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Abstract

This study introduces LLaMA-Care, a Multimodal Large Language Model (MM-
LLM) designed for the automated generation of patient hospital discharge instruc-
tions. LLaMA-Care aims to leverage various data modalities such as text, images,
time series data and ICD codes, enhancing the efficiency and quality of discharge
instruction generation. LLaMA-Care builds upon existing pre-trained encoders to
create latent representations of different modalities which are further aligned with
the LLM through Modality Bridges. The fine-tuning stage employs LoRA (Low-
Rank Adaptation), ensuring efficient utilization of the existing model’s strengths
while adapting to the specific task in a time and memory efficient way. The model
was evaluated against a baseline and a unimodal (textual input only) model, using
ROUGE scores and a LLM-based evaluation method focusing on factual accuracy,
completeness, and style/clarity. The findings indicate that LLaMA-Care outper-
forms the baseline model and demonstrates an improvement over the unimodal
approach. The improvement is more pronounced in cases with limited textual
data, underscoring the importance of multimodal inputs in enhancing the model’s
performance.

1 Introduction

In recent years, the integration of Artificial Intelligence (AI) into healthcare has marked a transforma-
tive shift in the field, offering new approaches of patient care [1]. These integrations encompass a
broad spectrum of applications, from predictive analytics to applications in medical text generation.
Central to the advancements in medical text generation is the role of Large Language Models (LLMs),
which have started to redefine natural language processing (NLP) research and its applications in
the medical domain [2]. LLMs have shown remarkable capabilities in understanding and generating
complex medical texts [3].

The landscape of LLMs has expanded to include multimodal approaches, acknowledging that
numerous applications do not only rely on textual input but rather on multiple modalities [4],
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[5], [6], [7], [8], [9], [10]. Most of these implementations use vision and/or audio as additional
input modalities to complement textual data, thereby enhancing the system’s ability to process and
interpret information in a manner similar to human perception. Most approaches are based on training
light-weight adapters to align extracted features of modality specific pre-trained encoders to the token
level representation of LLMs.

In the medical domain some approaches have been made to train LLMs on medical data in order to
infuse medical knowledge into the models [11], [12], [13], [14]. But as other domains, the medical
domain is heavily multimodal and there is a need for applications where multiple modalities can be
used as input to these models. The need for multimodal approaches in healthcare is underscored
by the diverse nature of medical data. Medical professionals often rely on a combination of textual
information, visual cues from medical imaging, and electronic health records (EHR) data for accurate
diagnosis and treatment planning. The multimodal LLMs (MM-LLMs), therefore represent a
significant step forward in mimicking the multifaceted approach of human medical analysis, where
multiple senses are engaged in patient assessment. A recent published study [15] proposes a new
paradigm, referred to as generalist medical AI (GMAI), capable of processing a range of medical
modalities like images, laboratory results, graphs, text and EHR data. This proposed paradigm is in
sync with advancements like the XrayGPT [16] model, a conversational medical vision-language
model that can analyze and answer questions about chest radiographs. Another recent study introduces
HeLM [17] (Health Large Language Model for Multimodal Understanding), a framework that enables
LLMs to use different medical modalities to estimate disease risks.

The ability to incorporate multiple modalities opens the door for applications like hospital discharge
instructions generation from given input modalities. Discharge reports (An example can be found in
Appendix: 5) summarize a patient’s hospital stay, diagnoses, treatments, medications, and follow-up
instructions and are important for documentation purposes and follow-up care of patients. The
generation of instructions in such reports requires a lot of manual effort and is often time consuming
for healthcare professionals. By leveraging the capabilities of MM-LLMs, the creation of discharge
instructions can become more efficient and can help in assisting healthcare professionals.
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Figure 1: LLaMA-Care leverages pre-trained encoders to generate modality specific latent represen-
tations. These representations are aligned with the LLM by the Modality Bridges.

This work introduces LLaMA-Care, a MM-LLM specifically designed to automate the generation
of hospital discharge instructions for patients. The MM-LLM leverages modalities as text, images,
time series data and ICD codes to perform this task. An overview of the proposed model is depicted
in Figure 1. LLaMA-Care is built on three main pillars: First, existing pre-trained encoders are
leveraged to create a latent representation of the different modalities. Second LLaMA-Care uses
modality specific LSTM’s [18] and a linear transformation to bridge the modalities to the token
embedding level of the LLM. These units are called Modality Bridges in this study. The third pillar
is an open-source LLM in the form of a LLaMA model [19] which is used to generate the patient’s
discharge instructions based on the multimodal input.
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To optimize efficiency and effectiveness, LLaMA-Care uses pre-trained encoders for different data
modalities, coupled with Low-Rank Adaptation [20] (LoRA) fine-tuning. This approach strategically
utilizes existing models’ strengths while ensuring minimal but impactful modifications for task-
specific tuning. Additionally, the Modality Bridges are trained to bridge the modalities to the
token embedding level of the LLM, further aligning the representations while keeping the trainable
parameters low.

