analyze keywords on
their frequency but also the relations between them based on their co-occurrence.
Furthermore, the visualization uses a chord diagram to deal with cluttering that
might occur when multiple relations are associated with the underlying keywords.

Figure 2.5: TextVis visualization with a chord diagram based on the word simi-
larity relations [Humayoun et al., 2017].

Still, in multiple document collections but with another specified task,
[Lee et al., 2009] investigates the problem of reading and exploring response mes-
sages to blogs. As more than 10’000 responding messages are registered on a
well-known blog daily, it is hard for a user to locate helpful comments among
unrelated comments and ad/spam messages. To tackle this challenge, they de-
sign a tool (TRIB) for visualizing bloc articles, considering the semantic weight
between the subject article and corresponding comments.

Identifying relevant and essential papers can sometimes be difficult when re-
searching an academic topic. However, when following references and citations,
there is a great chance to end up with a vast collection of papers. With Paper-
Vis, [Chou and Yang, 2011] set the goal of making literature reviews easy. They
arrange papers as a node-link graph to visualize their complex citation-reference
structures. To arrange the papers within the network, they define the terms
relevance, amount of papers they have co-referenced, level, a measure of the oc-
currence of citations for a selected paper, and importance, being the percentage
of citations within other papers.
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Figure 2.6: Primary visualization of the PaperVis tool [Chou and Yang, 2011].
[Liu et al., 2015] has the focus of their application in the same domain of

academic papers and publications. They try to identify lead-lag relationships
(defining the order in which topics arise among different corpora) in the context
of a specific topic. In the presented tool TextPioneer, they first extract topics
from multiple corpora with a Dirichlet process model and derive a hierarchy from
organizing them. Then every document gets the topic assigned with the highest
probability value. Multiple perspectives of the results are then visualized in a
hybrid tree visualization and a ladder-like visualization.

Figure 2.7: The lead-lag relationships for academic publications in data mining:
Corpora (a) shows publications lead proposals in the selected area. Alignment
(b) shows the lead-lag evolution of the highlighted topic, "Privacy." Entities (c)
show the author’s information, and document snippet (d) enables the detailed
examination of the document [Liu et al., 2015].
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With TopicPanorama, [Liu et al., 2014] combine many of the previously men-
tioned methodologies for analyzing relevant topics. They aim to solve the follow-
ing tasks with their tool:

1. Obtaining an overview of relevant topics. They achieve this by integrating
multiple topic graphs to form a complete visualization of relevant topics
based on their content and relationships with each other.

2. Examining each source’s common topics and specific topics with a level-of-
detail visualization that places common parts near the area of each corre-
sponding source.

3. Examining correlations between topics and exploring the entire picture at
different levels of granularity. By leveraging a topic graph, the user can
quickly get an overview of the topic while gradually zooming into the de-
tailed context.

4. Analyzing temporal patterns of the matched topics by incorporating lead-
lag analysis into the visualization.

In different case studies, they describe the potential application scenarios of
the tool by analyzing news media impacts in the public health sector and can
support analytical needs in the public relation sector.

Figure 2.8: TopicPanorama visualization of topics related to Google, Microsoft,
and Yahoo: Graph visualization, uncertainty filter, lead-lag analysis, topic cloud,
and included documents explorer [Liu et al., 2014].
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The academic research could be more extensive when searching for visual-
ization examples focusing on discussions and meetings with additional summa-
rization capabilities. Also, with commercial tools such as [Talkwalker, 2022],
[Repustate, 2022], and [Vontage, 2022] that can use ASR input for their analy-
sis, they cannot fully summarize the conversation apart from displaying keyword
frequencies. In addition, the explorative aspects that some previously mentioned
visualizations offer are very limited when the data is more unstructured, such as
from meetings and discussions.

Within the goal to explore and discover new methods to visually analyze this
challenging dialogue language, in the next section, the technical terminology is
introduced that covers the existing models and newly developed methods applied
within the experiments of this thesis.

2.2 Preliminaries

This section explains the Natural Language Processing (NLP) techniques that
drive the design and experiments of this thesis. The commonality among most
is to recognize the main patterns of information and features from a text corpus
and help the user to form decisions from them.

2.2.1 Semantic analysis

Semantic analysis is an umbrella term covering a branch of linguistics within the
framework of NLP, interpreting language structures through text analysis. It aims
to automatically interpret sentences, paragraphs, or even documents by identify-
ing their grammatical structure and relationships between individual words in a
given context. The extracted meanings can be utilized for various tasks, crucial
in many ML tasks such as translation or summarization, where the accuracy of
the summary highly depends on the machine’s ability to understand the depen-
dencies of the language data. The three main parts of semantic analysis that
modern automated systems incorporate into their method are:

1. Lexical semantics, for understanding relationships between textual entities
(such as Synonyms, Homonyms, and Hyponyms).

2. Word sense disambiguation, dealing with the definition of which sense a
word is used in, based on its context ("Is orange referring to a fruit or a
color?").

3. Relationship extraction, detecting relationships between two or more enti-
ties within a text ("Shakespeare is the author of Hamlet").
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Different semantic extraction or classification techniques can be applied de-
pending on the information that needs to be extracted. The following parts will
cover some of the main methods used in combination with a visual representation
layer for the context of this thesis.

Sentiment analysis

The idea of sentiment analysis (also called opinion mining) is to understand the
author’s emotional state of a text, depending on the context, it is commonly
framed by five elements, defined in [Liu, 2010] as opinionated text model :

• Opinion holder: Entity that expresses the opinion.

• Object: The target entity of the opinion.

• Aspect: Specific target feature about which the opinion is stated.

• Type / Polarity: Expressing the orientation of the opinion. Most commonly
positive, negative, and neutral, along with an indication of strength.

• Time: Time when the view was expressed by the opinion holder

This prerequisite shows that sentiment analysis is a challenging problem be-
cause even identifying each piece of information is already very difficult, let alone
finding all five and matching them. As an additional challenge, a sentence may
not explicitly mention some pieces of information, but they are implied due to
pronouns, language conventions, and context. Depending on the task, however,
only some of the full quintuple of information needs to be discovered. Some may
be known or even not needed at all. For example, in movie reviews, the object
(movie) evaluated in each review, the time of submission, and the opinion holder
are all known as review sites usually store such information.

Word Score Description

care +2 verb

good +2 adjective, verb

ordinary 0 adjective

complicated -3 adjective

most +100% intensifier

little -50% intensifier

Table 2.1: Dictionary-based resource
example.

Sentiment analysis can be per-
formed on different extraction lev-
els: The aspect or feature level
(what aspect of the object the par-
ticular user likes or dislikes), the
sentence level, and the document
level. There are three approaches
to performing this analysis: Lexicon-
based, Machine-learning-based, and
hybrid approaches.

Historically, the primary go-to
techniques for sentiment analysis
were Lexicon-based, divided into
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two approaches: dictionary-based and corpus-based. In the dictionary-based
method, the classification uses a lexical resource of terms. An example is
SentiWordNet [Baccianella et al., 2010], a predefined dictionary with annotated
synsets (set of word synonyms) according to notions of ’positivity,’ ’negativity,’
and ’neutrality.’ An example displaying the scoring mechanism of this approach
can be seen in 2.1.

On the other hand, in the corpus-based approach, the analysis does not rely
on a predefined rule set. Instead, it is conducted by statistical techniques such
as hidden Markov models (HMM) [Odumuyiwa and Osisiogu, 2019] or k-nearest
neighbors (k-NN) [Kaur et al., 2018].

In the Machine-learning-based category, the techniques can be distinguished
into "Traditional" and Deep Learning methods. The traditional methods cover
models such as Support Vector Machines (SVM) [Ahmad et al., 2018] and the
Naive Bayes Classifier [Dey et al., 2016]. The input to those models can vary
between lexical features, adjectives, adverbs, or parts of speech. In most cases,
Deep Learning models provide better results since they can consider more con-
text, from the sentence to the document level, when performing the classification
task. A recent comparative study from [Nandwani and Verma, 2021] shows this,
stating that in some cases, "...traditional Machine Learning models fail to ex-
tract some implicit features or aspects of the text and that in situations where
the dataset is vast, the Deep Learning approach performs better than Machine
Learning."

For the experiments of this thesis, the sentiment analysis model is Distil-
BERT [Sanh et al., 2019], which is based on a lightweight Neutral Network /
Transformer architecture, from which its general principles will be explained in
more detail in section 2.2.2. Since sentiment classification is just one small part
of the overall solution, the benefit of using DistilBERT is that it is swift in com-
putation, compared to other Transformer architectures, while retaining most of
the language understanding capabilities of larger models. The current model
used is fine-tuned on Glue [Wang et al., 2018] and the SST2 [Socher et al., 2013]
datasets. At inference, the text is fed at document level into the model, returned
are the labels Negative, Positive, together with their probabilities p 2 [0, 1].

