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Abstract

This thesis introduces Pathological-Llama, an explainable medical visual question answering
system that integrates computer vision and natural language processing to accurately interpret
medical images through a generative task approach. By addressing the demand for both accu-
racy and transparency in medical diagnostics, Pathological-Llama represents an advancement
in the application of artificial intelligence within healthcare. This research undertakes a gen-
erative task, distinguishing it from traditional classification-based VQA systems, enabling
the model to generate detailed, contextually relevant answers to complex medical questions.

Pathological-Llama was developed and fine-tuned using the PathVQA dataset, with a focus
on explainability. The system employs the Integrated Gradients method and leverages GPT-4
for in-depth analysis, enhancing the interpretability of its decision-making process. These
methods ensure that the system not only achieves high accuracy but also provides transparent
explanations for its diagnostics. The effectiveness of Pathological-Llama is demonstrated
through testing on previously unseen datasets, achieved impressive metrics with a BERT
score of 0.591 and an F1 score of 0.419. These results confirm the model’s robust gener-
alization capabilities and highlight the role of optimizing hyperparameters and visual prefix
lengths in enhancing the performance of generative VQA tasks.

Contributing to medical AI and VQA, Pathological-Llama demonstrates how generative mod-
els can deliver precise, explainable medical solutions. It establishes a benchmark for reliable,
transparent AI in healthcare, aiming to enhance patient care and diagnostics. The evaluation
of Pathological-Llama, highlighted by its performance metrics, underscores the value of gen-
erative tasks in medical VQA and paves the way for future advancements.
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Zusammenfassung

Diese Dissertation führt Pathological-Llama ein, ein erklärbares medizinisches System zur
Beantwortung visueller Fragen (VQA), das Computer Vision und natürliche Sprachverar-
beitung integriert, um medizinische Bilder durch einen generativen Aufgabenansatz genau zu
interpretieren. Indem es sowohl die Anforderungen an Genauigkeit als auch an Transparenz
in der medizinischen Diagnostik adressiert, stellt Pathological-Llama einen Fortschritt in der
Anwendung künstlicher Intelligenz (KI) im Gesundheitswesen dar. Diese Forschung un-
ternimmt eine generative Aufgabe, die sie von traditionellen klassifikationsbasierten VQA-
Systemen unterscheidet und es dem Modell ermöglicht, detaillierte, kontextuell relevante
Antworten auf komplexe medizinische Fragen zu generieren.

Pathological-Llama wurde mit dem PathVQA-Datensatz entwickelt und feinabgestimmt, wobei
der Schwerpunkt auf Erklärbarkeit liegt. Das System verwendet die Methode der integri-
erten Gradienten und nutzt GPT-4 für eine tiefe Analyse, was die Interpretierbarkeit seines
Entscheidungsfindungsprozesses verbessert. Diese Methoden stellen sicher, dass das System
nicht nur eine hohe Genauigkeit erreicht, sondern auch transparente Erklärungen für seine
Diagnosen bietet. Die Wirksamkeit von Pathological-Llama wird durch Tests an zuvor unge-
sehenen Datensätzen demonstriert und erreicht beeindruckende Metriken mit einem BERT-
Score von 0.591 und einem F1-Score von 0.419. Diese Ergebnisse bestätigen die robusten
Generalisierungsfähigkeiten des Modells und heben die Rolle der Optimierung von Hyper-
parametern und der Länge des visuellen Präfixes zur Verbesserung der Leistung generativer
VQA-Aufgaben hervor.

Mit einem Beitrag zur medizinischen KI und VQA zeigt Pathological-Llama, wie gener-
ative Modelle präzise, erklärbare medizinische Lösungen liefern können. Es setzt einen
Maßstab für zuverlässige, transparente KI im Gesundheitswesen mit dem Ziel, die Patien-
tenversorgung und Diagnostik zu verbessern. Die Bewertung von Pathological-Llama, her-
vorgehoben durch seine Leistungsmetriken, unterstreicht den Wert generativer Aufgaben in
der medizinischen VQA und ebnet den Weg für zukünftige Fortschritte.
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Chapter 1

Introduction

Visual Question Answering (VQA) systems, developed from the combination of computer
vision and natural language processing, offer a promising tool for interpreting visual data
through questions and answers. These technologies have particular relevance in the medical
field, where they can assist healthcare professionals by quickly providing information based
on medical images. However, the requirements of medical decision-making extend beyond
accuracy to include transparency in the systems’ reasoning processes. This thesis focuses
on developing "Pathological-Llama", an explainable medical VQA system that integrates the
capabilities of VQA with the need for explainability in medical diagnostics.

1.1 Motivation

The potential of VQA to transform medical diagnostics, patient care, and treatment planning
is immense, given its capacity to apply artificial intelligence for interpreting complex med-
ical images. Despite the promise, creating effective VQA systems for medical use presents
challenges, notably in delivering precise predictions and transparent explanations for those
predictions. This research centers on constructing a multimodal deep neural network model
trained on the PathVQA dataset [1], selected for its comprehensive pathological data. The
objective is to craft a model that not only navigates the intricacies of medical data but also
elevates the precision of medical diagnostics. Addressing the demand for explainability in
medical AI is central; decisions in healthcare directly affect patient health, necessitating AI
systems that are both accurate and transparent in their decision-making processes. Accord-
ingly, this thesis attempts to enhance AI’s utility in healthcare through medical VQA, con-
fronting the dual challenges of accuracy and explainability to forward the application of AI
in enhancing healthcare outcomes and efficiency.

1.2 Objectives and Contribution

This thesis makes key contributions to the domain of medical AI and VQA by:

1. Developing Pathological-Llama: An explainable multimodal VQA system tailored
for the medical field, integrating advanced AI modeling techniques to interpret medical
images and answer queries with high accuracy and transparency.

2. Focusing on Explainability: Incorporating explainability mechanisms, such as the
Integrated Gradients method [2] and GPT-4 analysis [3], to provide insights into the
model’s reasoning, addressing a critical gap in current medical AI applications.
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3. Utilizing the PathVQA Dataset: Training and evaluating the model with a dataset
specifically selected for its extensive pathological data, underscoring the research’s
targeted application in pathology and its specificity in medical image interpretation.

4. Advancing Medical VQA Technology: By prioritizing precision and explainability,
this work lays the groundwork for future research in medical VQA, aiming to bridge
the gap between complex data analysis and practical medical usage.

1.3 Scope

This thesis is structured into nine chapters. Following this introduction, chapter 2, "Funda-
mentals" introduces technical concepts necessary for understanding the core topics discussed
throughout the thesis. Chapter 3, "Related Work," provides a literature review on medical
VQA and evaluation metrics, highlighting existing research in the field. Chapter 4, "Method-
ology," details the model architecture and the strategies employed in the development of the
model, offering insight into the technical approaches taken. Chapter 5, "Experimental Setup,"
describes the baseline conditions for the experiments, outlining the configurations and prepa-
rations needed for evaluating the model’s performance. Chapter 6, "Results" presents the
outcomes of the conducted experiments, demonstrating the model’s performance and effec-
tiveness in the context of medical VQA. Chapter 7, "Explainability" focuses on explaining
the decision-making process of the model, aiming to provide clarity on how it generates its
conclusions. The thesis concludes with chapter 8, "Discussion" and chapter 9, "Conclusion
and Outlook". These sections reflect on the research findings and explore their implications
for the field of medical AI. The conclusion also identifies potential directions for future re-
search.
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Chapter 2

Fundamentals

This chapter lays the foundation to understand the methods throughout the thesis. Several
concept are detailed: Transformers, with their advanced self-attention mechanism; multi-
modal learning, which combines diverse data types for enhanced AI performance; explain-
able AI (XAI), emphasizing transparency in AI decisions; and medical Visual Question An-
swering (VQA), an application bridging computer vision and language processing for medi-
cal image interpretation. It highlights the importance of these technologies in advancing AI
research and applications, particularly their transformative potential in healthcare, focusing
on improved diagnostics and decision-making processes.

2.1 Transformers

Transformers, especially the Vanilla Transformer, can be understood from a geometrically
topological perspective. The self-attention mechanism allows modelling tokenized inputs as
fully-connected graphs in the topological geometry space. This flexibility sets Transformers
apart from other deep networks like CNNs [4], which are limited to aligned grid spaces.

2.1.1 Vanilla Transformer

The Vanilla Transformer serves as the foundation for Transformer-based research, employing
an encoder-decoder structure. It takes tokenized inputs and uses Transformer layers/blocks
for both encoding and decoding. Each block contains two sub-layers: multi-head self-
attention (MHSA) and position-wise fully-connected feed-forward network (FFN). Resid-
ual connections with normalization layers aid gradient backpropagation. The output of the
MHSA and FFN sub-layers can be represented as Z ← N(sublayer(Z) + Z), where sublayer(·)
is the sub-layer’s mapping and N(·) denotes normalization [5].

Vanilla Transformer utilizes tokenized sequences as input, treating each token as a node in
a graph. Tokenization offers advantages such as geometrically topological flexibility, flex-
ible information organization, compatibility with task-specific tokens, and inherent support
for multimodal data processing. Vanilla Transformer employs sine and cosine functions for
position embedding. Position embeddings provide temporal or spatial information to the
Transformer. Their necessity depends on the input type, and they can be seen as a form of
additional information.

Self-Attention (SA) is a core component of the Vanilla Transformer, enabling each element
of an input sequence to attend to all other elements. SA models the input as a fully-connected
graph, providing a global perception similar to Non-Local Networks. Masked Self-Attention
(MSA) modifies SA to incorporate contextual dependencies and prevent attending to future
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positions. MHSA stacks multiple SA sub-layers in parallel, allowing the model to jointly
attend to information from multiple representation subspaces. MHSA acts as an ensemble
mechanism, enhancing the Transformer’s ability to process diverse information.

The output of the multi-head attention sub-layer in the Transformer passes through a position-
wise FFN. The FFN consists of successive linear layers with non-linear activation. For ex-
ample, a two-layer FFN can be represented as:

FFN(Z) = σ(ZW1+b1)W2+b2,

Here, W1, b1, W2, and b2 denote the weights and biases of the linear transformations, while
σ(·) represents a non-linear activation function such as ReLU(·) [6] or GELU(·) [7].

2.1.2 Multimodal Transformers

The Transformer architecture can process each input as a fully-connected graph through self-
attention. This allows Transformers to work with various modalities by treating the embed-
ding of each token as a graph node. Users only need to tokenize the input and select an
embedding space before inputting the data into Transformers. Tokenization and embedding
approaches are highly flexible, offering alternatives such as using ROIs and CNN features,
patches and linear projection, or object detection and graph features [5]. From a geometric
topology perspective, each modality can be seen as a graph. For example, an RGB im-
age represents a neat grid graph, while video and audio are clip/segment-based graphs with
temporal and semantic patterns. Both uni-modal and multimodal Transformers utilize spe-
cial/customized tokens as placeholders in token sequences. Common special tokens, such as
[CLS] for classification and [SEP] as a separator, are defined to add semantic meaning to the
token sequences. Token embedding fusion is a technique used in Transformers to combine
multiple embeddings for each token position, which allows for early fusion of embeddings.
Token-wise summing is a common method of fusion, providing flexibility in various Trans-
former models, including multimodal surveillance AI. In multimodal Transformer applica-
tions, this approach combines different embeddings using token-wise operators like addition.
Examples include VisualBERT [8], Unicoder-VL [9], VL-BERT [10], InterBERT [11], and
ImageBERT [12], which leverage token embedding fusion for improved performance in mul-
timodal tasks.

In multimodal Transformers, self-attention and its variants are used for processing cross-
modal interactions such as fusion and alignment [5].

2.2 Multimodal Learning

Multimodality in AI involves the integration of various types of data (e.g., text, images, au-
dio) to enhance predictions and identifications [13]. This process, known as multimodal
fusion, can be performed through early, late, or hybrid fusion methods. Early fusion inte-
grates data before analysis, either by removing correlations or combining data at its lower-
dimensional latent subspace. However, it can be challenging to synchronize data sources
with variable sampling rates and convert them into a fixed representation [14]. Early fusion
is depicted in Figure 2.1. Late fusion as seen in Figure 2.2 uses individual modality sources
for fusion during decision-making, resembling human cognitive abilities, and can be inte-
grated to generate a single common decision. Hybrid fusion, uses deep neural networks for
intermediate fusion, changing input data to a higher-level abstraction and learning a joint
representation of different modalities [14]. This is illustrated in Figure 2.3.
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FIGURE 2.1: Early fu-
sion.

