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Abstract

This project thesis explores TCR to epitope binding affinity prediction with Deep
Neural Networks and evaluates the use of different layers of Large Language
Models (LLMs) pre-trained on proteins as embeddings for this task. Using Meta’s
Evolutionary Scale Model 2 (ESM2), embeddings for a data set of TCR and epitope
amino acid sequences were generated. Then, different Neural Network architectures
were trained and evaluated on their ability to generalize out to unseen data in three
different scenarios of data availability. We were able to confirm previous work
which showed that using different internal layers of embedding models can have
significant impact on model performance, suggesting that different structures are
learned per layer by these models. We have also found indications that deep learning
architectures may be able to solve the more difficult task of predicting completely
unknown TCR-Epitope binding pairs.
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1 Introduction

T-Cells are a core part of the human immune system’s defense against all kinds
of diseases. Together with other lymphocytes they serve both as a first line of
defence as well as an integral part of the adaptive immune response. The T-Cell
receptor (TCR) plays a key role in this, determining the epitopes of foreign cells
a T-Cell can bind to and therefore attack. A large variety of TCRs is necessary in
order to defend against the similarly large variety of different pathogens that we
may encounter throughout our lifetime. In TCRs this variety is achieved through
stochastic genetic recombination which theoretically allows for up to 1015 - 1020

different receptors [1]. The amount of different possiblities makes it very difficult to
reliably predict the binding capabilities of specific TCRs. At the same time, if there
was a reliable way to predict which TCRs would bind to a specific epitope much
more personalized treatments would be made possible as well as potentially being
able to read a patients immunologic history. Knowing this history could amongst
other things empower the application of therapeutic T-cells for cancer treatment
[2]. Further, because of the large pool of possible bindings, clinical studies in this
field are expensive and time-intensive. Even a tool which is not perfectly reliable
could empower scientist to conduct these studies more efficiently by only looking
at potential candidate cells.

Due to the large amount of possibilities between TCRs and Epitopes, and
the intricate workings of their bindings not being fully explored, our approach
is to combine state-of-the-art machine learning methods with available data to
discover if predicting TCR-Epitope bindings is reliably possible with Deep Learning
techniques.

Also, this project thesis explores how embeddings generated by language models
specifically pre-trained on protein sequences can be used for the task of TCR-Epitope
binding prediction, as well as different model architectures for the classification
task.

1.1 Related Work

This chapter will provide an overview of existing literature and previous work
around TCR-Epitope prediction.

1.1.1 T-cell receptor specificity prediction with bimodal attention networks
(TITAN)

Serving as main inspiration for our work, the TITAN model by Anna Weber, Jannis
Born and Maria Martinez leverages transfer learning through the use of the SMILES
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embedding for epitopes and uses a Bimodal Attention Network to improve prediction
performance [3]. They established a baseline with a k-nearest-neighbor (K-NN)
classifier using Levenshtein distance, where they predicted binding by choosing
a fixed distance threshold [4, 2] and achieved an AUC-ROC of 0.78. They then
compared this baseline against their newly proposed architecture, which separately
encodes the SMILES annotation of the epitope and BLOSUM62 matrix of the TCR
sequence with a set of convolutions. The encoding is then used in a set of context
attention layers before being used for classification in linear feed forward networks.
Using this architecture, they achieved a score of 0.87 ROC-AUC [2]. You can find
more detailed explanations of the Levenshtein distance and the ROC-AUC score in
Section 3.3.

An important difference from the TITAN paper to ours, is that in it the CDR3
region of the TCR sequence was used for training some of the models whereas
we decided to use the full TCR sequence for all of our training data, since they
showed that using the full sequence boosts model performance. Also noteably, they
embedded epitopes with the SMILES representation and TCRs with the BLOSUM62
matrix, whereas we chose to embed both with Meta’s ESM2 model in order to
evaluate its performance for the task of TCR-Epitope binding prediction [2].