2 Related Work

Multimodal Large Language Models Following the success of LLMs in various applications,
researchers have turned their focus towards developing MM-LLMs to incorporate a wider range of
input modalites beyond text. This shift was exemplified by the developement of models like CLIP [21]
and Flamingo [22]. Most advancements in the multimodal area are based on integrating modalities
such as images, videos and audio into the LLMs. A central component of these studies involves the
utilization of specialized pre-trained encoders, which are tailored for individual modalities. These
encoders are then coupled with an alignment procedure, which aims to bridge the modalities to the
LLMs textual feature space.

MM-LLMs also emerged in the medical domain such, as HeLM [17], which incorporates multiple
medical modalities to perform disease risk prediction. Other models in the domain of MM-LLMs
include Med-MLLM [23] and Med-PaLM M [24]. Med-MLLM is a multimodal framework designed
for rapid response in medical scenarios such as pandemics and Med-PaLM M can encode and
interprete a vast range of biomedical data, such as clinical language, imaging, and genomics.

Instruction Tuning The study "Finetuned Language Models Are Zero-Shot Learners" [25] has shown
an effective method to improve the zero-shot capabilities of LLMs purely based on instructions. This
concept of instruction tuning has become increasingly significant in the context of LLMs, particularly
for applications that require specific customization as the technique is able to serve a bridge between
the general capabilities of pre-trained language models and the nature of the specific task [26].

Further, instruction tuning has found its application in the multimodal context. This expansion
signifies the adaptation of the technique beyond text-based LLMs to models that can process and
interpret multiple forms of data, such as images [27]. Instruction tuning represents a significant
advancement in the field of AI and LLMs. It not only enhances the zero-shot learning capabilities
of these models but also extends their applicability across various domains, including multimodal
contexts. This makes LLMs more adaptable and effective in meeting the diverse needs of different
applications.

Low-Rank Adaptation of Large Language Models LoRA [20], is a technique developed to
efficiently fine-tune LLM’s. It presents a viable solution to the challenges of full-parameter fine-
tuning, which becomes increasingly impractical as model sizes grow. LoRA works by freezing the
pre-trained model weights and introducing trainable rank decomposition matrices to each layer of the
Transformer [28] architecture. These matrices operate on a lower-dimensional space and significantly
reduce the number of parameters that need to be trained. This reduction in trainable parameters
results in a more efficient and practical fine-tuning process. A comparative study [29] has shown
significant training cost benefits compared to full-parameter fine-tuning. The study also states the
importance of the base model. The effectiveness of LoRA-based tuning benefits substantially from
the number of model parameters.

3 Model Architecture

The LLaMA-Care framework is built on three main modules: the Modality Encoders, the Modality
Bridges and the LLM.

Modality Encoders The LLaMA-Care framework makes use of four distinct modalities. These
modalities are time series data, textual data, ICD codes and images. The time series data includes
lab measurements such as blood gas levels or hematology measurements and also vital signs such as
heart rate or blood pressure and procedures like electroencephalograms. ICD stands for International
Classification of Diseases and ICD codes provide a standardized system for diagnosing and classifying
diseases and health conditions. The images are in the form of CT scans and the textual data are the
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associated radiology notes. Each of these modalities was first encoded into a latent representation by
leveraging pre-trained encoders.

Time Series: In order to encode the time series, for each event a set of statistical features is calculated.
These statistical features include maximum, minimum, mean and variance to understand the data’s
range, central tendency and spread. Other features are the mean difference, mean absolute difference,
maximum difference, sum of absolute differences and end-to-end difference to capture the average rate
of change, variation magnitude, largest single-period change, overall change and overall directionality.
To further analyze the temporal dynamics a peak detection is applied over the series of events. The
peak detection identifies local maxima by comparing adjacent values in the time series. Peaks are
characterized based on criteria such as height, threshold, distance, prominence, and width, allowing
for a differentiation of significant peaks from minor fluctuations. Additionally, the linear trend of
each time series is computed by fitting a first-degree polynomial. This trend calculation, represented
by the slope of the fitted line, provides insight into the overall directional movement of the series over
time. For times series with a single data point, the trend is set to zero, acknowledging the absence
of directional tendencies in such cases. The resulting time series embedding per sample is a vector
with 451 dimensions (9 statistical features, 1 peak variable and 1 linear trend variable for 41 distinct
events). The encoding of the time series is based on the previous work of Soenksen et al. [30]. The
modality encoder for the time series data can be formulated in the following way:

Consider a set of time series, denoted as Tj = {tj,1, tj,2, . . . , tj,41}, which is composed of 41 distinct
events. Each event, represented by tj,i, is based on a laboratory measurement, a procedures, or a vital
sign. The encoding process for one sample j can be described as follows:

Set of statistical features:

F stat
j (tj,i) = {max(tj,i),min(tj,i),mean(tj,i), var(tj,i), . . .} ∈ R1×9

Let Pj(tj,i) denote the set of peaks in tj,i. A peak p ∈ Pj(tj,i) is identified based on criteria such as
height, threshold, and distance.

If tj,i is represented as {(x1, y1), (x2, y2), . . . , (xn, yn)}, the linear trend Lj(tj,i) is a fitted first
degree polynomial.

