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Abstract

Modern radio telescope surveys, capable of detecting millions of galaxies, have made manual morpho-
logical classification impracticable. This applies in particular when the Square Kilometre Array (SKA)
becomes operable in 2027. With the SKA, researchers hope to close an important gap in our un-
derstanding of the Universe: the Cosmic Dawn, i.e. the time when the first stars and galaxies were
formed. Since light travels through the cosmos from di�erent points in spacetime, an image captured
by a radio telescope includes galaxies from several epochs. To analyse the origins of the Universe, more
recent radio emissions must therefore be removed from the record, which is why the classification of
celestial objects is crucial. This work presents a benchmark of state-of-the-art object detection and
classification architectures on a six-class Radio Galaxy Zoo dataset. The focus of the model selection
was on the comparison between CNN- and transformer-based algorithms. The experiments include the
investigation of di�erent scaling techniques, the selection and training of two object detection and three
classification algorithms, an uncertainty estimation by an ensemble analysis and a verification of the
results on samples of the GaLactic and Extragalactic All-Sky MWA Survey (GLEAM) dataset. The
best classification performance of 89.67% top-1 and 97.47% top-2 accuracy was achieved by using a
ResNet50 architecture trained on ZMZStack scaled images and by applying basic augmentation. Using
an ensemble of three models further increased performance to 90.68% top-1 and 98.58% top-2 accuracy.
The final evaluation of six GLEAM images analysed with an ensemble of 30 ResNet50 models showed
a probability of misclassification above 5% and below 32% for the five complex samples. However, the
image crops consist of a significantly lower resolution, and an analysis of GLEAM images with higher
resolution had to be postponed to future work due to external factors.
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Chapter 1

Introduction

1.1 Problem Statement

Investigating the origin of the Universe is a fundamental field of research in astronomy [1;2]. The current
construction of the Square Kilometre Array (SKA) radio interferometer is the most promising human
initiative to study the history of the Universe [3;4]. More specifically, the exploration of the Universe at
the time of the Cosmic Dawn is a key science objective of the prospective SKA telescope observatory [2].
The Cosmic Dawn describes an era when the first stars were formed and the Universe was only a few 100
million years old [2;5]. Contrary to optical telescopes, radio telescope can analyse light emission at much
lower frequencies, in the radio band, which allows sources to be studied at much greater distances [6].
Due to the enormous size of the SKA and the corresponding increase in resolution, the SKA allows
researchers to investigate a larger timespan [7]. However, the farther reach of the SKA imposes new
challenges [8].

Since the Universe can be regarded as four-dimensional with three spatial and one timelike dimension,
the resulting image of the SKA at a given frequency is two-dimensional [9;7]. The third and fourth
dimension are reduced, like squeezing a cone. In other words, since light travels at constant speed,
light rays emanating from far away objects in earlier epochs and rays originating more recently, closer
to Earth are recorded simultaneously [7]. Consequently, if a radio telescope has a su�cient resolution,
the captured image features sources from several epochs [7]. In order to investigate the Cosmic Dawn
with the results recorded by the SKA, the emissions from before this time must be filtered. More
recent emissions can therefore be regarded as noise in the signals from the Cosmic Dawn. In an image
these foreground sources must first be localized and characterized, resulting in a radio source catalogue.
Astronomers can then cleanly identify the types of radio sources which can be omitted to get a denoised
view of the Cosmic Dawn and earlier epochs.

The unprecedented extent and e�ciency of the SKA allows coverage of a wide and deep field of the
sky, yielding an image containing millions of radio sources [1]. This large quantity of sources makes
it infeasible to process the emissions manually and requires an automated approach [8;10]. In recent
years, advances in deep learning (DL) have produced various new methods and algorithms for object
recognition and image classification [11;12;13;14;15;16]. Particularly in computer vision, DL algorithms
such as convolutional neural networks are being used successfully in various areas of research [17]. Their
success in dealing with high-dimensional data and a low signal-to-noise ratio (SNR) has led to a
widespread use of DL algorithms to identify radio sources or astronomy in general [8;18;19;20].

This work mainly focuses on comparing and training di�erent image classification and object detection
models for the automated identification of radio sources. This encompasses testing various preprocessing
techniques, conducting ensemble experiments and fine-tuning the most promising architecture from a
model benchmark on a dataset of radio galaxies captured in several last-generation surveys. As a final
test, the trained model is applied to samples from the GLEAM survey to evaluate its transferability to
another radio source dataset obtained by a precursor project to the SKA [21].
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CHAPTER 1. INTRODUCTION 1.2. Related Work

In recent years, various works with remarkable outcomes on training classification or object detection
models for radio source determination can be found in the literature [22;8;23;24;25;26]. However, the ma-
jority investigate or develop a specialized architectures. Therefore, this work aims to scrutinise whether
prevalent state-of-the-art (SOTA) architectures can obtain comparable results to tailored approaches
which require much more e�ort and development time. Furthermore, this review examines if the com-
plexity of recent DL-based architectures is an important criterion for the rather simple task of radio
source classification or detection.

1.2 Related Work

Since the discovery of radio source emissions by James Stanley Hey in 1942, an important task in radio
astronomy was to identify or classify the captured objects [6]. The term classification in this context
refers to the process of assigning a uniquely describing label to a located radio source. One of the main
motivations for these classification e�orts is the creation of catalogues and maps of the Universe, which
was initially done manually by experts [6]. Thanks to technological advances, future radio telescopes
may detect light waves from millions of undiscovered radio sources over the time of their operation [8].
This is especially true for a planned survey of the SKA observatory, the so-called Evolutionary Map of
the Universe (EMU) with a sensitivity of 10 mJy/beam, encompassing the entire southern sky, as well
as an estimated number of 70 million detected radio sources [27]. This enormous inflow of data requires
rethinking of old analysis pipelines and the development of new ideas.

The development of automated algorithms for radio source classification and detection conveniently
aligns with advances in computer vision, machine learning and more recently, deep learning algorithms.
With the first larger catalogues, researchers applied classical machine learning approaches to the present
classification problem. Fayyad, Weir and Djorgovski [28] as well as Ball et al. [29] applied Decision
Trees, Zhang [30] and Sadeghi [31] used Support Vector Machines (SVM) and Alger [32] or Cheng [33]

compared the performance of Logistic Regression as well as Random Forests to neural architectures
like Convolutional Neural Networks (CNNs). Due to their data e�ciency and the smaller number of
samples required for training [34], classical machine learning architectures are still widely used for these
tasks. However, most benchmarks reveal a clear advantage when using neural networks like CNNs in
comparison to classical machine learning approaches [33;34;32].

Statistical methods for radio source classification are a staple for astronomy and astrophysics alike. E.g.,
AEGEAN, a method proposed by Hancock, Trott and Hurley-Walker, benefits from spatially correlated
data as well as from a varying background and noise across the sky to fit a source finding model [7].
Algere et al. [35] use PySE, a Python software package for radio source identification through brightness
peaks and noise reduction [36], on a dataset acquired with the LOFAR telescope [37] and characterized
sources using a cross-matching technique with a binary classifier.

Lately however, neural-based approaches have gained traction in radio source detection or classifica-
tion. The first architectures which notably exceeded the performance of classical machine learning
methods were CNNs. Therefore, researchers analysed well-known CNN architectures like AlexNet [38] or
Google’s LeNet [39] as well as classical CNN implementations [40;41] with specific adjustments like sigma
clipping layers as in Lukic et al. [42]. Finally, Becker et al. [43] performed extensive comparisons of CNN
architectures.

In addition to the preprocessing steps discussed in this report (chapter 4.4.2), augmentation is often
used to tackle the problems with imbalanced datasets or strengthen a model’s robustness [40;44;45].
Therefore, simple methods such as the rotation [40;44] up to more advanced ones such as the generation
of synthetic data with generative adversarial networks (GAN), as in the work of Hosenie [46], have yielded
great performance improvements.

More recent investigations go beyond classical supervised learning methods into the domain of semi-
supervised or unsupervised learning approaches [47;48;49;10;50]. Whereas Polsterer, Gieseke and Igel [47] as
well as Galvin et al. [48] use a flipping invariant extension of self-organising maps (SOM), called PINK,
apply Slijepcevic [10] and Hossain [50] an algorithm called Bootstrap Your Own Latent (BYOL) together
with Contrastive Learning (SimCLR) to overcome the shortage of inaccurately labelled data.
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1.3. Goals CHAPTER 1. INTRODUCTION

In the field of radio source detection, various other architectures have also been studied in the literature.
However, the latest SOTA architectures designed for the use with natural images still remain largely
untested up to now. A frequently used algorithm are versions of R-CNN or Masked R-CNN, as in the
papers of Riggi et al. [22;8] or Mostert et al. [23]. Another widely used model family is You Only Look Once
(YOLO), e.g. [51] which is a precursor version of the current YOLOv8 architecture [11]. Whereas Zhang,
Jiang and Zhang [24] applied a basic implementation of the YOLOv5 model, Wang et al. [25] added a
supplementary attention mechanism to the architecture. At the time of this project, Sortino et al. [26]

provides the only comparison available with multiple recent models examined for radio source detection.
In the extensive benchmark, representatives of Masked R-CNN, Detectron2, DETR, YOLOv4, YOLOv7,
YOLO S and E�cientDet were compared with promising results above the 90% accuracy level on an
open source radio galaxy dataset. Sortino et al. [26] therefore gives an indication that SOTA object
detection models work e�ciently with radio source images.

After two-stage region proposal networks (RPN) like faster R-CNN [52] had dominated the field for years,
faster and more performant one-stage models like YOLO emerged and became the prevalent architec-
tures for generic object detection in industrial sectors as well as academia [53]. With the outstanding
successes of transformers in Natural Language Processing (NLP) applications [13], their architecture also
received attention by the computer vision community, especially for generative models [54]. The first
end-to-end transformer-based architecture for object detection was proposed by Carion et al. [55], called
Detection Transformer or DETR. Many adjustments have been made to the original implementation
to address particular shortcomings like a slow training convergence, as for the encoder-only DETR [56].
Other studies focus on a deeper understanding of decoder queries which are often associated with
spacial positions of di�erent perspectives [12]. From these e�orts new architecture variations like DAB-
DETR [57], denoising-improved DETR models such as DN-DETR [58], or DINO [12] emerged which further
raised training speed, stability and ultimately performance on many popular datasets like COCO [59].

Ultimately, to our knowledge, there has not yet been a study that applied the latest SOTA object
detection or classification architectures for radio source datasets.

1.3 Goals

The main objective of this (and subsequent) work is to enable automatic classification of radio sources
on unseen or newly generated datasets. For this purpose, a selected number of neural-based image
classification and object detection architectures was trained and compared on a curated, open-source
dataset of radio galaxies. However, due to limited resources, not arbitrarily many architectures can
be compared, which is why a configurable training pipeline for multiple architectures was set up to
minimize overhead. As the SKA is still in construction and not yet operable, a second key objective
is to test the trained model against the GaLactic and Extragalactic All-sky MWA Survey (GLEAM)
catalogue [4;21]. In summary, the objectives of this work can be expressed as follows:

1. Evaluating di�erent preprocessing steps for the selected radio source dataset.

2. Implementing a configurable multi-architecture object detection and classification pipeline.

3. Conducting a benchmark of selected SOTA image classification and object detection models.

4. Selecting and fine-tuning the most promising model out of the architecture benchmark.

5. Carrying out ensemble experiments for selected models to estimate uncertainties.

6. Testing the obtained model on samples of the GLEAM [21] catalogue.
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Chapter 2

Theoretical Introduction

2.1 Datasets

This section introduces the terminology of radio source datasets and provides an overview of the datasets
used in this project.

2.1.1 Radio Source Datasets

Radio source telescopes are commonly operated by intergovernmental organizations, often partially
owned by universities. Creating a large image or map of radio sources, known as a survey in astronomy,
is an involved project that costs time and money. On the one hand, this means that only a limited
number of datasets are available, on the other hand it also supports the fact that the datasets are made
publically available to the scientific community, albeit after an embargo phase of one to two years. For
this work, two datasets were considered which were publicly available at the time of the project. The
two datasets, namely Radio Galaxy Zoo (RGZ) and GaLactic and Extragalactic All-sky MWA Survey
(GLEAM), are presented in the following subsections.

2.1.2 Radio Galaxy Zoo (RGZ)

The Radio Galaxy Zoo (RGZ) of Banfield et al. [60] is one of the most widely used radio galaxy classi-
fication dataset in the literature. It contains 170

Õ
000 (and counting) radio source images taken from

the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) [61] and the Australia Telescope
Large Area Survey (ATLAS) Data Release 3 [62] datasets. The data labelling was organised in a citizen
science project. In a first version (DR1), around 12

Õ
000 citizens contributed to the dataset by labelling

roughly 75
Õ
000 sources (Wong et al., in prep.).

However, in order to train an object detection model, not only a dataset with labelled classes must be
available, but also annotated bounding boxes, which specify the coordinates of the recognised objects
in an image. Therefore, this project uses a subset of the original RGZ DR1 dataset, produced by Wu
et al. [63]. We will call this subset Radio Galaxy Zoo Object Detection (RGZ OD) dataset to make a
distinction to the original RGZ dataset.

Contrary to the traditionally applied Fanaro� - Riley (FR) [64] categorization for radio sources, the RGZ
DR1 dataset is separated into classes in terms of number of peaks and number of components (Wong
et al., in prep.) [63]. The number of components is defined as the number of discrete radio components
that a source encompasses, identified at the 4‡ flux-density threshold [42;63]. The number of peaks
refers to the amount of bright or conspicuous illumination peaks in a radio source that are detected by
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2.1. Datasets CHAPTER 2. THEORETICAL INTRODUCTION

an automatic pipeline processor [42;32]. This results in classes that are named after the combination of
these two characteristics and written as follows:

[Number of Components]_[Number of Peaks] æ e.g 1_1.