1.1.2 Evolutionary-scale prediction of atomic-level protein structure with a
language model (ESM2)

In this Paper, Zeming Lin et al. leverage the capabilities of large language models
(LLMs) to learn representations of complex structures when training on a simple task
at a large scale of data and compute. Their models specifically encode evolutionary
information to predict the protein structure at a resolution of the atoms [5]. They
demonstrate direct inference of full atomic level structure being extracted using a
large language model. Their pre-trained models are available online1 and can easily
be used for inference through their Python Package.

1.1.3 VDJdb

In the database VDJdb, a curated database of T-Cell receptors is provided for use.
The mission of the VDJdb is to aggregate the scarce TCR specificity information
and provide a curated repository to store the data. The data set we used by the
TITAN paper partially contains data from this database [6].

1You can find the ESM models here: https://github.com/facebookresearch/esm
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1.1.4 CEDAR - Cancer Epitope Database and Analysis Resource

The CEDAR database holds experimental data on antibody and T-Cell epitopes
from humans and animals in regarding the context of cancer [7]. The Website
under cedar.iedb.org also hosts tools to assist and predict, aswell as analysing cancer
epitopes. This database could be used to expand on the data used in TITAN and
increase the data diversity.

1.2 Objectives

This section describes the initial objectives of this project thesis. The exact project
description (written in German) can be found in the appendix (see Chapter 6.1).

1.2.1 Analyse data and discover problems

We have to analyse the data to discover and address problems in the available data.
With our approach, we aim to discover where data diversity is missing and if it is
possible to remedy it. Furthermore, we provide an extensive oversight over the data
used for our experiments. We also aim to analyse how the TCRs and Epitopes differ
in between each dataset.

1.2.2 Evaluating ESM2 Emebddings for downstream task

This project thesis specifically evaluates the capabilities of Meta’s ESM2 model for
the task of TCR-Epitope binding prediction. Using the data originally used by the
TITAN paper, we create an Embedding using ESM2, specifically the 650 Million
parameter and the 3 Billion parameter variants [5, 2].

1.2.3 Establishing a simple MLP baseline

We aim to establish a baseline Model using the ESM Embedding, using a multi
layer perceptron (MLP) classifier with 512 neurons and the ReLU and Sigmoid
activation functions [8]. This allows us to compare if model complexity is able to
improve the prediction for the TCR-Epitope binding prediction problem.

1.2.4 Evaluating deep learning model architectures

We aim to discover if a increase in Model complexity helps solve the TCR-Epitope
binding prediction problem and aim to find a model that can generalize to unknown
TCR-Epitope bindings without any prior knowledge about their other bindings and
their specific interaction. Using the MLP baseline as a starting point, we evaluate
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the change in prediction performance through use of Deep Neural Networks as well
as Transformers.

1.3 Problem Definition

In current literature, the Epitope part of the TCR-Epitope binding prediction prob-
lem is not given a lot of weight due to lack of available data. We wish to discover
through various experiments if the Epitope data sparsity can be addressed or circum-
vented through use of deep learning methods such as Deep Neural Networks and
Transformers. Due to the nature of the data, normal data augmentation approaches
don’t reliably work - the new generated data points would never be observed in
nature.

The Epitopes and TCRs are encoded in the genetic code format. This allows us
to use NLP approaches. We aim to see if recent advancements in Natural Language
processing, specifically pretrained Large Language Models (LLM), can help us
solve this problem with the available data.

Being able to predict whether a TCR and an Epitope bind can be essential for
Cancer treatment, while also allowing the attending doctor to view the patients
entire immunohistory. This allows for a targeted treatment of the cancer - while
saving a lot of money and time in finding a proper medication to combat specific
cancer epitopes.
Inspired by TITAN and its approach to discovering which TCRs bind to which
Epitopes [2]. We aim to discover if the use of Deep Learning can improve upon the
TITAN score for TCR binding prediction, aswell as discovering if it is possible to
predict if they bind. Going one step further to confirm whether the Model is able to
generalize well enough to predict a completely unseen TCR-Epitope pair.

The secondary goal of our project is to discover whether the possibility exists to
predict an unseen epitope with the existing data - or if there is a need to increase the
data diversity to solve this problem.

