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“Max Planck said, ’Science progresses one funeral at a time.’
The future depends on some graduate student who is deeply
suspicious of everything I have said.”

– Geoffrey E. Hinton, University of Toronto, 2017.





Zusammenfassung

Deep Learning hat sich im letzten Jahrzehnt im Bereich der automatischen Bildanalyse als

Standard-Technologie etabliert. Trotz beeindruckender Ergebnisse weist diese Technologie

diverse Schwächen auf, wie begrenzte Robustheit gegenüber Störsignalen, eingeschränkte

Transformationsinvarianz bei der Objekterkennung sowie den Bedarf an umfangreichen

Trainingsdaten. Im Gegensatz dazu sind diese Schwächen im menschlichen Gehirn

kaum vorhanden. Dies resultiert aus der nicht-sequenziellen Verarbeitung extrahierter

Bildmerkmale im Gehirn und der Fähigkeit, eine visuelle Szene als mehr als die Summe

ihrer Teile zu interpretieren, wie es die Gestalt-Psychologie beschreibt. Diese Fähigkeit ist

darauf zurückzuführen, dass das Gehirn interne Konsistenz zwischen allen verbundenen

Zellen mittels Selbst-Organisation und lokalem Lernen bildet, d.h. es wird durch gegen-

seitigen Zellsupport ein Konsens zwischen allen Merkmalen erreicht. Dadurch kann

das “Early Commitment”-Problem gelöst werden, welches inhärent in tiefen neuronalen

Netzwerken vorhanden ist. Neuronale Netzwerke sind von diesem Problem betroffen,

weil sie Konsistenz nur an einer Stelle zwischen einer Vorhersage und einem Lernsignal

mittels globalem Fehlerkorrekturalgorithmus bilden.

Basierend auf diesen Erkenntnissen wird in dieser Thesis ein neues Bildverarbeitungs-

Framework vorgeschlagen, das sich stark an der Funktionsweise des menschlichen

Gehirns orientiert. Entsprechend widmet sich ein bedeutender Teil dieser Thesis der

Identifizierung und Interpretation von neurowissenschaftlichen Erkenntnissen. Diese

Erkenntnisse werden analysiert und in ein Computerframework übertragen, wobei jeweils

die Relation der einzelnen Komponenten des Frameworks zum biologischen Lernen

verdeutlicht wird.

Das Framework besteht aus drei Komponenten: Dem Sensorsystem S0, welches Low-Level

Merkmale aus den Bildern extrahiert; der Feature-Building Stage S1, welche mithilfe

lateralen (intra-layer) Verbindungen Neuronengruppen, sogenannte Netzfragmente,

bildet, die sich gegenseitig stützen und dadurch bekannte Muster stabilisieren; der

Prototyp Stage S2, welche die gebildeten Netzfragmente mittels Projektionsphasern zu

Objekt-Prototypen mappt sowie Feedback an S1 gibt. Der Projektionsprozess zwischen S1
und S2 ist iterativ und dauert bis eine Konsistenz an jedem Punkt im Netzwerk erreicht

wird, d.h. bis Zellen und Synapsen einen stabilen Zustand erreicht haben.

Während frühere Forschung bereits die Effizienz von Projektionsphasen gezeigt hat,

ist die Implementierung von Netzfragmenten in S1 mehrheitlich unerforscht. Folglich

wird in dieser Arbeit die Implementierung dieser Komponente im Detail untersucht und

anhand von Experimenten auf einem einfachen Datensatz mit geraden Linien diskutiert.

Die Ergebnisse der Experimente zeigen, dass laterale Verbindungen, trainiert mit Hebbian

Learning, tatsächlich zum Zellsupport genutzt werden können. Mithilfe des Zellsupports

weist das Netzwerk eine deutlich höhere Robustheit gegenüber Rauschsignalen auf und

kann bis zu 91.7% der unerwünscht durch Störsignale aktivierten Zellen deaktivieren.

Zudem können unterbrochene Linien aufgrund der lateralen Unterstützung wieder-

hergestellt werden. Mit einer Reichweite der lateralen Verbindungen von 11 Pixeln können

Unterbrechungen von bis zu 8 Pixeln rekonstruiert werden, mit zusätzlichem Feedback

von S2 sogar Unterbrüche bis zu 20 Pixel. Eine Ausarbeitung des vorgeschlagenen

Frameworks könnte Schwächen von neuronalen Netzwerken reduzieren und wird als

vielversprechende alternative Forschungsrichtung angesehen.





Abstract

In the past decade, deep learning has established itself as state-of-the-art technology in

various automatic image analysis tasks. Despite impressive results, this technology has

several limitations, notably its limited robustness to noise, constrained transformation

invariance during object recognition and reliance on a substantial amount of training

data. Conversely, the human brain does not suffer from these limitations due to its

non-sequential processing of extracted image features and its ability to perceive visual

scenes holistically, i.e. interpret it as more than the sum of its part, as outlined by Gestalt

psychology. This capability stems from the brain’s ability to establish internal consistency

between each connected cell pair through self-organisation and localised learning, i.e. a

consensus is achieved across all features through mutual cell support. This mechanism

solves the problem of “early commitment” inherent in deep networks as they rely on

a global error correction algorithm to establish consistency at a single point between

prediction and teaching signal.

This thesis builds upon these insights and proposes a novel image-processing framework

inspired by the human brain’s functionality. Accordingly, a significant part of this thesis

is devoted to identifying and interpreting neuroscientific findings. These findings are

analysed and translated into a computational framework, thereby linking each model

component to the corresponding biological mechanism.

The framework consists of three components: The sensor system S0, responsible for

extracting low-level features from the images; the feature-building stage S1, which uses

lateral (intra-layer) connections to form neuron groups, so-called net fragments, fostering

mutual support to stabilise known patterns; the prototype stage S2, which maps the

formed net fragments to object prototypes using projection fibres and provides feedback

to S1. The iterative projection process between S1 and S2 lasts until consistency is achieved

at every point in the network, i.e. until cells and synapses have reached a stable attractor

state.

While prior research has demonstrated the efficiency of projection fibres, implementing net

fragments still needs to be explored. Consequently, this thesis analyses the implementation

of this component in detail and discusses it by conducting experiments with a simple

dataset based on straight lines. The experimental findings demonstrate that lateral

connections trained with Hebbian learning can facilitate cell support effectively. The

network exhibits significant robustness using cell support and can deactivate up to 91.7%

of unwanted cell activity triggered by noise signals. Furthermore, lateral support can

restore discontinuous lines, demonstrating the network’s ability to deal with occluded

objects. With a range of lateral connections of 11 pixels, interruptions of up to 8 pixels can

be reconstructed, and with additional feedback from S2, even interruptions of up to 20

pixels can be restored. Improving the proposed framework can potentially reduce several

weaknesses of conventional neural networks in the future and is considered a promising

alternative research direction.





Preface

I begin this preface by providing readers with insights about the background of this Master’s

thesis. It is important to understand this thesis as a first step towards a broader endeavour - as

preparatory work for a potential dissertation. Hence, this thesis should not be seen as self-contained

work but rather as a (hopefully exciting) conceptual foundation that will be further developed and

refined in the upcoming years. Many aspects of the framework proposed in this thesis still require

clarification or validation through experimental evidence. I kindly ask you, the reader of this thesis,

to understand if certain concepts have not yet been fully explored. I hope you can see the value of

these ideas and that they will arouse your curiosity.

Upon successful assessment of this thesis and achieving a satisfactory grade, I am entitled to use

the title “Master of Science”. Thus, I should “master” science or at least be able to work scientifically.

Science can be defined as the systematic analysis of the real or virtual world through observations

and experiments and the further development of existing technology. While this definition sounds

straightforward, working successfully in science requires a lot of experience and commitment.

Throughout my Master’s studies, I have had the privilege of delving deeper into science and

applying the obtained knowledge in research projects at the Centre for Artificial Intelligence (CAI)

of the Zurich University of Applied Sciences (ZHAW). This daily engagement with scientific work

has proven extremely valuable in writing this thesis and will undoubtedly help me in the future.

However, I still faced challenges when writing this thesis: As someone with an industry and

engineering background, I tend to approach tasks with a “do-it” mentality and intuitively refine

my ideas with hands-on experimentation. In this Master’s thesis, it took me some time to transition

from this do-it mindset to that of a researcher who is also strong in theoretical foundations. Thanks

to this Master’s thesis, I now better balance implementation and studying theory.

Completing this thesis spanned an entire year, the maximum duration allowed by my university.

The process of formulating and refining the theory was punctuated by setbacks and experiments

that did not produce the desired results. After approximately seven months of work, I developed

two biologically inspired models that showed promising performance. In fact, I had even written

an entire thesis about these models, which, with some improvements, could have been submitted.

However, as these concepts did not entirely convince me as a foundation for a dissertation, I decided

to discard my work and pursue a new approach only five months before the submission deadline.

Consequently, this thesis contains only a fraction of the conducted experiments but builds on the

experience gained from earlier failed attempts. Nevertheless, I am convinced that this decision

was the right one and that the quality and consistency of a thesis should outweigh the quantity. I

hope you, dear reader, agree with this perspective and understand these constraints that led to

incomplete experimentation.

Throughout my Master’s studies and my work at the CAI, I have had the privilege to be supported

and mentored by Prof. Dr. Thilo Stadelmann, Head of the CAI. He emphasises the idea that (also in

accordance with his blog-post) “Great methodology delivers great theses”. While it is undoubtedly

desirable to achieve an exceptional result in a thesis, it is equally, if not more, important to articulate

the rationale behind the methodology, justify choices and demonstrate the limitations. Moreover,

scientific breakthroughs always require courage to try something completely new, even if this

means that the work may not lead to outstanding results worth publishing. These principles have

guided me in writing this thesis, and I hope that readers will be able to understand my thought

process.

This thesis spans the fields of computer science and neuroscience and attempts to make clear

connections between these areas so that readers from both disciplines can understand my arguments.

However, this also means that some aspects are described rather extensively. So if you as a reader

https://stdm.github.io/Great-methodology-delivers-great-theses/


consider yourself an expert in one of these fields, feel free to skip (parts of) the fundamentals in

Chapter 2.

At this point, I also want to thank colleagues and friends for supporting this thesis. Foremost, I

think of my mentor Prof. Dr. Thilo Stadelmann, who got me excited about AI years ago and later

introduced me to research. He always encourages creative ideas, thinking outside the box, and

striving for greatness. Thank you for your support, help, and guidance; I have grown personally

and professionally. Further thanks go to Dr. Jan Deriu. He has always helped to translate abstract

ideas into concrete algorithms and to get them running. It’s impressive how your understanding

of deep learning, algorithms, and math can make complex problems look so simple. To Prof. Dr.

Christoph von der Malsburg for his seemingly endless patience in introducing me to neuroscience.

You have inspired me regularly with ideas and opened up a new way of thinking about biological

and artificial learning (this was also the inspiration for using Geoffrey E. Hinton’s quote at the

beginning of this thesis, although I wouldn’t presume to say that I will change the future). Even

though we couldn’t implement all of your ideas in this thesis, I learned a lot in our discussions and

hope that I will be able to tackle more of your thoughts in the future.

The most profound thanks, however, goes to my family, who made this journey possible for me:

To my parents, who supported and encouraged me in every way. To my younger brother, who

inspired me to study. To my wife and son, who have been understanding and supportive and have

always been the perfect counterbalance to the daily routine. Without the support of my family, I

would never have been able to embark on this academic path.
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Mathematical Terms & Definitions

1 Notation

Depending on the context, a variable can be a scalar value, a vector, or a matrix. The

following formatting is used:

Formatting Example Meaning

No formatting, lower case 𝑎 A scalar value.

Bold, lower case 𝒂 A vector.

Bold, upper case 𝑨 A matrix.

Curved brackets 𝑎(·) A function, where (·) is a placeholder for a

variable.

Rectangular brackets 𝑎[𝑡] Variable 𝑎 at time 𝑡.

Superscript rectangular brackets 𝑎[𝑙] A variable within a neuronal layer 𝑙, e.g. 𝑾 [𝑙]
is

the weight matrix of layer 𝑙.

2 Variables

Variable Meaning

𝜂 The learning rate of an optimisation algorithm.

𝜅 The number of alternative cells.

𝜓 Estimated pre- or post-synaptic activity of a cell, required for Hebbian

learning (c.f. equation (2.16)).

𝜌 Upper limit for cell support before the support is decreased.

𝒂 = (𝑎1 , ..., 𝑎𝑘) The output of an intermediate layer of a multi-layer network with 𝑘 neurons,

the output of the last layer is typically denoted as �̂�. 𝑎𝑖 is the output of an

activation function of a single neuron.

𝒃 = (𝑏1 , ..., 𝑏𝑘) The bias of a network layer with 𝑘 neurons. 𝑏𝑖 is the bias of a single neuron.

𝐶 Either the capacity of a Hopfield network (the number of patterns that can

be stored) or the number of channels from an input matrix.

𝒉 = (ℎ1 , ..., ℎ𝑘) Hidden state of the memory storing object prototypes.

𝐻 The height of an image.

𝑘 The number of neurons within a layer or kernel.

𝐿 The number of layers of a network.

𝑛 The length (size) of a vector, for example, an input of length 𝑛 is defined

as 𝒙 = (𝑥1 , ..., 𝑥𝑛). 𝑛𝑙 is also used for the support distance of lateral

connections.

𝑜 A single neuronal cell.



Variable Meaning

𝑠 A power factor to push most activation probabilities towards 0 and only

permit high activations to remain high (i.e. 𝒂 := 𝒂𝑠
).

𝑡 The current timestep.

𝑇 The total number of timesteps.

𝑤𝑖 𝑗 The weight between neuron 𝑖 and neuron 𝑗.

𝒘 = (𝑤1 , ..., 𝑤𝑛) A weight vector of a neuron, mapping an input of length 𝑛 to a scalar value.

𝑊 The width of an image.

𝑾 = (𝒘1 , ...,𝒘𝑘) A weight matrix of a network layer.

𝒙 = (𝑥1 , ..., 𝑥𝑛) An input sample that is fed into a model or a network layer, typically a

vector of length 𝑛.

𝒚 The expected output of a model or a network layer (i.e. the ground truth),

typically a vector (𝒚) for a multi-class classification task or a scalar value

(𝑦) for a regression or single-class classification task.

�̂� The actual output of a model or a network layer (i.e. the prediction),

typically a vector (�̂�) for a multi-class classification task or a scalar value

(�̂�) for a regression or single-class classification task.

𝒛 = (𝑧1 , ..., 𝑧𝑘) The output of the aggregation functions 𝑔1(·), ..., 𝑔𝑛(·) of a network layer

of length 𝑘. 𝑧𝑖 is the output of the aggregation function of a single neuron.

𝑍 Capacity of the memory.

3 Functions

Function Meaning

𝐵(·) A Bernoulli probability distribution.

𝑓 (·) An activation function such as 𝜎(·), (·)+, or tanh(·) (c.f. equation (2.6)).

𝐹(·) The free energy function.

𝑔(·) The aggregation function that calculates the scalar value that is fed into

the activation function 𝑓 (·) (c.f. equation (2.1), equation (2.5)).

𝐽(·) The Jaccard similarity between two binary vectors (c.f. equation (5.6)).

L(·) A loss function to calculate the quality of the model output, typically

comparing a prediction �̂� with a teaching signal 𝒚, i.e. L(�̂�, 𝒚)
𝑃(·) The probability of observing a variable.
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Deep learning systems have been employed for decades [1] and pervasive

influence our daily lives. This technology is utilised in diverse applica-

tions, such as machine translation [2], image analysis [3], natural language

processing [4], and speech synthesis [5], among others. Deep learning

methodologies’ remarkable success and widespread adoption have revo-

lutionised various industries [6], enabling enhanced performance and [6]: Bertolini, Mezzogori, Neroni, et al.
(2021), ‘Machine Learning for industrial

applications’

efficiency in numerous tasks and services. Recently, ChatGPT [7] was

[7]: Liu, Han, Ma, et al. (2023), Summary of
ChatGPT/GPT-4 Research and Perspective
Towards the Future of Large Language Models

introduced, marking a pivotal moment in the widespread application of

AI systems.

Deep learning systems are trained to optimise a specific target function,

such as predicting the subsequent word token in the case of language

models [8]. Therefore, such systems rely on statistical patterns rather than [8]: Radford, Narasimhan, Salimans, et al.
(2018), Improving language understanding
by generative pre-training

genuine understanding and still lack cognitive capabilities, reasoning

ability, self-awareness, and intentionality [9], [10]. Furthermore, deep

[9]: Rosenbloom (2023), Defining and
Explorting the Intelligence Space

[10]: Mitchell and Krakauer (2023),

‘The debate over understanding in AI’s

large language models’

networks suffer from various issues of statistical learning, such as missing

robustness [11], catastrophic forgetting [12], or requiring vast amounts of

[11]: Akhtar and Mian (2018), ‘Threat of

Adversarial Attacks on Deep Learning in

Computer Vision’

[12]: Kirkpatrick, Pascanu, Rabinowitz,

et al. (2017), ‘Overcoming catastrophic

forgetting in neural networks’

data [13].

[13]: Smith, Patwary, Norick, et al. (2022),

Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, A Large-Scale
Generative Language Model

Geoffrey E. Hinton, recipient of the Turing Award
1

and a prominent

1: The Turing Award is recognised as the

highest academic award in computer sci-

ence and sometimes also called the “Nobel

Prize of Computing”.

figure in the field, is considered one of the pioneers of deep learning.

His remarkable contributions, including improving deep learning’s

error correction algorithm called “backpropagation of error” [14], [15]

[14]: Rosenblatt (1962), Principles of
Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms

[15]: Linnainmaa (1976), ‘Taylor ex-

pansion of the accumulated rounding

error’

(c.f. Section 2.2), have laid the foundation for today’s deep learning

systems. After working over three decades in the field, Hinton expresses

deep scepticism about end-to-end backpropagation of errors and even

suggests to “throw it all away and start again” to improve current systems

fundamentally [16]. While this view may seem extreme, it shows that the

learning algorithm of such systems has significant shortcomings. Some

of the most crucial limitations of deep learning systems are discussed

in Section 2.3. To overcome these challenges, researchers have proposed

diverse methods and approaches [17]–[19]. Despite these efforts, progress

has been moderate, primarily focusing on mitigating the symptoms rather

than addressing the core issues.

In this thesis, a novel learning framework based on neuroscientific

findings is introduced to address the core issues inherent in deep learning

systems. Inspired by the human brain’s remarkable learning capabilities,

this research aims to integrate neuroscientific insights into an image-

processing framework. It seeks to overcome limitations and bridge the gap

between artificial and biological intelligence. Significant inspiration for

this thesis is drawn from the “Theory of Natural Intelligence” proposed

by von der Malsburg et al. [20]. By anchoring the theoretical concepts
[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

of this theory in a concrete framework and exemplifying its learning

capabilities through practical implementation, this thesis contributes to

a comprehensive understanding of the theory’s principles.
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1.1 Motivation

Figure 1.1: “Mountain Spirit in Winter”

by del Prete [21] demonstrating that hu-

mans immediately can observe the overall

pattern (a man’s face) even though local

features depict a painter drawing a house.

One of the insights from the Gestalt psychology [22]–[25] is that humans[22]: Wertheimer, Köhler, Fuchs, et al.
(1938), A source book of Gestalt psychology.

[23]: Köhler (1992), Gestalt psychol-
ogy

[24]: Wagemans, Feldman, Gepshtein, et
al. (2012), ‘A century of Gestalt psychology

in visual perception’

[25]: Hamlyn (2017), The Psychology
of Perception

can recognise the “Gestalt” (the entire structure) of an object within a

very short time; The brain can immediately recognise global patterns -

arrays of local features that consistently conform to a known large-scale

pattern - even if those local features are buried in noise or would, based

on local context, be interpreted very differently. Thus, local decisions

are made based on plausibility considering overall patterns, while the

overall patterns can only be defined based on local features.

For example, when looking at Figure 1.1, local and global patterns are not

aligned. A painter drawing a picture from a house in a snowy landscape

can be observed when looking at local features. However, a man’s face is

visible when looking at the overarching pattern. This example illustrates

that avoiding the “fallacy of early commitment” is essential, as David

Marr put it [26]. Otherwise, when focusing on local features only, systems[26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

would commit to objects like trees, a painter, an image, a house, and snow

and be unable to recognise the global pattern, as a men’s face typically

comprises eyes, a nose, etc. and not the aforementioned objects.

The theory of natural intelligence [20] and work based on self-organising[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

projection fibres [27]–[32] (c.f. Section 3.2.1) consider the principle of

preventing early commitment as a core mechanism for the effectiveness of

the human’s visual system. Preventing early commitment allows a system

to leave multiple options open simultaneously: The system does not take

decisions early in the learning process as typical deep learning models

do but considers local and global features simultaneously, continuously

ruling out implausible hypotheses.
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The most used architectures for image processing are based on convolu-

tional neural networks [33]–[35] (CNNs). This type of network cannot [33]: Fukushima (1980), ‘Neocognitron’

[34]: Waibel, Hanazawa, Hinton, et
al. (1987), ‘Phoneme Recognition Using

Time-Delay Neural Networks’

[35]: LeCun, Boser, Denker, et al.
(1989), ‘Backpropagation Applied to

Handwritten Zip Code Recognition’

prevent early commitment by design: The first layers extract local features

from images, only having access to small patches [35]. The extracted

low-level features are combined into higher-level features in later layers

[36]. Thus, the first layers do not consider global features but steer the

[36]: Prince (2023), Understanding Deep
Learning

decision process during training and inference toward specific directions

based on local features. Therefore, CNNs take local decisions without

consolidating global information
2
.

2: CNNs can be trained to make diverse

decisions in high-level layers when appro-

priate labels are given. However, these

decisions are still based on already taken

local decisions.

Transformer-based [37] or fully connected [38] vision architectures, on

[37]: Dosovitskiy, Beyer, Kolesnikov, et al.
(2021), An Image is Worth 16x16 Words

[38]: Tolstikhin, Houlsby, Kolesnikov,

et al. (2021), ‘MLP-Mixer: An all-MLP

Architecture for Vision’

the other hand, might not have this design limitation since early layers can

access the entire input. However, they have a fallacy of early commitment

because they process the input layer-wise. Typically, the input of a vision

architecture is specific (e.g. an image) and mapped to more general

information (e.g. a class label). However, general information is not used

to confirm or validate specific information and therefore, high-level

decisions can be misled by the wrong and inconsistent early decisions.

Thus, the first layers make decisions on lower-level features and steer

the decision process towards a specific direction without considering

higher-level features, thereby being prone to early commitment as well.

The fact that early layers in neural networks make decisions without

incorporating higher-level features arises from characteristics of the

learning principle. Deep networks establish consistency at a specific

point between a prediction and a teaching signal [39]. They employ a [39]: Wang, Ma, Zhao, et al. (2022), ‘A

Comprehensive Survey of Loss Functions

in Machine Learning’

global error correction algorithm such as backpropagation of error [14],

[15] to update all cells, aiming to enhance consistency at a specific point

[14]: Rosenblatt (1962), Principles of
Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms

[15]: Linnainmaa (1976), ‘Taylor ex-

pansion of the accumulated rounding

error’

and thereby construct feature processing chains, i.e. the output of one

neuron is used as input of a subsequent neuron. The first neurons in

these chains must take decisions based on local features that are later

used by neurons extracting higher-level features.

In contrast, consistency in the brain is built at every single point, i.e.

between each connected cell pair [40]. The cells represent features that

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

contribute to hypotheses rather than a single prediction. Active cells

support one or multiple hypotheses while suppressing hypotheses in-

consistent with the feature they represent. In a fast alignment process,

increasing inhibition [41] deactivates hypotheses that are not supported [41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

by sufficient cells, resulting in a consensus among cells regarding per-

ceptual interpretations. Thus, cells achieve consistency based on local

interaction and self-organisation [42] without having an external teaching

[42]: Morris, Tarassenko, and Kenward

(2006), Cognitive Systems - Information
Processing Meets Brain Science

signal or global error correction [43], [44]. This fundamental different

[43]: Grossberg (1987), ‘Competitive

Learning’

[44]: Crick (1989), ‘The recent ex-

citement about neural networks’

principle prevents early commitment, as discussed in Section 4.2.3.

Besides having the problem of early commitment, deep networks also

lack dealing with ambiguity and object-independent transformation

invariance [45], [46]. Deep networks can learn to generate transformation-

[45]: Mouton, Myburgh, and Davel (2020),

‘Stride and Translation Invariance in

CNNs’

invariant features if they have seen enough samples during training.

However, they lack the ability to transfer the concept of a transformation,

such as rotation, from one object to another.

In this thesis, a biologically inspired vision framework is proposed to

mitigate these disadvantages. The framework builds consistency between

each connected cell pair to prevent early commitment and deal with

ambiguity. Furthermore, the applied self-organising process is decoupled
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from the object, allowing the model to learn the concept of transformation-

invariance independent of objects. The thesis lies at the intersection of

deep learning and neurocomputing
3
. It adopts many learning paradigms3: Neurocomputing is a subfield of neu-

roscience that focuses on implementing

biologically plausible learning algorithms.

from neurocomputing, leveraging the capabilities of biologically inspired

algorithms. At the same time, the computational efficiency of deep

learning algorithms is being exploited. By merging the strengths of

both fields, this work aims to develop a hybrid approach that combines

the biological plausibility of neurocomputing with the computational

efficiency of deep learning to foster advances in learning algorithms.

1.2 Contribution

1. The basics of deep learning and neurocomputing are summarised.

Together with the related work, this provides a survey of the most

important research dealing with alternative learning algorithms

compared to conventional deep learning methods.

2. Many neuroscientific findings that are highly relevant for visual

object recognition are identified and summarised, and a vocabulary

compatible with the current deep learning framework is introduced.

3. A framework implementing the identified neuroscientific concepts

is introduced based on a novel Bernoulli neuron firing a binary

spike based on a probability distribution and activity received

through self-organising synaptic connections.

4. The “Theory of Natural Intelligence” proposed by von der Malsburg

et al. [20] is discussed and put into the context of the theory of[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

self-organising projection fibres [27]–[32] and the proposed vision

[27]: Bienenstock and von der Malsburg

(1987), ‘A Neural Network for Invariant

Pattern Recognition’

[28]: Lades, Vorbruggen, Buhmann,

et al. (1993), ‘Distortion invariant object

recognition in the dynamic link architec-

ture’

[29]: Wiskott and von der Mals-

burg (1996), Face Recognition by Dynamic
Link Matching

[30]: Wiskott, Fellous, Kuiger, et al.
(1997), ‘Face recognition by elastic bunch

graph matching’

[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

[32]: Fernandes and von der Mals-

burg (2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

framework.

5. The feasibility of the proposed framework is demonstrated with

experiments, the strengths and weaknesses are discussed, and

directions for future research are given to further improve the

proposed vision framework.

1.3 Organisation of Thesis

The remainder of the thesis is organised as follows: In Chapter 2, deep

learning and neurocomputing fundamentals related to this thesis are

outlined. In Chapter 3, the related work is introduced. In Chapter 4,

promising biological concepts for visual object recognition are identified.

Afterwards, in Chapter 5, a novel implementation of the identified

biological concepts is proposed. In Chapter 6, conducted experiments

with the proposed framework are described, and the obtained results are

presented in Chapter 7. Finally, in Chapter 8, the thesis is concluded by

discussing the advantages and disadvantages of the proposed learning

framework and suggesting potential directions for future research. Thus,

in Chapters 2-4, existing work is surveyed and put into context, while in

Chapters 5-8, a novel vision framework is introduced and discussed.
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The biological neuronal system not only inspired neural networks but

also this thesis. Accordingly, in Section 2.1, it is explained how biological

neurons work and how they are related to their artificial counterparts.

Next, in Section 2.2, artificial neural networks are introduced. In Sec-

tion 2.3, the limitations of such artificial neural networks are pointed

out. Finally, in Section 2.4, biologically more plausible learning methods

related to this thesis are explored.

2.1 Human Brain

Figure 2.1: A diagram of the components

of a biological neuron. The image is from

Wikipedia [47].

A biological neuron is a cell that communicates with other neurons

through precisely timed electrical pulses called spikes or action potential.