Subsequently, an example made by Wu et al. [63]: A double-lobed radio galaxy with small angular
extent and no radio core may be identified as a source with one component-two peaks (1C_2P) or
a two component-two peaks (2C_2P) if the two lobes appear disconnected in the radio image. The
classes used in this work are defined within the next paragraphs.

The RGZ OD dataset is the result of two filter rules that were applied to the RGZ DR1 dataset. First,
the RGZ OD contains only samples that exceed a user-weighted consensus level (CL) of Ø 0.6 in the
original RGZ DR1 dataset [63]. According to Wu et al. [63] this should ensure that most radio sources are
morphologically human-resolvable. Second, only samples with less than four components and four peaks
were selected [63]. This to reduce the e�ect of a highly imbalanced dataset [63]. After applying these
two rules, the resulting six classes of the RGZ OD dataset, together with their number of occurrences
are shown in table 2.1 and examples are visualised in figure 2.1.

Classes 1_1 1_2 1_3 2_2 2_3 3_3

Occurrences 5’300 1’331 1’412 1’251 1’208 1’334

Total 11’836 Samples

Table 2.1: Class Occurrences Radio Galaxy Zoo Object Detection Dataset (RGZ OD) [63]

RGZ-OD images are available in PNG or FITS (Flexible Image Transport System) file format [63]. For
the latter, image pixel intensities can be stored in an arbitrary range from negative to positive values
depending on the unit in which the image was captured or processed [65]. Note that negative values
occur due to the primary beam corrections applied in the image generation from the raw telescope data.
Additional metadata such as the measurement unit or the telescope from which the file originates can
be stored in the header attributes of the file, which are similar to a key-value store [65].

In a second automated step, squared bounding boxes with respect to location and size were generated
by considering physical meta attributes defined in the RGZ DR1 dataset [63]. To define a bounding
box’s centre, Wu et al. [63] used the central location of a sample defined in the RA (Right ascension of
the phase centre) and DEC (Declination of the phase centre) header attributes [65]. Additionally, the
sky coordinates Sc of the box’s four corners are calculated using the RGZ DR1 max_angular_extent

parameter, which is an estimate of the source’s angular size for all RGZ consensus sources as detailed
in Banfield et al. [60] and Wong et al. (in preparation) [63]. Finally, the sky coordinates Sc are converted
into pixel coordinates Pc by Python imaging processing libraries [63].

For this project, the images were used in FITS file format together with the annotation information for
a sample [63]. This in order to retain the accuracy of the intensity values before preprocessing.

Figure 2.1: Class Samples RGZ OD Dataset [63]
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CHAPTER 2. THEORETICAL INTRODUCTION 2.2. Model Architectures

2.1.3 GaLactic and Extragalactic All-sky MWA Survey (GLEAM)

Starting in August 2013, the two-year sky observation made with the Murchison Widefield Array
(MWA) [66] was source for the GaLactic and Extragalactic All-sky MWA Survey (GLEAM) encompassing
the entire radio sky south of declination +25

¶ [67;68]. Driven by the goal to measure radio emissions
from high-redshift neutral hydrogen during the Epoch of Reionisation (EoR), which are expected to lie
in the frequency band between 50 - 200 MHz, the GLEAM Survey collected frequencies between 72 and
231 MHz [69;70;67]. In the two years of recording, observations were made with a frequency resolution
of 40 kHz and a time resolution of 0.5s in the first year, respectively 10 kHz and 2s in the second year.
A summary of the recording parameters of the GLEAM Survey is listed in table 2.2.

The final resolution depends on the measured frequency [67]. Operating at 154 MHz, the imaging
capabilities yield a resolution of around 2.5◊2.2

cos(”+26.7¶) arcmin, with the sensitivity to detect structures up
to an angular size of approximately 10

¶ [67]. The resulting catalogue contains 307
Õ
455 radio sources [68].

However, some areas were excluded, such as the Magellanic Clouds [68].

Similar to the intention of the GLEAM Survey investigators, the catalogue is used to perform experiments
prior the SKA era [67]. The GLEAM Survey gives us the closest pre-SKA test case to verify results
obtained by models trained on other datasets, such as the RGZ OD. Detailed explanations about the
experiments performed on the GLEAM catalogue can be found in chapter 3.4.

Parameter Values

Pointing Declinations (deg) ≠72, ≠55, ≠40.5, ≠26.7, ≠13, +1.6, +18.3

Central Frequencies (MHz) 87.68, 118.4, 154.24, 184.96, 215.68

Frequency Resolution (kHz) 40 (first year), 10 (second year)
Time Resolution (s) 0.5 (first year), 2 (second year)

Table 2.2: GLEAM Survey Recording Parameters [67]

2.2 Model Architectures

Deep Learning architectures are evolving rapidly in the past recent years. As this work evaluates
classification and object detection architectures, this chapter aims to o�er brief historical and theoretical
background on the applied model architecture in this work and provides further references.

2.2.1 Classification Models

Residual Network (ResNet)

At the time of its conception by He et al. [14] in 2015, ResNet significantly outperformed existing
architectures by enabling deeper models to be trained faster and more robustly. Moreover, today still,
ResNets are used for many feature extracting backbones in modern architectures [71;72]. In the years
around 2015, a debate was held if a model’s depth is the primary driver of performance [14]. However,
deeper models require a longer training time and are often faced the problem of vanishing or exploding
gradients as well as degradation [73]. For instance, the degradation problem can be identified in an error
curve, which shows a rapid degradation after starting to converge [14].

Di�erent strategies exist to tackle vanishing or exploding gradients, such as input normalisation, a
specific weight initialisation [74;75] or batch normalisation [76]. In comparison, at its essence, ResNet aims
to tackle the degradation problem by introducing residual blocks of which an example is shown in 2.2.
Instead of the usual sequential stack of layers and activation functions within a block, a residual block
also consists of a so-called residual mapping, a residual connection or a skip connection [14]. Such skip
connections have mainly two benefits [14]. First, residual blocks convey the original input information
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to later layers, allowing larger gradients for early stages during optimisation [14]. Second, they retain
gradient information when back propagating it to early layers of the network by flowing directly through
the skip connections rather than through the entire chain of blocks of a deep network [14]. Nowadays,
ResNets are no longer considered state-of-the-art for classification tasks, but they are used in this work
to establish a baseline and to validate the classification task and the dataset itself.

Figure 2.2: Residual Block [14]

E�cientNet

Essentially, E�cientNet, as the name suggests, is all about the e�ciency of a model, or more intuitively,
how to achieve the desired accuracy with the least amount of parameters [15]. In the original paper of Tan
and Le [15], the main focus therefore is on defining a method to e�ciently scale CNN architectures.

Considering the development and performance improvements achieved by AlexNet, Google’s LeNet
and SenNet, it can be assumed that increasing the number of layers in a network makes the greatest
contribution to model performance. However, empirical studies have shown that simply increasing the
depth of a model leads to a saturation of the performance. A major finding made in the paper was
recognising, that there exist a relationship between scaling the depth (#layers), the width (#channels)
and the resolution of the input image to a network. Therefore, Tan and Le [15] propose a compound
coe�cient for the network depth, width and the resolution „, which scales the network more e�ciently.
Referring to the authors, the compound scaling can be understood intuitively [15]. If the input image is
bigger, then the network needs more layers to increase the receptive field and more channels to capture
more fine-grained patterns [15].

To understand compound scaling, first some notation needs to be introduced, adopted from Tan and Le [15].
Let a convolutional layer be defined as Yi = Fi(Xi), where Fi is an operator, Yi the output tensor and
Xi the input tensor of shape ÈHi,Wi,CiÍ, where Hi and Wi are the spatial dimensions of the input
image and Ci the number of channels. An entire convolutional neural network (ConvNet) is composed
of multiple layers and can be defined as N = Fk § ... § F2 §F1(X1) =

k
i=1,...,5 Fi(Xi)

[15]. Today’s
architectures often use multiple blocks or stages in their definition, with similar convolutional layer types
within a block to make the scaling easier. An example of such stages are residual blocks. Hence, a
ConvNet can also be defined as:

N =

l

i=1,...,s

FLi
i

(XÈHi,Wi,CiÍ) (2.1)

where FLi
i

denotes layer Fi is repeated Li times in stage i. Along that notation, the scaling factors
d,w,r for depth, width and resolution can be introduced which scale the network as follows:

N =

l

i=1,...,s

F̂d· L̂i
i

(XÈr·Ĥi,r·Ŵi,wĈiÍ) (2.2)

Here, F̂i, L̂i, Ĥi,Ŵi, Ĉi are predefined parameters of a baseline network, which were empirically evalu-
ated in favour of performance [15]. The idea of E�cientNet is to scale the E�cientNet-B0 base network
e�ciently with a compound coe�cient.
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The compound coe�cient „, defined by Tan and Le [15], uniformly scales the network’s depth, width,
and resolution as follows:

depth: d = –
„

width: w = —
„

resolution: r = “
„

s.t. –·—
2 ·“

2 ¥ 2

– Ø 1,— Ø 1,“ Ø 1

(2.3)

–,—,“ are constants that can be determined by grid search. The evaluation of these parameters by
Tan and Le [15] lead to – = 1.2, — = 1.1, “ = 1.15. The compound coe�cient „ is user defined and
controls how many more resources in terms of FLOPS are available, whereas –, —, “ determine how
these extra resources are assigned to the network in terms of scaling.

Soon after the introduction of E�cientNetV1, Tan an Le proposed E�cientNetV2 [77], which aims to
further improve training speed while retaining the parameter e�ciency. Specifically, E�cientNetV2
tries to address the following limitations of E�cientNetV1: (1) Large image sizes lead to slow train-
ing [78]. (2) Scaling up every stage similarly is suboptimal for training speed and parameter e�ciency [77].
(3) Depth wise convolutions are slow in early layers but e�ective in later stages [79;77].

With E�cientNetV2, these shortcomings were addressed as follows: (1) Images sizes and regularisation
are dynamically adjusted during training [77]. Early epochs use smaller images sizes with less regular-
isation (dropout and augmentation), later epochs use larger image sizes with more regularisation [77].
(2) The compound scaling was retained with slight optimisations. The maximum inference image size
is limited to 480 pixels and instead of increase layer stages equally, in E�cientNetV2, layers in later
stages are added with a gradual increase [77]. (3) Instead of solely using MBConv (inverted residual
blocks) layers, E�cientNetV2 uses Fused-MBConv layers in early stages and usual MBConv layers in
later stages [79;77].

All these mechanisms were tuned in terms of training speed and e�ciency with a neural architecture
search based on reinforcement learning [77]. Finally, the empirically optimised results led to a new base
network called E�cientNetV2-S, which is used in this work [77].

Vision Transformer (ViT)

Transformers, as the model of choice in natural language processing (NLP) [13;80;81;82;83], were the first
time successfully implemented for image classification problems by Dosovitskiy et al. in 2021 and called
Vision Transformer (ViT) [84]. However, compared to existing CNN-based architectures of similar size,
such as ResNet, the transformer-based architecture requires a larger amount of data during training [84].
In their paper, Dosovitskiy et. al. mention that transformers lack some of the inductive biases inherent
to CNNs, such as translation equivariance and locality [84]. This shortcoming leads to poor generalisation
when not trained on a su�cient amount of data [84].

The main goal of Dosovitskiy et al. [84] was to keep the design of the ViT as closely as possible to the
original transformer [13], to make use of the simple setup and scalability of transformer models, as well
as using contemporarily e�cient accelerators. At its core, a ViT is a Transformer encoder-only system
with a multi-layer perceptron (MLP) head for classification [84]. An overview of the ViT architecture,
along a basic encoder layer (or stage), can be seen in figure 2.3 [84]. Today, ViT laid out the basis for
many descendants and extension of the architecture, such as BEiT [85] and DeiT [86].

To apply the ViT in computer vision, an image x œ RH◊W ◊C has to be cropped and flattened into
2D patches of size xp œ RN◊(P

2 ·C) [84]. As in the previous section, H,W,C describe the resolution
and the number of channels of an image, (P,P ) is the resolution of a patch, and N =

HW

P 2 is the
resulting number of patches which also defines the length of the input sequence to the transformer [84].
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In a second step, the patches get embedded to a constant vector size D through a linear projection
layer [84].

To the patch embeddings, an additional learnable embedding is prepended, whose final state at the
output decoder serves as the image representation y. This practice can be compared to the [class]

token of BERT [87]. Moreover, similar as in classical transformer models, 1D positional embeddings are
added to the patch embeddings to retain positional information [13].

Within the Transformer encoder, depending on the size of the ViT, a defined number of L decoder block
are building the backbone of the network [84]. A transformer encoder stage consists of alternating layers
of multiheaded self-attention and MLP blocks. Additionally, a layer normalisation (LN) is performed
before every block and a residual connection added after every block [88;14].

In the end, on top of the network, an MLP head is applied for final classification with an cross entropy
loss. In this work, the ViT is used to evaluate a basic transformer model for radio source classification.

Figure 2.3: Vision Transformer (ViT) Architecture [84]

E�cientFormer

Beside the larger amount of data required when using transformer-based architectures like ViT [84],
they are also often slower (during inference) in comparison to their CNN-based counterparts [16] due
to their massive number of parameters. Therefore, the main objective of Li et al. [16] was to create a
transformer-based architecture which runs at MobileNet-like speed. To achieve this, Li et al. [16] first
performed an in-depth latency analysis of the existing vision transformers. The main bottlenecks that
were identified are large kernel sizes when generating the patch embeddings which were shrunk to 3◊3

convolutions for the E�cientFormer. Second, repeated reshaping from 4D to 3D representations within
the imagers contributes the most to latency, which is why a dimensionally consistent network is proposed
to avoid frequent reshaping operations [16]. Third, Conv-BN (Convolutional Batch Normalisation) is
used in early stages, which showed latency gains in comparison to layer normalisation (LN) used in
the original ViT [16]. However, empirical analyses have shown that LN leads to better performance
when implemented in later phases. Accordingly, LN is used in the final Meta Transformer Blocks
(MB) [16]. Lastly, Li et al. [16] concluded that the selection of the activation function should be made
hardware and compiler dependent. Tested on an IPhone 12, Li et al. propose to use GeLU in the
original implementation of the E�cientFormer network [16]. The final architecture of an E�cientFormer
is shown in figure 2.4.
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Figure 2.4: E�cientFormer Architecture [16]

2.2.2 Object Detection Models

In this project, two object detection models are evaluated on radio source datasets. This chapter aims
to give high-level information about the utilised architectures.