1.4 Required Knowledge and Helpful Sources

We expect the reader to have a basic understanding of Data Science and Analysis.
If you wish to reproduce our results, a strong understanding of Python or another
programming language with deep learning libraries (such as R or Julia) will be
necessary. We personally used Python with the PyTorch and PyTorch Ignite Frame-
works to write our training and evaluation pipelines and which interface nicely with
the ESM2 models [9, 10].

An understanding of deep learning is not strictly necessary, but will obviously
be beneficial in understanding our work. Ian Goodfellow’s book "Deep Learning"
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Figure 1: Visualisation of amino acids that make up the Genetic Code [13]

can provide you with all of the information you may need for this project thesis and
more [11]. We will explain the Transformer Architecture in a bit of detail in the
next section, but if you find our explanation lacking we recommend you have a look
at Harvard’s "The Annotated Transformer"2 [12].

2 Theoretical Foundations

2.1 Genetic Code

In 1956, the Genetic code was discovered and formalized. Brittanica describes
the genetic code as follows: "The Genetic code is composed of four nucleotides:
adenine (A), guanine (G), cytosine (C) and uracil (U). Out of three of these building
blocks, a single sequence is built. As an example, the nucleotides AUG is the amino
acid methionine. This amino acid is also found at the start of every mRNA and
indicates the start of a protein." All amino acids are made out of these four building
blocks, and in image 1, the building blocks of the Genetic Code is shown. Both
TCRs and Epitopes are made out of these basic buildings blocks [13].

2.2 Transformer Neural Network Architecture

Transformers have become the new standard architecture for many natural language
processing tasks. The original paper "Attention is all you need" proposed use of the

2Available online under: http://nlp.seas.harvard.edu/annotated-transformer/
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attention mechanism devised earlier for Recurrent Neural Networks in an Encoder-
Decoder structure as a replacement for recurrent neural networks. This encoder-
decoder structure works especially well for sequence-to-sequence tasks such as
text-to-text or speech-to-text. Both modules can however be used separately for tasks
that do not deal with sequence-to-sequence data. An advantage of the transformer
architecture over Recurrent Neural Networks is its ability to process input in parallel,
therefore being able to take advantage of modern hardware parallelism during
training and inference. This allows transformer models to train much faster and
scale to large numbers of parameters and larger quantities of input data. Also, the
transformer’s attention mechanism, which gave the original paper its name, allows
the architecture to "focus" on certain features given some context improving model
performance significantly.

As mentioned before, transformers are split into an encoder and a decoder.
The former encodes an input sequence into an internal representation, whereas the
latter uses the internal representation as well as the original input to predict a (new)
sequence.

Figure 2 visualises the transformer architecture. Since we are only interested in
a sequence-to-one classification, we only use the encoder section of the architecture.

Figure 2: Visualization of the Transformer Architecture by Polosukhin et al. [14]
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3 Methods

This section describes the different steps that were applied to achieve the results
described in the next section.

3.1 Amino Acids Embeddings

The data used contains amino acids in a string format, which cannot be used directly
for training our machine learning models. They therefore need to be transformed
into a numerical representation suitable for Neural Networks.

The evolutionary scale models (ESM) are a group of large language models
which are pre-trained on predicting masked amino acid sequences. While these
models are only directly trained on predicting missing amino acids, they create
complex internal numerical representations. These can be adapted for use in down-
stream tasks such as the TCR-Epitope binding prediction. This approach originally
stems from the Natural Language Processing domain and takes away the need for
extensively training a complex model, in order to learn these representations in the
model itself. Instead, the ESM2 inference can be used to create the representation
which can then directly be used as the input for a downstream model [5].

This approach significantly reduces the model complexity and therefore the
time and cost required to train a downstream model.

The second version (ESM2) comes in six variants from eight million to 15 billion
parameters. Amongst other things they include positional encodings, and showed
significant improvements to their prediction capabilities. The authors observed that,
"the ESM-2 model with 150M parameters performs better than the ESM-1b model
with 650M parameters" [5].

3.1.1 Model selection

We have evaluated the two variants of the ESM2 model with 650 Million and 3
Billion parameters. The authors of the ESM2 model claim that embeddings from 3
Billion and 15 Billion parameter models show the best performance on downstream
tasks, however smaller embeddings, for example from the 650 Million parameter
model, require less compute power and models based on them can be trained more
quickly.

