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Abstract 

Healthcare providers are currently facing various challenges, including a 

shortage of qualified personnel, increasing cost pressures, and workflow 

inefficiencies. If these issues are not addressed, they will ultimately lead to a 

decline in the quality of care. By leveraging the increasing digitalization in 

healthcare, clinical decision support systems can offer a promising solution to 

these problems by supporting healthcare professionals in their workflows and 

decision-making processes. 

This thesis is a first step towards developing a software solution that utilizes 

machine learning to predict changes in blood gas levels of critically ill patients. If 

successful, this application will reduce the need for arterial blood gas tests, lower 

healthcare expenses, and enhance the quality of care and clinical outcome. 

The research scope of this thesis is to investigate the feasibility of employing 

a transformer model for the prediction of a patient's partial oxygen pressure in 

arterial blood based on vital signs, lung mechanics, and ventilation data. This also 

involves examining the transformer's capacity to handle asynchronous time 

series data and comparing its performance to two simple baseline models. 

The utilized transformer model comprises an encoder-decoder architecture 

that includes an altered attention mechanism that has near-linear computational 

complexity and, therefore, enables the model to process large input sequences. 

Supervised learning was performed based on 90,000 days’ worth of ventilation 

data from over 16,000 patients, extracted from the MIMIC-IV database. 

The results show that the utilized architecture effectively handles the 

challenges of asynchronous time series in clinical datasets. However, the model's 

performance in predicting the partial pressure of oxygen was limited. Despite 

initial experiments showing marginal improvements over baseline models, the 

training loss exhibits high variability. Neither hyperparameter optimization, 

reducing model complexity, nor enhancing the training set yields significant 

improvement. This led to the conclusion that, in conjunction with the provided 

dataset, the chosen model has substantial limitations. 



  

Among other potential issues, the primary constraint identified is the small 

data-to-model-complexity ratio. Future improvements could include transitioning 

to an encoder-only architecture to leverage transformer capabilities better and 

conducting an in-depth dataset exploration to enrich the dataset with more 

informative features. 

In summary, for our specific use case, evidence suggests that transformers 

may not offer substantial benefits considering the required implementation 

efforts. Yet, under optimal conditions and with expertise for effective 

implementation, they can prove effective.  
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1 

1 Introduction 

1.1 Clinical Background 

1.1.1 Introduction to Mechanical Ventilation 

The lungs’ primary function is to add oxygen and remove carbon dioxide 

(CO2) from the blood. With every breath, air is drawn through the trachea and 

bronchi into small air sacs called alveoli at the ends of the bronchi. These sacs 

are surrounded by small blood vessels (capillaries). Oxygen moves through the 

thin membranes of the alveoli and enters the bloodstream. The red blood cells 

collect the oxygen and transport it to the body's organs and tissues. As the blood 

cells discharge the oxygen, they take up carbon dioxide, a metabolic waste 

product. The carbon dioxide is then transported back to the lungs and released 

into the alveoli. During each exhalation, carbon dioxide is expelled from the 

bronchi and out through the trachea.  

If the respiratory system is unable to maintain either normal delivery of 

oxygen (hypoxemia) to tissues or the normal removal of carbon dioxide 

(hypercapnia) from the tissue, we talk about respiratory failure (which is further 

discussed in 1.1.2.)  

Figure 1 Anatomy of the lungs (left) and alveolar sacs (right), surrounded by small blood 

vessels (capillaries) that enable the exchange of oxygen and carbon dioxide between the lungs 

and the bloodstream (Betts et al., 2022).  



Introduction 2 

Mechanical ventilation is a common procedure used in the intensive care 

unit, with more than 50% of ICU patients requiring it within the first 24 hours of 

admission. It is a method of supporting intubated patients when their spontaneous 

breathing is inadequate to sustain life or to reach a therapeutic target. There are 

two types of mechanical ventilators: negative pressure ventilators and positive 

pressure ventilators. Positive pressure ventilators are the preferred choice in 

hospitals because they offer various ventilation modes and features that allow for 

more sophisticated delivery of conditioned gas and assistance in ventilation. 

These machines ensure adequate gas exchange by applying positive pressure 

inflation to the lung and terminate it according to a set target in volume, pressure, 

or time. Although mechanical ventilation can save the lives of critically ill patients, 

it is associated with multiple life-threatening complications, such as air leaks and 

pneumonia (Sandur & Stoller, 1999). 

When a patient no longer needs mechanical ventilation, they are ready to 

be weaned off the ventilator. Candidates for weaning must have adequate 

oxygenation, carbon dioxide elimination, respiratory muscle strength, and the 

ability to protect their airway. Non-invasive ventilation refers to ventilator 

Figure 2 The illustration displays a typical arrangement of a mechanical ventilator used 

in hospitals. The ventilator supplies the patient with warm, humidified air or air containing 

additional oxygen through a breathing tube (known as an endotracheal tube) or a close-fitting 

mask (What Is a Ventilator, 2022). 
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assistance techniques that don't bypass the upper airway, they can serve as a 

bridge between extubation and spontaneous ventilation, where the patient 

breathes on their own.  

To monitor patients on mechanical ventilation, health care professionals use 

arterial blood gases, pulse oximetry, and end-tidal CO2 measurements. 

1.1.2 Acute Respiratory Failure 

Acute respiratory failure (ARF) is defined as acute and progressive 

hypoxemia developing within hours, days, or up to a month caused by various 

respiratory, cardiovascular, or systemic disease in previously healthy patients. 

Among ARF, acute respiratory distress syndrome (ARDS) is a life-threatening 

condition which is characterized by the activation of white blood cells and 

pulmonary inflammation that requires immediate treatment (Fujishima, 2023). 

The causes of this condition include diseases such as COVID-19, inhaling smoke 

and toxic gases, as well as lung injuries.  

Acute respiratory failure (ARF) encompasses a range of diseases that 

ultimately lead to the same physiological outcomes: arterial hypoxemia; partial 

pressure of oxygen (PaO2]) of < 60 mm Hg or hypercapnia; partial pressure of 

carbon dioxide (PaCO2) of > 45 to 50 mm Hg. 

The overall efficiency of gas exchange can be assessed in terms of 

maintenance of normal PaO2 and PaCO2. The assessment can be performed by 

calculating the alveolar-arterial partial pressure oxygen difference (PAO2 – 

PaO2), which is also known as the A-a gradient. However, as most patients with 

ARF receive supplemental oxygen it is clinically more useful to use the ratio of 

PaO2 to FiO21 (normally > 400 mm HG) to assess gas exchange efficiency. This 

ratio also forms one of the basic criteria for the diagnosis of ARDS (Keyt & Peters, 

2019). 

 

1 Fraction of Inspired Oxygen is 21% in room air and up to 100% during oxygen therapy or 

mechanical ventilation. 
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As seen above the partial pressure of oxygen (PaO2) in arterial blood is a 

vital clinical indicator for detecting acute respiratory failure. It is further used for 

assessing a patient’s oxygenation status and therefore serves for optimizing 

mechanical ventilation settings and serves as a basis for important therapeutic 

decisions. 

1.2 Relevance 

1.2.1 Challenges in Healthcare 

Healthcare providers are currently facing numerous challenges such as 

shortage of qualified personnel, increasing cost pressures, and workflow 

inefficiencies. If not addressed, these challenges will ultimately lead to a decrease 

in the quality of care provided to their patients. Therefore, innovative solutions 

using data-based systems are urgently needed to support clinical staff in their 

daily workflows and decision-making processes. These systems can provide 

valuable insights into patient care, help optimize treatment plans, and ensure that 

healthcare professionals have access to accurate and up-to-date information at 

all times. By leveraging these tools, healthcare providers can improve efficiency, 

reduce costs, and deliver better patient outcomes. 

1.2.2 Economic Impact of Frequent ABG Tests 

The monitoring of arterial oxygen levels in mechanically ventilated patients 

is common practice in intensive care units. Blood gas analyses (BGA) are used 

for this purpose, but they are resource-intensive and only provide snapshot 

information.  

However, the process of drawing and analyzing ABG samples is invasive, 

time-consuming, and expensive. As one of the most commonly used diagnostic 

tests, it accounts for as much as 10-20% of all costs incurred during an ICU stay, 

while increasing the risk of infections and “anemia of chronic investigation” 

(DellaVolpe et al., 2014). 