Named Entity Recognition

Named Entity Recognition (NER) identifies essential entities from a given text.
Some of the most common categories are:

• Person

• Organization

• Location
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NER can be described as a sequence tagging task, where the model receives
a set of sentences and returns a list of predicted tags:

Given a set of set of documents D = {d1, d2, ..., dn} where each docu-
ment di consists of a word sequence [w1, w2, ...wn], find the entity label
yi 2 {PER, ORG, LOC, MISC, 0} for each word wi, with a scoring
function f(y1, ...yn, w1, ...wn), defining how fit a labelling sequence
[y1, ...yn] is to a given word sequence.

Over the past decades, various techniques have been proposed to solve the
NER task. The initially proposed methods started with hand-crafted rule-based
linear models, intended to fit a specifically structured text corpus
[Jacobs and Rau, 1993] and evolved with technology to more generalizable su-
pervised learning methods such as Decision Trees and Support Vector Machines
[Asahara and Matsumoto, 2003]. More recently, Neural Network based approaches
have been significantly successful when leveraging pre-trained word embeddings.
Introduced by [Mikolov et al., 2013] as a highly granular vector representation of
words, the bag-of-words, and skip-gram models, are still highly utilized today,
with the great benefit of this method being the possibility of linear semantic
inference ("Paris" - "France" + "Italy" = "Rome").

Today, the typical NER models are built on this idea of pre-trained embed-
dings within the encoding-decoding framework, in which the semantics of words
are embedded into the encoder, and the decoder adopts the word representations
to predict their tags. Since word context within a sequence contains important
semantics, mostly deep Neural Network architectures like BILSTM and Trans-
former [Yan et al., 2019] are used to capture the temporal information of the
text.

Keyword extraction

Keyword extraction is an NLP technique of automatically extracting essential
terms, phrases, or words from a text to represent the document concisely. It
assists in the identification of crucial issues and statements. It can be applied in
several applications, such as the summarization of documents, sentiment anal-
ysis, and automatic text clustering/indexing. Typically, methods for keyword
extraction can be grouped into two categories: Supervised and unsupervised.
The unsupervised methods use statistical features of words to extract keywords
utilizing a scoring or weighting metric. Techniques include:

• Use of characteristics of word frequency, position, and occurrence, as well
as capitalization such as the YAKE algorithm [Campos et al., 2018].

• Language models for scoring phrases and informativeness within a single
score [Tomokiyo and Hurst, 2003].
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• Clustering approaches such as hierarchical or spectral clustering to ensure
the semantical coverage of the whole document [Liu et al., 2009b].

• Graph-based ranking algorithms such as TextRank
[Mihalcea and Tarau, 2004].

Among the unsupervised methods, graph-based approaches are the most com-
monly used. They transform the words in a document into a graph, where each
node represents a term or feature extracted from the document, and the edges
represent the relationship between them. The ranking is then done for each word
recursively based on global information drawn from the entire graph.

For supervised methods, keyword extraction is often formulated as a binary
classification problem [Hulth, 2003], where words in a document are classified as
a keyword (1) or no keyword (0). Formally, the supervised keyword extraction
task can be defined as:

Given a set of set of documents D = {d1, d2, ..., dn} where each docu-
ment di consists of a word sequence [w1, w2, ...wn], each word has an
assigned label such that

f(g(di, w)) =

(
1 w is a keyword
0 otherwise.

(2.1)

and g(x) denotes the function for generating features for a given di

and w.

It requires a considerable amount of training data but usually outperforms
unsupervised methods. In traditional supervised learning methods such as Deci-
sion Trees and Support Vector Machines, handcrafted feature vectors with lexical
features and statistical information are used to train the model. This method’s
drawback is handling out-of-vocabulary words, which can usually only be handled
at inference if a word appears in the training corpus.

As with the previously mentioned methods for semantic analysis, advances in
Deep Learning have made Neural Network based approaches more common for
keyword extraction. The main benefit of those approaches is that they remove
the process of manual feature engineering by automatically discovering the re-
lationship between the text input and the keyword output. Furthermore, with
recent studies such as [Zhang et al., 2020], the authors show the potential of this
method to outperform other methods significantly.

Text summarization

Text summarization is a method of automatically decreasing the size of a doc-
ument (or sets of documents), condensing the source text into a smaller and
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compact version while preserving its overall meaning and having minimum loss
in the overall information content. The general problem can be stated as follows:

Given a set of documents D = {d1, d2, ..., dn} where n is the number
of documents and every document di consists of a set of sentences
Sdi = {s1di , s2di , ..., sndi}, find the subset of sentences s ⇢ S S =
{Sd1 , Sd2 , ..., Sdn}, that covers the different topics in the document
collection while reducing the redundancy within the summary.

Generally, a document contains information centered around a central theme,
covering different aspects. As such, a generated summary should cover those
different aspects or subtopics as much as possible. The summarization methods
can be split into two categories: extractive and abstractive. In addition, each has
sub-categories such as single- or multi-document, query-focused, or supervised
and unsupervised methods.

Extractive methods work by picking a subset of existing words, phrases, or
sentences in the reference text to form the summary using statistical features.
Within the generated summary, no additional generated words are introduced.
Usually, the extraction is performed in three steps [Sonawane et al., 2019]:

1. Transformation of the original text document, representing the document
in the form of its elements like paragraphs, sentences, and tokens. Addi-
tionally, pre-processing methods like stop word removal and stemming are
performed in this step.

2. Sentence scoring, using a ranking algorithm to score relevant sentences

3. Sentence selection, generating a representative summary using the previous
steps.

Abstractive summaries can be described as a compressed version of the text,
where source concepts and ideas are reinterpreted and presented in a different
form. It requires language generation capabilities to generate novel words and
phrases not found in the source document. Abstractive summarization is more
flexible than extractive methods, making it more likely to produce fluent and
coherent summaries. However, it can also be more challenging due to its un-
constrained nature. Some challenges can include generating hallucinated content
[Kryscinski et al., 2019] containing factual errors and controlling the produced
summaries. Some proposed methods to reduce those issues, such as guidance
signals, constrain the summary to deviate less from the source document and
allow for controllability through user-specified inputs.

In the early days, extractive summarization was the more prevalent, utiliz-
ing rule-based approaches or statistical methods like bag-of-words or TF-IDF
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extracting sentences containing high-frequency words. However, in recent years,
mainly abstractive methods have been preferred due to their ability to gener-
ate new sentences. With Neural Networks allowing an end-to-end framework
for natural language generation, success has been witnessed on tasks like ma-
chine translation, image captioning, and abstractive sentence summarization
[Chopra et al., 2016]. Lately, sequence-to-sequence models with attention mecha-
nisms such as the Text-To-Text Transfer Transformer (T5) [Ramesh et al., 2022]
proved to produce state-of-the-art performance when being finetuned with task-
specific datasets.

2.2.2 Architectures

The following section covers the main model architectures used within the differ-
ent semantic analysis tasks to extract the different information components from
the text corpus.

Recurrent Neural Networks

Most initial proposed methods used the Recurrent Neural Network (RNN) encoder-
decoder architecture in sequence-to-sequence tasks such as machine translation
or summarization. The encoder reads and encodes a source sentence into a fixed-
length vector while the decoder outputs the target language or summary from the
encoded vector. The whole encoder-decoder system is jointly trained to maximize
the probability of a correct translation given a source sentence.

Generally speaking, RNNs are Neural Networks specialized in processing a
sequence of values. This processing is mainly made possible due to parameter
sharing, which is particularly important when the same information occurs at
multiple timesteps within the sequence. Within RNNs, each output is a function
of the previous outputs, produced using the same update rule.

During training time, the network uses the internal state h
(t) to map the

task-relevant aspects of the input sequence {x(t), x(t�1)
, ..., x

(1)} to a fixed length
vector. One example of this could be in the task of predicting the next word
in language modeling, where it is unnecessary to know the whole sequence’s
information. Instead, a subset is enough to predict the rest of the sentence.