3.1.2 Layer Selection

Previous work has shown that early layers in general-purpose models encode
domain-specific information and seemed to, at least historically, produce better
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results than later layers [15]. In order to verify this claim, we selected different
layers from throughout the two ESM2 models.

3.2 Data Modification and Information

The authors of the TITAN paper used heterogeneous data from two sources, namely
VDJdb and ImmunoCODE [2, 6, 16]. This dataset is unbalanced, with 191 unique
Epitopes, while having 22’885 unique CDR3 TCR sequences. If the full TCR
sequence is regarded, the number of unique TCRs climbs up to 23’139. In the
TITAN Paper, all Epitopes with over 400 connections to TCRs are downsampled
to this limit, while any Epitope having less than 15 TCR connections is excluded
from the dataset. This approach is used to mitigate the effects of an unbalanced
dataset - but it is unclear which effect this has on the model training performance.
Deep Learning Models usually benefit from more data from which to extrapolate
from. The authors of TITAN have already cleaned this data and therefore there are
no empty values.3

We approach the problem by making three different train, validation and test
data sets. This approach was chosen to explore how well the model is able to
generalize under different conditions.

A data set is a set of entries fulfilling certain properties. In this experiment, we
have three categories:

• A data set where the epitopes in the test and validation data set are not
available to the model during training - which we we call from now on
Epitope-unseen.

• A data set where the TCRs in the test and validation data set are not available
during training - from now on TCR-unseen.

• And a data set where both TCRs and Epitopes in the test and validation data
set are not available during training - from now on Both-unseen.

The first dataset, EPITOPE-Unseen allows us to see how well the model is able
to generalize on unseen epitopes. This lets us estimate how well the model would
predict other unseen epitopes it encounters in the real world.

The second dataset TCR-unseen, has all epitopes that have a connection with
randomly chosen TCRs removed from the training set. This allows us to check how
well the model is able to generalize in case the TCR is unseen instead.

3The data sets described here by the TITAN paper are available on their Github page:
https://github.com/PaccMann/TITAN
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Figure 3: Visualization of the Datasplit

The third dataset, both-unseen, has a random epitope chosen and removed all its
TCR connections with the train set. This is the most common encountered problem,
where neither TCR nor Epitope is seen or known and creating a model that could
accurately predict for this case would be the end goal.

All three data sets are used to check where more data needs to be acquired to
properly predict a binding. It also helps see whether the low amount of variety in
epitopes is a problem for the model training.

Dataset Percent Binding
epitope-train 49.54%
epitope-test 54.17%
epitope-validation 49.29%
tcr-unseen-train 50.00%
tcr-unseen-test 50.00%
tcr-unseen-validation 50.00%
both-unseen-train 50.00%
both-unseen-test 52.90%
both-unseen-validation 58.82%

Table 1: Comparison of binding versus non-binding entries in each data set

In Table 1 we see how the distribution of the data is after our split. The optimal
case would be if the TCR-Epitope pair that binds reaches exactly 50.00%. Our
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data split fulfills this requirement well, meaning our results with the models are
not skewed too far in any direction. The 58.82% in the validation dataset of both-
unseen is concerning, but can be taken into consideration for the evaluation of our
experiments. We decided not to remove more data due it already being scarce. Due
to the massive gap in diversity between Epitopes and TCRs, a perfect split is made
possible in the data sets tcr-unseen-train, tcr-unseen-test and tcr-unseen-validation.
This was not the case for Epitopes, which is why they are not balanced, with a 50%
binding percentage.
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Levenshtein Difference of Epitopes

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Shows the Levenshtein Distribution of different data sets
(a) both-unseen-test (b) both-unseen-train (c) both-unseen-validation
(d) epitope-unseen-test (e) epitope-unseen-train (f) epitope-unseen-validation
(g) tcr-unseen-test (h) tcr-unseen-train (i) tcr-unseen-validation

In Figure 4, the Distribution of the differences between the Epitopes in our data
sets. This is done to check how the Epitope differences are distributed across our
data sets. We chose the Levenshtein Metric [4] due to it being used in other papers
and serving well to see how varied the Epitopes are. In 2, more information is
provided for the Epitope Distribution. The data sets are all equal in distribution of
differences.