FIGURE 2.2: Late fu-
sion.

FIGURE 2.3: Hybrid Fusion

2.2.1 Medical Multimodal Learning

Medical data, which can be represented in various forms or modalities offers a rich source of
information for analysis and diagnosis [15]. Multimodal learning in the medical field lever-
ages these diverse data types to gain an understanding of medical conditions. The integration
of different modalities can reveal insights that might not be apparent when examining data
from a single source. For instance, in Alzheimer’s diagnosis, combining FDG-PET scans and
structural brain MRI provides a more complete picture than relying on either modality alone
[16]. FDG-PET scans are effective in identifying hypermetabolism patterns, while structural
MRI is used for detecting hippocampal atrophy. Together, these modalities offer a more
accurate and robust diagnosis than either could alone.

In the context of machine learning, a unimodal labeled dataset is defined as Du = {(Xi1,yi1)}n
i=1,

where X represents the input, y is the ground-truth label, and n is the number of sam-
ples. In contrast, a multimodal dataset containing k different modalities is denoted as Dm =
{(Xi1, . . . ,Xik,yi1)}n

i=1. This definition allows for the incorporation of various types of data
into a unified learning framework. There are scenarios where a multimodal dataset might
lack labels for some or all samples. Such datasets are represented as (Xi1, . . . ,Xik) without
the corresponding y labels. This situation is particularly common in medical contexts, where
obtaining labeling for all modalities can be challenging due to privacy concerns, the need for
expert analysis, or incomplete data collection. Furthermore, it is not uncommon to encounter
unpaired data within these datasets. This means that some instances X may not include all
k modalities, presenting additional challenges for multimodal learning. The absence of cer-
tain modalities in some data points requires sophisticated approaches to handle missing data
effectively while still extracting useful information from the available modalities. These com-
plexities in medical multimodal learning emphasize the need for advanced machine learning
techniques capable of handling diverse, unpaired, and sometimes unlabeled data to extract
meaningful insights for medical diagnosis and treatment planning.

2.2.2 Supervised Multimodal Learning

Supervised multimodal learning [15] involves learning a predictive model Mθ parameterized
by θ using ground truth labels y. The objective is to find θ ∗ which minimizes the supervised
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loss Lsl across the multimodal dataset Dm:

θ
∗ = argmin

θ
∑

(X i
k,y

i
k)∈Dm

Lsl(Mθ (X i
1, . . . ,X

i
k),y

i)

Supervised multimodal learning faces challenges in the medical domain due to the need for
extensive labeled data. The labeling process, often requiring domain experts, is compounded
by privacy concerns associated with making medical data publicly available.

2.2.3 Self-Supervised Multimodal Learning

Self-supervised learning typically involves two stages: pretraining and downstream task
learning [15]. In the pretraining stage, the self-supervised method does not use ground-truth
labels. Instead, it employs pseudo-labels ŷ, generated from the input modalities, to train the
predictive model Mθ . The model parameters are optimized as follows:

θ
∗ = argmin

θ
∑

(X i
k,y

i)k)∈Dm

Lssl(Mθ (X i
1, . . . ,X

i
k), ŷ

i)

Post-pretraining, the model Mθ is applied to specific downstream tasks involving ground-
truth labels y. The pre-trained model can serve as a feature extractor or be fine-tuned for
specific tasks. Pretraining with large-scale multimodal data enables the model to capture
extensive general knowledge, facilitating task-specific learning. This approach, especially
effective in the medical domain, reduces reliance on labeled data and often outperforms fully
supervised models. In medical applications, self-supervised learning is highly effective due
to the challenge of obtaining labeled data. Medical datasets often include images and detailed
textual reports, which are valuable for self-supervised pre-training.

2.3 Explainable AI

Explainable AI (XAI) involves understanding the working mechanism and decision-making
process of AI systems. It aims to answer questions like why the system made a particular
prediction (interpretability) and how the system came to a specific decision (explainability)
[17]. Model-specific explanations apply to a specific model, while model-agnostic methods
are independent and irrespective of the model. Feature attribution-based methods highlight
image regions that are contributors to decision-making. Distillation methods build an ap-
proximate local model or a surrogate model on top of the original model for interpretation.
Intrinsic methods are explainable and self-explain using models’ attention mechanisms to fo-
cus on important visual and textual regions. This category includes joint training approaches
that combine predictions and explanations. Figure 2.4 shows the taxonomy of various deep
explainability methods for both unimodal and multimodal scenarios [14].

2.3.1 Explainability Methods for Multimodal Systems

The following methods [14] aim to provide interpretable explanations for tasks like visual
question answering, image captioning, and common sense reasoning.

Attention-based methods assign more weight and importance to specific factors in multi-
modal data. They are commonly used in tasks like visual captioning and visual question
answering, where attention mechanisms align and fuse information from different modali-
ties. These approaches generate explanations based on attention features and improve inter-
pretability. However, challenges exist in evaluating and ensuring consistent explanations.
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FIGURE 2.4: XAI methods.

Counterfactual explanations focus on contrasting decisions and causal understanding. They
recommend actionable insights and minimal changes to achieve desired outcomes. Counter-
factual approaches have been applied in visual question answering, visual captioning, and
image description tasks to analyze model behaviour and improve predictions.

Interactive explanations involve user feedback by combining model explanations, user anno-
tations, and active learning to rectify incorrect predictions and enhance user trust. They have
been applied to tasks like VQA and customer relationship management.

Graph-based methods leverage scene graphs and knowledge graphs to improve explanation
quality. Scene graphs represent relationships between objects in an image, while knowledge
graphs incorporate semantic information. These approaches enhance interpretability in tasks
like visual question answering and neuro-symbolic AI.

Attribute-based methods focus on the importance of attributes in generating explanations.
They associate visual features with attribute information to provide class-discriminative and
concept-explaining explanations. Attribute maps, counter attributes, and spatiotemporal at-
tention mechanisms are utilized to improve interpretability.

2.3.2 Integrated Gradients

Integrated Gradients (IG) is an attribute-based model interpretability technique that assigns
importance scores to input features. It does so by approximating the integral of gradients
of the model’s output concerning the inputs along a straight-line path from given baselines
to inputs. IG relies on two fundamental axioms, namely Sensitivity and Implementation
Invariance, as stated in Definition 1 and Definition 2 of the paper "Axiomatic Attribution for
Deep Networks" [2]. These axioms hold are believed to be essential traits of all attribution
methods.
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Definition 1 Axiom Sensitivity states that an attribution method satisfies Sensitivity if,
when presented with two inputs and baselines that differ in only one feature, resulting in
different predictions, the differing feature is attributed a non-zero value. In cases where the
deep network’s mathematical implementation does not rely on a particular variable, the attri-
bution to that variable should always be zero.

Definition 2 Axiom Implementation Invariance defines functional equivalence between
two networks, indicating that their outputs are identical for all inputs despite varying im-
plementations. An attribution method satisfying Implementation Invariance would ensure
that attributions remain the same for functionally equivalent networks.

The sensitivity axiom requires a baseline which is defined as an absence of a feature in an
input. It can be understood as an "input from the input space that produces a neutral pre-
diction." By treating the baseline as an input, counterfactual explanations can be generated,
exploring how the model behaves while transitioning from the baseline to the original image.
The authors contend that gradient-based methods violate Sensitivity (Def. 1). To illustrate
this, they present a simple function, f (x) = 1−ReLU(1− x), as shown in Figure 2.5. When
attempting to generate attribution for x = 2, the function’s output changes from 0 to 1, but
after x = 1, it becomes flat, resulting in a gradient of zero. Although x contributes to the re-
sult, the flatness of the function at the input being tested leads to invalid attribution, breaking
Sensitivity. Breaking Sensitivity causes gradients to focus on irrelevant features [2].

FIGURE 2.5: f (x) = 1−ReLU (1− x) , x ∈ [0,2]

Computing Integrated Gradients In the definition of IG, function F represents the model,
where the input x ∈ Rn (with n denoting the number of dimensions) and the baseline x′ ∈ Rn.
The method involves computing gradients along a straight-line path between x and x′. The
integrated gradient along the ith dimension is formally defined as shown in equation 2.1.

IGi(x) := (xi − x′i)∗
∫ 1

α=0

δF(x′+α ∗ (x− x′))
δxi

dα (2.1)

However, since the original definition involves an integral, it is infeasible to calculate directly.
Therefore, the practical implementation of IG utilizes an approximation by replacing the
integral with a summation, as in equation 2.2.

IGapprox
i (x) := (xi − x′i)∗

m

∑
k=1

δF(x′+ k
m ∗ (x− x′))
δxi

∗ 1
m

(2.2)

To obtain the approximated calculation (equation 2.2), parameter m is used to define the num-
ber of interpolation steps. For example, when visualizing the interpolations with m equals
five (see Figure 2.6), the process can be better understood. In practice, the number of inter-
polation steps typically ranges from 20 to 300, with the most common value being 50. The
results of applying IG can be observed in Figure 2.7.
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FIGURE 2.6: Five-step interpolation between the baseline x’ and the input
image x. The first image on the left (alpha:0.0) is not a part of the interpola-

tion process [18].

FIGURE 2.7: Visualization of the saliency map by the IG generated for the
class saint-bernard. The result is averaged over 50 interpolation steps [18].

2.3.3 Importance of XAI in Healthcare

Rising healthcare costs globally underscore the need for AI to enhance healthcare efficiency.
AI, especially as clinical decision support systems, offers advancements in disease diagnosis
and treatment [19]. These AI systems, leveraging patient data-driven models, face chal-
lenges like technical complexities and legal, medical, and patient concerns, requiring a mul-
tidisciplinary approach. Explainability in healthcare is an important yet complex aspect of
medical AI. It involves making AI’s logic transparent, impacting legal, ethical, and practical
facets of medical applications. Technologically, explainability varies in AI models; it is more
straightforward in traditional models but complex in "black-box" models like DNNs, creat-
ing a trade-off between accuracy and clarity. Legally, the evolving healthcare landscape is
increasingly prioritizing explainability in AI solutions, affecting informed consent, medical
device certification, and liability. Medically, explainability enhances physicians’ comprehen-
sion of AI, essential for clinical validation and application, aiding informed decision-making
and trust-building in AI systems. For patients, explainability supports patient-centered care,
facilitating shared decision-making and deeper patient engagement. Ethically, it intersects
with autonomy, beneficence, non-maleficence, and justice, ensuring informed consent, aid-
ing decision-making, addressing biases, and promoting equitable AI access in healthcare.
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2.4 Medical VQA

Medical VQA merges computer vision and natural language processing to interpret medical
images and answer related questions, aiding clinical decision-making and patient engagement
[20]. Unlike typical medical AI, medical VQA addresses a broad range of questions with
user-friendly answers. Medical VQA systems cover tasks, such as assisting radiologists in
managing high workloads and aiding pathologists in diagnoses. They also serve as assistants
to clinicians by providing second opinions and directly interacting with patients, especially in
automated health exams or online information searches. The field faces challenges, such as
creating datasets requiring expert annotation and designing models for specific, fine-grained
medical analysis. Since its inception in 2018, medical VQA has seen growing interest, with
developments in datasets and methodologies, marking it as an increasingly important area.

2.4.1 Comparison with Non-Medical VQA Systems

Medical VQA and general VQA integrate visual and language processing for answering
questions, however, differ in applications, objectives, datasets, methodologies, and evalua-
tion. Medical VQA focuses on clinical support and patient interaction, targeting medical
diagnosis and decision-making with datasets that are smaller, less diverse, and require expert
annotation [20]. Its methods emphasize image encoder pre-training due to complex datasets.
In contrast, general VQA caters to a broader range of applications such as information re-
trieval and human-computer interaction, with larger, more diverse datasets and a focus on
multi-modal fusion and reasoning. While medical VQA requires deep domain knowledge
for understanding specialized medical terminology and imaging data, general VQA involves
varied strategies for scene and object recognition. Evaluation in medical VQA prioritizes
precision and medical relevance, addressing dataset imbalances, whereas general VQA seeks
a balance in plausible answers, emphasizing overall correctness.

