
Maurice Hostettler & Lukas Boner

Digitalization of Chess Score
Cards

Bachelor Thesis

Centre for Artificial Intelligence
Zurich University of Applied Sciences (ZHAW)

Supervision

Mark Cieliebak

June 2023

First and foremost we’d like to thank Prof. Dr. Mark Cieliebak and Pius von Däniken of the Centre
of Artificial Intelligence at ZHAW, who have continuously supported us throughout the time we’ve
written this thesis. Their dedicated feedback and constructive criticism were invaluable to us and
made this paper possible.

Furthermore, we would like to thank Gundula Heinatz for providing us with many of the chess
scoresheets needed to build our corpus and test our tool.

Special thanks also go to our friends Aurel Feer, Niklas van der Heide, Felix Saaro, and Pascal
Schellenberg for proofreading and technical support throughout our time working on this thesis.

We are also especially grateful for the last-minute proofreading of Julia Boner, who showed us
many mistakes and errors we had overlooked. She helped us tremendously to improve our thesis.

Finally, we want to express our profound gratitude to our friends, families, and partners for their
unfailing support and ongoing encouragement throughout our studies. We would not have come
this far without them.

Zusammenfassung

Die vorliegende Arbeit behandelt die Entwicklung einer Sammlung von annotierten Schachfor-
mularen, um Applikationen zu testen. Diese Applikationen digitalisieren, die an Schachturnieren
von den Spielerinnen und Spielern mit ihren Spielzügen, ausgefüllten Formulare mittels Hand-
schrifterkennung, der sogenannten Optical Character Recognition (OCR). Die Digitalisierung ist
wichtig für die vereinfachte Veröffentlichung und Archivierung der Turnierresultate.

In früheren studentischen Arbeiten an der ZHAW wurde dafür bereits ein solches Applikations-
Tool namens ChessReader entwickelt. Die ChessReader-Applikation wurde im Rahmen dieser Ar-
beit in eine Representational State Transfer- Application Programming Interface (REST-API) -
Applikation umgebaut, weshalb auch Änderungen in der Handhabung und Speicherung der Daten
vorgenommen wurden, um neu sehr aufwändige Annotationen automatisiert generieren zu können.
Ein besonderes Augenmerk wurde darauf gelegt, möglichst unterschiedliche Formulare zu verwen-
den, um eine grosse Vielfalt in Bezug auf Lesbarkeit und Korrektheit der aufgeschriebenen Spielzüge
zu gewährleisten. Zudem wurde darauf geachtet, dass weitere Sprachen und Notationsformulare
hinzugefügt werden können.

Der in der Arbeit entwickelte Korpus beinhaltet aktuell 62 Spiele und etwa 4000 Spielzüge, davon
50 Spiele in englischer, 11 in deutscher und eines in französischer Schachnotation.

ii

Abstract

This thesis covers the development of a chess scoresheet corpus, that can be used to test automated
digitization applications. These scoresheets are created by chess players during tournament play and
can then be digitized using Optical Character Recognition (OCR) to detect the players handwriting.
The digitization of these scoresheets is needed for archival purposes and to publish the tournament
games online.
In previous works at ZHAW, one of these applications, named ChessReader was already developed.
The ChessReader application was repurposed to help with the labor-intensive task of annotating the
corpus, which required a change to a Representational State Transfer- Application Programming
Interface (REST-API) application. These changes also included a re-imagining of how data is used
and stored during the process. Special attention was given to using as many different scoresheets
as possible to ensure a large variety in terms of readability and correctness of the written moves.
Additionally, sheets written in multiple different languages were included.
The corpus that was developed in the course of this thesis contains 62 games and around 4000
moves. It contains 50 games in english, 11 in german and one in french notation.

iii

Contents

Nomenclature 1

1 Introduction 2
1.1 Motivation . 3
1.2 Initial situation . 3
1.3 Goals . 4

2 Background 5
2.1 Chess scorecards . 5
2.2 Standard Algebraic Notation . 7

2.2.1 Portable Game Notation (PGN) . 8
2.3 Optical Character Recognition . 9
2.4 Corpora . 10
2.5 REST-API . 13

3 Corpus Design 14
3.1 Structure . 14
3.2 Annotations . 15

3.2.1 Move Annotations . 15
3.2.2 Metadata Annotation . 21

4 Corpus Construction 24
4.1 Corpus Construction Process . 24
4.2 Server-side implementation of ChessReader . 25

4.2.1 REST-API . 26
4.2.2 Core functionality . 27
4.2.3 Database . 28

4.3 Client-side implementation of ChessReader . 29

5 Results 31

6 Discussion 33
6.1 Goals achieved . 33
6.2 Lessons learned . 34

7 Outlook 35

A Technical documentation 36
A.1 Language and framework . 36
A.2 Installation prerequisites . 36
A.3 System architecture . 37
A.4 Local installation . 37

iv

A.4.1 Frontend . 37
A.4.2 Backend . 37
A.4.3 Database . 38
A.4.4 OCR-APIs . 38

A.5 Configuring the credential_store.json file . 45
A.6 How to run the project . 46
A.7 Releasing a new version . 46

A.7.1 Building the frontend and backend . 46
A.7.2 Publishing to dockerhub . 46

A.8 Source code structure . 47
A.8.1 Frontend . 47
A.8.2 Backend . 47

B API-Documentation 49

List of Figures 55

Bibliography 56

Nomenclature

Acronyms and Abbreviations
API Application Programming Interface

CC Creative Commons

CNN Convolutional Neural Networks

CSV Comma Separated Values

FAIR Findable, Accessible, Interoperable, Reusable

FAN Figurine Algebraic Notation

FIDE Fédération Internationale des Échecs

HCS Handwritten Chess Scoresheet

HTTP Hypertext Transfer Protocol

ID Identifier

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

JWT JSON Web Token

MNIST Modified National Institute of Standards and Technology

OCR Optical Character Recognition

PGN Portable Game Notation

PNG Portable Network Graphics

REST Representational State Transfer

RSS Really Simple Syndication

SAN Standard Algebraic Notation

URI Uniform Resource Identifier

URL Uniform Resource Locator

ZHAW Zürer Hochschuhle für Angewandte Wissenschaften

1

Chapter 1

Introduction

Chess is an extremely old and very popular game. Currently, researchers trace its root back to a
closely related game called "Chaturanga" in 7th century India[1]. Quickly it became part of courtly
education as a lesson in war strategy. It has evolved from a game for kings and queens into both,
a game enjoyed by thousands, as well as an internationally competitive sport.

Whether one plays chess on a piece of paper, in a park, on a tablet, or on a mahogany chess set, to
improve one must play many games and analyze every move, to find the best strategy for a given
situation. To do this, ambitious players record all played moves of a game, to be able to replay any
moment again at a later date.

Figure 1.1: Magnus Carlson writing on his scorecard during the 2021 World Chess Championship.[2]

There are two main ways to accomplish this goal. One option is to use a digital board, that
automatically keeps track of all pieces. Tools like Lichess can do this already. For in-person play
on a physical board, it gets a bit more complicated. Either an expensive board with sensors, which
recognizes where the different pieces are at any given moment, is needed or the players need to
keep track of the moves by hand, using pen and paper. For that, usually, special forms are used,
so-called "scorecards". On these scorecards, every player notes down their own moves and those of
their opponent using Standard Algebraic Notation (SAN).

2

Chapter 1. Introduction 3

But since the world is becoming more and more digital, so is chess and the analysis of games.
Many players and tournaments thus want to keep the games in a digital format, saving time and
space. If the game was already played using a digital board or one that keeps track of the moves
it is very easy to do that. On the other hand, if only paper scorecards were used, then each card
needs to be input into the computer by hand.

This is where ChessReader1 comes into play. ChessReader is a website where users can upload high-
resolution images or scans of their handwritten chess scorecards. The images are then analyzed
and searched for text. The recognized moves will then be presented to the user for final checking
before being exported as a Portable Game Notation, (PGN)[3] file. This drastically reduces the
repetitive workload of manually typing every move into a computer.

In order to accomplish its task, ChessReader uses Optical Character Recognition (OCR) to find
and recognize text in images. Depending on the image quality, lighting conditions, handwriting
style, etc. the results of OCR can vary vastly in terms of their accuracy. To be able to compare
ChessReader to other tools and also to track performance improvements after updates, a reference
point needs to be established. This requires a dataset on which the tools can be evaluated, encom-
passing images, varying in quality, lighting, etc. To verify the accuracy, the relevant data, eg. the
moves played, needs to be checked by hand. In this thesis, we are going to define and start to build
a corpus satisfying these requirements.

1.1 Motivation

1.2 Initial situation
At the start of this thesis, the aim was to improve the ChessReader tool, which was originally
designed and implemented by other teams at ZHAW.[4] In doing so the need for a dataset to do
testing that had not already been used to evaluate the ChessReader tool arose. The Handwritten
Chess Scoresheet (HCS)[5] dataset was the most prominent set found[5] that was used for training
a Neural Network from scratch. Since it was designed for training, it contained a large number of
datasheets, however, they were annotated with the correct moves only. The images in the HCS
were also already cropped, aligned, and contained only one kind of scoresheet, with neat lines.
The included images also mostly featured neat and only English handwriting, instead of being
representative of all the problems that arise during chess scoresheet digitization.

All in all, the HCS dataset was well suited for the training of a Machine Learning Algorithm,
ChessReader however used external handwriting recognition. Therefore, testing on this dataset
would not accurately represent what users of our tool might input, as there are many different
kinds of scoresheets used, as well as many different ways of taking pictures for processing. The
previous thesis already showed that scoresheets with nice lines, decent lighting, and rather neat
handwriting were not a problem for ChessReader. Problems usually emerged when these conditions
were not met.