As described in [Goodfellow et al., 2015], the forward propagation of the net-
work begins with the initialization of the hidden state h

(0). Then, for each time
step, the hidden states are calculated using an activation function � such as relu
or tanh, the weight matrices U and H, and the bias vector b:

h
(t) = �(Ux

(t) +Wh
(t�1) + b) (2.2)
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Next, the output values at time t are calculated with the hidden-to-output
weights V and the bias vector c:

o
(t) = V h

(t) + c (2.3)

Lastly, the target predictions ŷ are computed through a scoring function such
as softmax and the outputs o

(t):

ŷ
(t) = softmax(o(t)) (2.4)

In the case of an RNN that maps an input sequence to an output sequence
of the same length, the total loss for a given sequence of x values would then be
the sum of losses over all time steps.

Figure 2.9: The computational graph of an RNN, mapping a sequence of input
values x to a sequence of output values o. The loss function L computes ŷ and
compares this to the target y. The hidden states are parametrized by matrices
U , W , and V , defining the weights between the input, hidden states, and output
[Goodfellow et al., 2015]

.

Encoder-Decoder

However, the input and output sequence is not the same length for many NLP
tasks. The encoder-decoder architecture solves this issue. In this type of RNN,
the aim is to find a representation, also called context C that summarizes the
input sequence X = {x(1), ..., x(nx)}.
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Figure 2.10: The encoder-decoder RNN architecture for generating an output
sequence of y values with an input sequence of x values. The final state of the
encoder is used to compute the context C, representing a semantic summary,
serving as input to the decoder [Goodfellow et al., 2015]

.
To train this architecture, the encoder and decoder are trained jointly to

maximize the average probability P (y(1), ..., y(ny)|x(1), ..., x(nx)), over all sequence
pairs of x and y in the training set. The last state of the encoder hnx is typically
used as representation context for the input sequence, which is provided as input
to the decoder.

Attention

One limitation of this approach when dealing with long sequences is having too
small of a context C that can not correctly represent the whole input sequence.
As the predecessor to the modern encoder-decoder architectures we have today,
[Bahdanau et al., 2014] proposed a concept for a variable-length context vector
C. In addition, they introduced the first attention mechanism responsible for
associating parts of the sequence C to the output sequence of the decoder. With
this approach, the information spread throughout the input sequence can be
selectively retrieved by the decoder, thus relieving the encoder from representing
all information of the source sentence into a fixed-length vector.

In the approach of [Bahdanau et al., 2014], a Bidirectional RNN is used to
read the forward hidden state sequence {h(1), ..., h(t)}, as well as reversing the
order to generate the backward hidden states {h(t), ..., h(1)}. Then an annotation
for each word xi is generated by concatenating the forward and backward hidden
state, which serves within an alignment model, scoring how well the inputs and
outputs match. The context vector C is computed as a weighted sum of these
annotations.
Nevertheless, there is still a critical limitation to this approach. Each sequence
has to be treated sequentially, one element at a time. As a result, both the
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Figure 2.11: A simplified visualization of the attention mechanism. The context
vector C is constructed through a weighted average between the hidden units h(t)
of the Neural Network and the annotation weights a

(t) [Goodfellow et al., 2015]
.

encoder and decoder must wait to complete the t steps to process the t+ 1 step.
This prerequisite means that dealing with a large corpus can be time-consuming
and computationally intensive. The following architecture addresses this problem
by relying entirely on the attention mechanism and proposing a way of parallel
processing the input sequences.

Transformer

Introduced with the research of [Vaswani et al., 2017a], transformer-based meth-
ods have been the state-of-the-art architecture for many NLP problems. In the
previously described attention mechanism, attention is used to form an interme-
diate state between the encoder and decoder.

The difference in the transformer architecture is that it uses an improved
self-attention mechanism, an internal state between layers, deciding which part
of the output from the preceding layer to focus on.

Instead of using a fixed embedding for each token, self-attention produces for
every input sequence a new sequence of embeddings by computing a weighted
average:

Given a sequence of n input vectors with length k X = { ~x1, ..., ~xn}
and their corresponding output attention vectors A = { ~a1, ..., ~an}
with the same dimension, the self-attention operation is a weighted
average between the input vectors X and the attention weights W

A = W ·X (2.5)



2. Background 27

And the attention weights W are calculated as a row-wise softmax.

W = softmax(X ·XT ), wij =
exp(~xi · ~xjT )Pn
j=1 exp(~xi · ~xj

T )
(2.6)

As the dot product between x and its transpose produces values between negative
and positive infinity, the softmax function maps the values between 0 and 1 and
ensures that

P
j wji = 1.

Figure 2.12: The transformer architecture, with the encoder and decoder com-
posed of N stacks of identical layers [Vaswani et al., 2017a]

.
In the actual transformer self-attention, the input representation of each word

vector is more granular. It consists of the query, key, and value vector, derived
by applying a linear transformation to the original input vector, illustrated in
2.13.

In matrix notation, the attention calculation can be written as:

Attention(Q,K, V ) = softmax(
Q ·KT

p
dk

) · V (2.7)
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Figure 2.13: The Attention mechanism with query, key, and value transformations
.

The transformation is multiplying x with the weight matrices (Wq,Wk,Wv),
the values of which are learned during the training process:

~qi = Wq · xi ~ki = Wk · xi ~vi = Wv · xi (2.8)

Then similarity scores s are calculated between the query and key vectors,
representing commonalities (similar vectors will have a larger dot-product than
vectors that share no overlap) and scaled by the input dimension k, which stops
to large input values. The attention weights are then computed by normalizing
the similarity scores with a softmax function:

sij =
~qi
T · ~kjp
k

wij = softmax(sij) (2.9)

Once the output weights are computed, they are multiplied by the value vector
~v to obtain the updated output attention representation:

~ai =
X

j

wij · ~vj (2.10)

Several attention layers are combined and run in parallel to increase the
learned projections of the self-attention mechanism, named by the term Multi-
Head attention [Vaswani et al., 2017a].

In the multi-head attention block consisting of h parallel layers, each attention
head has its weight matrices W

i
q ,W

i
k,W

i
v. For the input vector ~xi, every head

produces a different output vector ~ai
i. To reduce the dimensions back to k, they

are concatenated and passed through a linear transformation. By chunking the
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input vector into smaller batches, the attention mechanism with multiple heads
in parallel is roughly as fast as applying a single self-attention mechanism with
the full input vector.

Figure 2.14: The Multi-Head attention
block [Vaswani et al., 2017a].

For most transformers, this
multi-headed attention is wrapped
together with other components to
form a repeatable block, as illus-
trated in 2.12. In this block,
the Multi-Head attention is fol-
lowed by a normalization layer,
a simple two-layer fully connected
feed-forward Neural Network, which
processes each embedding indepen-
dently, followed by another normal-
ization layer. Both encoder and
the decoder have the same build-
ing blocks, the main difference being
that the decoder has two attention
sublayers.

The decoder’s first Masked Multi-Head Attention layer ensures that the gen-
erated tokens at each timestep are only based on the past outputs and the current
predicted token. The second Encoder-Decoder attention layer performs the at-
tention operation with the intermediate representations of the decoder acting as
queries. Using the attention layer on the decoder output serves the purpose of
learning how to relate tokens from two different sequences, e.g., the source text
and its summary, together [Tunstall et al., 2022]. Once the output is generated
from the decoder, a softmax function assigns a probability for each token.

With transformers, modeling relationships between words has become eas-
ier than ever. Since the proposal of its initial architecture, there have been
many variations for different tasks, such as BERT [Devlin et al., 2018] and T5
[Raffel et al., 2019], making it the go-to architecture for many modern NLP ap-
plications.

2.2.3 Performance metrics

Since the development of automatic text processing methods, there has been a
need to evaluate the generated text that allows for comparison methods. While
human evaluation is invaluable for getting the first glance at a model’s perfor-
mance, analyzing extensive text collections is very expensive and can take weeks
or months to complete. Especially with models under active development, with
daily changes and improvements, this can be a big problem. That is why the
need for an automated system for evaluating the performance of NLP techniques
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has evolved. The two most prominent are shown in more detail in the following
sections.

BLEU

Since its development, BLEU [Papineni et al., 2002] has been one of the predom-
inant ways to measure the performance of machine-produced text, especially in
machine translation. Its main benefit is its independence from a specific language
and easy computation.

Generally, BLEU compares n-grams of the predicted text with the n-grams of
the reference text, counting the number of matches. The comparison is made us-
ing a precision score, while matches are position-independent. The scoring metric
proposed is a modified unigram precision that accounts for machine translating
systems that tend to overgenerate high-probability words. This modification clips
the total count of each generated word by its maximum count in the reference
sentence and divides the sum of the clipped counts by the total number of gen-
erated words. For an entire corpus, the modified precision score pn is extended
to all sentences:

pn =

P
C

P
n�gramCountclip(n� gram)

P
C

P
n�gramCount(n� gram)

(2.11)

C is a predicted candidate/sentence in the corpus and n � gram 2 C. This
incorporates all n-gram precision scores into one metric; the geometric mean taken
for each score pn, considering precision decreases exponentially as n increases,
requiring logarithmic averaging.