The final encoding for a time series can be represented as a vector combining these features:

ETS(Tj) = concatenate([F stat
j (tj,i), |Pj(tj,i)|, Lj(tj,i)]) ∀i ∈ {1, . . . , 41},

forming an embedding in R1×451.

ICD Codes: In this study ICD codes were encoded using the node2vec [31] algorithm within the
icdcodex1 framework, initially converting ICD-10 codes to their ICD-9 counterparts to maintain
consistency. The node2vec algorithm embeds ICD codes into a 512-dimensional vector space. This
embedding captures the hierarchical and contextual relationships among the codes. The process
involves a biased random walk mechanism, which effectively balances the exploration of both local
and global structural properties of the ICD code graph. Through the icdcodex package this study
leveraged node2vec’s capabilities to generate dense vector representations. These embeddings ensure
that ICD codes with similar contexts and hierarchies are positioned closely in the vector space, thus
reflecting their medical and categorical relationships. The encoding of ICD codes can be formulated
in the following way:

Let Cj = {cj,1, cj,2, . . . , cj,m} be the set of ICD codes for an individual sample j. The encoding
using node2vec can be represented as:

eICD
j,i = node2vec(cj,i) ∀i ∈ {1, . . . ,m},

EICD
j = concatenate([eICD

j,1 , e
ICD
j,2 , . . . , e

ICD
j,m])

resulting in an embedding in Rm×512, representing the ICD codes in a hierarchical and contextual
manner.

1https://icd-codex.readthedocs.io/en/latest/index.html
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Textual data: This study utilized the BiomedVLP-BioViL-T2 [32] model to extract radiological
sentence embeddings. This model is specifically designed for processing domain specific medical
texts and integrates a BERT [33] based language model. By projecting textual data into a 128-
dimensional space, this model ensures that the resulting embeddings are rich in contextual and
semantic details. The encoding stage for textual data can be formulated in the following manner:

Given textual notes Dj = {dj,1, dj,2, . . . , dj,k}, where dj,i are documents belonging to one sample
j, the encoding using BiomedVLP-BioViL-T can be represented as:

etext
j,i = BiomedVLP-BioViL-T(dj,i) ∀i ∈ {1, . . . , k},

Etext
j = concatenate([etext

j,1 , e
text
j,2 , . . . , e

text
j,k ])

This results in an embedding in Rk×128, capturing contextual and semantic details of sentences.

Images: For CT scan encoding this study leveraged the TorchXRayVision3 [34] library. The library
is designed for working with chest X-ray scans and provides a set of classification and representation
learning models. This work utilized a DenseNet [35] model from TorchXRayVision and made
use of a feature extraction function which conducts a forward pass through the model and captures
high-level features from the CT scans at a specific point in the computation graph. The resulting
embeddings are 1024-dimensional vectors. The encoding of the images can be formulated in the
following way:

Let Sj = {sj,1, sj,2, . . . , sj,l} represent a set of CT scans of an individual sample j. Then the
encoding using a DenseNet model from TorchXRayVision can be represented as:

eimg
j,i = DenseNetTorchXRayVision(sj,i) ∀i ∈ {1, . . . , l},

Eimg
j = concatenate([eimg

j,1 , e
img
j,2 , . . . , e

img
j,l ])

The result is an embedding in Rl×1024, capturing high-level features from the CT scans.

LSTM Layer 1

LSTM Layer 3

LSTM Layer 4

LSTM Layer 2

Linear 
Transformation

qₜ layers

hₑ
Encoded Modality

Aligned Modality

hₑ

qₛ

hₜ

qₜ

qₜ

Figure 2: The Modality Bridges are based on LSTM networks and a Linear Transformation. The
LSTM part has qt layers which correspond to the number of tokens used in the LLM.

Modality Bridges: A single patient’s hospital stay, which constitutes one sample, often encompasses
multiple CT scans, radiology reports, and ICD codes. Due to this, the encoded embeddings repre-
senting this data are not one-dimensional but evolve into matrices that incorporate a dimension for

2https://huggingface.co/microsoft/BiomedVLP-BioViL-T
3https://github.com/mlmed/torchxrayvision
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time. The LLaMA-Care framework incorporates Modality Bridges which are depicted in Figure 2.
These Modality Bridges utilize LSTM networks to manage sequential data, effectively capturing the
temporal relationships within the data. Additionally, they employ a linear transformation to project
the encoded embeddings into the LLM token-level space. Each of the four distinct data modalities
is processed through its own dedicated Modality Bridge. Within each bridge, there exist multiple
layers, denoted as qt, which correspond to the number of tokens the modality is represented in the
LLM. The initial modality embedding is characterized by a shape of (qs, he), signifying the sequence
length and the embedding’s feature dimension, respectively. This embedding is introduced into
the first layer of the LSTM network. Each subsequent LSTM layer processes the information in a
sequential manner and yields its final hidden state. As a result, the concatenated outputs of the last
hidden states from each of the qt LSTM layers form an embedding with the dimensions of (qt, he).
Following the LSTM layers, the concatenated hidden states undergo a linear transformation. This step
is designed to modify the embedding dimensions to align with the feature dimensions of the LLM
token embeddings, resulting in a final embedding with dimensions (qt, ht). Here, ht indicates the
adjusted feature dimension that corresponds to the LLMs embedded token dimension. Figure 3 shows
how the modality tokens are combined with the textual prompt and gives a visual intuition about the
hyperparameter qt. A more detailed description on how the modalities and text are structured can be
found in Section 4.3. The Modality Bridges for an initial modality embedding M with shape (qs, he)
can be formulated in the following way:

The last hidden state hM
i,T of each LSTM layer i is concatenated to an embedding

HM = concatenate([hM
1,T , h

M
2,T , ..., h

M
qt,T ])

with dimensions (qt, he).