Other datasets that were suitable for testing were not available, which is why the main topic of
this thesis is trying to construct such a dataset. The goal is not only to build a great dataset to
test the ChessReader tool on but also to have a comparative baseline for other tools. It started to
become apparent this was less of a dataset and more of a corpus trying to accurately mirror the
vastly different issues found in real-world examples.

In order to construct this corpus the ChessReader tool was selected to help annotate it. The
current design of ChessReader however made it difficult to use it as more than it was designed
to do, meaning the closed-off pipeline that was in place was not suitable to extract the needed
data. Therefore changes to the backend of ChessReader were going to be needed. A more detailed
description of these changes can be found in Chapter 4.2

1http://chessreader.org/

http://chessreader.org/

4 1.3. Goals

Creating a corpus of chess scorecards
In researching this project, a common theme was that there have been several attempts to solve this
problem of Chess Scorecard Digitization. However, comparisons between different approaches and
tools were anecdotal at best. In an effort to compare the work that had been done on ChessReader
to that of others, but also to add a meaningful piece to the larger effort in this field, it is important
to have a standardized reference point to compare advancements. Therefore it was decided to create
a corpus containing pictures of scorecards with their respective digitization. Ideally, the corpus will
contain some easy-to-solve problems and some harder-to-solve problems so that a perfect score will
be very hard to achieve, allowing the tested programs to improve further.

Another important aspect will be that the different score sheets cover a wide variety of challenges
in this problem. From players using notation abbreviations like "QxQ" for "queen takes queen",
to improper lighting when taking the picture. An additional challenge might be to include chess
notation from different languages. While English is the de facto standard for many of these score-
sheets, a lot of places around the world use algebraic notation in their own language. Not only
will this need adjustment in how recognized characters are evaluated, but it is also important to
understand that different challenges might arise from local quirks in writing styles. As an example,
Americans often do not cross the number seven while Europeans do etc.

1.3 Goals
The goal of this thesis is to design and build a corpus of chess scoresheets that can be used to
evaluate and test applications that recognize the text on such handwritten sheets. The corpus will
support multiple languages but will contain annotated scoresheets only in English, German and
French notation for now. The moves on the sheets in the corpus are checked by hand to guarantee
the correctness of the data and to add metadata such as readability or lighting conditions. The
position of the tables containing the moves and the positions of all the boxes is also included in
the annotation. Due to the amount of work required, the positions of tables and each box are not
checked by hand and are instead generated automatically.

Overall we will follow our interpretation of Sinclair’s principles of Corpus building[6] and respect
the FAIR principles laid out by Wilkerson et al.[7].

In addition, the goal to modify the existing ChessReader application was also set to help create
the corpus by being able to extract the positions of tables automatically. It requires first extracting
the core functionality from the existing application and wrapping it inside of a clean REST-API
interface and some small modifications to its code to get access to intermediate results of the
processing so they can be included in the corpus.

Chapter 2

Background

This section contains a short introduction to the topics required to understand this work, the
corpus, and the application itself. Basic knowledge of machine learning and artificial intelligence
is considered prerequisite.

2.1 Chess scorecards
During a game of chess, players often record the played moves, either to be able to review the
match and analyze it later or because they are required to do so when competing in a tournament.
Either way, if the match is not recorded automatically, each player notes down the moves on a
sheet of paper. To standardize the layout of these sheets, many chess organisations have introduced
special "scorecards", usually consisting of some space to note down date, player names, as well as
other metadata, and one or more tables where the actual moves for each color are recorded.

Figure 2.1 contains three examples of different designs of scorecards. The first sheet 2.1a consists
of just a table, akin to how it would be displayed in say an Excel document. Each cell is contained
within four borders and the columns are all of the same height.

In the next image 2.1b, the table consists now only of a few lines organized in columns. This might
not seem like a big deal at first, but for computer vision it is quite a bit more difficult. The easiest
way to detect tables is to recognize vertical and horizontal lines, but of course the vertical lines
are missing in this example. One example of an issue that could arise because of this is, that the
turn number is recognized as part of whites move, which would obviously result in a wrong OCR
outcome.

The scoresheet in Figure 2.1c is even more different than the others. Not only does it contain a
chessboard, which does resemble a table in its structure, but also includes additional columns for
things like the time spent while making a move. The table is also split into two parts that are not
the same height, which could further influence detection.

Overall it is obvious from these examples, that scoresheets come in many different shapes and
forms, varying in design, layout, column count, etc. This means that the application needs to be
flexible enough to be able to adapt to most of the designs that are used. While 2.1c is an extreme
example, ChessReader and similar tools need to be able to deal with different amounts of columns
of varying heights.

The only other solution to this problem would be to provide a specialized scoresheet, for which the
application could be optimized. This would most likely fail to be adopted by a sufficient amount
of users to justify the tool at all. In addition to that, many tournaments require players to use the
provided sheets, which then still presents the same issues again.

5

6 2.1. Chess scorecards

(a) Clean lines, table easily recognizable, func-
tional design

(b) More stylized, table is only implied with two
columns of lines

(c) Fields are clearly divided, but not all
columns have the same height

Figure 2.1: Examples of different styles of score sheets

Chapter 2. Background 7

2.2 Standard Algebraic Notation

While playing in such tournaments, but also when playing just for fun, players use the so-called
SAN notation. Standard Algebraic notation, also Algebraic Notation or Standard Notation is the
only officially recognized way to record chess matches according to the "Laws of Chess"[8] by the
International Chess Federation (FIDE).

In order to describe a move accurately, one needs to know three things:

• Which piece was moved?

• Where did it come from?

• Where was it moved to?

To describe the source location and the target location, each field is assigned a coordinate consisting
of a letter of the Latin alphabet, denoting the column of the field and a number for the row. The
field in the first row, first column would thus be the field A1 as can be seen in Figure 2.2 below.

Figure 2.2: Chessboard with a label for each field. [9]

The chess pieces themselves are assigned an uppercase letter of the Latin alphabet, which is de-
pendent on the language which is used. In the English notation the letter "K" is used for the king
and "Q" for the queen. Since "K" is already used, it can not be used for knights as well, which
is why either "N" is used (or "S" in German for "Springer"). This complicates reading scorecards
written in different languages, which is why in internationally published books and other articles,
images are used in place of the letters, resulting in Figurine Algebraic Notation (FAN). In both
SAN and FAN pawns are usually not assigned a letter or image, but are identified by the lack of
one instead.

If the source field can be inferred from the type of piece moved and the target field, it can be
omitted. This is the case if the piece in question is unique, like the King, or if the target can only
be reached by one piece of the denoted type.

8 2.2. Standard Algebraic Notation

Figure 2.3: Filled out scorecard of the last game of renowned chess player Ortvin Sarapu

2.2.1 Portable Game Notation (PGN)

Nowadays, everything becomes more digital and so is chess. This requires PGN, a computer-friendly
equivalent of SAN. Portable Game Notation is a human-readable, plain text format for recording
chess games. It is supported by most chess-applications and serves as an easy way to transfer chess
games between services.

The format consists of a first part describing metadata, like date, event, which round of the event
this game was played in, site, players and who won, and a second part consisting of all moves that
were played during the match.

The notation of the moves follows mostly the SAN notation explained above.

Chapter 2. Background 9

Figure 2.4: PGN file of a match between Levon Aronian and Magnus Carlsen

2.3 Optical Character Recognition
Optical Character Recognition (OCR) describes the process by which computers extract text from
images. In the case of this thesis the focus lies on extracting handwritten text, which is a non-trivial
challenge even humans can struggle with. Many solutions make use of machine learning to solve
the problem by training on huge datasets to be able to extract rules. With this, the algorithm can
make a guess which set of characters is likely to be shown in the image. As said before, this can
be extremely difficult and an accurate result can not be guaranteed.

One such dataset algorithms are trained on is the MNIST (Modified National Institute of Standards
and Technology) [10] dataset. It consists of approximately sixty-thousand images of handwritten
digits to train a model and an additional ten-thousand of such images to be used as testing data.

Using this data it is possible to apply various Machine Learning methods to be able to recognize
and label images of digits. Aside from linear classifiers, support vector machines, and deep neural
networks, convolutional neural networks (CNNs) are also used, which seem to perform very well in
this particular type of problem. In the paper "An ensemble of simple convolutional neural network
models for MNIST digit recognition"[11] an error rate of only 0.09% was achieved using an ensemble
of just three CNNs

Usually, OCR-applications consist of two stages:

First, the image is preprocessed, to align the text properly, convert the image to grey-scale since
color information is not relevant, remove artifacts, and increase the contrast.

Second, the image is run through the "actual" OCR-algorithm, typically consisting of one or more
CNNs of varying kernel size. During testing, the output of the algorithm is then also verified, in
order to give feedback and improve the results further.

The challenges of handwriting recognition are fundamentally the same regardless of origin. This is
why ChessReader relies on OCR-tools that have been trained on more general datasets of hand-
writing. This can unfortunately introduce a bit of additional error, which could potentially be
avoided if an algorithm was specifically trained on a sufficiently big dataset of handwritten chess
notation, like HCS.

10 2.4. Corpora

2.4 Corpora
Sinclair’s Principles

The design of this corpus will stick closely to a guide written by John McHardy Sinclair, titled
"Developing Linguistic Corpora: a Guide to good practice"[6]. This ensures that it follows a certain
baseline of the field. Since this guide was meant for corpora containing written texts instead of
chess games, therefore the principles outlined will be adapted and modified where it is necessary
to fit the purpose of chess scorecard digitization.