Biological neurons are electrically excitable by voltage changes across

their membranes. The neuron generates an action potential if the changes

are significant enough within a short interval. This action potential

propagates along the axon to the terminal buttons, activating synaptic

connections to the dendrites of other neurons [48]. These components of a [48]: Diamond (2019), ‘Identifying what

makes a neuron fire’
neuron are illustrated in Figure 2.1. The synaptic signal can be excitatory

[49] or inhibitory [41], making the postsynaptic neuron more or less

[49]: Takagi (2000), ‘Roles of ion channels

in EPSP integration at neuronal dendrites’

[41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

likely to fire an action potential itself. However, biological neurons do

not follow strict rules; they adapt their firing rate to constant inputs, may

continue firing after an input signal disappears and can even fire when

no input is active [48], [50].

[50]: Wilson and Groves (1981), ‘Sponta-

neous firing patterns of identified spiny

neurons in the rat neostriatum’

Biological neurons can be classified into sensory neurons, motor neurons,

and interneurons. Sensory neurons respond to external stimuli such as

light or sound and send signals to the spinal cord or the brain. Motor

neurons receive brain and spinal cord signals to control muscles or organs.

Interneurons establish connections between neurons within the same
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brain or spinal cord region. However, this classification is a simplification,

as the human brain consists of approximately 100 billion neurons [51][51]: Herculano-Houzel (2009), ‘The

human brain in numbers’
with diverse molecular, morphological, connectional, and functional

properties [52].

[52]: Zeng and Sanes (2017), ‘Neuronal

cell-type classification’

Inspired by biological neurons, several variants of artificial neurons [53]–

[55] have been proposed and are discussed in Section 2.2. Compared to

[53]: McCulloch and Pitts (1943), ‘A logical

calculus of the ideas immanent in nervous

activity’

[54]: Rosenblatt (1958), ‘The per-

ceptron’

[55]: Fukushima (1969), ‘Visual Feature

Extraction by a Multilayered Network of

Analog Threshold Elements’

their biological counterparts, artificial neurons are simplified models,

ignoring much complexity. Like biological neurons, artificial neurons are

usually connected to other neurons, forming an artificial neural network

(ANN) [36]. Although the neurons in the first layer of an artificial network

[36]: Prince (2023), Understanding Deep
Learning

could be considered sensory neurons, the neurons in the last layer could

be considered motor neurons, and the neurons in the middle layer could

be considered interneurons, this distinction is less meaningful because

artificial neurons always have the same inner structure regardless of their

position [56], except for variations in their activation function [55].

[56]: Goodfellow, Bengio, and Courville

(2016), Deep Learning

Furthermore, artificial neural networks have a simpler organisational

structure than the human brain. ANNs typically consist of one or a few

network parts, such as encoders, which map data to a latent space, and

decoders, which convert data from the latent space into a target vector

[56]. ANNs are considered monolithic because they are hierarchical and

typically trained in an end-to-end fashion with a single error correction

signal [57]. In contrast, the human brain consists of many independent[57]: Glasmachers (2017), ‘Limits of

End-to-End Learning’
and interconnected organisational units, each responsible for a specific

function [58]. For example, in the cerebral cortex, numerous small sub-

[58]: Felleman and Van Essen (1991),

‘Distributed Hierarchical Processing in

the Primate Cerebral Cortex’

units exist [58], dedicated to specific tasks as illustrated in Figure 2.2.

Furthermore, the human brain does not comprise an organisational

hierarchy as ANNs [59], [60]. In the human brain, each unit applies

[59]: Mountcastle (1978), ‘An Organizing

Principle for Cerebral Function: The Unit

Model and the Distributed System’

[60]: Mountcastle (1997), ‘The columnar

organization of the neocortex’

similar deterministic functions to the information it receives [59], [60].

Furthermore, the biological neural network in the human brain is dynamic

and subject to constant change through growth and reorganisation,

known as neuroplasticity or neuronal plasticity [61].

[61]: Costandi (2016), Neuroplasticity
Besides structural and functional differences, biological and artificial

networks differ in their learning strategies. An artificial learning system

requires a feedback signal from which it can learn. This is called the

credit assignment problem. Backpropagation of error [14], [15] is the state-[14]: Rosenblatt (1962), Principles of
Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms

[15]: Linnainmaa (1976), ‘Taylor ex-

pansion of the accumulated rounding

error’

of-the-art algorithm that solves this problem by propagating the error

signals back through the network [62]. However, information in the brain

[62]: Rumelhart, Hinton, and Williams

(1986), ‘Learning representations by

back-propagating errors’

flows only in one direction, from presynaptic to postsynaptic neurons.

Therefore, backpropagation of error is not biologically plausible [43],

[44]. The brain relies on localised learning [63], where each unit adapts

[43]: Grossberg (1987), ‘Competitive

Learning’

[44]: Crick (1989), ‘The recent ex-

citement about neural networks’

[63]: Lillicrap, Santoro, Marris, et al.
(2020), ‘Backpropagation and the brain’

its behaviour based on the information it receives. Evidence suggests

that the brain learns by connecting cells that are active simultaneously,

known as Hebbian plasticity [40], thereby not relying on an external

teaching signal.

Thus, among the most important differences between biological and

artificial neurons is the time-dependent and asynchronous firing of

biological neurons compared to the synchronous firing of artificial

neurons. In addition, biological networks have different types of neurons

and rely on local learning, while artificial networks usually comprise

identical neurons and utilise a global error correction algorithm. Finally,

biological networks are organised in a complex way comprising multiple
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units [58], while artificial networks are typically structured in layers [58]: Felleman and Van Essen (1991),

‘Distributed Hierarchical Processing in

the Primate Cerebral Cortex’

[56].

[56]: Goodfellow, Bengio, and Courville

(2016), Deep Learning

Figure 2.2: The organisation of the

visual system in the cerebral cortex. The

image is from Felleman et al. [58].

Biological findings strongly inspire the proposed vision framework. Since

biological systems still have many advantages compared to their artificial

counterpart, the differences between these systems are of interest and

could be promising in developing novel architectures. Therefore, in

Section 4.1, biological principles related to the human’s vision system are

examined in more detail.

2.2 Artificial Neural Networks

McCulloch and Pitts [53] proposed the first model of a neuron that can [53]: McCulloch and Pitts (1943), ‘A logical

calculus of the ideas immanent in nervous

activity’

be connected to other neurons to form a network. Like the biological

neuron, the artificial neuron of McCulloch and Pitts receives multiple

input signals and transforms them into an output signal. Their neuron

takes a binary input vector 𝒙 = (𝑥1 , ..., 𝑥𝑛) where 𝑥𝑖 ∈ {0, 1} and maps

it to an output �̂� ∈ {0, 1}. The mapping from the input to the output is

done by using an aggregation function 𝑧 = 𝑔(𝒙) that sums up the input

vector 𝒙 and an activation function 𝑓 (𝑧) that outputs 1 if 𝑧 is bigger than
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a threshold 𝜃 and 0 otherwise:

𝑧 = 𝑔(𝒙) = 𝑔(𝑥1 , ..., 𝑥𝑛) =
𝑛∑
𝑖=1

𝑥𝑖 (2.1)

�̂� = 𝑓 (𝑧) =
{

1, if 𝑧 ≥ 𝜃

0, otherwise

(2.2)

The formula is often rewritten by using a bias 𝑏 instead of the threshold

𝜃:

𝑧 = 𝑔(𝒙) = 𝑔(𝑥1 , ..., 𝑥𝑛) =
𝑛∑
𝑖=1

𝑥𝑖 + 𝑏 (2.3)

�̂� = 𝑓 (𝑧) =
{

1, if 𝑧 ≥ 0

0, otherwise

(2.4)

By adjusting the bias 𝑏, neurons can learn to fire under different conditions.

In 1958, Rosenblatt [54] proposed the perceptron, which extends the[54]: Rosenblatt (1958), ‘The perceptron’

neuron with additional learnable weights: The input vector 𝒙 of length 𝑛

is multiplied with a weight vector 𝒘 ∈ ℝ𝑛
of the same length.

𝑧 = 𝑔(𝒙) = 𝒘 · 𝒙 + 𝑏 =

(
𝑛∑
𝑖=1

𝑤𝑖 · 𝑥𝑖

)
+ 𝑏 (2.5)

The weight vector 𝒘 remains identical if the output �̂� corresponds to the

desired output 𝑦 or is adjusted otherwise (c.f. Section 2.2.3). Later, the

activation function 𝑓 (𝑧) was replaced with other functions so that the

output can be a real number �̂� ∈ ℝ [55]. Often-used activation functions[55]: Fukushima (1969), ‘Visual Feature

Extraction by a Multilayered Network of

Analog Threshold Elements’

are

Sigmoid: 𝑓 (𝑧) = 𝜎(𝑧) = 1

1 + e
−𝑧 (2.6)

Rectified linear unit (ReLU): 𝑓 (𝑧) = (𝑧)+ = max{0, 𝑧} (2.7)

Hyperbolic tangent (tanh): 𝑓 (𝑧) = tanh(𝑧) = e
𝑧 − e

−𝑧

e
𝑧 + e

−𝑧 (2.8)

To summarise, artificial neurons multiply incoming signals with learned

weights and add a bias before applying a non-linear activation func-

tion. Unlike their biological counterparts, artificial neurons exhibit non-

temporal behaviour and output continuous values instead of discrete

binary spikes. Neurons with time-dependent spike patterns are discussed

in Section 2.4.3.

2.2.1 Fully Connected Layer

Artificial neural networks consist of several neurons organised in a

network. These neurons are typically arranged in layers [36]. In a basic

configuration, each neuron in one layer is connected to each neuron in

the following layer, forming a so-called fully connected layer [36], [56].[36]: Prince (2023), Understanding Deep
Learning

[56]: Goodfellow, Bengio, and Courville

(2016), Deep Learning

In a fully connected layer with 𝑘 neurons, the input 𝒙 ∈ ℝ𝑛
is multiplied

with a weight matrix 𝑾 ∈ ℝ𝑛×𝑘
and a bias 𝒃 ∈ ℝ𝑘

is added to obtain the
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layer’s output �̂� ∈ ℝ𝑘
:

𝒛 = 𝑾 · 𝒙 + 𝒃 (2.9)

�̂� = 𝑓 (𝒛) (2.10)

The universal approximation theorem [64] states that a shallow network [64]: Cybenko (1989), ‘Approximation by

superpositions of a sigmoidal function’
with one hidden layer (i.e. one layer between input and output layer) and

enough neurons can approximate any mapping function between inputs

and outputs. However, a sequential arrangement of multiple layers is

more efficient for complex functions [36]. This hierarchical approach [36]: Prince (2023), Understanding Deep
Learning

allows the network to learn a hierarchy of features and capture intricate

patterns [65].

[65]: Bengio (2012), ‘Deep Learning of

Representations for Unsupervised and

Transfer Learning’

In a multi-layer perceptron (MLP) with 𝐿 layers, the input 𝒙 is passed

through each layer, whereby each subsequent layer 𝑙 uses the output of

the previous layer 𝑙−1 as input. In the following, the weights of layer 𝑙 are

denoted as 𝑾 [𝑙]
, the bias as 𝒃[𝑙], the output of the aggregation function

as 𝒛[𝑙], and the output of the activation function as 𝒂[𝑙]
. The input in the

first layer is the input data itself, i.e. 𝒂[0] = 𝒙, and the output of the last

layer corresponds to the model’s prediction, denoted as 𝒂[𝐿] = �̂�. With

this notation, the mathematical formulation of an MLP can be defined as

follows:

𝒛[𝑙] = 𝑾 [𝑙]𝒂[𝑙−1] + 𝒃[𝑙] (2.11)

𝒂[𝑙] = 𝑓 (𝒛[𝑙]) (2.12)

A significant drawback of this approach is that layer-wise data processing

leads to early commitment [26], as outlined in Section 1.1. The problem is [26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

that the first layers already commit to representations that are further

processed by subsequent layers, thereby steering the learning process

in specific directions without considering higher-level features. The

framework proposed in this thesis introduces a novel layer that builds

hierarchical representations within the same layer (c.f. Section 5.1.1),

efficiently preventing the fallacy of early commitment.

2.2.2 Convolutional Networks

A problem of fully connected layers is that they are not position invariant,

meaning they cannot recognise patterns regardless of their location in

the input. Convolutional neural networks (CNNs) [33]–[35] are inspired [33]: Fukushima (1980), ‘Neocognitron’

[34]: Waibel, Hanazawa, Hinton, et
al. (1987), ‘Phoneme Recognition Using

Time-Delay Neural Networks’

[35]: LeCun, Boser, Denker, et al.
(1989), ‘Backpropagation Applied to

Handwritten Zip Code Recognition’

by biological processes [55], [66] and can overcome this limitation:

[55]: Fukushima (1969), ‘Visual Feature

Extraction by a Multilayered Network of

Analog Threshold Elements’

CNNs exhibit position equivariance by applying the same weights at all

input positions [45]. A typical CNN consists of subsequently connected

convolutional layers and pooling layers. Usually, an activation function

is applied after each convolutional layer, while no activation function is

used after pooling layers [56].

Convolutional layers employ convolution filters or kernels that slide

along the input, generating translation-equivariant [45] responses known

as feature maps [67]. Translation-equivariant means that the relative
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placement of objects remains consistent between the layer’s input and

output, as the same filter is applied at all image positions. During the

filtering process, the dot product is calculated between the filter and an

input area (of the same size as the filter), resulting in a scalar value that

is assigned to one position of the output matrix (i.e. the feature map)

[56]. This process is repeated by shifting the filter by a specified stride[56]: Goodfellow, Bengio, and Courville

(2016), Deep Learning
until the entire input is processed and all values in the output matrix are

calculated. Convolutional layers require much fewer parameters than

fully connected layers of the same size because only the kernels need

to be learned. This process of reusing the same weights at different

input locations is known as parameter sharing [45]. By stacking multiple[45]: Mouton, Myburgh, and Davel (2020),

‘Stride and Translation Invariance in

CNNs’

layers, CNNs become hierarchical: The convolutional operation squeezes

information from surrounding pixels into a single output cell. Thus,

using multiple layers sequentially continuously enlarges the receptive

field - the area of input pixels that can influence a single value in a layer’s

feature map [65].[65]: Bengio (2012), ‘Deep Learning of

Representations for Unsupervised and

Transfer Learning’
Pooling layers downsize the input rather than extracting features [68].

[68]: Cireşan, Meier, Masci, et al. (2011),

‘Flexible, High Performance Convo-

lutional Neural Networks for Image

Classification’

Similar to convolutional layers, they slide a filter along the input. However,

unlike convolutional layers, pooling filters do not have learned parameters

but use an aggregation function. Usually, the filter selects the pixel with

the highest value (max pooling) or calculates the average (average pooling)

within the considered input area and uses this value as output [68]. The

filter is then shifted by its size, ensuring that non-overlapping image

patches are processed. Pooling layers discard a considerable amount of

information but effectively reduce complexity and improve the model’s

robustness [68]. Nevertheless, discarding valuable information can also

be the reason for misclassification [69].[69]: Sharma and Mehra (2019), ‘Im-

plications of Pooling Strategies in

Convolutional Neural Networks’
Besides CNNs, alternative architectures for image processing have

emerged that are characterised by position invariance, such as the vi-

sion transformer (ViT) [37] or MLP mixer [38]. However, providing an[37]: Dosovitskiy, Beyer, Kolesnikov, et al.
(2021), An Image is Worth 16x16 Words

[38]: Tolstikhin, Houlsby, Kolesnikov,

et al. (2021), ‘MLP-Mixer: An all-MLP

Architecture for Vision’

in-depth description of these architectures would exceed the scope of

this introduction to deep learning.

2.2.3 Learning Algorithm

The model’s prediction �̂� will only be close to the target output 𝒚 if

the weights 𝑾 [𝑙]
and biases 𝒃[𝑙] are properly defined. These parameters

are learned through training, typically using backpropagation of errors

[14], [15]. Training can take place in a supervised, unsupervised, semi-

supervised or reinforcement learning setting [70], [71].[70]: Russell and Norvig (2021), Artificial
intelligence

[71]: Simmler, Sager, Andermatt, et
al. (2021), ‘A Survey of Un-, Weakly-,

and Semi-Supervised Learning Methods

for Noisy, Missing and Partial Labels in

Industrial Vision Applications’

All these learning principles have in common that a loss function [39]

[39]: Wang, Ma, Zhao, et al. (2022), ‘A

Comprehensive Survey of Loss Functions

in Machine Learning’

(also called an objective function) L(�̂�, 𝒚) is used to calculate the quality

of the model output �̂� relative to the target output 𝒚. The selected loss

function is minimised iteratively using an error correction algorithm

such as stochastic gradient descent (SGD)
1

until the network reaches

1: There also exist other optimisation al-

gorithms such as SGD with momentum,

RMSprop or Adam [72].

a (local) minimum. Stochastic gradient descent is based on the insight

that the negative gradient of the loss value indicates the direction of

the steepest descent, i.e. the direction in which the loss decreases the

most. Consequently, SGD updates the parameters of the network by

taking steps of size 𝜂 (the learning rate) in the direction of the negative



2.3 Limitations 11

gradient:

Δ𝑾 [𝑙] = − 𝜂 · (∇𝑾 [𝑙]L(�̂�, 𝒚))
𝑾 [𝑙] B𝑾 [𝑙] + Δ𝑾 [𝑙] (2.13)

and

Δ𝒃[𝑙] = − 𝜂 · (∇𝒃[𝑙]L(�̂�, 𝒚))
𝒃[𝑙] B𝒃[𝑙] + Δ𝒃[𝑙]

(2.14)

The term (∇𝑾 [𝑙]L(�̂�, 𝒚)) is the gradient of the weights 𝑾 [𝑙]
with respect

to the loss L(�̂�, 𝒚) and the term (∇𝒃[𝑙]L(�̂�, 𝒚)) is the gradient of the bias

𝒃[𝑙] with respect to L(�̂�, 𝒚). The gradients of the weights can efficiently

be calculated with backpropagation of error [14], [15], which is, in fact, [14]: Rosenblatt (1962), Principles of
Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms

[15]: Linnainmaa (1976), ‘Taylor ex-

pansion of the accumulated rounding

error’

just an intelligent implementation of the chain rule
2
.

2: While a detailed discussion of back-

propagation is out of scope for this thesis,

we refer interested readers to the book

“Understanding Deep Learning” by Prince

[36].

However, from a biological perspective, backpropagation of error seems

not plausible [43], [44]. Furthermore, it has technical shortcomings, such

[43]: Grossberg (1987), ‘Competitive

Learning’

[44]: Crick (1989), ‘The recent ex-

citement about neural networks’

as vanishing or exploding gradients when propagating through too many

layers [73] or non-optimal loss landscapes [74]. Despite these deficits, it

[73]: Zhang, He, Sra, et al. (2020), Why
gradient clipping accelerates training

[74]: Ioffe and Szegedy (2015), ‘Batch

Normalization: Accelerating Deep

Network Training by Reducing Internal

Covariate Shift’

is still considered the best error correction algorithm to optimise neural

networks on a specific task and can even outperform human experts [6],

[75].

[6]: Bertolini, Mezzogori, Neroni, et al.
(2021), ‘Machine Learning for industrial

applications’

[75]: Buetti-Dinh, Galli, Bellenberg,

et al. (2019), ‘Deep neural networks

outperform human expert’s capacity

in characterizing bioleaching bacterial

biofilm composition’

2.3 Limitations

Deep learning systems have proven themselves as excellent feature extrac-

tors and are used to fulfil various tasks in our daily lives. Nevertheless,

they have several limitations, with some of the most pressing ones

elucidated below.

Computing Resources. Deep learning models are typically trained

on modern computing infrastructure. They benefit from Moore’s law

[76], stating that the number of transistors in a dense integrated circuit

[76]: Moore (1965), ‘Cramming More

Components onto Integrated Circuits’

doubles every two years, allowing models to consume exponentially

more computing resources. However, the physical limits of transistor size

will most likely stop this exponential growth soon [77], and the future

[77]: Kumar (2015), Fundamental Limits to
Moore’s Law

progress of hardware remains uncertain. Furthermore, the size of modern

deep learning models exhibits an even faster growth, as demonstrated

by state-of-the-art large language models: ELMo from 2018 uses around

94 million parameters [78], GPT-3 from 2020 uses around 175 billion

[78]: Peters, Neumann, Iyyer, et al.
(2018), ‘Deep Contextualized Word

Representations’

parameters [79], and Megatron-Turing NLG from 2022 has 530 billion

[79]: Brown, Mann, Ryder, et al. (2020),

‘Language Models are Few-Shot Learners’

parameters [13]. An analysis by Open AI [80] shows exponential growth

in computational usage by AI models, with a doubling time of about 3.4

months, outpacing the rate of hardware progress, which has a doubling

time of 2 years. Moreover, the increasing size of deep networks poses a

challenge for inference on low-budget hardware such as smartphones or

embedded systems [81]. Although techniques such as quantisation [82],

model pruning [83], and model distillation [84] exist to reduce model

size after training, the question is whether increasing model size is the

best way to develop more advanced systems regarding feasibility but

also regarding energy consumption [85].



12 2 Fundamentals

Catastrophic Forgetting. Another major issue of deep learning systems

is that they suffer from catastrophic forgetting [12], [86]. If a model[12]: Kirkpatrick, Pascanu, Rabinowitz,

et al. (2017), ‘Overcoming catastrophic

forgetting in neural networks’

[86]: Liu, Yang, and Wang (2021),

‘Overcoming Catastrophic Forgetting in

Graph Neural Networks’

is trained on a specific task and afterwards trained (or fine-tuned) on

another task, the model suffers a “catastrophic” drop in performance

over the first task [12]. The reason for this effect is that during training

on the second task, the model adjusts the parameters learned during

the first task and, therefore, “forgets” the learned input-output mapping

functions. Mixing all datasets or learning all tasks in parallel in a multi-

task setting [87] does not seem feasible to prevent catastrophic forgetting.[87]: Zhang and Yang (2022), ‘A Survey

on Multi-Task Learning’
Instead, models should remember previously learned knowledge even

if a new task is learned. Online learning [88] and lifelong learning [89]

[88]: Sahoo, Pham, Lu, et al. (2018), ‘Online

Deep Learning’

[89]: Parisi, Kemker, Part, et al. (2019),

‘Continual lifelong learning with neural

networks’

do not solve catastrophic forgetting as they only allow models to adapt

better to changing conditions.

Extrapolate Data Distribution. It is questionable if deep learning mod-

els can achieve real generalization
3

in the current learning framework.

3: Generalisation refers to the ability of

the model to adapt appropriately to previ-

ously unseen data from the same distribu-

tion.

With enough data, deep learning can achieve generalisation in the sense

that the model can interpolate within the known data distribution. How-

ever, deep learning models fail to extrapolate. For example, convolutional

neural networks (CNNs) do not generalise to different viewpoints unless

added to the training data [46].[46]: Madan, Henry, Dozier, et al. (2022),

‘When and how convolutional neural

networks generalize to out-of-distribution

category–viewpoint combinations’

Data Hunger. Deep learning cannot learn abstract relationships in a few

trials but requires many samples and is thus data-hungry. Gary Marcus

[90] showcased this problem with an example: He defines the new word[90]: Marcus (2018), Deep Learning: A
Critical Appraisal

“schmister” as a sister over the age of 10 but under the age of 21. He found

that humans can immediately infer whether they or their best friends

have any “schmister”. However, modern deep learning systems lack a

mechanism for learning abstractions through explicit, verbal definitions

and require thousands or even more training samples
4
.4: LLMs can deal with such definitions

when they are put into the context of a con-

versation during inference but not when

the example is only shown once during

training.

Casual Reasoning. No deep learning model has been able to demon-

strate causal reasoning generically. Deep learning models find correla-

tions between input and output data but not causation [36]. Other AI[36]: Prince (2023), Understanding Deep
Learning

approaches, such as hierarchical Bayesian computing [91] or probabilistic

[91]: Allenby, Rossi, and McCulloch

(2005), ‘Hierarchical Bayes Models’

graphical models [92] are better at causal reasoning but do not work well

[92]: Koller and Friedman (2009),

Probabilistic graphical models: principles and
techniques

for processing high-dimensional data.

Embodiment. Deep learning models are, to some extent, isolated since

they have no embodiment and cannot interact with the world. The

human body provides needs, goals, emotions, and gut feelings [93]. One

[93]: Mayer (2011), ‘Gut feelings’

could argue that the body is, therefore, a co-processor of the brain. In

current deep learning systems, emotions are absent, and the goals are

set externally [39]. Deep reinforcement learning [94] is a step toward[39]: Wang, Ma, Zhao, et al. (2022), ‘A

Comprehensive Survey of Loss Functions

in Machine Learning’

[94]: (2020), Deep Reinforcement Learning

dissolving this isolation as the models interact with a virtual environment.

However, AI systems interacting with the real world have not worked well

so far. Moravec’s paradox from 1995 [95] states that “it is comparatively

[95]: Moravec (1995), Mind Children: The
Future of Robot and Human Intelligence

easy to make computers exhibit adult level performance on intelligence

tests or playing checkers, and difficult or impossible to give them the

skills of a one-year-old when it comes to perception and mobility”. This

statement still seems true almost 30 years later.
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These drawbacks are likely due to statistical learning based on a global

error correction algorithm. In contrast, the human brain does not suffer

from these drawbacks, indicating that different learning principles could

resolve these issues. The framework proposed in this thesis introduces

new learning principles that aim to reduce computational requirements,

catastrophic forgetting, and data hunger and allow better data extrapola-

tion as outlined in Section 8.1.

2.4 Neurocomputing

Neurocomputing is a subfield of neuroscience that focuses on imple-

menting learning algorithms that adhere to biological plausibility. Thus,

researchers are addressing the discrepancy described in Section 2.1 and

strive to develop alternative learning principles.

2.4.1 Hebbian Learning

Hebbian learning, as proposed by Hebb [40], implements the adaptive [40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

nature of the connections between cells in the nervous system. Hebb’s

description states that when an axon of cell 𝐴 is in close proximity to cell

𝐵 and consistently contributes to its firing, growth processes or metabolic

changes occur in one or both cells that increase the effectiveness of cell 𝐴

in firing cell 𝐵. This description is often summarised as “neurons that

fire together wire together”.

Hebbian learning implements the update of the synaptic weight 𝑤𝑖 𝑗 con-

necting neuron 𝑖 to neuron 𝑗 according to the aforementioned principle.

The weight change depends on the presynaptic activity 𝑎𝑖 of neuron 𝑖

and postsynaptic activity 𝑎 𝑗 of neuron 𝑗5: 5: The presynaptic and postsynaptic activ-

ity corresponds to the output of a neuron’s

activation function 𝑓 (·) in the preceding

and subsequent layers.

Δ𝑤𝑖 𝑗 = 𝜂𝑎𝑖𝑎 𝑗 (2.15)

where 𝜂 is the learning rate. Hebbian learning is used in the proposed

framework to increase the weights between frequently co-activated binary

neurons (c.f. Section 5.5.2). This rule causes two cells that are constantly

active together to form an “association” where the activation of one

cell promotes the activation of the other. Therefore, a network trained

according to Hebb’s rule is able to “auto-associate” a pattern [40]. In

other words: When some cells representing a pattern are activated, they

encourage all cells associated with this pattern to activate as well. These

learned patterns are called engrams [96], often related to memories in a [96]: Newman (1985), Current perspectives
in dysphasia

biological context [97].

[97]: Liu, Ramirez, Pang, et al. (2012), ‘Op-

togenetic stimulation of a hippocampal

engram activates fear memory recall’

The aforementioned Hebbian rule increases the weight between two

binary cells that are active together and does not change when only one

or none of the cells fires. Thus, the connection can only grow stronger.

However, synapses can not only grow between cells but also disintegrate

[61]. This process can be implemented by leveraging the covariance of [61]: Costandi (2016), Neuroplasticity
neuronal activity [98]. The covariance is positive if two neurons fire often

[98]: Oja (1982), ‘Simplified neuron model

as a principal component analyzer’

together and negative if they do not often fire together. The following
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equation changes the weight relative to the covariance:

Δ𝑤𝑖 𝑗 = 𝜂(𝑎𝑖 − 𝜓𝑖) · (𝑎 𝑗 − 𝜓 𝑗) (2.16)

where 𝜓𝑖 and 𝜓 𝑗 are estimates of the expected pre- and postsynaptic

activity
6
.6: The expected activity can be estimated,

for example, by calculating a moving aver-

age. The formulas above lack two important constraints. First, the weight

growth has no upper or lower bound: With long training on the same

patterns, a synaptic connection 𝑤𝑖 𝑗 constantly increases or decreases.