YOLOv8

YOLO (You Only Look Once) is a popular model family with the major focus on real-time object
detection [53]. In comparison to other object detection algorithms, YOLO has proven to have a favourable
balance between detection speed and accuracy [99]. Essentially, YOLO reframed object detection tasks
from two-stage region proposal systems to a single regression problem [53;52]. In other words, it predicts
bounding box coordinates and class probabilities directly from image pixels [53].

Since 2015, the models have been further developed in several iterations from version 1 to version 8 in
2023 to eliminate limitations and improve performance [99]. In version 1, YOLO divides an image into a
grid of S ◊S cells and predicts B bounding boxes along a confidence score C for all classes in a dataset
and for each grid cell [53;99]. A bounding box is defined by five values: [Pc,bx,by,bh,bw] = BBox where
Pc indicates the confidence of the model about the accuracy of that particular bounding box, and that
it contains an object. bx and by represent the coordinates of the box centre relative to the bounds of
the grid cell, and bh and bw describe the width and height of the box, relative to the entire image [53].
The model allows an image with its corresponding dimensions as input and outputs a tensor of shape
S ◊ S ◊ (B · |BBox| + |C|). In case of RGZ OD with six classes |C| = 6, we would use B = 2 and
S = 6, which results in 22 pixel wide grid cells (132/6 = 22), for which YOLOv1 would output a tensor
of shape 6◊6◊16. Finally, to remove redundantly predicted bounding boxes, YOLO models rely on a
simple but expensive postprocessing step or algorithm called Non-maximum Suppression (NMS) [94].

From version 2 to version 7, YOLO models use the concept of prior boxes, better known as default
boxes or anchor boxes [99;100;101;102;51;103;104]. Anchor boxes are starting-point boxes for the network
with predefined shapes and are used to match prototypical shapes of the objects in the target im-
age [105]. The goal of a network is then to predict the translation o�set to this predefined boxes and the
class probability [105]. Defining viable anchor boxes supports the network to predict accurate bounding
boxes [99]. To evaluate supporting anchor boxes, often k-means clustering [106] is applied in advance.
This was incorporated in the algorithm for YOLOv5 onwards and called AutoAnchor [51]. However, these
days the technique is more and more seen as hindering and outdated.

YOLOv3, an incremental improvement, introduced an additional objectness score for each bounding
box using logistic regression [101]. This score should be 1 if a bounding box belonging to a prediction
overlaps a ground truth object by more than any other bounding box prior [101]. In addition, YOLO
models from version 3 use predictions at multiple scales through a spatial pyramid pooling plane (SPP)
or, in other words, predictions at multiple grid sizes to better account for large or small objects in an
image [101].
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Beside the introduction of AutoAnchor in version 5, several other augmentation techniques were added
to the architecture like Mosaic, MixUp, HSV and translational augmentations [51]. Experiments have
shown that the techniques are beneficial for the grid sensitivity and make the model more stable to
runaway gradients [99].

YOLOX was the first representative of the YOLO family, which was an anchor-free model [107]. This ar-
chitecture change reduced the model complexity and improved performance [107]. Besides that, YOLOX
decoupled its head module into two heads. One for detection and one for classification. Experi-
ments have indicated that this further improved the performance of the model as well as convergence
speed [107].

Beside the mentioned major developments in the previous paragraphs, every evolutionary step included
various improvements to the backbone, neck, and head networks, or individual layers in terms of e�-
ciency, robustness, and performance for which we refer to the original papers [53;100;101;102;51;103;104;107;11].

YOLOv8, the version utilised in this work, brought additional enhancements. First, YOLOv8 changed
the main YOLO version line to be anchor free [11]. This eliminates the process of optimising anchors
before training with a clustering algorithm like k-means [99]. Additionally, anchor-free detection reduces
the number of predicted boxes and therefore speeds up the calculation of non maxima suppression
(NMS) [11;94]. Second, a C2f module (cross-stage partial bottleneck with two convolutions) was in-
troduced which combines high-level features with contextual information to improve the detection
accuracy [11;99]. The YOLOv8 architecture uses a decoupled loss for classification and detection to op-
timise these tasks separately [11]. To optimise bounding boxes, it uses a Complete IoU (CIoU) loss [108]

as well as a Distribution Focal Loss (DFL) [109] and for classification a binary cross entropy loss. The
final architecture of YOLOv8 is shown in 2.5.

Figure 2.5: YOLOv8 Architecture [11]
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DINO: DETR with Improved deNoising anchOr boxes

As introduced in the previous sections, impressive progress has been achieved with various classical,
convolutional architectures during the recent years, like Faster-RCNN, or the YOLO family [80;52;53;89].
After the introduction of the transformer architecture [13] and the successful application of transformers
in image classification tasks with ViT, transformers also found the way into other computer vision
tasks [90]. Inspired by the original ViT, the same ideas were adapted to object detection problems with
the paper by Beal et al. [80] who proposed the ViT-FRCNN network.

In recent years, attention-based architectures with representatives such as Dynamic Heads (DyHead) [91],
Swin [92], or HTC++ [93] have been developed rapidly and conquered the first places in the COCO test-
dev leader board [59]. However, all of these architectures have a need for hand-designed components like
anchor generation [25] or non-maxima suppression (NMS) [94;12]. The first transformer-based end-to-end
object detection architecture, called Detection Transformer (DETR) proposed by Carion et al. [55], made
these additional steps redundant [12]. At the time of writing, DETR-based architectures are among the
most performant object detection models [59].

In this project, an optimised version of the original DETR model is fitted, called DINO, which stands for
Detection Transformer with Improved deNoising anchOr boxes [12]. DINO is a combination of di�erent
improvement attempts for DETR regarding training e�ciency, training robustness, and performance in
general [12]. DINO follows DN-DETR [58] which itself follows the DAB-DETR [57] architecture to improve
training e�ciency. Moreover, DINO includes several techniques of deformable DETR [95] such as the
deformable attention mechanism to achieve better performance.

Additionally to the advances of previous DETR descendants, the DINO architecture proposes three
new methods [12]. The first method, called contrastive denoising training, helps the model avoiding
duplicate outputs of the same target [12]. The second is a mixed query selection method which improves
the initialisation of the queries; the third is a look forward twice mechanism to improve training e�ciency
by optimising parameters of early layers with the gradient information of later layers [12].

In the original paper of Zhang et al. [12], the backbone of the DINO architecture to generate multi-
scale features builds either a CNN-based architecture, for instance a ResNet [74], or a transformer-based
architecture like Swin [92]. In order to obtain a comparable result of the transformer-based architecture
with CNN-based recognition models, only DINO with a Swin backbone is considered in this work.
Furthermore, the DINO head implementation makes use of a focal loss [96] as classifier loss, an L1
loss [97] as bounding box loss, and a generalised IoU loss (GIoU-Loss) [98] as IoU loss. Proposed by
Lin et al. [96], focal loss as an extension of the standard cross-entropy is advantageous to apply for
one-stage detection models on class imbalanced datasets. Finally, the architecture of the DINO model
can be viewed in figure 2.6.

Figure 2.6: DINO Architecture [12]
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2.3 Metrics

In the interest of comparability and reproducibility of the experiments, it is essential to define the
metrics for test evaluations and their rationale [110]. There are several opinions in the literature on how
to select expressive metrics for supervised learning classification and object detection tasks. On the
one hand, a metric should accurately assess and describe the real performance of a model. On the
other hand, it should ensure the intuitive interpretability of the results for humans [111;112;113]. Ng [111]

suggests using a single metric for an e�cient comparison between consecutive experiments, whereas
Doshi-Velez and Kim [113] emphasise the inability of a single metric, such as the accuracy, to describe
all facets of a performance result [113]. In this report, a combination of both approaches is applied.
First, a single, primary metric is identified for a straightforward and elementary comparison between
the experiments. Second, additional metrics should be computed to allow a more in-depth analysis of
a change in performance, the di�erences between classes of a dataset or the sensitivity of a model to
hyperparameter changes. The aim of this section is to present possible metrics that can be used in the
experiments conducted in this project.

2.3.1 Accuracy

Accuracy is the most commonly used performance measure in classification problems, due to its sim-
ple interpretability and straightforward calculation [114;115]. However, it is often criticised for not be-
ing able to capture all facets of a model’s classification performance and for failing with imbalanced
datasets [116;117]. Accuracy is defined by [118;117]:

Accuracy =
Number of correct predictions
Total number of predictions

For binary classification, accuracy can also be defined as follows:

Accuracy =
TP+TN

TP+TN+FP+FN

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

2.3.2 Precision, Recall, F1 Score

To mitigate the shortcomings of accuracy, precision or recall, the F1 score can be used. This especially
applies for imbalanced datasets [114]. Whereas precision is a measure of relevance, recall describes how
many relevant results are returned [114]. The F1 score can be interpreted as a harmonic mean between
precision and recall and is commonly used as it combines both metrics [119;111].

Because precision and recall are originally defined for a binary classification problem, an extended version
of the metrics is required for a multi-class classification problem. Mainly two methods exists. First, the
macro-averaged form, in which the metrics are assessed in a one-against-all approach for each class,
followed by taking the mean over the partial results [114]. Second, the weighted average of the metrics.
This form works similarly, but the distribution of the classes is also taken into account to avoid an
overestimation of certain classes in an imbalanced dataset [119]. To have an alternative to accuracy in
experiments with unequally distributed classes, only the weighted form of the metrics is considered for
the experiments of this project. Formally, the three metrics are defined by [120]:

Precision

Weighted Precision =

qn

i=1|yi| T Pi
T Pi+F Piqn

i=1|yi|

Recall

Weighted Recall =

qn

i=1|yi| T Pi
T Pi+F Niqn

i=1|yi|

16



CHAPTER 2. THEORETICAL INTRODUCTION 2.3. Metrics

F1 Score

F1i = 2◊ P REi◊RECi
P REi+RECi

With F1i = F1 score for class i, PREi = Precision for class i and RECi = Recall class i

Weighted F1 Score =

qn

i=1|yi|◊F 1iqn

i=1|yi|

2.3.3 Confusion Matrix

In machine learning, the confusion matrix is typically used to visually evaluate the performance of
a model in a supervised classification problem [121;122]. Especially in a multi-class environment, the
confusion matrix can help to understand the performance of the model on di�erent classes and allows
identifying the classes on which the model performs well and those on which it discriminates poorly (is
confused) [121]. This is fairly impossible by only considering a single metric such as accuracy, or requires
much more e�ort to study precision and recall for every single class. Moreover, all three metrics can
easily be derived from a confusion matrix [121]. Figure 2.7 shows an example of a confusion matrix
presented in this project. Note that for all confusion matrices calculated in this work, the predicted
labels are shown on the x-axis, while the true labels are shown on the y-axis.

Figure 2.7: Sample Confusion Matrix [123]

2.3.4 Precision-Recall (PR) Curve

Computing the precision-recall curves can have two main advantages for us. First, it provides a supple-
mentary visualisation on how well a model performs by visualizing the trade-o� between precision and
recall (also called sensitivity) [124;125]. Specifically, the PR curves in this project describe the perfor-
mance metric for a single class [124] such as 1_1 for which an example is shown in figure 2.8. Definitions
for Precision and Recall can be found in the previous sections. Second, it o�ers the area-under-the-
precision-recall-curve (AUPRC) score as an additional metric to accuracy and F1 score [125]. The value
of the AUPRC is ranging from zero to one, with < 0.5 to be a fully random prediction and 1 as the
most preferable outcome [126].
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The PR curves used in this work have di�erent layers to allow a more in-depth error analysis. The layers
shown in figure 2.8 correspond to the definitions of the o�cial COCO [59] metrics documentation and
are specified as follows [127;128]:

1. C75 (White): PR at IoU = 0.75 (AP at strict IoU), area under curve corresponds to AP
IoU

= 0.75

metric.

2. C50 (White): PR at IoU = 0.50 (AP at PASCAL IoU), area under curve corresponds to AP
IoU

=

0.50 metric.

3. Loc (Blue): PR at IoU = 0.10 (localisation errors ignored, but not duplicate detections). All
remaining settings use IoU = 0.10.

4. Sim (Red): PR after super category false positives (fp) are removed. Specifically, any matches
to objects with a di�erent class label but that belong to the same supercategory don’t count as
either a fp (or tp). Sim is computed by setting all objects in the same supercategory to have
the same class label as the target class and setting their ignore flag to 1. Note that person is a
singleton supercategory so its Sim result is identical to Loc.

5. Oth (Green): PR after all class confusions are removed. Similar to Sim, except now if a detection
matches any other object, it is no longer a fp (or tp). Oth is computed by setting all other objects
to have the same class label as the class in question and setting their ignore flag to 1.

6. BG (Purple): PR after all background (and class confusion) fps are removed. For a single category,
BG is a step function that is 1 until max recall is reached then drops to 0 (the curve is smoother
after averaging across categories).

7. FN (Orange): PR after all remaining errors are removed (trivially AP=1).

Figure 2.8: Sample ROC Curve [127;128]

2.3.5 Intersection over Union (IoU)

Intersection over Union (IoU) is the most prominent evaluation score to verify the detection performance
of object detection models in literature [129].

The metric is evaluated by calculating the ratio between the intersection of the predicted with the
ground truth bounding box and the union of the two boxes. A bounding box is thereby defined by its
location and size. The IoU score can be formulated as follows [129]:
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Figure 2.9: Intersection over Union (IoU) [129]

Where P is the predicted bounding box and G is the ground truth bounding box. In this work, both a
separate IoU value for each class and a global, weighted average value for all classes are evaluated on
the validation and test dataset.