BLEU = BP ⇤ exp(
NX

n=1

wnlog(pn)) (2.12)

N is the number of n � gram lengths considered, and the brevity penalty BP

is a penalizing factor that compares the candidate translation length with the
reference text length:

BP =

(
1 if c > r
exp(1� r

c ) if c  r
(2.13)

Where c is the length of the candidate translation and r is the reference corpus
length.

ROUGE

As a closely related measure, ROUGE [Lin, 2004] is another measure for evalu-
ating machine-generated text, focusing on recall, while the previously mentioned
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BLEU score is more precision-oriented. At its core, ROUGE is an n-gram recall
between a candidate sentence and its reference sentences:

ROUGE-N =

P
S

P
n�gramn

Countmatch(n� gramn)P
S

P
n�gramn

Count(n� gramn)
(2.14)

n is the length of the n-gram, and Countmatch(n � gramn) represents the max-
imum number of matches between the candidate text and its reference texts.
When multiple references are present for one candidate text, the final score is
computed by taking the pairwise maximum of each candidate sentence s and its
references ri.

ROUGE-Nmulti = argmaxiROUGE-N(ri, s) (2.15)

The ROUGE-N metric is only one of multiple ROUGE measurements pro-
posed in [Lin, 2004]. There are other variations, such as:

• ROUGE-L, based on the longest common subsequence

• ROUGE-W, a weighted version of ROUGE-L, accounting for consecutive
matches between the candidate and target

• ROUGE-S, which calculates skip-bigram co-occurrence statistics, measur-
ing the n-gram matches while allowing for arbitrary gaps

In most studies that evaluate their performance on the ROUGE metric, multiple
variations are reported together to display a full picture since they all capture a
different aspect of the evaluation.

Sequence labeling evaluation

The usually reported metrics for the sequence labeling tasks, such as Named
Entity Recognition, contain a precision, recall, and f1 score. In the model eval-
uations, the implementation of Seqeval [Nakayama, 2018] is used for computing
the scores, which are defined as:

Accuraccy =
TP + TN

TP + TN + FP + FN
(2.16)

Precision =
TP

TP + FP
(2.17)

Recall =
TP

TP + FN
(2.18)

F1 = 2 ⇤ Precision ⇤Recall

Precision+Recall
(2.19)

TP represents the positive cases correctly predicted, and TN represents the
negative cases correctly predicted. FP and FN stand for the misclassified posi-
tive and negative cases.



Chapter 3

Design

This chapter is inspired by the primary goal of building a visualization that
presents a text’s essential information in the most time-efficient way. First, it
gives an overview of the essential components of the visualization layer with
their design choices, then shows the different applied NLP techniques used for
data preparation and processing.

3.1 Problem definition

With the various available visualizations presented in 2.1.3, finding and defining
the "best" one is challenging. As with all designs, it is important to define a
problem statement to be solved clearly. For this research, the general problem
that is to be solved can be stated as follows:

The steady increase in texts from meetings and conversations affects
how people process information. For example, recollecting critical
information in a reasonable amount of time becomes more complex
as text increases.

Having this statement in mind, the next important thing to define is the two
questions:

1. Who is experiencing this problem?

2. Where is the problem happening?

The first question is a very crucial one. In a typical business environment,
the daily flow of text conversations happens on all different stakeholder levels.
The critical information can completely differ from someone else’s depending on
the individual’s position. For example, take a meeting where the conversation
was transcribed for securing purposes. There might be internal business repre-
sentatives, technical consultants, and external stakeholders. Here, the business
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representative might be interested in a more general summary. Some technical
details are probably more important for a specialist, while the external stake-
holder might look for specific summaries such as "strategic decisions."

The answer to the second question is probably a vast one. In today’s envi-
ronment, there are countless places where one encounters conversations in text
format. It can be a casual chat on social media, a back-and-forth email con-
versation, messenger group conversations, and transcribed meetings (online or
physical). Even though the general problem exists in all those cases, it would
require extensive time and resources to cover them in this research. For this rea-
son, the visualization will mainly cover transcribed meeting data, while exploring
its expansion for incorporating text collections from other domains remains an
open task.

To summarize the main takeaways from the discussion above, the visualization
has to be dynamic and interactive based on what information a given user wants
to see, including the ability to control:

• Granularity (how much context is presented),

• Dimension (is the presented information specific to a point in time) and,

• Entity (should the visualized information be about a specific speaker or a
specific word)

As a constraint, the boundary for the visualization layer is set on meeting
transcripts, focusing on this specific domain.

3.2 Design process

Having defined the main structure and points that should be addressed, the next
step for this thesis was the process of iteratively designing parts of the solution,
gathering feedback, and going back to improving the design. Below, this process is
shown, together with the first drafts, focusing on the three main aspects: Control
of Granularity, Dimension, and Entity.

3.2.1 First iteration

The first ideas brought to design focused mainly on the time dimension. The
idea here is that a given user can manually scroll through a meeting transcript,
or even an automatic animation is played at a given speed to minimize the time
needed to see all information. Essential words or phrases in the transcript are
highlighted, while the overall topic for a given time section is displayed in a
prominent position. Figure 3.1 and 3.2 show two example design snippets of this
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first draft. Both designs show the full transcript text with the timeline on the
vertical axis, mimicking a scroll or chat experience.

Figure 3.1: Visualization design in the first iteration. The transcript is displayed
in its detailed form, along with highlighted timestamp information and important
words.

The first figure shows the transcript in a more enlarged and spaced layout.
In contrast, for the second figure, speaker information is also included, having an
assigned color for each speaker and a chat-bubble layout as in most messenger
applications.

Figure 3.2: Visualization design in the first iteration. A more messenger-like
visualization, displaying the entire transcript with the inclusion of speaker infor-
mation.

In the next step, self-evaluation, as well as the gathering of feedback, was
done. Then, with the primary goal in mind of maximizing the intake of infor-
mation in the most time-efficient way, the following points for improvement were
noted:
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1. The quantity of information presented is too large. It is unnecessary to see
the entire context simultaneously to get a primary overview of the discussed
topic.

2. There is only a limited benefit of knowing when an utterance was made. In
the current design, the time dimension is too predominant.

3. The differentiation of speakers is valuable and should be kept in some form.

While solving the problem of controlling the dimension aspect, the points
above show that the control of granularity and entity are not addressed with
this first draft. Therefore, in the next iteration, proposals are shown to tackle
those limitations.

3.2.2 Second interation

The subsequent designs bring some new components into the picture. For one,
additional information about the participants in the meeting is shown, and the
ability to control what is displayed is done more interactively based on user
actions.

In the design proposal, displayed in 3.3, the speakers are grouped in a bubble
chart, the size measured by the number of words uttered by a given speaker. The
other component is a clickable word-cloud component with the essential n-grams
of a given time segment. This component is interactive in that when an n-gram
is clicked. The underlying transcript shows the specific utterance where this n-
gram occurs.

Figure 3.3: Visualization design in the second iteration. A bubble chart shows
individual speaker contributions and a clickable word cloud.

Another design idea was to show even less information on the first view - to
present the main keywords and then, based on user actions, expand the specific
information that interests the user, seen in figure 3.4.
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Figure 3.4: Visualization design in the second iteration. Three different levels of
context can be explored interactively based on user actions.

Here in the first expansion level, summary sentences are presented on click of
a specific keyword, showing only information about this keyword. Next, cropped
utterances involving this keyword are shown on the second expansion level, giving
more context to the summary sentence. Finally, the third expansion shows the
complete utterance with the neighboring utterances.

In addition to the keyword expansion navigation, components are tested that
present additional information about different aspects of the conversation (fig-
ure 3.5). The first component shows the topic distribution along the timeline,
indicating at what segment of the conversation a given keyword was discussed.
The second component shows the sentiment across time, together with an over-
all sentiment presenting the average mood of the discussion. Lastly, the third
component shows a similar bubble chart as in figure 3.3, representing the indi-
vidual speaker’s contribution but also showing at what point any given speaker
was talking.
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Figure 3.5: Three additional components present different aspects of the conver-
sation—top: topic distribution, middle: overall sentiment, and bottom: speaker
contribution.

Before going to the final implementation, another evaluation and feedback
round were made for the current design proposals, which brought up the following
points:

1. The different levels of expansion depth are valuable as the user can decide
which context is necessary to gain the amount of knowledge needed.