In a level 3 intensive care unit (ICU), an average of 4.8 to 8.5 ABG tests are 

conducted per patient per day (Walsh et al., 2020). Among these tests, 50% are 
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considered inappropriate, often occurring during shift changes, after treatment 

discontinuation, or following the cessation of ventilatory support or oxygen 

delivery for stable patients. The combined expenses for materials and labor 

associated with each ABG test are estimated to be around $20. In a hypothetical 

scenario, considering a 12-bed ICU operating at 80% capacity, the number of 

inappropriate tests sums up to between $175,000 and $310,000 per year. 

1.2.3 Clinical Decision Support Systems 

The clinical decision support systems market is estimated around $1.7 

billion in revenue in 2023. It is expected to grow steadily at a compound annual 

growth rate (CAGR) of 7.5%, reaching $2.5 billion by 2028 (Clinical Decision 

Support Systems Market, 2023). This growth demonstrates a clear trend toward 

adopting software solutions that help healthcare providers deliver high-quality 

care while managing financial and staffing constraints. 

Intensive care units (ICUs) make up a significant portion of hospital budgets, 

despite treating a relatively small number of patients. This is due to the complex 

procedures involved, the use of expensive technology and medications, and the 

need for highly trained staff. Patients admitted to ICU with acute respiratory 

distress syndrome (ARDS), which is an inflammatory lung condition, are 

especially expensive to treat. They have a high mortality rate and often 

experience a lower quality of life compared to other critically ill patients. Patients 

with ARDS often require mechanical ventilation (MV), a particularly costly life-

sustaining therapy (Marti et al., 2016). 

According to the LUNG SAFE study, 34.9% of the patients enrolled suffered 

from acute hypoxemic respiratory failure (Pham et al., 2021). Among these 

patients, 69% met the criteria for acute respiratory distress syndrome (ARDS) 

according to the Berlin definition (“Acute Respiratory Distress Syndrome,” 2012). 

The mortality rate for severe ARDS was found to be as high as 46.1%. However, 

only 34.0% of clinicians were able to recognize ARDS at the time of fulfillment of 

the criteria. This highlights the need for decision-support tools to enable 

healthcare professionals the timely detection of respiratory failure. 
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1.3 Research Aim  

1.3.1 Clinical Use Case 

Our research aim is to develop a software solution that can assist in 

managing critically ill patients in intensive care units who require frequent Arterial 

Blood Gas (ABG) tests to monitor their oxygenation and guide treatment 

decisions.  

To achieve this goal, we want to leverage state-of-the-art machine learning 

techniques for time series forecasting. We aim to continuously analyze a set of 

patient parameters, including vital signs, lung mechanics, and ventilator settings, 

to intelligently predict fluctuations in blood gas levels. 

We strive to have a positive clinical impact by reducing the number of 

unnecessary ABG tests and thus decrease healthcare costs. Additionally, we 

hope to provide clinicians with timely and informed decision-making capabilities 

that improve the quality of care and patient outcomes. 

This thesis represents an initial step towards the clinical use case 

mentioned above and aims to achieve the following research objectives.  

1.3.2 Research Objectives 

Within this thesis, the primary objective is to investigate the feasibility of 

employing a transformer model for a prediction task on asynchronous time series 

data. The thesis aims to address the following key research questions. 

1. Investigate, whether the transformers model is capable of effectively 

handle asynchronous time series data. 

2. Evaluate the performance of the transformer model to predict the 

partial pressure of arterial oxygen based on ventilation parameters 

and the patient’s lung mechanics. 
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2 Theoretical Foundation 

2.1 Introduction to Time Series Analysis 

Time series are everywhere and arise naturally in many contexts. Data is 

often collected at fixed intervals, such as the daily maximum temperature or the 

total number of passengers each month. Time series are prevalent in various 

fields, including transportation (e.g., traffic data), business (e.g., sales figures), 

economics (e.g., stock prices), official statistics (e.g., population demographics), 

natural sciences (e.g., population sizes, solar activity), environmental sciences 

(e.g., precipitation, temperature, air pollutant measurements), and more. 

Statistical analysis of such data is referred to as time series analysis. Its 

main goals are understanding past trends and predicting future values. While 

simple (graphical) methods from descriptive statistics can significantly improve 

data understanding, a model-based analysis often provides more insights into 

relationships. 

In cases where a good model for the data can be found, it becomes possible 

to generate predictions for future values. These predictions serve as a basis for 

budgeting, procurement decisions, etc. Furthermore, time series models can also 

be used to assess fluctuations in the data, determining whether observed 

deviations are within the realm of random variability or if substantial changes have 

occurred (Hofer, 2021).  

2.1.1 Characteristics of Health Care Data 

In the landscape of health care, the utilization of patient data has become 

increasingly pivotal for understanding and managing various aspects of patient 

well-being. In critical care medicine, one of the most data intensive medical 

specialty, time series data is routinely utilized for understanding the patient 

trajectory and managing treatment strategies. Digitalized electronic health 

records (EHR) have become the single source of truth for health care 

professionals and the go to tool for analyzing monitoring and treatment data. In 

their study, Manor-Shulman and colleagues reported a median of 1,348 clinical 
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data points for each 24-hour period per patient are being collected in EHR 

(Manor-Shulman et al., 2008). 

Those data points come in various forms, including clinical observations, lab 

reports, hospitalizations and discharges, demographics, medications, and billing 

information. Therefore, EHRs can be considered heterogeneous (Denny, 2012). 

The data format can be structured (e.g. procedure codes, administrative data, 

laboratory test results), unstructured (e.g. clinical notes for admission, procedure 

notes, medical history) or semi-structured (e.g. ultrasound data, MRI data, ECG 

data) (Sarwar et al., 2023). Additionally to the data format, temporality, sparsity, 

irregularity and imbalanced data pose a significant challenge for the analysis of 

health care data (Sarwar et al., 2023).  

Temporality: Observations such as temperature or blood pressure can 

change over time, making time-series analysis a suitable tool. However, patients 

seek medical care based on their unique health conditions and needs, which 

means that the number of visits and duration can vary from patient to patient. 

Therefore, it is challenging to compare different patients directly due to the 

variations in observations. Additionally, patients who require more medical 

attention may have more frequent visits, which can impact the accuracy of the 

analysis outcomes.  

Sparsity: Electronic Health Record (EHR) data often has missing values 

due to variations in medical requirements and data collection processes, which 

can adversely affect its quality. Missing data can complicate the analysis, leading 

to biased outcomes. Therefore, it's crucial to handle missing data appropriately 

to prevent biased conclusions. 

Irregularity: EHR data is irregularly recorded, with two levels of 

irregularities observed: visit-level and feature-level. Visit-level irregularity refers 

to the irregularity observed in the patient’s visits, while feature-level irregularity 

refers to the appearance of the same feature irregularly in the EHR dataset. 

Imbalanced data: EHR data often has class imbalance, with the class of 

interest being underrepresented. This can result in poor discrimination and 

calibration of data mining models, leading to biased and poor performance. 
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2.1.2 Traditional Time Series Models 

Traditional time series models have been fundamental in analyzing 

sequential data and establishing a foundation for forecasting techniques. Two 

prominent examples of traditional time series models are Autoregressive 

Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA). 

ARIMA stands out as a classic method for analyzing non-stationary time 

series data. Unlike regression models, ARIMA explains a time series by looking 

at its past or lagged values. The name "ARIMA" comes from its combination of 

autoregressive (AR), integration (I), and moving average (MA) operations. The 

autoregressive component captures the relationship between an observation and 

several lagged observations, while the moving average component models the 

dependency between an observation and a residual from previous observations. 

Additionally, differencing is employed to stabilize the mean of the time series (Box 

et al., 2016). 

Building upon ARIMA, SARIMA incorporates seasonality components to 

handle periodic patterns in time series data. This model is particularly effective 

when dealing with data that exhibits repeating patterns over time, such as sales 

figures affected by yearly trends (Hyndman & Athanasopoulos, 2018). The 

ARIMA and SARIMA models are popular for their statistical properties and 

effective modeling process. They are easy to implement, but they can only detect 

linear relationships in stationary time series data without any missing values. 

Artificial neural networks, on the other hand, are useful for time series forecasting 

because they can handle nonlinear relationships and more complex data. (X. 

Zhang et al., 2013). 