2.3.6 Mean Average Precision (mAP)

If a single metric for the evaluation of an object detection method is required, the mean average
precision (mAP) is a widely used strategy [130]. The mAP is a combination of many evaluation concepts
for machine learning models [130]. Specifically, it combines the concepts of the confusion matrix, the
IoU score and the precision recall curve with the associated AUPRC score. To evaluate the mAP,
the average precision (AP) needs to be evaluated first. Unlike the name suggests, the AP can be
considered as a way to calculate the AUPRC. To reduce the computational e�orts to calculate an
integral, di�erent alternatives exists [130]. In this example, the 11-point AP11 is considered. The AP11
is calculated by taking an average of the maximum precision scores above 11 equally spaced recall
thresholds: R = [0.1,0.2, ...,1]

AP11 =
1

11
q

rœR
Pinterp(r)

where

Pinterp(r) = max
r̃:r̃Ør

P (r̃)

As mAP is a metric to rate the accuracy of a model in a multi-class problem, the last step to calculate
the mAP is to average AP over all classes in a dataset.

mAP =
1
N

q
N

i=1 APi

with N as the number of classes.

Because the primary goal of this work is to train a model which can classify di�erent sources within a
radio source dataset, mAP is taken as the primary metric for the evaluation of detection models.

2.4 Preprocessing Techniques

Radio source images exhibit a significant amount of noise, show a narrow distribution of distinct intensity
values and in case of the RGZ dataset, are represented in mJy beam≠

1
[42]. To ensure a stable and

fast training and possibly even achieve an increase in performance, appropriate preprocessing of radio
source images is essential in this project [131]. Moreover, some libraries applied in this project require a
PNG or JPG file format. This chapter aims to briefly introduce the compared preprocessing methods
within the dataset conversion pipeline. Finally, the impacts of the subsequently described techniques
on the intensity distribution of the radio source images are visualised in appendix A.2.2.
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2.4.1 Scaling Techniques

Scaling is an important preprocessing step to allow e�cient and robust training and to prevent exploding
or vanishing gradients [131]. Moreover, scaling is used to retain values within defined boundaries, for
example between zero and one [131]. Finally, scaling can also be used to arrange the data values in
a desired distribution, such as the normal distribution [131]. This work makes use of two well-known
scaling techniques which are described in the next sections.

Z-Scale

The z-scale algorithm was originally developed by the National Optical Astronomy Observatory and
contained in the IRAF Framework [132]. It is designed to display the intensity values near the median
image [132]. According to Tody [132], this is especially valuable for astronomical images, as they typically
exhibit a very peaked histogram in comparison to the background sky.

If the contrast is not zero, the sample pixels are ranked in brightness to form the function I(i) where
i is the rank of a pixel and I() returns the intensity value [132]. Generally, the median is very near the
peak of the image histogram and there is a well-defined slope about the median which is related to the
width of the histogram [132]. At the ends of the intensity distribution (I(i)), there are a few very bright
and dark pixels due to objects and defects in the field [132]. To determine the slope, a linear function is
fit with iterative rejection [132].

I(i) = intercept + slope * (i - median)

Min-Max Scale

In image preprocessing, min-max scaling has shown advantageous if the boundaries of the original images
are known as it keeps the scale of the input data [133]. Min-Max scaling is often called normalisation
and can be achieved by using the following formula:

Y =
X≠Xmin

Xmax≠Xmin

2.4.2 Sigma Clipping

Although deep neural networks should be able to cope with noisy data, a common method used in
astronomy to reduce noise during pre-processing is sigma clipping [42]. With sigma clipping, all values
that deviate more from a defined centre function than a certain number of standard deviations are
essentially clipped or discarded. In this work, either the median or the mean is used as centre function.
Finally, the following rules are applied to evaluate the values out of bounds.

data < centre - (sigma_lower * std)

data > centre + (sigma_upper * std)

Where sigma_lower and sigma_upper is a scalar number.

2.4.3 Stretching Techniques

Because the dynamic range can be narrow in astronomical images, it can be advantageous to stretch
images [134;135;136]. This also accounts for cases when the distribution of intensity values is di�erent
across samples of a dataset, that is, when some images are visually black and for others the radio source
can be recognised by eye. If this distinction is not a discriminative factor, it can hinder the performance
of a model. One family of methods to widen the distribution of intensity values across a defined interval
is called stretching methods. Table 2.3 shows the investigated stretching methods in this project.
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Name Square Root Stretch Power Stretch Power Dist Stretch

Definition Y =
Ô

X Y = X
a

Y =
a

X ≠1
a≠1

Parameters - a = 0.62 [a > 0] a = 1000.0 [a >= 0]

Name Linear Stretch Log Stretch Sinh Stretch

Definition Y = m·X + q Y =
log(aX+1)
log(a+1) Y =

sinh( X
a )

sinh( 1
a )

Parameters m = 1.6 ; q = 0 a = 1000.0 [a > 0] a =
1
3 [0 < a <= 1]

Table 2.3: Overview Stretching Techniques [134;135;136]

2.5 Augmentation Techniques

Data augmentation is a widely used strategy when data is scarce, imbalanced, or when there is explain-
able variance within the data which can be generated synthetically [137]. Moreover, data augmentation
techniques are often used to mitigate the problem of overfitting [137]. However, data augmentation
should only be used if it is unfeasible to gather alike samples from the real data distribution [137]. The
main idea behind data augmentation is to apply label preserving transformations to an input dataset in
order to add more invariant examples [138].

Formally, to a sample-label pair (x,y) a transformation function �(x) with a certain probability paug is
applied a priori [139]. If a model is trained accordingly, it should theoretically output the same probability
distribution for the augmented input P (y|�(x)) as for the same input sample without the applied
transformation P (y|x)

[139].

As the goal of this work is to detect and/or classify radio sources, our intuition is, only a few, out of
the well-known basic augmentation techniques do not change the sample out of the real distribution.
Since each detected source is cropped such that it lies approximately in the centre of the image, and
since the existing distance between the sources in the large original image is large enough compared to
the source size, most samples contain only one type of radio source in an image (besides the fact that
classes already encompass multiple components). However, as specific augmentation techniques were
leading to an increased performance in some of the applied model architectures in this work [15;77;11],
this intuition should be verified. Therefore, the following augmentation techniques were applied to
either improve model performance or to prove that the technique has a negative e�ect for radio source
detection or classification.

First, rotation or flipping is applied with limited rotation angles of 90
¶ steps. The second and third

evaluated augmentation techniques are translation and scaling, bounded by a minimum and maximum
translation respectively scaling ratio. The last and most vague verified method is shearing, initialised
by setting a maximum shearing degree.

Used in the original E�cientNetV2 paper, RandAugment lead to significant performance improve-
ments [77]. The primary goal of RandAugment is to remove a separate augmentation search phase to
ease and speed up training [140]. The technique can be applied for any set of any per-image based
augmentation technique [140]. The simplification is achieved by reducing the number of hyperparame-
ters to two parameters [140]. One parameter N describes the number of randomly chosen techniques
out of the predefined set [140]. A second parameter M defines the magnitude of the applied method
within an interval of (0,10). For both values, the regularisation also increases when the values are
increased [140].
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Chapter 3

Methods

This chapter aims to introduce the di�erent experiments performed in this project and further sets the
scope of possible experiments within the given time frame.

3.1 Preprocessing Experiments

The first type of experiments conducted in this work are preprocessing experiments. In this type of
experiments, the preprocessing techniques presented in chapter 2.4 are verified in a grid search in order
to determine whether a suitable scaling mechanism has a significant influence on the performance result
of a trained model. For the evaluation, a basic YOLOv3 [101] model is used with the default settings
proposed by the MMDetection framework and with no additions to the pipeline like augmentation. In
the end, the two most promising scaling and preprocessing settings are used in the subsequent model
benchmark experiments.

3.2 Benchmark Experiments

The second and main kind of experiments performed are the model benchmark experiments. Hereby,
a selected set of models are trained and evaluated with basic adjustments of the training pipeline.
Furthermore, the benchmark experiments aim to provide a statement on the performance of modern
transformer based architectures in detecting and classifying radio sources compared to CNN-based mod-
els, especially with the limited number of samples available in the RGZ OD dataset [63]. The selected
object detection architectures in this project are YOLOv8 [11] as CNN and DINO [12] with a Swin [92]

backbone as transformer based representative. For classification, ResNet50 [14] and E�cientNet [15] con-
stitute the selected CNN based architectures, and Vision Transformer [84] as well as E�cientFormer [16],
the transformer based models. In the basic benchmark experiments, no upscaled model representations
of the architectures were used, as the resolution of the images is relatively low at 132 ◊ 132 pixels
and the dataset size is rather limited with approximately 12

Õ
000 samples. This to mitigate the risk of

overfitting. However, this hypothesis needs to be verified in the extending tuning experiments.

The basic adjustments to the pipeline configuration of the basic benchmark experiments include min-
max scaling and z-scaling, the decision whether to use pre-trained weights on ImageNet [141] for clas-
sification models and on COCO [59] for object recognition models, and finally the distinction between
trained models on the entire unbalanced dataset or the reduced balanced dataset with undersampling.
This procedure allows drawing a general conclusion about the e�cacy of the model architecture for
radio source datasets with a limited number of samples. In the end, the combination of all settings and
model architecture leads to 48 performed basic benchmark experiments.
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3.3 Ensemble Experiment

To examine the uncertainty of the model or epistemic uncertainty depending on the data quantity and
quality at hand, the ensemble method is applied in this work [142;143;144;145]. There are multiple methods
how to calculate the ensemble for a classification task, as well as calculating the uncertainty between
the models. As definition for the ensemble prediction, this work simply uses the average prediction
of all trained models. Further, it assumed that the networks have a SoftMax-Layer as final prediction
layer.

p(y|x,◊0, ...,◊M ) =
1

M

Mÿ

i=0
f(x,◊i) =

1

M

Mÿ

i=0
yi = y (3.1)

The epistemic uncertainty can then be calculated by using the variance or standard deviation be-
tween the predictions of the di�erent models [145] or by utilizing the entropy of the probability distribu-
tion [144;142;146]. For the matter of this work, using the method of calculating the standard deviation is
su�cient to evaluate the epistemic uncertainty Uep, which is defined by:

V ary = ‡
2
y =

1

M

Mÿ

i=1
(yi ≠y)

2 (3.2)

Uep = ‡y =


V ary =

ı̂ıÙ 1

M

Mÿ

i=1
(yi ≠y)2 (3.3)

The ensemble experiment is performed on the most promising training result and setting of the bench-
mark experiments with M = 30.

3.4 GLEAM Experiments

GaLactic and Extragalactic All-sky MWA Survey (GLEAM) is an extragalactic catalogue containing
307

Õ
455 radio sources, measured across 72 ≠ 231 MHz by the Murchison Widefiled Array (MWA) [68].

The GLEAM experiments of this work aim to use the catalogue as first verification of the transferability
of the most promising model evaluated in the benchmark experiments to a new or unseen dataset.
As Murchison Widefiled Array is part of the SKA-Low1 [68], it can o�er a first impression about how
state-of-the-art models could be applied for future catalogues and surveys obtained by SKA and what
performance could be expected [3;4;2]. However, it is not within the scope of the project to perform
in-depth analysis of the test runs performed on the GLEAM catalogue and rather let to future work.
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3.5 Tuning Experiments

The final set of experiments conducted in this project are model tuning experiments to improve the
results obtained with the present datasets. To reduce the number of required experiments within the
scope of this work, only the most promising model of the benchmark experiment is further fine-tuned.
The experiments encompass pipeline adjustments in terms of preprocessing, model scaling adjustments
with respect to the number of parameters as well as hyperparameter tuning.

More specifically, a further preprocessing method to convert a greyscale input image xg œ R
H◊W ◊1

into a colour image of dimension xc œ R
H◊W ◊3, called dynamic weights equations [147] is applied,

which showed positive result in the preprocessing method evaluation. In respect to augmentation, a
limited number of reasonable techniques are verified, which were introduced in section 2.5. Further it is
investigated, whether the model achieves better performance when trained with the original input image
size of 132◊132, or with resizing to the model’s pre-trained image size of 640◊640 for the COCO [59]

and 224◊224 in case of the ImageNet [141] dataset. All the applied models o�er di�erent sizes in terms
of the number of parameter, with respect to depth, width and resolution. Therefore, additional tests
are conducted, whether stronger models lead to better performance or end up in overfitting the training
data. Finally, standard hyperparameter tuning is performed regarding optimiser parametrisation and
model specific parameters.
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Chapter 4

Implementation

A main goal of this project is to set up a training pipeline that can be flexibly applied to di�erent model
architectures and datasets. The focus of this chapter is to describe the technical details about the
pipeline setup and should indicate what kind of adjustments to the pipeline can be made to reproduce
or even extend the performed experiments of this work.

4.1 Libraries

This project depends on several libraries, of which the most important should be introduced in this
section. Images in astronomy related fields are often stored in the Flexible Image Transport System
(FITS) file format [65]. In order to load and process this file format, the Astropy library was used [135].
Moreover, Astropy o�ers several methods to convert, preprocess or visualise FITS images such as scaling
or conversion between di�erent coordinate systems [135].

Allowing a simple dataset transportation between di�erent servers, the HDF5 file format was utilised
to store the images as well as class and bounding box annotations, together with additional meta data
attributes in a single file [148]. The HDF5 then builds the source to generate a specific dataset for either
an object detection model or a classification model. To work with HDF5 files in Python, at the time of
this project, the H5Py library is the most complete library for this task.