To start off, Sinclair’s definition of a corpus: "A corpus is a collection of pieces of language text in
electronic form, selected according to external criteria to represent, as far as possible, a language
or language variety as a source of data for linguistic research." [6] To rephrase for this corpus: A
collection of pictures of chess Scorecards, in electronic form, selected to represent a large body of
different chess games. Since the goal is to use these games as a dataset, only pictures in Portable
Network Graphics (PNG) format will be considered, as opposed to other electronic formats, to
ensure lossless storage.

Sinclair then defines a series of good principles that are to be considered when creating a corpus.
Some of these criteria can be applied almost unchanged, while others can be ignored completely
as they do not fit a corpus focused on images. The 10 principles are[6]:

1. "The contents of a corpus should be selected without regard for the language they contain, but
according to their communicative function in the community in which they arise.

2. Corpus builders should strive to make their corpus as representative as possible of the lan-
guage from which it is chosen.

3. Only those components of corpora that have been designed to be independently contrastive
should be contrasted.

4. Criteria for determining the structure of a corpus should be small in number, clearly separate
from each other, and efficient as a group in delineating a corpus that is representative of the
language or variety under examination.

5. Any information about a text other than the alphanumeric string of its words and punctuation
should be stored separately from the plain text and merged when required in applications.

6. Samples of language for a corpus should wherever possible consist of entire documents or
transcriptions of complete speech events, or should get as close to this target as possible. This
means that samples will differ substantially in size.

7. The design and composition of a corpus should be documented fully with information about
the contents and arguments in justification of the decisions taken.

8. The corpus builder should retain, as target notions, representativeness, and balance. While
these are not precisely definable and attainable goals, they must be used to guide the design
of a corpus and the selection of its components.

9. Any control of subject matter in a corpus should be imposed by the use of external, and not
internal, criteria.

10. A corpus should aim for homogeneity in its components while maintaining adequate coverage,
and rogue texts should be avoided."

Principle 1 can be ignored right away since the communicative function of chess notation is the
same across all languages, which simplifies this aspect. Principle 2 however is much more important.
The language is in fact algebraic chess notation itself, regardless of the notation language the chess
game was recorded in. Therefore, this can be adapted to mean that the corpus should reflect not
just a variety of game types and lengths, but also a variety of notation languages. It should be as
representative as it can be of the entire set of possible scoresheets.

Chapter 2. Background 11

Principle 3 can be understood as trying to include annotations that actually contrast different
sheets. Meaning if an annotation for legibility and notation error is included there also need to be
scoresheets that differ in those areas.

Principle 4 will be tackled by creating a clear outline and record of the annotation criteria and
why they were chosen later in Chapter 3.

Principle 6 will be followed at face value. Since one of the main goals is to use the corpus for
testing the quality of OCR tools for chess, it makes sense to include scorecard images the way
they would be uploaded to such a tool. Meaning trying to mirror the way players and tournament
organizers might photograph a score sheet and upload it. Most of the time this will be with a fairly
low-resolution mobile phone camera, but could also include a better resolution where something
like a scanner was used. Lighting conditions might also differ from picture to picture.

Principle 7 and 8 will be followed, by describing and justifying the decisions later in the thesis.

Finally, principle 9 and 10 will be ignored, as these apply mostly to text corpora since there is no
such thing as a rogue chess game.

12 2.4. Corpora

FAIR principles

The other foundation used for this corpus design is the FAIR-principles for scientific data manage-
ment and stewardship.[7]

• "To be Findable:

1. (meta)data are assigned a globally unique and persistent identifier

2. data are described with rich metadata (defined by R1 below)

3. metadata clearly and explicitly include the identifier of the data it describes

4. (meta)data are registered or indexed in a searchable resource

• To be Accessible:

1. (meta)data are retrievable by their identifier using a standardized communications pro-
tocol

2. the protocol is open, free, and universally implementable

3. the protocol allows for an authentication and authorization procedure, where necessary

4. metadata are accessible, even when the data are no longer available

• To be Interoperable:

1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowl-
edge representation

2. (meta)data use vocabularies that follow FAIR principles

3. (meta)data include qualified references to other (meta)data

• To be Reusable:

1. (meta)data are richly described with a plurality of accurate and relevant attributes

2. (meta)data are released with a clear and accessible data usage license

3. (meta)data are associated with detailed provenance

4. (meta)data meet domain-relevant community standards"

These principles were designed for much larger databases. However, following as many as possible
will help to make using and expanding the corpus as seamless as possible.

To summarize, a compiled, shorter list of the most important criteria that were set based on
Sinclair’s and the FAIR principles that this corpus is built on:

1. Include games from different languages, game lengths, image quality, writing quality, etc. to
arrive at a representative sample.

2. Create a clear outline as to what criteria will be recorded and how they will be annotated.

3. Make sure that the images and scorecards included mirror real-world examples and problems,
not just artificially created "good" examples.

4. Include criteria and annotations that will support other future tasks and research as well.

5. Every image and its metadata should have a unique identifier that links them together.

6. The corpus should be published in a way to be accessible and contain a public usage license.

Chapter 2. Background 13

2.5 REST-API
Representational State Transfer (REST) is a software architecture that imposes certain conditions
on how an API should work. RESTful APIs provide resources to a client, along with all the
information needed for the client to identify, modify and/or delete said resource. Requests to REST-
APIs are also stateless, meaning they are executed as a whole by the server, which allows for the
request to be made in any order without the requests conflicting with each other. The advantage
of such a system is that it allows for the complete separation of client and server. This layering
allows for the different parts to evolve independently, improving flexibility and maintainability.
For example, the application does not need to be changed at all, in order to make a change to
how data is stored on the server. Additionally, since all requests are stateless, the server does not
need to store any data related to requests, which preserves system resources and allows for better
scalability if the need for that arises.

Chapter 3

Corpus Design

In order to fulfill the criteria outlined in 2.4, this chapter will now outline the way the corpus of
scoresheets was designed. It describes in detail how the corpus was structured as well as how the
included images were annotated. The annotations themselves are divided into two categories, the
move annotations and the metadata annotation. The move annotations contain all the information
that pertains to individual cells of the scoresheet, which contain the moves played, while the
Metadata Annotations describe the information for the whole game, as well as the qualities and
characteristics that are image specific.

3.1 Structure
In this section, the detail of how the corpus was structured and what the goals to be achieved were.
Since the thesis was limited in scope, this aims to document clearly how the files were built and
annotated, so that the collection can be easily expanded. It was also important to ensure that this
corpus is not limited to just being used for digitization tasks only, which is why it was necessary
to make it as transparent as possible so that other fields could use it as well.

Corpus

german

french

english

english

en_0001_easy_24

en_0002_medium_40

en_0003_hard_38

en_0004_easy_34

en_0004_easy_34.png

en_0004_easy_34.json

en_0004_easy_34.csv

This figure shows the file structure of the corpus with the English folder selected.

The naming of the files follows the structure of 2 symbol language code, 4 symbols for the identifier
(ID) of the sheet, and then the difficulty and the game length.

<language>_<ID>_<difficulty>_<game length>

Sometimes there are multiple images that are tied to the same game, namely then when the game is
longer than can fit on a single page. In those cases, the ID’s are connected with an &. For example
"0001&0002". The rest of the naming stays the same, as they are connected to the game, not the

14

Chapter 3. Corpus Design 15

image. If the difficulty rating would change from one image to the other, the more difficult rating
is applied.

Next, the choice of file formats is justified. PNG was as the format for the image of the scoresheet
primarily because it is a lossless format. In some cases, especially pictures that were taken with
phone cameras and automatically compressed, the obtained Joint Photographic Experts Group
(JPEG) images were manually converted to PNG files.

For saving metadata JavaScript Object Notation (JSON) was selected. The primary reason for
this is that it is both machine and human readable, so it allows for direct import into a variety of
programs without needing to be parsed first, while still allowing for easy editing and readability
for other uses. The JSON files will contain information about the game that is being annotated
as a whole, as well as information about the image quality. The exact contents of this file will be
discussed later in this chapter.

Finally the game data, i.e. the moves, and their annotations are saved as a Comma-Separated
Values (CSV) file. Originally the idea was to also save these as JSON files, in the end however,
CSV was selected, as it allows for easier processing using Excel or similar tools. Since chess moves
are always recorded in the form of a table, it made sense to use a format very commonly used in
the processing of tabular data. It also still allows for easy human readability.

3.2 Annotations
This section will cover how the images in the corpus were annotated. First, the move annotations
will be discussed after which the metadata annotations pertaining to each analyzed sheet are
described.

3.2.1 Move Annotations
In order to explain the annotation decisions, consider the table below as an example. One turn
is always put on a row, so it mirrors the way it would usually be written on a scoresheet. The
example was taken from an easy German scoresheet but works analogously for other languages and
difficulties. Each turn is represented by a row in the CSV, so there is a white move and a black
move per row.

Figure 3.1: An example to illustrate how the .csv file was used to annotate.

corrected white uncorrected white is hard to read has notation error
Le4 0 0

corrected black uncorrected black is hard to read has notation error
Dxd1 DxDd81 1 1

16 3.2. Annotations

• corrected{white/black}: Contains corrected move for each colour.

• uncorrected: Completely unedited and contains only the exact data that a handwriting
recognition algorithm or a human might detect. In cases where the "uncorrected" move is the
exact same as the corrected move, the "uncorrected" column was left blank entirely.

• is hard to read: If the cell containing the handwriting is hard to read, this was marked 1,
0 otherwise.

• has notation error: This cell will contain a 1 if the notation does not correspond to correct
SAN. 0 otherwise.