2.1.3 Neural Network Approaches  

In 1998, Zhang and his colleagues summarized numerous studies on 

Artificial Neural Networks (ANNs) for forecasting and highlighted several reasons 

why ANNs are considered suitable for forecasting compared to traditional 

statistical methods. Firstly, ANNs can model unknown relationships in data 

without requiring many assumptions. Secondly, they can apply what they have 

learned to new, unseen data. Thirdly, ANNs, particularly non-linear relationships, 
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can be modeled well as they are universal approximators, capable of 

representing a wider range of functions than traditional time series models 

(Hewamalage et al., 2019; G. Zhang et al., 1998). 

RNNs are a class of neural networks that are commonly used for sequence 

prediction problems. In contrary to Feed Forward Neural Network (FFNN), RNNs 

have connections that form cycles, allowing them to maintain a hidden state and 

capture temporal dependencies (Hewamalage et al., 2019). Every Recurrent 

Neural Network (RNN) is composed of multiple RNN units. Among the most 

widely used RNN units for sequence modeling tasks are Long Short-Term 

Memory (LSTM) cell, and Gated Recurrent Unit (GRU) (Cho et al., 2014; 

Hochreiter & Schmidhuber, 1997). 

Traditional RNNs face the vanishing gradient problem as the network depth 

increases. In gradient-based learning methods like backpropagation, the network 

weights are updated based on the gradient value after each training iteration. Due 

to certain activation functions and network architectures, the gradient value may 

become too small during backpropagation, hindering weight updates and, in 

extreme cases, causing the network to halt training (Basodi et al., 2020). 

Long Short-Term Memory (LSTM) Networks are a specific type of RNN 

designed to address the vanishing gradient problem. LSTMs include memory 

cells and gating mechanisms that enable them to capture long-term 

dependencies more effectively. They are well-suited for time series forecasting 

Figure 3 A shallow neural network includes an input layer, a hidden layer, and an output 

layer. These layers are connected through forward connections, forming a feed-forward 

network, with each connection corresponding to a weight (Prince, 2023). 
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tasks where understanding and remembering patterns over extended periods are 

crucial (Gers, 1999). 

Gated Recurrent Units (GRUs) are similar to Long Short-Term Memory 

(LSTM) networks, with a simpler structure. As a result, GRUs use fewer training 

parameters and may be less computationally expensive than LSTMs. However, 

LSTMs are better suited for tasks that require a deep understanding of context. 

Other than that, both techniques perform similarly, and it can be challenging to 

determine which one is better in a given situation (Bianchi et al., 2017). 

2.2 Transformer Models 

Transformer models have brought a significant change in the field of natural 

language processing (NLP) and beyond. They offer an architecture that excels at 

capturing complex patterns in sequential data. This model was introduced by 

Vaswani et al. in 2017, and it differs from traditional recurrent and convolutional 

architectures. The Transformer model relies on self-attention mechanisms to 

process input sequences in parallel, making it more efficient. With its ability to 

capture long-range dependencies and scalability to handle diverse tasks, 

Transformer models have become the backbone of state-of-the-art models in 

machine translation, text generation, and other domains (Devlin et al., 2019; 

Radford et al., 2018; Vaswani et al., 2017). 

2.2.1 Transformer Model Architecture 

Traditional neural network architectures, such as recurrent neural networks 

(RNNs) and convolutional neural networks (CNNs), have shown great success in 

sequential and spatial data processing. However, these models face challenges 

in capturing long-range dependencies efficiently. Recurrent models process input 

and output sequences symbol by symbol in a sequential manner. This means 

that the model generates a sequence of hidden states based on the previous 

hidden state and the input at that position. However, this sequential approach 

makes it difficult to parallelize training examples, especially when dealing with 

longer sequences. To put it simply, memory limitations restrict the ability to batch 

across examples which is crucial for efficient training (Vaswani et al., 2017). 
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High-Level Architecture 

The Transformer is a deep learning architecture and comprised of an 

encoder and a decoder (Figure 4). The encoder maps an input sequence of 

symbol representations to a sequence of continuous representations. Given 

those representations, the decoder then generates an output sequence of 

symbols one element at a time (Vaswani et al., 2017). 

Both, encoder and decoder contain multiple layers. Each layer consists of 

two sub-layers: a multi-head self-attention mechanism and a feed-forward neural 

network (Figure 5). The multi-head self-attention mechanism allows the model to 

focus on different parts of the input sequence, while the feed-forward network 

applies a point-wise fully connected layer to each position separately and 

identically (Vaswani et al., 2017). 

To facilitate training and prevent over-fitting, the Transformer model uses 

residual connections and layer normalization. Additionally, Vaswani et al. 

Figure 4 The transformer model architecture presented by Vaswani et al., 2017 showing 

the encoder on the left and the decorder on the right side. 
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introduce a positional encoding scheme that encodes the position of each token 

in the input sequence. This enables the model to capture the order of the 

sequence without the need for recurrent or convolutional operations. 

Embeddings 

To utilize transformers or in general neural networks for text processing, the 

initial step involves converting the text into a numerical format. This process, 

known as embedding, aims to create a numerical representation that can capture 

important characteristics of the text, such as the relationships between words or 

the sentiment of the text. The ideal embedded representation should accurately 

reproduce these characteristics (Jurafsky & Martin, 2023). 

Figure 5 Transformer layer with multi-head self-attention and feed-forward 

neural network (Prince, 2023) 

Figure 6 The input embedding matrix X is created by multiplying the vocabulary matrix 

with a matrix containing one-hot vectors in its columns, corresponding to word indices. This 

results in N embeddings of length D (Prince, 2023). 
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Each word (or token) in the vocabulary is associated with a unique word 

embedding. These embeddings are combined to form a matrix that represents 

the embeddings of the entire vocabulary. In this Matrix building a 

multidimensional vector space of Dimension D, words that are similar in meaning 

are located close to each other, allowing the model to establish semantic 

relationships. For transformers, the embedding matrix is a network parameter that 

needs to be learned like any other (Prince, 2023). 

Self-Attention 

The Transformer architecture was developed to overcome the limitations of 

traditional sequence processing solutions by providing a scalable and 

parallelizable alternative.  

The self-attention mechanism lies at the core of the Transformer, allowing 

the model to assign importance to different positions in the input sequence while 

making predictions. Unlike RNNs, which process sequences sequentially, the 

self-attention mechanism enables the Transformer to consider all positions 

simultaneously. This, in turn, enables the Transformer to capture contextual 

information, regardless of distance, which is particularly useful when dealing with 

long sequences (Bahdanau et al., 2016; Vaswani et al., 2017).  

The matrix computation in the self-attention layer of the model is visualized 

in Figure 7. The input matrix 𝑋 contains 𝑁 word embeddings with a dimension of 

𝐷. Query matrix 𝑄, key matrix 𝐾, and value matrix 𝑉 are then separately operated 

on the input 𝑋. The dot products of matrix 𝑄 and 𝐾 are then calculated using 

matrix multiplication, and each column of the resulting matrix is independently 

applied with a softmax operation to calculate the attentions. Finally, the attentions 

are multiplied by the values to create an output that has the same size as the 

input (Prince, 2023).  
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In their paper, Vaswani et al. introduced a model that employs multi-head 

self-attention layers to process the input matrix 𝑋. This means that several 

attention layers are working simultaneously. To achieve this, the input matrix is 

split along 𝐷, and the outputs are then joined together vertically. Another linear 

transformation is applied to recombine them (Vaswani et al., 2017). The reason 

for using multiple heads is to make the self-attention network more resilient to 

poor initializations. This technique is believed to enhance the robustness of the 

self-attention network (Prince, 2023). 

The Transformer model by Vaswani displays three distinct ways to employ 

multi-head attention: 

1. The encoder includes “self-attention” layers as described in Figure 7. 

Where all the keys, queries, and values come from the same source - in 

this case, the output of the previous layer in the encoder. This enables 

each position in the encoder to attend to all positions in the previous 

encoder layer. 

2. In "encoder-decoder attention" also known as “cross-attention” 

layers, the queries are derived from the previous decoder layer, while 

the memory keys and values are taken from the encoder's output. This 

allows every position in the decoder to attend to all positions in the input 

sequence. 

Figure 7: Self-attention computation in matrix form (Prince, 2023) 
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3. Similarly, to self-attention layers in the encoder, the decoder employs a 

“masked attention layer” enabling each decoder position to attend to 

all positions in the decoder, up to and including that position, which 

means that each word in the sequence can only attend to its own 

embedding and those of words earlier in the sequence.  