To train multiple architectures with a single pipeline, a flexible toolbox or framework is required to
simply switch between di�erent existing state-of-the-art object detection or classification models. For
that reason, the project pipeline is based on the OpenMMLab algorithm system called MMEngine [149].
MMEngine is OpenMMLab’s foundational library to train deep learning models based on PyTorch [149;150]. It
embodies the basic pipeline called runner for a variety of subprojects of the OpenMMLab suite [149]. The
subprojects are mostly structured depending on their application or problem they want to solve. There
exists, subprojects for classification, object detection, pose estimation, optical character recognition
(OCR), video object tracking and many more [149]. In this project, MMDetection [123] is applied for object
detection, MMPretrain [151] for classification and MMYolo [152] for the YOLO object detection architectures.
The reason to use a separate project for the YOLO family was, that the current MMDetection version
only supports YOLOv3 and YOLOX [123]. In order to train more up to date YOLO models like YOLOv8,
it was necessary to include support for MMYOLO in training pipeline [151].

4.2 Requirements

For the implementation of the training pipeline Python 3.10.x was used as primary programming lan-
guage. All basic required dependencies can be found in the requirements.txt in the root folder of the
project. Additionally, there are requirements which depend on the availability of GPUs or CPUs and can
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be found in the requirements file specified with either cpu or gpu su�x (e.g. requirements-gpu.txt).
Additional information about the environment and setup is given in the README.md file.

After running the pipelines, all resulting checkpoints, log files and plots are stored in the project’s
work_dirs folder. Beyond the visual plots, the project depends on the platform Weights & Biases
(WandB) for metrics and progress logging [153]. However, it is not mandatory to use WandB to run
the project and can rather be configured in a dedicated configuration file. For security reasons, the
credentials to connect to the WandB project are stored in a separate .env file, which is not checked in
to the version control system. The required environment variables to successfully connect to WandB
are also explained within the README.md file.

4.3 Project Structure

Primarily the project is structured into configuration files, executable python scripts, services and utili-
sation modules as well as the framework home directories of the OpenMMLab project. This section should
give a high-level overview about the structure and reason of the di�erent modules.

First, every OpenMMLab subproject obtained a folder. Cloning the dedicated git repository of any sub-
project is the recommended installation method over a direct installation via PIP package manager.
By design, this cloned project folder would constitute the project home folder for a classic OpenMMLab
project. Because it was the goal in this project, to have a single repository unifying all model archi-
tecture in a single pipeline, it was not possible to follow this setting. Every subproject folder contains
a config folder in which the predefined Python configuration files for OpenMMLab Runner can be found.
The configuration files act as starting point for any custom configuration implementation of a training
pipeline and are designed in a tree like inheritance structure. Unlike MMDetection, MMPretrain and
MMYolo contain similarly named package folders. To unify the di�erent subprojects, it was required to
move the module folder to the top level of the repository and renaming the subproject’s home folders
to mmpretrain-scripts and mmyolo-scripts.

Second, the project contains an own config folder. The configuration folder comprises a tree like struc-
ture of YAML files, orchestrated by the Hydra framework [154]. The idea of the additional configuration
files is to have a central place of configurations for all supported scripts and pipelines. Possible config-
urations exist for the dataset preprocessing, the model training and fine-tuning as well as the settings
for logging like the configurations for WandB [153].

The main executable Python scripts are located in the src folder of the project. There are four main
type of scripts in the src directory. The dataset folder contains scripts to generate the base dataset
collection. After the generation of the HDF5 dataset collection, combining images of the RGZ, FIRST
and Mira Best dataset, the conversion scripts can be used in the similarly named folder. The scripts
allow converting any base dataset into a COCO [59] formatted, in a basic classification dataset referenced
by filenames or by annotation files [59]. The actual training script is located in the src/train folder,
together with a Dockerfile that can be used to create and run an executable Docker container for the
training pipeline. Finally, the adjusted Python configuration files which overwrite the default OpenMMLab
training pipeline configurations are located in src/models.

4.4 Pipelines

The project is based on three pipelines. The base dataset collection pipeline, the dataset conversion
pipeline and the training and evaluation pipeline. This chapter aims to introduce the most important
concepts and components of these pipelines.
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4.4.1 Dataset Collection

The main goal of the base dataset collection pipeline is to unify and combine di�erent datasets into
a common dataset format from which it can be converted in di�erent target dataset formats. For the
unification of multiple datasets, the pipeline makes use of the HDF5 file format. It stores the dataset
in a hierarchical tree structure which is shown in figure 4.1. Within each of the three included datasets
FIRST (first), Mira Best (mb), Radio Galaxy Zoo (rgz), there are two arrays stored. One for all images
and another for all metadata information such as annotations, which are stored in a list of JSON objects.
An example of an annotation JSON can be found in figure A.1 of the appendix.

During the generation of the base dataset collection, only basic preprocessing is applied to ensure the
validity of the HDF5 arrays. This includes converting non-number-values into zeros, floating point
values into 32-bit floating point values and crop or fill deviating image dimension with zeros. This
practice could be applied without further adjustment of annotations or later impacts, because the
maximum deviation of dimension in all datasets was three pixels. Ultimately, the collection contains
13

Õ
672 images and annotations with a size of 630 MB.

Figure 4.1: Tree-Structure Dataset Collection

4.4.2 Preprocessing

The main preprocessing is achieved during the generation of the target dataset, depending on the re-
quirements of the models applied. As an overview, the preprocessing pipeline, shown in figure 4.2,
performs the following tasks. Based on the HDF5 dataset collection which is described in section 4.4.1,
the images and annotations can be converted into a target dataset format depending on the source
dataset. This means that, for example, the RGZ dataset containing images and bounding box anno-
tations can be converted into a COCO [59] formatted dataset for object detection, in a classification
dataset based on annotation files or based on a class specific directory tree. Within the preprocessing
pipeline, two filters can optionally be applied. One to balance the dataset by undersampling. A second
to reduce the samples to those with only one radio source per sample, which allows training a single
label classification model. Further, the pipelines o�er configuration based o�ine preprocessing steps,
which can be either performed globally on the entire dataset or sample based. A list of supported
preprocessing mechanisms can be found in appendix A.2.

Figure 4.2: Preprocessing Pipeline
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4.4.3 Training and Evaluation

The training pipeline orchestrates the experiment configuration, the model training, the model evalua-
tion and the experiment tracking into one single executable pipeline. A visualisation of the components
of the training pipeline is shown in figure 4.3. As input to the pipeline, three artefacts are required. A
Hydra [154] YAML pipeline configuration file, a MMengine [149] Python configuration file and the configured
dataset. Depending on the configuration of an experiment, the pipeline either starts a Weights and
Bias (WandB) [153] run on itself or initialises a managed model fine-tuning with a sweep over specified
hyperparameters. An experiment can either be started in production or development mode. Condi-
tioned by the model family, the pipeline selects the specific MMLab sublibrary to run the training of the
model. Evaluation on the validation set is performed in an interval of a specified number of epochs,
while the evaluation of the test set is performed after the model training in a dedicated sub-pipeline.
Further pipeline steps are executed to generate result plots such as precision recall curves and confusion
matrices. For a brief comparison of the conducted experiments, all metric, plots and samples of the
validation and test set are uploaded to (WandB) along the log files and the model weights. Moreover,
all results and files are stored on the computing instance on which the training was performed, which
can be used for a more in-depth analysis described in the next chapter.

Figure 4.3: Training Pipeline

4.5 Analysis Notebooks

Beside the main pipelines, the project encompasses supporting analysis notebooks. The dataset ex-
ploration notebook (dataset_exploration.ipynb) is used to investigate the di�erent dataset sizes,
class distributions and evaluates how the filters a�ect the number of samples of a dataset. A second
notebook (image_preprocessing.ipynb) is used to investigate the e�ects of the various preprocessing
mechanisms listed in the appendix A.2 with regard to the change in the intensity value distribution.
Lastly, a third notebook (error_anaylsis.ipynb) is applied to perform an error and ensemble analysis
of trained models, as well as comparing the errors made between di�erent training experiments.

28



Chapter 5

Results

Numerous experiments were conducted according to the experiment types introduced in chapter 3. The
aim of this chapter is to summarise the results of performed experiments whereas the detailed plots to
the experiments can be found in the appendix.

5.1 Preprocessing Experiments

To verify possible preprocessing techniques introduced in chapter 3.1, 24 experiments were performed
with a lightweight YOLOv3 model [101]. Table 5.1 verifies that the biggest influence on the performance
is obtained by using the z-scaling technique. Further, the experiments show that sigma clipping either
by mean or by median can have a positive e�ect. Also, dynamic weights conversion can have an
advantageous influence, however, regarding the results also simply replicating the channels, together
with initialising the weights randomly does not negatively influence the performance. On the opposite,
the bunch of stretching methods examined often do not lead to a favourable result, even if those
methods increase the dynamic range within the image. In the end, for tuning purposes, z-scaling, sigma
clipping and dynamic weights conversion should be considered for continuous experiments.
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Model Preprocessors IOU Loss Accuracy MaP

YOLOv3 ZScale, SigmaMedianClip, ReplicateChannels 0.76 24.55 0.76 0.49
YOLOv3 SigmaMeanClip, ZScale, ReplicateChannels 0.75 25.78 0.73 0.47
YOLOv3 ZScale, DynamicWeightsConversion 0.78 24.00 0.75 0.45
YOLOv3 ZScale, ReplicateChannels 0.76 26.18 0.75 0.45
YOLOv3 PowerStretch, ZScale, ReplicateChannels 0.77 25.82 0.74 0.44
YOLOv3 SqrtStretch, ZScale, ReplicateChannels 0.77 24.91 0.72 0.43
YOLOv3 SqrtStretch, ZScale, DynamicWeightsConversion 0.77 25.53 0.73 0.42
YOLOv3 ZScale, SigmaMeanClip, ReplicateChannels 0.76 25.20 0.72 0.42
YOLOv3 SigmaMedianClip, ZScale, ReplicateChannels 0.74 24.94 0.73 0.41
YOLOv3 PowerStretch, ZScale, DynamicWeightsConversion 0.78 25.21 0.73 0.37
YOLOv3 PowerStretch, MinMaxScale, ReplicateChannels 0.74 25.71 0.67 0.33
YOLOv3 SinhStretch, ZScale, ReplicateChannels 0.74 26.57 0.64 0.31
YOLOv3 LinearStretch, ZScale, ReplicateChannels 0.75 27.31 0.64 0.31
YOLOv3 MinMaxScale, ReplicateChannels 0.74 27.22 0.67 0.31
YOLOv3 MinMaxScale, SigmaMedianClip, ReplicateChannels 0.72 26.70 0.66 0.30
YOLOv3 SigmaMedianClip, MinMaxScale, ReplicateChannels 0.72 28.11 0.65 0.30
YOLOv3 SqrtStretch, MinMaxScale, ReplicateChannels 0.73 25.86 0.65 0.30
YOLOv3 SinhStretch, MinMaxScale, ReplicateChannels 0.74 27.89 0.65 0.28
YOLOv3 LinearStretch, MinMaxScale, ReplicateChannels 0.73 27.02 0.67 0.27
YOLOv3 MinMaxScale, DynamicWeightsConversion 0.72 28.96 0.65 0.27
YOLOv3 PowerDistStretch, MinMaxScale, ReplicateChannels 0.68 33.08 0.58 0.22
YOLOv3 PowerDistStretch, ZScale, ReplicateChannels 0.43 137.95 0.16 0.00
YOLOv3 LogStretch, ZScale, ReplicateChannels 0.43 135.35 0.12 0.00

Table 5.1: Results Preprocessing Experiments

5.2 Benchmark Experiments

This section considers the results of the benchmark experiments for the classification as well as object
detection models. As the results of this di�erent kind of models cannot be compared directly, the results
are presented in di�erent subsections.

However, what remains similar for all tested architectures are the distinct configurations of benchmark
experiments performed. Table 5.2 shows the legend of abbreviations used for further reference of the
experiments.

Key Name Description

ResNet Residual Network Residual Network 50 with default parameters.
E�Net E�cient Network V2 E�cient Network V2 S with default parameters.
E�For E�cient Former E�cient Former L1 with default parameters.
ViT Vision Transformer Vision Transformer base p32 with default parameters.
DINO DINO DINO 5s Swin with default parameters.
YOLO YOLOv8 YOLOv8 S with default parameters.
MM Min Max Scale Min-Max scaling technique performed o�ine.
ZS Z-Scale Z-Scale technique performed o�ine.
PT Pre-trained Using pre-trained weights for the applied model.
NPT Not Pre-trained Trained the model from scratch without pre-trained weights.
US Undersampling Filter Applied undersampling to balance the classes of the dataset.

Table 5.2: Abbreviations Legend Benchmark Experiments
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5.2.1 Classification Models

The results of the classification model benchmark experiments show a relatively clear tendency of
suitable approaches. All models were trained over 300 epochs and a batch size of 32 images. Table 5.3
presents the three out of eight best working configurations of each examined model, whereas table A.2
of the appendix lists the result summary of all 32 performed experiments. To account for imbalanced
classes in the RGZ OD dataset, the performance metrics are macro-weighted.

Model Configuration Acc. Top-1 Acc. Top-2 F1 Score Precision Recall

ResNet ZS, NPT 83.38 94.53 79.60 79.67 79.71

ResNet ZS, NPT, US 81.42 93.90 79.55 80.06 79.37
ResNet ZS, PT, US 81.42 94.47 79.21 79.36 79.26
E�Net ZS, NPT 79.23 92.30 74.00 74.41 73.72
E�Net ZS, PT 78.42 92.71 72.29 72.90 71.93
E�Net ZS, PT, US 76.74 90.21 74.77 76.10 74.15
E�For ZS, NPT 76.60 89.46 69.64 70.10 69.38
E�For ZS, PT 75.48 89.56 68.69 69.24 68.45
E�For ZS, NPT, US 73.05 90.64 71.02 71.62 70.62
ViT ZS, PT 59.473 77.91 42.33 55.34 36.41
ViT ZS, NPT 58.46 77.41 37.19 60.42 32.63
ViT MM, PT 52.99 70.72 19.12 36.71 18.50

Table 5.3: Summary Results Benchmark Experiments | Classification Models

First, the results are consistently ordered by the di�erently investigated models. Surprisingly, ResNet50
surpasses the performance of E�cientNet S notably, with a maximum top-1 accuracy performance
of 83.38%. In addition, the intuition that on the limited RGZ OD dataset, transformer based architec-
tures cannot use their large number of parameters as an advantage has proven to be true.