In some instances, it is impossible to determine what move was played. This can either happen
due to extreme illegibility or because the notation was for a wrong move entirely, meaning it did
follow SAN, but the player wrote down a different move than the one that was played. In the
case of complete illegibility, "illegible" is written in the corrected field and in the uncorrected field
what the annotator managed to decipher. In the case where a player wrote down a completely
different move, it gets tricky. Sometimes it is possible to notice this immediately because the move
that was written down is not a legal move. In that case, it is marked as a notation error, and the
"wrong" move is written into the uncorrected field. If it is possible to determine what move was
actually played, based on future or past positions, the correct move is written into the color (black
or white) field. If it is still ambiguous, the color field is marked with "unknown". In the following,
some examples are discussed to illustrate the decision-making process.

Examples that are hard to read

The following examples show how the decision of what fields are hard to read or what fields contain
a notation error was made.

Figure 3.2: A hard-to-read notation, reads Sf6

In Figure 3.2 the simplest case can be seen, where the S in Sf6 is difficult to read due to the
handwriting. In these cases, the annotator judged whether they found it hard to read. German
notation is used for this and the next example.

Chapter 3. Corpus Design 17

Figure 3.3: Hard to read moves bleeding into multiple cells. It reads: g6, Lg7, O-O. The L and the
g merged, so the L is almost unrecognizable

Figure 3.3 is hard to read, not only because of the handwriting but also because the writing
bleeds into multiple lines. It reads: g6, Lg7, O-O. It is the continuation of the same game as 3.2.
A multitude of problems can be demonstrated with this example. Firstly the move g6 is fairly
readable. However the g crosses the line into the next field significantly, therefore when considering
only the part of the move that is readable within the field, the move will look more like a6. The
second field Lg7, is almost unreadable by itself, not only does the g from the upper cell interfere
with this cell, but the L and g of Lg7 also bleed into each other. This time the g looks very different
than the previous one and also bleeds into the cell below. The last move of O-O is quite readable
again.

At first glance, this move sequence looks like g6, g7, O-O. However, in situations like these, it helps
to have a basic understanding of chess. The moves g6, g7 for black are impossible since pawns
can only move forwards. Furthermore, the moves of Figure 3.2 and Figure 3.3 were the first 4
moves black played in this game, so castling would also not be allowed after this move order, which
means O-O would be illegal. Therefore it is much more likely, that the black player in this game
fianchettoed (a popular chess pattern) his king’s side bishop as it would happen in a variation of the
popular Kings Indian Defense. This would lead to the moves Sf6, g6, Lg7, O-O. In the annotations,
all these moves were marked as hard to read, as they would be without any understanding of chess.
However, it was still possible to determine what moves were played.

In the following example, a last-ditch effort is shown when it was not possible to determine the
contents of a field. This will be done using the sheet "en_0007_medium_38" from the corpus.

18 3.2. Annotations

Figure 3.4: An excerpt from the sheet "en_0007_medium_38" containing an ambiguous move.

In Figure 3.4 it can be seen that move 38 for white is either Qd8+ or Qf8+. This was the last
turn of the game so it is not possible to use later information to determine the contents of this
field. However, from the previous turn, it is known that the white queen was on f6, and the black
king moved to g8. Unfortunately, this does not help determine the move either, as both Qd8+ and
Qf8+ would be legal moves, resulting in the black king being checked again, and then Kh7 for
black would also be legal for both options. So the last chance was to replay the entire game, to
observe if the position on the board would help determine the position.

Figure 3.5: Replay of the game from the previous example on the board

After taking a look at the board in Figure 3.5, it can be seen that the black pawn on f7 actually
blocks the move Qf8+ for white, which means the move in the game must have been Qd8+. This

Chapter 3. Corpus Design 19

replay-approach helped in most situations where it was not clear if the correct notation was correct
but this process was extremely time-consuming.

To conclude, there can be multiple reasons why a cell could get a "hard to read" annotation. They
include the handwriting style of the player, letters bleeding across cell lines, and corrections of
moves. The annotator decided when a cell is hard to read based on their own judgment. In any
case, the surrounding boxes could provide a hint to which move was made. If that was not possible
the game was replayed up to that point to help figure out what the played move was.

Examples that have notation errors

Next, the "has notation error" annotation will be looked at.

Figure 3.6: An excerpt from a scoresheet containing multiple instances of a shorthand notation.

Something is considered an error if it does not respect the rules for SAN. Many chess players use
shorthands or dialects as in Figure 3.6 above the popular "QxQ" notation. This is still useful to
the players in most cases, as the piece that is being taken can be identified uniquely. Meaning
for "QxQ" there is usually only one Queen to be taken. This is still recorded as an error in the
annotation though since it would be hard to know every version of these shorthands. However, it
would be very interesting for a future topic to analyze these errors and find out which of these
were actual mistakes during writing and which are just shorthands, as well as how many different
shorthand notations exist.

20 3.2. Annotations

Figure 3.7: Another example of a common notation error is the ; takes notation

A lot of players also write "pawn takes" a little differently than in SAN. Since pawns can only move
forwards, if a pawn moves diagonally it always has to have taken another piece. Therefore many
players choose to omit the "x" when writing that a pawn has taken, such as in Figure 3.7 writing
"dc4" instead of "dxc4". In this player’s case they instead also wrote a ";" at the end of the cell,
which has the same meaning as the x in SAN. These cases were both considered notation errors in
the annotation.

Figure 3.8: An sheet containing examples of time markings. "de_0056_hard_30" sheet of the
corpus.

Other writings in the cells of the scoresheet were ignored, as seen in Figure 3.8, such as markings
to the position (ex. +3 or -3) as well as markings recording the time for a turn (ex. [1:25]). They

Chapter 3. Corpus Design 21

will not be recorded as errors, however, these markings usually make the cell more difficult to read
so they will sometimes lead to a "hard to read" annotation.

3.2.2 Metadata Annotation
Everything that is not part of the moves themselves is considered metadata. The following metadata
annotations were included:

• language: The ISO 639-1 language code. (for example: de/en/it/fr)

• game length: Number of moves made in the game.

• difficulty: Rating of the processing difficulty of the scoresheet. How these ratings were
generated will be discussed in the next chapter in detail.

• keywords : A list of the criteria why a game received a given difficulty rating.

• winner : Winner of the game, "draw" in case of a draw.

• number of tables: Number of tables present on the scoresheet. Some scoresheets include
multiple tables on one page.

• table position: x-y position of these tables in pixels on the image

• table size: the pixel size of the table.

• box positions: x-y position in pixels of every box that contains a move, as well as the
height and width in pixels.

{
"language":"de",
"game_length":29,
"difficulty":"hard",
"keywords": [

"incompleteTable",
"moreThan33Illegible",
"noLines"],

"winner":"white",
"number_of_tables":1,
"table_position": [{"x":435,"y":723}],
"table_size":[{"width":2372, "height":2696}],
"box_positions":[[

{
"box_index": 0,
"height": 76,
"pos_x": 358,
"pos_y": 980,
"width": 196

}, ... <truncated to save space>
]

]
}

Example of such a JSON file, containing Metadata Annotations.

{
"language":"de",
"game_length":29,
"difficulty":"hard",
"keywords": [

22 3.2. Annotations

"moreThan33Illegible",
"noLines"],

"winner":"white",
"number_of_tables":2,
"table_position": [{"x":435,"y":723},{"x":2435,"y":723}],
"table_size":[{"width":2001, "height":2696},{"width":372, "height":2696}],
"box_positions":[[

{
"box_index": 0,
"height": 76,
"pos_x": 358,
"pos_y": 980,
"width": 196

}, ... <truncated to save space>
], ... <truncated to save space>

]
}

Example of a JSON file with multiple tables on a single sheet.

The table position, table size, and box position fields would be unreasonable to do by hand,
therefore it was decided to use the outputs of ChessReader to help annotate these fields. The table
position and size were however confirmed by hand afterwards. Box positions however will not be
checked by hand at all.

Difficulty Annotation

Some sheets are much harder to process than others. In order to reflect this, a difficulty rating
was included. A 3-tier system of easy, medium, and hard was decided on. During testing, it was
determined the following conditions made sheets more difficult to process:

• Low brightness or contrast of the picture.

• Dark shadows obscuring part of the table.

• Skewed angle of the scoresheet. Small amounts of yaw are not a problem, but especially
rotations in pitch or roll make it harder for the OCR to work.

• Incomplete table on the image. For certain table detection algorithms, the whole table needs
to be visible in order for the detection to work. This was included to signal that a missing
part of the table might make the detection of it more difficult.

• More than 33% of moves are illegible.

• No lines or only dotted or dashed lines used for the table.

If none of these conditions apply, a sheet was rated easy to process. If exactly one of these conditions
applies, it was rated medium and if more than one of these applies, it was rated hard. No objective
way to determine bad lighting or skewed angles could be defined, instead these aspects rely on the
subjective opinion of the annotator. The exception to this is the "33% illegible" condition, which
can be checked after having done the move annotations. Additionally, each condition that applies
is included as a keyword in the JSON file, so that it is clear why a sheet got a certain difficulty
rating.

Chapter 3. Corpus Design 23

(a) easy, no bad conditions (b) medium, No vertical lines for the table

(c) hard, incomplete table, 33% illegible

Figure 3.9: Examples of all 3 tiers of difficulty and explanation for the rating

Chapter 4

Corpus Construction

After describing how the annotations were made in the last chapter, in this chapter the construction
of the corpus itself is documented. The methods used to collect and annotate the sheets are
described and the changes made to the ChessReader application are addressed as well.

4.1 Corpus Construction Process

In the first step, the scoresheet used in previous theses on the topic[4] were collected. Those
consisted of both, games that were transcribed specifically for this purpose, as well as scoresheets
from live chess games. They make up the bulk of english scoresheets used in the corpus.