The values where the Levenshtein difference is 0 are the cases where the same
Epitope is compared to one another, or with itself. No Epitopes have a difference of
two, three or four letters in genetic code. Starting at a difference of five, a slight
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elevation is noticeable, exploding from six different letters on wards and increasing
until reaching ten, when a steep decline is noticeable. The graphs in Figure 4 all
look very similar due to the same dataset being used.

Occurrences of Epitopes in the data sets

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Shows how often a given Epitope is in the dataset
(a) both-unseen-test (b) both-unseen-train (c) both-unseen-validation
(d) epitope-unseen-test (e) epitope-unseen-train (f) epitope-unseen-validation
(g) tcr-unseen-test (h) tcr-unseen-train (i) tcr-unseen-validation

In Figure 5, the Occurrences of each Epitope in the data sets is shown. The
distributions are vastly different in between the data sets and the subsets, consisting
of training, validation and test. Most notably is the difference in Figure 5(g), which
does not behave the same way as 5(a) and 5(b). This is due to the dataset being TCR
unseen - where no importance was given to the way Epitopes are split. The three
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training sets represented in 5(b,e,h) all appear similar in distribution. However there
are less Epitopes in 5(b, e) than in 5(h). In the training set all 192 unique Epitopes
are represented.

The difference in Epitope distribution is also mirrored in 5(c,f,i). In 5(c,f), less
Epitopes are represented compared to 5(i).

Levenshtein Difference of TCRs

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Shows the Levenshtein Distribution of TCRs
(a) both-unseen-test (b) both-unseen-train (c) both-unseen-validation
(d) epitope-unseen-test (e) epitope-unseen-train (f) epitope-unseen-validation
(g) tcr-unseen-test (h) tcr-unseen-train (i) tcr-unseen-validation

In Figure 6 the difference of TCRs in the different data sets are represented.
There is a consistent uptick in the Levenshtein[4] difference in the 70 - 90 range in
the genetic code. This is consistent over all TCRs, and is the CDR3 part of the TCR.
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CDR3 is the most variable part of each TCR, and is the part thought responsible for
binding [1]. This makes sure that the test, train and validation data sets are similar
and represent a range of TCRs. Them not being dissimilar allows us to train and
test a model and expect representative results that mirror real world use cases.

Dataset Count Unique Min/ Max Occurrence Levenshtein mean
epitope-train 37803 154 142 546 9.142
epitope-test 4875 19 295 539 9.102
epitope-validation 4512 19 206 539 8.105
tcr-train 37766 192 111 440 9.133
tcr-test 4724 192 17 70 9.133
tcr-validation 4700 192 14 68 9.133
both-train 27664 154 106 436 9.181
both-test 5098 19 278 546 8.559
both-validation 5567 19 136 539 8.244

Table 2: General statistics for the Epitopes in the data sets

Dataset Count Unique Min/ Max Occurrence Levenshtein mean
epitope-train 37803 22253 1 14 67.192
epitope-test 4875 4639 2 3 66.978
epitope-validation 4512 4278 1 3 67.485
tcr-train 37766 18613 2 18 67.228
tcr-test 4724 2314 2 12 67.136
tcr-validation 4700 2314 2 8 67.041
both-train 27664 13781 2 8 67.160
both-test 5098 4794 1 4 67.360
both-validation 5567 5235 1 4 67.004

Table 3: General statistics for the Full TCRs in the data sets

In Table 2 and 3 general information over the Epitopes and TCRs are represented,
respectively.

3.2.1 Statistics for Epitopes in the data sets

In Table 2, the Count, the unique Occurrences, the Minimal Occurences, Maximum
Occurences and the Mean of the Levenshtein [4] distance in each data sets.

With a much higher Count than unique Occurrences, very few unqiue Epitopes
are known. [2] The highest amount of Epitopes are in the training data sets across
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all data sets, excluding the tcr-unseen variation, where Epitopes are seen in training,
compared to the other two. As control of similary between the epitopes in the
different data sets, we use the Levenshtein [4] mean. With a Levenshtein mean range
of 8.105 to 9.181, the Epitopes are equally different in the data sets. The Outliers
are epitope-validation, both-test and both-validation, where very few Epitopes are
represented, with 19 different epitopes. There being few Epitopes explains the
difference in Levenshtein distance.