The last hidden state in a LSTM is calculated:

iMt = σ(WM
ii xt + bMii +WM

hi h
M
i,t−1 + bMhi ),

fM
t = σ(WM

if xM
t + bMif +WM

hfh
M
i,t−1 + bMhf ),

c̃Mi,t = tanh(WM
ic xM

t + bMic +WM
hc h

M
i,t−1 + bMhc)c

M
i,t = fM

t ∗ cMi,t−1 + iMt ∗ c̃Mi,t,
oMt = σ(WM

io xM
t + bMio +WM

hoh
M
i,t−1 + bMho),

hM
i,t = oMt ∗ tanh(cMi,t),

where σ denotes the sigmoid function, W the weight matrices and b the bias vectors.

The concatenated hidden states are then processed by a linear transformation:

EM = HM ·WM + bM ,

with weight WM and bias bM , forming the final aligned embedding EM for modality M with shape
(qt, ht).

LLM

tokenized and embedded text

hₜ

qₜ

modalities after Modality Bridge

Figure 3: The aligned multimodal embeddings are concatenated with the textual prompt and fed into
the LLM.

Large Language Model LLaMA-Care uses Meditron-7b [36], [37] as backbone LLM. Meditron-7b
is the smallest model of the open-source Meditron family. The model is adapted to the medical
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domain through continued pre-training of Llama-2-7B [19] on a curated medical corpus. Meditron-7b
is a foundation model without fine-tuning or instruction-tuning and was leveraged as the building
block of the LLM in the LLaMA-Care framework.

Trainable Parameters In LLaMA-Care, training is strategically divided into two stages, optimizing
the learning process of the model. In the first stage only the Modality Bridges are trained in order
to align the multimodal embeddings with the LLMs token level representations and all weights
of the LLM are kept entirely frozen. In the second stage the Modality Bridges are still open for
weight adjustments and LoRA fine-tuning is implemented for the LLM. This stage fine-tunes the
LLM on the specific instruction task. LoRA only adapts a subset of the parameters of the LLM and
makes sure that the initial abilities of the LLM are preserved. The exact number of parameters in
each Modality Bridge differs across the different modalities because the dimensions of the encoded
modality embeddings are not the same. In total the trainable parameters for all Modality Bridges
sum up to approximately 95 million. The second stage extends the training to use LoRA to target
all linear layers. During this stage LoRA induces 8 million trainable parameters, making 1.2 % of
the whole model’s parameters trainable. An overview of the parameters and their trainability can be
found in Table 1.

Encoder Modality Bridge LLM

Model Params Model Params Model Params

Text BiomedVLP-BioViL-T ≈ 109M LSTM + Linear Transformation ≈ 11M
Meditron-7b
(LoRA )

≈ 7B
≈ 8M

Time Series - - LSTM + Linear Transformation ≈ 14M
ICD Code icdcodex ≈ 14M LSTM + Linear Transformation ≈ 24M
Image TorchXRayVision DenseNet ≈ 7M LSTM + Linear Transformation ≈ 45M

Table 1: Overview of trainable and frozen parameters.

4 Experiments

4.1 Dataset

This study made use of three datasets of PhysioNet 4, namely MIMIC-IV [38], MIMIC-CXR-JPG
[39] and MIMIC-IV-Note[40].

MIMIC-IV is a comprehensive collection of de-identified health data from over 40,000 patients
admitted to intensive care units at Beth Israel Deaconess Medical Center. The data includes detailed
patient demographics, hospitalizations, lab measurements and medication prescriptions. The dataset
aims to facilitate a wide range of healthcare research while maintaining patient privacy.

MIMIC-CXR-JPG includes 377,110 chest radiographs in the JPG format and is derived from
the MIMIC-CXR [41] dataset. The dataset was created to facilitate research in medical image
understanding and analysis, providing a more accessible JPG format of the original DICOM images.
The dataset includes metadata and structured labels and is fully de-identified.

MIMIC-IV-Note includes 331,794 de-identified discharge summaries of hospitalized patients and
2,321,355 radiology reports. This dataset is particularly valuable for research in clinical natural
language processing, offering a rich source of free-text clinical notes linked to MIMIC-IV’s clinical
data.