A second source was the scoresheets provided by Gundula Heinatz, who was able to use her connec-
tions to the Swiss chess community to provide us with a variety of sheets from chess tournaments,
containing different styles of sheets as well as English, German, and French sheets. Some images
were obtained directly through her, meaning she and her colleagues photographed them in the
same way as they would to use the ChessReader tool. A collection of physical sheets was also
obtained, which were then digitized manually, using both camera pictures and scans to represent
different possible options. This gave us a broad foundation of languages and image types to be
used for the corpus.

A group of images was excluded due to them not containing all the necessary information for
proper processing. Meaning there were several images where part of the game was obscured.

24

Chapter 4. Corpus Construction 25

Figure 4.1: Example of an image that was excluded

In the next step, any identifying information on the images was blurred, where there was such
information. Part of the goal was to not preprocess the images contained in the corpus too much,
as for example cropping the image to contain only the table, like it had been done in the HCS
dataset, would remove part of the difficulty in processing these images.

Next, each move was annotated by hand as explained in chapter 3. Afterwards metadata was
added also by hand where necessary, consisting of which side won the game, etc., and then used
the reworked ChessReader tool to help annotate the table and box position.

Finally, a Creative Commons Attribution 4.0 International (CC BY 4.0) license was added to the
main folder of the corpus. This will give others the right to use and modify all the contents created
during this thesis as they please, for both commercial and non-commercial uses.

Before looking at the results of this process, the changes made to ChessReader, which helped with
annotating the sheets, will now be discussed in further detail.

4.2 Server-side implementation of ChessReader
When trying to parse a scoresheet, as they are in the corpus, the table and its fields need to be
extracted, before an OCR-algorithm can be applied. By doing that, the different moves can be
separated and enumerated. Since this is non-trivial as well, it was decided to not only include
the moves that were recognized but also their approximate position on the image. This would be
extremely tedious to do by hand for this many scoresheets, so the coordinates are not verified by
hand. Instead, the ChessReader application that was developed in multiple theses prior to this work
was adapted to allow the extraction of the necessary data automatically. To achieve these changes
to how data was handled, saved, and transmitted by the server-side part of the application had to
be made. Up to now multiple teams had worked on its source code, and the quality of the code
had clearly suffered from this. During the previous semester thesis [12], work started on untangling

26 4.2. Server-side implementation of ChessReader

the different pieces and decoupling the client-side from the rest of the application. The old source
code lived on and served as a temporary "API" to the frontend.

This was clearly not the way to go forward, since data had to be extracted out of strings using
complicated and error-prone algorithms. The different paths of the old project returned vastly
different values, with seemingly no pattern. It quickly became apparent, that in order to be able
to extract the relevant data from the database, a structured interface needed to be designed, so
this task can be automated easily and properly. The solution to this problem was a JSON-based
REST-API as a wrapper around the core functionality of the previous application.

4.2.1 REST-API
To build this API a library called "FLASK-restful" was used. Its main building blocks are resources,
which represent a single endpoint each, handling one type of data.

1 class MatchResource (Resource):
2 @jwt_required ()
3 def get(self , match_id):
4 id = get_jwt_identity ()
5 match = ChessMatch . query . get_or_404 (match_id)
6
7 # Check if current user is allowed to perform this action
8 if match . user_id != int(id):
9 return None , 404

10 return chess_match_schema .dump(match)
11
12 @jwt_required ()
13 def delete (self , match_id):
14 id = get_jwt_identity ()
15 match = ChessMatch . query . get_or_404 (match_id)
16
17 # Check if current user is allowed to perform this action
18 if match . user_id != int(id):
19 return None , 404
20 db. session . delete (match)
21 db. session . commit ()
22 return None , 204

Listing 4.1: The code for the MatchResource

The code segment in Listing 4.1 shows the MatchResource as an example. It can be seen that the
resource itself is represented by a Python class, which is in turn a child of the Resource class, as
defined by FLASK-restful. The resource only deals with matches that already exist on the database,
and allows clients to either retrieve a match from the database or delete it using the respective
Hypertext Transfer Protocol (HTTP) methods.

If a feature needs to be introduced that updates the entire match data at once, another allowed
HTTP method would be added to this resource, for example a PATCH-method, allowing clients
to patch new data into the database. But if only part of the match data, for example the user it is
associated with, would be updated, it would be better to create a dedicated resource and endpoint
for that in order to not introduce inconsistency in regards to the data scope affected by a request.

The documentation of all the API endpoints created can be found in Appendix B.

Authentication

To handle most requests, the server needs to know which user currently accesses the API. This
needs to be done to serve data associated with the account, but also to verify that they are in
fact allowed to modify or view the data they are accessing. A naive implementation would just
rely on the client to tell the server which user is logged in, which is a terrible idea from a security

Chapter 4. Corpus Construction 27

standpoint. Instead, the server should never trust the client and always assume malicious intent.
So if the client can not be trusted, how is it possible to know which user is making a request?

Figure 4.2: Example of a JSON Web Token, encrypted and decrypted. The ID of the user is stored
in "sub", which can be seen on the middle right

This is where so-called JSON Web Token (JWT) come into play. A JWT is also a JSON-object,
in this case a list of key-value pairs, that is issued by the server to the client and can be used
to identify a user. The server provides a login endpoint where, upon successful verification of the
provided credentials, it generates a personal JWT with the users internal ID, along with other
properties like a validity duration, and encrypts it using a secret. This token is stored by the client
and attached to each request made to the server. When a request comes in, the server looks for
this token, decrypts and verifies it before the request is allowed to continue.

If a request is not authenticated, the token is no longer valid, or the user is not allowed to access
a certain resource, best practice guidelines are followed and as little information as possible about
the data that was tried to be accessed is provided. In the first two cases, the server responds with
the status that the authentication failed, while in the third case, it returns that the resource does
not exist, even if it might.

4.2.2 Core functionality
The core functionality of the server-side application was largely transferred from the old ChessReader
application.

This functionality includes alignment of the images, as well as table recognition and the actual
text extraction using OCR. This part of the application was modified as little as possible since
rewriting the code completely was not the focus of this bachelor thesis. The result of this approach
is that the old "legacy" code is treated as a black box, with only a few contact points to the new
code. This separation should also make it easier to replace the old code at a later date.

But in order to accomplish the goal of using ChessReader to help with the annotations, it was still
necessary to make some changes to the code, dive a bit into the "legacy" code, and make small

28 4.2. Server-side implementation of ChessReader

adjustments to it. One example is how box detection and confirmation worked before. In the old
application, the detected boxes were not saved to the database. The results of the detection were
directly used to apply OCR to the image and then discarded.

This was obviously a problem since extracting the boxes from the database was the main reason
why ChessReader should be used for this thesis in the first place. Therefore the application had to
be modified so that the data was actually saved for later.

4.2.3 Database
With the changes made to the responses and what data was being saved, it was clear that the old
database scheme was no longer a good fit for the application. So a new database layout had to be
designed. The new layout tried to lean on work that had been done already but also ensures that
future teams working on the project will not have a hard time expanding on it.

Figure 4.3: Diagram of the database structure

In Figure 4.3 the updated database is shown. The tables AlignedImage, BoxImage, and OriginalIm-
age are shown for completeness’ sake. They are entirely handled by the SQLAlchemy-ImageAttach
library and are automatically generated.

The table that is most relevant for this thesis, and the one that did not exist before, is the
ChessMoveBox table. Here, the position, height, width, and number for ordering of each box are
stored, which can then be queried to be used in the corpus. The entries of this table have a relation
to the ChessMatch table using the match_id which links almost all relevant data to a user.

Another important table is the Move table, which stores the recognized texts. Currently, the fields
"sourceField" and "piece" are unused. Initially, an idea was to fill all fields with the appropriate
values but this had to be abandoned since in order to store the source field of a move the entire
match had to be replayed. This would clearly not have fit into the scope of this thesis, but the
fields were left in, so future teams can implement this feature.

Chapter 4. Corpus Construction 29

4.3 Client-side implementation of ChessReader
After rebuilding the server-side of ChessReader, including restructuring the database, minor changes
to the frontend of the application had to be made.

Most changes were made to the file responsible for making requests to the server. The client-side
application written during the previous semester thesis [12], still relied on the old ChessReader
application as an "API". Some data was retrieved normally as JSON, other data was baked into
script-tags in HTML files or snippets that were returned by endpoints. This meant that the appli-
cation had to rely on complex and error-prone regex-statements such as the ones shown below in
Listing 4.2 to extract the data. With the rewritten API-interface it was possible to like this.

1 alignedImageRegex = new RegExp ('src ="(media \/[a-z0 -9\/. -]+) ')
2 boxImageRegex = new RegExp ('src ="(.*) \? ')
3 ocrRegex = new RegExp ('<script >.*" , (".*") .* <\/ script >')

Listing 4.2: Regex-statements for extracing image-, box- and OCR-data from HTML files

Another improvement that was made, now that the server was keeping track of the boxes of each
match, was to remove the code responsible for saving that data locally in the browser. Aside from
obvious benefits like lower memory consumption, this also led to a much simpler dataflow in the
client-application, making it easier to understand and maintain. A class that was removed entirely
thanks to this optimized handling of data can be seen in Listing 4.3

1 export class MoveService {
2
3 lastMatchId : number = -1
4
5 private current$ = new BehaviorSubject < OcrResponse | null >(null)
6 public current = this . current$.pipe(
7 filter ((it: OcrResponse | null): it is OcrResponse => it != null)
8)
9

10 constructor (
11 private api: ChessreaderApiService ,
12 private spinner : SpinnerService
13) { }
14
15 nextMoves (matchId : number , selectedBoxes : RecognizeMovesRequest) {
16 this . lastMatchId = matchId
17 this .api. recognizeMoves (matchId , selectedBoxes).pipe(observable =>
18 withSpinner (this .spinner , observable)
19). subscribe (it => {
20 this . current$.next(it)
21 })
22 }
23 }

Listing 4.3: Service for storing the OCR-response of the server while the client was transitioning
to the review stage.