2.4.2 Challenges and Opportunities

Medical VQA faces distinct challenges compared to general VQA [20], offering research
opportunities:

• Question Diversity: Enhancing question diversity is relevant, moving beyond basic
abnormality identification to include more specific and varied queries. This requires
sourcing questions from diverse materials, including textbooks and real-world interac-
tions, and improving reasoning and medical domain knowledge within VQA systems.

• Integrating Extra Medical Information: Challenges include effectively incorporating
Electronic Health Records and multiple images into VQA systems, necessitating new
dataset designs and model adaptations.

• Interpretability and Reliability: Ensuring the interpretability of medical VQA systems
is essential for reliable outputs. This involves tackling unimodal biases, integrating
external knowledge, conducting evidence verification, and establishing interpretability
benchmarks.

• Generalizability: Addressing generalizability issues is essential, focusing on training
with medical-specific datasets and validating across different data domains to ensure
robust model performance.
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• Large Language Models (LLMs): Integrating LLMs presents opportunities for en-
hanced question-answering capabilities, though it raises concerns about domain-specific
accuracy, inherent biases, and the need for expert medical knowledge.

• Integration in Medical Workflow: Effective integration of medical VQA into clinical
workflows demands an understanding of clinicians’ preferences and cognitive styles,
aiming to improve efficiency and service quality.
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Chapter 3

Related Work

Medical VQA is a task that combines image and text analysis to answer clinical questions
based on medical images. The field faces challenges due to the scarcity of annotated medical
datasets, leading researchers to utilize pre-trained models from non-medical datasets [21].
However, this introduces domain shift issues, as models such as VGG16 [22], ResNet [23],
LSTM [24], and BERT [25] are not initially trained on medical data. To mitigate domain
shifts, recent efforts focus on pre-training visual encoders specifically with medical images.
Notable approaches include meta-learning strategies for visual representation [26], and the
adoption of self-supervised pre-training objectives. The PubMed-CLIP framework [27] illus-
trates the effectiveness of aligning image-text features through pre-training, enhancing visual
encoder performance for medical VQA tasks. Discriminative methods, treating VQA as a
classification problem, have shown promising performance though are limited to predefined
answers. In contrast, generative methods allow for open-ended answers, offering a more flex-
ible approach suited for clinical questions. Multimodal medical VQA has greatly benefited
from transformer-based models and self-supervised learning, with techniques like CLIP’s
contrastive pretraining improving zero-shot capabilities by effectively combining visual and
textual data.
The PathVQA dataset [1] serves as a benchmark for evaluating VQA models, with meth-
ods employing a mix of GRU [28] and Faster R-CNN networks [29] (Method 1), CNN [4]
and LSTM networks with multimodal pooling (Method 2), and stacked attention networks
(Method 3). The evaluation underscores Method 1’s effectiveness in localizing image regions
and Method 3’s superiority in multi-layer attention processing. The dataset’s open-ended
question challenge and small size highlight the need for innovative approaches in medical
VQA. BiomedGPT [30], a pioneering model in the biomedical domain, introduces a gen-
erative pre-trained Transformer architecture tailored for multimodal inputs. The model’s
pretraining phase contains masked image modeling, image infilling, and object detection for
visual inputs, along with masked language modeling for textual data. The fine-tuning stage
extends to tasks such as image captioning, visual question answering, image classification,
text summarization, and natural language inference, emphasizing the model’s application
across a broad spectrum of biomedical modalities. The authors of [31] present an approach
to open-ended VQA by leveraging pre-trained language models to interpret visual features
extracted from medical images. This model demonstrates a generative method’s advantages
over traditional classification-based VQA models, particularly in handling class imbalances
and enhancing the generalization of generated responses. The methodology underscores the
importance of prompt structures in improving model performance, emphasizing the critical
role of textual inputs in answer generation. LaVIN [32] introduces the Mixture-of-Modality
Adaptation technique for vision-language instruction tuning of large language models. By
employing lightweight adapters and a routing algorithm, LaVIN achieves joint optimization
for vision and language tasks without extensive pre-training. However, LaVIN is unable
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to identify fine-grained visual content, such as text characters. LLaVA-Med [33] enhances
a learning method to fine-tune a vision-language conversational assistant, utilizing a large-
scale dataset from PubMed Central [34] and instruction generation via GPT-4 [3]. However,
LLaVA-Med faces challenges with hallucinations and lacks deep reasoning. Suggestions
from the authors include enhancing the model’s quality and reliability. M2I2 [21] presents
a self-supervised method for pretraining on medical image caption datasets using a combi-
nation of masked image modeling, masked language modeling, image text matching, and
contrastive learning. The results of M2I2 indicate the potential of self-supervised learning
methods in enhancing model interpretability and performance in the medical domain.
Motivated by these findings, this study aims to explore self-supervised Transformer training,
integrating effective strategies from existing models to advance medical VQA.

The assessment of generative medical tasks is necessary for determining the effectiveness
of AI systems, especially as applications such as ChatGPT become increasingly utilized,
even for medical topics. Despite the absence of universal standards for evaluating generative
tasks in healthcare, this section outlines prevalent methods in current research, including both
human-based and automated approaches.
Automated evaluations, preferred for their quick and cost-effective nature, include corpus-
based and trainable metrics. Corpus-based metrics, such as BLEU ([35] and ROUGE [36]
scores, rely on n-gram comparisons, while model-driven metrics such as BLEURT [37] pre-
dict human judgments using BERT [25] which is trained on large datasets.
The metrics are categorized into assessments of text quality and medical accuracy [38]. Tex-
tual metrics assess word overlap (BLEU, ROUGE) and semantic congruence (BERT score),
alongside QuestEval [39] for evaluating the completeness of information. Despite their util-
ity, these automated metrics do not sufficiently reflect human judgments of system perfor-
mance.
Regarding the Medical correctness evaluation, evaluations use metrics such as Medical Con-
cept Coverage [40] and Negation Correctness [41], applying domain-specific extraction meth-
ods and Named Entity Recognition [42] to ensure alignment with medical lexicons such as
the Unified Medical Language Systems [43]. The F1 score [44], blending precision and re-
call, frequently features in medical VQA evaluations to measure concept correctness.
Informed by these findings, this research incorporates a selection of automated evaluation
metrics, encompassing corpus-based approaches, assessments of text quality, and measures
of concept correctness.

While the selected metrics effectively evaluate the quality of medical VQA systems, enhanc-
ing their explainability is essential for building trust through deeper understanding of the
system’s decision-making processes. The methods for achieving explainability are detailed
in 2.3, with this thesis specifically employing an attribute-based approach to analyze how
decisions are made.
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Chapter 4

Methodology of Pathological-Llama

The methodology presents the development process of the model Pathological-Llama which
generates answers from input images and natural language questions. It introduces the
PathVQA dataset, tailored for medical VQA, and emphasizes the specialized knowledge
required for interpreting pathological images. The chapter outlines the model’s encoder-
decoder architecture, incorporating a vision Transformer and a causal language model to
process inputs and generate answers. Key innovations such as Low-Rank Adaptation for ef-
ficient fine-tuning, multimodal prompt construction for integrating visual and textual inputs,
and a strategic masking strategy to focus attention on relevant tokens are discussed. This
section lays the technical groundwork for understanding how the Pathological-Llama model
tackles the complexities of medical VQA.

4.1 Problem Statement

The objective is to devise a method that, upon receiving an input image I and a corresponding
question Q phrased in natural language, sequentially constructs an answer A consisting of N
tokens A = {A0,A1, ...,AN}. This construction process is conditioned on both the input image
and the question. The goal from a model development standpoint is to determine the ideal
parameters θ ∗ for the model. This is achieved by optimizing the model to maximize the
conditional log-likelihood, formulated as:

θ
∗ = argmaxθ

N

∑
i=1

log pθ (Ai|Q, I,Ai−1). (4.1)

4.2 PathVQA Dataset Description

The PathVQA dataset [1] is a multimodal dataset, consisting of images with textual data,
specifically tailored for medical VQA. This dataset integrates pathological images and cor-
responding text-based question-answer pairs (QA). In the following, each combination of an
image, and its associated question and answer is referred to as a ’datapoint’.

4.2.1 Qualitative Analysis

Pathological images require specialized expertise for accurate interpretation. Professionals
in this field, known as pathologists, must complete a certification exam from the American
Board of Pathology in the United States to be qualified. The PathVQA dataset is centered on
VQA for pathology, utilizing images and accompanying captions sourced from two publicly-
available pathology textbooks "Textbook of Pathology" [45] and "Basic Pathology" [46], and



4.2. PathVQA Dataset Description 15

a publicly-available digital library: "Pathology Education Informational Resource" [47]. A
semi-automated method is employed to convert these captions into QA pairs, which are then
reviewed and refined manually by experts. The construction of questions within the PathVQA
dataset mirrors the format and complexity of the American Board of Pathology certification
examination, serving as a measure of an AI system’s proficiency in medical decision support.
The design of PathVQA is intended to train AI systems to match the analytical abilities of
professional pathologists. This dataset presents a challenge as it demands the AI to not only
discern the details within the images but also to comprehend and respond to related text-based
questions.

4.2.2 Distribution

The initial PathVQA [1] dataset is comprised of 32 799 QA pairs, which are associated with
4 998 pathology images. On average, there are 6.6 questions per image, with the number of
questions per image ranging from a minimum of 1 to a maximum of 14. The average word
count is 9.5 for questions and 2.5 for answers.

The dataset categorizes questions into seven types: what, where, when, whose, how, how
much/how many, and yes/no. 4.1 details the count and percentage of each question type. Of
these, the first six categories are open-ended, totaling 16 465 questions and forming 50.2%
of the dataset. The remaining is close-ended “yes/no” questions, with a balanced distribution
of “yes” and “no” answers, numbering 8 145 and 8 189 respectively. Questions span a range
of visual aspects such as color, location, appearance, and shape.

Question Type Total Number and Percentage
Yes/No 16 334 (49.8%)
What 13 402 (40.9%)
Where 1 268 (4.0%)
How 1 014 (3.0%)
How much/How many 294 (0.9%)
When 285 (0.9%)
Whose 202 (0.6%)

TABLE 4.1: Distribution of Question Types in the PathVQA Dataset.

In the PathVQA dataset, "yes/no" questions are the most prevalent, making up 49.8% of
the dataset, followed by "what" questions at 40.9%. The remaining categories, including
"where", "how", "how much/how many", "when", and "whose", collectively account for less
than 10% of the questions. This distribution underlines the focus on diagnostic and descrip-
tive queries typical in pathology. The frequency of answers exhibits a long-tail distribution,
with certain answers appearing frequently while most are less common.

4.2.3 Dataset Version

In the context of this project, the PathVQA dataset version was updated by the dataset authors
[1] on February 15th, 2023. This particular version contains a collection of 5 004 images and
a total of 32 795 datapoints with a balanced distribution of 16 332 close-ended and 16 463
open-ended QA pairs. 4 289 images are directly linked to at least one QA pair, while the
remaining 715 images do not have any associated questions or answers.

Upon a detailed examination of the dataset, it is observed that certain datapoints are repeated
across all subsets. To maintain the integrity and uniqueness of the dataset, these duplicate

https://drive.google.com/drive/folders/1G2C2_FUCyYQKCkSeCRRiTTsLDvOAjFj5
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datapoints are removed in a preprocessing step. This refinement process results in a final
count of 32 632, consisting of 16 394 open-ended and 16 238 close-ended unique QA pairs,
associated with 4 289 images.

Despite this minor difference in the number of QA pairs, the overall composition and distri-
bution of the dataset remain largely unchanged. Therefore, the statistics presented in 4.2.2
accurately reflect the dataset’s structure and are deemed appropriate for the purposes of this
project. This ensures that the dataset’s representation and its role in the experimental analysis
remain consistent and reliable.