4.2 Data Extraction and Preprocessing

This study incorporates methodologies from Soenksen et al.’s [30] work, leveraging their approach to
create a multimodal dataset from the three MIMIC datasets. The dataset for LLaMA-Care is designed
to meet the specific requirements and is inspired by the original HAIM-MIMIC-MM dataset and
follows similar data extraction and processing methods.

This study attempted to create single files for each unique hospital stay. This approach differs from the
original approach where the data was aggregated on a file per patient level. In the newly aggregated
dataset only those hospital stays that had associated electronic health records (EHR), radiological

4https://physionet.org
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images, ICD codes and clinical notes were considered. Each admission file is a rich archive of
information such as demographic details, laboratory measurements, medication administrations and
prescriptions. Additionally the files contain radiological images, reports and discharge summaries.
Due to the missing admission identifier in the MIMIC-CXR-JPG dataset an attempt was made
to match the images to the admissions based on the subject identifier and the time stamps of the
admissions.
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Figure 4: Visual representation of the balance across the three data splits based on age, gender, and
services. The top-left plot shows the density distribution of age for the training, validation, and test
sets. The top-right bar chart details the proportions of gender for each data split. The bottom plot
presents the distribution of different services within the data splits.

Initially, a total of 64,571 samples (hospital admissions) matched the inclusion criteria and were
extracted. To enhance the quality of the dataset 1,201 entries were removed because the relevant
section for the discharge instructions was not present in the sample or could not be reliably extracted.
Most of these patients without the relevant section passed away during the hospital stay and had
therefore no listed follow-up instructions. Another few samples were removed based on entries
without clear required services and chief complaints. The curated dataset contains 62,927 samples.
To facilitate robust model training and evaluation, the dataset was divided into three random subsets:
training, validation, and testing data. After splitting the sets were analyzed on age, gender, and the
required services of the patients to ensure balance. An oveview of these three variables and their
distributions across the datasplits can be found in Figure 4. The training set comprises 37,756 entries
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(60%), forming the foundation for the model’s learning process. The validation and testing sets are
equally sized, each containing 12,585 and 12,586 entries (20% each), respectively.

As an additional step to improve the quality and standardization of patient discharge instructions,
this study employed the capabilities of Mistral-7B-Instruct [42], a open-source LLM to refine and
standardize the discharge instructions, which often varied in structure in their original form. Mistral-
7B-Instruct was instructed to systematically process the existing discharge notes and to standardize
them into a listed keypoint format. The prompt used for the conversion was the following:

"Please read the following text and summarize it by listing the most important points in a compact,
bullet-point format. Each point should begin with an asterisk (*) and should strictly contain only
facts derived from the text. Avoid including any opinions, interpretations, or information not
explicitly mentioned in the text. TEXT: {text}".

4.3 Experimental Setup

The LLM used as a backbone for LLaMA-Care is the medical foundation model Meditron-7B 5 [36],
[37]. Meditron-7B is adapted to the medical domain through continued pre-training of Llama-2-7B
[19]. The model was adapted with the help of a curated medical corpus and general domain data.

The main goal of the experimental setup was to determine the effectiveness of multimodal inputs. In
order to evaluate this goal, two instruction-tuned variants of Meditron-7B were trained, a unimodal
(textual data only) and a multimodal variant. The multimodal variant was first trained in an aligment
stage in which the weights of the LLM were kept frozen and only the weights of the Modality Bridges
were updated. The fine-tuning stage was the same for the multimodal and unimodal variant, utilizing
a standard setting with LoRa rank of 8, LoRA alpha of 16 and LoRa dropout of 0.1. LoRA targeted
all linear transformations in the LLM.

For the purpose of instruction tuning, the prompt is as follows:

### Instruction:
You are a helpful medical assistant. Write hospital discharge instructions for the patient based on
the given input.

### Input:
A patient, identified as {gender}, aged {age} was admitted to the hospital and required the ser-
vice {service} due to {chief_complaint}. Here is some brief information about the patient:
Major Procedure: {major_procedure} , Discharge Diagnosis: {discharge_diagnosis} ,
Discharge Medications: {discharge_medications}. {overview_of_stay}.
Additionally you have information about: CT scans: <ct>{embedding}</ct>, ICD codes:
<icd>{embedding}</icd>, radiology notes: <notes>{embedding}</notes> and lab/vital
values </lab>{embedding}<lab>.

In the prompt above it is visible in detail what kind of information was fed into the model. Beside
the demographic variables gender and age, further details about the patient like the required hospital
service, chief complaint and the major procedure applied during hospitalization were used as ad-
ditional information. Further the discharge diagnosis and the discharge medications were used in
combination with a short overview of the hospital stay. An example of the relevant sections in an
original report can be found in the Appendix: 5. The prompt shown in the gray box also shows how
the multiple modalities were fed into the multimodal model by combining it with the textual prompt.
The unimodal model made use of the exact same prompt, just the part starting with "Additionally you
have" was omitted.

Both models were then evaluated with the use of selected evaluation metrics against each other
and a baseline. As a baseline meditron-7b-chat 6 was used, which is a variant of Meditron-7B
which was fine-tuned using supervised fine-tuning. This model was chosen as a baseline because it
has undergone a fine-tuning stage on a instruction-following dataset in constrast to the base model
Meditron-7B. For the purpose of evaluation, the baseline model utilized the identical prompt as the
unimodal model.