In practice, boundaries are defined to mitigate this issue. This can be

implemented by normalising the length of the weight vector [98] or by[98]: Oja (1982), ‘Simplified neuron model

as a principal component analyzer’
using rate-based threshold adaption [99], [100]. Second, breaking the

[99]: Bienenstock, Cooper, and Munro

(1982), ‘Theory for the development of

neuron selectivity’

[100]: Intrator and Cooper (1992),

‘Objective function formulation of the

BCM theory of visual cortical plasticity’

symmetry within the network is necessary: After initialisation, many

cells tend to fire simultaneously, resulting in many similar updates of the

synaptic connections. However, independent neurons can encode more

information and work better than dependent neurons [101]. Thus, compe-

[101]: Simoncelli and Olshausen (2001),

‘Natural Image Statistics and Neural

Representation’

tition between neurons is needed to encourage differentiation, allowing

only a subset of connections to be updated. Well-known approaches are

winner-take-all competition, using a recurrent circuit that provides a

competitive signal, anti-Hebbian learning [102] (a method that adds a

[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

penalty for similarly active neurons), or adapting the activation function

of the neurons to enforce a specific activity distribution [103], [104].

[103]: Joshi and Triesch (2009), ‘Rules

for information maximization in spiking

neurons using intrinsic plasticity’

[104]: Teichmann and Hamker (2015), ‘In-

trinsic Plasticity: A Simple Mechanism to

Stabilize Hebbian Learning in Multilayer

Neural Networks’

Hebbian learning can be considered an alternative to backpropagation

of error [14], [15]. Hebbian learning does not propagate error signals

backwards but relies on a self-organisation process. In this thesis, Hebbian

learning is leveraged as it allows to prevent early commitment, even

though self-organising processes are more complex to train than global

error correction algorithms [105].

[105]: Risi (2021), The Future of Artificial
Intelligence is Self-Organizing and Self-
Assembling

2.4.2 Hopfield Networks

The Hebbian rule can be used to train Hopfield networks. Hopfield

networks serve as associative (i.e. content-addressable) memory systems

[106], similar to the nearest neighbour algorithm [107] or memory net-

[106]: Hopfield (1982), ‘Neural networks

and physical systems with emergent

collective computational abilities.’

[107]: Fix and Hodges (1989), ‘Dis-

criminatory Analysis. Nonparametric

Discrimination’

works [108]. In a Hopfield network, all neurons are binary and connected

[108]: Weston, Chopra, and Bordes (2015),

Memory Networks

without self-connections, i.e. 𝑤𝑖𝑖 = 0. Additionally, the synaptic weights

in a Hopfield network are symmetrical, meaning 𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 .

An input is fed into the network by setting the neuronal activity 𝒂[𝑡 = 0]
at time 𝑡 = 0 to a specific configuration. Hopfield networks have temporal

dynamics, and the output evolves over time: After the initial input is set

as the network’s state, the cells influence each other, and the network’s

state is updated until a stable attractor state is reached. The state of a

neuron at time 𝑡 + 1 depends on the state of all other neurons at time 𝑡

within the network:

𝑧𝑖[𝑡 + 1] =
∑
𝑖≠𝑗

𝑤𝑖 𝑗𝑎 𝑗[𝑡] + 𝑏𝑖 (2.17)

𝑎𝑖[𝑡 + 1] =
{

1, if 𝑧𝑖[𝑡 + 1] > 0

−1, otherwise

(2.18)
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When the aggregation value 𝑧𝑖 is bigger than 0, the cell turns on or off

otherwise. Thus, a cell can either keep its state (𝑎𝑖[𝑡 + 1] = 𝑎𝑖[𝑡]) or flip

(𝑎𝑖[𝑡 + 1] ≠ 𝑎𝑖[𝑡]). A flipping state influences all other neurons and may

encourage them to flip as well. Formal proof exists that after a finite

number of timesteps, an attractor state is reached [106]. Thereby, an input [106]: Hopfield (1982), ‘Neural networks

and physical systems with emergent

collective computational abilities.’

pattern is attracted to the closest stable pattern. Hebbian learning [40]

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

can be used to define what the stable patterns are: With a single iteration

over the training patterns, the weights 𝑤𝑖 𝑗 and biases 𝑏𝑖 are updated so

that these patterns become attractor states [109]. This allows using the

[109]: Hopfield, Feinstein, and Palmer

(1983), ‘‘Unlearning’ has a stabilizing

effect in collective memories’

network as an associative memory, i.e. to map an input pattern to the

most similar predefined stable pattern.

For a long time, Hopfield networks had two limiting factors: First, the

capacity𝐶, i.e. the number of patterns that can be stored, was for a network

with 𝑘 neurons limited to 𝐶 = 0.138𝑘 [110]. However, this limitation could [110]: McEliece, Posner, Rodemich, et al.
(1987), ‘The capacity of the Hopfield

associative memory’

be resolved more than three decades after the introduction of the Hopfield

networks; Krotov et al. [111] first increased the capacity to a polynomial

[111]: Krotov and Hopfield (2016),

‘Dense Associative Memory for Pattern

Recognition’

capacity w.r.t. 𝑘 and Demircigil et al. [112] later to exponential capacity

[112]: Demircigil, Heusel, Löwe, et al.
(2017), ‘On a Model of Associative

Memory with Huge Storage Capacity’

w.r.t. 𝑘. The second limiting factor of Hopfield networks is that only

binary patterns can be stored. Recently, Hopfield networks have been

extended to continuous patterns [113].

[113]: Ramsauer, Schäfl, Lehner, et al.
(2021), Hopfield Networks is All You Need

Hopfield networks remain a niche, as they perform worse than retrieval

systems [114] and memory networks [108]. They also lack hierarchical

[114]: Kowalski (1997), Information Retrieval
Systems

[108]: Weston, Chopra, and Bordes (2015),

Memory Networks

pattern recognition and may require additional models to store higher-

level patterns than just the input data. In the context of the proposed

framework, a Hopfield network could be used as a biologically plausible

memory, storing concrete instances of objects. However, such a memory

is not investigated within the context of this thesis and remains an open

question for future research.

2.4.3 Spiking Neural Networks

Biological neurons emit time-dependent spikes (c.f. Section 2.1). To

transmit information, especially the firing rate (i.e. the number of spikes

per second) and precise timing of the spikes are relevant [115]. The [115]: Thorpe (1990), ‘Spike arrival times:

A highly efficient coding scheme for

neural networks’

amplitude and duration of the spike matter less. So-called spiking neural

networks (SNNs) incorporate the concept of time into a computational

model [116]. SNNs do not transmit information in each forward pass but
[116]: Maass (1997), ‘Networks of spiking

neurons’rather send a signal when the membrane potential reaches a threshold

value
7
. The most prominent models of spiking neurons are different

7: The membrane potential is related to

the electrical charge of the membrane of a

biological neuron.

integrate-and-fire (IF) neurons [117]–[119]. While each model has different

mathematical properties, the concept remains the same: Each neuron

has a membrane potential that is increased or decreased through spikes

from other neurons and decays over time or is reset when the cell emits

a spike after reaching a predefined threshold.

The synaptic plasticity can be learned with an adapted version of Hebbian

learning, called the spike-timing-dependent (STDP) plasticity rule [120]. [120]: Bi and Poo (2001), ‘Synaptic

Modification by Correlated Activity’
This rule strengthens connections if the presynaptic neurons fire before

the postsynaptic neuron and weakens the connection otherwise.

For a long time, SNN only worked for very shallow networks. In 2018,

Kheradpisheh et al. [121] proposed a deep spiking convolutional net- [121]: Kheradpisheh, Ganjtabesh, Thorpe,

et al. (2018), ‘STDP-based spiking deep

convolutional neural networks for object

recognition’

work inspired by CNNs to overcome this limitation. This network uses
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convolutional and pooling layers with IF neurons and is trained with

STDP. Despite these remarkable advances in SNNs, their performance

is still inferior compared to equivalent artificial neural networks [122].[122]: Nunes, Carvalho, Carneiro, et al.
(2022), ‘Spiking Neural Networks’

Several factors contribute to this discrepancy. First, SNNs require con-

verting inputs like images into spike representations. This process results

in losing important information, including colour and texture details.

Furthermore, SNNs use non-differentiable activation functions, which

makes them unsuitable for training by backpropagation of error [122].

Even though spiking neurons are biologically more plausible than neu-

rons without time dependency, they are not used in the proposed frame-

work. The reasons are that they do not provide an obvious advantage

despite their plausibility and do not seem very suitable for processing a

static input (e.g. an image) on a clocked machine (e.g. a CPU).
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In this chapter, the related work is summarised. In Section 3.1, diverse

learning frameworks are presented that deviate from the mainstream

but might be promising for building more effective learning principles.

Afterwards, in Section 3.2, an introduction to a publication titled “A

Theory of Natural Intelligence” by von der Malsburg et al. [20] is pro-

vided. This work is the main source of inspiration for this thesis and is

summarised in detail. This theory can be implemented by combining

projection fibres with lateral connections in a self-organising manner.

Therefore, projection fibres are summarised in Section 3.2.1 and work

associated with self-organisation is reviewed in Section 3.3.

3.1 Alternative AI Approaches

Arguably, the only existing systems that, in non-experts’ eyes, behave

intelligently
1

are foundation models such as large language models 1: Which does not mean that such systems

exhibit actual intelligence.
(LLMs) [79], [123], and their fine-tuned versions [124]. However, like

[79]: Brown, Mann, Ryder, et al. (2020),

‘Language Models are Few-Shot Learners’

[123]: Touvron, Lavril, Izacard, et
al. (2023), LLaMA

[124]: Ouyang, Wu, Jiang, et al. (2022),

Training language models to follow instruc-
tions with human feedback

other deep learning models, also foundation models suffer from the

typical drawbacks of statistical learning (c.f. Section 2.3). Therefore, a lot

of research has been conducted to reduce these well-known problems:

For example, current research aims to reduce hallucinations [125], [126],

[125]: Feldman, Foulds, and Pan (2023),

Trapping LLM Hallucinations Using Tagged
Context Prompts

[126]: Manakul, Liusie, and Gales

(2023), SelfCheckGPT: Zero-Resource
Black-Box Hallucination Detection for
Generative Large Language Models

to implement an ongoing learning framework [88], [127], to transfer

[88]: Sahoo, Pham, Lu, et al. (2018), ‘Online

Deep Learning’

[127]: Hoi, Sahoo, Lu, et al. (2021),

‘Online learning’

knowledge between tasks and data domains [18], [128], or to learn what

should be learned [129], [130]. However, the underlying framework re-

mains identical: Data is statistically mapped to manually or automatically

generated labels, making it difficult to solve problems such as lack of

robustness [11], [17], out-of-distribution generalisation [46], data efficiency

[13], [90], energy consumption [85], catastrophic forgetting [12], causal

understanding or common sense reasoning [9], [10]. In the following,

alternative approaches to training deep networks are summarised that

attempt to alleviate these problems with new principles that do not rely

solely on label prediction or data reconstruction.

1000 Brains. Jeff Hawking and his research group use the brain as

the single source of inspiration and build, following their interpreta-

tion, a biologically highly plausible system that implements the brain’s

learning algorithm [131]. The learning algorithm is an adapted version
[131]: Hawkins, Lewis, Klukas, et al.
(2019), ‘A Framework for Intelligence and

Cortical Function Based on Grid Cells in

the Neocortex’

of unsupervised Hebbian learning [40]. Their theory is based on Ver-

non Mountcastle’s proposal that the neocortex comprises many cortical

columns, all having a similar architecture and performing similar func-

tions [59], [60]. Thus, they argue that the brain does not comprise a single

learning model like current deep learning systems but many similar but

independent models for each object [132]. Each model uses different in- [132]: Lewis, Purdy, Ahmad, et al. (2019),

‘Locations in the Neocortex’
puts from different sensory system parts. These models make predictions

based on the input they receive and vote to reach a consensus on the
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sensory observations. This theory is also known as the 1000 brains theory,

as many models work in parallel. The principle of many parallel models

is closely related to ensemble approaches in deep learning [133], with the[133]: Yang, Lv, and Chen (2023), ‘A

Survey on ensemble learning under the

era of deep learning’

constraint, similar to random forest [134], that only a portion of the data

[134]: Ho (1995), ‘Random decision forests’

is available to each model. Current results are difficult to interpret as the

proposed model has been trained and tested on the same dataset. In its

current form, the model can recognise several hundred objects and is

robust to noise. However, the number of available input signals severely

limits the network’s capacity, and the model cannot yet scale to recognise

more objects. Hidden units cannot just be added to increase the model’s

capacity, as increasing capacity requires additional input signals.

Strictly enforcing biological plausibility limits performance significantly,

as the biologically inspired algorithm cannot fully exploit the mathemat-

ical capabilities of computational hardware. Intuitively, however, several

proposed principles appear promising: Sparse coding encourages compact

and efficient representation of complex data [135], self-organisation of a[135]: Ferrier (2014), Toward a Universal
Cortical Algorithm

large number of parallel models increases robustness [133], and predicting
future cell activation allows learning in an unsupervised manner and does

not restrict the model to specific predefined tasks.

Recursive Cortical Network. A second type of network that has evolved

from the 1000 brains theory is called the recursive cortical network (RCN)

[136]
2
. It is based on the insight that a human’s vision system processes[136]: George, Lehrach, Kansky, et al.

(2017), ‘A generative vision model that

trains with high data efficiency and

breaks text-based CAPTCHAs’

2: The driving force behind it, Dileep

George, worked in Jeff Hawkings’ group

and was instrumental in developing the

fundamentals of the 1000 brains theory.

shape and appearance differently [137] and that a familiar object with

[137]: Garg, Li, Rashid, et al. (2019), ‘Color

and orientation are jointly coded and

spatially organized in primate primary

visual cortex’

an unexpected colour can still be easily recognised. The RCN uses

separate mechanisms to process contours and appearances and uses

lateral connections [138] for internal consistency. When the features

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

cannot explain an image at a certain level 𝑙, the active features from the

level below 𝑙−1 are combined to create a new feature at level 𝑙. Afterwards,

features are pruned using a cost function considering reconstruction and

compression errors. A significant advantage of RCN is that it can learn

from a few examples and has one-shot and few-shot learning capabilities.

However, in its current form, RCNs cannot be applied to natural images,

as contour hierarchies only can be implemented if the object is clearly

separated from its background. Therefore, the network, in its current

form, is limited to MNIST [139] and text-based CAPTCHAs.

[139]: LeCun, Bottou, Bengio, et al. (1998),

‘Gradient-based learning applied to

document recognition’

Similar to the 1000 brains theory, this model has drawbacks that prevent

its practical application but introduces many promising concepts: The

separation of shape and appearance seems promising, as this limits the feature

space, and these concepts can be learned independently. Furthermore, in

the case of multiple classes, the network does not make a single prediction

but creates hypotheses that are evaluated by an outer loop. Thus, the

model loops between generating and evaluating hypotheses.

Capsule Networks. Neuronal capsule networks (CapsNet) [140] mimic[140]: Sabour, Frosst, and Hinton (2017),

‘Dynamic Routing between Capsules’
biological neural organisation and explicitly model hierarchical rela-

tionships. These networks group neurons into “capsules”; each capsule

represents a property such as position, size, orientation, deformation,

texture, colour or movement. Several of these capsules form more stable

representations for higher-level capsules. Dynamic routing [141] matches[141]: Ash, Cardwell, and Murray (1981),

‘Design and Optimization of Networks

With Dynamic Routing’
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bottom-up activations and top-down concepts generated based on avail-

able evidence over multiple iterations. It allows the network to learn

viewpoint invariant knowledge and can deal with highly overlapping

objects by detecting that one object is in front of another. However,

CapsNets are still an active area of research and are not yet adopted in

real-world scenarios. In particular, dynamic routing makes the algorithm

slow, and so far, this approach has only worked on small datasets such

as MNIST [139] or CIFAR-10 [142]. [139]: LeCun, Bottou, Bengio, et al. (1998),

‘Gradient-based learning applied to

document recognition’

[142]: Krizhevsky (2009), ‘Learning

Multiple Layers of Features from Tiny

Images’

Some concepts of CapsNets are closely related to those of the 1000 brains

theory and RCNs. However, CapsNets have their origins in computer

science and are oriented towards deep learning principles. In contrast, the

other frameworks have originated in neuroscience and focus on biological

plausibility. CapsNets divide the features into capsules which is helpful for

generalisation. However, a severe problem is the accumulation of spatial

information, which prevents the model from scaling to larger datasets.

The dynamic process of iterating between low-level and high-level features

to analyse hypotheses is promising to prevent early commitment [26] [26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

and is highly relevant for this thesis.

Parsimony and Self-Consistency. Ma et al. [143] suggest that appropri- [143]: Ma, Tsao, and Shum (2022),

‘On the principles of Parsimony and

Self-consistency for the emergence of

intelligence’

ate data structuring can lead to the emergence of intelligence, especially

if the data is structured according to the principles of parsimony and

self-consistency. The two principles describe what and how should be

learned. Parsimony implies that an intelligent learning system should

recognise low-dimensional structures in observed high-dimensional data

and organise them in the most compact and structured way
3
. The second 3: The goal is not to achieve the best pos-

sible compression but to obtain compact

and structured representations in a com-

putationally efficient way.

principle of self-consistency states that an intelligent learning system

minimises the internal discrepancy between observed and regenerated

observations. Such internal representations can be learned through self-

criticism [144]. The described framework is promising as it incorporates [144]: Rennie, Marcheret, Mroueh, et al.
(2017), ‘Self-Critical Sequence Training for

Image Captioning’

biological concepts into a framework that unifies and clarifies many prac-

tical and empirical findings of deep learning. Unfortunately, the authors

do not present any metrics, so estimating the framework’s performance

is difficult. The framework’s challenge is implementing the parsimony

principle, i.e., defining the constraints responsible for forming the latent

space and scaling it to larger datasets.

Actionable Representations. Another frequently used principle in-

spired by biological learning is the combination of representations with

actions [145], [146]. It is known that animals integrate their actions (i.e., [145]: Knoblich and Sebanz (2006), ‘The

Social Nature of Perception and Action’

[146]: Zhou, Krähenbühl, and Koltun

(2019), ‘Does computer vision matter for

action?’

movements) with incoming sensory signals [147]. Keurti et al. [148] argue

[147]: Keller, Bonhoeffer, and Hübener

(2012), ‘Sensorimotor Mismatch Signals in

Primary Visual Cortex of the Behaving

Mouse’

that such efference copies
4

help to learn useful latent representations of

4: The internal copy of an outgoing

motion-generating signal.

input the visual system perceives. They allow an agent to perform actions

by transforming objects and ensure that real-world transformations can

also be applied to latent representations, i.e., mental objects and real-

world objects remain consistent when similar transformations are applied.

Allowing an agent to interact with the world to understand it better and

improve representations seems essential not only from a neuroscientific

point of view but is also in line with theories from psychology: Piaget

[149] argues that perceiving an object is more about understanding how

it changes and behaves than creating a mental copy of the object. The



20 3 Related Work

combination of perception and action for autonomous machine intelli-

gence is also postulated by LeCun [150]. He proposes creating a world[150]: LeCun (2022), ‘A Path Towards

Autonomous Machine Intelligence’
model whose future state can be predicted based on planned actions. He

emphasises the importance of self-supervised learning in combination

with energy functions [151].[151]: Hinton (2002), ‘Training Products

of Experts by Minimizing Contrastive

Divergence’ Actionable representations not only represent the system’s input data but

also capture their behaviour when undergoing actions applied to them.

However, increasing the representation’s information content comes with

the costs of providing richer input data:

• Learning visual representations of an object requires images only.

• Learning an object’s appearance from different viewpoints requires

sequences of images of the same object.

• Learning actionable representations requires a simulation in which

actions can be applied to objects.

Active Inference. LeCun [150] describes that energy functions are well

suited to make predictions of the world state based on actions because

they can shape the latent space well due to their regulating properties.

In the context of active inference [152], [153], perception presents itself as[152]: Friston, FitzGerald, Rigoli, et al.
(2016), ‘Active inference and learning’

[153]: Parr, Pezzulo, and Friston

(2022), Active Inference

a process of minimising the free energy [151] of variation with respect

to beliefs about hidden variables. This process enables planning and

inference by modelling generative processes 𝑝(𝑠, 𝑜). For example, if it

rained at night (𝑝(𝑠)), one can infer that the grass is wet (𝑝(𝑜)). The model

tries to model the chances of different hidden situations 𝑝(𝑠 |𝑜) based

on prior beliefs (𝑝(𝑠)) and the likelihood of what it already observed

(𝑝(𝑜 |𝑠)). Thus, active inference minimises the variational free energy by

using past experiences to learn how the world works [152]. This helps to

predict what might happen in the future by minimising the probability

of surprising or unexpected situations. This principle is also actively

researched by other well-known research groups. For example, Bengio’s

research group works on GFlowNets (Generative Flow Networks) [154],

[155], making it possible to disentangle the explanatory causal factors and[154]: Bengio, Jain, Korablyov, et al. (2021),

‘Flow Network based Generative Models

for Non-Iterative Diverse Candidate

Generation’

[155]: Bengio, Lahlou, Deleu, et al.
(2022), GFlowNet Foundations

the mechanisms that connect them. Furthermore, energy-based models

can generate new samples that resemble the training data by sampling

from the energy function [156]. This allows for predicting future world

[156]: Du and Mordatch (2020), Implicit
Generation and Generalization in Energy-
Based Models

states.

Conculsion. There exist various alternative learning approaches with

interesting principles. Many of these principles are adopted in this thesis;

Similar to the 1000 brains theory, local self-organisation is used to build

consistency between small models, i.e. between cells representing features.

Also, sparse coding is used in the thesis as it enhances interpretability

and robustness [157]. The iterative process of generating and evaluating[157]: Ahmad and Hawkins (2015), Proper-
ties of Sparse Distributed Representations and
their Application to Hierarchical Temporal
Memory

hypotheses, as applied in RCNs [136] and CapsNets [140], is considered

[136]: George, Lehrach, Kansky, et al.
(2017), ‘A generative vision model that

trains with high data efficiency and

breaks text-based CAPTCHAs’

essential to prevent early commitment [26]. In the proposed framework,

such a loop is implemented between cells of the same layer: A cell can only

remain active when consistent with the global pattern (evaluation loop)

while simultaneously defining the global pattern (generation loop). Lastly,

the proposed framework leverages an energy function to implement a

memory component.
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Besides these adopted principles, other methodologies seem essential

for future work. Especially the organisation of internal representations

should be investigated further. Promising approaches for organising the

latent space are actionable representations that allow an agent to better

understand objects’ behaviour under certain transformations and the

principles of parsimony and self-consistency.

3.2 Natural Intelligence

In this section, the theory of natural intelligence proposed by von der

Malsburg et al. [20] is discussed, as it serves as the foundation of this [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

thesis. The authors point out the massive gap between the amount

of information needed to describe the brain’s structure (1 PB) and the

amount needed to generate it (few GB) [158]. Therefore, the brain must
[158]: McPherson, Marra, Hillier, et al.
(2001), ‘A Physical Map of the Human

Genome’

be highly structured [159]–[161] The theory’s authors argue that the

[159]: Gazzaniga (1989), ‘Organization of

the Human Brain’

[160]: Ackerman (1992), Discovering
the brain

[161]: Bassett and Gazzaniga (2011),

‘Understanding complexity in the human

brain’

“Kolmogorov algorithm [162] of the brain”
5

builds the neuronal structure

[162]: Kolmogorov (1998), ‘On tables of

random numbers’

5: The Kolmogorov complexity describes

the number of bits required by the short-

est algorithm that can generate a given

structure.

by selecting from a set of pre-structured patterns. This aligns with other

research that argues that the brain is dominated by similar cell patterns

[59], [60]. Self-organisation is the only mechanism that experiments have

[59]: Mountcastle (1978), ‘An Organizing

Principle for Cerebral Function: The Unit

Model and the Distributed System’

[60]: Mountcastle (1997), ‘The columnar

organization of the neocortex’

not yet disproved as the brains Kolmogorov algorithm [163]–[167].

This mechanism loops between activity and connectivity, with activity

acting back on connectivity through synaptic plasticity until a steady

state, called an attractor network, is reached. The consistency property of

an attractor network implies that a network has many alternative signal

pathways between pairs of neurons [168]. Thus, the brain develops as an

[168]: von der Malsburg and Bienenstock

(1987), ‘A Neural Network for the Retrieval

of Superimposed Connection Patterns’

overlay of attractor networks called net fragments [169]. Net fragments

[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’

consist of sets of neurons, whereby each neuron can be part of several

net fragments. In the case of visual processing, net fragments can be

considered filters that detect previously seen patterns in the visual

input signal. An object is represented by multiple net fragments, where

each fragment responds to the surface of that object and has shared

neurons and connections with other net fragments representing that

object. Thus, net fragments render the topological structure of the surfaces

that dominate the environment. Nested net fragments of different sizes

may represent a hierarchy of features. Complex objects, such as mental

constructs, can thus be seen as larger net fragments composed of mergers

of pre-existing smaller net fragments.

von der Malsburg et al. [20] have not addressed how their theoretical

concepts can be translated into a computational model. A concrete

implementation is proposed by Lehmann [170]. He proposes a new

[170]: Lehmann (2022), ‘Leveraging

Neuroscience for Deep Learning Based

Object Recognition’

layer called the laterally connected layer (LCL) that forms lateral intra-

layer connections based on the Hebbian learning rule [40]. Such lateral

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

connections are synapses between cells in the same layer [138]. However,

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

the proposed layer has only improved performance for small networks

and datasets, and its effectiveness for larger models processing more

complex has yet to be demonstrated. Furthermore, lateral connections

are only used at the end of the network, thereby not preventing early

commitment since features are still processed hierarchically. Moreover,

Lehmann does not build net fragments and thus ignores some of the

aspects of the theory.
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In this thesis, lateral connections are used to build net fragments to

overcome the limitations of the LCL layer. Furthermore, it analyses the

theory of natural intelligence by conducting experiments and contributes

to making it more concrete.

3.2.1 Projection Fibres

An important principle of the theory of natural intelligence is the render-

ing of topological structures. This means that image features extracted

by a filter are mapped to a corresponding reference image, whereby

neighbouring features in the source image are mapped to neighbouring

regions in the reference image. This mapping is inspired by the human

brain that maps cell activity in the primary visual cortex [171], [172] to[171]: Tong (2003), ‘Primary visual cortex

and visual awareness’

[172]: Grill-Spector and Malach

(2004), ‘The human visual cortex’

transformation- and position-invariant reference objects stored in the

temporal cortex [173], [174]. The mapping between corresponding cells

[173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

[174]: Conway (2018), ‘The Organi-

zation and Operation of Inferior Temporal

Cortex’

is done with a particular type of axon called projection fibre [175]. In

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

this section, different implementations of projection fibres are presented,

while biological aspects are discussed in Section 4.1.4.

Projection fibres map images to reference objects and can be defined as

matching subgraphs [27]–[29]: An image can be described as a graph

of image features, whereby the connections of the graph represent the

spatial relationships between the features in the image. However, not all

pixels usually belong to the same object, and thus, a subgraph represents

an object. In addition, an idealised version of this object’s subgraph

is stored as a prototype. By matching the subgraphs of an image and

the stored subgraph prototypes, projection fibres implement subgraph

matching.

Lades et al. [28] divide the training into two phases: During a storage[28]: Lades, Vorbruggen, Buhmann, et al.
(1993), ‘Distortion invariant object recog-

nition in the dynamic link architecture’

phase, sparse graphs labelled with Gabor-type wavelets are formed

and stored as model prototypes. In the recognition phase, the Gabor

wavelets of the perceived image are matched with the previously stored

graph prototypes. Therefore, a sparse graph of the image features is

adaptively formed to best match a given prototype graph. The matching

process is based on adjusting one-to-one links between vertices in the

model and image graphs; the model’s prototype graphs are moved over

the input graph and locally slightly deformed. A cost function controls

the graph adaptation by favouring similarities and penalising metric

deformations. This matching process between image features and stored

models is repeated for each stored model prototype. Finally, the prototype

with the lowest cost is selected as the recognised model. This process

is straightforward, but the sequential matching of models prevents the

model from scaling to large datasets requiring many prototypes.