Furthermore, for all applied models, z-scaling showed to be more suitable for radio source images in
comparison to min-max-scaling. When training with a su�cient number of epochs, the experiments
indicate that re-training the models is more beneficial than using pre-trained weights. That is reasonable,
as the radio source images are significantly di�erent from the samples of the ImageNet [141] dataset.

All models could not benefit from applying an undersampling filter on the imbalanced dataset. Even
though the undersampling filter appears in the summary of the three best results, it can be assumed
that z-scaling and the use of pre-trained weights have a stronger e�ect than balancing the classes.
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Figure 5.1: ResNet50 | Z-Scale | Not Pre-Trained | Performance Metric Summary

When considering the confusion matrix in figure 5.1, evaluated on the test set by using a ResNet on
the z-scaled dataset without pre-trained weights, it can be observed that most confusion exists between
class 1_2 and 1_3 as well as 2_2 and 2_3. This result coheres with the discriminative capability of
humans on such a classification task and verifies the valid learning process of the model.

Finally, if the learning curves of the model are considered, we can also agree that the model has been
trained for a su�cient number of epochs and that the problem of overfitting is only marginal due to the
stagnating accuracy. The plots of all runs mentioned in table 5.3 can be viewed in appendix A.3.1.

5.2.2 Object Detection Models

Similar to the classification model benchmark experiments, the object detection models were trained
on the RGZ OD dataset, with one di�erence in the preprocessing. In order to fulfil the requirements of
standard classification models, samples with multiple classes were filtered out. However, these samples
are retained in the dataset for the benchmark experiments on object detection. The performance results
of the object detection benchmark experiments are listed in table 5.4.

The results show a di�erent characteristic to the classification benchmark experiments. Firstly, in terms
of mean average precision, the YOLO [11] based models could not outperform the transformer based
models such as DINO [12]. However, YOLOv8 achieved the best performance on the Intersection over
Union (IOU) metric. In other words, this means that the performance of the DINO model could surpass
that of its CNN-based counterparts for the combination of object detection and the classification of
the radio sources. But if only the detection performance is observed, the YOLOv8 model could obtain
a higher accuracy. Although, just to consider the IOU for object detection performance could be
misleading for the RGZ OD dataset. This because the bounding boxes were generated automatically
and always with a quadratic shape. Lower IOU values can therefore also result from a deviation between
inaccurate ground truth (GT) labelling and predicted boxes that are well-matched to the actual object.

Secondly, the architectures were able to benefit from pre-trained weights, which was not the case for
the classification models. This could be explained by the higher complexity of the object detection
models and the larger possible generalisation of a detection task per se. In fact, the use of pre-trained
weights was the most influential factor leading to a higher mAP. Surprisingly, and in contrast to the
classification results, training the DINO models on images with min-max scaling resulted in a higher
performance than when using z-scaling. Lastly, DINO could not benefit from balancing the dataset
with undersampling, which di�ers from the results of YOLOv8.
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Model Configuration mAP IOU Accuracy mAP 50 mAP 75

DINO MM, PT 70.92 66.19 80.28 83.90 79.90

DINO ZS, PT 68.88 65.73 79.11 80.80 77.40
DINO MM, PT, US 67.80 64.83 76.60 80.90 77.00
DINO ZS, PT, US 66.02 64.76 74.47 78.30 74.90
DINO MM, NPT 64.71 67.32 78.70 79.20 74.70
DINO ZS, NPT 64.20 68.42 78.86 78.10 73.90
DINO ZS, NPT, US 63.05 70.88 73.01 76.80 72.70
DINO MM, NPT, US 61.18 67.52 72.21 75.10 70.10
YOLOv8 ZS, PT, US 55.75 88.08 71.68 69.80 66.00
YOLOv8 ZS, PT 52.72 89.08 70.09 66.10 62.00
YOLOv8 MM, PT, US 49.96 85.66 67.02 63.90 58.50
YOLOv8 MM, PT 47.41 85.97 69.09 62.40 55.50
YOLOv8 ZS, NPT 43.27 79.60 68.50 57.30 50.00
YOLOv8 MM, NPT 0.00 48.18 32.75 0.00 0.00
YOLOv8 MM, NPT, US 0.00 40.35 19.55 0.00 0.00
YOLOv8 ZS, NPT, US 0.00 39.12 19.55 0.00 0.00

Table 5.4: Summary Results Benchmark Experiments | Object Detection Models

The confusion matrix of the best DINO configuration visualised in figure 5.2 indicates a similar result
than for the classification models, however, with a higher confusion between class 1_2 and 1_3 as well
as between 2_2 and 2_3. Moreover, the matrix shows that the model often missed some objects, by
classifying the area as background when there was actually an emission and similarly for empty regions
it predicted 1_1 sources. This e�ect describes the model’s di�culty in dealing with noise and makes
appropriate scaling of images essential when working with radio sources. Looking at the curves of
the loss and performance metrics, one can conclude that the models have been trained for a su�cient
number of epochs for this evaluation, but a longer training may lead to a better result. The screening of
the training set images shows that the model was able to detect the objects properly, and that the lower
performance results from the misclassified classes. Additional, representative examples are included in
appendix A.3.1. When considering the results obtained with YOLOv8 model, there is a tendency for the
model to additionally predict sub-emission with a smaller number of components and peaks for larger
emissions. An example is visualised in figure A.19.

After discussing the results in the project team, it was concluded that only the best performing classifica-
tion model out of the architecture benchmark should be further evaluated in the subsequent experiments
of this work. This is primarily due to the significantly lower classification performance of the detection
models. Moreover, it is not expected that the performance of the detection architectures can be raised
to the level of the classification models without a considerable amount of tuning and architectural inves-
tigations. For this project, classification capabilities are more highly valued, as the location of the radio
sources can either be assessed by using the meta-information of the dataset or with a lightweight peak
or blob finder. However, this decision should not connote that neural based object detection models are
not well suited in the domain of radio source detection. DINO in particular achieved promising results,
and it is recommended to perform extended experiments in a subsequent study.
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Figure 5.2: DINO | Min-Max Scale | Pre-Trained | Performance Metric Summary

5.3 Ensemble Experiments

For the ensemble experiment, the best performing classification model evaluated during the benchmark
experiment in section 5.2 was further analysed. In more detail, 30 ResNet50 models were trained on
z-scaled radio sources and without pre-trained weights. To measure the uncertainty in terms of standard
deviation ‡, the models were initialised with random weights. All other settings and hyperparameters
were retained, similar to the ones of the benchmark experiments.

Table 5.5 shows the evaluated resulting standard deviation per class as well as on average. Only class
3_3 features a significantly smaller standard deviation. For all other classes, the result is approximately
similar, which could be an indication for a regression to the mean problem by considering 987 samples
in the test set. Therefore, items with a particularly high variance are further analysed.

Classes 1_1 1_2 1_3 2_2 2_3 3_3

Uncertainty 0.0407 0.0622 0.0521 0.0508 0.0514 0.0225

Average Uncertainty 0.0466

Table 5.5: Uncertainty ResNet50 | Z-Scale | Not Pre-trained | Per Class and on Average

As a second analysis, the number of standard deviations of the di�erence between the mean value of the
predictions and the ground truth was calculated. Hereby, the mean of the predictions refers to the mean
over the predicted scores (SoftMax values) by the 30 trained models. Table 5.6 lists the distribution of
the number of standard deviations, and the diagrams in figure 5.3 show the distribution in relation to
the distance between the mean prediction and the ground truth. The histograms show that 83.08% of
the samples are within one standard deviation. However, there are 45 samples that make up 4.6% of
the test set that are above the six-sigma interval. An excerpt of those samples is displayed in figure 5.4,
whereas the left side shows the utilised z-scaled representation and the left side the unscaled image.
Moreover, additional examples are visualised in appendix A.3.2.
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Sigma Interval # of Samples

[0, 1) 820
[1, 3) 87
[3, 6) 35
[6, Œ) 45
Total 987

Table 5.6: Uncertainty Distribution by the Number of Standard Deviations ‡

Figure 5.3: Uncertainty Distribution by the Number of Standard Deviations ‡

Figure 5.4: Ensemble ResNet50 - High Variance Examples
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Over all samples, on average, 27.66 models out of 30 agree on the predicted class with a standard
deviation of four models. The distribution of agreement levels over the examples of the test set is
pictured in figure 5.5. The diagram shows that most models coincide in their predictions. If now the
results of figure 5.4 are considered, which shows samples with a high number of standard deviations
from the ground truth mean, two phenomena can be observed. The first cluster of samples are true
misclassifications of the model. However, if the z-scaled representation on the left is compared with
the unscaled representation on the right, it can be reasoned, that some confusion of the model is
attributable to di�erent scaling methods. Therefore, z-scaling seems to be advantageous for most of
the samples, but not for all. The second cluster of misclassified images could be mislabelled examples or
at least di�cult cases to which even humans cannot precisely assign a unique class. These two clusters
of errors can especially be observed on the samples on which all 30 models agreed on the same di�erent
class from the ground truth. An excerpt of those examples is shown in appendix A.3.2. As the RGZ OD
dataset is a citizen science project, it is likely that not all designations are correct. However, comments
from experts on the RGZ dataset also indicate that, especially between the classes 1_2 and 1_3 as well
as 2_2 and 2_3, even people disagree on the actual classes, which emphasises the di�culty of radio
source classification tasks. In order to determine the extent of possible misclassifications, table 5.5b
shows the agreement and success rates for the samples in the test series.

(a) Agreement Distribution

Name Value

Full Success Rate 56.64%
Full Success 559 Samples
Partial Success Rate 40.43%
Partial Success 399 Samples
Full Error Rate 2.94%
Full Error 29 Samples
Agreed Full Error Rate 1.93
Agreed Full Error 19
Majority Success Rate 85.21%
Majority Success 841 Samples
Total 987 Samples

(b) Quantitative Results of Agreement Analysis

Figure 5.5: Agreement Analysis

It can be seen that with 30 randomly initialised models, all models predicted an incorrect class in
only 3% of the examples. Further, with only about 2% of the data, all models predicted the same class,
which di�ers from the ground truth. However, also in only 56% of the test set, all models agreed on
the similar class as the ground truth. Lastly, if the scores are evaluated in a classical majority vote,
the ensemble could further rise the performance to 85% top-1 accuracy. Indeed, 30 models would not
be applicable in a practical use case. Therefore, each ensemble size was analysed by performing the
top-1 accuracy assessment in 100 runs for each size with randomly selected models from the 30 trained
ensemble experiment models. The result, represented by the mean value as well as the lower and upper
bounds, can be seen in Figure 5.6 as well as in table 5.7.

Ultimately, for further verification purposes, the ensemble experiments were additionally performed on
30 ResNet model of depth 50 with the fine-tuned parameters of the tuning experiments. The results
of this analysis can be viewed in appendix A.3.3. The analysis shows that with an ensemble of three
individually trained models a possible top-1 accuracy of 90.68% and a top-2 accuracy of 98.58% can
be achieved.
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Figure 5.6: Ensemble Size Analysis

Key Value

Maximum mean accuracy 85.41%
Maximum mean accuracy at # of models 26
Maximum accuracy 86.42%
Maximum accuracy at # of models 3
Lowest mean accuracy 83.22%
Lowest mean accuracy at # of models 1
Lowest accuracy 81.46%
Lowest accuracy at # of models 1

Table 5.7: Ensemble Size Analysis Top-1 Accuracy

5.4 Tuning Experiments

The main reason for the tuning experiments was to further increase the classification performance of the
most promising architecture evaluated during the benchmark and ensemble experiments. Specifically,
the tuning experiments include scaling, augmentation and hyperparameter tuning of the evaluated
ResNet [14] architecture.

The analysis of the pre-processing, benchmark and ensemble experiments revealed that scaling has
a significant impact on the performance of the classifier. Examples were identified where the model
classified noise as an additional component or peak due to the increase in illumination from z-scaling,
or sidelobes of weak intensity could not be distinguished from noise by the classifier without scaling. To
remedy this shortcoming, two simple approaches were tested. Firstly, tuning the contrast parameter of
the z-scale implementation and secondly, since the original sample is a single-channel greyscale image,
the use of a z-scaled and a min-max scaled representation in di�erent channels. The resulting pre-
processed sample then contained three channels, two z-scaled and one min-max scaled in the centre.
In this paper, this method is referred to as ZMZStack, where a comparison with z-scaled and min-max
scaled images is visualised in figure 5.7. Subsequently, the highest performance increase was achieved by
using ZMZStack, which increased the top-1 accuracy from 83.38% to 86.12% without further tuning.
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Figure 5.7: Visual Comparison of Min-Max Scale, Z-Scale and ZMZStack | LTR

Basic augmentation techniques were evaluated as the second mean of fine-tuning. To account for
possible distortions of the real distribution, rotation, scaling, translation and shearing were applied by a
random factor p between 0 and 0.5. Each method was analysed both individually and in combination.
While scaling and translation were able to further increase performance, rotation had a neutral e�ect
and shearing even a negative one. Ultimately, the highest improvement was achieved by a combination
of scaling and translation with p = 0.25, which further increased the top-1 accuracy to 88.35%.

Fine-tuning the optimiser by strategy (SGD [155], AdamW [156], RMSProp [157]), learning rate and learn-
ing rate scheduler could supplementary increment the performance level to 89.32%. In particular,
training the model for a longer period of time before the learning rate decays had a positive e�ect.

Finally, two promising methods investigated during the preprocessing experiments were evaluated. While
sigma median clipping could sightly raise the performance from 89.36% to 89.67% top-1 accuracy, led
dynamic weights conversion to a lower result. However, in terms of top-2 accuracy, the performance
declined to 97.47% when using sigma median clipping. Sigma median clipping was thereby only applied
to the z-scaled channels of ZMZStack. Most likely, the model lacks of the di�erent pperspectivesön
the radio source when using dynamic weights conversion, since it does not combine di�erent scaling
methods, but weights a particular technique across the three channels.