5https://huggingface.co/epfl-llm/meditron-7b
6https://huggingface.co/malhajar/meditron-7b-chat
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All experiments were conducted with the same hyperparameters on a single NVIDIA A100 80GB
GPU. Due to hardware limitations the batch size was set to 2 in combination with 128 gradient
accumulation steps, yielding an effective batch size of 256. The learning rate was set to 9e-4 during
the alignment stage of the unimodal model and 2e-4 during the fine-tuning stage for the multimodal
and unimodal model. For optimization, the Adam optimizer was used, with its β1 and β2 parameters
set to 0.9 and 0.999, respectively, and an ϵ value of 1e-8. The multimodal model was trained for
one epoch during the alignment stage. The multimodal and unimodal model were both trained for
5 epochs during the fine-tuning stage. The selected hyperparameters, including the learning rates
and optimizer parameters, fall within the range of standard values commonly used in similar training
procedures. The choice of 128 gradient accumulation steps was specifically made to smooth the
loss curve. It was observed that a single epoch for the alignment stage of the multimodal model
might be sufficient, as subsequent epochs showed minimal improvement. Due to the constraints of
hardware costs and limited computing time, extensive hyperparameter testing was not feasible. The
hyperparameter qt which determines the number of layers in the Modality Bridges and the number of
tokens the modalities are represented in the LLM were used in the following configuration: qt = 6
for ICD codes and radiology notes, qt = 4 for CT scans and qt = 2 for the time series data. The
setting of qt is guided by previous implementations [17], the initial embedding size and hardware
contraints.

4.4 Evaluation Methods

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics used to evaluate
summarization and machine translation tasks. The metric compares an automatically generated
summary with a reference summary and calculates precision, recall, and F1-score by considering
the presence and ordering of n-grams. This study specifically employed ROUGE-1 and ROUGE-L
metrics.

ROUGE-1 focuses on the overlap of unigrams (single words) between the generated and reference
texts and can be defined as:

Let Gunigrams be the set of unigrams in the generated text, and Runigrams be the set of unigrams in the
reference text. Then, the resulting ROUGE-1 score can be calculated as:

Precision P is the proportion of unigrams in the generated text that are also in the reference text:

P =
|Gunigrams ∩Runigrams|

|Gunigrams|

Recall R is the proportion of unigrams in the reference text that are also in the generated text:

R =
|Gunigrams ∩Runigrams|

|Runigrams|

F1-Score for ROUGE-1, which is the harmonic mean of Precision and Recall:

F1-Score = 2× P ×R

P +R

In these formulas, |Gunigrams ∩ Runigrams| represents the count of common unigrams between the
generated and reference texts, |Gunigrams| is the total count of unigrams in the generated text, and
|Runigrams| is the total count of unigrams in the reference text.

ROUGE-L, on the other hand, assesses the longest common subsequence (LCS) between the generated
and reference texts. It considers the sequence of words that appear in the same order in both texts.
The ROUGE-L score can be defined as follows:

Let Gwords be the sequence of words in the generated text, and Rwords be the sequence of words in the
reference text. LCS Length is the length of the longest common subsequence between Gwords and
Rwords.

Precision P for ROUGE-L is the proportion of the LCS length to the length of the generated text:

P =
LCS Length
|Gwords|
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Recall R for ROUGE-L is the proportion of the LCS length to the length of the reference text:

R =
LCS Length
|Rwords|

F1-Score for ROUGE-L:
F1-Score = 2× P ×R

P +R

In these formulas, |Gwords| is the total number of words in the generated text, and |Rwords| is the total
number of words in the reference text. The ROUGE-L score primarily measures the longest sequence
of words that the generated and reference texts have in common, thereby evaluating the fluency and
structure of the generated text.

A higher ROUGE score signifies stronger alignment between the created text and the reference,
suggesting improved quality and coherence. This score is a valuable quantitative tool for objectively
evaluating text generation abilities.

LLM based evaluation As an additional evaluation method this study employed the new open-source
Mixtral-8x7B-Instruct 7 model to evaluate the generated discharge instructions based on a given
reference. The evaluation focused on three criteria: factual accuracy, completeness, and style/clarity.
These criteria have been chosen because factual accuracy is important in medical notes to prevent
misinformation and hallucinations, completeness is necessary to ensure that no important details are
missing, and style and clarity are vital for straightforward understanding. Each of these criteria was
rated on a ordinal scale from 1 to 5 by the model and model was prompted in the following way:

Factual accuracy: This criterion is used to evaluate the precision of the information provided
generated notes compared to the reference notes. A score of 1 indicates significant factual errors,
while a score of 5 denotes complete accuracy on a ordinal scale from 1-5.

Completeness: This criterion assesses whether the generated notes encompass all critical elements
found in the reference. Scores are on a ordinal scale and range from 1, indicating many missing
details, to 5, indicating a note without missing details.