An alternative approach is described by Bienenstock et al. [27]. They[27]: Bienenstock and von der Malsburg

(1987), ‘A Neural Network for Invariant

Pattern Recognition’

connect all prototype graphs to the input graph randomly, and a self-

organising learning process iteratively improves these connections in a

coarse-to-fine manner. The matching process from prototypes to feature

sub-graphs is implemented by minimising an energy function [151].[151]: Hinton (2002), ‘Training Products

of Experts by Minimizing Contrastive

Divergence’

However, this approach could not scale to larger datasets or photorealistic

images.

Wiskott et al. [29] proposed self-organising projection fibres for face recog-[29]: Wiskott and von der Malsburg (1996),

Face Recognition by Dynamic Link Matching
nition. The mapping between the image array and the stored prototype
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array is based on synaptic plasticity and the constraint of preservation of

topography to find matches. The preservation of topography is achieved

with lateral connections, which are excitatory over a short range and

inhibitory over a long range. The connectivity matrix is initialised using

the similarities between the features of the connected neurons. After-

wards, the connectivity matrix is adjusted by moving the prototype

sub-graph across the image until a good match to the feature graph is

found. However, one problem with this model is that matching takes a

long time and is, therefore, impractical.

Wolfrum et al. [31] utilise three layers, an input layer to extract image [31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

features, an assembly layer for recurrent information integration, and a

gallery layer for storing face prototypes. The input layer is organised in a

rectangular grid, while the assembly and gallery layers have face graph

topology. Projection fibres map the features from the input layer to the

assembly layer, from where the face graph is compared with prototypes

in the gallery. This architecture is biologically plausible, works fast, and

obtains good results. However, the main drawback is that the cells are

organised according to a face graph topology. Thus, it does not work for

different objects.

Projection fibres map the features found in the image to stored object

prototypes based on their local similarity. This creates an explicit one-

to-one mapping between features and prototypes. Therefore, unlike

CNNs, no position and transformation information is lost, and the

mapping is better interpretable. Current implementations cannot map

images to prototypes if the features do not match well. This problem

is alleviated in this thesis by mapping net fragments [169] instead of [169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’
features. Net fragments are based on image features but remove noise,

reconstruct missing parts, and locally generalise features. Thus, net

fragments transform features into suitable representations occurring

similarly in reference frames, enabling a more robust mapping.

3.3 Self-Organisation

Self-organisation is the process by which systems consisting of many

units spontaneously acquire their structure or function without interfer-

ence from an external agent or system [42]. They organise their global [42]: Morris, Tarassenko, and Kenward

(2006), Cognitive Systems - Information
Processing Meets Brain Science

behaviour through local interactions amongst themselves. The absence

of a central control unit allows self-organising systems to adjust to

new environmental conditions quickly. Additionally, such systems have

built-in redundancy with a high degree of robustness as they consist of

many simpler individual units [176]. These individual units can even fail [176]: Wagner (2013), ‘Robustness in

Natural Systems and Self-Organization’
without the overall system breaking down.

Self-organisation is highly relevant in this thesis: First, the theory of

natural intelligence (c.f. Section 3.2) argues the brain’s Kolmogorov

algorithm is self-organising and a key to natural intelligence. Second,

implementing a system that prevents early commitment cannot rely on

a global error correction signal that controls the entire process. Instead,

taking local decisions based on the feasibility of overarching patterns

requires a self-organising approach.
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Growing Patterns. Cellular automata contain a grid of similar cells
6

6: An image or features of an image can

be interpreted as a 2D grid of cells.
with an internal state updated periodically. Update rules define the

transition from a given state to a subsequent state. During an update,

cells can only communicate with the neighbouring cells. Thus, self-

organisation is enforced by the definition of the update rules [177], [178].[177]: Wolfram (1984), ‘Cellular automata

as models of complexity’

[178]: Vichniac (1984), ‘Simulating

physics with cellular automata’

Neural cellular automata [179], [180] use neural networks to learn the

[179]: Wulff and Hertz (1992), ‘Learning

Cellular Automaton Dynamics with

Neural Networks’

[180]: Gilpin (2019), ‘Cellular au-

tomata as convolutional neural networks’

update rule between cells. The input in such a neural network is the state

of a given cell and its neighbours, and the output is the subsequent cell

state.

Cells in NCAs can be trained with gradient descent to grow learned 2D

patterns such as images [181], [182]. These images are grown through

[181]: Mordvintsev, Randazzo, Niklasson,

et al. (2020), ‘Growing Neural Cellular

Automata’

[182]: Mordvintsev, Randazzo, and

Fouts (2022), ‘Growing Isotropic Neural

Cellular Automata’

self-organisation (i.e. the pixels pick a colour based on the colour of

neighbouring pixels) and are surprisingly resistant to damage. For ex-

ample, large parts of the images can be removed, and the system can

still rebuild the entire image. However, the aforementioned approaches

can only grow the pattern they are trained on. A recent method called

Variational Neural Cellular Automata [183] uses an NCA as the decoder

[183]: Palm, González-Duque, Sud-

hakaran, et al. (2022), Variational Neural
Cellular Automata

of a variational autoencoder [184]. This probabilistic generative model

[184]: Kingma and Welling (2022),

Auto-Encoding Variational Bayes

can grow images based on a vector sampled from a Gaussian distribu-

tion. However, there is still a significant performance gap compared to

state-of-the-art generative models. Besides growing 2D patterns, NCAs

can also create 3D patterns [185], simulate robots [186], or generalise to

graph structures [187].

Classify Images. The process of growing images from cells of an NCA

can also be inverted: Randazzo et al. [188] propose to use NCAs to classify

[188]: Randazzo, Mordvintsev, Niklasson,

et al. (2020), ‘Self-classifying MNIST

Digits’

given structures such as images. They apply the same network to each

pixel of an image. In an iterative process based on local communication

with neighbouring pixels, the image fragments agree on which object

they represent. Intuitively, each pixel has a hypothesis about which object

it might represent. By communicating with neighbours, pixels vote for

and agree on one hypothesis over time. However, this approach is limited

to local interaction and only works for simple images such as MNIST.

Learning. Self-organisation can also be used to optimise the weights

of neural networks. Hebbian learning is considered a learning rule

that follows self-organising principles [189], [190] as it updates weights[189]: Najarro and Risi (2020), ‘Meta-

Learning through Hebbian Plasticity in

Random Networks’

[190]: Pedersen and Risi (2021),

‘Evolving and Merging Hebbian Learning

Rules’

between two cells based on the cells’ state and does not require a global

teaching signal (c.f. Section 2.4.1).

Kirsch et al. [191] use multiple tiny recurrent neural networks (RNNs) that

have the same weight parameters but different internal states
7
. By using

7: Intuitively, these tiny RNNs can be in-

terpreted as more complex neurons.

self-organisation and Hebbian learning, they show that it is possible

to learn powerful learning algorithms such as backpropagation while

running the network in forward mode only. However, it works only for

small-scale problems as it can quickly get stuck in local optima.

Network Architectures. Unsupervised learning techniques usually

map high-dimensional input data to a lower-dimensional representation

[70]. Such mappings can also be implemented in a self-organising manner,[70]: Russell and Norvig (2021), Artificial
intelligence

for example, based on self-organising maps (SOMs) [192], [193]. SOMs
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map the input data to a discrete representation space of the training

samples called a map. Unlike ANNs, they use competitive learning [194] [194]: Grossberg and Schmajuk (1989),

‘Neural dynamics of adaptive timing

and temporal discrimination during

associative learning’

instead of error correction learning algorithms such as backpropagation

of error [14], [15]. Local competitive learning ensures that samples are

[14]: Rosenblatt (1962), Principles of
Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms

[15]: Linnainmaa (1976), ‘Taylor ex-

pansion of the accumulated rounding

error’

close in the input space are also closed in the resulting maps. Thus, the

data space is self-organised by local rearrangements.

However, SOMs have two significant limitations; First, the network

structure must be predefined, limiting the mapping accuracy. Second,

the map’s capacity is predefined through the number of nodes. Growing

networks overcome these limitations and add nodes or whole layers of

nodes into the network structure at the positions of the map where the

error is highest [195]–[197]. [195]: Reilly, Cooper, and Elbaum (1982),

‘A neural model for category learning’

[196]: Fritzke (1994), ‘Growing cell

structures: A self-organizing network for

unsupervised and supervised learning’

[197]: Marsland, Shapiro, and Nehmzow

(2002), ‘A self-organising network that

grows when required’

Relevance. The proposed framework is highly related to the aforemen-

tioned self-organising principles: First, net fragments can reconstruct

local patterns when occluded, resembling methodologies that can grow

patterns. Second, projection fibres implement a mapping from scenes

to reference frames, related to approaches that implement classification

based on self-organising principles. Finally, the proposed framework

relies on a self-organising Hebbian learning algorithm. In contrast, the

architecture of the network is predefined and has not yet adopted a

self-organising approach. Nevertheless, it is essential for future research

efforts to explore the dynamic incorporation of patterns in reference

frames, thereby increasing the relevance of introduced concepts such as

self-organising maps (SOMs).
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As described in Section 1.1, deep networks suffer from early commitment.

However, the Gestalt psychology [22]–[25], as well as the theory of natural

intelligence [20] and work based on self-organising projection fibres [27]–

[29], [32] considers the principle of preventing early commitment as a

core mechanism for the effectiveness of the human visual system.

The human brain can prevent early commitment [26] while still being an

excellent image-processing system [22]–[25]. Consequently, the neuro-

scientific literature is studied, and promising findings to implement a

vision framework preventing early commitment are identified. Thus, this

chapter can be considered a survey of existing neuroscientific findings.

However, compared to the related work section, it contains more inter-

pretations and introduces a unified vocabulary compatible with both

fields, neuroscience and deep learning.

In this chapter, important neuroscientific findings are presented in

Section 4.1, describing lateral connections (Section 4.1.2), net fragments

(Section 4.1.3), the local learning principle (Section 4.1.6), and projection

fibres (Section 4.1.4). Afterwards, in Section 4.2, it is described how these

biological findings could improve current systems.

4.1 Neuroscientific Findings

4.1.1 The Brain’s Visual System

Figure 4.1: Visualisation of the human’s

visual system. The image is from Fasoli

[198].

The visual system of humans is illustrated in Figure 4.1. The eyes are

sensors that capture light waves and translate them into electrical pulses.

These electrical signals travel through the human brain to the primary

visual cortex [171], [172], located at the back of the head. Cells within the [171]: Tong (2003), ‘Primary visual cortex

and visual awareness’

[172]: Grill-Spector and Malach

(2004), ‘The human visual cortex’

visual cortex fire spikes when specific visual stimuli appear within their

receptive fields [172]. Thus, these cells can be considered filters that are

excited if a known pattern is detected in the input data.
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The visual cortex detects patterns in visual data but does not draw

conclusions from it. Instead, it forwards it as an information stream to

other brain areas. In this thesis, especially the ventral visual stream [199][199]: Goodale and Milner (1992), ‘Separate

visual pathways for perception and action’
is of importance, which forwards the detected patterns to the temporal

cortex [173], [174], a brain region located behind the ears. According

[173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

[174]: Conway (2018), ‘The Organi-

zation and Operation of Inferior Temporal

Cortex’

to the two-stream hypothesis [199], the temporal cortex is responsible

for object identification and recognition. Thus, the visual cortex detects

patterns that are compared with object prototypes stored in the temporal

cortex. A second stream, the dorsal stream [199], forwards the same data

to the parietal cortex, a region on top of the head that predicts the object’s

spatial location relative to the viewer [200]. However, this stream is of[200]: Colby and Goldberg (1999), ‘Space

and attention in parietal cortex’ less importance in this thesis.

The brain leverages net fragments [169], lateral connections [138], [201],[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’ [202], and projection fibres [203] to process visual data. These fundamen-

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

[203]: Tanigawa, Wang, and Fujita (2005),

‘Organization of Horizontal Axons in the

Inferior Temporal Cortex and Primary

Visual Cortex of the Macaque Monkey’

tal elements of the brain serve as inspiration for the proposed framework

and are introduced in the following.

Figure 4.2: 3D reconstruction of five

neighboring cortical columns of a rat. The

image is from Oberlaender et al. [204].

4.1.2 Lateral Connections

The cerebral cortex forms the outer hull of the brain [205] and encom-[205]: Narr, Woods, Thompson, et al.
(2007), ‘Relationships between IQ and

Regional Cortical Gray Matter Thickness

in Healthy Adults’

passes several regions, including the previously mentioned visual and

temporal cortex, as well as the ventral visual stream. The cerebral cortex

consists of many cylindrical arrangements of neurons called cortical

columns [60]. A 3D reconstruction of five cortical columns is shown in[60]: Mountcastle (1997), ‘The columnar

organization of the neocortex’ Figure 4.2, with different layers visualised by different colours.

Information in the cerebral cortex is propagated forward from one layer

to the next and has inspired layer-wise processing in deep learning

architectures [36]. However, a closer look at the human brain reveals that[36]: Prince (2023), Understanding Deep
Learning

there are also connections between neurons within the same layer that

process information locally [138]. These intra-layer connections are called

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’
lateral connections [201], [202] and are visualised in a simplified manner

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

in Figure 4.3 for a single neuron. The red neuron not only establishes
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connections to neurons in the preceding and subsequent layers (marked

in orange and green) but also lateral connections to neurons within its

own layer (marked in red).

Figure 4.3: Visualisation of the connec-

tions of a single cell. The cell is connected

to the previous layer (orange), the subse-

quent layer (green), and to neurons within

the same layer (lateral connections, red).

According to von der Malsburg et al. [20], these lateral connections are [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

used for lateral support. “Lateral support” means that neurons from the

same layer support each other’s activity: Neurons from the preceding

layer can activate the red cell depicted in Figure 4.3 through the orange

connections. However, inhibitory signals can suppress the activity [41] [41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

of the red neuron before it can fire a spike to the subsequent layer via

the green connections. The neuron can only transmit a spike to the

subsequent layers if it “survives” an inhibition phase [102], which is

[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

only possible if it receives sufficient lateral support [202] from laterally

[202]: Stettler, Das, Bennett, et al. (2002),

‘Lateral Connectivity and Contextual

Interactions in Macaque Primary Visual

Cortex’

connected neurons. For instance, suppose the preceding layer activates

several neurons within the same layer as the red neuron, and these

activated neurons exhibit lateral connections. In that case, they can send

spikes to each other, thereby providing mutual support. This allows them

to maintain their action potential and remain active during the inhibition

phase.

4.1.3 Net Fragments

Lateral connections grow between cells that are often active together

[40]. Since cells are often simultaneously active when representing the [40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

same pattern, lateral support is increased between groups of neurons

representing frequently occurring patterns [202]. Such groups are called

net fragments [169]. All neurons within a net fragment support each other [169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’
to remain active during an inhibition phase [102]. Thus, a layer with

[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

multiple net fragments can be considered a filter: While the previous

layer might activate numerous cells, only the cells with sufficient lateral

support remain active. Therefore, only learned patterns survive and send

a spike to the next layer [169].

Local Neighbourhood

Net fragments represent patterns that can be distinguished between

local patterns, which are spatially limited to a local area, and global

patterns, which extend over larger regions of the image and might

encompass the entire image. The number of possible patterns increases

exponentially with the considered pattern size. Thus, local patterns occur

more frequently. To capture frequently occurring patterns, the visual

cortex limits the range of lateral connections to a local neighbourhood
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Figure 4.4: The lateral connections

limited to a local neighbourhood.

[201], [202]. Capturing global patterns would require exponentially more[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

cells, and therefore, limiting the range of lateral connections to local

neighbourhoods is crucial. In Figure 4.4, such limited lateral connections

are illustrated: The lateral connections from the red cell do not encompass

the entire image but are only connected to cells in close proximity.

The size of the local neighbourhood in the human brain varies [206].

[206]: Pessoa (2014), ‘Understanding brain

networks and brain organization’

The primary visual cortex captures the input signal with a high variance

and therefore has a strongly limited local neighbourhood size [169]. The

[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’

temporal cortex contains transformation-independent object representa-

tions and can afford larger neighbourhood sizes as fewer distinct global

patterns exist [169].

Hierarchy of Net Fragments

A single cell is supported by its neighbouring cells, which, in turn, are

supported by their neighbouring cells. Therefore, the support reaches

much further than only the local neighbourhood [169], [20]. As the pro-[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

cessing progresses, increasing inhibition causes cells without sufficient

support to be turned off. Turning off one cell can trigger a chain reaction

of further turn-offs. Therefore, lateral support occurs not only between

individual cells but also between many overlapping net fragments [20].

Thus, the network consists of an overlay of net fragments, which can be

interpreted as a larger net fragment, i.e. a multitude of cells supporting

each other [20]. The size of a net fragment cannot be defined; the smallest

possible net fragment is a single cell with its local neighbourhood, while

the largest net fragment can span all active cells that are laterally con-

nected. Furthermore, a single layer represents local and global features at

the same time, whereby local features are stored in smaller net fragments

and global features in larger net fragments [20]. Thus, net fragments

form a feature hierarchy within a layer [20].
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Alternative Cells and Pathways

At a given spatial location, different patterns can occur. However, the

capacity of a net fragment is limited to represent a single pattern [20]. [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

For example, cell 𝐴 may often fire with cells 𝐵 and 𝐶 in close proximity,

exhibiting a high mutual lateral support with these cells. However, cells

𝐵 and 𝐶 might not fire together. Consequently, cell 𝐴 is involved in

two distinct and mutually exclusive net fragments, once with cell 𝐵 and

once with cell 𝐶. To facilitate such coexistence between net fragments,

alternative cells are required [169]. A copy of cell 𝐴 must exist that behaves [169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’
similarly but has different synaptic connections, i.e. exhibits alternative
pathways. The precise biological mechanism of how this is implemented

is unclear; One hypothesis is that within a group of cells that initially

have similar afferent connections, cells undergo divergent connectivity

changes during training [43], resulting in cells specialising in different [43]: Grossberg (1987), ‘Competitive

Learning’
patterns. Thus, multiple similar feature cells could exist at the same

spatial location and enable the formation of alternative and mutually

exclusive net fragments.

4.1.4 Projection Fibres

Figure 4.5: Net fragments (on the left)

are projected to an object (on the right).

Many projection fibres (grey) run between

the net fragments and objects, but only a

few belonging to the same maplet (red)

have been turned on.

As described at the beginning of this chapter, the visual cortex [171] ex- [171]: Tong (2003), ‘Primary visual cortex

and visual awareness’
tracts patterns from visual information [172]. This process is implemented

[172]: Grill-Spector and Malach (2004),

‘The human visual cortex’

with the aforementioned building blocks, such as lateral connections

[138], [201], [202] and net fragments [169]. In theory, this is sufficient to im-

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

plement the principles from the Gestalt psychology [22]–[25] and allows

building feature hierarchies without early commitment [26]. However, it

is not sufficient for efficient visual object detection.

In the human brain, object detection occurs in the temporal cortex [173],

[174], a region spatially distant from the visual cortex. The brain’s solution

to transmit information over such long distances is utilising projection
fibres (a type of axons) [175], [203]. Projection fibres are links between

[203]: Tanigawa, Wang, and Fujita (2005),

‘Organization of Horizontal Axons in the

Inferior Temporal Cortex and Primary

Visual Cortex of the Macaque Monkey’

neurons in the visual cortex and object prototypes (so-called reference

frames) in the temporal cortex [199].

Object prototypes in the temporal cortex are net fragments similar to those

in the visual cortex. However, the visual cortex captures an overlay of

fragments that describe a captured visual scene [20], whereby it is unclear

which fragments represent distinct objects and how they are related. On
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the other hand, the fragments in the temporal cortex depict one object,

whereby these objects are position and transformation-invariant.

Projection fibres map neurons within the captured scene (in the primary

visual cortex) to object prototypes (in the temporal cortex) with one-to-one

connections [207], where pairs of neurons connected in the visual cortex[207]: Anderson and Essen (1987), ‘Shifter

circuits’
project to pairs of neurons connected in the temporal cortex topologically.

The projection fibres have some flexibility, allowing for local distortions

and enabling transformation- and position-invariant mapping [29], [31].[29]: Wiskott and von der Malsburg (1996),

Face Recognition by Dynamic Link Matching

[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

This mapping allows the recognition of one or more objects within a

scene and their relationships to each other, facilitating object recognition

and scene interpretation.

Maplets and Control Units

The ventral stream [199] connects feature cells in the visual cortex to[199]: Goodale and Milner (1992), ‘Separate

visual pathways for perception and action’
cells representing different object prototypes in the temporal cortex.

Consequently, there is a multitude of projection fibres [175], [203], but

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[203]: Tanigawa, Wang, and Fujita

(2005), ‘Organization of Horizontal Axons

in the Inferior Temporal Cortex and

Primary Visual Cortex of the Macaque

Monkey’

only a fraction are active at any given time [207], [208]. Typically, the

[207]: Anderson and Essen (1987), ‘Shifter

circuits’

[208]: Olshausen, Anderson, and

Van Essen (1993), ‘A neurobiological

model of visual attention and invariant

pattern recognition based on dynamic

routing of information.’

same set of projection fibres is activated by similar patterns. Such sets of

projection fibres that are frequently activated simultaneously are grouped

into maplets [209]. Control units decide which maplets are activated and

[209]: Zhu and von der Malsburg (2004),

‘Maplets for correspondence-based object

recognition’

thus initiate the mapping between the visual and temporal cortex [209].

A control unit in the human brain is a unipolar neuron, a kind of neuron

with extensions (so-called processes) that end in synapses and can

conduct signals in both directions - from the synapse to the neuron and

from the neuron to the synapse [210]. Control units trigger a mapping

[210]: (2019), The Oxford handbook of
invertebrate neurobiology

when a net fragment in the visual cortex matches another fragment in the

temporal cortex, i.e. when these two fragments have a high correlation

[209]. However, they only remain active if numerous other projection

fibres confirm the decision and map their respective fragments in the

visual cortex to the same object prototype in a topological manner [169].

[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’

By doing so, the human brain generates numerous hypotheses about

observations, but inhibitory signals quickly deactivate most projections,

leaving only the plausible ones active.

Such a projection between net fragments and an object prototype of a line

is visualised in Figure 4.5. A vast amount of projection fibres (grey) run

between these two areas, but only the most suitable ones are activated by

the control unit of a maplet (red). Please note that the line on the left is

translated and stretched. Nevertheless, projection fibres still map such

a transformed object to an idealised prototype. In Figure 4.5, a direct

mapping is shown for better clarity. In contrast, the mapping in the brain

is done over several hierarchical levels, saving many projection fibres

[207].

Projection fibres thus provide generalisation, i.e. different, transformed

versions of an object are recognised and mapped to a reference frame. This

explains the ability of humans to see a new object once and immediately

recognise it in a transformed version.

4.1.5 Dynamic Mapping

Neuroscientific findings suggest that net fragments [20], [169] are present[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’
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in the visual and temporal cortex and that projection fibres map corre-

sponding fragments topologically to implement object recognition [175],

[201], [202]. Further experiments demonstrate that the recognition time

for humans depends on the size [211] and orientation [212], [213] of [211]: Bundesen and Larsen (1975), ‘Visual

transformation of size.’

[212]: Jolicoeur (1985), ‘The time to name

disoriented natural objects’

[213]: Lawson and Jolicoeur (1999),

‘The effect of prior experience on recog-

nition thresholds for plane-disoriented

pictures of familiar objects’

objects. Thus, it takes time to align the external world with internal rep-

resentations. This suggests that the brain implements an active dynamic

process for correspondence finding rather than having a single forward

pass. Furthermore, physiological evidence exists that connections in the

visual system are not static and suggest that receptive fields in the visual

system change from one instance to the next to route the current neuronal

activations to representations [214], [215]. These findings suggest that

[214]: Kusunoki and Goldberg (2003), ‘The

Time Course of Perisaccadic Receptive

Field Shifts in the Lateral Intraparietal

Area of the Monkey’

[215]: Womelsdorf, Anton-Erxleben,

Pieper, et al. (2006), ‘Dynamic shifts of

visual receptive fields in cortical area MT

by spatial attention’

projection fibres self-organise within a short time interval to initiate the

corresponding mapping.

4.1.6 Local Learning Principle

In the brain, consistency is evaluated at the level of synapses between

connected cell pairs [40]. Each synapse is established if the firing of

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

its source and target neurons is consistent. This process is crucial for

establishing net structures, where each neuron within a net fragment can

predict the firing of other neurons with a high probability [216].

[216]: Widrow, Kim, Park, et al. (2019),

‘Nature’s Learning Rule’

Such consistency is built between cells within the same layer connected

by lateral connections [202] and between cells in different brain regions

[202]: Stettler, Das, Bennett, et al. (2002),

‘Lateral Connectivity and Contextual

Interactions in Macaque Primary Visual

Cortex’

connected by projection fibres [175], [201]. Building consistency means

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

that the cells reach a consensus on what they represent [20]: Features

[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

trigger cells belonging to specific net fragments and only remain active if

other laterally connected cells contribute to the same fragment and pro-

vide mutual support [102]. Cells that do not receive sufficient support are

[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

deactivated by inhibition [41]. Thus, cells agree on which net fragments

[41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

(which features) are present in the input in a self-organising manner.

Consistency is achieved similarly between cells connected through pro-

jection fibres: Initially, many hypotheses (mappings) are activated, but

after increasing inhibition, only the mapping receiving the most cell

support remains active [20], [102]. Thus, every active cell votes for net

fragments and either remains active or is deactivated by inhibition until

the entire network becomes consistent by agreeing on what features and

objects are observed in the input [20], [169].

This local learning is a key difference between natural (animal or human)

learning and the frequently used backpropagation of error [14], [15].

With backpropagation, consistency is optimised at a single point [39],

[44], specifically between the system’s output and a teacher signal.

All synapses, including those that are distantly connected (the “deep”

connections), are guided by the consistency of this single point. Therefore,

the human brain is dominated by local learning and self-organisation,

while deep networks typically use a global learning rule that guides the

learning process of the entire network. Since deep networks outperform

humans on specific tasks [6], [75], I speculate that optimising consistency

[75]: Buetti-Dinh, Galli, Bellenberg, et al.
(2019), ‘Deep neural networks outperform

human expert’s capacity in characterizing

bioleaching bacterial biofilm composition’

at a specific point, as done by deep learning, works exceptionally well

for highly specialised tasks while optimising consistency between each

neuron, as done in the human brain, improves knowledge transferability,

object understanding and data efficiency (c.f. Section 8.1).
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4.2 Long-Term Vision

The aforementioned neuroscientific findings serve as the foundation

for building a novel image-processing framework. The core behind this

framework is based on two stages (representing the primary visual

[171], [172] and temporal cortex [173], [174]) and projection fibres con-[171]: Tong (2003), ‘Primary visual cortex

and visual awareness’

[172]: Grill-Spector and Malach

(2004), ‘The human visual cortex’

[173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

[174]: Conway (2018), ‘The Organi-

zation and Operation of Inferior Temporal

Cortex’

necting them [175], [203]. The first stage builds net fragments [169]

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[203]: Tanigawa, Wang, and Fujita

(2005), ‘Organization of Horizontal Axons

in the Inferior Temporal Cortex and

Primary Visual Cortex of the Macaque

Monkey’

[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’

using lateral connections [138], [201], [202], reassembling a visual scene

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

captured with a sensory system (the eyes). The second stage contains

reference frames representing specific objects. These objects are centred

and transformation-invariant and can thus afford longer-reaching lateral

connections. Multiple 2D reference frames must exist for each object to

represent an object from various viewpoints. Projection fibres connect

these two stages [175], [203], mapping objects within a visual scene to

object prototypes. This mapping serves as a scene interpretation layer

by describing which objects are located where in the observed scene. In

Chapter 5, a framework is proposed that implements these two stages

linked with projection fibres. It is considered a computational implemen-

tation of the fundamentals of the biological visual system. However, in

the long term, this framework can be further extended and is not limited

to these two stages, enabling highly efficient scene processing. These

extensions are discussed in the following to provide a long-term vision

for the framework.