This service was required when the frontend relied on the old ChessReader application as the "API"
because the server was only able to fulfill the OCR-request when the coordinates of all boxes were
transmitted. In the review stage of the client however, this data is not available due to the review
page and the box-selection page being two completely different components. So either the design
philosophy of keeping components separate could be violated or a service that would keep the
OCR-data in memory on the client would need to be created.

Some other small features were also implemented, like the ability to sign up and log in. All matches
have to be associated with a user and each endpoint requires authentication to be accessed. A very
simple component was created for that, where users can input their credentials, after which the

30 4.3. Client-side implementation of ChessReader

client requests a JWT token from the server (see chapter 4.2.1 section Authentication). A very
small helper service then attaches this token to each request automatically and handles exceptions
when the server rejects the authorization.

Chapter 5

Results

After the changes to the ChessReader tool and the construction of the corpus were completed,
analyzing the corpus in terms of all the criteria annotated is next. This chapter contains the
results of that analysis.

After collecting 95 images from various sources 64 images of scorecards were included in the corpus.
The images that were not used, were mostly cut because they were either so poorly lit that they
were unreadable, or in some cases, a part of the cells was not on the picture. Some also were not
included in the corpus due to there being already enough of a certain type (ex. easy English) sheets
represented.

Figure 5.1: Languages represented in the corpus.

As can be seen in Figure 5.1 the majority of the sheets were English SAN. Two scoresheets were
spread over two images, therefore the number of sheets ends up being 62.

31

32

Figure 5.2: Number of sheets per difficulty rating.

Difficulty english german french Total
easy 30 5 0 35
medium 13 1 1 15
hard 7 5 0 12

Table 5.1: Sheet difficulty per language.

Figure 5.2 shows the difficulty of the sheets represented, with the distribution across the languages
shown in table 5.1.

languages low contrast dark shadows skewed angle incomplete table more than 33% illegible no lines average game length
en 16 7 4 0 0 0 31.92
de 0 0 1 1 4 5 36.36
fr 0 0 0 0 0 1 74
Total 16 7 5 1 4 6 33.39

Table 5.2: Metadata difficulties per language.

Table 5.2 provides a quick overview of the most common issues that lead to harder difficulty ratings
for every language. There are clear gaps in the corpus that still need to be covered to provide a
better-balanced distribution.

Overall 4140 moves were annotated with 8.5% of them being classified as hard to read and 1.8%
containing a notation error.

Chapter 6

Discussion

This chapter will compare the results from Chapter 5 to the criteria outlined in Chapter 2.4 and
how well they were met. Afterwards the lessons learned during this Bachelor thesis and what the
next steps are in terms of ChessReader are discussed.

6.1 Goals achieved
To reiterate, the following criteria were set for the corpus:

1. Include games from different languages, game lengths, image quality, writing quality, etc. to
arrive at a representative sample.

2. Create a clear outline as to what criteria will be recorded and how they will be annotated.

3. Make sure that the images and scorecards included mirror real-world examples and problems,
not just artificially created, "good" examples.

4. Include criteria and annotations that will support other future tasks and research as well.

5. Every image and its metadata should have a unique identifier that links them together.

6. The corpus should be published in a way to be accessible and contain a public usage license.

The corpus includes mostly English and German sheets because they were easily obtainable. While
this is better than having just a single language represented, it is definitely not as broad as outlined
at the beginning of this thesis. A somewhat even spread across all difficulties within the languages
was achieved, but there are still clear gaps. Currently, there are way fewer hard English and medium
German sheets than needed for a balanced corpus. The results also showed that the reasons for
the difficulty ratings vary too much between languages. For English sheets, lighting was most
often the cause for a hard difficulty rating, while for German sheets the legibility and missing
lines on the scoresheets were a more common cause for harder difficulty ratings. It was ultimately
underestimated how difficult it would be to find scoresheets that met all these different criteria, as
well as the time it would take to annotate them.

With chapter 3 being entirely devoted to describing the corpus, the second criterion was met to
an acceptable standard. There was certainly a trade-off between trying to include information as
detailed as possible while also maintaining a clear way of defining how annotations are done.

The majority of the images included were taken by the players that wrote the scoresheets. In
order to maintain a better balance for lighting reasons a couple of images were also taken by the
annotators. In some cases scanners were used, leading to a quality potentially much higher than
it would be if someone took a picture at a chess tournament using a phone camera. However, it
is not unimaginable that someone would use a scanner to be able to digitize these scoresheets

33

34 6.2. Lessons learned

using a better picture quality. Some examples were excluded as they were so hard to read that a
good portion of the game would have just been marked illegible. These types of examples however
would not have been of much use anyways. Therefore this criterion has also been met to a sufficient
standard.

As the focus was on creating a dataset for testing the ChessReader application, the fourth criterion
was definitely neglected somewhat. A good effort was made to include all the information needed
for the corpus to be used to improve digitization tasks. However, there are still uses for other tasks,
such as table extraction algorithms or possibly analysis of chess shorthand usage across different
languages. While nothing was specifically excluded because it would not be relevant to digitization,
nothing was specifically included that could be used to expand the usefulness to other areas.

An ID system that would be unique for each image in the corpus was used, such that any metadata
or image could be identified by its unique ID. The outlined naming scheme also made sure that a
piece of metadata, meaning the CSV file or the JSON files could always be related to the original
image. Since the filename included language and game length as well, it would also be possible to
notice discrepancies in case an original file gets mislabeled. Therefore this criterion is met.

A creative commons license was added to the corpus, which was the best way to make all the
data generated available to the public. Since any identifying information was removed from all
the pictures as well, there are no privacy concerns apart from someone being able to match the
handwriting directly, which is something that could not be prevented without losing the real-world
nature of the corpus.

6.2 Lessons learned
One main take-away is how difficult defining a corpus can actually be. There have been many
discussions during this thesis on how to structure files and what exactly the definition of "hard
to read" is. Eventually, it had to be accepted that sometimes there is no one "right" way to do
things and that it was instead important to document how and why something was done so that
others can verify the work. In the end, a good starting point for further expansion was reached.
The corpus would be usable for the evaluation of ChessReader and similar tools.
This challenge in being consistent despite some properties being a "subjective" evaluation led to
the decision, that only one person was going to annotate all the sheets. On one hand, this made
sense because it prevented slightly different interpretations from affecting the outcomes of the
annotations, but it also hugely decreased the speed at which the corpus progressed. For the future,
a larger time frame for notation would need to be allocated.

Another underestimation at first was the difficulty of dealing with legacy code, that was not at
all or not correctly documented. The original approach of trying to wrap the existing code in a
new interface was harder than expected. No big rewrites were made, but trying to get access to
the data needed took more time than planned and was far more complex than expected. The most
time was spent reading through the code in order to figure out how it worked and how to avoid
major rewrites.

Chapter 7

Outlook

Now that there is an established starting point for the corpus, the next steps in this area would be
to expand on it, to include more languages and scoresheets to make the corpus more representative
of the chess world at large.

The next thing to do could be to actually test how well ChessReader in its current iteration
performs on the corpus and figure out how the tool could be improved based on the findings. For
example, the outputs of the different APIs could be processed in a more sophisticated way to try
and improve accuracy or efficiency.

After taking a look at the application that was modified during the thesis, there are a few things
that can and should be done before ChessReader is officially released to the public. On the one
hand, the user experience on the client can be further improved by designing and testing the
interface to help users navigate the website and efficiently add new scoresheets, for example by
uploading them to the server in the background instead of blocking the entire client until the
upload has completed. Another feature that would be incredibly useful is a way to see, edit and
redownload PGNs for games that have already been uploaded.

Taking a look at the server-side part of ChessReader it is apparent that there is a lot of work to
do when it comes to cleaning up the legacy code left over from previous works. It lacks accurate
documentation and has grown organically during the development by several different teams. In
order to improve maintainability and to make it easier to add new features to the application, a
rewrite should have high priority. This would also enable future improvements to the speed and
accuracy of OCR and table recognition processes, which take quite some time at the moment. This
part of the code would also need to be modified to add more recognizable languages to ChessReader.

Another interesting topic to research could be the data the users generate themselves. Of course,
first research must be done if it would be legal to use this data for analysis, but it could provide
insights into how the application is used, but also how exactly the commercially available OCR-
tools from Google, Microsoft, and Amazon perform on the different handwriting styles in a setting
that does not consist of real sentences or words.

35

Appendix A

Technical documentation

In this chapter, the application itself is described, the process of how to run and develop the
application locally, as well as how to deploy a new release.

A.1 Language and framework
As the existing application was written in Python using the Flask-Framework, the decision was
made to stick with this decision. Enabled the reuse of existing core functionality and set the focus
on the front-facing interface and endpoints.

Besides that, Python also has the advantage, that it is generally fairly easy to understand and learn,
which makes it easier for future developers to understand the code and develop new features. It
is also very popular when it comes to scripts and other smaller projects, so it is a widely known
language a lot of developers should already have come in contact with.

When it came to frameworks there was the option to switch to the other popular Python web
framework, Django, or to stick with the solution used up to now, Flask.

Django comes with many features already built in, like caching, authentication, Really Simple
Syndication (RSS), etc. It also supports rate-limiting and internationalization out of the box,
which is very useful when building big projects with international reach.

Flask on the other hand is much more lightweight, and its functionality is mostly added using
libraries and extensions. This makes it much more flexible and great for smaller projects and gives
the developer the freedom to use any other technologies they want, like NoSQL-databases.

In the end, the decision was made to stick with Flask. This was mainly due to the fact that a
complete rewrite of the whole application from scratch was not the focus of this thesis, but also
because Flask supports so-called RESTful services.