Types of Transformer Models 

The process of passing an embedding matrix 𝑋 through a series of 𝐾 

transformer layers is called the transformer model. There are three types of 

transformer models: encoder, decoder, and encoder-decoder. The encoder 

transforms text embeddings into a representation that can support a range of 

tasks. The decoder can predict the next token to continue the input text. Encoder-

decoders are used in sequence-to-sequence tasks like machine translation, 

where one text string is converted into another. The next chapter will discuss 

some applications of the three transformer models. 

2.2.2 Applications of Transformer Models 

Text and Word Classification: Google's BERT (Bidirectional Encoder 

Representations from Transformers) is an encoder model that was trained in two 

stages. In the pre-training stage, BERT was trained under self-supervision to 

predict missing words from sentences from a large internet corpus. The fine-

tuning process was done by appending an extra layer to the transformer to 

convert the output vector to the desired format, which specialized the network to 

the corresponding task. The final network was successfully applied for sentiment 

analysis (where the passage is labeled as having a positive or negative emotional 

tone) or for named entity recognition to classify each word as an entity type (e.g. 

person, place, organization) (Devlin et al., 2019; Prince, 2023). 

Text Generation: OpenAI's GPT (Generative Pre-trained Transformer) is a 

decoder model that has demonstrated remarkable proficiency in text generation. 

It was trained unsupervised on vast datasets using language modeling as a 

training signal and then fine-tuned on smaller supervised datasets for specific 

tasks. The approach is task-agnostic and achieves state-of-the-art performance 
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across various tasks. Unsupervised learning is chosen as it overcomes the 

limitations of supervised learning that require large, carefully curated, and 

expensive datasets (Radford et al., 2018). 

Machine Translation: Translation from one language to another requires a 

sequence-to-sequence model consisting of an encoder and a decoder. The 

encoder processes the source sentence and produces a representation for each 

word. The decoder generates each output word by attending to the previous 

output words and the source sentence using a self-attention layer that allows the 

decoder embeddings to attend to the encoder embeddings  

The model introduced by Vaswani et al. has outperformed all the models 

reported before in the English-to-German translation task, resulting in a new 

state-of-the-art. It has also surpassed all the previously published models in 

English-to-French translation while costing less than one-fourth of the training 

cost of the previous state-of-the-art model. 

Further Applications: Initially started in the domain of natural language 

processing Transformers now progress and find applications in many other fields. 

These applications include Vision Transformer (ViT) for image classification, 

conformer for speech recognition, detection transformers (DETR), Text-to-Image 

generative models such as DALL-E from OpenAI, and many more (Carion et al., 

2020; Dosovitskiy et al., 2021; Gulati et al., 2020; Shi et al., 2020). 
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3 Methodology 

3.1 Data Set 

In order to test the model on a dataset with irregularly sampled and non-

synchronized measurement, the MIMIC-IV database was chosen (Johnson et al., 

2023). The MIMIC-IV is the fourth iteration of the MIMIC database and is widely 

used in the healthcare and research communities, particularly in the field of 

critical care. It is a publicly available database that includes de-identified health-

related data from over 430,000 patients admitted hospitals and over 73,000 

patients admitted to intensive care units. This database contains a wealth of 

information, including clinical notes, demographic details, vital sign 

measurements, laboratory test results, medications, and more. 

3.1.1 Parameter Selection 

To examine the dataset and select our parameters of interest, various 

ventilation procedures were plotted and visually analyzed. Figure 8 illustrates 

nicely that the dataset is highly imbalanced, with differing and fluctuating 

sampling frequencies. The example nicely confirms the challenges for the 

analysis of health care data as describe chapter 2.1.1. The five parameters 

selected variable and their characteristics are further described below.  

Figure 8 Data sample for a patient’s ventilation procedure over several days 
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Arterial O2 Pressure: As described before the partial oxygen pressure in 

arterial blood is the most important parameter for monitoring a patient 

oxygenation status and guide treatment decisions. The parameter is derived by 

drawing a sample of the patient’s arterial blood with subsequent laboratory test. 

The sampling interval of 4.37 hours matches roughly with the regular bedside 

visits of the respiratory therapists who is responsible for a patient’s respiratory 

care. However, it also displays a high standard deviation, indicating that it’s 

availability is influence by a variety of factors such as the patient’s condition, or r 

external factors such as staffing constraints, bedside expertise, or other clinical 

priorities.  

PEEP and FiO2: Positive end-expiratory pressure (PEEP) and fraction of 

inspired Oxygen (FiO2) are two important settings of the mechanical ventilator 

that greatly affect the patient's oxygenation during mechanical ventilation. FiO2 

refers to the percentage of oxygen that the patient receives per breath, which can 

range from 21% (room air) to 100%. PEEP, on the other hand, refers to the 

baseline pressure provided to the patient by the device. With increasing PEEP, 

the lungs remain more inflated after expiration, leading to more surface area for 

gas exchange. As these two values are typically automatically transmitted by the 

device, their availability should be constant. However, the data indicates they are 

requested every 4 hour or on change by the Electronic Medical Record (EMR) 

system. 

Figure 9 Sampling frequencies of the parameters. Outliers are not shown for increased 

readability. 
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Compliance: Pulmonary compliance describes the patient’s lung 

mechanics and is measuring the extent to which the lung will expand for each 

unit increase of applied pressure. Health care professionals rely on that concept 

to understand some pathologies (e.g. ARDS) and help to guide therapy. An 

decreased compliance value can indicate pulmonary inflammations that greatly 

reduces a lungs gas exchange efficiency. Compliance can be measured 

manually or automatically be the mechanical ventilator. The data displays a 

similar availability like FiO2 and PEEP, therefore it is assumed that it is also 

transmitted automatically. 

Pulse oximetry: Pulse oximetry is a widely used method for monitoring 

patients in critical care. It measures the oxygen saturation level by shining light 

through the skin and measuring the changes in light absorption of oxygenated 

and deoxygenated blood. This is usually done through a finger probe. It serves 

as real time monitoring for every patient in the ICU, and therefore it is not 

surprising that it shows a high occurrence in the datasets. Although there are 

some inaccuracies associated with pulse oximetry, it is still the most used tool for 

monitoring a patient’s oxygenation. 

3.1.2 Data Preprocessing 

The process of collecting and preparing the data involved four main steps: 

identification, extraction, de-noising, and normalization. 

 

Figure 10 Data collection and preprocessing workflow 
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Identification: To efficiently extract the relevant data from the database, we 

first identified the periods of interest in the MIMIC procedure events table. This 

table contains the start and end times of all medical procedures and therapies 

that were applied. In order to effectively train the model, we needed to have our 

target variable, which is the partial pressure of arterial oxygen, available for 

analysis. To increase its availability, we focused on events of invasive mechanical 

ventilation, as ABG tests are frequently performed for patients undergoing this 

type of ventilation to monitor and adjust therapy. Additionally, as the average 

number of daily ABG tests performed is between 4.8 to 8.5, we further increased 

its availability by only considering ventilation events that lasted longer than 4 

hours. As seen in Table 1, the identified periods resulted in a total of 60,778 days’ 

worth of ventilation data from 16,428 patients. 

Descriptive Statistics2 

 

Total Patients [n] 16,428 

Patient Gender (female) [%] 40.1 

Patient Age [years] 65.0 (54.0-75.0) 

Total Hospital Admissions [n] 17,733 

Total Ventilation Events [n] 20,207 

Total Time on Mechanical Ventilation [days] 60,778 

Time on MV per Procedure [hours] 26.8 (10.0-86.8) 

Table 1 presents the demographics and statistics of the data that has been extracted. 

Extraction: With the periods of interest identified the relevant charting data 

was accessed and retrieved. The five previously mentioned parameters were 

extracted, including two ventilation settings (PEEP Setting and Fraction of 

Inspired Oxygen), two patient monitoring parameters (Lung Compliance and 

Pulse Oximetry), and the target variable, which is the partial pressure of arterial 

oxygen. 

De-noising: Upon exploring the gathered dataset, numerous errors were 

detected in the observations. For instance, some observations showed a fraction 

of inspired oxygen below 21%, which is an unrealistic scenario. To minimize data 

distortion and enhance dataset quality, extreme values were identified and 

removed. To achieve this, the 0.1% and 99.9% percentiles were computed, and 

 

2 Quantitative data are expressed as median (interquartile range), percentage or counts 
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any observation outside this range was removed. The resulting parameter 

distribution can be viewed in Figure 11. 