4.2.1 Object Classification

A classification layer maps an object to a specific instance [217], for exam-

[217]: Schmarje, Santarossa, Schroder,

et al. (2021), ‘A Survey on Semi-, Self-

and Unsupervised Learning for Image

Classification’

ple, a person, to a person’s name. Projection fibres do not provide such a

classification as these fibres map the pattern to a more generalised view,

i.e. transforming a person to a reference person. Instead, a subsequent

memory stage (related to the brain’s inferior cortex [173]) is needed to map

[173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

a reference object to an actual label. This memory stage contains multiple

instances for each object and provides distinction between objects. The

memory stage implements an 𝑛-to-𝑛 mapping to the reference frame:

Each reference frame has multiple instances (e.g. multiple persons exist),

and each instance can belong to multiple reference frames (e.g. a face

and a body could be different reference frames but belong to the same

instance).

The human brain has single cells representing specific instances of objects

[218]. Therefore, memory is assumed to consist of one or a few cells

[218]: Gross (2002), ‘Genealogy of the

“Grandmother Cell”’

representing a “label”, while reference frames consist of many cells

describing an object’s appearance [20] [169]. This allows storing and

[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

distinguishing many object instances while not requiring a vast number

of cells.

4.2.2 Scene Interpretation

Projection fibres map all objects within an observed scene to prototypes.

Thus, the projection fibres implement object segmentation and identi-

fication. In addition, the position of each object is known, as well as

the relative differences in position between the objects. Such a mapping



4.2 Long-Term Vision 35

provides a mental description of a perceived scene and answers the

question of which object is where. However, having a description is not

sufficient to interpret a scene. For scene interpretation, all objects must

be put into context.

As described in Section 4.1.6, consistency is built between the cells within

the two stages to build net fragments and between the projection fibres

connecting net fragments [20], [201], [202]. In the long term, more compo- [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

nents must be added, allowing to build consistency between memories

and reference frames as well. For instance, projection fibres could map

one object in the scene to a person while mapping another object in

close spatial proximity of this person’s foot to a ball. By building consis-

tency between these two objects, one could conclude that this person is

most likely playing football (soccer). Synaptic connections between these

references could be formed if such scenes are observed several times,

allowing for scene interpretation. Thus, observing people touching a ball

with their feet corresponds to a pattern the system frequently observes,

characterised by the simultaneous activity of the corresponding net frag-

ments and their relative position. By integrating this activity with relative

positions and applying Hebbian updates, the network learns this pattern

corresponding to football. After the pattern has been learned, cells can

vote for it by providing lateral support to this scene interpretation, and

the consistency property describes if an observed scene corresponds to

playing football or not. Furthermore, memories [97], [173] could be inte- [97]: Liu, Ramirez, Pang, et al. (2012), ‘Op-

togenetic stimulation of a hippocampal

engram activates fear memory recall’

[173]: Miyashita (1993), ‘Inferior

Temporal Cortex’

grated to confirm or reject this hypothesis. If, for example, the person is

identified as a soccer player such as Ronaldo, it would further strengthen

this hypothesis.

A system building consistency between object prototypes, relative object

positions, and memories could learn interpretations of visual scenes

and might have the potential to “understand” how objects are related to

each other. A pivotal difference to deep networks is that the model can

build such consistency on its own, while deep learning systems require

a teaching signal to learn consistency. I speculate that having a system

that can build consistency of completely unseen scenes without teaching

signals is an important step towards emergence.

4.2.3 Avoiding Early Commitment

As described in the Section 1.1, deep learning models are prone to early

commitment [26]. The brain’s solution to prevent early commitment is [26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

building net fragments. A single layer with lateral connections that forms

net fragments can represent local and global features at the same time
1
.

1: This way of thinking about features

can be hard to comprehend, especially

for computer scientists familiar with deep

learning.

Each set of active and laterally connected neurons can be considered a

net fragment. Net fragments with few cells depict local features, while

fragments containing many features represent global features.

A system that avoids the fallacy of early commitment should solve the

conundrum that local decisions are taken based on plausibility in the

light of high-level patterns, while high-level patterns can only be defined

based on low-level features. The most fundamental local decision is

whether a single cell should be active. Since a single cell requires support

from all laterally connected cells, a high-level pattern (i.e. the activity of

all directly or indirectly connected cells) is used to make this decision.
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Therefore, local decisions are taken based on high-level patterns. The

high-level pattern used to make this decision is defined by the sum of

individual cells (i.e. low-level features). Hence, the human brain solves

the conundrum within every single layer.

Hierarchical Features

Neuroscientific findings indicate that the human brain does not rely

on a sequence of layers to build feature hierarchies as typically done

in deep networks [36]. In the biological context, layers have other con-[36]: Prince (2023), Understanding Deep
Learning

notations, and evidence suggests that layers in cortical columns deal,

for example, with depth rotations [219]. In the proposed framework,

[219]: Iamshchinina, Kaiser, Yakupov, et
al. (2021), ‘Perceived and mentally rotated

contents are differentially represented in

cortical depth of V1’

feature hierarchies are implicitly stored in net fragments whereby a larger

fragment represents a global feature, and smaller fragments represent

local features. Consequently, sequences of layers are not necessary to

represent feature hierarchies.

However, multiple stages are required to build abstractions of input

signals, i.e. to generalise features. In the human brain, several regions

interact to generate abstractions [58]. In fact, the visual cortex builds net[58]: Felleman and Van Essen (1991),

‘Distributed Hierarchical Processing in

the Primate Cerebral Cortex’

fragments based on signals from the eyes, projection fibres map the object

to prototypes, and other fibres map the prototypes to memories and

interpret them. Thus, various stages are involved in processing images.

Furthermore, processing occurs quickly until all stages reach a consensus

[32]. Thus, no layer-wise processing is required as in deep learning, but[32]: Fernandes and von der Malsburg

(2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

multiple stages interact with each other to build feature abstractions.

As described in Section 4.1.5, these interactions are a dynamic, iterative

process rather than a single forward pass.
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The introduction in Section 1.1 describes that preventing early commit-

ment [26] is considered a fundamental property of the human visual

system that is absent in current deep learning frameworks. The previous

chapter introduced neuroscientific findings that could explain why the

human brain has this ability and that are considered the principles

implementing the findings of the Gestalt psychology [22]–[25].

In the following, a novel framework incorporating these identified princi-

ples is proposed. The focus is on translating the two stages described in

Section 4.1 into a computational framework. Incorporating further stages

required for object classification and scene interpretation as described

in the long-term vision in Section 4.2 remains an open task for future

research. While the inspiration and principles are based on previous

research, a novel computational framework is described in this chapter.

5.1 3-Staged Model

Some of the neuroscientific principles described in Section 4.1 have been

explored in the theory of self-organising projection fibres [29], [30], [32] [29]: Wiskott and von der Malsburg (1996),

Face Recognition by Dynamic Link Matching

[30]: Wiskott, Fellous, Kuiger, et al.
(1997), ‘Face recognition by elastic bunch

graph matching’

[32]: Fernandes and von der Mals-

burg (2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

(c.f. Section 3.2.1). However, these approaches do not yet scale to natural

images except for human faces [31]. This is because most work in this

[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

area has neglected to model the learning and the dynamics of rich sets of

net fragments in the visual cortex, which are fundamental according to

the theory of natural intelligence [20].

[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

This chapter describes a novel system based on binary neurons with

the potential to scale to natural images since it extends the projection

fibres with net fragments. The proposed system comprises three main

components: A first stage S0 that extracts features from the image, a

stage S1 that builds an overlay of net fragments, and a stage S2 that uses

projection fibres to map them to object prototypes. I call the stage S0 the

sensory system, S1 the feature building stage, and S2 the prototype stage.

In the context of biology, the sensory stage S0 could stand for the eyes

translating visual information into neuronal activity [172], S1 could stand

[172]: Grill-Spector and Malach (2004),

‘The human visual cortex’

for the primary visual cortex [171], and S2 for the ventral stream [199] and

[171]: Tong (2003), ‘Primary visual cortex

and visual awareness’

[199]: Goodale and Milner (1992), ‘Separate

visual pathways for perception and action’

an area in the temporal cortex [173]. In the following, an overview of these

[173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

three building blocks is given from a computational perspective, and

the advantages of the proposed framework are described. Afterwards,

more implementation details are provided, making the framework more

concrete.

5.1.1 Building Blocks

In Figure 5.1, an overview of the building blocks of the proposed frame-

work is provided. After the sensory stage extracted features and some
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Figure 5.1: Overview of the frame-

work. S0 extracts features from the image

at timestep 𝑡 = 0, S1 builds net fragments,

and S2 maps them to object prototypes

using projection fibres. The network re-

fines the features over multiple timesteps

in which inhibition is increased, and cells

without sufficient support are turned off.

initial net fragments have been built in S1, an inhibition phase [41], [102][41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

[102]: Vogels, Sprekeler, Zenke, et
al. (2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

lasting multiple timesteps turns off cells that do not receive sufficient

lateral support. Furthermore, the project fibres [175] between S1 and

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

S2 run in both directions, not only mapping net fragments to reference

frames but also providing feedback to S1 in the form of additional sup-

port for well-known objects. All these building blocks utilise a binary

neuron, which I call the Bernoulli neuron, as its output state is sampled

from a Bernoulli distribution. Utilising Bernoulli neurons lead to sparse

and distributed binary network activities, which possess properties that

enhance robustness to noise within a network [157].

[157]: Ahmad and Hawkins (2015), Proper-
ties of Sparse Distributed Representations and
their Application to Hierarchical Temporal
Memory

Sensors System S0. A typical input to the sensory stage is an image

having one (grey-scale) or three (RGB) colour channels. Therefore, such an

image can be interpreted as having one or three features at every spatial

location. The sensory system extracts multiple features by considering

a spatial neighbourhood, thereby increasing the number of features at

each location. For example, a sensory system can be a set of hand-crafted

or Gabor filters [220], [221] applied at all image positions or the first layer[220]: Gabor (1946), ‘Theory of communi-

cation’

[221]: Granlund (1978), ‘In search

of a general picture processing operator’

of a pre-trained CNN [35].

[35]: LeCun, Boser, Denker, et al. (1989),

‘Backpropagation Applied to Handwrit-

ten Zip Code Recognition’

Feature Building Stage S1. The feature building stage is a single layer

with lateral connections [138] that builds an overlay of net fragments.

[138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

Input from the sensory system activates some feature neurons in S1.

However, their continued firing relies on receiving support from a

sufficient number of other activated neurons that are laterally connected

to them [169]. Initially activated neurons that do not receive enough

[169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’

lateral support deactivate after a short period due to inhibition [102].

The lateral connections are learned through self-organisation [40]. Pat-

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

terns occurring repeatedly in the training data will constantly activate

the same cells simultaneously. Using Hebbian learning [40] strengthens

the connection between these cells, and the pattern is “stored” in a

net fragment [169]. The inhibition strength increases during training

to account for the increasing numbers of lateral connections so that

cells with fewer active connections can be suppressed in favour of those
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with more connections, allowing the latter to acquire even more lateral

connections.

Consequently, many neurons might be activated by the sensory stage,

but only the ones supporting each other remain active. Therefore, it is

essential to view the process from the perspective that active neurons are

integral parts of consistent global net fragments, and only the support

from neurons within the same net fragments enables them to persist.

To facilitate various patterns and the coherent networks underlying

them, neurons require many excitatory connections. To prevent cross-talk

between net fragments (where a neuron receives support from a network

it does not belong to), a sustained-firing condition is required in the form

of a minimum number of connections that must be activated.

Object Prototype Stage S2. Stage S2 has the same structure as S1.

However, it has a smaller coverage area, focusing on object-centred

representations rather than encompassing the entire visual field. It allows

lateral connections with a greater range [202], [206], essential to represent [202]: Stettler, Das, Bennett, et al. (2002),

‘Lateral Connectivity and Contextual

Interactions in Macaque Primary Visual

Cortex’

[206]: Pessoa (2014), ‘Understanding brain

networks and brain organization’

larger-scale structures like objects. Thus, this stage contains isolated

net fragments that can be considered object prototypes invariant to

translation, scale, and orientation.

In the object recognition process, corresponding net fragments in S1
are mapped to object prototypes in S2 through active projection fibres.

Here, “corresponding” refers to neurons relating to the same point on the

object’s surface. The projection fibres between S1 and S2 are grouped in

maplets, whereby a maplet comprises a collection of fibres that establish

one-to-one connections between all neurons in a small patch of S1 and all

neurons in a small patch of S2 in a topological manner. These topological

connections link neighbouring neurons in S1 to neighbouring neurons in

S2. Both S1 and S2 are divided into overlapping patches, and for each pair

of patches - one in S1 and one in S2 - a corresponding maplet exists.

Control units initiate activation of a maplet when they observe a high

pattern correlation between the signals carried by its fibres from S1
and the signals on their target neurons in S2. They inhibit competing

control units: Many projection fibres can initially be activated, but only

those activated S2 neurons with sufficient lateral support can remain

active. Consequently, the activated projection achieves a homeomorphism,

where neurons of a particular feature type in S1 are connected to neurons

of the same type in S2 and neurons connected in S1 activate neurons

connected in S2.

5.1.2 Advantages

The proposed framework not only prevents early commitment [26] but is [26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

expected to have various additional advantages compared to the typical

deep learning framework. These are described in the following.
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Ambiguity. The proposed framework permits the persistence of multi-

ple net fragments, enabling the system to handle ambiguity effectively.

For example, when presented with a face comprising distinct objects (c.f.

Figure 1.1), both the net fragments responsible for abstract faces and those

associated with individual objects become concurrently active. Conse-

quently, the model can simultaneously attend to these net fragments,

utilising attention in its original sense rather than the conventional deep

neural network (DNN) interpretation [222]. I speculate that this repre-[222]: Niu, Zhong, and Yu (2021), ‘A

review on the attention mechanism of

deep learning’

sents a fundamental distinction from neural networks that are typically

compelled to represent the entire scene within a single high-dimensional

dense vector.

Robustness. An input of a neural network is usually represented with

a floating-point vector which is sequentially processed by mathematical

functions (e.g. with neural layers). Artificial networks, in particular, are

not robust to noise and are susceptible to adversarial attacks [11]. A[11]: Akhtar and Mian (2018), ‘Threat of

Adversarial Attacks on Deep Learning in

Computer Vision’

binary vector, on the other hand, has different mathematical properties

and is more robust against noise and adversarial attacks, especially if

they are sparse and distributed
1

[157]. Subsampled or noisy vectors
1: Only a small portion of the bits are “on”,

and representations differ by multiple bi-

nary bits.

[157]: Ahmad and Hawkins (2015), Proper-
ties of Sparse Distributed Representations and
their Application to Hierarchical Temporal
Memory

are still semantically similar and are close to the original vectors when

compared, for example, by counting the overlap of bits between two

vectors. Furthermore, the model builds consistency at every point in the

network, making it more robust than when consistency is built at a single

point [176].

[176]: Wagner (2013), ‘Robustness in

Natural Systems and Self-Organization’
Object-Independent Transformations. The same projection fibres are

applied to all object prototypes, allowing the model to learn object-

independent transformations. For example, an object might be slightly

stretched, rotated, or deformed compared to the stored prototypes. The

projection fibres learn to ignore slight deformations independent of the

object type. This allows the architecture to learn transformation invari-

ance and to transfer this capability to new objects that have not been

transformed in the training data. Furthermore, object-independent pro-

jection fibres allow adding objects dynamically to static reference frames,

implementing lifelong learning [89] without the risk of catastrophic[89]: Parisi, Kemker, Part, et al. (2019),

‘Continual lifelong learning with neural

networks’

forgetting [12], [86].

[12]: Kirkpatrick, Pascanu, Rabinowitz,

et al. (2017), ‘Overcoming catastrophic

forgetting in neural networks’

[86]: Liu, Yang, and Wang (2021),

‘Overcoming Catastrophic Forgetting in

Graph Neural Networks’

5.2 Bernoulli Neuron

The previous section provided an overview of the proposed framework’s

inspiration, building blocks, and advantages. In the following, the build-

ing blocks are described in more detail, starting with the Bernoulli neuron.

In traditional neural networks, neurons exhibit dense activity, meaning

that even when applying the rectified linear unit (ReLU) activation func-

tion (c.f. equation (2.6)), many neurons remain active (above zero) [223].[223]: Rhu, O’Connor, Chatterjee, et al.
(2018), ‘Compressing DMA Engine’

However, biological neurons have different characteristics than artificial

neural networks [224].

[224]: Kandel (2013), Principles of neural
science

Preliminary experiments have indicated that using non-binary artificial

neurons is not well suited for learning net fragments. For instance, dealing
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with weak or strong positive activations poses challenges when employ-

ing Hebbian updates. This suggests that implementing net fragments

[169], similar to the human brain, requires using different principles [169]: von der Malsburg (2018), ‘Concern-

ing the Neuronal Code’
than the ones used in classical neural networks. Inspired by neuroscien-

tific findings, a probabilistic neuron that samples its activation from a

Bernoulli distribution is introduced. Such a neuron is a binary neuron

that does not fire when a certain threshold is reached but uses its internal

state as a firing probability. A Bernoulli neuron 𝑎𝑖 in the context of net

fragments is modelled as a probability density function of the form:

𝑝 = 𝑃(𝑎𝑖 = active|activity of neighborhood, environment) (5.1)

Thus, the probability of a neuron being active depends on the activity

pattern of the neurons in its local neighbourhood and factors of the

environment (e.g., inhibition or presence of neurotransmitters). The

output is sampled form a Bernoulli distribution, i.e., 𝐵(𝑝) = 𝑃(𝑋 =

1) = 𝑝 = 1 − 𝑃(𝑋 = 0). Having a neuron whose firing probability

𝑝 is governed by the neighbourhood activity and the environment

allows the implementation of the behaviour of net fragments [20], [169]: [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

After receiving an input, the neurons get excited and fire with a higher

probability. However, their firing probability decreases quickly if not

supported by neighbouring neurons. Thus, uncertainty and potential

net fragments govern timestep 0, while the network reaches an attractor

state shortly after.

5.2.1 Properties

The proposed neuron implements a stochastic process that allows it to

fire even when the probability of it firing is low or, conversely, not to

fire when the probability is high. I call this property “flipping”. Flipping

neurons lead to noise in the network’s activations. However, this noise can

be considered a normalisation mechanism within the network, similar to

dropout layers [225]. The presence of neurons that can flip encourages [225]: Hinton, Srivastava, Krizhevsky, et
al. (2012), Improving neural networks by
preventing co-adaptation of feature detectors

the network to learn multiple parallel paths and to ignore the noise

in its activations. Furthermore, using many binary neurons and sparse

network activations increases the robustness of the network [157]. During
[157]: Ahmad and Hawkins (2015), Proper-
ties of Sparse Distributed Representations and
their Application to Hierarchical Temporal
Memory

inference, the stochastic process can be disabled using a fixed threshold

of 0.5, resulting in a more stable network.

Moreover, flipping neurons help to implement alternative pathways and

cells required when a single cell is part of two mutually exclusive net

fragments [168]. Alternative cells are a set of cells with afferent connections [168]: von der Malsburg and Bienenstock

(1987), ‘A Neural Network for the Retrieval

of Superimposed Connection Patterns’

(c.f. Section 4.1.3). The stochastic property of Bernoulli neurons helps

to solve the symmetry problem by encouraging each cell to undergo

divergent connectivity changes during training so that it becomes part of

mutually exclusive net fragments.

5.2.2 Practical Considerations

To prevent the network from being dominated by noise, it is crucial that

most of the activation probabilities do not cluster around a mean value of

𝜇 = 0.5. Otherwise, a significant proportion of neurons would have high
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uncertainty about whether they should fire, leading to random firing

patterns. This uncertainty problem occurs mainly in the initial phase of

training when the network is not yet trained and therefore dominated by

uncertainty.

This issue can be mitigated by pushing the activation probabilities

towards 0 or 1. A simple approach is to apply the softmax function or to

adjust the activation probabilities by a power factor 𝑠, i.e. 𝒂 := 𝒂𝑠
. The

softmax function shifts the probabilities uniformly towards 0 or 1 while

using a large factor 𝑠 drives most activations predominantly towards 0,

and only high probabilities can remain high.

The advantage of using a factor 𝑠 is its adaptability: It can be set to a high

value in the initial training phase and gradually lowered towards one as

training progresses. This allows scoping with the network’s uncertainty

that reduces during training.

5.3 Processing Loops

The network requires different kinds of data processing loops that are

divided as follows: The slow loop iterates through the images in the

dataset; the medium loop iterates through different views of an image;

and during the fast loop, inhibition takes place over multiple steps,

whereby neurons that do not receive enough support are turned off. At

each timestep, the innermost loop executes a step. Once the innermost

loop is completed, a step is executed in an outer loop, and the process

repeats. The specifics of these loops are described in the following.

Figure 5.2: Processing loops of the net-

work. From each sample in the dataset

(slow loop), multiple views are gener-

ated (medium loop), and each view is

processed over multiple timesteps by the

model (fast loop).

Slow Loop. The dataset comprises multiple images. Each image in the

dataset is processed one after the other, building the outermost loop. In

Figure 5.2, an outer loop with a dataset containing vertical and horizontal

lines is depicted, similar to data used in the conducted experiments (c.f.

Section 6.1). However, depending on the application, different datasets

could be used.
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Medium Loop. For each image in the dataset, different views are

sampled using data augmentation. In the experiments conducted in this

thesis (c.f. Section 6.1), a trajectory strategy is implemented that moves the

line continuously from an initial position to a target position. However,

continuous movement is not mandatory, and random data augmentation

can also be applied. It is important to inform the network that the same

object with an identical inner structure is shown multiple times during

the median loop so that it can learn to map it to the same object prototype

despite different transformations and viewpoints.

Fast Loop. From each view, the sensory system creates neural activity

that the network processes for 𝑇 ≥ 1 timesteps. During these timesteps,

inhibition increases, and active cells that do not get lateral support from

other cells are turned off. The fast loop aims to iteratively improve the

net fragments in S1 and the corresponding object prototypes over time.

Therefore, the previous net fragments and object prototypes are fed into

S1 at every timestep, together with the sensory signal.

5.4 Sensory System S0

The goal of the sensory system is to perceive an input and extract multiple

different features based on spatial neighbourhoods that can be used to

build net fragments [20], [169] in the next stage. The input shape is [20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

[169]: von der Malsburg (2018),

‘Concerning the Neuronal Code’

[𝐶in ×𝑊 × 𝐻] where 𝐶in is the number of input channels, 𝑊 the image

width and 𝐻 the image height. The output of this stage is of shape

[𝐶sensor ×𝑊 ×𝐻], where 𝐶sensor is the number of output channels (i.e. the

number of extracted features). Typically, 𝐶sensor is much larger than 𝐶in,

i.e. 𝐶sensor ≫ 𝐶in. Thus, the sensory system extracts multiple features

based on a local neighbourhood at each pixel location.

As described in Section 5.1.1, a sensory system can be implemented with

hand-crafted filters, Gabor filters [220], [221], or by using the first layer of [220]: Gabor (1946), ‘Theory of communi-

cation’

[221]: Granlund (1978), ‘In search

of a general picture processing operator’

a pre-trained convolutional network [35]. The advantage of using learned

[35]: LeCun, Boser, Denker, et al. (1989),

‘Backpropagation Applied to Handwrit-

ten Zip Code Recognition’

filters over fixed Gabor filters is that they can be optimised for the source

data. However, this comes with the cost of additional filter training.

A difficulty is that filter outputs are typically in continuous space and

must be converted into a binary activation potential. One option is to

normalise the sensor signal in the range (0, .., 1) and to use this value

as a probability to sample from a Bernoulli distribution, similar to the

proposed Bernoulli neurons (c.f. Section 5.2). Another approach is to

set all activations above a pre-defined threshold to 1 and to assign 0 to

the values below the threshold. Alternatively, a third option is to use

quantisation networks such as VQ-VAEs [226] as feature extractors. Such [226]: Oord, Vinyals, and (2017), ‘Neural

Discrete Representation Learning’
networks can map local features to a discrete value that can be translated

into a binary activation pattern.

5.5 Feature Extracting Stage S1

The objective of S1 is to build net fragments based on three types of

input: The sensory signal, net fragments from the previous timestep,
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and feedback from the object prototype stage. These three types of input

serve the following purposes:

• Sensory signal: The sensory system extracts features from the

image to provide initial cell activations. Theoretically, the sensory

signal could be used only once at timestep 𝑡 = 0. However, feeding

the sensory signal into the network at every timestep stabilises the

net fragments
2
.2: This can be likened to closing our eyes:

After they are closed, we can estimate the

location of all objects but with uncertainty.

Thus, the net fragments in our brain be-

come unstable, and we can only estimate

the object’s position based on memories

and previous net fragments.

• Previous net fragments: Net fragments are the output of the

stage S1, improved over multiple timesteps. To access information

from the previous timestep, a recurrent connection is required.

This connection is implemented by reusing the previous output

(previous net fragments) as input.

• Object prototypes: The net fragments are mapped to object pro-

totypes in S2 using maplets. An inverse function is employed

afterwards to map the object prototypes back to S1 to provide

information about detected objects.

There exist various ways of combining these three types of input signals.

For example, the three arrays can be stacked
3

to hold all arrays available.3: Stacking arrays refers to the process of

combining multiple arrays along a speci-

fied axis to create a new multidimensional

array, e.g. create an array of size [2×2] out

of two arrays with size [1 × 2].

However, stacking all three arrays would lead to a very high-dimensional

input. A more sophisticated approach is to aggregate (some of) the

matrices. In the experiments conducted in this thesis (c.f. Section 6.3),

a straightforward approach is used: The previous net fragments can be

overridden by the feedback from the object prototypes if the feedback

is plausible. Only one of these two arrays is used, as these arrays are

typically very similar and provide redundant information. The mapping

from fragments to object prototypes and back reduces noise, as the

feedback of S2 is not a reconstructed version of the input but rather

a reconstruction of an optimised object prototype. Consequently, the

feedback of S2 is typically less noisy and, therefore, preferred.

Nevertheless, the feedback from S2 is not always correct and only incor-

porated if it is highly similar to the net fragments formed in S1. Especially

at the beginning of training or when observing unknown objects, the

feedback of S2 should not be incorporated as it can be wrong. Such

invalid feedback can be detected by measuring the similarity between

net fragments and feedback, for example, using the Jaccard similarity (c.f.

equation (5.6)). Thus, the net fragments are only overridden if the error

is below a pre-defined threshold and overriding most likely improves

results.

Figure 5.3: Visualisation of the input and

output arrays of S1. The input into S1 is

the output of the sensory system and the

previous output (recurrent connection).

The feedback form S2 can override the

previous output.

In the following, the number of input channels is denoted as 𝐶in and the

number of output channels is denoted as 𝐶out. Note that the feedback

matrix from S2 has the same shape as the net fragments formed in S1.
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Since the previous output (net fragments) or the feedback from S2 is

combined with the sensory signal and used as input, the number of input

channels is larger than the number of output channels and defined as

𝐶in = 𝐶sensor + 𝐶out. An overview about the input and output of S1 is

depicted in Figure 5.3: The output of S1 is optionally replaced by the

feedback of S2. In both cases, this array has a size of [𝐶out ×𝑊 ×𝐻] and is

stacked with the output from the sensory system of size [𝐶Sensor×𝑊×𝐻],
resulting in an input of size [𝐶in ×𝑊 × 𝐻].

5.5.1 Lateral Support

Figure 5.4: The local neighbourhood of a

cell 𝑜𝑐,𝑤,ℎ : The outer cuboid represents the

entire input, the inner cuboid the source

cells that are connected to the target cell

𝑜𝑐,𝑤,ℎ .

In this section, it is described how lateral support can be implemented. A

single output cell in S1 is denoted as 𝑜𝑐,𝑤,ℎ , where 𝑐 ∈ {0, ..., 𝐶out} is the

output feature channel, and 𝑤 ∈ {0, ...,𝑊} and ℎ ∈ {0, ..., 𝐻} denote

the spatial location of the cell.

The lateral connections are limited to a distance of 𝑛𝑙 cells along the verti-

cal and horizontal axes but are not limited along the input feature channels.

Therefore, an output cell 𝑜𝑐,𝑤,ℎ has lateral connections to all inputs within

the range [(0, ..., 𝐶in) × (𝑤 − 𝑛𝑙 , ..., 𝑤 + 𝑛𝑙) × (ℎ − 𝑛𝑙 , ..., ℎ + 𝑛𝑙)]. Such a

local neighbourhood is depicted in Figure 5.4 for a cell 𝑜𝑐,𝑤,ℎ . An input

channel contains either features extracted by the sensory system or the

previous net fragments. Thus, a cell can access all features detected by

the sensory system or the previous cell states (recurrent connection) in

its spatial neighbourhood. Furthermore, according to this definition, the

cell is also connected to its own previous cell state at timestep 𝑡 − 1.