4.3 Model Architecture

The model is structured using an encoder-decoder architecture. It incorporates a dual-stream
encoder and employs a language model, functioning as a decoder, as depicted in 4.1. The
encoder is tasked with processing two different input modalities: the image I and the natural
language question Q. In contrast, the decoder, a causal language Transformer, generates the
answer A autoregressively. This approach aligns with the prefix tuning technique, prompting
the language model to produce outputs in a specific format, here an answer generated from a
question-image pair.

FIGURE 4.1: Model Architecture [31].

For image encoding, a pre-trained vision encoder extracts visual features represented as
{x1,x2, ...,xlv}. These features are then transformed into a visual prefix {v1,v2, ...,vlv} ∈Rlv×e

compatible with the language model’s latent space, where e is the embedding size and lv is
the visual prefix length. The transformation is achieved using a mapping network fM, imple-
mented as a three-layer Multilayer Perceptron (MLP).

For the textual input, first the question Q and the answer A are tokenized into a sequence
of tokens. These tokens are then embedded using the embedding function of a pre-trained
language model such that Q = {q1,q2, ...,qlq} ∈ Rlq×e and A = {a1,a2, ...,ala} ∈ Rla×e . The
language model treats VQA as a conditional text generation task. During training, it opti-
mizes the standard maximum likelihood objective. The model takes a prompt sequence p as
input and sequentially generates the answer A. At each step i, the model outputs logits that
parameterize a categorical distribution pθ (A) over the vocabulary, formulated as:

log pθ (A) = ∑
la

log pθ (ai|q1, ...,qlq ,v1, ...,vx,a1, ...,ai−1). (4.2)

The language model’s parameters are initialized from a pre-trained model, which has been
extensively trained on large web-collected datasets. Details are described in 5.
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4.3.1 Vision Model

The visual processing begins with a pre-trained vision Transformer model (ViT), specif-
ically the ViT-B/32 variant [48]. The model processes input images through a series of
self-attention and feed-forward layers, encoding the raw pixel data into a high-dimensional
representation. This process is formally expressed as:

I → ViT-B/32 →{x1,x2, ...,xlv}, (4.3)

where I denotes the input image, and {x1,x2, ...,xlv} represents the extracted visual features.

The subsequent stage involves translating these visual features into a visual prefix, ensuring
compatibility with the latent space of the language model. This transformation bridges the
gap between the visual and textual modalities, allowing the model to treat the visual infor-
mation as if it were part of the natural language sequence. This transformation is achieved
through a mapping network fM, implemented as a MLP. The MLP is designed with dimen-
sions tailored to project the visual features into the language model’s embedding space. The
process is formulated as:

{x1,x2, ...,xlv}
fM−→ {v1,v2, ...,vlv} ∈ Rlv×e, (4.4)

where {v1,v2, ...,vlv} denotes the visual prefix, and e signifies the embedding size of the
language model.

The choice of the visual prefix length determines how much visual information, in terms of
the number of embeddings, is incorporated into the language model’s input sequence. It di-
rectly influences the balance between textual and visual information in the model’s decision-
making process. It can affect the model’s performance, as it needs to be sufficient to convey
the visual context without overwhelming the textual content.

4.3.2 Causal Language Model

The authors of [31] present a comparison between language models pre-trained on general
text corpora and those trained specifically on medical texts. Models like GPT2 [49], which
are trained on diverse, general text corpora, demonstrate superior overall performance com-
pared to medically-trained models such as BioGPT [50] or BioMedLM [51]. One of the
issues with medically-trained models like BioGPT and BioMedLM is their potential overop-
timization to medical text corpora. This over-specialization often results in a lack of gen-
eralization capabilities when applied to different downstream domains. This limitation is
particularly problematic in contexts where flexibility and adaptability across various types of
data are essential, as in this study. In contrast, GPT2 benefits from exposure to a wide array of
data during its pre-training phase, which includes medically oriented text. This broad spec-
trum of training data allows GPT2 models to easily generalize to other domains, an attribute
that is highly valuable for diverse VQA datasets.

Motivated by these findings, Llama2 [52] and Tiny-Llama [53] were selected for their ar-
chitectural strengths and diverse training backgrounds. The choice of Llama2 is particularly
motivated by its training on a more extensive parameter set than GPT2-xl. This is expected
to enhance its generalization in downstream tasks.
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4.3.3 Low-Rank Adaptation as a Parameter-Efficient Strategy

Applying Low-Rank Adaptation (LoRA) [54] to the Pathological-Llama model presents a
strategic solution to the challenges associated with the extensive parameter set of Transformer
models, particularly relevant in the computationally demanding domain of medical VQA.

Fine-tuning a Transformer model traditionally involves a sequence of steps: in the forward
pass, the input data is processed through the network, generating predictions. During loss
calculation, the model’s predictions are compared with the actual data to quantify the loss.
Followed by the backward pass, the gradient of the loss with respect to the model’s param-
eters is computed. Finally, to update the weights, the model’s parameters are adjusted to
minimize the loss. In this process, weight adjustment, specifically for a single linear pro-
jection, is typically denoted as W ′ = W +∆W , where W is the weight matrix, ∆W is the
change-in-weights matrix, and W ′ are the updated weights.

LoRA introduces a modification to this traditional approach by keeping the weight matrix
W and the change-in-weights matrix ∆W separate throughout the fine-tuning process. This
approach is especially beneficial for this project due to its efficiency in updates. The forward
pass under LoRA is represented as:

h =W0x+∆Wx

where W0 is the initial weight matrix, kept static during fine-tuning, ∆W is the adaptable
change-in-weights matrix, and x is the input vector. The updates are specifically applied to
∆W , denoted as Wφ , and the updated change-in-weight matrix is expressed as W ′

φ
= Wφ +

∆Wφ .

The essence of LoRA lies in its underlying principle that Wφ possesses a low intrinsic rank
and can therefore be efficiently approximated by the product of two lower-rank matrices,
B and A, thus reducing redundancy and achieving a more compact representation. This is
articulated as:

h =W0x+Wφ x =W0x+BAx

The dimension r, a hyperparameter, defines the compression level; a smaller r means a more
compact representation and fewer trainable parameters in BA compared to Wφ .

The strength of LoRA is further underscored in its learnable parameters within matrices
B and A, which are fine-tuned during the process. Once fine-tuned, the product BA can be
seamlessly integrated with the static weights W0, thereby effectively incorporating the learned
adaptations.

4.3.4 Multimodal Prompt Construction

In the training phase, the model integrates the visual prefix with the textual prompt, establish-
ing a context for the language model to generate accurate answers. This integration is done
by injecting the visual prefix into the embedding sequence, positioning it right after the ques-
tion tokens. For a refined structure of the prompt sequences, the model adopts a descriptive
labeling strategy. Descriptors such as "question:", "context:", and "answer:" are prepended to
the respective question, image, and answer tokens. This strategy aims to enhance the model’s
focus and comprehension. A typical structured prompt embodies the format:

p = ["question:"{q1, ...,qlq},"context:"{v1, ...,vlv},"answer:"],
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where {q1, ...,qlq} represents the tokenized and embedded question, and {v1,v2, ...,vlv} de-
notes the visual prefix. This structured prompt, a fusion of textual and visual input, is then
fed into the language model.

The study of [31] reveals that reversing the order of question embeddings and visual data
leads to a performance degradation. This indicates that the model’s processing and prioriti-
zation of information are influenced by the arrangement of the prompt components. Specif-
ically, placing the visual information before the question often results in the model under-
valuing or even ignoring the visual context, leading to responses that lack visual grounding.
Furthermore, the authors of [31] emphasize the importance of the question component in the
prompt structure. Experiments demonstrate a marked performance decline when the question
element is omitted, unlike the removal of visual information.

4.3.5 Masking Strategy

The masking strategy employs a mask M = {m1,m2, ...,mlp} ∈ Rlp×e, where lp represents
the length of the tokenized input prompt. Each element mi in the sequence, for i ∈ {lp}, is
designated as either 0 or 1. The value is set to 1 for each prompt token and 0 for padding,
which is appended to the right of the input sequence. This masking approach ensures that the
model’s attention is directed towards tokens of contextual importance.

During the training phase, the prompt is concatenated with the padded target answer A, and
the mask is assigned a value of 0 for each ai with i ∈ {la}. This setup allows for the compu-
tation of loss during training, aligning the output size with the target size. This configuration
enables the model to concentrate exclusively on the question as textual input and the context
with prefixes as visual input. In contrast, during the testing phase, A is excluded as the focus
is shifted to token generation, which does not necessitate a predefined output length. This de-
liberate masking mechanism ensures that the model, uninformed by the actual target during
training, retains its capacity to generate precise answers in the testing phase.

4.3.6 Answer Generation with Beam Search

The answer generation process utilizes a beam search algorithm [55] to sequentially construct
accurate and contextually relevant answers. Beam search, a heuristic search algorithm, main-
tains a set of k most promising sequences (beams) at each generation step. The beam size,
k, is a hyperparameter that influences the breadth of search and the diversity of generated
answers.

Given an input prompt p, the goal is to generate an answer A = {a1,a2, ...,an} where each ai

represents a token in the answer sequence. The beam search algorithm iteratively predicts the
next tokens based on the current state and updates the beams based on these predictions. For
initialization, let B0 = { /0}, where B0 is the initial beam set. For each step i, the algorithm
predicts the next set of tokens Ti for each beam in Bi−1, using the model’s current state and
input data to generate output logits, subsequently applying temperature scaling and softmax
to derive a probability distribution over the next possible tokens.

Ti = softmax
(

logits(Bi−1,Q, I)
τ

)
, (4.5)

where τ is the temperature parameter controlling the diversity of predictions. The beams are
updated based on these predictions, selecting the top k sequences with the highest cumulative
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scores:

Bi = topk

( ⋃
b∈Bi−1

expand(b,Ti)

)
. (4.6)

The process repeats until each beam in Bi reaches the predefined stop token or the maximum
sequence length n. The final set of beams is then decoded into text, and the sequences are
scored to identify the most accurate answers:

A∗ = argmax
a∈Bn

score(a) (4.7)

where A∗ represents the highest-scoring answer sequences.

This strategy, similarly to the one implemented by the authors of [31], differentiates in that it
halts upon reaching a stop token, outputting only the sequence up to that point.
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Chapter 5

Experimental Setup

This chapter describes the framework for evaluating the Pathological-Llama model, detailing
the structured dataset split for training, validation, and testing, and the set of evaluation met-
rics used, including Cross-Entropy Loss, BLEU, BERT score, and F1 score. It emphasizes
the use of the BERT score for semantic evaluation and the F1 score for accuracy assess-
ment. The chapter also outlines the technical setup, mentioning implementation details and
computational resources.

5.1 Dataset Split

The dataset, as detailed in 4.2.3, is organized into three subsets: the training set, the validation
set and the testing set. This structure follows the official split of the PathVQA dataset and
is designed to facilitate standardized performance comparisons. To ensure the integrity and
meaningfulness of these subsets, a preprocessing step is additionally implemented to elim-
inate any duplicated datapoints. The distribution of datapoints across these distinct subsets
is 0.6 for training, 0.2 for validation, and 0.2 for testing. This allocation strategy ensures a
balanced and representative dataset for robust model evaluation and testing. The specifics of
this dataset split are outlined in Table 5.1.

Dataset Split # Images # Datapoints # Open-ended # Close-ended
Training set 2 499 19 654 9 903 9 751
Validation set 1 499 6 719 3 357 3 362
Testing set 1 000 6 259 3 134 3 125

TABLE 5.1: Statistics of Images and QA Pairs in Dataset Splits.

The split and distribution of the dataset are visually represented in 5.2 and 5.1.

5.2 Evaluation Metrics

To evaluate the proposed model’s performance, a range of evaluation metrics are chosen for
the training, validation, and testing phases, with consideration of textual integrity and content
correctness.

During the training phase, Cross-Entropy Loss [56] is utilized to refine the model’s perfor-
mance by minimizing the discrepancies between generated answers and the actual answers.
The validation phase incorporates Cross-Entropy Loss alongside BLEU, BERT score, and
F1 score to evaluate linguistic and semantic quality. BLEU measures textual similarity to
the ground truth using n-grams [35], while BERT score evaluates semantic similarity [57],
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FIGURE 5.1: Open-
ended Dataset Split.