2. There is still too much weight on the time dimension, which brings lim-
ited value and should only be for specific components, such as sentiment
analysis.

3. An additional component that shows the flow of the discussion would be
interesting, depicting a sort of intensity (numerous speaker changes in a
short interval representing an intense discussion or monologue, while no
speaker changes represent a single monologue)

4. General metadata should be added that shows the duration of the meeting
and number of participants
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With the intent to include this additional feedback in the final solution, the
following section shows how the different aspects are incorporated and imple-
mented into a fully functional prototype.

3.3 Final design and implementation

As with many NLP solutions, unique techniques only bring their total value if
utilized in conjunction. The final design uses a more dashboard-like layout to
consider this, where multiple components can be brought together to provide
as much essential information as possible. Figure 3.6 presents this layout, the
components of which will be described in more detail, while the data processing
and modeling needed for each component will be described in ??.

Figure 3.6: The final design of the visualization layer, combining multiple com-
ponents into a dashboard.

The Metadata component contains general information about the meeting
or discussion. For example, it shows the number of participants, meeting length,
and the speaker turns (how many times the speaker changed during the meeting).

In the Entities component, the different extracted entities are, on the one
hand, presented in a bar chart together with the occurrence of their categories
(person, location, organization, and miscellaneous), and on the other hand as
scrollable word chips, sorted according to their appearance in time.

The Sentiment vs. Speaker changes graphs show two types of information
along a time axis (the time axis in the example figure 3.6 is grouped into one-
minute time segments). The line chart on top shows the sentiment per time
segment, while the bottom chart depicts the speaker changes.
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The aim of the Speaker Network is to show interactions between the speak-
ers. The number of utterances defines the size of the individual speaker nodes,
while the edges between speakers represent the number of subsequent turns be-
tween two given speakers.

In the Summary sentences and Keywords components, the extracted im-
portant information is shown on two levels of granularity. The content in both
components is ordered by time and is scrollable in the Entities component.

3.3.1 User interactions

All words or n-grams displayed in the Entities and Keywords component are
clickable and change the state of the visualization. When a specific n-gram is
selected, the Summary sentences component only displays sentences containing
that word.

Figure 3.7: Visualization dashboard with the keyword "content" as a filter selec-
tion for the summary sentences.

In this way, a given user can control the specific information based on their
interest in a particular topic. The next filter-based user interaction that can be
done is selecting a specific time segment. This method allows the user to see
summaries specific to a certain time.

With a timeframe selected, the components change their content to display the
participants that spoke, the keywords and summary sentences, and the extracted
entities specific to that time segment (figure 3.8).
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Figure 3.8: Visualization dashboard with a specific time frame selected.

The dimension and entity aspects of the visualization should now be con-
trollable by the user with these described methods. Additionally, the granular-

ity of context is presented with three different granularity levels. The first level
is the keywords, the second level is the summary sentences, and the last level is
the summary sentence’s context, which can be expanded by clicking on a specific
sentence.

Figure 3.9: Selecting a specific sentence displays the full transcript text used to
generate the sentence.

The methods used to process the raw data and prepare it for the visualization
layer are presented in more detail in the next part.



Chapter 4

Models and algorithms

For simplicity, the backend layer is implemented as an API with different REST
endpoints that serve the data to the visualization components. Each API end-
point has an underlying data processing and modeling technique described in this
section and evaluated against different methods.

4.1 Entities

As a secondary component, the entity extraction uses a pre-trained transformer-
based model. Specifically, a transformer-based model, trained on the
Conll03 [Tjong et al., 2003] dataset, extracts the four categories: person, loca-
tion, organization, and miscellaneous. In addition to providing extracted entities,
the total number of each category is also presented in the visualization layer.

In the first evaluation in table 4.1, some of the standard models (Appendix
A.1) for NER are compared on the conll03 test set. This test set contains 3453
word sequences and their corresponding NER-tags: {O, B-PER, I-PER, B-ORG,
I-ORG, B-LOC, I-LOC, B-MISC, I-MISC}. The B- tag describes a single entity
or the beginning of a multi-word entity, while the I- tag describes words within
a multi-word entity and always follows a B- tag. The 0 tag defines words, not as
part of any entity.

Precision Recall F1 Accuracy Inference time

BERT large 0.909 0.922 0.915 0.983 46.48s

BERT 0.893 0.909 0.901 0.980 25.93s

DistilBERT 0.895 0.904 0.900 0.980 16.41s

Electra large 0.920 0.921 0.920 0.869 47.06s

RoBERTa large 0.921 0.935 0.927 0.870 49.12s

Table 4.1: Comparison of performance and runtime of different models on the
Conll03 test dataset

41
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The table shows that although most models perform similarly, the inference
time can vary significantly between the fastest (DistilBERT) and the slowest
model (RoBERTa), with is slightly below the best result of 94.6% recorded so
far on the Conll03 dataset [Wang et al., 2020b]. As most meeting transcripts,
especially from an ASR system, produce non-perfect data, another important
factor that has to be considered is the performance of the individual models on
uncased inputs. Since all entities are capitalized in English, recognizing them is
significantly easier than with an all-lowercase input. The same dataset is trans-
formed into lowercase input sequences to test this behavior and again fed to the
models for inference. Table 4.2 shows the result of this evaluation.

Precision Recall F1 Accuracy Inference time

BERT large 0.734 0.278 0.403 0.878 48.16s

BERT 0.893 0.909 0.901 0.980 25.80s

DistilBERT 0.895 0.904 0.900 0.980 16.49s

Electra large 0.920 0.921 0.920 0.869 47.06s

RoBERTa large 0.908 0.799 0.850 0.865 49.41s

Table 4.2: Comparison of performance and runtime of different models on the
Conll03 test dataset with lowercase input sequences

While the performance of most models is similar for a lowercase input, espe-
cially the large BERT model and the RoBERTa model, to some extent, show a
decrease when running inference on uncased sequences.

As a final evaluation, a self-labeled dataset (Appendix A.1) is created from
transcripts of short business meetings, each lasting between 5 and 15 minutes.
The number of sequences in this dataset is 509, each with its corresponding NER
tag with the categories described at the beginning of this section. This dataset
should give more insights into how the selected model performs in a natural
environment where the input is distorted and contains transcription errors.

Precision Recall F1 Accuracy Inference time

BERT large 0.613 0.711 0.658 0.985 6.66s

BERT 0.596 0.644 0.619 0.983 3.83s

DistilBERT 0.582 0.597 0.589 0.983 2.33s

Electra large 0.621 0.651 0.636 0.971 6.71s

RoBERTa large 0.712 0.731 0.721 0.973 7.14s

Table 4.3: Comparison of performance and runtime of different models on the
self-labeled dataset for NER
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Here, on this more impure dataset, the gap in performance between the dif-
ferent models is quite clearly visible. It also shows with RoBERTa that the model
with the longest inference time also performs best.

While the computation time is essential for the implementation as part of the
backend layer, different NLP techniques can be applied parallel within different
workers, with results being cached. This is why for entity recognition, the model
is picked which performs best in terms of F1 measure (RoBERTa) while taking
the tradeoff of a longer inference time into account.

4.2 Sentiment and Speaker Change

Pretrained on the SST2 [Socher et al., 2013] dataset for binary classification, the
sentiment data is produced with a sentiment classification model that outputs
Positive (1) and Negative (0) tags at the sentence level. For a generation of a
graph along the time axis, the individual sentiment tags tag 2 {1, 0} are aggre-
gated per time frame:

scoret =
kX

i=0

tagi (4.1)

where k is the number of sentiment tags within a given time segment.

The first evaluation in table 4.4 shows some selected sentiment classification
models (Appendix A.2) that were evaluated on the SST2 test set. This test set
contains 872 sentences together with their corresponding sentiment tag:

Precision Recall F1 Accuracy Inference time

DistilBERT 0.897 0.930 0.914 0.911 3.87s

RoBERTa 0.938 0.946 0.942 0.940 6.29s

BERT 0.796 0.818 0.807 0.800 6.18s

MultinomialNB 0.512 0.977 0.672 0.514 0.31s

LogRegression 0.549 0.760 0.637 0.560 0.34s

Table 4.4: Comparison of performance and runtime of different models on the
SST2 dataset

Together with the pre-trained transformer architectures, the table shows two
more traditional Machine Learning methods in Naive Bayes and Logistic Regres-
sion for comparison. While the inference on those methods is very time effi-
cient, the performance decreases significantly from the transformer-based meth-
ods. Nevertheless, with 94% accuracy, the RoBERTa model achieves almost
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state-of-the-art performance on the SST2 dataset, which is currently set at 97%
with the Smart-RoBERTa model [Jiang et al., 2019].