This type of connection is called self-support and allows a cell to remain

active over time by supporting itself. Self-support is crucial to ensure the

network is stable at the beginning of training (c.f. Section 5.5.3). However,

after training for a short time, lateral connections are built, the inhibition

strength increases so that self-support is not sufficient anymore, and

lateral support from other cells is required to remain active.

Patterns can appear at different positions within an image, and the

network should be able to recognise it independent of its spatial loca-

tion [33], [34]. Therefore, lateral support must be position equivariant.
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Convolutional architectures solve this problem with convolutional filters

shifting over each pixel location [35]. This mechanism can also be used to[35]: LeCun, Boser, Denker, et al. (1989),

‘Backpropagation Applied to Handwrit-

ten Zip Code Recognition’

implement the lateral connections: When using a convolutional kernel𝑾
with size [𝐶out × 𝐶in × (2𝑛𝑙 + 1) × (2𝑛𝑙 + 1)], each output cell has a con-

nection to its local neighbourhood as defined above. Since this kernel is

applied at all cell positions, a cell is supported by neighbouring cells that

represent the same pattern regardless of the spatial position. The weights

within a kernel correspond to the support strength, indicating how much

a neighbouring cell supports another cell. The support strength of a cell

𝑜𝑐,𝑤,ℎ (i.e. how much support a cell receives from its neighbours) can be

calculated with the convolutional operation:

𝑜𝑐,𝑤,ℎ =

𝐶in∑
𝑐′=0

2𝑛+1∑
𝑤𝑖=0

2𝑛+1∑
ℎ𝑖=0

𝑾𝑐,𝑐′ ,𝑤𝑖 ,ℎ𝑖 · 𝑜𝑐′ ,𝑤−𝑛+𝑤𝑖 ,ℎ−𝑛+ℎ𝑖 (5.2)

Thus, the same weight 𝑾 is applied at all input locations, defining the

support strength of a cell based on its neighbourhood and independent

of its position. This operation corresponds precisely to the output of a

convolutional layer without bias term. Please note that the target cell

represents a cell’s state at time 𝑡 (denoted by 𝑐 ∈ {0, ..., 𝐶out}) and can

access the state of all source cells (denoted by 𝑐′ ∈ {0, ..., 𝐶in}), i.e. all

sensory cells or recurrently connected cell states at 𝑡 − 1.

5.5.2 Hebbian Updates

The previous section introduces how a convolutional kernel 𝑾 can be

used to model the lateral support of neighbouring cells. In this section,

it is described how the support strength, i.e. the weights of 𝑾 , can

be learned. The human brain’s learning algorithm is based on local

self-organisation and unsupervised (or self-supervised) learning [20].[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

The biologically most plausible learning algorithm is Hebbian learning

[40].

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory Hebbian learning evaluates consistency at each synapse and is well

suited for learning lateral connections: If two cells are active together

(“fire together”), their weight increases (“wire together”) - this plasticity

principle corresponds to the definition of lateral support. During training,

the cells are activated in a specific pattern based on the sensory input.

Hebbian learning strengthens the connections between simultaneously

active cells. Thus, the connection strength between cells associated with

the same net fragment is increased, leading to stronger mutual support.

Hebbian learning is introduced in Section 2.4.1, and it is described how the

weight between two cells changes if they fire together (c.f. equation (2.15)).

However, in this thesis, lateral support is implemented as a convolutional

kernel that is applied at all input positions. Since the same weight is

applied at different positions, the update of a connection depends not

only on two cells but on multiple cells:

Δ𝑤𝑐,𝑐′ ,𝑘𝑤 ,𝑘ℎ = 𝜂
𝑊−2𝑛𝑙−1∑

𝑤=0

𝐻−2𝑛𝑙−1∑
ℎ=0

𝑜𝑐,𝑤+𝑘𝑤 ,ℎ+𝑘ℎ · 𝑜𝑐′ ,𝑤+𝑘𝑤 ,ℎ+𝑘ℎ (5.3)
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In this formula, 𝜂 is the learning rate, and 𝑘𝑤 ∈ {0, ..., 2𝑛𝑙 + 1} and

𝑘ℎ ∈ {0, ..., 2𝑛𝑙 + 1} is the kernel index along the horizontal and vertical

axis
4
. Please note that the weight between two laterally connected cells is 4: For example, 𝑤1,2,3,4 represents the

weight between the first output channel

and the second input channel, located in

the kernel’s third column and fourth row.

increased if both are active simultaneously, whereby one cell is considered

as the source cell (denoted as input channel 𝑐′) of the target cell (denoted

as output channel 𝑐).

During training, the network may encounter similar patterns multiple

times, leading to strong connections between specific cells. Therefore,

weight must be normalised so that these lateral connection strengths and

the post-synaptic activity cannot grow towards infinite. After calculating

the weight update and adding it to the weight matrix 𝑾 , the weights are

normalised per output channel by dividing each channel by its Euclidean

norm. This ensures that the weights are roughly in the range (0, ...,+1).
Therefore, one cell can only provide limited support to another cell, and

multiple cells must support a cell to remain active.

5.5.3 Initialisation

Figure 5.5: Initialisation of the lateral

weight matrix. The weight at the middle of

a kernel, whose input and output channel

have the same index, is set to 1.

The previous sections explain that lateral support can be implemented

with convolutional kernels and that the weights are learned using the

Hebbian rule. In this section, it is discussed how these kernels should be

initialised. If the kernels are not properly initialised, the activations are

unstable and typically converge to weights that activate all or no cells. A

proper initialisation should fulfil the following criteria:

• Diversity: A proper initialisation should break the symmetry. If,

for example, all kernels are initialised identically, each kernel learns

the identical pattern when applying Hebbian updates. This makes

all output channels identical, and effectively the model learns only

one feature.

• Stability: The Hebbian update is calculated after a timestep of the

inner loop; therefore, the cells must be stable over timesteps. For

example, if the lateral support is only initialised with 0 values, all

cells turn off immediately. In that case, no cell is active after the

first timestep, and no support can be learned.
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An initialisation strategy that fulfils these criteria is when the weights are

initialised with self-support. Self-support means that each cell supports

itself to remain active over time, i.e. the recurrent connection to the

same cell at the previous timestep must be set to 1. Self-support can be

implemented by setting all weights 𝑤𝑐,𝑐′ ,𝑤,ℎ of a kernel to 1 at the indexes

that fulfil 𝑐′ = 𝑐, 𝑤 = 𝑛+1, and ℎ = 𝑛+1. Thus, the weight at the middle

of a kernel with the same input and output channel index is set to 1 while

the other weights are set to 0. This initialisation strategy also works for

kernels with a different number of input and output channels and is

shown in Figure 5.5. Such a weight matrix copies the input activations to

the output and ensures that the cell’s activations at time 𝑡 and 𝑡 + 1 are

identical. Therefore, initially, active cells receive a support of 1 (i.e. one

other cell with a lateral weight of 1 is active). However, after applying

the Hebbian learning rule, the weights are updated to capture the data’s

statistics so that active cells receive more support.

5.5.4 Inhibition

A continuous value representing the support strength is obtained after

applying the convolutional operation to the binary input signal. The

support strength has to be normalised into the range of (0, ..., 1) to be

used as an activation probability of a Bernoulli neuron. In the context of

neuroscience, this normalisation is interpreted as the brain’s inhibitory

signal [41], [102]: After initialisation of the weight matrix 𝑾 , the highest[41]: Coombs, Eccles, and Fatt (1955), ‘The

specific ionic conductances and the ionic

movements across the motoneuronal

membrane that produce the inhibitory

post-synaptic potential’

[102]: Vogels, Sprekeler, Zenke, et
al. (2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

possible support strength per cell is 1 as only self-support exists. During

training, the maximum support strength increases significantly (up to

2𝑛𝑙 + 1) as other cells start supporting a given cell. Consequently, the

support required to remain active increases during training. However,

the support strength does not only change during training. It also varies

over timesteps, executed in the inner loop: At time 𝑡 = 0, only the sensory

system provides input. At timestep 𝑡 = 1, both the sensory input and

the recurrent connections can be active, typically leading to increased

support. Therefore, the support strength is highly time-dependent.

Besides being time-dependent, the support strength also changes depend-

ing on the data: Some images generally contain more features, leading to

more active cells and higher lateral support. Furthermore, support varies

across different spatial locations, as some image regions typically contain

more features than others. Therefore, cells in such regions typically

receive more support than those in regions with fewer features and fewer

activated cells.

The inhibition strength must be highly adaptive to cope with such

dynamic support strength. Variation due to the training progress is

taken into account by dividing the support strength through the highest

possible support. This is implemented by dividing the activations in each

channel 𝑐 through the sum of weights in the same feature channel 𝑐.

Thus, if an output channel has many synapses that could provide lateral

support, inhibition is stronger:

𝑜𝑐,𝑤,ℎ :=
𝑜𝑐,𝑤,ℎ∑𝐶in

𝑐′=0

∑𝑊
𝑤𝑖=0

∑𝐻
ℎ𝑖=0

𝑤𝑐,𝑐′ ,𝑤𝑖 ,ℎ𝑖

(5.4)



5.5 Feature Extracting Stage S1 49

This formula also accounts for different levels of support between chan-

nels, i.e. the problem of one feature channel receiving more support than

others is mitigated.

A solution to deal with varying support strength due to the timestep, input

data, and spatial location can be found in the human brain. Neuroscience

findings suggest an upper limit of concurrently active incoming synapses

for active cells [224]. Thus, each cell has not only a lower limit of lateral [224]: Kandel (2013), Principles of neural
science

support but also an upper limit. The support is reduced if a cell’s support

is above a pre-defined threshold 𝜌. Preliminary experiments suggest that

values in the range 𝜌 = (1.2𝑛𝑙 , ..., 1.5𝑛𝑙) work well. The support strength

of a cell 𝑜𝑐,𝑤,ℎ is modified as follows:

𝑜𝑐,𝑤,ℎ :=

{
𝑜𝑐,𝑤,ℎ , if 𝑜𝑐,𝑤,ℎ < 𝜌

𝜌 − 1

2
(𝑜𝑐,𝑤,ℎ − 𝜌), otherwise

(5.5)

This function is visualised in Figure 5.6. No normalisation is applied if a

Figure 5.6: The visualisation of formula

equation (5.5). The x-axis shows the re-

ceived support, and the y-axis shows the

support after normalisation: As soon as

the received support is bigger than 𝜌, it is

reduced with a slope of −0.5.

cell’s activation is below 𝜌. However, if the activation is above 𝜌, the cell’s

lateral support strength is decreased with a slope of −0.5. Experimental

findings suggest that this upper support limit helps overcome varying

support strengths during training.

5.5.5 Alternative Cells

As described in Section 4.1.3, alternative cells and pathways are necessary

to deal with different patterns that activate similar feature cells. “Alterna-

tive” in this context means that only one cell among the alternatives is

active, i.e. these cells are mutually exclusive. At the beginning of training,

alternative cells are copies of an initial cell. However, after training, these

cells contribute to different patterns and have different behaviour.

Alternative cells can be implemented by adding additional (alternative)

output channels. The duplication factor 𝜅 defines how many alternative

channels should be added. Thus, the weight 𝑾 with alternative cells is

of shape [(𝜅 · 𝐶out) × 𝐶in × (2𝑛 + 1) × (2𝑛 + 1)].

In Figure 5.7, it is visualised how the weight 𝑾 with a duplication

factor of 𝜅 = 2 are initialised. In that case, 𝜅 = 2 output channels are

mutually exclusive, leading to activation in only one of these channels.

Implementing mutually exclusive cells requires competition between
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Figure 5.7: Initialisation of the lateral

weight matrix with alternative cells. The

initialisation is similar to the one shown

in Figure 5.5, except each channel is dupli-

cated 𝜅 = 2 times.

alternative cells so that only the most suitable cell can remain active if

multiple exclusive cells are active [168]. For example, such competition[168]: von der Malsburg and Bienenstock

(1987), ‘A Neural Network for the Retrieval

of Superimposed Connection Patterns’

can be implemented by comparing how well a specific activation pattern

fits the already learned lateral support [102]–[104]. Another option is

[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

[103]: Joshi and Triesch (2009), ‘Rules

for information maximization in spiking

neurons using intrinsic plasticity’

[104]: Teichmann and Hamker (2015), ‘In-

trinsic Plasticity: A Simple Mechanism to

Stabilize Hebbian Learning in Multilayer

Neural Networks’

implementing inhibition between the competing channels so that the

dominant channel turns off the other channels.

5.5.6 Measuring Support Quality

After learning net fragments, it is crucial to evaluate their quality. A

simple approach is to measure the support needed to remain active and

the average support active and inactive cells receive. At the beginning of

training, self-support is used, and therefore, the average support of active

cells is 1, and the average support of inactive cells is 0. However, during

training, lateral connections are learned that support cells to remain

active. This leads to higher activation in general, which, in turn, increases

the threshold to remain active. Thus, the average activation of the cell

increases as well as the threshold to remain active. These statistics can

be measured over the training process to evaluate the quality of the net

fragments.

As a second metric, we can measure the robustness against noise. Net

fragments should only support cells that are activated by a learned

pattern. Thus, cells activated by noise should not receive enough support

and be turned off after a few cycles. Therefore, as a second metric, we

can add noise to the input image and measure how many cells in the

sensory system are activated due to the noise and what ratio of them

remains active after applying lateral connections.
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5.6 Prototype Stage S2

In stage S2, the net fragments are mapped to idealised reference objects.

This mapping is implemented by projection fibres [175], [203], which [175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[203]: Tanigawa, Wang, and Fujita

(2005), ‘Organization of Horizontal Axons

in the Inferior Temporal Cortex and

Primary Visual Cortex of the Macaque

Monkey’

are grouped into maplets [209]. As soon as a control unit of a maplet

[209]: Zhu and von der Malsburg (2004),

‘Maplets for correspondence-based object

recognition’

detects a strong correlation between the neurons it connects in S1 and S2,

it initialises the mapping by turning on its fibres.

This mapping from fragments to reference representations seems to

be one of the core algorithms of the biological visual system as it can

solve the binding problem [227], [228], i.e. answers the questions of how

[227]: Revonsuo and Newman (1999),

‘Binding and Consciousness’

[228]: Feldman (2013), ‘The neural

binding problem(s)’

visually perceived objects are bound together based on their properties

such as shape, texture, colour, contour, or motion.

Implementing such a mapping poses various challenges. In the following,

some simplifications are assumed that are ignored in the proposed

framework and have to be solved in future work.

• Storing object prototypes in S2: It is assumed that the reference

representations are already stored in S2. Consequently, the map-

ping process is reduced to finding the most suitable projection,

disregarding that the object prototype might not be stored yet. Nev-

ertheless, it would be desirable that the network can, for example,

when encountering high uncertainty, autonomously recognise the

absence of a proper object prototype and create one.

• Enhancing object prototypes in S2: It is assumed that the object

prototypes are idealised, can remain static, and do not require

further updates. Findings from psychology suggest that our brain

is highly structured and might contain such prototypes from birth

[229]. However, these prototypes are also known to be optimised [229]: Simion and Di Giorgio (2015),

‘Face perception and processing in early

infancy’

with increasing experience over time [229]. Moreover, updating

prototypes is important when novel prototypes are stored, as an

optimised form of such a reference object typically cannot be

derived from a single sample.

• Object-centered input: The input images are assumed to contain

exactly one object rather than complex scenes containing multiple

objects. This allows to map a part of an image, i.e. the region

where the object is located, to exactly one object reference frame. In

real-world scenarios, visual scenes often comprise multiple objects,

requiring the model to map a single input to multiple prototypes.

Consequently, an attention mechanism becomes essential to identify

object boundaries before comparing them to suitable references.

• Pre-defined projection fibres: It is assumed that the projection

fibres already exist from the beginning and remain unchanged

throughout the learning process. Thus, the learning process focuses

on the activation of control units. This assumption requires pre-

defining many fibres, some of which may be unnecessary, making

the system less efficient. Dynamically growing or pruning fibres

could make the system more efficient and robust.
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Figure 5.8: Visualisation of the

correspondence problem: Corresponding

points between an input and a model must

be linked. All potential correspondences

are visualised as grey lines, while the cor-

rect correspondences are shown as black

lines. Example 𝑨 shows a correct corre-

spondence, while example 𝑩 visualises a

wrong correspondence, although similar

features are connected. The image is from

[31].

5.6.1 Correspondence-Mapping

So far, the problem is described as mapping entire net fragments to object

prototypes. However, this is a somewhat simplified view, as many similar

objects differ slightly. Therefore, one cannot just compare objects but

rather multiple features that define an object. This problem of mapping

features extracted from an input image to features from a reference object

is known as the correspondence problem. Wolfrum et al. [31] motivate[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

the correspondence problem based on Figure 5.8. This figure depicts

two stick figures where the input’s features, such as the head or neck,

must be linked to the corresponding model’s features. There exist various

mappings, symbolised as grey lines. The correspondence problem is

to find a subset of these links that are the correct correspondences

(visualised as black lines in example 𝑨).

Unfortunately, it is not sufficient to calculate the similarity between

features as illustrated in Figure 5.8 example 𝑩. Different images of the

same object can vary significantly, resulting in a high degree of similarity

between non-corresponding features [230]. The reason is that not only[230]: Wiskott (1999), ‘The role of topo-

graphical constraints in face recognition’
the features define an object but also their spatial arrangement. Therefore,

correspondence-based systems must take both into account.

Figure 5.9: Different projection op-

erations that must be implemented with

projection fibres. Projection fibres should

make the mapping process invariant to

translation, rotation, and deformation.
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In Figure 5.9, the operations needed to deal with different spatial arrange-

ments are visualised. Projection fibres must be invariant to translation,

rotation, and deformation. Such transformation can occur globally, as

depicted in Figure 5.9, and locally. In Section 5.6.2, it is described how

the similarity between local areas connected by a projection fibre can

be measured. This statistic is needed to decide whether a control unit

should switch on. Subsequently, in Section 5.6.3, it is described how the

projection fibres can be wired.

5.6.2 Measuring Similarity

Correspondence-based mapping requires measuring feature similarity.

Since binary neurons are used, similarity can be calculated by comparing

the neurons’ activity. They are similar if both neurons are on or off; if one

neuron is on while the other is not, they are dissimilar. However, multiple

neurons exist at the same spatial location, representing various features.

The mapping process compares how similar the spatial locations between

a net fragment and a corresponding location of the reference object are.

Therefore, all neurons at the same location are compared.

Both the net fragments in S1 and the prototypes in S2 are of shape

[𝐶out ×𝑊 × 𝐻]. Thus, per spatial location (𝑥, 𝑦) (where 𝑥 ∈ {0, ...,𝑊}
and 𝑦 ∈ {0, ..., 𝐻}), exists a one-dimensional feature vector of length

𝐶out. This vector is denoted as 𝒂𝑆1,(𝑥,𝑦) for S1 and 𝒂𝑆2,(𝑥,𝑦) for S2. These

two vectors can be compared using the Jaccard similarity 𝐽, which is

defined as:

𝐽𝑥,𝑦 = 𝐽(𝒂𝑆1,(𝑥,𝑦) , 𝒂𝑆2,(𝑥,𝑦)) =
|𝒂𝑆1,(𝑥,𝑦) ∩ 𝒂𝑆2,(𝑥,𝑦) |
|𝒂𝑆1,(𝑥,𝑦) ∪ 𝒂𝑆2,(𝑥,𝑦) |

(5.6)

The term |𝒂𝑆1,(𝑥,𝑦)∩𝒂𝑆2,(𝑥,𝑦) | describes the number of corresponding cells

that are activated in both S1 and S2, while the second term |𝒂𝑆1,(𝑥,𝑦) ∪
𝒂𝑆2,(𝑥,𝑦) | is the number of cells that are activated in either S1 or S2.

Features that are deactivated in S1 and S2 are not taken into account.

The Jaccard similarity 𝐽 is in the range of (0, ..., 1), where 1 is the highest

possible similarity.

As motivated in Figure 5.8 example 𝑩, having a high similarity between

two feature vectors is not enough to describe the quality of a projection,

as also the spatial arrangement must be considered. Therefore, not only

the similarity between two spatial locations (𝑥, 𝑦) is compared but all

neurons in a local neighbourhood. Such a comparison is visualised

Figure 5.10: The Jaccard similarity is

calculated between two vectors (coloured

in dark blue) and their spatial neighbours

(coloured in light blue).

in Figure 5.10: The similarity between the two vectors (depicted as

dark blue circles) also depends on their local neighbours (light blue

circles). The size of the local neighbourhoods is defined as 𝑛𝐽 , and the
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local neighbourhoods as𝑨𝑆1,(𝑥,𝑦) = (𝒂𝑆1,(𝑥−𝑛𝐽 ,𝑦−𝑛𝐽 ) , ..., 𝒂𝑆1,(𝑥+𝑛𝐽 ,𝑦+𝑛𝐽 )) and

𝑨𝑆2,(𝑥,𝑦) = (𝒂𝑆2,(𝑥−𝑛𝐽 ,𝑦−𝑛𝐽 ) , ..., 𝒂𝑆2,(𝑥+𝑛𝐽 ,𝑦+𝑛𝐽 )), respectively. The Jaccard

similarity between two vectors that consider the local neighbourhood is

thus defined as:

𝐽𝑥,𝑦 = 𝐽
(
𝑨𝑆1,(𝑥,𝑦) ,𝑨𝑆2,(𝑥,𝑦)

)
(5.7)

Considering a local neighbourhood can be likened to having local support,

as is the case for net fragments. Multiple cells must support the mapping to

be activated by the corresponding control unit. For example, the similarity

between two dissimilar vectors can still be high if their context is similar,

which helps deal with noise in the data. On the other hand, the similarity

between two identical vectors is low if their context is dissimilar and

therefore does not match. Such local support thus increases robustness

and provides higher similarity for spatially correctly arranged features.

5.6.3 Mapping Process

In the previous section, it is discussed how the similarity between activity

patterns of neurons connected by projection fibres can be calculated. In

the following, it is described how projection fibres can be wired.

Figure 5.11: Different operations applied

to a prototype.

A straightforward approach is to apply different operations such as

translation, rotation, and deformation to a reference frame as shown in

Figure 5.11. These operations can be used individually or in combination,

resulting in multiple augmented prototype versions. Thereby, the shift of

each neuron is tracked, and a projection fibre is used to map a neuron from

the prototype to the corresponding neuron in the augmented version.

However, such an object-dependent mapping would not scale as each

object requires a multitude of fibres. Instead, the mapping must be

object-independent and focus on local features. In this context, “object-

independent” still means that the feature similarity has to be calculated

per object but that not each different object requires a unique set of

projection fibres. Shifter circuits [207], [208] are a kind of hierarchical[207]: Anderson and Essen (1987), ‘Shifter

circuits’

[208]: Olshausen, Anderson, and

Van Essen (1993), ‘A neurobiological

model of visual attention and invariant

pattern recognition based on dynamic

routing of information.’

mapping that implement such an object-independent mapping focusing

on local features. Shifter circuits define different hierarchical levels,

whereby each level is responsible for a specific operation, such as a

rotation, shift, or translation. During the fast processing loop when the

input image is static, very fast Hebbian plasticity [40] can be used to create

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

a topographical projection, i.e. to connect neighbouring cells in S1 with

neighbouring cells in S2 as shown by Fernandes et al. [32]. Furthermore,

[32]: Fernandes and von der Malsburg

(2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

Fernandes et al. [32] also demonstrates that the medium processing loop

providing different image views can be leveraged to teach the model

what the same object from different viewpoints looks like. This helps to

improve the mapping processing and the prototypes.
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Each projection fibre calculates the similarity between the neurons it

connects when processing an image. Afterwards, the average similarity

is calculated per maplet, and this similarity is used as the activation

probability of a Bernoulli neuron that can turn on the corresponding

control unit. Similar to S1, this leads to many activations at the beginning

and inhibition is used to turn some of the maplets off. Maplets support

each other locally and can only remain active if neighbouring features in

S1 remain neighbouring features in S2. Thus, the better a set of maplets

can map a prototype to an object reference, the higher its probability of

remaining active. For more details on the implementation, please refer to

the work by Anderson et al. [207], Olshausen et al. [208], and Fernandes [207]: Anderson and Essen (1987), ‘Shifter

circuits’

[208]: Olshausen, Anderson, and Van Es-

sen (1993), ‘A neurobiological model of

visual attention and invariant pattern

recognition based on dynamic routing of

information.’

et al. [32].

[32]: Fernandes and von der Malsburg

(2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

5.6.4 Feedback to S1

S2 serves two purposes: It not only maps an input to a reference frame

to obtain a transformation-invariant representation but also provides

feedback to S1 by mapping the reference object back to S1. To provide

feedback, the most plausible prototype is selected. As described in

Section 5.5, this prototype from S2 can overwrite the representations in

S1 and is thus incorporated into the learning process in S1.

The representations in S1 and S2 might slightly vary as the net fragments

in S1 represent a particular instance of an object. In contrast, S2 represents

a generalised (optimised) version of the same object. However, these

representations should still be similar (otherwise, a proper prototype

in S2 is missing). Therefore, S1 receives an optimised version of the

net fragments as input. This can be considered a bias towards a better

representation. By applying Hebbian updates between the input in S1 and

the prototypes from S2, S1 learns to convert its features to an optimised

version. Thus, the feedback from S2 provides additional support in S1
and can help to build better representations and fragments.

Measuring S2 Quality

S2 can be considered an associative memory, mapping net fragments to

the most suitable reference frame. A strength of such a system is that it

is highly robust and can deal well with noisy data or occluded objects

[113]. Therefore, S2 can be evaluated by occluding data and letting it [113]: Ramsauer, Schäfl, Lehner, et al.
(2021), Hopfield Networks is All You Need

reconstruct it as it is done for many deep learning systems [231], [232].

[231]: Han, Laga, and Bennamoun (2021),

‘Image-Based 3D Object Reconstruction’

[232]: Qu, Liu, Wang, et al. (2022),

‘TransMEF’

Furthermore, S2 maps net fragments to object prototypes. Thus, another

way to evaluate the quality of S2 is to measure if the input is mapped

to the corresponding object prototype. The mapping accuracy can be

measured on an object or feature level with typical classification metrics

[217] such as accuracy or F1-score.

[217]: Schmarje, Santarossa, Schroder,

et al. (2021), ‘A Survey on Semi-, Self-

and Unsupervised Learning for Image

Classification’

Please note that S2 highly depends on S1. To evaluate the performance

S2 independently, it has to be encapsulated from S1. This can be achieved

using strongly augmented reference objects from S2 as input instead of

actual net fragments from S1.
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The following sections describe preliminary experiments conducted to

assess the feasibility of the proposed vision framework. The experiments’

primary focus is on the first stage S1, as it is the foundation to develop the

second stage S2. Furthermore, no work exists about implementing stage

S1, in contrast to self-organising projection fibres, which are the central

element of S2. Therefore, the most pressing issue is demonstrating the

effectiveness of S1 according to the proposed principles. To demonstrate

the effectiveness of incorporating feedback from the second into the first

stage, a simple mockup is used to simulate S2.

In the remainder of this chapter, a simple dataset is introduced in

Section 6.1. Next, the implementation of the sensory system is presented

in Section 6.2, the implementation of the feature extracting stage in

Section 6.3, and the implementation of the prototype stage in Section 6.4.

The results obtained from these experiments are presented in Chapter 7.

6.1 Dataset

The objective of the experiments conducted is to demonstrate that build-

ing net fragments can be implemented using Hebbian learning [40] (c.f. [40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

Section 2.4.1). Thereby, the focus is on researching novel principles and

comprehending and analysing the networks’ output rather than scaling

the model to large datasets or pushing benchmarks. Consequently, a

straightforward dataset is introduced that comprises straight lines only.

Figure 6.1: Sample images from the

straight line dataset. The first row shows

the images used for training, the second

row shows images with noise, and the

third row shows discontinuous lines. The

images in the second and third rows are

only used for evaluation.

The dataset is generated online, meaning images are created when re-

quired and not stored on the disk. This provides high flexibility and

allows dynamically generating different images, which is helpful, espe-

cially during evaluation. For the conducted experiments, black and white

images with a dimensionality of [1 × 32 × 32] are used, whereby 1 is the

number of colour channels and [32× 32] is the image’s width and height,
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respectively. The dataset is binary and depicts different types of lines. All

background pixels are set to 0, while the pixels representing a line are

set to 1. No normalisation is used as the data distribution of the binary

dataset is already well-aligned, and normalisation is unnecessary.