Normalization: To prevent the model from being sensitive to the scale of 

input features and to ensure that each feature contributes equally to the learning 

process, we have implemented normalization measures. For each parameter, we 

calculated the mean and standard deviation of all observations. Then, for each 

observation, we subtracted the mean and divided the residual by the standard 

deviation. 

3.2 Transformer Model Architecture 

As the starting point for development served the Tripletformer, an encoder-

decoder Transformer architecture presented by Yalavarthi et al., 2022. If not 

stated otherwise the architecture remained unchanged. The Tripletformer model 

was chosen for its ability to tackle several challenges related to working with 

healthcare data, which were discussed in chapter 2.1.1. This model possesses 

an architecture that enables it to manage multivariate time series with: 

• Non-periodic observations in a channel 

• Single examples with very few observations in a channel 

• Completely unobserved channels 

Figure 11 Parameter distribution after the de-noising step 
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As seen in Figure 12, to the encoder (left) maps the input series 𝑋 which is 

a set of observations, to a set of representations 𝑍(𝑒). The decoder (right) outputs 

the probability distribution parameters (mean and, standard distribution) based 

on the encoder output (𝑍) and the target queries (𝑊).  

The Tripletformer was originally designed for probabilistic interpolation in 

asynchronous time series (Yalavarthi et al., 2022). However, some minor 

modifications have been made to repurpose it for our research objective, the 

prediction of partial oxygen pressure in arterial blood of invasively ventilated 

patients. 

3.2.1 Encoder 

As seen in Figure 12 the input series 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑠} consists of a set of 

observations (sequence) of length 𝑠. Each observation 𝑥𝑖 = (𝑡𝑖 , 𝑐𝑖, 𝑢𝑖) consists of 

a triple of time, (parameter) channel, and observation measurement. Therefore, 

the model does not require a fixed length of the input sets as they can vary for 

each example. Additionally, unlike to the traditional transformer model, it does not 

need positional encodings as the position of the observation is naturally given by 

the observation timestamp within the triplet. 

Figure 12 Tripletformer architecture as presented by Yalavarthi et al., 2022 
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Embedding Layer: In the encoder, the input embedding layer (iFF) 

generates the learned embeddings for each observation in the set. It processes 

the information pointwise, meaning it operates on the individual observations 

independently. However, as the iFF layer only works on vectors, channel, time, 

and value is concatenated into one vector for each observation. Additionally, as 

the channel indicator uses one-hot encoding, the vector is of space ℝ𝐶+2  with 𝐶 

the number of channels. In our case, we have five parameters. An example is 

given below. 

𝑥1  = (𝑡1, 4, 0.1)  → 𝑦1  = (𝑡1, 0, 0 ,0 ,1, 0, 0.1) 

The output of the iFF layer therefore is a set of embeddings Y(e) =

 {𝑦1
(𝑒)

, … , 𝑦𝑠
(𝑒)

}  of length 𝑠.  

Attention Block: The initial transformer architecture employs a multihead 

attention layer, and therefore consists of multiple stacked self-attention layers 

(Vaswani et al., 2017). As seen in Figure 7, the attention matrix is calculated by 

the dot product of matrix 𝑄 and 𝐾 with a subsequent softmax operation. In our 

case the attention matrix would be of dimension 𝑠 ×  𝑠, and therefore have a 

quadratic computational complexity. With large input sequences, computing the 

attention matrix 𝐴 would become a bottleneck.  

In order to tackle the issue of quadratic complexity, Yalawarti et. Al utilized 

an Induced Multihead Attention Block (IMAB). This block is composed of two 

Figure 13 Architecture of the Induced Multihead Attention Block 
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consecutive multihead attention layers and a trainable parameter matrix, ℎ. As 

depicted in Figure 13, the IMAB resolves the computational bottleneck by 

employing two attention matrices, 𝐴, which exhibit only a linear dependency on 

the input sequence length. The output 𝑍, is a set of continuous embeddings 

𝑍(𝑒)  =  {𝑧1
(𝑒)

, … , 𝑧𝑠
(𝑒)

}. 

3.2.2 Decoder 

As shown in Figure 12, the decoder takes the encoder output 𝑍(𝑒) and the 

set of target queries as inputs and returns the mean (𝑀) and standard deviations 

(Σ) of the target values. The decoder consists of three main components, a target 

embedding layer (tFF), the cross attention block (CA), and the output layer (𝑂).  

Embedding Layer: The target embedding layer (tFF) works analogous to 

the iFF. It is a point wise feedforward layer that provides the presentation of the 

learned embedding of the target query. As the value will be estimated by the 

model, the target queries 𝑊 =  {𝑤1, … , 𝑤𝑟} are the concatenated information of 

time and channel (again with one-hot encoding). In our case 𝑤𝑟 is a vector of 

space ℝ6. The target queries are then passed through to obtain a set of their 

latent representation 𝑌(𝑑)  =  {𝑦 1
(𝑑)

, . . . , 𝑦𝑟
(𝑑)

} 

Cross Attention Layer: The cross attention layer takes the latent 

embeddings 𝑍(𝑒) from the encoder and feeds it as key and values in the multihead 

attention block. Through the multiplication with representation of the target 

embeddings 𝑌(𝑑) the cross attention layer outputs the set of learned embeddings 

𝑍(𝑑)  =  {𝑧 1
(𝑑)

, . . . , 𝑧𝑟
(𝑑)

}, which are then passed on to the output layer. 

Output Layer: The output layer (𝑂) is a feedforward layer with two output 

heads. Assuming a Gaussian distribution the output layer produces the 

distribution parameter 𝑀 = { 𝜇1 , . . . , 𝜇𝑟} and Σ = { 𝜎1 , . . . , 𝜎𝑟} for each target 

query in 𝑊. 
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3.2.3 Supervised Learning 

In the framework created by Yalavarthi and collueges, the model outputs a 

probability distribution for each query 𝑤 of the set 𝑊. This was considered a 

significant advantage of the model for a possible future application. By predicting 

both the mean and standard deviation, the model improves its transparency, 

enabling the user to see not just the predicted value but also the level of 

confidence in that prediction.  

𝛲𝑟̂(𝓊′|𝑋, 𝑤) characterizes the probability distribution of the target 

observation 𝓊′ and is represented as follows:  

𝛲𝑟̂(𝓊′|𝑋, 𝑤)  =  𝒩(𝓊′; μ, σ) 

With the assumption, that the data adheres to a Gaussian distribution, the 

model utilizes Negative Log-Likelihood (𝑁𝐿𝐿) as the primary loss for model 

training. To prevent the model from getting trapped in local optima, a mean 

square error was added to the loss (𝐿).  

ℒ =  𝑁𝐿𝐿 +  𝜆 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 

The weight (𝜆) for mean square error is one of the hyperparameters of the 

model. 
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4 Experiments 

4.1 Training and Validation Splits 

The complete dataset contains data from 16,428 patients who underwent 

17,733 hospital admissions, totaling 20,207 ventilation procedures. It's possible 

for one patient to have multiple admissions and ventilation events, so to improve 

the model's generalization and prevent it from validating on already encountered 

patients, the data was sorted by patient and admission ID before splitting into 

sets. Finally, the data was then split in training (70%), validation (15%) and test-

set (15%).  

4.2 Sampling 

In a clinical setting, ABG tests are commonly initiated by physicians or 

respiratory therapists. These tests may be performed to monitor the impact of 

therapy changes or in accordance with hospital guidelines and workflows. 

Regardless of the reason, the main objective is to obtain the patient's current 

state of oxygenation. To train the model for this specific scenario, a sampling 

algorithm ensured that the latest PaO2 value for each ventilation period was 

selected as the target observation and served as input to the decoder, while all 

previous data points (including previous PaO2 measurements) were used as 

input for the encoder. To prevent the model from learning from future 

observations, data trailing the target observation was excluded from the sample. 

4.3 Training Procedure 

The training of a transformer model involves several key steps to optimize 

its parameters and enable it to make accurate predictions. Below some of the key 

steps of the training procedure will be discussed. 