A.2 Installation prerequisites
• Root privileges

• Docker

• Python development environment (preferably a virtual environment)

• Angular development environment

36

Appendix A. Technical documentation 37

A.3 System architecture

Figure A.1: Current system architecture of ChessReader

• Angular Application

• Flask Backend

• Database

A.4 Local installation
A.4.1 Frontend
First, clone the repository from https://github.zhaw.ch/chessreader/ChessReader_Angular

After having downloaded the repository, install the dependencies of the project using the Numpy
package manager and the downloaded package.json file.

A.4.2 Backend
First, clone the repository from https://github.zhaw.ch/chessreader/ChessReader-API

After having downloaded the repository, create a new virtual environment and install the depen-
dencies using the pip package manager and the provided requirements.txt.

In addition to setting the environment variables using the OCR service credentials, as explained
below in the subsection OCR-APIs, you will may also need to make adjustments to the values in
the provided config file.

1 import os
2
3 basedir = os.path. abspath (os.path. dirname (__file__))
4
5 class Config (object):
6 SQLALCHEMY_DATABASE_URI = os. getenv (" DATABASE ")
7 JWT_SECRET_KEY = os. getenv (" JWT_SECRET_KEY ")
8 SQLALCHEMY_TRACK_MODIFICATIONS = False
9 APP_FOLDER = os.path. dirname (__file__)

10 UPLOAD_FOLDER = f"{os.path. dirname (__file__)}/ media "
11 DOWNLOAD_FOLDER = f"{os.path. dirname (__file__)}/ media "
12 BASE_URL = os. getenv ('BASE_URL ')
13 API_CALLS_TIMEOUT = 18

Listing A.1: The config file

You can leave most values as they are. The only fields you need to adjust are the ones that are set
using environment variables. You can either hardcode the values using this file or set them using
environment variables. Changing the file itself is not recommended, use environment variables
instead. The values you need to set are explained below:

38 A.4. Local installation

The SQLALCHEMY_DATABASE_URI is the Uniform Resource Identifier (URI) to the database
on the database server you have set up. If you are using a MySQL server the URI will look something
like this:

1 mysql :// user: password@ip :port/ database

SQLAlchemy also supports other servers. To check which are supported and how to structure the
URI check the SQLAlchemy documentation[13]

The JWT_SECRET_KEY is the secret used to create new JWT tokens when a user logs in. This
should be a random string of letters and numbers in order to make it difficult for malicious actors
to create fake tokens by guessing the key.

BASE_URL is the base Uniform Resource Locator (URL) of your API. This includes both, domain
and port number, but not any paths, and is required for getting the images of the scoresheets to
the client. Also, make sure it does not end with a slash. It should look like this:

1 https :// chessreader .org :5000

A.4.3 Database

If you want to use a local database, installing Docker for your operating system (https://www.docker.com/)
and downloading a MySQL-image is recommended.

If you prefer a different flavor than MySQL, any SQL-database will work as long, as you configure
the protocol in the backend config file accordingly.

A.4.4 OCR-APIs

The following sections explain how to obtain the credentials required to call the different OCR-APIs
created by Microsoft, AWS, and Google.

If you have control of the ChessReader accounts for these services already, you can log in us-
ing the provided credentials. Otherwise, you can also create a new account, although this is not
recommended for maintainability reasons

The credentials you obtained by registering the application with the services listed below need to
be saved to environment variables. The name of the variable is specified for each service below

Keep in mind that the exact layout and process of each service page may change if the respective
tool is updated.

Microsoft Azure Cognitive Services

To get API credentials from Microsoft Azure you need to first log into Azure Portal
(https://portal.azure.com). When you see the screen as shown below, click on "Add Resource".

Appendix A. Technical documentation 39

Figure A.2: Azure Portal Startpage

You will then be presented with a list of all available Microsoft services. Search for "Maschinelles
Sehen" in the "KI + Machine Learning" category and create a new resource. You will be redirected
to a setup wizard helping you through the process.

Figure A.3: Computervision Wizard

40 A.4. Local installation

Fill the fields with values appropriate to your needs, after which you can skip straight to creating
the resource. If you do not have a resource group you can add this resource to, you can create one
without leaving the wizard.

After completing these steps, all that is left is to get your access key and endpoint for the API.
Do that by going to the Computervision-resource you have just created (it should show up on the
startpage if you are not redirected automatically).

Figure A.4: Key and Endpoint screen

On the left is a navigation menu. Go to "Schlüssel und Endpunkt", then click on "Schlüssel anzeigen"
to reveal the keys.

AWS Cognito Services
Log into the AWS Console (https://aws.amazon.com) and navigate to the "Identity and Access
Management (IAM)" as seen below. You can do so by searching for "IAM" in the search bar at the
top of the page

Appendix A. Technical documentation 41

Figure A.5: AWS Identity and Access Management

Click on "Benutzer hinzufügen" and give it the permissions seen in the screenshot below.

Figure A.6: Permissions

42 A.4. Local installation

After completing the steps in the wizard, navigate to the user you have just created in the IAM.
Switch to the tab "Sicherheitsanmeldeinformationen", scroll down, and click on "Zugriffsschlüssel
erstellen". In the wizard that opens select "Anwendung wird ausserhalb von AWS ausgeführt". Give
your key a name and click on Create. Keep in mind that AWS will never show you this key again!
Save it somewhere secure. If you happen to lose it, you will need to remove the one you lost and
create a new one.

Figure A.7: Permissions

Google Cloud Vision Services

Log into the Google Cloud Console (https://cloud.google.com). After logging in you will need to
create a new project for the application. You can do that using the drop-down menu on the top
bar.

Appendix A. Technical documentation 43

Figure A.8: Create a new project

Search for "Cloud Vision API" using the search bar and activate the resource for the project you
have just created. You will then be redirected to the page shown in the screenshot below.

Figure A.9: Permissions

44 A.4. Local installation

Next, click on "Anmeldedaten erstellen" and fill out the wizard that pops up.

Figure A.10: Creating a new app-account

To get the access key needed for the API, search for "IAM" in the search bar on the Console
startpage. On the navigation menu on the left go to "Dienstkonten" and select the account you
have just created. On the page that opens, navigate to the tab "Schlüssel" and create a new key.
Select JSON as the key format. After finishing the key creation, it will automatically be downloaded
by your browser.

Appendix A. Technical documentation 45

Figure A.11: Creating a new access key

A.5 Configuring the credential_store.json file
Using the credentials you have obtained by following the previous section, you can now set the
corresponding values in the credential_store.json file.

The file looks like this

1 {
2 "az": {
3 " endpoint ": "",
4 "key": ""
5 },
6 "gl": {
7 "type": "",
8 " project_id ": "",
9 " private_key_id ": "",

10 " private_key ": "",
11 " client_email ": "",
12 " client_id ": "",
13 " auth_uri ": "",
14 " token_uri ": "",
15 " auth_provider_x509_cert_url ": "",
16 " client_x509_cert_url ": ""
17 },
18 "rk": {
19 " aws_access_key_id ": "",
20 " aws_secret_access_key ": ""
21 }
22 }

Listing A.2: Censored credential_store.json file

You should be able to just copy-paste the credentials you have obtained to the file.

46 A.6. How to run the project

A.6 How to run the project
To run the client-side application locally, navigate to the top-level folder of the source code and
run the command

1 $ ng serve

To run the server-side locally, navigate to the top-level folder and run the command

1 $ flask run

If you need debug functionality you can run

1 $ flask run --debug

If you run the command with the debug argument, you need to set your Python path to include
the source code due to a bug in the Werkzeug library[14]. To do that on a Mac you can run

1 $ export PYTHONPATH =${ PYTHONPATH }: ChessReader -API

Please make sure you have also set all environment variables correctly and installed all packages.

A.7 Releasing a new version
Building and releasing a new version of ChessReader is very straight forward and unless major
changes were made to the underlying workings should only require running a few commands.

A.7.1 Building the frontend and backend
Building the frontend and backend is very easy. You only have to run a single command per
repository. To build the project run the command

1 $ docker build -t chessreader /{{ subproject }}: latest .

where you should replace {{subproject}} with either chessreader_angular or chessreader_api,
depending on which repository you want to build. What this does is install all required packages
and compile the code before packaging everything into an image that is saved locally. To see how
you can upload the resulting image to dockerhub, see the next section.

A.7.2 Publishing to dockerhub
First log into the dockerhub account you want to publish the image to using

1 $ docker login

An official ChessReader-Account does exist and you might have been given the credentials to it.

After building the project you can push the images to your account using

1 $ docker push {{ image_name }}

where you have to replace {{image_name}} with the name of the image you have built beforehand.
If you have followed this guide that is either chessreader/chessreader_angular or chessreader/chess-
reader_api

Appendix A. Technical documentation 47

A.8 Source code structure
This part contains a short overview of the code structure in the two repositories.

A.8.1 Frontend
The basic structure of the frontend follows the default setup of an Angular application. To read
more about this setup you can visit the Angular documentation[15] In order to read more about
the frontend consult the semester thesis "Digitalization of Chess Scorecards"[12]

core

The core folder contains files that do not directly interact with the user, but provide functionality
from interfacing with the API and authentication of requests to catching errors.

The most important file in this directory is the file chessreader-api.ts which contains all functions
calling the different endpoints of the API and returning the results.

pages

The pages directory contains all components that act as pages. These are the components that are
referenced when defining new routes and are responsible for managing the entire workflow assigned
to this page.

Each subdirectory contains the files associated with a page as well as subcomponents that are used
exclusively by the respective page component.

shared

In the shared directory, you will find all components that are more general and not associated with
a specific page. Here you can also find a file called mat-all.ts. In it, all material-components are
imported into the application so they can be used without worrying if they are available or not.