Style and clarity: This criterion judges the readability and professional formatting of the notes with
respect to the reference note. A score of 1 reflects poor style and clarity, while a score of 5 suggests a
clear and well-structured note on a ordinal scale from 1-5.

This evaluation allows for a detailed and balanced assessment of the generated instructions. The three
criterions are carefully chosen and are important aspects of medical instructions. By implementing
this structured evaluation, the study aims to evaluate the generated instructions based on relevant
content and not scores that are calculated in a strict mathematical manner.

4.5 Results

ROUGE-1 ROUGE-L Factual accuracy Completeness Style and clarity

baseline 0.016 ± 0.045 0.015 ± 0.041 3.124 ± 1.307 2.220 ± 1.091 3.460 ± 1.029
unimodal 0.343 ± 0.113 0.316 ± 0.112 4.056 ± 0.611 3.283 ± 0.665 3.488 ± 0.506
multimodal 0.371 ± 0.110 0.349 ± 0.111 4.167 ± 0.578 3.388 ± 0.652 3.480 ± 0.505

Table 2: Results of comparative experiments based on ROUGE scores and LLM evaluation, calculated
on the test set.

This study made an attempt to build a MM-LLM to automatically generate discharge instructions for
hospitalized patients. The experiments included a comparative analysis between a baseline model
(instruction-tuned on general data) and instruction-tuned variants with multimodal or unimodal inputs.
The tabulated evaluation metrics of the comparative analysis can be found in Table 2.

The comparative analysis showed that both instruction-tuned variants outperform the baseline by a
large margin. It is not a fair comparison to compare the instruction-tuned variants with the baseline

7https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

11

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1


based on ROUGE scores because the desired output instructions have a specific bullet point format
which was not specifically prompted. Therefore this result can be expected because the ROUGE
scores are influenced a lot by the structure of the text. The instruction-tuned variants do not only
outperform the baseline based on the ROUGE score but also in the evaluation based on factual
accuracy and completeness. The instruction-tuned variants are consistantly more accurate and
complete than the baseline. When it comes to the style and clarity of the notes, the baseline does
perform equally well as the both instruction-tuned variants. This can be explained because style and
clarity is more a general than a domain specific language capability.

The comparative analysis also showed that the multimodal variant does outperform the unimodal
variant by a small margin when considering the ROUGE scores. The multimodal model shows an
improved performance in the LLM-based evaluation as well but does not significantly outperform the
unimodal model. This outcome is likely caused by the nature of the discharge instructions which
might not always depend on the multimodal input and can be largely reconstructed by the textual
information in the prompt.
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Figure 5: Comparison of ROUGE-1 and ROUGE-L scores between multimodal and unimodal
completions across different prompt lengths. The box plot on the left illustrates prompt lengths
categorized by ROUGE-1 and ROUGE-L score discrepancies (multimodal - unimodal). The bar chart
on the right displays the average LLM rating "Completeness" for full prompt lengths and prompt
lengths in the lower quartile.

A deeper analysis showed that instructions with ROUGE-1 or ROUGE-L scores at least 0.3 higher
in the multimodal setting than the unimodal setting typically had about 100 characters less in their
textual prompts than samples with a smaller difference. This might suggest that the multimodal
setting is mostly beneficial for samples with less textual input. Moreover, it was observed that
samples with prompt lengths in the lower quartile exhibited lower completeness but the performance
gap between unimodal and multimodal settings grew from approximately 0.1 to 0.25. These two
observations are visually shown in Figure 5. This finding suggests that the textual input is overall
relevant for the performance of the model but that the multimodal variant might be able to utilize
information from the multimodal sources to compensate the lack of textual information. Further
analysis revealed that when the reference instruction is less than 200 characters, ROUGE scores and
LLM-based scores often reflect differing performance levels. This discrepancy can be attributed to
the model’s maximum token limit of 250 during inference which tends to generate texts longer than
200 characters. If a reference text is short but the generated text is longer, there’s a smaller chance in
n-gram overlap.

5 Conclusion

This study introduced LLaMA-Care, a Multimodal Large Language Model (MM-LLM) specifically
designed to automate the generation of patient discharge instructions. The model utilizes an integration
of various data modalities, including text, images, time series data, and ICD codes, highlighting the
potential of multimodal approaches in enhancing AI applications in healthcare.
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The experiments, leveraging datasets from PhysioNet, demonstrated that LLaMA-Care could partially
utilize multimodal inputs to generate coherent and accurate discharge instructions. The comparative
analysis between the multimodal and unimodal variants revealed that the multimodal approach
generally outperforms its unimodal counterpart by a small margin. The higher performance is
especially observed in scenarios with limited textual input, where the model might effectively
compensate with information from other modalities. An interesting experiment to consider would
be the omission of the patient overview and other textual data to observe how both unimodal and
multimodal model perform under these conditions.