3.2.2 Statistics for TCRs in the data sets

In Table 3, the Count, unique Occurrences, Minimal and maximal Occurrences and
the Levenshtein mean between TCRs in the different data sets. The train, test and
validation data sets are all relatively similar to their counterparts. Due to there being
so many more TCRs than Epitopes, the unique numbers are across the board higher
than in 2. This is also represented in the maximum Occurrence of TCRs across all
data sets being only 18, compared to the 546 in Epitopes.

With the Levenshtein distance range being between 66.978 and 67.485, the TCR
distribution across the data sets are all very similar.

3.3 Metrics

3.3.1 Levenshtein Distance

In 1966, V.I. Levenshtein published the paper "Binary codes capable of correcting
deletions, insertions and reversals". In this paper, the Levenshtein distance was
introduced. Based off on Hamming Distance, that goes:

D(x, y) = Number of coordinates where xi ̸= yi

The difference of the Hamming Distance to the Levenshtein Distance is the pos-
sibility of inserting new characters in certain spots. This extends the use of the
Hamming distance significantly, allowing for a more general approach to handling
Strings. To describe the difference between the TCRs and Epitopes, we use the
Levenshtein distance [4].

3.3.2 Receiver Operating Characteristic (ROC) curve

The receiver operating characteristic (ROC) is a metric that measures the true
positive rate (TPR), also known as recall, against the False Positive Rate (FPR) for
a given decision threshold of a classification model. The ROC curve then plots the
TPR and FPR for different classification thresholds, see figure 7 [17].
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Figure 7: Visualization of an example ROC curve [17]

True Positive Rate (TPR) measures the ratio of True Positive (TP) classifica-
tions over the TP and False Negative (FN) classifications.

TPR =
TP

TP + FN

False Positive Rate (FPR) measures the ratio of False Positive (FP) classifica-
tions over FP and True Negative (TN) classifications.

FPR =
FP

FP + TN

3.3.3 Area under ROC Curve (ROC-AUC)

The area under the ROC curve is a metric used to compare different ROC curves.
As the name suggests, it measures the area under the ROC curve and would be
1.0 for a model that gets all classifications correct and 0.0 for a model that gets all
classifications incorrect. The ROC-AUC metric is commonly used in related work
regarding TCR-Epitope binding prediction and serves to evaluate the performance
of different models [2, 18, 15].

3.4 Model

3.4.1 Multi Layer Perceptron Baseline

Our baseline model for the TCR-Epitope binding affinity prediction is a shallow
Neural Network classifier with a single hidden layer consisting of 512 neurons and
using a rectified linear unit activation (ReLU) function.
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3.4.2 Deep Neural Networks

For our second model architecture, we expand on the baseline Neural Network
model by adding more Hidden layers. We expand the Model by up to three Hidden
Layers and scale the size of the Model up to a maximum of 4096 Neurons. We
use the ReLU function for these experiments, and the ADAM as optimizer for the
model [19, 20]. These experiments allow us to check whether a bigger model is
better able to encompass the information available in the Embeddings [5].

Figure 8: Neural Network

3.4.3 Transformer Encoder

Finally, we implemented a Transformer encoder architecture based on the Trans-
former Architecture proposed by Vasvani et al. in 2017 [14]. Figure 9 visualizes
the following architecture: The amino acid sequences are embedded using one of
the ESM models. Then a linear feed-forward layer projects the input to a smaller
representation to deal with memory constraints, since the Transformer’s model
complexity scales quadratically with increasing size. Then, the encoder structure
of the Transformer architecture is applied on the down-sampled output. Finally, a
linear feed forward layer uses the internal representations learned by the transformer
encoder to classify the samples into binding or non-binding. During training, we
use Binary Cross Entropy as the target loss function.