A.8.2 Backend
There are four main folders in the backend-repository, as well as some additional files, which are
explained below

database

In this directory you will find the database initialization function as well as the file containing the
models used by SQLAlchemy to build the database. In the db.py file, you can also set the database
to reset each time you restart the flask app. Keep in mind that this does not remove the pictures
that were uploaded via the API. To delete those as well you have to remove the contents of the
media folder manually

media

This folder may not exist when first downloading the repository. If that is the case it will be
created automatically. It contains all images that were uploaded as well as all cut-out images of
single boxes, which can then be sent to the client.

model

This is the directory where the magic happens. It contains the pipeline, used to perform all calcu-
lations, and is responsible for contacting the OCR-APIs, and supporting files. All files in this folder
should be considered legacy files. Documentation of functions may be inaccurate or incomplete, if

48 A.8. Source code structure

available at all. Code that resides here should be replaced and moved to a different folder, in order
to prevent unstructured changes that accumulate over time.

resources

In the resources folder, you will find all files that are responsible for serving content to clients of the
API. The routes file defines which path lets clients access which resource. Resources are handling
all web requests and responses.

Other important files

Other important files include

• the app.py, which serves as the entry point of the application

• the config.py, which contains important global variables, required for correct operation

• the credentials_store.json containing the access keys for the OCR-APIs

• the requirements.txt, listing all packages that are required by the application and their version
numbers. PLEASE UPDATE THIS FILE (including version numbers) if you make any
changes to the required packages

Appendix B

API-Documentation

The following is an overview of the currently available endpoints to the API. It lists URLs, required
payload, and authentication. Also included is a short description of what the endpoint does.

49

End-point: Login

Retrieve a JWT token, which can be used to access the other endpoints.

Method: POST

http://host:5000/api/auth/login

Body (raw)

{
"email": "mail@example.com",
"password": "securePassword"

}

Authentication noauth

Param value Type

Response

Success:

{
"token": "jwt-token-for-user",

}

⁃ ⁃

End-point: Signup

Create a new account

Method: POST

http://host:5000/api/auth/signup

Body (raw)

{
"email": "helibum1@gmail.com",
"password": "password",
"name": "Lukas-Test"

}

Authentication noauth

Param value Type

⁃ ⁃

End-point: Get match image url

Get the url to the image of a match

Method: GET

http://host:5000/api/auth/signup

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: Get Matches

Method: GET

Get all matches of a user

http://host:5000/api/matches

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: Get Match

Get a match by its id

Method: GET

http://host:5000/api/matches/<match_id>

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: Get PGN String

Get the PGN string for a match, using its match_id

Method: GET

http://host:5000/api/matches/<match_id>/pgn

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: Get Match Boxes

Get the detected table-boxes of a match, given by its match_id

Method: GET

http://host:5000/api/matches/<match_id>/boxes

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: Trigger OCR-Scan

Trigger the OCR for a match, selected by its match_id

Method: PATCH

http://host:5000/api/matches/<match_id>/scan

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

End-point: New Match

Add a new match to the database. The picture needs to be uploaded in this request as a formdata-
file

Method: POST

http://host:5000/api/matches

Body formdata

Param value Type

file chess_scorecard.png file

Authentication bearer

Param value Type

token jwt-token-for-user string

⁃ ⁃

List of Figures

1.1 Magnus Carlson writing on his scorecard during the 2021 World Chess Championship.[2] 2

2.1 Examples of different styles of score sheets . 6
2.2 Chessboard with a label for each field. [9] . 7
2.3 Filled out scorecard of the last game of renowned chess player Ortvin Sarapu . . . 8
2.4 PGN file of a match between Levon Aronian and Magnus Carlsen 9

3.1 An example to illustrate how the .csv file was used to annotate. 15
3.2 A hard-to-read notation, reads Sf6 . 16
3.3 Hard to read moves bleeding into multiple cells. It reads: g6, Lg7, O-O. The L and

the g merged, so the L is almost unrecognizable . 17
3.4 An excerpt from the sheet "en_0007_medium_38" containing an ambiguous move. 18
3.5 Replay of the game from the previous example on the board 18
3.6 An excerpt from a scoresheet containing multiple instances of a shorthand notation. 19
3.7 Another example of a common notation error is the ; takes notation 20
3.8 An sheet containing examples of time markings. "de_0056_hard_30" sheet of the

corpus. 20
3.9 Examples of all 3 tiers of difficulty and explanation for the rating 23

4.1 Example of an image that was excluded . 25
4.2 Example of a JSON Web Token, encrypted and decrypted. The ID of the user is

stored in "sub", which can be seen on the middle right 27
4.3 Diagram of the database structure . 28

5.1 Languages represented in the corpus. 31
5.2 Number of sheets per difficulty rating. 32

A.1 Current system architecture of ChessReader . 37
A.2 Azure Portal Startpage . 39
A.3 Computervision Wizard . 39
A.4 Key and Endpoint screen . 40
A.5 AWS Identity and Access Management . 41
A.6 Permissions . 41
A.7 Permissions . 42
A.8 Create a new project . 43
A.9 Permissions . 43
A.10 Creating a new app-account . 44
A.11 Creating a new access key . 45

55

Bibliography

[1] H. J. R. Murray, A history of chess. Benjamin Press, 1986.

[2] L. Thomas, “The Psychological Drama of the World Chess Championship,” The New Yorker,
Dec. 2021, section: the sporting scene. [Online]. Available: https://www.newyorker.com/
sports/sporting-scene/the-psychological-drama-of-the-world-chess-championship

[3] “Portable network graphics,” 2023. [Online]. Available: https://en.wikipedia.org/wiki/PNG

[4] N. Ambrosini and G. Hellinger, “Digitalization of Chess Scorecards,” unpublished, Jun. 2022.

[5] N. Majid and O. Eicher, “Digitization of handwritten chess scoresheets with a bilstm network,”
Journal of Imaging, vol. 8, no. 2, 2022. [Online]. Available: https://www.mdpi.com/2313-
433X/8/2/31

[6] M. Wynne, L. AHDS Literature, L. (Organization), Arts, and H. D. Service, Developing
Linguistic Corpora: A Guide to Good Practice, ser. AHDS guides to good practice. Oxbow
Books, 2005. [Online]. Available: https://books.google.ch/books?id=41ZJAAAAYAAJ

[7] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J.
Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers,
A. Gonzalez-Beltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. ’t Hoen,
R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag,
T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen,
J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons, “The
FAIR Guiding Principles for scientific data management and stewardship,” Scientific Data,
vol. 3, no. 1, p. 160018, Mar. 2016. [Online]. Available: https://doi.org/10.1038/sdata.2016.18

[8] FIDE, “FIDE Handbook.” [Online]. Available: https://handbook.fide.com/

[9] “Understanding Chess Notation.” [Online]. Available: https://www.dummies.com/article/
home-auto-hobbies/games/board-games/chess/understanding-chess-notation-192295/

[10] C. B. Yann LeCun, Corinna Cortes, “Mnist handwritten digits database,” 2023. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[11] S. An, M. J. Lee, S. Park, H. Yang, and J. So, “An ensemble of simple convolutional neural
network models for MNIST digit recognition,” CoRR, vol. abs/2008.10400, 2020. [Online].
Available: https://arxiv.org/abs/2008.10400

[12] L. Boner and M. Hostettler, “Digitalization of Chess Scorecards,” unpublished, Dec. 2022.

[13] “Sqlalchemy documentation.” [Online]. Available: https://docs.sqlalchemy.org/

[14] C. Seibert, “Flask absolute import bug in debug mode.” [Online]. Available: https://chase-
seibert.github.io/blog/2015/06/12/flask-werkzeug-reloader-python-dash-m.html

[15] “Angular Documentation.” [Online]. Available: https://angular.io/docs

56

https://www.newyorker.com/sports/sporting-scene/the-psychological-drama-of-the-world-chess-championship
https://www.newyorker.com/sports/sporting-scene/the-psychological-drama-of-the-world-chess-championship
https://en.wikipedia.org/wiki/PNG
https://www.mdpi.com/2313-433X/8/2/31
https://www.mdpi.com/2313-433X/8/2/31
https://books.google.ch/books?id=41ZJAAAAYAAJ
https://doi.org/10.1038/sdata.2016.18
https://handbook.fide.com/
https://www.dummies.com/article/home-auto-hobbies/games/board-games/chess/understanding-chess-notation-192295/
https://www.dummies.com/article/home-auto-hobbies/games/board-games/chess/understanding-chess-notation-192295/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2008.10400
https://docs.sqlalchemy.org/
https://chase-seibert.github.io/blog/2015/06/12/flask-werkzeug-reloader-python-dash-m.html
https://chase-seibert.github.io/blog/2015/06/12/flask-werkzeug-reloader-python-dash-m.html
https://angular.io/docs

	Nomenclature
	Introduction
	Motivation
	Initial situation
	Goals

	Background
	Chess scorecards
	Standard Algebraic Notation
	Portable Game Notation (PGN)

	Optical Character Recognition
	Corpora
	REST-API

	Corpus Design
	Structure
	Annotations
	Move Annotations
	Metadata Annotation

	Corpus Construction
	Corpus Construction Process
	Server-side implementation of ChessReader
	REST-API
	Core functionality
	Database

	Client-side implementation of ChessReader

	Results
	Discussion
	Goals achieved
	Lessons learned

	Outlook
	Technical documentation
	Language and framework
	Installation prerequisites
	System architecture
	Local installation
	Frontend
	Backend
	Database
	OCR-APIs

	Configuring the credential_store.json file
	How to run the project
	Releasing a new version
	Building the frontend and backend
	Publishing to dockerhub

	Source code structure
	Frontend
	Backend

	API-Documentation
	List of Figures
	Bibliography