Model inputs: the model takes a variety of inputs to specify the 

transformers architecture including encoder and decoder components (e.g. 

number of layer, attention heads). Some of them were modified during 

hyperparameter tuning to optimize the model’s performance. 
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Optimizer: The model was optimized using the built-in Adam optimizer from 

PyTorch, which is a commonly used optimization algorithm for training deep 

neural networks. Adam stands for Adaptive Moment Estimation and it adjusts the 

learning rates for each parameter based on the historical gradients and squared 

gradients. By combining the benefits of both momentum and RMSprop 

algorithms, Adam aims to provide a more adaptive and efficient optimization 

process. This makes it effective in training deep neural networks with various 

architectures and data characteristics. 

Learning rate scheduler: The model employed the PyTorch 

'ReduceLROnPlateau' scheduler. The purpose of this scheduler is to dynamically 

adjust the learning rate during training. When the validation loss stops improving 

(after patience epochs), it reduces the learning rate to help the optimization 

process converge more effectively. This can be particularly useful in preventing 

the model from getting stuck in a local minimum or oscillating around the optimal 

solution. 

Training loop: During each training iteration, the model is fed with batches 

of the training dataset. For every batch, a sampling algorithm is used to define 

the target observations and their corresponding context information (input series 

𝑋). From the target observations, the channel and time information are utilized to 

construct the target queries 𝑊. During the forward pass, the input series 𝑋 and 

target queries 𝑊 are passed through the model to produce the predictions. The 

value of the target observation is considered as the ground truth and is compared 

to the prediction to calculate the training loss. The gradients of the loss with 

respect to the model parameters are calculated during the subsequent 

backpropagation. To avoid any problems with exploding gradients, the gradients 

are clipped before being fed to the optimizer to update the model parameters. 

The training dataset is iterated through the model until either a defined number 

of iterations is reached or the condition for early stopping is met. 

Early stopping: During each iteration, the training and validation loss are 

calculated to evaluate training performance. To prevent overfitting on the training 

set, training is stopped if there is no improvement in performance on the validation 

set for 30 iterations. 
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4.4 Hyperparameter Tuning  

To optimize model performance, a hyperparameter search was conducted. 

Various parameters such as the number of layers, number of hidden units, and 

batch size were adjusted to optimize for performance on the validation set.  

The following Hyperparameter were searched:  

• Learning Rate: [0.01, 0.001, 0.0001, 0.00001] 

• Batch Size: [32, 64, 128, 256, 512] 

• Attention layer dimension [16, 32, 64, 256] 

• Hidden units in feedforward layers [16, 32, 64, 256] 

• IMAB layers [1, 2, 4] 

4.5 Hardware and Software 

The experiments were conducted using PyTorch as the primary deep 

learning framework. The neural network models were trained using many of 

PyTorch's build in functionalities (optimizer, scheduler, etc.). The coding and 

experimentation processes were facilitated by the Visual Studio Code (VSCode) 

integrated development environment. And to enhance computational 

performance, an NVIDIA GeForce RTX 3070 graphics processing unit (GPU) was 

utilized. 
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5 Results and Discussion 

5.1 Training Performance 

During the training process, the models exhibited a high level of fluctuation 

in their training loss. The fluctuations were so intense that it was difficult to detect 

any clear trend in the model's performance, and its apparent improvement 

seemed to be occurring purely by chance. Several reasons were considered to 

be causing this behavior. 

Inappropriate learning rate: The learning rate determines the magnitude 

of the adjustments made to the network's parameters by the optimizer. If the 

learning rate is set too high, the network might overshoot the optimal solution and 

diverge, leading to poor results. To avoid overshooting and improve the efficiency 

of the model in fitting the data, a lower learning rate was assumed to be a potential 

solutions and addressed during the hyperparameter search. 

High model complexity: A complex model may not converge due to 

various reasons. One of the most common reasons is overfitting the training set, 

where the model fits too closely to the training data, making it difficult to 

generalize to new unseen data. However, as the training loss is highly fluctuating 

it is hard to see any convergence. In the example above it even seems that the 

loss is increasing over time. 

Figure 14 Example training performance with negative likely hood (NLL) 

on training and validation set 
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Another important factor to consider is that models with high complexity 

relative to the amount of training instances can lead to high variance in the 

training process. Each subset of data may significantly impact the model 

parameters, resulting in instability and failure to converge. To address both issues 

during the hyperparameter search, parameters were changed that affect the 

transformer's architecture to monitor the effect of model complexity. Additionally, 

there was a focus on larger batch sizes to reduce the variance effect. 

Insufficient training data: If the dataset used to train a model is insufficient 

in size or lacks diversity, the model may not receive enough information to 

accurately identify patterns in the data. This can lead to incorrect predictions for 

certain inputs, causing fluctuations in the training accuracy. To examine the 

impact of the amount of training data, some experiments involved breaking down 

ventilation periods into smaller pieces, thereby significant increasing the target 

observations in the training dataset. 
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5.2 Hyperparameter Tuning 

The aim of the hyperparameter tuning was to enhance the accuracy of the 

model and resolve the issues of high fluctuations and low convergence in the 

training loss that were initially encountered. In order to achieve this, a search 

space was defined within the set of hyperparameters, and the model's 

performance on the validation dataset was evaluated. A comprehensive 

performance overview of all models can be found in Appendix A. 

5.2.1 Initial Hyperparameter Search 

In their study, Yalavarthi et al., evaluated their models on a dataset retrieved 

from an older version of the MIMIC database. Therefore, their best-performing 

set of hyperparameters was taken as a promising starting point for the search. 

Following hyperparameters have been explored: Learning rate {0.01, 

0.001}, batch size {32, 64, 128}, IMAB layers {2, 4}. The performance of the model 

was assessed on the validation set using negative log likelihood (NLL), mean 

squared error (MSE), and mean absolute error (MAE).  

In Table 2, it is observed that the two models with the best performance 

have both used a lower learning rate of 0.001 along with two IMAB layers. As we 

have discussed earlier, a potential way to reduce high training fluctuation is to 

reduce the model complexity. Since the initial search models were quite complex 

in relation to the amount of available training data, with over 450,000 trainable 

Model Val. 
Loss 
(NLL) 

Val. 
Loss 
(MSE) 

Val. 
Loss 

(MAE) 

Model 
Param. 

(n) 

Learn. 
Rate 

Batch 
Size 

Enc 
Heads 

Dec 
Heads 

IMAB 
Dim 

CAB 
Dim 

Dec 
Dim 

N 
Layer 

8298643 -3.9704 0.0472 0.0315 482818 0.001 32 2 2 64 256 256 2 

7746487 -3.9663 0.0471 0.0320 551426 0.001 32 2 2 64 256 256 4 

762072 -3.7976 0.0462 0.0330 482818 0.001 64 2 2 64 256 256 2 

1047520 -3.8996 0.0467 0.0319 551426 0.001 64 2 2 64 256 256 4 

3933066 -3.7129 0.0469 0.0331 482818 0.001 128 2 2 64 256 256 2 

6093749 -3.5318 0.0469 0.0341 551426 0.001 128 2 2 64 256 256 4 

7297106 -3.8821 0.0469 0.0341 551426 0.01 32 2 2 64 256 256 4 

1491929 -3.8576 0.0472 0.0323 551426 0.01 64 2 2 64 256 256 4 

2216878 -3.6472 0.0489 0.0355 551426 0.01 128 2 2 64 256 256 4 

Table 2 Results of the initial hyperparameter search. Evaluation metrics are NLL, MSE, 

and MAE on the validation dataset, lower the best. 
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parameters, and the two best-performing models have slightly lower complexity 

compared to the others, it was decided to conduct an additional search with 

models that have significantly lower complexity. 

5.2.2 Search with Lower Complexity Models 

To decrease the number of trainable parameters, the dimensions of the 

attention layer (IMAB and CAB) were set to 64, along with the layers of the 

decoder's feed-forward layer (Dec Dim). Additionally, the layers in IMAB were 

reduced to one. These modifications reduced the number of trainable parameters 

by approximately one order of magnitude, which is equivalent to roughly 65,000 

parameters. 

The search space for the lower complexity models (also referred to as “small 

models”) was as follows: Learning Rate {0.01, 0.001, 0.0001, 0.00001}, and batch 

size {32, 64, 128}. 