3.4.4 Implementation

Our experiments were implemented in the Python programming language. The
neural network architectures were created using PyTorch and training and evaluation
of the models was facilitated by the PyTorch Ignite library [9, 10].
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Figure 9: Adapted Transformer model architecture
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3.5 Experiments

Multiple models were trained with distinct parameter configurations, as detailed
below. However, the subsequent variables remained consistent across all models.
The target function employed was binary cross entropy loss, and the optimizer
function utilized was ADAM [19]. Evaluation metrics encompassed accuracy, ROC-
AUC, and loss. During each training iteration the two most proficient models were
preserved based on the ROC-AUC metric.

3.5.1 Baseline Training

The multi layer perceptron baseline (described in section 3.4.1) was trained sepa-
rately on embeddings that were extracted from the layers 6, 14, 21 and 33 in the
650 million parameters model4. Further, the training was split between the three
types of data sets of TCR unseen, Epitope unseen and Both unseen.

3.5.2 Transformer Encoder Training

We have attempted to train our Transformer Encoder with both the 650 Million
and 3 Billion parameter variants of the ESM2 model. Furthermore we have used
different 2, 4 and 6 heads and downsampling output sizes of 4500 and 5500 neurons.
However, it seems that this specific architecture does not converge, meaning that it
is unable to learn any patterns in the data.

4 Results

4.1 Baseline

Table 4 shows that the MLP baseline achieves an ROC-AUC score of 0.84 when the
model has already seen the epitope during training. Conversely, this architecture
is not able to generalize well when facing unseen epitope sequences were present
during training.

One notable outlier to this is one model trained on the "both unseen" data set
where TCRs and Epitopes from the training were not present in the validation
and test data. Trained on the 14th layer of the ESM embeddings, it achieves an
ROC-AUC score of 0.65 and an accuracy of 60% while also maintaining a F1-
Score of 0.62, unlike the same models trained with the other ESM layers which
had much lower F1-Scores. During validation, this model only ever achieved an
ROC-AUC of 0.55, which suggests that these results are the result of random chance.

4The full model name is esm2_t33_650M_UR50D.
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Dataset Layer ROC-AUC Accuracy F1-Score
TCR-Unseen 6 0.84 0.76 0.77
TCR-Unseen 14 0.73 0.54 0.21
TCR-Unseen 21 0.70 0.63 0.70
Both-Unseen 14 0.65 0.60 0.62
TCR-Unseen 33 0.63 0.60 0.55
Both-Unseen 33 0.57 0.49 0.39
Both-Unseen 6 0.55 0.50 0.29
Both-Unseen 21 0.51 0.51 0.55
Epitope-Unseen 6 0.51 0.51 0.20
Epitope-Unseen 33 0.48 0.56 0.26
Epitope-Unseen 21 0.47 0.48 0.31
Epitope-Unseen 14 0.45 0.46 0.42

Table 4: Best baseline models per data set evaluated on the test data and sorted by
ROC-AUC score. Marked in red is the outlier that is discussed in the paragraph
below.

As mentioned Section 3.2 in Table 1, the "Both-unseen" test data set contains an
unbalanced 58.82% binding combinations and 41.18% non-binding combinations.
This might be the reason for this outlier, if the model had some kind of bias towards
classifying more samples as binding than non-binding. Though this is unlikely
given that both ROC-AUC and F1-Score are above 0.5.

4.1.1 Embedding layer selection

The different layers from the ESM embedding described in Section 3.1.2 seem to
have a strong impact on the performance of the downstream model. As seen in
table 4 layer 6 of the ESM model seems to capture the most relevant information for
predicting the unseen TCR bindings, which is consistent with previous work [15].

Figure 10a shows the training and validation score progress across 80 training
epochs. The green and red line visualize the validation scores. After 20 epochs the
model seems to no longer improve on these scores, while the training scores keep
improving up to 80 epochs.

Figure 10b then illustrates the increased difficulty of trying to predict bindings
for unknown data, especially epitopes. While the training scores improve as before,
the validation scores now are more volatile over the training epochs and get worse
as the model gets better at predicting the training data.
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(a) (b)

Figure 10: Training curves of the baseline

4.2 Deep Neural Networks

For the Deep Neural Networks, the 3 billion parameter model was used, named
esm2_t36_3B_UR50D [5].