During training, four fixed images are used, depicting vertical, horizontal,

and two diagonal lines (one with a positive and one with a negative

slope). The starting and ending coordinates (𝑥, 𝑦) of these lines are as

follows: A horizontal line from (2, 16) to (30, 16), a vertical line from

(16, 2) to (16, 30), a diagonal line with positive slop from (2, 2) to (30, 30),
and a diagonal line with negative slop from (2, 30) to (30, 2). These lines

are shown in the first row of Figure 6.1. The training dataset consists of

500 images, randomly sampled in each epoch.

During testing, different kinds of images are generated. First, an optional

noise parameter is introduced. In this thesis, this parameter is set to

0.005, letting each neuron with a probability of 0.5% switch its activation

from 0 to 1, or vice versa. Thus, on average, 5.12 pixels in the image

change their activation. Such images with noise are shown in the second

row of Figure 6.1. Second, the continuous line is interrupted in the

middle, resulting in a discontinuous line. The length of the break is a

hyperparameter and within a range of 0 to 20 pixels. Lines with a break

of 5 pixels are shown in the last row of Figure 6.1. Third, a trajectory

strategy generates different views of an image, as described in Section 5.3.

This trajectory strategy allows the specification of starting and ending

coordinates and generates a set of lines encompassing all trajectories

between these coordinates. The result of such a trajectory strategy is

shown in Figure 6.2, where a horizontal line is converted to a diagonal line

with a positive slope. Note that these strategies are only utilised during

testing to evaluate the behaviour of the network when encountering lines

not seen during training.

Figure 6.2: A sample trajectory strategy

is applied to the horizontal line so that

it becomes, over several steps, a diagonal

line.

6.2 Sensory System S0

The dataset used in this thesis is straightforward and does not require

learning highly specialised filters. Furthermore, it is expected that learn-

ing proper filters is a simple task that poses not many challenges as

deep learning networks have proven themselves as excellent pattern

recognition systems able to learn filters that are well tuned to the data

domain [3], [6], [233].[3]: Bhatt, Patel, Talsania, et al. (2021),

‘CNN Variants for Computer Vision’

[6]: Bertolini, Mezzogori, Neroni,

et al. (2021), ‘Machine Learning for

industrial applications’

[233]: Zou, Chen, Shi, et al. (2023),

‘Object Detection in 20 Years’

Hand-crafted filters are sufficient and preferred for the conducted ex-

periments as they do not require additional training and can be highly

interpretable. Interpretability facilitates a better understanding of the

extracted features and better comprehension of the net fragments built

in the subsequent stage based on these features.

The hand-crafted filters used for the experiments are illustrated in

Figure 6.3. Four filters are applied, each specialising in a different type
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Figure 6.3: The hand-crafted filters of the

sensory system are used to extract features

from the images. The filters are optimised

for horizontal, vertical, and diagonal lines.

of line. These filters function similarly to a convolutional layer with

frozen (non-trainable) weights and no bias term. During processing,

the filters are shifted with a stride of 1 across the input image of size

[1×32×32] so that they are applied at all input positions. The borders are

padded with 0 values to keep the input and output sizes identical. After

applying the four filters, the output has a shape of [4× 32× 32]. However,

the activations can be in the range of (−1, ...,+1). In order to obtain

binary activations, these activations are used as the firing probability

of a Bernoulli neuron, whereby values ≤ 0 are mapped to an activation

probability of 0%. Thus, the network’s binary activation is sampled from

a Bernoulli distribution.

Figure 6.4: Output of hand-crafted

filters for the straight lines used during

training. Each row shows the input image

(on the left) and the responses of the four

filters (on the right).

The filter response of these four filters applied to the images from the

training dataset is shown in Figure 6.4. Please note that a fixed threshold

of 0.5 instead of a Bernoulli neuron is used to make this figure appear

visually less noisy. For each type of line, one filter specialising in this

line has a strong response, almost reassembling the input image (except

extending the line by a few pixels). The other filters primarily activate

around the endpoints of the lines.

6.3 Feature Extracting Stage S1

The feature-extracting stage further processes the sensory signal of shape

[4 × 32 × 32] to build net fragments. In the conducted experiments, no

alternative cells are used. As described in Section 5.5, the input of S1
consists not only of the signal from the sensory system but also of the

previous net fragments that can be overridden by the feedback from the
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object prototypes. These inputs are stacked along the first dimension,

resulting in an input matrix of shape [8 × 32 × 32] and an output of

shape [4 × 32 × 32]. Thereby, the first four channels (i.e. the input with

index [(1, ..., 4) × 𝐻 ×𝑊]) are the output of the sensory system, and

the last four channels (i.e. input with index [(5, ..., 8) × 𝐻 ×𝑊]) are the

previous net fragments. The previous net fragments are overridden by

the feedback of S2 if the Jaccard similarity between the net fragments

and the S2 feedback is above a threshold value of 0.85, and thus, the

feedback is considered credible.

The lateral support distance of a single cell is defined as 𝑛𝑙 = 5. Conse-

quently, a cell can get lateral support by all cells not further away than 5

cells in each direction or from 2𝑛𝑙 + 1 = 11 cells per input channel. The

lateral support is implemented with a convolutional kernel 𝑾 of size

[4 × 8 × 11 × 11], that maps the 8 input channels to 4 output channels.

The kernel is initialised as described in Section 5.5.3 and updated with

Hebbian updates as described in Section 5.5.2. However, implementing

Hebbian updates for a convolutional kernel is challenging, as in an

efficient implementation, the kernel is not shifted over the image, but a

circulant matrix is used, which cannot provide information about which

cells connected through a synapse were active simultaneously [234]. This[234]: Miconi (2021), Hebbian learning with
gradients

is solved by using two convolutional kernels as described in Section 6.3.1.

However, the principle remains the same, and this two-step procedure is

only used for higher computational efficiency.

The convolutional operation is applied between the input and the weight

matrix 𝑾 to obtain the lateral support strength. This support strength

is normalised as described in Section 5.5.4 using an upper cell-support

limit of 𝜌 = 1.3 · 𝑛𝑙 . However, at the end of the normalisation procedure,

each output channel is divided by its highest value to ensure that the

support strength is in the range (0, ..., 1) and the highest activation has

an activation probability of 1.

𝑥𝑐,𝑤,ℎ :=
𝑥𝑐,𝑤,ℎ

max𝑤′∈{0,...,𝑊},ℎ′∈{0,...,𝐻} 𝑥𝑐,𝑤′ ,ℎ′
(6.1)

The input is processed over 𝑇 = 6 timesteps, and the Hebbian update

is calculated between the input and the median activation during these

timesteps to increase training stability. The learning rate is set to 0.1, the

mini-batch size is 256, and the model is trained for 10 epochs.

6.3.1 Implementation Details

In an efficient implementation of a convolutional layer, a circulant matrix

is used so that all kernel updates can be calculated in parallel [234].

However, by applying this operation, information about the cell’s lateral

influence is lost.

This problem is solved using two convolutional operations, producing

a slight memory overhead but increasing computation drastically com-

pared to shifting kernels in a loop over the image. The first operation

is a fixed, binary convolution that restructures each input patch into

a single-column vector. This is followed by a [1 × 1] convolution con-

taining the actual weights. Specifically, the input is passed through a

fixed convolution with an input size of [𝐶𝑖𝑛 × (2𝑛𝑙 + 1) × (2𝑛𝑙 + 1)] and
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𝐶𝑖𝑛2(2𝑛𝑙 + 1) output channels. The weight vector for this convolution is

set to 1 for the connections linking input 𝑐𝑖 , 𝑤, ℎ to output 𝑐𝑖𝑤ℎ (where

𝑐𝑖 𝑤, and ℎ range from 1 to 𝐶𝑖𝑛 , 2𝑛 + 1, and 2𝑛 + 1, respectively), and it

is set to 0 everywhere else. This process reorganises the values of each

input patch from the original convolution into non-overlapping column

vectors, effectively duplicating them. Next, the actual weights of the

original convolution can be applied using a simple [1 × 1] convolution.

This can be achieved by performing a tensor product with appropriate

broadcasting. Thus, the proposed method allows calculating Hebbian

updates [40] while fully leveraging the computational capabilities of [40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

current deep learning hardware.

6.4 Prototype Stage S2

The conducted experiments focus on S1. However, since S2 is needed to

provide feedback to S1, a mockup simulates such a feedback signal. The

mockup described in the following is inspired by the brain’s memory

system [173], located in the prefrontal cortex [235]. In the context of our [173]: Miyashita (1993), ‘Inferior Temporal

Cortex’

[235]: Tomita, Ohbayashi, Nakahara, et al.
(1999), ‘Top-down signal from prefrontal

cortex in executive control of memory

retrieval’

framework, such a memory system would be located after S2 and map

the reference object to memories. A single memory can be considered a

label, i.e., the projection fibres could initiate a mapping to a face while

the memory is the person’s name.

Many neurons are active when we see a person for the first time, indicating

that it has not yet been stored by neuronal plasticity. However, after a

short learning period, our brain is rewired to remember a frequently

occurring object with one or a few single cells [218]. The proposed [218]: Gross (2002), ‘Genealogy of the

“Grandmother Cell”’
mockup implements this behaviour: It maps a 2D activation pattern

to one or a few cells in a self-organising manner and vice versa. This

memory mapping is directly applied to S1, mapping net fragments to

memory cells and returning feedback, thereby ignoring projection fibres.

Thus, a feedback signal is provided without implementing S2. Therefore,

all aspects from S1 can be evaluated, including incorporating feedback.

6.4.1 Implementation

The memory mockup should map net fragments in S1 denoted as 𝒂
to a hidden memory state 𝒉 and vice versa. Thereby, 𝒉 represents the

self-organised memory cells. The mapping processes can be described

as conditional probabilities 𝑃(𝒉 |𝒂) and 𝑃(𝒂 |𝒉). Restricted Boltzmann

machines (RBMs) [151], [236] are generative stochastic networks that can [151]: Hinton (2002), ‘Training Products

of Experts by Minimizing Contrastive

Divergence’

[236]: Smolensky (1986), ‘Informa-

tion Processing in Dynamical Systems:

Foundations of Harmony Theory’

learn such a probability distribution. They use a linear transformation to

map from 𝒂 to 𝒉 and the inverse linear transformation to map backwards

from 𝒉 to 𝒂.

First, the 3D activation map containing the net fragments is flattened and

multiplied with a weight matrix 𝑾𝑆2 of size [(𝐶𝑜𝑢𝑡 ·𝑊 · 𝐻) × 𝑍]. This

results in a one-dimensional binary vector 𝒉 of length 𝑍, whereby 𝑍 is a

hyperparameter and defines the memory’s capacity. In the conducted

experiments, the capacity is set to 𝑍 = 16. For both mappings 𝑃(𝒉 |𝒂)
and 𝑃(𝒂 |𝒉), a bias term 𝒃𝑎 and 𝒃ℎ , and the sigmoid function to squeeze

the activations in the range (0, ..., 1) are used. The weight 𝑾𝑆2 can be
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interpreted as fully connected projection fibres, mapping the cells in S1
(𝒂) to memory cells (𝒉).

𝑃(𝒉 𝑗 = 1|𝒂) = sigmoid(𝑾𝑆2 · 𝒂 + 𝒃𝑎) =
1

1 + 𝑒𝑾𝑆2 ·𝒂+𝒃𝑎
(6.2)

𝑃(𝒂𝑖 = 1|𝒉) = sigmoid(𝑾⊤
𝑆2

· 𝒉 + 𝒃ℎ) =
1

1 + 𝑒𝑾
⊤
𝑆2
·𝒉+𝒃ℎ

(6.3)

Similar to S1, the activity of these neurons is used as probability, and the

binary output is sampled from a Bernoulli distribution.

𝒉𝑜𝑢𝑡 ∼ Bernoulli(𝑃(𝒉 |𝒂)) (6.4)

𝒂𝑜𝑢𝑡 ∼ Bernoulli(𝑃(𝒂 |𝒉)) (6.5)

The parameters 𝑾𝑆2, 𝒃𝑎 , and 𝒃ℎ are updated by minimising the dif-

ference of the free energy function 𝐹(·) [151] between 𝒂𝑖𝑛 and 𝒂𝑜𝑢𝑡 (i.e.[151]: Hinton (2002), ‘Training Products

of Experts by Minimizing Contrastive

Divergence’

𝐹(𝒂𝑖𝑛) − 𝐹(𝒂𝑜𝑢𝑡)). Recent findings suggest that the brain implements

algorithms similar to minimising energy functions as well [237]. Since

[237]: Isomura, Kotani, Jimbo, et al.
(2023), ‘Experimental validation of the

free-energy principle with in vitro neural

networks’

no backpropagation of error is used, this mapping seems biologically

plausible as the rest of the framework. For more details about the imple-

mentation, interested readers are referred to the publication by Hinton

[151] or a well-written blog post by Hui [238]. The free energy function is

[238]: Hui (2017), Machine learning -
Restricted Boltzmann Machines

minimised using the Adam [72] optimiser with a learning rate of 0.05,

[72]: Kingma and Ba (2017), Adam: A
Method for Stochastic Optimization

and the parameters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 1 ·10
−8

. During training,

the learning rate is reduced by a factor of 0.1 if the free energy does not

reduce further for more than 2 epochs until a final learning rate of 1 · 10
−6

is reached. The batch size is set to 256, and the model is trained for 10

epochs (similar to S1).

By minimising the free energy function, the memory decides by itself

which representation should be stored. After observing cell activity 𝒂 in

S1, 𝒂 is mapped to 𝒂𝑜𝑢𝑡 , whereby 𝑃(𝒉 |𝒂) defines the probability for the

cell activity in the memory. Since we sample 𝒉𝑜𝑢𝑡 ∼ Bernoulli(𝑃(𝒉 |𝒂)),
𝒉𝑜𝑢𝑡 becomes binary and cells with a low probability tend to be turned

off, while cells with a high probability tend to fire. This can be interpreted

as a filter against noise and slight deformations: A cell activity 𝒂 is

mapped to the closest known configuration of 𝒉. To provide feedback to

S1, the returned vector 𝒂𝑜𝑢𝑡 is calculated in a similar fashion and sampled

from 𝑃(𝒂 |𝒉). Thus, the memory is a probabilistic associative memory,

mapping an input to a hidden state from which an output is sampled.

This sampled output is not a reconstructed input but rather an optimised

prototype stored in the memory and used to provide feedback to S1.
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This chapter presents the results of the conducted experiments. First,

an overview of the results achieved with the entire system is provided.

Subsequently, individual components of the system are examined in

more detail. The code and documentation are made publicly available.

Further information can be found in the appendix Chapter A.

7.1 Entire System

Figure 7.1: Frames of a video visualising

the model’s activations. At the top of the

image, an actual video frame and a QR

code linking to the video are shown. At

the bottom of the image, screenshots of the

video are shown, depicting the changing

network activations over time.

An overview of the entire system is provided in Figure 7.1. This image is

derived from a video available online at sagerpascal.github.io/lateral-

connections or with the QR code on the top right of the figure. For a

detailed explanation of the components shown in the video, please refer

to appendix Section A.1. The video shows the network’s activations for

a straight line rotated counterclockwise around its centre. In the lower

part of Figure 7.1, a series of five network states is shown shortly before

and after a vertical line is reached.

https://sagerpascal.github.io/lateral-connections/results/final_results.html#video-visualisations
https://sagerpascal.github.io/lateral-connections/results/final_results.html#video-visualisations
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The network has only been trained on vertical, horizontal, and diagonal

lines. Therefore, many lines fed into the network in this video represent

unknown objects
1
. Nevertheless, S1 still detects local patterns in most1: With projection fibres, such trans-

formed objects instances should be

mapped to the same prototype. However,

the memory used as a mockup cannot deal

with such transformations.

images, such as multiple pixels aligned vertically, horizontally, or di-

agonally. Therefore, it can provide lateral support between local pixel

groups representing such a local pattern. The closer the input becomes

to a learned pattern, the bigger the lateral support. For instance, at time

𝑡3, the input corresponds to a vertical line as observed during training.

In that case, all pixels receive enough lateral support to remain active.

Thus, lines observed during training get lateral support at all positions

and are captured in net fragments. In contrast, lines not observed during

training have local features corresponding to learned patterns and are

supported by smaller local net fragments.

For the conducted experiments, S2 is simulated by a self-organising

memory, storing patterns observed during training. As long as the

net fragments represent an unknown pattern, no latent cells in S2 are

activated and no feedback to S1 is provided. However, when the net

fragments in S1 correspond to a learned pattern, S2 provides feedback

and further increases certainty in S1. When replacing the memory used

to simulate S2 with projection fibres, the feedback should be even better,

as S2 will be able to detect transformed objects.

The network’s behaviour is as expected: S1 builds net fragments based

on well-known patterns observed during training. All input features

observed during training receive full lateral support. Moreover, images

not seen during training also contain local patterns similar to those from

the training data and, therefore, still receive local support. S2 responds

to patterns stored in its memory, only providing support to S1 for objects

seen during training. Furthermore, all samples seen during training

have automatically been saved in S2. The system is able to produce net

fragments that roughly reassemble the input from the sensory system.

However, the net fragments are more robust than the sensory system, as

shown in the following sections.

7.1.1 Effect of Noise

Figure 7.2: A frame of a video visualising

the network’s behaviour if noise is added

to the data. The QR code on the right links

to the corresponding video.

Figure 7.2 refers to a video demonstrating the network’s behaviour when

noise is added to the input data. Additionally, the effect of adding noise to

the four training images is visualised in Figure 7.3. The noise is generated
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Figure 7.3: Effect of adding noise to the

four images seen during training.

by randomly flipping a pixel in the input data from 0 to 1 or vice versa

with a probability of 0.5%.

To assess the network’s ability to deal with noise, the same input is fed

into the model twice: once with and once without noise. The activations

of S1 for these two versions of the input image are compared, and the per-

centage of feature cells that are initially triggered by the introduced noise

but subsequently deactivated due to insufficient support is measured.

This analysis shows that the system can remove about 68.2% of the noise

from the input data. However, this effectiveness is mainly because a

single noise pixel triggers 3 cells in each feature channel of the sensory

system, resulting in 12 active cells. After building net fragments, only

the cells at the centre of the four feature channels remain active, giving

the impression that the noise has been removed while, in reality, it only

has been reduced.

Figure 7.4: The features triggered by

noise (on the left) compared with the fea-

tures triggered by a line end (on the right).

The network input is shown on the left,

the output of the sensory system in the

middle, and the net fragments built by S1
on the right. The different colours indicate

different feature channels.

In fact, only in 5.8% of the cases is noise in the input completely removed.

Several reasons contribute to the difficulty of obliterating noise: First,

noise can be located close to the line or other noise and thus receives

lateral support from other cells. Second, when observing noise in the

input, the sensory system triggers activations in all feature channels

similar to activations found at line ends as visualised in Figure 7.4. As a



66 7 Results

result, activations triggered by noise are very similar to learned patterns.

Therefore, these cells support each other and cannot be adequately filtered

by the system. Overall, this behaviour is to be expected, and noise should

only be filtered out if it is significantly different from learned patterns.

Although the noise cannot be completely filtered out, the net fragments

are still accurately mapped to the correct prototype in S2. Thus, the

system still correctly interprets the input despite the noise.

Noise per Channel

Figure 7.5: A frame of a video visualising

the network’s behaviour if noise is added

to the feature channels. The QR code on

the right links to the corresponding video.

In this section, it is investigated whether noise can be filtered when

there is no correlation between the locations of the noise within the

feature channels. Thus, the noise does not correspond to learned patterns

anymore. Therefore, noise is not added to the input data but to each feature

channel of the sensory systems’ output separately. This experiment is

considered more relevant for real-world scenarios, as future systems

that deal with real-world data will have a much larger number of

input channels and more diverse patterns, making it unlikely that noise

resembles a learned pattern that the network considers valid.

Figure 7.5 refers to a video demonstrating the networks’ behaviour when

noise is added to each feature cell with a probability of 0.5%. Additionally,

the effect of adding noise to the feature channels is visualised in Figure 7.6

for the four training images. As can be observed in this figure, net frag-

ments can remove noise very well when it does not correspond to learned

patterns. In fact, about 91.7% of the noise is removed, demonstrating the

network’s high robustness to such perturbations. The noise that is not

removed is the noise that is very close to the actual line and therefore

receives support from a valid object.

7.1.2 Discontinuous Line

Net fragments [20], [169] can not only reduce noise but also recreate[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

[169]: von der Malsburg (2018),

‘Concerning the Neuronal Code’

occluded objects, as inactive cells receiving enough lateral support from

their neighbours can turn on. This phenomenon is demonstrated by

analysing the network’s behaviour if a discontinuous line is fed into

the network. In Figure 7.7, a QR code is contained linking to a video

demonstrating that S1 is able to reconstruct lines that are interrupted by

up to 8 pixels.
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Figure 7.6: Effect of adding noise to the

four feature channels (i.e. the output of the

sensory system) of the images seen during

training.The network input is shown on

the left, the output of the sensory system

with added noise in the middle, and the

net fragments built by S1 on the right. The

different colours indicate different feature

channels.

In the experimental setup, the centre of the line is detected, and a varying

number of pixels starting from the centre are intentionally switched off.

The feedback from S2 is switched off so that only the reconstruction based

on net fragments within S1 is tested. Remarkably, the S1 consistently

succeeds in reconstructing the original training input when up to 6 pixels

are removed. Furthermore, in many cases, it can reconstruct lines with up

to 8 pixels missing, although it fails with more than 8 pixels removed.

The extent to which the network can reconstruct discontinuous lines

depends on the range of lateral connections 𝑛𝑙 . As expected, increasing

the value of 𝑛𝑙 allows S1 to reconstruct lines with more missing pixels,

improving its performance in recovering occluded or destroyed objects.

However, 𝑛𝑙 should not be too large so that S1 build net fragments based

on local features (c.f. Section 4.1.3).

In the conducted experiments, the lateral range is set to 𝑛𝑙 = 11. The

impressive ability to reconstruct up to 8 missing pixels with this setting

suggests that recreating occluded patterns works effectively.

7.1.3 S2 Feedback

In the following, feedback from S2 is additionally incorporated in S1,

and it is analysed if S1 can efficiently utilise it to reconstruct lines.

In Figure 7.8, the activation probabilities for all cells across the four output

channels for a vertical line with 20 missing pixels are visualised. The top

row shows the probabilities when no feedback form S2 is incorporated,

and the bottom row the probabilities after the feedback is incorporated.

As visible in the top row of Figure 7.8, without incorporating feedback

from S2, the line cannot be fully reconstructed using lateral connections
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Figure 7.7: A frame of a video visualising

the network’s behaviour for discontinuous

lines. The QR code on the right links to

the corresponding video.

Figure 7.8: The activation probabilities

per cell across all four channels with and

without feedback from S2. The input is a

discontinuous vertical line with 20 pixels

missing.

in S1, as 20 of missing pixels exceeds the range of lateral connections.

However, S2 is still able to map the line with missing pixels to the

correct prototype and provide appropriate feedback. After the feedback

is incorporated, the activation probabilities for the entire vertical line

increase significantly. Especially in the middle section of the first channel,

the activation probabilities increase from 0% to approximately 65%.

When a continuous vertical line is fed into the system, the activation

probability in the middle section of the line is above 90%. This high

probability aligns with the fact that the sensory signal and the memory’s

feedback are consistent. However, when the memory expects activations

that are not detected by the sensory system (e.g. due to the missing pixels),

the activation probability decreases. This behaviour reflects meaningful

modelling of the network’s uncertainty when integrating feedback from

S2 while encountering occluded objects.

In conclusion, the feedback from S2 can be effectively incorporated into

S1. It helps to deal with occluded objects and creates stability in net

fragments, even when the sensory system does not detect (occluded)

parts of the object.

7.2 Model Weights

The weight matrix of S1, which contains the strength of the learned

lateral connections, is discussed in the following. In Figure 7.9, the

learned weights are visualised. The input of S1 consists of four channels

from the sensory stage (rows labelled as 1-4) and four channels from

recurrent connections (labelled as 5-8). S1 produces four output channels,



7.2 Model Weights 69

Figure 7.9: The weight matrix of S1 after

training.

and the kernels contributing to each output channel are depicted in

columns labelled from 𝐴 to 𝐷. Each output channel specialises in a

different type of line: Output channel 𝐴 focuses on vertical lines, channel

𝐵 on diagonal lines with a positive slope, channel 𝐶 on horizontal lines,

and channel 𝐷 on diagonal lines with a negative slope.

An analysis of output channel 𝐴, which focuses on horizontal lines, is

presented in the following. However, it is important to note that the four

output channels have similar characteristics, with the main difference

being that the filters are rotated by 45
◦
. Consequently, insights from

channel 𝐴 are also transferable to all other channels.

In Figure 7.10, the features processed when a horizontal line is fed into

the system are visualised. First, the sensory system extracts four features

from the input (visualised in the box named “output sensory system”).

Channel 1 contains “vertical-line features”, spanning the entire vertical

length of the image. The channels 2-4 contain features of diagonal and

horizontal lines. However, the sensory system recognises these features

only at the ends of the lines. Thus, at the ends of the vertical line, about

three neurons respond for each channel 2-4 to represent these features.

These features extracted by the sensory system are fed into the channels

1-4 of S1. As expected, these features have been incorporated into the

weight matrix accordingly (see 𝐴1-𝐴4).

Based on these features, output channel 𝐴 generates a response roughly

corresponding to the vertical line initially fed into the system. Thus,

channel 𝐴 fulfils its purpose and represents vertical lines. Besides chan-

nel 𝐴, also the channels 𝐵-𝐷 become active. However, these channels

specialise in different lines and only activate exactly one pixel at the line

ends, where the sensory system produces a very high activity across all

channels.

The output of S1 is reused as an input signal in the next timestep 𝑡+1. This

is implemented as a recurrent connection between the output channels

𝐴-𝐷 and the input channels 5-8. As expected, the filters processing the

recurrent input used for output channel 𝐴 specialise in the activity that
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Figure 7.10: An overview of the data

processed by the weight matrix of S1.

is produced by S1 for vertical lines: When a vertical line is processed,

the output channel 𝐴 outputs a vertical line and the channels 𝐵-𝐷 a

single-cell activation, corresponding to the filters 𝐴5-𝐴8.

7.2.1 Weight Normalisation

As described in Section 5.5.4, the weight is normalised in the range

(0, ..., 1). Normalising the weights is crucial for the proper functioning

of the network. Without weight normalisation, lateral support could be

dominated by a single cell, resulting in infinite lateral support if trained

long enough. In the human brain, there is no such dominance of single

cells, and neighbouring cells play an equally important role in providing

support [224].[224]: Kandel (2013), Principles of neural
science

After 10 epochs without weight normalisation, some lateral connections

reach a weight above 74 and dominate the decision process of whether

neighbouring cells should remain active. This leads to undesired ac-

tivations and weight updates. In Figure 7.11, the weight matrix after

training for 10 epochs without weight normalisation is depicted. No clear

structure is visible within the weights, and the support provided within

the network appears somewhat random. Thus, normalisation is not only

biologically more plausible but also a necessity to obtain meaningful

lateral weights.
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Figure 7.11: Weight matrix of S1 after

training without weight normalisation.

7.2.2 Initialisation

In this section, the crucial aspect of weight initialisation is discussed. In

Section 5.5.3, it is described that initialising the weight with self-support

is essential for the proper functioning of the network. Two different

approaches exist to initialise weights with self-support, as shown in

Figure 7.12. Regardless of the strategy chosen, both approaches lead to

identical weight matrices after the training process.

Figure 7.12: Two different ways of initial-

ising the weights of S1 with self support.

For both initialisation strategies, the ini-

tial weights are shown on the left and the

weights after training on the right.

However, it is important to note that not all weight initialisation strategies

lead to good results. In Figure 7.13, two other strategies and the resulting

weight matrix after training are shown: Initialising the weights randomly

leads to support between cells that should not support each other.

Consequently, this results in unwanted network activations, and the

network converges towards weight parameters where the weights are

almost identical across all output channels and do not provide lateral

support in the desired manner. If, on the other hand, the weights are

initialised with zeros, the network has no active outputs. Consequently,

all cells are immediately deactivated, and the weights remain unchanged

during Hebbian learning.