Although the highest performing model accomplished similar results as the 

more complex models, the observed variability in the NLL's was still extremely 

high. The experiments with learning rates below 0.001 were conducted in order 

to stabilize the training loss. However, they were stopped almost immediately by 

the early stopping condition due to their complete failure to improve performance 

on the validation set. The best performance in this group was achieved by a 

model with a learning rate of 0.001 and a relatively low batch size of 32.  

Model Val. 
Loss 
(NLL) 

Val. 
Loss 
(MSE) 

Val. 
Loss 

(MAE) 

Model 
Param. 

(n) 

Learn. 
Rate 

Batch 
Size 

Enc 
Heads 

Dec 
Heads 

IMAB 
Dim 

CAB 
Dim 

Dec 
Dim 

N 
Layer 

848517 106.0063 0.0470 0.0356 64514 1e-05 64 2 2 64 64 64 1 

9728787 0.5709 0.0468 0.0358 64514 1e-05 64 2 2 64 64 64 1 

8567900 -2.4196 0.0468 0.0337 64514 0.0001 128 2 2 64 64 64 1 

9851768 -3.9636 0.0476 0.0321 64514 0.001 32 2 2 64 64 64 1 

9892 -3.6831 0.0471 0.0327 64514 0.001 64 2 2 64 64 64 1 

6007937 -3.2194 0.0465 0.0381 64514 0.001 128 2 2 64 64 64 1 

910911 -3.8053 0.0466 0.0344 64514 0.01 128 2 2 64 64 64 1 

Table 3 Results of hyperparameter search with reduced complexity models. Evaluation 

metrics are NLL, MSE, and MAE on the validation dataset, lower the best. 
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5.2.3 Search with Enhanced Training Set 

As the reduction of model parameters did not yield any performance gains, 

it was decided to approach the issue from the dataset side. To improve the ratio 

between data and model complexity the number of target observations, to be 

predicted by the model, needed to be increased. However, the model's 

architecture does not allow for predicting an observation in the middle of the 

ventilation sequence without considering future observations. Therefore, an 

alternative solution was found by dividing the ventilation sequences into smaller 

segments (referred to as "ventilation snippets"), each with subsequent PaO2 

observation. This measure led to a sixfold increase in the number of target 

observations. This change only affected the training dataset. The validation and 

test datasets remained unchanged to enable comparison with results from the 

previous groups. 

The following hyperparameter search was conducted as follows. Batch Size 

{32, 64, 128}, attention layer dimension {16, 32, 64, 256}, hidden units in feed 

forward layer {16, 32 256}, and IMAB layers {2, 4}. 

Unfortunately, the search did not provide the expected results. The best 

performing model within the “ventilation snippets” group was not able to 

outperform the previous results. Even in the experiment with drastic reduction of 

learnable parameters no increased performance could be observed.   

Model Val. 
Loss 
(NLL) 

Val. 
Loss 
(MSE) 

Val. 
Loss 
(MAE) 

Model 
Param. 

(n) 

Learn. 
Rate 

Batch 
Size 

Enc 
Heads 

Dec 
Heads 

IMAB 
Dim 

CAB 
Dim 

Dec 
Dim 

N 
Layer 

897223 -3.8978 0.0470 0.0331 482818 0.001 32 2 2 64 256 256 2 

8069965 -3.8456 0.0495 0.0366 551426 0.001 32 2 2 64 256 256 4 

774821 -3.5553 0.0516 0.0377 482818 0.001 64 2 2 64 256 256 2 

3815465 -3.9106 0.0533 0.0383 551426 0.001 64 2 2 64 256 256 4 

6879220 -3.8297 0.0498 0.0366 482818 0.001 128 2 2 64 256 256 2 

1842991 9.6677 0.0475 0.0347 7042 0.001 256 2 2 16 16 16 2 

9881996 -3.8741 0.0517 0.0375 43778 0.001 256 2 2 32 32 32 4 

5502529 -3.8435 0.0492 0.0352 7042 0.001 512 2 2 16 16 16 2 

Table 4 Results of hyperparameter search with reduced complexity models. Evaluation 

metrics are NLL, MSE, and MAE on the validation dataset, lower the best. 
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5.3 Comparative Analysis 

5.3.1 Efficiency Comparison with Baseline Models 

To provide a better understanding of the models’ performances, they were 

compared to a basic mean imputation algorithm. This algorithm follows a fixed 

imputation strategy and always predicts the target observation with the mean 

value of PaO2 of the dataset. Additionally, a forward imputation algorithm was 

implemented, that follows the strategy to always predict the last observed PaO2 

value. If there is no previous observation in the sample, the algorithm will predict 

the mean PaO2 value of the dataset. Although the implementation of those two 

algorithms is straightforward, it cannot capture any patterns in the data. 

The best models from each group was compared based on their 

performance on the test set, measured in terms of mean squared error (MSE) 

and mean absolute error (MAE). 

 

 

 

Overall, the model from the initial group (model 8298643) showed the best 

performance in terms of MSE and MAE. The best model coming from the “small 

model” group was also able to outperform the two baseline algorithms. The 

models trained on the “ventilation snippets” however, failed to surpass the 

baseline. 

To summarize, none of the models showed a significant improvement 

compared to the baseline. Therefore, no further effort was made to compare them 

to more sophisticated models. The performance of the trained models was similar 

to that of the imputation algorithms, indicating that the models failed to learn any 

relationships or patterns in the data. Additionally, this raises concerns about the 

 Model Test Loss (MSE) Test Loss (MAE) 

Baseline Mean Imputation 3.5983 0.0767 

Baseline Forward Imputation 3.5983 0.0736 

Large Model 8298643 3.5948 0.0663 

Small Model 9851768 3.5960 0.0667 

Snippets 3815465 3.6031 0.0736 

Table 5 Results of comparison to baseline models. Evaluation measure is MSE and MAE 

on the test dataset, lower the best. 
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current setup, as it has serious limitations that hinder the models' ability to learn 

effectively. 

5.3.2 Visual Inspection of Results 

To visually inspect the results and understand the real-world implications of 

the performance, we generated predictions using the best-performing model. We 

denormalized the data, except for the time channel, and plotted it as shown in 

Figure 15. The last PaO2 value, which served as the ground truth, is represented 

by the blue circle, while the corresponding prediction made by the model is shown 

in red. 

The accuracy of the predictions shows a high variance, with some examples 

exhibiting a difference of more than 30 mm Hg when compared to the ground 

truth. In a real-world scenario, this variance is significant and can mean the 

difference between a healthy patient and one suffering from respiratory failure. 

Thus, these variances can have a major influence on the clinical decisions that 

need to be made. In Appendix B, there are additional examples that demonstrate 

that most channels are quite stable, while PaO2 shows a high degree of variability 

with seemingly little correlation to other parameters. This leads to the question of 

whether the data contains the necessary information to predict arterial oxygen 

levels accurately. 

Figure 15 Visualization of prediction results. The model predicts (red cross) the value for 

the last PaO2 value (blue circles) based on the previous data of the ventilation sequence. 
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5.4 Limitations and Challenges 

Transformers have shown impressive capabilities in multiple natural 

language processing and computer vision tasks, which has generated a 

considerable interest in the time series community. However, adapting 

transformers for time series data presents significant challenges. The 

subchapters below will discuss the general challenges of adapting transformers 

to time series data, as well as the limitations regarding our specific use case. 

5.4.1 Challenges in Adapting Transformers to Time Series Data 

Computation Complexity: When the input sequences are short, the 

bottleneck of the transformer lies in the point-wise feed-forward network. 

However, as the input sequences grow longer, the sequence length gradually 

drives the complexity of the model. As previously discussed, the quadratic 

complexity of the original self-attention blocks is one of the major limitations for 

their application of transformer models to time series data. To overcome this 

limitation, most models use specialized self-attention blocks to reduce the 

complexity to a more linear relationship with the drawback of creating more 

complex model architectures. 

Incapability of capturing temporal relationships: Another drawback of 

self-attention is its inability to capture the order of observations in time series 

data. While this is not a significant problem for NLP applications where 

rearranging words does not significantly affect the overall meaning of the 

sentence. However, it is a major issue for time series data, which have strong 

temporal relationships. Using various positional encoding techniques can 

preserve some ordering information, but applying self-attention on top of them 

still results in inevitable temporal information loss (Zeng et al., 2022). Therefore, 

to address this, many models use specialized architectures to preserve some of 

the temporal information. 