In Table 5, the Embedding layers 6 and 36 of each data set were used to train
the Neural Network. With 2048 Neurons and three Hidden layers, the model did
not improve on the Baseline result. This shows us that going for a deeper and larger
architecture does not yield better results. The Baseline predicted the results better.

In Table 6, the layers 6 and 36 of each dataset was used to train the Neural

Dataset Layer ROC-AUC Accuracy F1-Score
TCR-Unseen 6 0.86 0.78 0.79
TCR-Unseen 36 0.69 0.65 0.68
Epitope-Unseen 6 0.45 0.47 0.16
Epitope-Unseen 36 0.39 0.42 0.44
Both-Unseen 6 0.63 0.55 0.40
Both-Unseen 36 0.49 0.49 0.55

Table 5: Experimental Results with 2048 Neurons, 3 Hidden Layers and no Dropout
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Dataset Layer ROC-AUC Accuracy F1-Score
TCR-Unseen 6 0.72 0.69 0.72
TCR-Unseen 36 0.64 0.60 0.60
Epitope-Unseen 6 0.47 0.49 0.32
Epitope-Unseen 36 0.46 0.46 0.45
Both-Unseen 6 0.54 0.56 0.66
Both-Unseen 36 0.52 0.48 0.32

Table 6: Experimental Results with 512 Neurons, 3 Hidden Layers and 0.25 Dropout

Network. However, an increase in model and the addition of a Dropout layer did
not help the model to generalize. The baseline model was better in predicting TCRs,
Epitopes and Both. Again, the Baseline, with no Dropout and only 1 Hidden layer
was better able to predict the data.

5 Discussion

The essential conclusion is that there is not enough of variety in epitope sequences
where bindings are known. This complicates building models which are able to
generalize to a point where they would be able to predict binding with much higher
quality. However, a data set containing a larger variety of epitopes is required
to make Neural Networks converge and being able to generalize well. A data
augmentation to solve the lack of epitope diversity is very difficult due to neither
the epitope nor the TCR appearing in the natural world if approached with common
data augmentation techniques. It would also be impossible to know if the TCRs and
epitopes bind.

5.1 Outlook and Further Research

The transformer architecture and attention mechanism is a very promising direction
in the field of TCR-Epitope binding prediction. Not only are there advances in
foundational models which can be used to create numeric representations, but there
is also the possibility of using the Attention mechanism directly for the binding
prediction itself. We have attempted to implement this in form of the Transformer
Encoder described in Section 3.4.3. Unfortunately, this architecture does not con-
verge. It is likely that the down-sampling step introduced by us for memory limit
reasons is the key factor that leads to the model failing to converge. Further research
may look into tweaking this approach to work with the smaller ESM2 embeddings
in order to avoid having to down-sample. Another promising approach would be to
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train an auto-encoder5 on the larger embeddings to compress them into a less sparse
format which effectively means extracting the down-sampling step from inside of
the model to a separate model, which could improve the classifier’s stability.

6 Appendix

6.1 Description of Project in Complesis

T-Zellen sind eine Art von weißen Blutkörperchen, die eine entscheidende Rolle
bei der adaptiven Immunantwort spielen. Die Fähigkeit der T-Zellen, spezifische
Epitope zu erkennen und an sie zu binden, ist entscheidend für die Fähigkeit des
Immunsystems, eine angemessene Immunantwort auszulösen. Das Verständnis der
Bindungsinteraktionen zwischen T-Zell-Epitopen und TCRs ist von entscheidender
Bedeutung für die Untersuchung von Immunreaktionen, die Konzeption von Impf-
stoffen und die Entwicklung von Immuntherapien für verschiedene Krankheiten,
darunter Infektionen, Autoimmunerkrankungen und Krebs. Ziel dieser Arbeit ist
es daher, die Fähigkeit modernster Deep-Learning-Ansätze zur Vorhersage der
T-Zell-Epitop-Bindungsaffinität zu erforschen und auf diese Weise einen Schritt in
Richtung personalisierte Immuntherapie zu machen.

6.2 Time table

5This was a suggestion by our supervisor, Dr. Jasmina Bogojeska.
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