In the next experiment, the same models are tested on a self-labeled dataset
(Appendix A.2), created from transcripts of short business meetings, containing
509 sentences in total, together with their sentiment tag (tag 2 {1, 0}):

Precision Recall F1 Accuracy Inference time

DistilBERT 0.883 0.696 0.778 0.705 2.44s

RoBERTa 0.875 0.789 0.830 0.739 3.75s

BERT 0.785 0.571 0.662 0.566 3.63s

MultinomialNB 0.748 0.926 0.827 0.713 0.12s

LogRegression 0.832 0.368 0.510 0.475 0.12s

Table 4.5: Comparison of performance and runtime of different models on the
self-labeled dataset for Sentiment

Interestingly, the Naive Bayes implementation performs very well on this
dataset and almost outperforms the RoBERTa transformer, only taking 0.12s
for inference. One reason could be that the class distribution of the self-labeled
dataset is different from the SST2 dataset. In the SST dataset, the positive classes
represent 50.9% of the labels, while in the self-labeled dataset, they represent
74.2% which favors a model which tends to overpredict negative labels.

The speaker change graph is built purely from the transcript data, where a
speaker change is defined as a switch from one participant to the next. All changes
in speakers are counted and aggregated for a given time segment to represent the
total number of changes for this given segment.

changest =
kX

i=0

changei (4.2)

Where k is the number of changes within a given time interval, this metric
should indicate which type of conversation ( active or more monologic discussion)
occurs during the segment.



4. Models and algorithms 45

4.3 Speaker Network

The nodes of the speaker network represent each participant in the meeting. The
size is calculated utilizing the duration of each participant’s utterances. For a
given speaker, the size of the node is determined by:

sizei =

PT
t=0 sit �min(S)

max(S)�min(S)
(4.3)

S represents the sentence durations for all speakers and sit a sentence for
speaker i, resulting in a value between 0 and 1 for each participant’s node. The
edges between the speakers intend to indicate which participants are interacting
with each other. The thickness of each edge is determined by how many subse-
quent turns two speakers have. For two given speakers, A and B, the edge weight
is calculated as follows:

w(A,B) =
X

turn(A,B) +
X

turn(B,A) (4.4)

where

turn(A,B) =

(
1 if Speaker B follows Speaker A
0 otherwise

(4.5)

4.4 Keywords and Summary sentences

The core parts of the backend layer are the keywords and summary sentences,
as they can provide the most information to the user. One visualization layer
functionality dictates that keywords must be tightly coupled with the summary
sentences to apply a filter. To achieve this, the summary sentences generated
drive the keywords, which are extracted using a custom algorithm.

4.4.1 Summary sentences

In the first step, a BART-based transformer model for summary extraction is
trained on specific conversational datasets such as QMSUM [Zhong et al., 2021],
SamSum [Gliwa et al., 2019] and general summary extraction datasets such as
SemEval2017 [Augenstein et al., 2017], and MAKED [Verma et al., 2022]. The
training was done for 34000 steps on a Tesla T4 GPU. Table A.5 shows the model
parameters used.

For summary extraction, the self-trained model is compared with other com-
monly used models on the SamSum test set. This test set contains 819 source-text
and summary pairs. The evaluation results can be seen in the following table 4.6
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Rouge1 Rouge2 RougeL Inference time

BART finetuned 0.479 0.216 0.422 486s

BART large 0.403 0.203 0.312 496s

DistilBART 0.399 0.202 0.307 307s

T5 0.388 0.161 0.295 226s

Table 4.6: Comparison of performance and runtime of different models on the
SamSum test set

As expected, the fine-tuned BART model outperforms the other, more gen-
eral architectures while being competitive with the best-reported RougeL score
on the SamSum dataset of 0.484 [Rohde et al., 2021]. Like in previous experi-
ments, the performance of the selected models is also evaluated on a self-labeled
dataset (A.3) for a better overview of what can be expected in a realistic setting.

Rouge1 Rouge2 RougeL Inference time

BART finetuned 0.489 0.255 0.391 9s

BART large 0.481 0.236 0.359 9s

DistilBART 0.459 0.241 0.347 6s

T5 0.396 0.185 0.305 3s

Table 4.7: Comparison of performance and runtime of different models on the
self-labeled dataset for summary generation

While still showing significant results, one thing must be noted about the self-
labeled dataset. In the set context of a meeting, transcripts are mainly generated
with an ASR system which, to date, produces imperfect results depending on
many factors such as the recording setting, speaker’s language expertise, and
model tuning. These introduced ASR errors were corrected in a manual post-
processing step in the self-labeled dataset.

Intuitively, the input into the summarization model should influence the qual-
ity of the predictions. As an experiment to verify this case, the original audio
recordings on which the self-labeled dataset is based are manually distorted and
fed into different ASR systems, producing transcripts of different quality. The co-
sine similarity between each output and the corrected (gold) output is measured
to see the ASR output’s impact on the summary quality. Examples of different
sentences with their respective similarity measure to the ground truth can be
seen in table 4.4.1. This approach produces 14 transcript outputs with cosine
similarity ranging from 0.55 to 0.95. Each output contains one full transcript
containing 175 sentences.
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Cosine similarity ASR output

0.18 yes from oyesterday supporte trop with a d p obdimisa-
tion the did some more work on the concept of the bate
trange

0.42 yes from my side, I supporte trop with a d p obdimisa-
tion the did some more work on the concept of the bate
trange

0.75 yes from my side, I supported trop with a d p opti-
mization the did some more work on the concept of the
budget application

1.0 (gold) Yes, from my side, yesterday I supported the DPV op-
timization, did some more work on the concept of the
budget application

Table 4.8: Cosine similarities between different ASR outputs and the corrected
gold output

In the next step, the finetuned model is used to produce summary sentences
for each transcript version to evaluate the effect of the input on the produced
summaries. Each summary is evaluated in terms of RougeL performance against
the correct summary. In Figure 4.1, the cosine similarity between the ground
truth (gold) and each transcript is plotted against the RougeL of the produced
summary. A linear regression is added to the visualization to check for possible
relationships. The listed data points of the plot are in table A.4.

Figure 4.1: Datapoints with the cosine similarities of different ASR outputs
against their produced summary RougeL metric.
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This figure shows an obvious linear relationship between the quality of the
input and the quality of the produced summary with the regression equation of:

Y = 0.41X + 0.11 (4.6)

Another interesting finding is that the summary is still grammatically reasonable,
even with poorly transcribed source texts. The following two example sentences
show this behavior. When comparing the two sentences, the first summary has
some correct information but includes semantical errors.

Cosine similarity Generated summaries

0.55 Ivan has almost finished working on a conting page and
is going to move it staging. Philipp is looking forward

to the meeting and will take a look at the page if it
works.

0.89 Ivan will move the content page to staging. The other
people will keep an eye on staging and will text Ivan if
they find anything wrong with the navigation.

Table 4.9: Generated summaries with different input quality

This is an important finding in a practical setting: summaries might be mis-
leading by including false information if the source text is insufficient.

Additionally, when using the summaries within the visualization layer, the
meeting transcript is split into fixed-length segments and fed into the trained
summarization model. For each segment, between one to five summary sentences
are generated. The amount depends on the content and information within the
source segment.

4.4.2 Keywords

After creating summary sentences, the keywords are generated based on the
source text and the generated summary sentences. The underlying assumption
is that any n-gram that overlaps within the source text and its condensed sum-
mary is crucial and must be identified as a keyword. Additionally, it is worth
noting that these keywords serve as a filtering mechanism in the designed appli-
cation, and therefore they must align with the generated summary sentences to
be effective.

The algorithm used for extraction is two-part. The first part creates a
hashtable out of the tokenized source text. In this hashtable, the keys are formed
from individual words, with the values being sets of their successive words (Al-
gorithm 1).
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Algorithm 1 Source text to hashtable conversion
list tokenize(source_text)
seen set()
word_links hashtable

for i in list do

if i < len(list)� 1 then

next_word list[i+ 1]
else

next_word None

end if

if list[i] in seen then

push next_word to word_links[list[i]]
else

word_links[list[i]] set([next_word])
end if

seen[list[i]] list[i]
end for

Algorithm 2 Keyword matching algorithm
word_links hashtable

list tokenize(summary)
max_ngram_size int

visited_idxs set()
found_keywords []
for i in list do

if i not in visited_idxs and list[i] in word_links then

keyword_ngram [list[i]]
push i to visited_idxs

j = 1
is_match True

while j < max_ngram_size and is_match do

if len(list) > i+ j and list[i+ j] in word_links[list[i+ j� 1]] then

push list[i+ j] to keyword_ngram

push [i+ j] to visited_idxs

j  j + 1
else

is_match False

end if

end while

push keyword_ngram to found_keywords

end if

end for

In the next step, the algorithm looks up each word of the tokenized summary
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text in the created source text hashtable. If the hashtable contains the word, the
following word at index position i+ 1 gets checked for its existence in the value
set of the hashtable key. If it exists as the next word in both texts, an n-gram of
size two is created, and the successive word at i + 1 is used as a new hashtable
key for lookup. This process is repeated up to the maximum n-gram size for
matching subsequences (Algorithm 2).