Unclear state of the art: In their work, Zeng et al. introduced a set of very 

simple one-layer linear models that outperformed most established sophisticated 

transformer models. This calls into question the model evaluation for those 

models and the current state-of-the-art on various datasets (Zeng et al., 2022). 
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5.4.2 Limitations Regarding the Specific Use Case 

The self-attention layer at the core of the transformer model assigns 

importance to different positions in the input sequence. Applying a masked 

attention layer would additionally prevent the model from attending to future 

information. Initially, this seemed like a reasonable approach to leverage the 

transformer's capability for parallelizing the calculations and considering the 

whole sequence simultaneously. However, in the utilized encoder-decoder 

architecture, the context information is fed into the encoder while the target 

queries serve as input for the decoder. This information then merges in the 

decoder's cross-attention block. This fact prevented any reasonable use of 

masked attention layers and therefore the effective use of the attention 

mechanism. To ensure that the model does not access future information, the 

input sequences are modified so that the target queries always represent the 

latest timepoint of the sample.  

One of the most appealing advantages of Transformers is their capability to 

capture long-range dependencies and interactions, making them particularly 

suitable for time series modeling. However, as one of the most common reasons 

for measuring arterial oxygen is to observe the effect of the latest therapy 

adjustment, long-range dependencies might not be as relevant for an accurate 

prediction of the current PaO2 value. Moreover, a patient's oxygenation status 

can be considered as a steady state, which is frequently perturbed by disease 

progression and therapeutic measures. Unlike other time series data, it shows no 

global trend or seasonal patterns. 

5.4.3 Future Directions for Improvement 

When applying the proposed model to predict arterial oxygen in the 

described use case, several challenges were encountered. These challenges 

included high variability in training loss, limited convergence of the models, and 

marginal performance gains compared to the baseline models. To overcome 

these issues, directions for improvements have been identified. 

Architecture: The Transformer architecture provides significant 

advantages when working with asynchronous multivariate time series. It can 
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handle non-periodic observations, channels with few or no observations, and 

input sequences of any length. This makes it particularly useful for medical data 

applications. Furthermore, its parallelized processing of the whole sequence 

makes it computationally more efficient than other neural network approaches. 

To take advantage of these benefits, an encoder-only architecture is proposed, 

combined with a masked attention layer. This approach allows multiple 

observations to be predicted in one sample, ensuring that the model can only 

attend to the past information for predicting a specific data point. The key 

challenge here is to create an efficient embedding mechanism that can mask the 

value but provide information about channel and time. 

Feature Exploration: The selected variables were primarily chosen from a 

application perspective of mechanical ventilation. However, there are many other 

factors that can affect a patient's oxygen saturation, such as disease progression, 

cardiac output, or blood pH. The variability in the training loss suggests that there 

may be issues with the selected variables, so it would be beneficial to explore the 

dataset more thoroughly to identify informative features. A subsequent principal 

component analysis could then be used to reduce the dimensionality and provide 

a set of variables that contribute to improved model performance. 
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6 Conclusion 

6.1 Summary of Findings 

The following research questions were addressed in this thesis: Can 

transformers handle asynchronous time series data efficiently? How well does a 

transformer model perform in predicting the partial pressure of oxygen using 

ventilation parameters? 

The results show that transformers have an architecture that allows them to 

overcome the challenges of working with asynchronous time series data. They 

can handle variable sequence lengths and samples with non-periodic 

observations, and channels with little or no observations. The attention 

mechanism allows the model to process all observations in parallel and detect 

long-term relationships. 

However, the model's performance on the described use case is limited. 

The initial experiments showed only marginal improvements to the baseline 

models, and the training loss had a high variability. In the subsequent 

experiments, neither the hyperparameter search, nor the reduced model 

complexity, nor the enhanced training set was able to bring significant 

improvement. These findings led to the conclusion that the used model, in 

combination with the provided dataset, has significant limitations. 

The most important limitation was assumed to be the rather small data to 

model complexity ratio. Additionally, the attendance to all datapoint of the 

sequence and the unclear effect of the loss of temporal information in 

transformers could also have contributed to the reduced performance. 

For future improvement, two opportunities were identified. One is to change 

the model towards an encoder-only architecture leveraging the transformers 

capabilities more effectively. The other is to thoroughly explore the dataset to 

include more informative features and to ensure that the required information is 

provided by the feature set. 
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From a personal point of view, transformers seem to be very powerful, 

especially with their impressive achievements in the field of generative AI and 

NLP. However, adapting them to other domains such as time series data requires 

much effort, often resulting in new building blocks and increasingly complex 

model architecture. With increased complexity comes an increased requirement 

for training data. Additionally, the architecture has a major influence on the 

model's explainability. Complex models with sophisticated building blocks and 

many layers make it hard to understand how the input features are transformed 

into predictions, making it a black box for the users. Especially in our use case 

where healthcare professionals rely on the model to help them making better 

treatment decisions, explainability and trust becomes a crucial factor for product 

success.  

In summary, with regards to our specific use case, there is still not enough 

evidence to suggest that Transformers offer significant benefits considering their 

implementation costs. However, under the right circumstances, and especially 

given the appropriate expertise to effectively implement and maintain them, they 

can be effective. 

As the journey through this research concludes, it leaves behind not only a 

comprehensive understanding of transformer models in the context of 

asynchronous time series but also ideas for future exploration, improvement, and 

collaboration. The pursuit of innovation is ongoing, and the quest for data driven 

solution that improve patients’ life will continue.  
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Appendix A 
 Model Val. Loss 

(NLL) 
Val. Loss 

(MSE) 
Val. Loss 

(MAE) 
Model Param. 

(n) 
Learn. 
Rate 

Batch 
Size 

Enc 
Heads 

Dec 
Heads 

IMAB 
Dim 

CAB 
Dim 

Dec 
Dim 

Layers 

L
a

rg
e

 M
o

d
e

ls
 

8298643 -3.9704 0.0472 0.0315 482818 0.001 32 2 2 64 256 256 2 

7746487 -3.9663 0.0471 0.0320 551426 0.001 32 2 2 64 256 256 4 

762072 -3.7976 0.0462 0.0330 482818 0.001 64 2 2 64 256 256 2 

1047520 -3.8996 0.0467 0.0319 551426 0.001 64 2 2 64 256 256 4 

3933066 -3.7129 0.0469 0.0331 482818 0.001 128 2 2 64 256 256 2 

6093749 -3.5318 0.0469 0.0341 551426 0.001 128 2 2 64 256 256 4 

7297106 -3.8821 0.0469 0.0341 551426 0.01 32 2 2 64 256 256 4 

1491929 -3.8576 0.0472 0.0323 551426 0.01 64 2 2 64 256 256 4 

2216878 -3.6472 0.0489 0.0355 551426 0.01 128 2 2 64 256 256 4 

S
m

a
ll
 M

o
d

e
ls

 

848517 106.0063 0.0470 0.0356 64514 1e-05 64 2 2 64 64 64 1 

9728787 0.5709 0.0468 0.0358 64514 1e-05 64 2 2 64 64 64 1 

8567900 -2.4196 0.0468 0.0337 64514 0.0001 128 2 2 64 64 64 1 

9851768 -3.9636 0.0476 0.0321 64514 0.001 32 2 2 64 64 64 1 

9892 -3.6831 0.0471 0.0327 64514 0.001 64 2 2 64 64 64 1 

6007937 -3.2194 0.0465 0.0381 64514 0.001 128 2 2 64 64 64 1 

910911 -3.8053 0.0466 0.0344 64514 0.01 128 2 2 64 64 64 1 

S
n

ip
p

e
ts

 

897223 -3.8978 0.0470 0.0331 482818 0.001 32 2 2 64 256 256 2 

8069965 -3.8456 0.0495 0.0366 551426 0.001 32 2 2 64 256 256 4 

774821 -3.5553 0.0516 0.0377 482818 0.001 64 2 2 64 256 256 2 

3815465 -3.9106 0.0533 0.0383 551426 0.001 64 2 2 64 256 256 4 

6879220 -3.8297 0.0498 0.0366 482818 0.001 128 2 2 64 256 256 2 

1842991 9.6677 0.0475 0.0347 7042 0.001 256 2 2 16 16 16 2 

9881996 -3.8741 0.0517 0.0375 43778 0.001 256 2 2 32 32 32 4 

5502529 -3.8435 0.0492 0.0352 7042 0.001 512 2 2 16 16 16 2 
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