In conclusion, using one of the two self-support weight initialisation

strategies shown in Figure 7.12 is crucial. These methods ensure proper
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Figure 7.13: Two different ways of

initialising the weights of S1. The random

weight initialisation strategy is shown on

the left side of the image, and the zero

initialisation strategy is shown on the right

side. For both initialisation strategies, the

initial weights are shown on the left and

the weights after training on the right.

functioning and effective learning, unlike the random or zero weight

initialisation strategies depicted in Figure 7.13.

7.3 Support Quality

Figure 7.14: The average lateral support

received by active and inactive cells dur-

ing training. The y-axis shows the support,

and the x-axis the training epoch. The blue

line is the average, and the light blue inter-

val is the min./max. support an active cell

receives during training when no inhibi-

tion is used; the green interval represents

the average/min./max. support an active

cell receives support when inhibition is

used; the orange line is the average sup-

port inactive cells receive. The dotted red

line is the inhibition limit 𝜌, marking the

threshold where the support is reduced.

In Figure 7.14, the support strength received by active and inactive cells

during training is presented before the support strength is normalised

and translated into an activation probability. The green interval depicts

the support with inhibition and the blue interval without inhibition.

Before training, only self-support exists, i.e. the received support for

active cells is 1. After training for 3 epochs, the average support active

cells receive increases to 13.8 with inhibition and 15.7 without inhibition.

At this point in training, most lateral connections have converged to a

synaptic weight strength of 1. Thus, on average, a single cell is supported

by approximately 14 neighbouring cells (with inhibition limit) or 16 cells

(without inhibition limit). On the other hand, inactive cells receive, on

average, a lateral support of 0.3, significantly less than active cells. Thus,

active cells receive much more lateral support after training, while inactive

cells still do not receive significant support. The support difference

between active and inactive cells increases from 1 at the beginning of

training to 13.5 after training when inhibition is used. This increase in

support implies that it becomes much more difficult for individual cells

to become active and explains why noise can be filtered efficiently.

The support active cells receive is limited by the inhibitory strength

𝜌 = 1.3 · 𝑛𝑙 = 14.3. When a cell exceeds this threshold 𝜌, its activation
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probability is linearly reduced. This effect is visible when comparing the

blue interval (without inhibition) with the green interval (with inhibition).

With inhibition, the support strength for each cell is pushed below 𝜌,

depicted as the red dotted line.

In Figure 7.14, it is shown that cells can receive lateral support strengths

of up to 21 when no inhibitory signals are present in the network (see the

max. values of the blue interval). However, such strong support leads to

undesired effects, as discussed in the next section.

The results depicted in Figure 7.14 demonstrate that S1 builds net frag-

ments as expected. The gap between the support strength of active and

inactive cells becomes bigger during training, ensuring that only cells

representing known patterns remain active.

7.3.1 Inhibition

Figure 7.15: The activation heatmap

indicates the activation probability for all

cells across the four channels. The upper

row shows the probability without inhibi-

tion and the lower row with inhibition.

The impact of the inhibition threshold 𝜌 is discussed in the following.

The activation heatmap shown in Figure 7.15 displays the activation

probabilities for cells across four channels when a vertical line is fed

into a model. The top row shows the probabilities of a model trained

without inhibition, while the bottom row shows the probabilities of a

model trained with inhibition.

As discussed, all filters are active at the line ends, leading to many active

cells and high lateral support in that region. Specifically, the cell located

at the line end receives lateral support from up to 21 neighbouring cells

if no inhibition is used. When an activation strength of 21 is mapped

to an activation probability of 1.0 and an activation strength of 0 to 0.0,

the cells receive activation probabilities as visualised in the upper row

of Figure 7.15. The pixels at the line ends are dominant and have an

activation probability of 1.0, while the other pixels on the line have an

activation probability of approximately 0.37. Therefore, only the cells at

the line ends have a high activation probability but not the other cells

depicting the middle of the line.

Introducing inhibition effectively addresses this issue. With inhibition,

the lateral support is limited to 𝜌. The effect of inhibition on the acti-

vation probability per cell is shown in the second row of Figure 7.15.

Notably, the activation probabilities of cells at the line ends remain high.

However, the activation probabilities of the other pixels depicting the

vertical line increase significantly, especially in the first channel, which

represents vertical line features. Thus, inhibition introduces an upper

activity threshold so that regions with many active features are limited
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in providing mutual support and are not dominant compared to other

regions.

Please note that the two heatmaps in Figure 7.15 stem from different

models. Inhibition strongly influences the training process, and “turning

on” inhibition would not convert the activation probabilities in the first

into the ones shown in the second row. Instead, inhibition normalises

the activation probabilities throughout the training process, influencing

weight updates. Without inhibition, the activations are dominated by

line ends, causing all channels to learn similar features. With inhibition,

the channels specialise more on distinct features as no feature dominates

the learning process. Therefore, the weights (and thus the activation

probabilities shown on the second row of Figure 7.15) are more diverse.

7.4 Conclusion

The previous sections discuss the obtained results, thereby focusing on

specific aspects. In conclusion, S1 can build net fragments [20], [169], and[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

[169]: von der Malsburg (2018),

‘Concerning the Neuronal Code’

it is demonstrated that these fragments associate input patterns with

learned patterns, thereby removing noise or reconstructing occluded

parts of objects. Thus, the experiments demonstrate that net fragments

can be implemented according to the proposed principles. Since removing

noise and reconstructing objects improves representations over multiple

timesteps, it is considered a hierarchical processing of features without

being subject to early commitment [26].[26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information This is considered an essential step towards implementing the proposed

framework. Implementing projection fibres [175], [203] is based on the

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[203]: Tanigawa, Wang, and Fujita

(2005), ‘Organization of Horizontal Axons

in the Inferior Temporal Cortex and

Primary Visual Cortex of the Macaque

Monkey’

principle of comparing local features in S1 and S2 and initiating a mapping

between them if neighbouring fibres agree [29]. Such a mapping has

[29]: Wiskott and von der Malsburg (1996),

Face Recognition by Dynamic Link Matching

already been implemented [27], [28], [30]–[32] but only works well if

[27]: Bienenstock and von der Malsburg

(1987), ‘A Neural Network for Invariant

Pattern Recognition’

[28]: Lades, Vorbruggen, Buhmann,

et al. (1993), ‘Distortion invariant object

recognition in the dynamic link architec-

ture’

[30]: Wiskott, Fellous, Kuiger, et al.
(1997), ‘Face recognition by elastic bunch

graph matching’

[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

[32]: Fernandes and von der Mals-

burg (2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

patterns in the two stages are highly similar. As demonstrated in this

chapter, making local patterns more similar can be achieved with net

fragments. Net fragments either turn off cells representing unknown

patterns that are not present in S2 and thus cannot be mapped, or they

support and reconstruct (i.e. optimise) existing patterns to become more

similar to patterns stored in S2. Thus, the conducted experiments lay the

foundation for future research and implementing projection fibres.
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8.1 Discussion

In Section 1.1, it is discussed that the human brain can recognise the

“Gestalt” (the entire structure) of an object within a very short time [22]–

[25] because it prevents early commitment [26]. This capability is absent

in current deep learning systems. Since the biological system implements

this behaviour, important neuroscientific findings responsible for the

effectiveness of the biological vision system are identified in Section 4.1.

It is described that the human brain uses lateral connections [138], [201],

[202] to build net fragments [20], [169] that are mapped to reference frames [138]: Gilbert, Hirsch, and Wiesel (1990),

‘Lateral Interactions in Visual Cortex’

[201]: Liang, Gong, Chen, et al. (2017),

‘Interactions between feedback and lateral

connections in the primary visual cortex’

[202]: Stettler, Das, Bennett, et al.
(2002), ‘Lateral Connectivity and Con-

textual Interactions in Macaque Primary

Visual Cortex’

[20]: von der Malsburg, Stadelmann,

and Grewe (2022), A Theory of Natural
Intelligence

[169]: von der Malsburg (2018),

‘Concerning the Neuronal Code’

using projection fibres [175], [203]. Such fibres allow object-independent

[175]: Greig, Woodworth, Galazo, et al.
(2013), ‘Molecular logic of neocortical pro-

jection neuron specification, development

and diversity’

[203]: Tanigawa, Wang, and Fujita

(2005), ‘Organization of Horizontal Axons

in the Inferior Temporal Cortex and

Primary Visual Cortex of the Macaque

Monkey’

mapping [31], [32], making the system highly efficient.

[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

[32]: Fernandes and von der Mals-

burg (2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

Based on these findings, a novel computational framework is proposed.

It encompasses three building blocks, all using novel binary neurons

called Bernoulli neurons. These biologically inspired neurons allow to

implement net fragments that improve robustness. The sensory stage S0
corresponds in the biological context to the eyes and extracts features

from images. The feature building stage S1, inspired by the primary

visual cortex [171], [172], leverages lateral connections to form net frag-

ments, groups of neurons that support each other’s activity. This stage is

well examined in this thesis and iteratively refined based on empirical

investigations. The experiments confirm the usefulness of lateral connec-

tions in tasks such as occluded object reconstruction and noise reduction.

The prototype stage S2 takes inspiration from the ventral visual stream

[199] and the temporal cortex [173], [174]. It uses projection fibres to map

network fragments onto object prototypes.

At its core, the entire network is based on self-organisation, locality and

cell consistency principles. Net fragments arise from cells communicating

with their spatial neighbours, while projection fibres connect neighbour-

ing cells in S1 and S2 and seek consistency with neighbouring fibres. The

iterative process of generating net fragments and mapping them to object

prototypes leads to efficient transformation-invariant feature processing

independent of specific objects.

A significant difference between the proposed system and deep networks

lies in the mechanism of building consistency: Deep networks optimise

consistency at a single point in the network by comparing its predic-

tion with a teaching signal. A global error correction algorithm such

as backpropagation adjusts all components in the network to minimise

inconsistencies at this specific point. In contrast, the proposed framework

implements a model that optimises consistency between each neuron,

akin to the human brain. Furthermore, consistency is built by the net-

work itself in a self-organising manner without requiring an external

teaching signal. Propagating the error layer-wise backwards makes the

learning algorithm biologically implausible [43], [44] and leads to early [43]: Grossberg (1987), ‘Competitive

Learning’

[44]: Crick (1989), ‘The recent ex-

citement about neural networks’
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commitment [26] (c.f. Section 1.1). Furthermore, such networks have[26]: Marr (2010), Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information

intrinsic limitations [9]–[13], [17], [46], [85], [90]. Nevertheless, training

all neurons in a way to optimise consistency at a specific point works

exceptionally well for very specific tasks and can outperform human

experts [75]. Therefore, such systems probably also outperform models[75]: Buetti-Dinh, Galli, Bellenberg, et al.
(2019), ‘Deep neural networks outperform

human expert’s capacity in characterizing

bioleaching bacterial biofilm composition’

implementing a brain-like algorithm on such specialised tasks.

However, building a system that optimises consistency between each

connected cell pair has a different set of advantages. Its self-organising

nature allows to prevent early commitment since it does not build feature

processing chains (c.f. Section 1.1). Properly implemented projection fi-

bres can map net fragments to object prototypes even when transformed.

Projection fibres allow the transfer of knowledge [31], [32] much more[31]: Wolfrum, Wolff, Lücke, et al.
(2008), ‘A recurrent dynamic model for

correspondence-based face recognition’

[32]: Fernandes and von der Mals-

burg (2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

efficiently between objects, could increase computational efficiency and

allow better extrapolation of the data distribution. Furthermore, proto-

types are stored in S2 in separate reference frames, thereby reducing

the risk of catastrophic forgetting [12] as newly acquired knowledge

[12]: Kirkpatrick, Pascanu, Rabinowitz,

et al. (2017), ‘Overcoming catastrophic

forgetting in neural networks’

cannot overwrite previously learned knowledge. As outlined in the vi-

sion presented in Section 4.2, the proposed framework could interpret

entire visual scenes meaningfully without requiring a teaching signal.

For instance, each cell in the network represents a specific part of a visual

scene and can predict the activity of neighbouring cells. Thus, each cell

in the network contributes directly to coherent representations in the

decision-making processes. Consequently, each signal and cell votes for

a particular course of action and seek consensus without an external

source providing a global teaching signal. I argue that this is a different

way of thinking about artificial learning and potentially opens up new

paths for how intelligent systems could be trained.

8.2 Future Work

In this thesis, a novel vision framework is proposed. However, numerous

avenues exist for future work to further improve the framework. These

improvements can focus on various dimensions, such as

• extending the theoretical foundations of the framework with a mem-

ory layer or scene interpretation according to the vision outlined

in Section 4.2,

• refining and confirming the existing theoretical foundations by

conducting further experiments,

• scaling the framework to different datasets,

• introducing multi-modality similar to the human brain,

• and identifying metrics to evaluate the system better.

In the following section, these improvements are discussed, and concrete

next steps are suggested.
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8.2.1 Extending Theory

The current theoretical foundations are limited to the stages S0, S1, and

S2. While S0 and S1 are well developed, S2 should be further refined by

conducting experiments based on existing work by [32] and avoiding the [32]: Fernandes and von der Malsburg

(2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

presumed simplifications (c.f. Section 5.6). In particular, novel prototypes

from unseen objects should be stored automatically, the prototypes

should be iteratively improved throughout training, projection fibres

should be learned dynamically, and the network should be extended

beyond the limits of object-centric images. With these extensions, the

framework should be able to map various objects to prototypes and

perform well on different datasets.

Furthermore, two building blocks are missing compared to the vision

described in Section 4.2. First, an additional memory stage S3, storing

specific instances of objects, should be added. While projection fibres

should map the perceived objects to reference representations, this stage

could assign labels to the objects and distinguish different object instances.

A simple version of a memory is proposed in the conducted experiments

as a mockup of S2 (c.f. Section 6.4.1). However, it has not yet been

combined with projection fibres. Second, a scene interpretation stage

needs to be included. While the projection fibres answer the question of

“what?” is visible within an image, an additional stage should analyse the

relation between objects and allow the interpretation of visual scenes.

8.2.2 Refining Theory

The stage S1 is well developed, and it has been demonstrated in experi-

ments that Bernoulli neurons trained with Hebbian learning can form net

fragments. Nevertheless, adding alternative cells and negative Hebbian

learning seems crucial to scale to different datasets.

The stage S2 has only been explored from a theoretical viewpoint within

this thesis. Conducting experiments to refine the proposed theoretical

foundations and demonstrate their efficiency is important to measure

the overall framework performance. These tasks are discussed in the

following.

Alternative Cells in S1

As outlined in Section 4.1.3, cells can contribute to mutually exclusive net

fragments. For example, cell 𝐴 may participate in a fragment with cell 𝐵

and another fragment with cell 𝐶, while cell 𝐵 and 𝐶 avoid simultaneous

activation. This exceeds the functional capacity of cell 𝐴, and a copy of 𝐴

is needed to establish separate lateral connections with cell 𝐵 and 𝐶.

In Section 5.5.5, it is described that alternative cells could be implemented

by duplicating the output channels of the weight matrix𝑾 of S1. Alterna-

tive cells contribute to different net fragments and are mutually exclusive.

Consequently, competition between these alternative cells is required

to ensure that only a winning cell can become active and that activity

in alternative cells is suppressed
1
. Well-known competition strategies 1: Activity can be suppressed by inhibi-

tion, as it is already implemented in S1.
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are winner-take-all competition, providing an external competitive sig-

nal, anti-Hebbian learning [102], or adapting the activation function of[102]: Vogels, Sprekeler, Zenke, et al.
(2011), ‘Inhibitory Plasticity Balances

Excitation and Inhibition in Sensory

Pathways and Memory Networks’

the neurons to enforce a specific activity distribution [103], [104] (c.f.

[103]: Joshi and Triesch (2009), ‘Rules

for information maximization in spiking

neurons using intrinsic plasticity’

[104]: Teichmann and Hamker (2015), ‘In-

trinsic Plasticity: A Simple Mechanism to

Stabilize Hebbian Learning in Multilayer

Neural Networks’

Section 2.4.1).

Furthermore, Hebbian learning [40] must be extended to enable forget-

[40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

ting previously learned patterns. Currently, each update only increases

the weights, which strengthens lateral support. However, some updates

could inadvertently create incorrect connections between different (al-

ternative) cells. In the following section, negative Hebbian learning is

described, which allows forgetting learned connections and seems crucial

to implementing alternative cells. This mechanism eliminates the need

to carefully prevent false updates during the initial training phase, as

erroneous updates can be corrected as soon as the alternative cells are

separated enough.

Negative Hebbian Learning within S1

While conventional Hebbian learning [40] increases the synaptic weights

between simultaneously active neurons, negative Hebbian learning in-

troduces a complementary process by decreasing the synaptic weight

between cells that fire disjoint. These negative updates are not only crucial

in the formation of alternative cells but also in gradually eliminating

less significant patterns that have been imprinted during the training

phase.

Implementing negative Hebbian updates is challenging, especially when

the data is dominated by negative correlations
2
, as shown in appendix2: The dataset contains more samples

where two feature cells are active sepa-

rately than simultaneously.

Chapter B. One possible strategy to overcome this problem is using a

significantly lower learning rate for negative updates than for positive

ones. This asymmetry ensures that the process of forgetting is slower

than the process of learning, preventing the abrupt erasure of acquired

patterns. Another solution is using alternative cells: If two patterns

have a positive correlation at one point and a negative correlation at

another point (as in the example shown in Chapter B), these patterns

can be processed differently by employing alternative cells, effectively

maintaining their distinct representations.

Refine S2

An important task for future work is the empirical improvement of S2,

which has only been theoretically developed based on identified neuro-

scientific findings and existing work. The current blueprint describing its

implementation has to be further refined by conducting experiments.

In the first phase, the integration and evaluation of projection fibres

based on shifter circuits [207], [208] should be done and explored within[207]: Anderson and Essen (1987), ‘Shifter

circuits’

[208]: Olshausen, Anderson, and

Van Essen (1993), ‘A neurobiological

model of visual attention and invariant

pattern recognition based on dynamic

routing of information.’

the proposed framework. Afterwards, different object views should be

explored (provided by the medium processing loop) as done by Fernandes

et al. [32]. Currently, these views are only used during evaluation, but once

[32]: Fernandes and von der Malsburg

(2015), ‘Self-Organization of Control

Circuits for Invariant Fiber Projections’

S2 is implemented, they can be crucial in learning to associate different

object views to the same prototype, encouraging transformation-invariant

mappings.
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8.2.3 Scaling to Different Datasets

In the experiments, a dataset comprising straight lines is used, effectively

illustrating the principles and enhancing understanding of the proposed

framework. Nevertheless, assessing the models’ scalability to larger

and more diverse datasets is important. One possible avenue is to use

traditional classification datasets such as MNIST [139], CIFAR-10 [142], or [139]: LeCun, Bottou, Bengio, et al. (1998),

‘Gradient-based learning applied to

document recognition’

[142]: Krizhevsky (2009), ‘Learning

Multiple Layers of Features from Tiny

Images’

ImageNet [239]. However, it is important to note that the primary goal is

[239]: Russakovsky, Deng, Su, et al. (2015),

‘ImageNet Large Scale Visual Recognition

Challenge’

not to push benchmarks for image classification. Instead, the goal is to

obtain high-quality object representations.

This endeavour may require building new datasets generated by an image

rendering engine capable of simulating 3D objects and generating data in

real-time. Using such an engine allows to generate visualisation of objects

undergoing realistic-looking transformations and depth rotations. This

method allows the evaluation of the model’s ability to process complex

and diverse visual data that more closely resemble real-world scenarios.

Moreover, these transformations are an integral part of the proposed

processing loop and even allow interaction with objects.

8.2.4 Multi-Modality

This work focuses on a framework for computer vision. However, the

architecture has broader applicability and can be used for processing

different sensor signals in multimodal settings [240]–[242]. Having similar [240]: Ngiam, Khosla, Kim, et al. (2011),

‘Multimodal Deep Learning’

[241]: Liu, Li, Xu, et al. (2018), Learn to
Combine Modalities in Multimodal Deep
Learning

[242]: Baltrusaitis, Ahuja, and Morency

(2019), ‘Multimodal Machine Learning’

cell architectures processing different signals is also in line with findings

from neuroscience [59], [60].

[59]: Mountcastle (1978), ‘An Organizing

Principle for Cerebral Function: The Unit

Model and the Distributed System’

[60]: Mountcastle (1997), ‘The columnar

organization of the neocortex’

In the case of images, net fragments in S1 represent learned visual patterns

that are part of an object’s surface and are mapped with protection fibres

to object prototypes that describe the visual appearance of objects. The

same architectural structure can be applied to other types of signals. For

example, an alternative sensory system could perceive audio signals. In

this scenario, the local support in S1 would extend over nearby frequency

ranges and time intervals. Consequently, phonemes or syllables could

correspond to frequently occurring patterns captured and supported

by net fragments. In the second stage (S2), a sequence of phonemes or

syllables could be mapped onto word prototypes.

Different sensory systems could even have separate domain-specific

S1 stages in a multimodal setting, while the prototypes in S2 could be

shared across modalities. This arrangement would allow the integration

of various sensor signals and facilitates the creation of internal object

representations with multiple modalities.

8.2.5 Framework Evaluation

Lastly, suitable metrics should be identified to evaluate the entire frame-

work. Many of the results are analysed qualitatively by visual inspection

but cannot be properly measured with corresponding metrics. While

some metrics are proposed in Section 5.5.6 and Section 5.6.4, they need to

be revised to analyse the entire framework and describe its performance

from different perspectives.
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Figure A.1: QR-Codes with links

to sources. The first code directs to the

GitHub repository containing the source

code, the second code to the repository

containing the LAT
E
X-files to build this doc-

umentation, and the third code points to

video visualisations of the results.

The codebase and results from this thesis have been released as open

source on GitHub: The code is available at github.com/sagerpascal/lateral-

connections, and the documentation is available at github.com/sagerpascal

/msc-thesis. Furthermore, a GitHub webpage provides video visualisa-

tions from some of the results is available at sagerpascal.github.io/lateral-

connections/results/final_results. QR codes linking to these URLs are

provided in Figure A.1 for convenient access using electronic devices.

A.1 Video

Figure A.2: An overview of the compo-

nents visualised in the videos.

In the following, the video visualisations accessible at sagerpascal.github.io

/lateral-connections/results/final_results are explained. These expla-

nations are limited to an overview of which components are shown in

each video. An interpretation of the video contents is provided in the

corresponding result section.

Two video versions are shown for each experiment, both produced by the

same model using the same parameter weights. In the first video version,

the Bernoulli neuron is replaced by a neuron using a fixed threshold.

This provides a video output that is more stable and has no flickering

activations caused by sampling from a probability distribution. For the

https://github.com/sagerpascal/lateral-connections
https://github.com/sagerpascal/lateral-connections
https://github.com/sagerpascal/msc-thesis
https://github.com/sagerpascal/msc-thesis
https://sagerpascal.github.io/lateral-connections/results/final_results.html
https://sagerpascal.github.io/lateral-connections/results/final_results.html
https://sagerpascal.github.io/lateral-connections/results/final_results.html
https://sagerpascal.github.io/lateral-connections/results/final_results.html
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S0 and S1 stages, a threshold of 0.5 is used. Consequently, neurons with

a probability of ≥ 0.5 are set to 1, while the other neurons are set to 0.

A threshold of 0.9 is used for the S2 stage, visualising only activities

with high certainty that roughly correspond to those accepted by S1 as

feedback signals. The second video shows the network activities when

the Bernoulli neurons are used.

Each video visualises the processing of the input over time. The first

six video frames show how the video is processed over 𝑇 = 6 timesteps

of the fast loop, followed by five additional frames depicting the final

prediction after the fast loop. By doing so, viewers have time to analyse

the network’s activations during this short interruption before the next

input is fed into the model, and the process repeats.

In Figure A.2, a single video frame is shown, providing an overview of

the components displayed in each video:

1. The left part of the video displays the input image fed into the

sensory system. It is a binary image with one colour channel,

whereby active pixels are depicted in white and inactive pixels are

depicted in black.

2. The activations of the sensory system S0 are shown in the middle

of the video. The sensory system extracts 4 features at each location.

Each feature combination is visualised in a different colour, and

areas without activations are depicted in black.

3. S1 is visualised in the top right corner. It uses the same colours

as the sensory system. However, the activations might differ since

neurons with insufficient lateral support are turned off, or other

neurons might switch on.

4. S2 is shown in the bottom right corner. It uses the same colours as

the sensory system and L1. The visualisation depicts the returned

prototype, i.e., the feedback provided to S1 after mapping S1’

activities to the latent variables.

5. The latent variables of S2 are shown at the center bottom of the video

as 16 circles. Each circle represents a cell, with green indicating an

active cell and red indicating an inactive one.

For a detailed explanation of the content and observations in each video,

please refer to the results chapter of this thesis.



Negative Hebbian Learning B

Figure B.1: The weight matrix and

the corresponding activation probabilities

for a vertical line of a model trained with

negative Hebbian learning.

In this section, the concept of negative Hebbian Learning in S1 is exam-

ined, a learning paradigm designed to allow neural networks to forget

unimportant or inconsistent features. In the conducted experiments,

only positive Hebbian learning [40] is used to strengthen connections [40]: Hebb (1949), The Organization of
Behavior; A Neuropsychological Theory

between active cells. Conversely, negative Hebbian learning additionally

reduces the connection strength between cells that fire disjointly
1
. While

1: I.e. one cell is active while the other is

inactive.
negative Hebbian learning facilitates eliminating previously learned but

inconsistent connections, it also poses challenges in maintaining desired

lateral connections that are needed to provide support between feature

cells.

In Figure B.1, the weight matrix of a model trained with negative Hebbian

updates and the activation probabilities of a vertical line fed into the

model is visualised. Despite the divergence of the activation probabilities

compared to those of positive Hebbian learning (c.f. Figure 7.10), these

activations are still considered valid representations of lines. However,

the major issue is that the output channels do not rely on multiple distinct

features.

For instance, the output channel 𝐴 representing vertical lines only consid-

ers the input channels 1 and 5, whereby channel 1 contains the “vertical

lines features” from the sensory system, and channel 5 is its own recurrent

connection. Regrettably, input channels 2-4, which contain additional

sensory signals, are disregarded by output channel 𝐴. Therefore, only

cells representing vertical line features support this output channel. In

contrast, positive Hebbian learning considers all input channels, resulting

in different features supporting each other.

Consequently, negative Hebbian learning leads to lower lateral support

within the network. This might not be an issue for the used line dataset

but is crucial for real-world scenarios
2
. Negative Hebbian learning, while 2: For example, one channel could repre-

sent eyes and another channel eyelashes.

These features should support each other.

facilitating the filtering out of irrelevant features, also tends to make
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features mutually exclusive, which prevents learning adequate support

between them.

Figure B.2: Correlation between fea-

tures from sensory input channels and the

output channel 𝐴. The upper part of the

images visualises the sensory features fed

into output channel 𝐴 and the expected re-

sult. The lower part of the image indicates

where positive and negative correlation

occurs between sensory channels and out-

put channel 𝐴.

The primary issue is that, except for one input channel, there are more

negative correlations between the input channels and a single output

channel, as illustrated in Figure B.2. In this context, “negative correlation”

refers to disjointly active cells, while “positive correlation” refers to cells

that fire together. In the case of the vertical line, the output channel 𝐴 is

expected to reassemble the line roughly.

Hebbian learning compares this output with the input channels, strength-

ening the weights for positively correlated input-output pairs and weaken-

ing them for negatively correlated pairs. These correlations are visualised

in the lower part of Figure B.2. Input channel 1 and output channel 𝐴

have high similarity. Therefore, the activations between input and output

have a positive correlation, and the corresponding lateral connections

defined by kernel 𝐴1 undergo a positive Hebbian update. However, all

the other channels have a positive correlation only at the line ends and

a negative correlation in the middle section of the line. Consequently,

there is more negative than positive correlation at the kernels 𝐴2-𝐴4,

and these features undergo more negative than positive updates. This

causes the lateral support learned at the line ends to be suppressed by

the negative updates.

The resolution to this issue remains unclear and requires additional

experiments. One potential approach is to use a significantly lower

learning rate for negative updates than for positive updates; another

solution could be to introduce alternative cells (c.f. Section 8.2.2)
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