FIGURE 5.2: Close-
ended Dataset Split.

emphasizing the model’s capability to produce answers that are contextually aligned with the
ground truth, thereby measuring relevance and coherence. The F1 score serves as a balanced
metric for precision and recall [44], offering insight into the model’s overall accuracy. Test-
ing focuses on semantic precision via BERT score and contextual relevance, examining the
model’s capacity to deliver context-relevant responses. This phase emphasizes real-world
applicability, with the F1 score providing an accuracy assessment.

5.2.1 BERT Score

BERT score provides an alternative for text generation evaluation, addressing the shortcom-
ings of n-gram metrics such as BLEU score. Unlike n-gram approaches, which often mis-
judge paraphrases and struggle with capturing semantic reordering and long-range depen-
dencies, BERT score uses contextual embeddings from models, which is BERT [25] in this
study. This approach allows for a deeper semantic comparison between generated text and
reference text based on cosine similarity.

The process involves converting both reference x= ⟨x1, . . . ,xk⟩ and candidate x̂= ⟨x̂1, . . . , x̂m⟩
sentences into sequences of vectors. These vectors are obtained by tokenizing the sentences
into subwords and encoding them with a Transformer encoder, which applies self-attention
and nonlinear transformations to capture contextual information. Evaluation is performed by
greedily matching tokens from the candidate sentence to the reference sentence to maximize
similarity, calculating recall and precision. These metrics are then combined to compute an
F1 score:

RBERT =
1
|x| ∑

xi∈x
max
x̂ j∈x̂

x⊤i x̂ j

PBERT =
1
|x̂| ∑

x̂ j∈x̂
max
xi∈x

x⊤i x̂ j

FBERT = 2 · PBERT ·RBERT

PBERT +RBERT

To enhance readability and interpretation, BERT score is rescaled based on an empirical
lower bound b, calculated using Common Crawl data. This rescaling adjusts the score to a
more intuitive range:

R̂BERT =
RBERT −b

1−b
This method ensures scores are typically between 0 and 1, improving readability without
compromising the score’s ability to rank text generation quality or its correlation with human
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judgment.

5.2.2 F1 Score

The F1 score evaluates the balance between precision and recall. It measures the overlap
between candidate and reference tokens, providing a single metric for model accuracy. In the
context of the project’s task, it identified common tokens between the candidate and reference
texts, calculating the number of shared tokens by counting the minimum occurrence of each
common token across both texts. Precision is then determined as the ratio of shared tokens
to the total in the candidate text, and recall is the ratio of shared tokens to the total in the
reference text. The F1 score is calculated as:

F1 = 2 · Precision ·Recall
Precision+Recall

This ensures high scores only when both precision and recall are high, emphasizing the
model’s effectiveness in generating relevant text. If there are no shared tokens or if any
token set is empty, the F1 score defaults to 0. This metric is essential for models where
accurate and complete text generation is aimed for.

5.3 Implementation Details

For the experiments, a pre-trained CLIP [48] model with a ViT backbone is employed to
extract visual features. This model is selected for its effectiveness in processing a wide range
of visual content. The output of the CLIP model is a 512-dimensional feature vector, provid-
ing a comprehensive representation of the visual data. The mapping network fM transforms
visual features into a format compatible with language models. This network consists of
MLP layers. The layer sizes are defined as 512, lv∗e

2 , lv ∗ e, with lv being the variable visual
prefix length. The prefix length lv is adjusted throughout the experiments for optimal perfor-
mance. Sequence lengths lq and la, corresponding to questions and answers, are determined
based on dataset characteristics. Specifically, these lengths are set to the mean number of
tokens in the training set plus three times its standard deviation, ensuring coverage of most
dataset instances while avoiding excessive padding for shorter sequences. To accommodate
sequences of varying lengths in batch-wise learning, padding with End-Of-Sequence (EOS)
token is applied. To configure LoRA, the rank (r) is set to 8, and the loraα parameter is
established at 32. Additionally, loradropout is fixed at 0.1. The Adam optimizer [58] is used
for training, with 600 warmup steps. These values were adopted based on findings of [31].
The experimental framework involves the use of two language models interchangeably:

• Llama2 [52] spans models from 7 billion to 70 billion parameters, aimed at text-based
tasks using an auto-regressive language model with an optimized transformer architec-
ture. This study uses the Llama-2-7b-chat-hf model from Meta AI, which has 7 bil-
lion parameters and is fine-tuned for chat applications. It uses a transformer encoder-
decoder architecture which enables contextual understanding and text generation, mak-
ing it well-suited for dialogue tasks. Its fine-tuning on dialogue datasets allows the
model to produce conversational responses that are coherent and engaging. The model
employs SentencePiece tokenization [59], handling a vocabulary of 32 000 tokens.

• Tiny-Llama [53] adopts the same architecture and tokenizer as its counterpart, Llama2,
but is scaled down to 1.1 billion parameters, making it more accessible for projects
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constrained by computational and memory resources. It is presented as an interme-
diate model, having been trained up to 50,000 steps on a dataset comprising 105 bil-
lion tokens. For this research, the specific pretrained version employed is TinyLlama-
1.1B-Chat-v0.1, which is a chatbot variant of the Tiny-Llama model, fine-tuned on
the openassistant-guananco [60] dialogue dataset. An intermediate checkpoint is em-
ployed, as the model is still undergoing training as of this study. Despite the exis-
tence of a newer chat-based version, TinyLlama-1.1B-Chat-v0.4, TinyLlama-1.1B-
Chat-v0.1 is chosen for its superior performance, as detailed in appendix A.

The baseline configuration for the experiments is determined by several parameters, mindful
of computational resource constraints. A batch size of 6 is selected as it represents the upper
limit that Llama2 can accommodate, allowing for the maximum visual prefix length achiev-
able within the computational budget. Further details on these experiments are provided in
appendix A. A learning rate of 1e-4 is adopted, close to the 5e-3 rate used in prior studies
[31]. However, a rate of 5e-3 and 1e-3 resulted in model divergence, leading to the selection
of 1e-4 as the starting point for experiments. The epoch count is set at 60 to balance training
time with achieving desirable loss levels. This decision is supported by the observed trends in
training and validation loss, detailed in each subsection. Additionally, a visual prefix length
of 6 is chosen as the starting parameter, being the maximum feasible option for Llama2 even
with a batch size of 1, due to computational resource limitations.

The experiments were conducted on a shared server cluster featuring Tesla V100-SXM2-
32GB GPUs, 240 CPU cores, 1536 GiB of RAM, and 10.5 TiB of high-speed local SSD
storage.
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Chapter 6

Results

This chapter details the outcomes from testing various model configurations, focusing on
model architecture, capacity, and visual prefix length. It aims to highlight configurations
that enhance VQA performance through analysis across training (Train), validation (Val),
and testing (Test) phases. Key findings include the impact of chat-based pre-training, the
positive correlation between model capacity and performance, the role of visual prefix length
in integrating visual-textual information, and the advantages of generative models for close-
ended questions. The chapter concludes with an evaluation of the best-performing models,
based on BERT and F1 scores.

6.1 Findings

The results presented in this chapter are derived from a series of experiments, as detailed in
the corresponding subsections. Multiple models are trained and evaluated, with their perfor-
mance metrics compared. The key aim is to identify the most effective model configuration in
regard of the evaluation metrics, informed by insights gained from preceding experiments, to
enhance overall performance, with a particular emphasis on evaluating Val BERT for model
selection.

6.1.1 Benefit of Chat-Based Pre-Trained Models

This section examines how model architecture, particularly task-specific features like chat-
based interaction, influences performance in this project’s VQA task. The hypothesis is
that architectural design tailored to specific tasks enhances a model’s effectiveness in VQA
scenarios. To test this, Tiny-Llama and Tiny-Llama-Chat were compared. Both models have
1.1 billion parameters but differ in their orientation towards chat-based tasks. They were
fine-tuned on PathVQA with a learning rate of 1e-4 for 60 epochs, using visual prefix size of
6. Performance metrics at epoch 60 are summarized in table 6.1.

Model Train Loss Val Loss Val BLEU Val BERT Val F1
Tiny-Llama 0.1259 0.7275 0.5056 0.521 0.322
Tiny-Llama-Chat 0.0626 0.7747 0.5071 0.550 0.363

TABLE 6.1: Performance Comparison of Tiny-Llama and Tiny-Llama-Chat.

The comparison clearly shows Tiny-Llama-Chat’s improved performance by across most
evaluated metrics compared to Tiny-Llama. This includes a decrease in training loss and im-
provements in BLEU, BERT, and F1 scores, as illustrated in 6.1 and 6.2. Such enhancements



26 Chapter 6. Results

underscore the chat-specific features’ effectiveness in VQA tasks, where answering questions
often involves interpreting complex visual and textual data in a conversational manner.

FIGURE 6.1: Train and Validation Performance of Tiny-Llama and Tiny-
Llama-Chat over 60 Epochs.

FIGURE 6.2: Validation BERT and F1 score at Epoch 60.

Tiny-Llama-Chat’s advanced performance underlines the importance of task-aligned archi-
tectural design. The next sections will continue with only chat-based models, exploring in
greater detail how these specialized architectures address the challenges and leverage the
opportunities within the VQA task.

6.1.2 Benefit of Greater Model Capacity

This experiment investigates the connection between model capacity, indicated by the param-
eter count, and performance. The guiding hypothesis suggests that models with more param-
eters should exhibit superior performance, attributed to their enhanced capability to discern
and assimilate complex data patterns. To test this, a comparative study was conducted be-
tween Tiny-Llama, with 1.1 billion parameters, and Llama2, boasting 7 billion parameters,
both configured for chat-based functionalities. These models were assessed under uniform
conditions, employing a visual prefix size of 6 across 60 epochs with a learning rate (lr)
of 1e-4 and 1e-5. Table 6.2 presents the performance metrics for both models at different
learning rates.

The data illustrates the relationship between model capacity, learning rate, and performance
metrics. Notably, Llama2, with its higher parameter count, demonstrates variable perfor-
mance based on the learning rate. At a lower learning rate of 1e-5, Llama2 outperforms
Tiny-Llama across all metrics, showcasing the advantage of larger model capacity in captur-
ing intricate patterns This is evidenced by the highest validation BERT score and F1 score at
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Model Lr Train Loss Val Loss Val BLEU Val BERT F1
Tiny-Llama 1e-4 0.0626 0.7747 0.5071 0.550 0.363
Tiny-Llama 1e-5 0.0698 0.8208 0.5032 0.540 0.351
Llama2 1e-4 0.0340 0.8713 0.5054 0.528 0.330
Llama2 1e-5 0.0178 0.8475 0.5091 0.585 0.404

TABLE 6.2: Comparison of Model Performance with Different Learning
Rates.

this learning rate, highlighting the model’s improved comprehension and contextual process-
ing abilities.

Conversely, with a learning rate of 1e-4, the performance advantage of Llama2 in terms of
Val Loss and Val BERT scores diminishes, suggesting that the benefits of increased model
capacity can be contingent upon the optimal tuning of learning rates. Tiny-Llama, despite its
smaller size, maintains competitive performance, especially notable in its Val BERT and Val
F1 scores at 1e-4, indicating that smaller models can still effectively process and generate
conversational content when optimally configured. This is visualized in 6.3 and 6.4.

The comparison underscores the complexity of the relationship between model capacity and
performance. While larger models like Llama2 have the potential to achieve superior perfor-
mance, this capability is highly dependent on the careful tuning of learning rates and other
hyperparameters. This highlights the importance of not only considering model size in the
development of VQA systems but also the optimization of training configurations to fully
leverage the models’ capabilities.

FIGURE 6.3: Train and Validation Performance over 60 Epochs.

FIGURE 6.4: Validation BERT and F1 score at Epoch 60.
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The results confirm the hypothesis with emphasizes on the importance of thorough tuning.
Tiny-Llama demonstrates optimal performance at a learning rate of 1e-4, whereas Llama2
achieves its best results using a learning rate of 1e-5. Consequently, the subsequent analysis
of results will focus on these specific learning rate configurations for each model.