An example that shows this matches visually can be seen in 4.2. After to-
kenization and stop-word removal, the source text is presented on the y axis,
while the tokenized summary sentence is seen on the x axis. The blue marks
show matches between the source text and its summary, while fields that are
diagonal adjacent represent keywords consisting of multiple words.

Figure 4.2: Matching words between the source text and its summary. Diagonal
adjacent matches form multi-word keywords.

For the example above, the formed keywords would be "lot work" and "quick
coffee," which can already give a good intuition about the contents of this sen-
tence. Together with the summary sentences, the keywords provide a quick way
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to get an overview and filter only the information needed as described in 3.3.1.

With the visualization layer and the underlying models in place, the next
part analyzes all the system components with a user test, evaluating the built
methods on different scenarios and questions.



Chapter 5

User test

5.1 Setup

In this chapter, a qualitative user study is designed and conducted to evaluate the
effectiveness of the proposed interface, with the primary goal of understanding
the essential information of discussions within a short time. Within this study,
the usefulness and usability of the proposed interface are compared with those of
a baseline system.

A 50-minute meeting transcript from the AMI corpus is used for the study.
In the transcribed meeting, the four participants are having a product meeting
about the functional design of a new remote control. The participants have
project manager, designer, marketing, or user interface roles. They introduce
new requirements and present their research in each category to the group, such
as customer needs, target group, and pricing.

The baseline system is provided as a formatted word document with a speaker
and time information, with standard tools such as text search enabled. Each test
user is either assigned to answer the questions using the designed application or
provides the baseline by answering the questions utilizing purely the transcript.

The user test is conducted on the LimeSurvey 1 platform between the 09.
January and the 15. February 2023, with most participants being students or
work colleagues. The users that participate via the designed application are
suggested to view a two-minute instruction on the general usage of the tool and
how to interact with it to find the necessary information. The study task is
designed to be solved within a reasonable time frame of 15-25 minutes.

5.2 Task design

Within the task, eleven questions about the meeting are to be answered. Five
have the multiple-choice, categorical answer, while the other six allow for a free-

1https://survey.webcenter.ch/limesurvey2018
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text response. The response and the time needed to answer the question are
stored for each question. Questions cover different aspects of the meeting and
contain some general/overall questions and topic-specific questions.

General / Overview

One set of questions is more general. It aims to evaluate the ease and efficiency
of the tool allowing the user to access high-level information about the meet-
ing. Considering this should help determine whether the summarization tool is
effective for quickly and easily grasping the overall purpose and content of the
meeting. Some of the questions asked are:

• Who was present at the meeting?

• What was the agenda of the meeting?

• Who led the discussion?

Topic-specific

The second set of questions is more topic-specific and asks the user about the
specifics of a particular topic covered in the meeting. Again, this should help
determine whether the tool can capture all the essential information. Those
questions ask for more context with examples such as:

• What age is the target customer group?

• Why was this target group picked?

• What are the customer needs?

The questions are designed to cover a range of difficulty levels to ensure
that the task is suitable for participants with varying levels of familiarity with
the meeting and their affinity to online tools, ensuring that all participants find
the assignment challenging but straightforward enough. After the user test, an
additional question is appended to the task, prompting participants to provide
optional feedback regarding their likes and dislikes about the experience with the
meeting summarization tool. This question aims to identify areas for improve-
ment that may have yet to be captured through the structured set of questions.

With the user test designed, the next step is to evaluate the tool’s effectiveness
compared to the baseline transcript. In this section, the data collected from
the user test is analyzed, and the results are discussed, providing insights into
the strengths and weaknesses of the tool and potentially identifying areas for
improvement.
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5.3 Evaluation

The first evaluation of the user test compares the number of participants that
took part in the test via the designed application, compared with the number of
participants that took part in the user test using purely the transcript as the aid
method.

The raw data collected from the user test revealed that the number of entries
with at least one answer filled out was 72 for the application and 25 for the tran-
script, shown in figure 5.1. However, a preliminary filtering step was performed
to ensure an unbiased evaluation of the results, particularly when analyzing the
time to complete each answer. This step involves retaining only those entries
that exceed a 30% threshold for correct answers, accounting for the possibility of
incomplete or inaccurate responses that may have skewed the results.

Figure 5.1: Number of participants in the User Test.

In detail, the filtering process is accomplished by comparing every answer
submitted in the test to a predefined set of reference words that serve as the
benchmark or ground truth. In the case of multiple-choice answers, an exact
match is considered valid, while a match with at least one of the reference key-
words is deemed sufficient for questions requiring free-text responses.

An example is provided in table 5.1 for one of the questions, "Why was

this target group picked?" which concerns the discussion of the target group
the team is targeting with their remote control. The correct reference keywords
for this question, as mentioned in the transcript, include: "expendable income,"
"use technology," "young professionals," "computer daily," and "money to spare."
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Answer Valid

"...young professionals that have expendable income" Yes

"...willing to use technology" Yes

"...they use a computer daily" Yes

"...it’s the older generation " No

Table 5.1: Initial filtering of the answers. Answers with matching keywords to
the reference are considered valid.

To pass the initial filtering step, at least 30% of the responses provided by a
participant must be valid when applying this approach to all questions, leading
to a total number of 25 answers for the app, respectively 14 for the transcript
after filtering.

5.3.1 Correctness of the responses

As the next step, the overall quality of the responses is evaluated, meaning the
correctness of the answers.

Figure 5.2: Percentage of chosen categorical answers in the user test, comparing
the application with the answers from utilizing merely the transcript.
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The questions are split according to their response type (multiple-choice or
free-text) to achieve this. Figure 5.2 shows the results for the questions with
multiple-choice, categorical answers. The score for comparison is shown in per-
centages to adjust for the reduced number of responses in the transcript version
of the user test.

It should be noted that the initial question served as a "concentration test"
for the participants, meaning that only those who provided correct solutions were
permitted to proceed with the test, resulting in a 100% score for this question in
both categories. The initial rationale behind this decision was to get more quali-
tative responses and reduce the likelihood of incomplete or erroneous responses,
improving the accuracy and reliability of the findings.

The presented figure indicates that the responses across all categories are pri-
marily comparable concerning their accuracy. The most significant discrepancy
observed is a modest 14% deviation in the question related to the selling price of
the remote control. Notably, in each of the questions posed, the category with
the most responses aligns with the expected correct answer.

A rating system analogous to the initial filtering process is implemented to
assess the accuracy of the free-text responses which fall within the other category.
For each question, the answer is evaluated to determine if it contains any of the
designated target words. If a target word is present, a score of 1 is assigned;
otherwise, a score of 0 is recorded. The results of this scoring can be seen in
figure 5.3.

Figure 5.3: Percentage of chosen free-text answers in the user test, comparing
the application with the answers from utilizing merely the transcript.
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Once again, the scores attained by users responding to the questions via the
app and the transcript are comparable. The most significant deviation observed
is 23% in favor of the transcript users for the question "What was the agenda
of the meeting?" and 25% for users utilizing the application when responding
to the question "What are the main two extremes of existing remote controls?"
respectively.

The following figure 5.4 provides an overarching comparison of all questions,
contrasting those featuring categorical, multiple-choice answers with those con-
taining free-text responses.

Figure 5.4: Overall comparison of the correctness of the responses between the
categorical and free-text responses and the application vs. transcript.

5.3.2 Response times

In addition to evaluating the correctness of participants’ responses, the speed at
which they provided their answers is also measured as part of the user test. For
each question, the time taken to answer was recorded, and this information was
used to compare the response times between the application and the transcript.

It is important to note that only the response times of correct answers were
considered in the time analysis. Figure 5.5 and table 5.3 present this analy-
sis’s results, comparing the time distribution needed to answer each question in
seconds.
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Figure 5.5: The time distribution on the participants’ speed for answering the
individual questions, comparing the application users with those using the tran-
script.