To summarise, fine-tuning the ResNet architecture improved the top-1 accuracy from 83.38% to 89.67%

and the top-2 accuracy from 94.53% to 97.47%. A résumé of the incrementation steps is shown in
table 5.8.

Model Configuration Acc. Top-1 Acc. Top-2 F1 Score Precision Recall

ResNet Sigma Median Clipping 89.67 97.47 86.89 87.52 85.82

ResNet Optimiser 89.36 97.57 86.24 87.40 85.44
ResNet Augmentation 88.35 96.86 86.01 86.58 85.67
ResNet ZMZStack 86.12 94.43 82.37 82.74 82.06
ResNet Benchmark 83.38 94.53 79.60 79.67 79.7

Table 5.8: Results Tuning Experiments | ResNet50
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5.5 GLEAM Experiments

In the GLEAM experiments, the finally fine-tuned models were verified on samples from the GLEAM sur-
vey [68]. As the o�cial GLEAM API was not available at the time of the project, the verification could
only be conducted on samples with the lowest wide-field resolution and need therefore be viewed with
caveat.

For the experiments, six radio galaxy samples were manually cut out of a larger image containing
hundreds of sources. Such a source image is shown in the appendix A.32. The resulting crops have a
resolution between 34 ◊ 34 and 50 ◊ 50 pixels, and are therefore even di�cult for humans to classify.
Consequently, it was decided for this work to not assess the classes of the samples conclusively, but to
comment the results provided by an ensemble of 30 randomly initialised ResNet50 models.

The samples were evaluated using the mean value of the 30 individual model predictions for each class,
as well as the standard deviation. The results for all six samples investigated are displayed in figure 5.8
and table 5.9.

Figure 5.8: Evaluated GLEAM [68] samples
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Metric / Classes 1_1 1_2 1_3 2_2 2_3 3_3

Sample 1

Mean Score 0.6186 0.0373 0.0339 0.1203 0.1319 0.0582
Standard Deviation 0.2775 0.0284 0.0435 0.1232 0.1844 0.0879

Sample 2

Mean Score 0.3946 0.0037 0.0023 0.4268 0.0596 0.1129
Standard Deviation 0.2978 0.0056 0.0056 0.2628 0.0519 0.1288

Sample 3

Mean Score 0.1634 0.3290 0.3097 0.0658 0.1299 0.0022
Standard Deviation 0.1736 0.1708 0.1921 0.1309 0.1811 0.0038

Sample 4

Mean Score 0.0530 0.0430 0.0005 0.1852 0.5156 0.2027
Standard Deviation 0.1947 0.1789 0.0017 0.1844 0.3503 0.2980

Sample 5

Mean Score 0.2436 0.1765 0.3651 0.0474 0.1603 0.0071
Standard Deviation 0.2036 0.0698 0.2082 0.0523 0.1929 0.0155

Sample 6

Mean Score 0.8144 0.0053 0.0022 0.1341 0.0108 0.0332
Standard Deviation 0.2180 0.0056 0.0025 0.1473 0.0202 0.0837

Table 5.9: Prediction Results GLEAM [68] Experiments

When considering the individual samples in general, it can be seen that the ensemble shows a substantial
level of uncertainty for almost all images. For instance, sample 1. The average prediction value
peaks at class 1, which represents a radio source with one component and a single peak. However,
the corresponding standard deviation reveals that class 1_1 overlaps with the scores of class 2_2

and 2_3 within the two-sigma confidence interval, which indicates a probability of more than 5% for
misclassification. This signifies, that despite the high score for class 1_1, the models of the ensemble
are uncertain in their predictions.

The same conclusion can be drawn for samples 2 to 4. Only for sample 6 shows the model ensemble
a confidence interval above the two-sigma level, which indicates a confidence level of over 5% for the
correctness of class 1_1. This result is reasonable, since sample 6 certainly contains the least complex
radio source component and can also most likely be assigned to class 1_1 by humans.

The evaluation of the selected GLEAM [68] examples shows that the fine-tuned ResNet50 models are
likely to work satisfactorily on di�erent datasets. However, the examination of the samples indicates
that the ensemble is particularly uncertain for more complex and less characteristic radio sources. In this
context, the term complex refers to emissions apart from simple 1_1 sources, which, admittedly, account
for the vast majority of emissions recognisable in the source image. But, these more complex samples
are also di�cult to categorise conclusively for humans. Therefore, on the basis of the data at hand,
it cannot be decisively verified, if the promising results of the trained and fine-tuned ResNet50 models
can be transferred to other datasets or to a measurement of the future operable SKA observatory.
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5.6 Conclusion

Various types of experiments were carried out as part of the project. The preprocessing experiments
showed that the scaling of the original RGZ OD FITS images can have a significant impact on the
detection and classification performance. Of the manifold methods tested, z-scaling produced the best
results when using CNN-based backbone models such as the evaluated classifiers and the YOLO-based
object detection architectures. This is in contrast to the results of the trained DINO detection model,
which is based on a Swin backbone and for which a basic min-max scaling was su�cient.

The subsequent error analysis showed that the model probably misclassified some radio sources due to
a too strong z-scaling or a too weak min-max scaling. Since the images must have three input channels
for the algorithm framework applied, a stack of a z-scaled, a min-max scaled and a z-scaled greyscale
representation was used instead of a simple replication of a uniquely scaled channel. By using this
method called ZMZStack, the classification performance could be notably improved.

The benchmark showed that relatively small networks are su�cient for the classification task of the
RGZ OD dataset. Of the evaluated models, the best classification performance was achieved with a
top-1 accuracy of 83.38% and a top-2 accuracy of 94.53% with a ResNet of depth 50. Classification
models based on transformers were unable to utilise their full potential, possibly due to the small size
of the dataset. For the object detection models, however, a transformer-based DINO model achieved
promising results with a mAP of 70.92% and an accuracy of 80.28%, as well as an IOU of 66.19%. Since
classification performance was the key metric in this work, all subsequent experiments were performed
with the ResNet architecture.

On the one hand, the ensemble experiments have shown that the uncertainty of the 30 trained models
is low for about 83% of the samples, which is indicated by a standard deviation between the predictions
below 1‡. On the other hand, they showed that the performance can be further improved by using an
ensemble of two to ten models, with a suggested number of five models. The analysis also made it
possible to identify ambiguous samples for the model, as well as incorrectly labelled samples. For the
ambiguous radio sources, more samples could be collected from the entire FIRST catalogue [61], and
for the limited number of mislabelled samples of up to 1.5%, it would be worth having the samples
corrected by a subject matter expert.

In the final fine-tuning of the evaluated ResNet architecture through preprocessing methods, augmen-
tation techniques and optimiser adjustments, it was possible to increase the classification performance
from a top-1 accuracy of 83.38% and a top-2 accuracy of 94.53% to a top-1 accuracy of 89.67% and a
top-2 accuracy of 97.47%. Additionally, it was evaluated that deeper models, for instance a ResNet101
or a ResNet152, cannot e�ciently raise the model performance in comparison to the increased resources
they require.

The GLEAM ensemble experiments revealed a possible misclassification rate of more than 5% for
complex radio source samples with very low resolution. However, for less complex examples, the models
can predict with high confidence, the most likely class. Consequently, the analysis raised confidence
that the models will perform superiorly on higher resolution examples and that the results from the RGZ
OD dataset can be transferred either to higher resolution GLEAM radio sources or to initial surveys of
the SKA observatory.
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Chapter 6

Discussion and Future Work

The chapter is divided into two sections. First, the results are discussed and extensions to the existing
solutions are proposed while the reflection. Secondly, possible future work should be prioritised.

6.1 Result Discussion

The novelty of this work can be summarised in the combination of the di�erent experiments performed.
It combined the analysis of SOTA object detection and classification models for the overall goal of iden-
tifying and classifying radio sources. Existing preprocessing techniques have been extensively verified,
allowing suggestions for their use with common computer vision libraries. In addition, the project not
only trained and fine-tuned promising architectures, but also evaluated the uncertainty of the trained
model and considered possible errors in the dataset through a detailed error analysis. Finally, the
trained model was used to classify detected objects in the GLEAM [21] dataset to examine the model’s
transferability to new datasets. This chapter discusses and summarises the findings and experience
gained.

One of the key findings from the preprocessing experiments was that scaling is one of the most influential
factors for the classification performance of the model. It could be verified that z-scaling [132] has the
largest positive e�ect among the methods and combinations analysed, as it makes hidden radio source
components visible. However, when considering the results of the error analysis, examples can be
identified, where z-scaling connects blobs that were originally separated without scaling. This e�ect
was one reason for misclassifications made by the model. The combination of these two findings led
to further investigations by stacking two z-scaled channels and one min-max scaled channel into a
three-channel image, which we called ZMZStack. Various experiments have shown that this method
is favourable for the classification performance of the model. The intuition could be that by applying
both scaling techniques, the model obtains information about hidden components as well as about the
separation between emissions. As a conclusion, the right preprocessing can have a significant influence
on the model performance. Moreover, it is expected that additional fine-tuning of the z-scale parameters
can further improve the results. However, due to the time constraints of this project, these e�orts are
led to follow-up studies.

When viewing at the results of the benchmark experiments, it is important to distinguish between the
object detection and classification experiments. First, the object detection models could not benefit
from z-scaling and pre-trained weights lead to a better result than by retraining the entire model.
However, this result needs further di�erentiation. By considering the learning curve in appendix A.3.1,
it can be seen that DINO models trained with pre-trained weights first experience a slight drop in
mAP performance followed by a sharp increase. In comparison, the DINO models trained from scratch
show a more gradual increase in mAP, whereas the YOLOv8 models could not be trained in a stable
process. Even an increase in model complexity did not lead to a significant increase in performance,
and should be viewed sceptically whether the longer training period and higher resource consumption
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are justifiable. This is reasonable, as the complexity of radio sources and the number of classes are not
enormous for the RGZ OD dataset. Unsurprisingly, the detection performance of both evaluated models
is higher than the classification performance. Despite the high level of noise in some images, connected
components still contrast the background, which is also explained by the fact that basic blob detection
algorithms were applied successfully. Considering the resulting accuracy of roughly 80% without further
fine-tuning is a positive result, however, this performance is also attributable to an over-representation
of class 1_1.

Interestingly, the comparison of the results of the evaluated detection and classification models shows
a profound di�erence. In pure classification, CNN-based architectures outperformed transformer-based
models, while the opposite is true for object detection. One can argue, that in case of classification,
the dataset size of approximately 10

Õ
000 images, of which 4000 samples are from class 1_1, is too

small to train a powerful transformer. Especially the slow improving and wiggly loss curves of the
ViT support this assumption. But even with significantly smaller transformers like the E�cientFormer,
without specific fine-tuning and architecture adjustments, the model could not surpass a basic ResNet.
One reason for this could be that in order to fulfil the sequential input for a transformer, the image
is cut into patches, which can destroy the semantics of a small or stretched radio source, even with
positional encoding.

Ultimately, the benchmark experiment showed that modern neural architectures can achieve a remark-
able result on an appropriately scaled and limited radio source dataset without extensive fine-tuning.
This means that it is not always necessary to invent a customised model for radio astronomy and
often standard, modern architectures are su�cient. In addition, it may be worth investing more time
in preparing the dataset with favourable preprocessing than in extensive model design, even if feature
engineering has become less important with the use of deep learning.

With the ensemble experiments of 30 models, it could be verified that for the majority of the sam-
ples (83%), the model uncertainty is relatively low (< 1‡). Further, two types of issues could be
identified by analysing the samples on which all models failed by predicting the same wrong class. First,
actual misclassification of the model and second, might wrongly labelled data by the RGZ citizens sci-
ence project. By analysing the random test set, those errors could account for up to 1.5 percent of the
dataset. But to be fair, these are also those samples, on which subject-matter experts disagree as well.
However, for those samples, when using an ensemble of three models, the top-2 performance could be
raised to 98.58%. When taking some mislabelled samples into account, the models can predict with
high confidence between which two classes an expert needs to decide on as well as on which samples
the model is less certain. This approach could be used for future labelling projects or for the automatic
analysis of radio source catalogues.

Essentially, the fine-tuning showed two outcomes. First, that the hyperparameters chosen for a ResNet
trained on ImageNet were not far from those fine-tuned for a ResNet trained on the RGZ OD dataset.
Secondly, preprocessing and augmentation can further accelerate performance and robustness. Inter-
estingly, the use of augmented samples by rotation had no significant positive influence on the result.
This is possibly due to the fact that the radio sources in the training dataset were already arranged in
several directions. On the other hand, scaling augmentation has increased performance. This comes
close to analyse the radio sources at di�erent frequencies and was expected to confuse the model, as
small objects become similar to noise and noise itself could grow to 1_1 sources. Finally, it is plausible
that the translation augmentations have a positive e�ect. This is because most of the RGZ OD samples
are located at the centre of the image, and translation should make the model more robust to shifted
radio sources.

For five out of six manually cropped samples of the GLEAM source images, an ensemble of 30 ResNet50
models showed a probability of more than 5% for a misclassification of the predicted radio source
class. However, the reason for the high uncertainty is most likely attributable to the significantly lower
resolution of the samples compared to those used during training. One possible approach to reduce
uncertainty could be to further augment the RGZ OD dataset with more significantly lower scaled
samples. But even if the certainty level could be notably increased, manual validation by the human
eye is still di�cult with images of such low resolution, and the true classes can only be guessed. In
addition, it cannot be ruled out that individual side lobes or components of emissions may be lost due
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to the low resolution of the source images. It is also possible that due to the proximity of the emissions,
two actually individual sources in the image are assessed as class 2_2. To mitigate this risk, either the
resolution has to be increased or the length of the light rays needs to be taken into account. Ultimately,
it would be worth considering repeating the GLEAM experiments with higher-resolution images as soon
as the public GLEAM API is back online.