6.1.3 Benefit of Increased Visual Prefix Length

The visual prefix length impacts how models integrate visual data into their decision-making,
hypothesizing an optimal balance that best combines visual and textual inputs. Too short a
visual prefix may lack necessary context, while an excessively long one could overwhelm the
textual information.

This study compared Tiny-Llama and Llama2, both chat-adapted models, across different
visual prefix lengths. For Tiny-Llama, a learning rate of 1e-4 was used, exploring prefix
lengths of 2, 6, and 12, the latter being the maximum feasible given computational con-
straints. Llama2, at a 1e-5 learning rate, was tested with prefix lengths of 2, 4, and 6, which
is the maximum possible for this configuration. The performance data is summarized in table
6.3.

Model Prefix Train Loss Val Loss Val BLEU Val BERT Val F1
Tiny-Llama 2 0.1366 0.7347 0.5524 0.518 0.327
Tiny-Llama 6 0.0626 0.7747 0.5071 0.550 0.363
Tiny-Llama 12 0.0668 0.7843 0.4500 0.570 0.402
Llama2 2 0.0775 0.7879 0.5525 0.516 0.316
Llama2 4 0.0300 0.8217 0.5309 0.581 0.405
Llama2 6 0.01780 0.8475 0.5091 0.585 0.404

TABLE 6.3: Impact of Visual Prefix Length on Model Performance

The results reveal that an increase in visual prefix length generally improves validation BERT
and F1 scores across both Tiny-Llama and Llama2 models, suggesting a better capability for
contextual understanding and processing with more visual data. However, this comes with a
corresponding rise in validation loss, indicating the challenge of balancing visual and textual
inputs effectively.

FIGURE 6.5: Train and Validation Performance over 60 Epochs.

Tiny-Llama reaches peak performance with a visual prefix length of 12, achieving the high-
est validation BERT and F1 scores despite increased validation loss, indicating an enhanced
ability to generate contextually relevant responses. Llama2, attaining its best performance
at a visual prefix length of 6, demonstrates superior contextual processing and accuracy, evi-
denced by its high validation BERT and F1 scores, though at the cost of higher validation loss.
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FIGURE 6.6: Validation BERT and F1 score at Epoch 60.

These patterns suggest that while extending the visual prefix length can improve a model’s
response accuracy and relevance in a VQA context, finding the optimal length is needed to
maximizing both visual understanding and textual coherence without compromising model
performance.

6.1.4 Benefit of Generative Task for Close-Ended Question Types

This section investigates the effectiveness of using a generative approach over a classification
approach for answering close-ended questions. This experiment is based on the hypothesis
that generative models are more suited for this task than traditional classification models,
considering the inherent nature and capabilities of the LLaMA-2 model in generative tasks.

The experiment involves the comparison between the Llama2 model configured for a genera-
tive task and the same model adapted for a classification task. Both models were trained with
a learning rate of 1e-5, over 30 epochs and a visual prefix size of 6, specifically trained and
evaluated on close-ended questions. The classification model was structured similarly to the
generative model with the addition of a fully connected layer after the model’s output logits,
designed to output two classes: ’Yes’ or ’No’.

Model Val Loss Test Accuracy Test F1
Llama2 (Classification) 0.6967 0.5011 0.5161
Llama2 (Generative) 0.0697 0.875 0.937

TABLE 6.4: Performance of Llama2 Models for Classification and Genera-
tive Tasks.

The results as in 6.4 indicate that the Llama2 model configured for the generative task outper-
forms its classification counterpart. Notably, the generative model achieves higher accuracy
and F1 score compared to the classification model. This difference in performance can be
attributed to the intrinsic design and strengths of the Llama2 model, which is suited for gen-
erative tasks. The generative approach allows the model to leverage its full potential in un-
derstanding and generating language, leading to a more nuanced and accurate interpretation
of close-ended questions. In contrast, while the classification model is designed to provide
direct ’Yes’ or ’No’ answers, it may not fully encapsulate the contextual nuances and depth
of understanding that the generative model possesses. This could result in a more superficial
analysis of the questions, as reflected in the lower performance metrics. These findings un-
derscore the importance of aligning the model architecture and task type, highlighting that
Llama2’s capabilities are more effectively used in generative tasks, especially for handling
close-ended questions in a more context-aware manner.
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6.2 Evaluation

The testing phase employs a previously unseen dataset to evaluate the models’ performance,
focusing on key metrics such as BERT and F1 scores. The selected best models for this phase
are Tiny-Llama with a learning rate of 1e-4 and a visual prefix length of 12 and Llama2 with
a learning rate of 1e-5 and a visual prefix length of 6, both chat pre-trained.

These configurations were identified as optimal based on their performance in the validation
phase, specifically targeting the enhancement of the models’ comprehension and response
generation in the context of medical VQA. The test phase results are summarized in the table
6.5:

Model Learning Rate Prefix Length Test BERT Test F1
Tiny-Llama 1e-4 12 0.573 0.403
Llama2 1e-5 6 0.591 0.419

TABLE 6.5: Test Phase Performance of Optimized Models

The test results reinforce the findings from the validation phase, with both models demon-
strating robust generalization capabilities. Llama2, in particular, shows a slight improvement
in both Test BERT (0.591) and Test F1 scores (0.419) compared to its validation performance,
suggesting a strong ability to understand and process visual and textual data in VQA tasks.

Interestingly, despite Llama2’s more than six times larger parameter count, Tiny-Llama’s
performance in the testing phase closely rivals that of Llama2, with a BERT score of 0.573
and an F1 score of 0.403. This comparison underlines Tiny-Llama’s exceptional efficiency
and efficacy as a model, particularly in scenarios where computational resources might be
constrained.

These outcomes highlight the effectiveness of the selected configurations for each model,
indicating the importance of optimizing learning rates and visual prefix lengths to enhance
model performance. The slight improvements and stability in test scores compared to valida-
tion metrics suggest that both models are well-tuned to their respective task demands, capable
of delivering consistent and accurate responses across different datasets.
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Chapter 7

Explainability

Pathological-Llama model’s reasoning is explained using the Integrated Gradients method,
highlighting how the textual and visual inputs influence predictions through visualization
techniques. This method provides insight into the model’s logic across various medical sce-
narios, such as cardiovascular and endocrine systems. To address the expertise required for
interpreting pathological images, GPT-4 for is employed for additional analysis, comparing
these AI-generated explanations with the model’s decisions. By integrating advanced AI for
explainability, this chapter aims to enhance transparency and trust in the model’s healthcare
applications, demonstrating an approach to understanding AI-driven diagnostic processes.

7.1 Implementation

The explainability analysis employs the Integrated Gradients (IG) method on Pathological-
Llama with Tiny-Llama as the causal language model with the configuration as in 6.2. The
choice of the smaller model for this analysis is due to computational efficiency and its close
performance alignment with its counterpart, Llama2 as causal language model. This method
would also work on the latter, with a reduction in some parameters. The interpretability
results for this are recorded in the appendix B.1

This interpretability algorithm assigns importance scores to input features by estimating the
gradients of the model’s output concerning its inputs along a straight-line path from selected
baselines to the actual inputs. For this analysis, the critical inputs include both the visual and
textual components of the model. Baselines are defined as a black image for visual inputs and
a sequence of embedded padding tokens for textual inputs, representing the absence of signal
from which the integral calculation starts. The comparison involves attributing importance
to model inputs by contrasting them with their baselines. For visual attributions, the raw
pixel values are compared against the baseline and the original image, necessitating that they
maintain the same dimensions. Textual attributions require the embeddings of the text, as
IG attributes importance to embeddings rather than indices, given the method’s reliance on
gradient-based attribution which cannot be computed with integer values. Initially, pixel
values are converted into embeddings, or visual prefixes, during preprocessing. However,
IG necessitates the use of raw pixel values. A forward hook is implemented to take pixel
values and apply the same transformations as during training to accommodate this. This
includes generating embeddings, inputting the visual embedding into the vision model to
create visual prefixes, and then projecting these visual prefixes into the text embedding space.
These processed inputs are then fed into the language model to generate outputs, which are
subsequently analyzed using IG. The attribution method uses 30 steps for approximation
and the Right Riemann Sum [61] method for integral calculation. The Right Riemann Sum
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approach estimates integrals by summing areas of rectangles aligned with the right side of
each interval, offering an effective means to quantify input feature contributions to model
predictions.

7.2 Visualization and Analysis of Examples

In the visualizations, red denotes negative, green positive, and white neutral attributions for
text. "True Label" is the actual label of the data, while "Predicted Label" shows the model’s
prediction along with a probability score. The IG method, adapted from [2] using PyTorch
[62] and the Captum [63] library, originally suits classification tasks with single-word labels.
This study extends it to generative tasks, where "Predicted Label" becomes the first token’s
probability in the generated sequence. The "Attribution Label" specifies the label for which
the attribution is calculated. Attribution scores reveal how each input feature influences the
prediction: positive scores indicate a feature’s positive contribution, negative scores the op-
posite, and zero means no contribution. For text, word importance visualizations display
attributions without visual prefixes, highlighting how each token impacts the model’s output.
Image attributions are represented through an attribution map, where black pixels denote ab-
solute values, emphasizing the importance of each pixel in the image analysis. The darkness
of a pixel correlates with the magnitude of its integrated gradient, with colorless pixels indi-
cating no gradient presence. Both text and image attributions are combined to illustrate their
overall effect on the model’s prediction.

To analyze visual attributions, expertise in pathological imagery is required, which falls out-
side the scope of this study. Consequently, OpenAI’s Chatbot, GPT-4 [3], is utilized to
generate responses to various prompts. For each example, a new conversation with GPT-
4 is initiated to ensure unbiased responses by preventing the chatbot from recalling pre-
vious interactions. This approach serves the purpose of allowing a comparison between
GPT-4’s responses and Pathological-Llama’s predictions and offers potential explanations for
Pathological-Llama’s decision-making process. The GPT-4 generated responses are short-
ened in a subsequent prompt, ensuring that the information is still contained but in a more
concise form for better comparison for this analysis. This analysis aims to extend the study
with additional insights and does not substitute for expert evaluation. Similarly, Google’s
Chatbot Gemini [64] is employed following the same methodology, with the outputs detailed
in the appendix B.2, alongside additional examples. The responses from the chatbots are
shortened by the chatbots themselves, ensuring that the essential information is preserved in
a more concise format to enable a clearer comparison for this analysis.

7.2.1 Example 1: Cardiovacular

Figure 7.1 positive attributions are assigned to "what" and "present," indicating their impor-
tance in forming the question’s diagnostic intent. The term "context:" is given a negative
attribution, reflecting its minimal impact in the presence of keywords directing towards a
diagnostic query. Visual attributions center on the image’s hollow region, aligning with the
"cardiovascular" prediction for this sample. The textual input, with a contribution score of
18.66 overshadows the visual input’s minor contribution of -2.99. The preference for textual
information over visual ones was elaborated by the authors of [31], whose model was simi-
larly constructed as in this study, highlighting the model’s dependency on textual information
for accurate diagnostics.
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FIGURE 7.1: Example 1: Cardiovascular from Test Set.

Table 7.1 presents prompts and responses from GPT-4, offering insights into Pathological-
Llama’s attribution process. Initially, GPT-4’s analysis, based solely on the original im-
age and prompt, identifies a capillary and its lumen, key cardiovascular features, to which
Pathological-Llama’s visual attributions also point. Further interaction, incorporating the
correct "cardiovascular" label and visual focus on the image’s hollow areas, leads GPT-4 to
affirm the interpretability method’s rationale applied in this example.