Question Mean(App) Mean(Transcript) Delta

Question 1 19.49s 25.75s -6.26s

Question 2 65.97s 107.56s -41.59s

Question 3 34.08s 31.13s 2.95s

Question 4 84.03s 155.82s -71.79s

Question 5 107.03s 161.94s -54.91s

Question 6 132.56s 156.53s -23.97s

Question 7 39.30s 59.03s -19.73s

Question 8 66.70s 73.12s -6.42s

Question 9 48.06s 33.20s 14.86s

Question 10 95.93s 97.26s -1.33s

Question 11 73.83s 65.44s 8.39s

Table 5.2: Table of average response times of each question.

An interesting finding emerged from the analysis of the response time data.
Specifically, questions that took longer to answer - potentially indicating in-
creased difficulty or a need for contextual understanding - were responded to more
quickly by participants using the application than those using the transcript. In
contrast, questions that required participants to locate specific information men-
tioned during the meeting, such as question 9 regarding the selling price of the
remote control, led to generally faster response times in the transcript.



5. User test 59

The next figure 5.6 presents the overall time comparison between the two user
groups.

Figure 5.6: The time distribution on the participants’ speed for answering the
individual questions, summarized for all questions.

Mean(App) Mean(Transcript) Delta

63.93s 78.89s -14.96s

Table 5.3: Table of average response times, summarized for all questions.

The table shows that there is indeed an overall difference in response times
between participants who used the self-developed application and those who used
the transcript to answer the questions, which is 15 seconds when comparing both
averages.

5.3.3 User feedback

In addition to the questions regarding the meeting topic, users were also asked
to provide feedback on their experience using the application. When asked what
they liked about the app and what could be improved, the participants proposed
various recommendations.

Several participants gave positive feedback regarding the usefulness of the
summary sentences provided by the application. However, some suggested group-
ing or tagging by topic to make them more manageable.
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Another common topic in the feedback was the need for a search function
within the application. The suggestion was that a search function could be
used to locate better specific keywords and the extended possibility to search
for synonyms. Other individual feedback responses included incorporating the
audio from the meeting, that the application could benefit from fewer buttons,
and general technical issues with the application, including slow loading times
and instability.

Concluding the evaluation, the findings indicate that both user groups had
the same score regarding the correctness of the answers. However, regarding the
response time needed to answer, users with access to the application were signif-
icantly faster, especially on questions requiring more contextual understanding.
In contrast, users who only had access to the transcript performed better on
some questions that required locating specific information mentioned during the
meeting.

The findings suggest that a supporting application can significantly benefit a
faster grasp of context and more complex information during a meeting. How-
ever, using transcripts can still be valuable for searching and pinpointing specific
information and should be integrated into the supporting application to provide
a more comprehensive user experience.

It is important to note that the sample size of this study was limited and
intended to be qualitative. Therefore, further research with a larger sample size
must verify these findings and provide a more accurate representation of the user
experience. Additionally, the study did not investigate the potential impact of
user familiarity with technology, which could affect the performance of the two
user groups.



Chapter 6

Conclusion

This thesis shows the design and implementation steps of building a visual sum-
marization system for meetings. With many moving parts, designing such a
system to address the goal of understanding essential information interactively
and efficiently concerning time is challenging and requires many iterations.

Chapter 1 motivates the underlying topic and outlines the general applica-
tion scenario and supporting sub-goals for the main objective. A background
about the key technologies within text and dialogue summarization and their
usage in visualization applications is presented in chapter 2. This chapter also
provides the relevant preliminaries of the NLP techniques that drive the design
and experiments of this thesis. The design process of the visual application layer
is presented in chapter 3, with the underlying models and algorithms needed
to serve this application introduced in chapter 4. Chapter 5 shows the setup,
layout, and evaluation of the user test used to assess the designed application’s
effectiveness to compare the correctness and time of the user to respond to each
question in the application with users using merely the transcript.

The following subsections analyze the extent to which the goals of the thesis
have been achieved and explore potential future work that can be done to improve
and build upon the proposed system.

6.0.1 Results

The proposed system incorporates different NLP techniques, such as entity recog-
nition, sentiment analysis, and summarization, and a self-designed keyword ex-
traction method serving as a filtering mechanism for the summary sentences
within the visualization layer.

The conducted user test on this built application, while not on a large scale,
shows a significant reduction in time needed to get to know details about a
topic and be able to answer questions about it. Specifically, the application users
demonstrated an average response time of 15 seconds shorter than those who used
only the transcript, with individual questions having a reduced average response
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time by over one minute.

This observed response time reduction indicates that the system has success-
fully achieved the intended goals of concisely summarizing a given meeting and
facilitating user interaction with their topic of interest.

6.0.2 Future Work

Several areas require further investigation and improvement. For example, one
potential avenue for the modeling and algorithmic part is to explore the use of
additional advanced NLP techniques, such as query-based summarization, which
could give the user even more flexibility to interact with the data by providing
specific topics of interest that the summary should include.

Another improvement to this system could be the inclusion of the audio file,
allowing further analyzing of the meeting for the user and also extending the
application’s capabilities to highlight important information in the discussion by
examining the participants’ speech and detecting changes in pitch and change of
voice.

Moreover, as also mentioned by participants of the user test, the interaction in
the application, including its stability and individual loading times, is an area of
improvement. Designing an application is an iterative process. It would help to
conduct a more detailed user study and evaluate what features the users use and
what is missing (such as a keyword search function in the proposed application)
to provide an even better experience.
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Appendix A

Models and datasets

A.1 Named Entity Recognition

The following table shows the links for the used models for Named Entity Recog-
nition:

Parameter Value

BERT large https://huggingface.co/51la5/bert-large-NER

DistilBERT https://huggingface.co/51la5/distilbert-base-NER

Electra large https://huggingface.co/51la5/electra-large-NER

RoBERTa large https://huggingface.co/51la5/roberta-large-NER

Table A.1: Models used for named entity recognition

The self-labeled dataset can be found at https://huggingface.co/datasets/
51la5/standups_ner.
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A.2 Sentiment analysis

The following table shows the links for the used models for Sentiment analysis:

Parameter Value

DistilBERT https://huggingface.co/51la5/distilbert-base-sentiment

RoBERTa https://huggingface.co/51la5/roberta-base-sentiment

BERT https://huggingface.co/51la5/bert-base-sentiment

MultinomialNB https://huggingface.co/51la5/MultinomialNB-sentiment

LogRegression https://huggingface.co/51la5/LogRegression-sentiment

Table A.2: Models used for sentiment analysis

The self-labeled dataset can be found at https://huggingface.co/datasets/
51la5/standups_sentiment.

A.3 Summary sentences

The following table shows the links for the used models for summary generation:

Parameter Value

BART finetuned https://huggingface.co/51la5/BART-QMSUM-Summary

BART large https://huggingface.co/51la5/BART-large-summary

DistilBART https://huggingface.co/51la5/distilBART-summary

T5 small https://huggingface.co/51la5/T5-summary

Table A.3: Models used for summary generation

The self-labeled dataset can be found at https://huggingface.co/datasets/
51la5/keyphrase-extraction.
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A.4 ASR evaluation

This table shows the evaluation results with ASR transcripts of different qualities.
The cosine similarity is measured between the corrected (gold) transcript and the
respective ASR output before being fed into the summarization model.

ASR output cosine similarity Summary RougeL

0.328287 0.281136

0.339373 0.320540

0.353738 0.358766

0.385754 0.383107

0.418324 0.398125

0.434445 0.402000

0.441651 0.404016

0.455698 0.413752

0.471639 0.426243

0.497084 0.454340

0.524322 0.456569

0.547836 0.467236

0.564079 0.498470

0.573044 0.507604

Table A.4: Cosine similarity impact of summarization performance

Parameter Value

min length 56

max length 142

no repeat ngram size 3

num beams 4

num hidden layers 12

vocab size 50264

Table A.5: Summarization model config parameters
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User Test results

This section shows the questions and answers of the user test.

B.0.1 Questions

Question Text

Question 1 Who was present at the meeting?

Question 2 What is David’s role in the team?

Question 3 Who led the discussion?

Question 4 What was the agenda of the meeting?

Question 5 What are the main two extremes of existing remote controls?

Question 6 What are the customer needs?

Question 7 What age is the target customer group?

Question 8 Why was this target group picked?

Question 9 What is the selling price for the remote control?

Question 10 What are the basic functions of the remote design?

Question 11 What are the three categories that the remote controls
are grouped into?

Table B.1: User test questions

B.0.2 Application users

The following tables show the answers of the users utilizing the application for
the user test.

B-1
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B.0.3 Transcript users

The following tables show the answers of the users utilizing the transcript for the
user test.
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