6.2 Future Work

This section prioritises and summarises possible future work that has emerged from the discussions in
this thesis. The first proposed work package is to profounder analyse scaling. With ZMZStack, only two
of three possible channels are occupied from a di�erent scaling. There is a chance that an additional,
cleverly scaled representation of the third channel could be advantageous for the model. This would
finalise the preprocessing investigations and could form the basis for many future projects and tasks. To
ensure an e�cient evaluation of additional techniques, the existing pipelines for preprocessing, training
and evaluation would have to be integrated into one modular pipeline. This additional e�ort was the
main reason why this work package was transferred to future work due to the time constraints of this
project.

As a second priority, more attention should be paid to object recognition models. This includes a
profound fine-tuning of the DINO architecture in combination with an error analysis in order to bet-
ter understand the reasons for incorrectly classified objects. The results of this project have provided
evidence for the successful application of transformer-based detection models for radio sources, and
it is likely that the performance level can be significantly increased with moderate fine-tuning. If the
classification performance of the object detection model could not be raised to the level of the investi-
gated classification architectures, another idea could be queuing a detection model sequentially with a
classification model. This because the detection performance of the trained models was already satis-
factory. The recognised objects would then be cropped and serve as input to the classifier. Furthermore,
the additional classification of the detection model would provide a further level of confidence in the
predicted class.

The third priority is to further automate the training pipeline in order to accelerate the evaluation of
new models with the findings from this project. At this stage of the project, the pipeline combines
three Open-MMLab frameworks with numerous architecture supported by each library. The problem, each
model has slightly di�erent configuration requirements. The next steps of automation would therefore
consist of the following tasks. Firstly, the creation of an additional abstraction level of configurations
to harmonise all available models by a few settings. Secondly, to speed up the training process, an
extension of the pipeline should be implemented to support distributed training on multiple workers and
GPUs. Thirdly, the execution of Slurm jobs should be further automated, such that a single script can
be run on a local or hosted machine. Fourthly, the configurations should be made via a user interface
(UI), as it is di�cult to memorise all possible configurations without a guided process in a YAML
file tree. In this way, an arbitrary formatted dataset can be verified and fine-tuned on all Open-MMLab
supported SOTA classification and recognition models without e�ort and only depends on the available
computational resources.

Because this final work package depends on third-party suppliers, it is listed at the end of this section.
However, it should be performed with the highest priority as soon as the public GLEAM API is back
online. As noted in the discussions, to be able to draw further conclusions about the transferability of
the results obtained in this work and to possible future surveys of the SKA telescope, the trained models
should be evaluated on higher resolution GLEAM images. Due to external factors, this validation was
not possible within the period of this project but would finalise the investigations of this work.
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Appendix A

Appendix

A.1 Dataset Collection

Figure A.1: Dataset Collection Annotation Example

A.2 Preprocessing

A.2.1 Supported Preprocessing Techniques

Name Config Key Description

Otsu’s Method OtsusThreshold Applies Otsu’s Thresholding to a given sample to eliminate noise.
Z-Scaling ZScale Applies Z-Scaling based on IRAF’s Z-Scale to a given sample. See section 2.4.
Min-Max-Scaling MinMaxScale Applies Min-Max-Scaling to a given sample based on the minimum and maximum value in the data. See section 2.4.
Hyperbolic Sin Stretch SinhStretch Applies a hyperbolic sin stretch to a given sample. See section 2.4.
Square Root Stretch SqrtStretch Applies a square root stretch to a given sample. See section 2.4.
Linear Stretch LinearStretch Applies a linear stretch with a slope and o�set. See section 2.4.
Power Stretch PowerStretch Applies a power stretch to a given sample. See section 2.4.
Power Distribution Stretch PowerDistStretch Applies a power distribution stretch to a given sample. See section 2.4.
Sigma Mean Clipping SigmaMeanClip Clips outlier values depending on a deviating number of standard deviation of the mean. See section 2.4.
Sigma Median Clipping SigmaMedianClip Clips outlier values depending on a deviating number of standard deviation of the median. See section 2.4.
Replicate Colour Channels ReplicateChannels Converts a grayscale image to a three channel colour image by replicating the channel to all channels.
CV2 Gray to Cloour GrayToColour Uses the CV2 cvtColor method to convert a grayscale to a three channel colour image.
Dynamic Weight Conversion DynamicWeightsConversion Takes the mean, standard deviation and skew of an image to dynamically weight a grayscale colour channel to three colour channels [158].
Uint 8 Conversion ConvertToUint8 Converts a floating point image with values within (0, 1) to an uint8 image with values within (0, 255).

Table A.1: Supported Preprocessing Techniques through the Preprocessing Pipeline
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A.2.2 Intensity Distributions Preprocessing Techniques

The figures in this section are showing the intensity distributions of the preprocessing techniques analysed
in this project based on either z-scaling and min-max scaling.

Figure A.2: Intensity Distributions Preprocessing Techniques based on Z-Scale
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Figure A.3: Intensity Distributions Preprocessing Techniques based on Min-Max Scale
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A.3 Results

A.3.1 Benchmark Experiments

Classification Models

Model Config Top 1 Top 2 F1 Score Macro Precision Macro Recall Macro

ResNet ZS, NPT 83.38 94.53 79.60 79.67 79.71

ResNet ZS, NPT, US 81.42 93.90 79.55 80.06 79.37
ResNet ZS, PT, US 81.42 94.47 79.21 79.36 79.26
ResNet ZS, PT 81.16 93.52 77.13 77.30 77.26
E�Net ZS, NPT 79.23 92.30 74.00 74.41 73.72
E�Net ZS, PT 78.42 92.71 72.29 72.90 71.93
E�Net ZS, PT, US 76.74 90.21 74.77 76.10 74.15
E�For ZS, NPT 76.60 89.46 69.64 70.10 69.38
ResNet MM, PT 75.684 90.48 68.75 69.62 68.00
E�For ZS, PT 75.48 89.56 68.69 69.24 68.45
E�Net MM, PT 74.57 - 66.98 68.59 65.87
ResNet MM, NPT 73.76 90.58 67.50 68.05 67.08
E�Net ZS, NPT, US 73.19 93.62 71.76 72.19 71.83
E�For ZS, NPT, US 73.05 90.64 71.02 71.62 70.62
E�For MM, PT 72.644 89.06 65.48 65.77 65.34
E�For MM, NPT 71.834 88.86 64.78 65.37 64.34
ResNet MM, NPT, US 71.77 89.22 71.00 71.44 70.79
E�Net MM, NPT 71.631 - 64.00 65.62 62.70
E�For ZS, PT, US 69.22 90.07 66.75 67.30 66.39
E�Net MM, PT, US 68.23 87.94 67.62 68.64 66.88
ResNet MM, PT, US 66.81 86.53 66.89 67.92 66.08
E�For MM, NPT, US 64.97 85.11 64.02 64.70 63.70
E�For MM, PT, US 63.12 86.38 61.86 62.30 61.55
E�Net MM, NPT, US 62.84 83.97 62.31 63.05 61.80
ViT ZS, PT 59.473 77.91 42.33 55.34 36.41
ViT ZS, NPT 58.46 77.41 37.19 60.42 32.63
ViT MM, PT 52.99 70.72 19.12 36.71 18.50
ViT MM, NPT 50.56 71.83 15.70 22.21 16.60
ViT ZS, NPT, US 49.79 75.04 36.11 51.99 31.28
ViT ZS, PT, US 46.95 72.766 44.53 50.33 41.06
ViT MM, PT, US 36.31 61.56 7.55 26.85 5.39
ViT MM, NPT, US 21.14 39.86 0 0 0

Table A.2: Results Benchmark Experiments | Classification Models
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Figure A.4: ResNet50 | Z-Scale | Not Pre-Trained | Performance Metric Summary

Figure A.5: ResNet50 | Z-Scale | Not Pre-Trained | Undersampling | Performance Metric Summary

Figure A.6: ResNet50 | Z-Scale | Pre-Trained | Undersampling | Performance Metric Summary
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Figure A.7: E�cientNet V2 | Z-Scale | Not Pre-Trained | Performance Metric Summary

Figure A.8: E�cientNet V2 | Z-Scale | Pre-Trained | Performance Metric Summary

Figure A.9: E�cientNet V2 | Z-Scale | Pre-Trained | Undersampling | Performance Metric Summary
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Figure A.10: E�cientFormer | Z-Scale | Not Pre-Trained | Performance Metric Summary

Figure A.11: E�cientFormer | Z-Scale | Pre-Trained | Performance Metric Summary

Figure A.12: E�cientFormer | Z-Scale | Not Pre-Trained | Undersampling | Performance Metric Sum-
mary
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Figure A.13: Vision Transformer | Z-Scale | Pre-Trained | Performance Metric Summary

Figure A.14: Vision Transformer | Z-Scale | Not Pre-Trained | Performance Metric Summary

Figure A.15: Vision Transformer | Min-Max Scale | Pre-Trained | Performance Metric Summary
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Detection Models

Figure A.16: DINO | Min-Max Scale | Pre-Trained | Performance Metric Summary

Figure A.17: DINO | Z-Scale | Pre-Trained | Performance Metric Summary
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Figure A.18: DINO | Min-Max Scale | Not Pre-Trained | Performance Metric Summary

Figure A.19: YOLOv8 | Z-Scale | Pre-Trained | Undersampling | Performance Metric Summary
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Figure A.20: YOLOv8 | Min-Max Scale | Pre-Trained | Undersampling | Performance Metric Summary

Figure A.21: YOLOv8 | Z-Scale | Not Pre-Trained | Performance Metric Summary
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A.3.2 Ensemble Experiments

ResNet50 Six Sigma Deviation

Examples of samples which deviates more than six sigma from the distribution mean obtained by 30
ResNet50 models.

Figure A.22: Ensemble Six Sigma Deviation Results
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Full Error List ResNet 50 Ensemble

Examples of samples on which all 30 models failed to predict the ground truth class.

Figure A.23: Resnet50 Ensemble Full Error List
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Agreed Full Error List ResNet 50 Ensemble

Examples of samples on which all 30 models failed by predicting the identical wrong class.

Figure A.24: Resnet50 Ensemble Agreed Full Error List
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A.3.3 Fine-Tuned Ensemble Experiments

Standard Deviation Analysis per Class

Classes 1_1 1_2 1_3 2_2 2_3 3_3

Uncertainty 0.0199 0.0293 0.0262 0.0242 0.0267 0.0148

Average Uncertainty 0.0466

Table A.3: Uncertainty Fine-Tuned ResNet50 | ZMZ-Stack | Not Pre-trained | Per Class and on Average

Uncertainty Distribution Analysis

For this analysis the uncertainty was analysed in terms of number of standard deviations to the ground
truth.

Sigma Interval # of Samples

[0, 1) 341
[1, 3) 561
[3, 6) 49
[6, Œ) 36
Total 987

Table A.4: Uncertainty Distribution by the Number of Standard Deviations ‡

Figure A.25: Uncertainty Distribution by the Number of Standard Deviations ‡
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Agreement Analysis

The following table shows the resulting metrics of the agreement analysis performed on 30 randomly
initialised ResNet50 models by using the evaluated fine-tuned hyperparameters.

(a) Agreement Distribution

Name Value

Full Success Rate 74.87%
Full Success 739 Samples
Partial Success Rate 22.19%
Partial Success 219 Samples
Full Error Rate 2.94%
Full Error 29 Samples
Agreed Full Error Rate 2.33
Agreed Full Error 23
Majority Success Rate 89.67%
Majority Success 885 Samples
Total 987 Samples

(b) Quantitative Results of Agreement Analysis

Figure A.26: Agreement Analysis

Fine-Tuned Ensemble Threshold Analyses

This analysis is performed to see the performance gains of using an ensemble of models from 1 to 30
models applied on the test set. Whereas in figure A.27 the top-1 accuracy was considered, analysed
figure A.28 the top-2 accuracy. Moreover, the corresponding most important numbers are listed in
table A.5 and A.6 respectively.

Figure A.27: Fine-Tuned Ensemble Size Analysis Top-1 Accuracy
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Key Value

Maximum mean accuracy 89.83%
Maximum mean accuracy at # of models 21
Maximum accuracy 90.68%
Maximum accuracy at # of models 3
Lowest mean accuracy 88.84%
Lowest mean accuracy at # of models 1
Lowest accuracy 87.23%
Lowest accuracy at # of models 1

Table A.5: Fine-Tuned Ensemble Size Analysis Top-1 Accuracy

Figure A.28: Fine-Tuned Ensemble Size Analysis Top-2 Accuracy

Key Value

Maximum mean accuracy 98.38%
Maximum mean accuracy at # of models 30
Maximum accuracy 98.68%
Maximum accuracy at # of models 7
Lowest mean accuracy 97.49%
Lowest mean accuracy at # of models 1
Lowest accuracy 96.86%
Lowest accuracy at # of models 1
Maximum accuracy with three models 98.58%

Table A.6: Fine-Tuned Ensemble Size Analysis Top-2 Accuracy
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Fine-Tuned ResNet50 Six Sigma Deviation

Examples of samples which deviates more than six sigma from the distribution mean obtained by 30
fine-tuned ResNet50 models.

Figure A.29: Fine-Tuned ResNet50 Ensemble Six Sigma Deviation Results
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Fine-Tuned ResNet50 Ensemble Full Error List

Examples of samples on which all 30 models failed to predict the ground truth class.

Figure A.30: Fine-Tuned ResNet50 Ensemble Full Error List
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Fine-Tuned ResNet50 Ensemble Agreed Full Error List

Examples of samples on which all 30 models failed by predicting the identical wrong class.

Figure A.31: Fine-Tuned ResNet50 Ensemble Agreed Full Error List
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A.3.4 GLEAM Experiments

The following image shows an example of a GLEAM source image of which six samples were manually
cropped for further analyses with an ensemble of 30 randomly initialised ResNet50 models trained on
the RGZ OD dataset.

Figure A.32: GLEAM [68] source image
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