Prompt: What is present?
GPT-4: The image you’ve uploaded appears to be an electron micrograph, which is a type
of high-resolution photograph taken with an electron microscope. The details in the image
are consistent with a cross-sectional view of biological tissues at the microscopic level. We
can see what looks like a capillary (a small blood vessel) with its lumen (the hollow part
through which blood flows) labeled. Surrounding the capillary are various cells and
extracellular structures, which could be part of the tissue that supports the vessel, such as
connective tissue.
Prompt: My model correctly predicts the answer "cardiovascular". It focuses on the hollow
passage in the middle of the figure and on the hollow part on the right of the figure. Give a
possible explanation.
GPT-4: Your model likely predicts "cardiovascular" because it recognizes the hollow
passage as a capillary lumen, a characteristic feature of the cardiovascular system. It also
may identify the surrounding tissue and its arrangement as typical of this system, possibly
using visual patterns it has learned during training to make this association. If there’s text
within the image, like "Capillary Lumen," the model could be using that as a contextual clue
to bolster its prediction.

TABLE 7.1: Chatbot Generated Response to Example 1: Cardiovascular.

7.2.2 Example 2: Endocrine System

In figure 7.2, the model highlights the terms "is", "this", "part" and "in" with positive attribu-
tions, indicating that the question concerns the location. This underscores the identification
of the question type as pertaining to location. Visual attributions are directed towards the
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bright spots in the image, pinpointing areas of interest relevant to the prediction. Textual
elements impact the model’s prediction, with a contribution score of 20.45, which greatly ex-
ceeds the visual contribution of 1.09. The negative attribution assigned to the word "context"
and the greater emphasis on textual attributions follow the pattern observed in the previous
example, reflecting the model’s consistent approach to prioritizing textual information over
visual cues.

FIGURE 7.2: Example 2: Endocrine from Test Set.

Table 7.2 presents responses generated by GPT-4 to specific prompts. Initially, GPT-4’s in-
ability to provide an answer from only the image and question underscores the challenges
inherent in pathology-focused VQA. Subsequently, incorporating the correct "endocrine sys-
tem" label and focusing on the bright spots gives GPT-4 sufficient context to offer a possible
explanation.
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Prompt: Where is this part in the figure?
GPT-4: The image you’ve provided appears to be a microscopic view of a tissue sample,
likely from a histological examination. However, without additional context or information
regarding the specific type of tissue and staining technique used, I cannot provide a precise
location or diagnosis for the tissue in the figure. Histological images like this one are
typically used to study the microscopic anatomy of biological tissues. The pattern of
staining, the morphology of the cells, and the structure of the tissue all provide clues to its
identity. This could be a section from any number of organs or tissues within the body, as
many tissues can appear similar at this magnification and without specific markers.
Prompt: My model correctly predicts the answer "endocrine system". It focuses on the
bright spots on the figure. Give a possible explanation.
GPT-4: The bright spots in the image likely represent hormone-secreting cells of endocrine
tissue. These cells often appear lighter on stained histological slides because they contain
secretory granules or vesicles that don’t absorb the stain as much. This is common in
endocrine glands like the pancreas, thyroid, and others, where such cells stand out against
the darker tissue background. If your model is trained to recognize these patterns, it may use
the contrast between the bright and dark areas to identify the tissue as part of the endocrine
system.

TABLE 7.2: Chatbot Generated Response to Example 2: Endocrine System.

7.2.3 Example 3: Cut Surface

In Figure 7.3, the model focuses on the terms "What" and "grey" prominently, while "white,"
"irregularly," and "parenchyma" receive lighter positive attributions. This indicates that the
model is pinpointing specific keywords relevant to diagnosing. Visual attributions target the
white areas within the object on the right against the blue background, identifying these spots
as important for diagnosis. The textual input greatly influences the model’s prediction, with
a contribution score of 27.52.

FIGURE 7.3: Example 3: Cut Surface from Test Set.

Table 7.3 showcases the responses generated by GPT-4 to various prompts. Initially, without
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the target answer, GPT-4’s response to the image and question highlights "dissected tissue,"
aligning closely with the "cut surface" descriptor. Upon integrating the target answer "cut
surface" and noting Pathological-Llama’s visual focus, GPT-4 elaborates on the rationale be-
hind such a prediction, suggesting the model’s adeptness at identifying the reflective qualities
typical of freshly cut tissues.

Prompt: What shows a grey white firm tumour extending irregularly into adjacent breast
parenchyma?
GPT-4: The image you’ve provided appears to depict a pathological specimen, likely from
a medical scan or a photograph of a dissected tissue, which shows a grey-white firm tumor
with irregular extensions into the surrounding breast parenchyma. Such a description is
typical of certain types of breast tumors, possibly malignant ones like invasive ductal
carcinoma, which is known to have these characteristics. In a clinical setting, the diagnosis
would be confirmed through a combination of imaging studies, like mammograms or MRIs,
and a biopsy with subsequent histopathological examination. The firmness and irregularity
of the growth, as well as its infiltration into adjacent tissues, are hallmarks of malignant
lesions, but definitive diagnosis always requires a pathological assessment.
Prompt: My model correctly predicts the answer "cut surface". It focuses on the brightest
part of the tumor on the right of the figure. Give a possible explanation.
GPT-4: Your model’s prediction of "cut surface" when focusing on the brightest part of the
tumor could be due to its training on recognizing the reflective properties of tissues in
pathological specimens. The brightness often indicates a freshly cut surface that reflects
more light. The model might combine techniques like contrast detection, texture and color
segmentation, and edge detection to differentiate the cut surface from the rest of the tissue.
Additionally, the patterns recognized by the model are likely informed by its training data,
which may have included many examples where brighter areas correlate with cut surfaces of
tumors. The accuracy of such predictions depends on the model’s ability to integrate these
features effectively, avoiding reliance on brightness alone, which could lead to
misinterpretation in varied scenarios.

TABLE 7.3: Chatbot Generated Response to Example 3: Cut Surface.



37

Chapter 8

Discussion

8.1 Discussion of Findings

This chapter discusses the findings from the experimentation on Pathological-Llama, partic-
ularly emphasizing how chat-based configurations, model capacity, visual prefix length, and
generative approaches influence medical VQA systems’ performance.

The comparison between Tiny-Llama and Tiny-Llama-Chat models as causal language mod-
els for Pathological-Llama highlighted the importance of task-specific architectural features.
Tiny-Llama-Chat’s performance, with a 5.6% increase in validation BERT score (from 0.521
to 0.550) and a 12.7% improvement in validation F1 score (from 0.322 to 0.363), confirms the
benefits of integrating chat-based features for VQA tasks. This concrete evidence supports
the hypothesis that models designed with task-specific considerations can enhance VQA per-
formance.

Further examination of the performance differences between Tiny-Llama and Llama2 high-
lighted that Llama2, with its substantially higher parameter count, demonstrated visible per-
formance improvements. In detail, Llama2 achieved a validation BERT score that was 6.5%
higher, reaching 0.585, and experienced a 10.6% increase in its validation F1 score, achiev-
ing 0.404, all at a learning rate of 1e-5. This underlines the efficacy of larger models in deci-
phering complex data patterns when hyperparameters are optimized to leverage the model’s
extensive capacity. However, it is noteworthy that despite Llama2 having over six times more
parameters than Tiny-Llama, the optimally configured Tiny-Llama approaches Llama2’s per-
formance closely, with a BERT score of 0.573 and an F1 score of 0.403 in the test set. This
marginal difference of only 3% and 4% respectively in favor of Llama2 showcases Tiny-
Llama’s exceptional efficiency and effectiveness, making it a commendable alternative for
tasks demanding high computational efficiency alongside robust performance.

Investigating visual prefix length revealed that longer prefixes generally enhance model per-
formance. For Tiny-Llama, extending the prefix to 12 led to a 14.5% increase in validation
BERT score and a 20.2% improvement in validation F1 score in comparison to its counter-
part setup of prefix 2, indicating the value of providing the model with an extended visual
context for improved data integration and interpretation. Similarly, Llama2 exhibited optimal
performance with a prefix length of 6, pointing to the necessity of finding an ideal balance
for visual prefix length that maximizes performance within computational constraints.

The study’s exploration into the use of generative approaches for close-ended questions
showed effectiveness over classification models. The generative Llama2 model outperformed
its classification counterpart in testing accuracy and F1 scores. This distinction illustrates the
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potential of generative models to provide a richer, more nuanced understanding of medical
VQA tasks.

The application of the Integrated Gradients method, alongside GPT-4’s analysis, offered pro-
found insights into the Pathological-Llama model’s reasoning process. This innovative ap-
proach to explainability not only validated the model’s predictions but also established a
novel paradigm for interpreting AI decisions in complex scenarios, thereby enhancing model
transparency and trustworthiness.

A notable challenge identified in this study is the lack of standardized evaluation metrics for
generative text in the medical domain. These findings advocate for a multifaceted evaluation
approach that include semantic similarity and medical correctness. Addressing hardware
limitations also influenced many experimental decisions and highlighting the importance of
developing lightweight models that balance efficiency with computational feasibility.

8.2 Comparison to existing State-of-the-Art Models

In the PathVQA task, comparing Pathological-Llama to other state-of-the-art models presents
a challenge, primarily due to inconsistencies in evaluation metrics, dataset splits, and dataset
versions across related work. Notably, some models employ different metrics, or when simi-
lar metrics are used, the dataset split varies (e.g., some use a 0.5, 0.3, 0.2 split [21]) or rely on
earlier versions of the dataset. These discrepancies underscore the necessity for standardized
benchmarks in tasks of this nature to enable fair and meaningful comparisons.

From the original papers on PathVQA, various models report diverse performance metrics:

• PathVQA Method 1 [1] reported an F1 score of 0.24,

• GPT2-xl [31] boasted an F1 score of 0.58 and a BERT score of 0.78,

• LLaVA-Med [33] documented a Recall of 39.60.

However, an attempt to replicate the results reported by GPT2-xl during this study encoun-
tered difficulties. Despite utilizing the code and documented parameters provided by the
authors, with missing parameters supplemented from the default values in their codebase,
the results did not align with those initially reported. The replicated results yielded a BERT
score of 0.563 and an F1 score of 0.223 at epoch 60 on the test set split used in this study.

Despite inconsistencies in evaluation standards making direct comparisons difficult, Pathological-
Llama’s performance, with a BERT score of 0.591 and an F1 score of 0.419, positions it com-
petitively among current medical VQA models. This underscores its potential as a valuable
diagnostic tool. The challenges in replicating results from other studies underscore the need
for transparent documentation and uniform reporting standards to improve reproducibility
and facilitate progress in the field. Establishing such standards would not only validate the
advancements made by models like Pathological-Llama but also push forward the capabilities
of medical VQA technologies.
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Chapter 9

Conclusion and Future Research

This thesis conducted an in-depth investigation into the Pathological-Llama model, examin-
ing its performance across diverse configurations in the field of medical VQA.

9.1 Key Findings

This study’s key findings are:

• Task-Specific Architecture: Incorporating causal language models that are constructed
for chat/dialogue resulted in performance improvements, highlighting the importance
of aligning model architecture with the specific demands of VQA tasks.

• Model Capacity: Larger models, exemplified by Llama2, demonstrated superior per-
formance when optimally tuned with appropriate hyperparameters, showcasing their
enhanced capability to process complex data patterns.

• Efficiency vs. Capacity: Despite Llama2 possessing over six times the parameters
of Tiny-Llama, the latter demonstrated remarkably close performance. This highlights
Tiny-Llama’s efficiency, positioning it as an effective model for scenarios where com-
putational resources are limited.

• Visual Prefix Length: Extending the visual prefix length generally led to better model
performance, indicating that a more comprehensive visual context leads to improved
data integration and interpretation.

• Generative Approaches: Generative models proved more effective than classification
models for close-ended questions, offering a nuanced and contextually aware approach
to VQA.

• Explainability: The application of the Integrated Gradients method, complemented
by GPT-4’s analysis, provided valuable insights into the model’s reasoning process,
enhancing transparency and trust in AI-driven diagnostics.

9.2 Implications for Future Research

The study’s implications extend beyond the immediate findings, suggesting several avenues
for future research:
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• Further exploration of task-specific architectures and model capacities could uncover
additional enhancements to VQA performance.

• Investigating the impact of even longer visual prefixes, given computational resources
allow, could provide deeper insights into optimal data integration strategies.

• Expanding the application of generative models to other types of questions and datasets
may reveal broader benefits and limitations within medical VQA systems.

• Developing a standardized set of evaluation metrics for generative text in the medical
domain could facilitate more refined assessments of model performance.

• Addressing computational constraints through the development of more efficient model
architectures could broaden the applicability of findings and facilitate the adoption of
VQA systems across various medical settings.

9.3 Conclusion

This thesis contributes to the understanding and optimization of medical VQA systems, lay-
ing the groundwork for future advancements in AI-driven healthcare diagnostics. By navi-
gating the complexities of model design and functionality within computational constraints,
this study has highlighted the potential of advanced AI applications in improving medical di-
agnostics. The insights concluded from this study not only enhance the academic discourse
on medical AI but also hold promise for practical applications, aiming to improve patient
care and outcomes through the integration of AI technologies.
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Appendix A

Extended Experiments

The comparison is between TinyLlama-1.1B-Chat-v0.1 (V1), the initial chat-based model,
and its latest iteration, TinyLlama-1.1B-Chat-v0.4 (V4). Both versions were fine-tuned on the
PathVQA dataset, applying a learning rate of 1e-4 across 60 epochs and a visual prefix size of
6. Performance metrics at epoch 60 are summarized in table A.1. The comparative evaluation

Model Train Loss Val Loss Val BLEU Val BERT Val F1
Tiny-Llama V1 0.0626 0.7747 0.5071 0.550 0.363
Tiny-Llama V4 0.1015 0.7414 0.5047 0.539 0.349

TABLE A.1: Performance Comparison of Tiny-Llama V1 and Tiny-Llama
V4.

reveals that TinyLlama V1 exhibits superior performance across several key metrics relative
to TinyLlama V4. Notable improvements include reduced training loss and enhanced scores
in BLEU, BERT, and F1 metrics, as visualized in A.1 and A.2. This enhanced performance
of TinyLlama V1 may stem from its more effective generalization to the PathVQA dataset,
suggesting an advantage in fine-tuning on the PathVQA task with a less extensively pre-
trained model on a broader dataset.

FIGURE A.1: Train and Validation Performance of Tiny-Llama V1 and
Tiny-Llama V4 over 60 Epochs.
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FIGURE A.2: Validation BERT and F1 score at Epoch 60.
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Appendix B

Extended Explainability Examples

B.1 Integrated Gradients Applied to Pathological-Llama with Llama2

The figures presented below illustrate the application of Integrated Gradients (IG) to the
Pathological-Llama model, which incorporates Llama2 as the causal language model, con-
figured according to the specifications outlined in 6.2. The implementation follows the details
described in 7, with the exception that the attribution method employs 10 steps.

FIGURE B.1: Example 1: Cardiovascular from Test Set.
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FIGURE B.2: Example 2: Cardiovascular from Test Set.

FIGURE B.3: Example 3: Endocrine from Test Set.
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FIGURE B.4: Example 4: Endocrine from Test Set.

FIGURE B.5: Example 5: Cut Surface from Test Set.
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B.2 Chatbot Generated Responses

Prompt: What is present?
GPT-4: The image you’ve uploaded appears to be an electron micrograph, which is a type
of high-resolution photograph taken with an electron microscope. The details in the image
are consistent with a cross-sectional view of biological tissues at the microscopic level. We
can see what looks like a capillary (a small blood vessel) with its lumen (the hollow part
through which blood flows) labeled. Surrounding the capillary are various cells and
extracellular structures, which could be part of the tissue that supports the vessel, such as
connective tissue.
Gemini: The image you sent is a black and white drawing of a biological cell. The specific
type of cell is not labeled, but it has a nucleus, endoplasmic reticulum, Golgi apparatus,
mitochondria, and lysosomes. These are all organelles, which are membrane-bound
structures that perform specific functions within the cell. The text on the image says
"Capillary" and "Lumen," which suggests that the cell is part of a capillary, which is a small
blood vessel. The lumen is the hollow space inside the capillary.
Prompt: My model correctly predicts the answer "cardiovascular". It focuses on the hollow
passage in the middle of the figure and on the hollow part on the right of the figure. Give a
possible explanation.
GPT-4: Your model likely predicts "cardiovascular" because it recognizes the hollow
passage as a capillary lumen, a characteristic feature of the cardiovascular system. It also
may identify the surrounding tissue and its arrangement as typical of this system, possibly
using visual patterns it has learned during training to make this association. If there’s text
within the image, like "Capillary Lumen," the model could be using that as a contextual clue
to bolster its prediction.
Gemini: Your model’s focus on hollow spaces in the image could explain its
"cardiovascular" prediction. It might see them as blood vessel features or infer their role in
blood flow, aligning with the cardiovascular system’s function.

TABLE B.1: Chatbot Generated Response Example Cardiovascular 1.



B.2. Chatbot Generated Responses 47

Prompt: What is present ?
GPT-4: The image you’ve uploaded appears to be a transmission electron microscope
(TEM) image of a biological sample. The large, oval structure labeled "Capillary Lumen"
indicates that this is likely a cross-section of a capillary, a small blood vessel. Inside the
capillary lumen, we typically expect to see blood cells and plasma. The surrounding cellular
details are not clearly visible, but it’s common to see endothelial cells lining the capillary,
which play a crucial role in the exchange of substances between the blood and surrounding
tissues. The other structures in the image are not labeled, but they might be other cell types
or extracellular components depending on the tissue this sample was taken from.
Gemini: The image you sent appears to be a black and white micrograph of a neuron, a
nerve cell. It has a large, irregular cell body that contains the nucleus. The nucleus is the
round, light colored structure in the center of the cell body. It contains the cell’s genetic
material. Extending from the cell body are thin fibers called dendrites and a longer fiber
called an axon. Dendrites receive signals from other neurons, while the axon transmits
signals to other neurons. The text on the image says "Capillary," but this is incorrect.
Capillaries are tiny blood vessels that deliver oxygen and nutrients to cells and remove
waste products. The structure in the image is a neuron, not a capillary.
Prompt: My model correctly predicts the answer "cardiovascular". It focuses on the hollow
passage on the left of the figure and on the part where "Capiliary Lumen" is written. Give a
possible explanation.
GPT-4: Your model’s correct prediction of "cardiovascular" could be due to its recognition
of the labeled "Capillary Lumen," a term specific to the cardiovascular system, and its
identification of the hollow structure typical of blood vessels. Additionally, if it was trained
on similar images, it may have learned to associate certain morphological features with the
cardiovascular system.
Gemini: The model predicted "cardiovascular" because the neuron’s structure resembled a
blood vessel, and the misleading "Capillary Lumen" label influenced its thinking. These
instances help us improve models by recognizing misleading clues and avoiding similar
misinterpretations.

TABLE B.2: Chatbot Generated Response Example Cardiovascular 2.
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Prompt: Where is this part in the figure?
GPT-4: The image you’ve provided appears to be a microscopic view of a tissue sample,
likely from a histological examination. However, without additional context or information
regarding the specific type of tissue and staining technique used, I cannot provide a precise
location or diagnosis for the tissue in the figure. Histological images like this one are
typically used to study the microscopic anatomy of biological tissues. The pattern of
staining, the morphology of the cells, and the structure of the tissue all provide clues to its
identity. This could be a section from any number of organs or tissues within the body, as
many tissues can appear similar at this magnification and without specific markers.
Gemini: I can’t tell you where the tissue sample in the image came from.
Prompt: My model correctly predicts the answer "endocrine system". It focuses on the
bright spots on the figure. Give a possible explanation.
GPT-4: The bright spots in the image likely represent hormone-secreting cells of endocrine
tissue. These cells often appear lighter on stained histological slides because they contain
secretory granules or vesicles that don’t absorb the stain as much. This is common in
endocrine glands like the pancreas, thyroid, and others, where such cells stand out against
the darker tissue background. If your model is trained to recognize these patterns, it may use
the contrast between the bright and dark areas to identify the tissue as part of the endocrine
system.
Gemini: The pink/red regions in your histological image, likely due to H&E staining, might
be triggering your model’s "endocrine system" prediction. These vibrant areas could reflect
the cell characteristics of endocrine glands or highlight their distinct tissue architecture.
Alternatively, your model’s training data might have ingrained an association between
brightness and the endocrine system.

TABLE B.3: Chatbot Generated Response Example Endocrine 1.
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Prompt: Where is this part in the figure?
GPT-4: The image you have provided appears to be a photomicrograph from a histological
examination, most likely a section of tissue stained and viewed under a microscope.
Unfortunately, without additional context or information, I cannot definitively determine the
exact origin of the tissue. It could potentially be a section from an organ or a specific type of
tissue from the human body or from an animal. Typically, the features that can be observed
such as the arrangement of cells, the presence of any specialized structures, and the staining
pattern can provide clues to its identity. For example, certain tissues are characterized by the
presence of specific cell types (like adipose tissue with its large fat cells), unique structures
(like the villi in the small intestine), or particular arrangements of cells (like the layered
structure in skin).
Gemini: The part of the figure you sent is a tissue sample mounted on a microscope slide. It
is difficult to say definitively what tissue it is, but it looks like it could be from the thyroid
gland. The thyroid gland is located in the front of the neck, just below the Adam’s apple. It
is a butterfly-shaped gland that produces hormones that regulate metabolism. Microscope
slides are used to hold samples of tissue or other materials for examination under a
microscope. The tissue sample is typically mounted on the slide and then stained with dyes
to make it easier to see the different cells and structures. The slide is then placed on the
stage of the microscope and viewed through the lens.
Prompt: My model correctly predicts the answer "endocrine system". It focuses on the
bright part on the left of the figure. Give a possible explanation.
GPT-4: If your model identifies the tissue as part of the endocrine system, it might be
focusing on the bright area to the left because it resembles the features of endocrine glands,
which are usually organized into distinct structures like cords or follicles and are highly
vascularized for hormone secretion into the bloodstream. These glands don’t have ducts,
and the contrast in the image could be highlighting the dense cellular regions that are typical
of endocrine tissues, next to lighter areas that could be connective tissue or spaces around
blood vessels. The precise identification would still depend on the stain used, magnification,
and the sample’s origin.
Gemini: The bright part on the left likely represents thyroid tissue due to the presence of
characteristic features like colloid-filled follicles, follicular epithelium, and parafollicular
cells. The distinct pink color of the colloid might have attracted the model’s attention.

TABLE B.4: Chatbot Generated Response Example Endocrine 2.
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Prompt: What shows a grey white firm tumour extending irregularly into adjacent breast
parenchyma?
GPT-4: The image you’ve provided appears to depict a pathological specimen, likely from
a medical scan or a photograph of a dissected tissue, which shows a grey-white firm tumor
with irregular extensions into the surrounding breast parenchyma. Such a description is
typical of certain types of breast tumors, possibly malignant ones like invasive ductal
carcinoma, which is known to have these characteristics. In a clinical setting, the diagnosis
would be confirmed through a combination of imaging studies, like mammograms or MRIs,
and a biopsy with subsequent histopathological examination. The firmness and irregularity
of the growth, as well as its infiltration into adjacent tissues, are hallmarks of malignant
lesions, but definitive diagnosis always requires a pathological assessment.
Gemini: I am unable to diagnose medical conditions or provide medical advice.
Prompt: My model correctly predicts the answer "cut surface". It focuses on the brightest
part of the tumor on the right of the figure. Give a possible explanation.
GPT-4: Your model’s prediction of "cut surface" when focusing on the brightest part of the
tumor could be due to its training on recognizing the reflective properties of tissues in
pathological specimens. The brightness often indicates a freshly cut surface that reflects
more light. The model might combine techniques like contrast detection, texture and color
segmentation, and edge detection to differentiate the cut surface from the rest of the tissue.
Additionally, the patterns recognized by the model are likely informed by its training data,
which may have included many examples where brighter areas correlate with cut surfaces of
tumors. The accuracy of such predictions depends on the model’s ability to integrate these
features effectively, avoiding reliance on brightness alone, which could lead to
misinterpretation in varied scenarios.
Gemini: Your model’s prediction of a "cut surface" for the bright tumor region is
reasonable for several reasons. Brighter areas in various imaging techniques often indicate
cut surfaces due to differing light reflection/absorption. The location on the edge,
resembling a knife cut shape, further supports this.

TABLE B.5: Chatbot Generated Response Example Tumor.
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