It’s crucial to note that this study serves primarily as a proof of principle. Further research is needed
to fully exploit the potential of multimodal data integration in LLMs. The model’s performance might
improve with the availability of cleaner data and instructions that are more dependant on multimodal
information. Additionally, exploring different Modality Bridges and modality encoders may further
enhance the model’s effectiveness. A limitation in this implementation is the lack of consideration
for the time dimension in cross-modal contexts, as it is only handled within separate modalities. This
limitation could potentially be addressed by using Transformer models with positional encoding
to serve as Modality Bridges. There is a potential benefit in employing a larger LLM as the
backbone for the model and should be explored further. A larger LLM might offer more sophisticated
understanding and generation capabilities, further boosting the effectiveness of the multimodal
approach. In conclusion, while LLaMA-Care shows the potential of automating complex tasks in
healthcare using MM-LLMs, it is important to continue research in this direction.
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Appendix

B: Example: Original Report

Name: ___ Unit No: ___

Admission Date: ___ Discharge Date: ___

Date of Birth: ___ Sex: M

Service: MEDICINE

Allergies: No Known Allergies / Adverse Drug Reactions

Chief Complaint: Dark urine

Major Surgical or Invasive Procedure: endotracheal intubation ___, ERCP ___

Brief Hospital Course:
Mr. ___ is a ___ homeless gentleman with a history of diastolic heart failure, CAD s/p CABG,
polysubstance abuse, DM, COPD, syncope, OSA not on CPAP, and recent hospital admission for
infected foot ulcer who was referred to an OSH ED for elevated bilirubin and was transferred here for
emergent ERCP due to concern for cholangitis.

Discharge Medications:
1. Acetaminophen 650 mg PO Q8H:PRN pain 2. Atorvastatin 80 mg PO QPM 3. Buprenorphine-
Naloxone (8mg-2mg) 1 TAB SL BID 4. Cyanocobalamin 1000 mcg PO DAILY 5. Fluticasone-
Salmeterol Diskus (250/50) 1 INH IH BID 6. FoLIC Acid 1 mg PO DAILY 7. Gabapentin 1200
mg PO TID 8. Omeprazole 40 mg PO DAILY 9. Senna 17.2 mg PO QHS:PRN constipation 10.
Thiamine 100 mg PO DAILY 11. GlipiZIDE 10 mg PO BID 12. Docusate Sodium 100 mg PO
BID 13. Ferrous Sulfate 325 mg PO DAILY 14. Albuterol Inhaler 1 PUFF IH Q6H:PRN SOB
15. Magnesium Oxide 800 mg PO BID 16. Multivitamins 1 TAB PO DAILY 17. Glycerin Supps
1 SUPP PR PRN constipation 18. Collagenase Ointment 1 Appl TP DAILY 19. Aspirin 81 mg
PO DAILY 20. Ciprofloxacin HCl 500 mg PO Q12H Duration: 4 Days 21. Lisinopril 2.5 mg
PO DAILY take this in the morning 22. Metoprolol Succinate XL 25 mg PO DAILY take this in
the evening 23. Potassium Chloride 40 mEq PO DAILY Hold for K > 24. Torsemide 60 mg PO DAILY

Discharge Diagnosis:
1. Cholangitis
2. CHF
3. COPD
4. Diabetes

Discharge Instructions:
You were admitted with cholangitis, or an infection in your bile duct. You were initially in the ICU
and then transferred to the medical floor. We put you on oral antibiotics, and you remained stable.
Please finish up four more days of antibiotics and I have sent the prescription to the ___ Pharmacy.
Please followup with Dr ___ and with surgery regarding removal of your gallbladder. I have adjusted
your blood pressure medication. Please restart your torsemide and potassium tomorrow, but just take
60 mg a day for now. I have sent prescriptions for lower doses of lisinopril and metoprolol to your
pharmacy.
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B: Loss Curves
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Figure 6: Training loss during the pre-training of the multimodal model.
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Figure 7: Training loss during the fine-tuning stage of the multi- and unimodal model.
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Figure 8: Validations loss during the fine-tuning stage of the multi- and unimodal model.
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C: Generated examples

Original Instruction

• Shower daily with mild soap, no baths or swimming until cleared by surgeon
• Do not use lotions, cream, powder, or ointments on incisions
• Weigh yourself in the morning and take temperature in the evening, record on chart
• No driving for approximately one month and no lifting more than 10 pounds for 10 weeks
• Call with questions or concerns
• Contact cardiac surgery office with questions or concerns, answering service available during

off hours

Generated Instructions

• Shower daily with mild soap, no baths or swimming until cleared by surgeon
• Do not use lotions or ointments on incisions
• Weigh yourself in the morning and take temperature in the evening
• No driving for approximately one month while taking narcotics, discussion at follow up

appointment with surgeon
• Call cardiac surgery office with questions or concerns

Original Instruction

• Discharge instructions for post*surgery care
• Daily showers with mild soap, no baths or swimming until cleared by surgeon
• No lotions, cream, powder, or ointments to incisions
• Morning weight and evening temperature should be recorded on chart provided
• No driving for approximately one month and while taking narcotics
• No lifting more than 10 pounds for 10 weeks
• Females should wear a bra to reduce pulling on incision and avoid rubbing on lower edge
• Cardiac surgery office should be contacted with any questions or concerns

Generated Instructions

• Discharge instructions for patients who have undergone surgery
• Daily showering with mild soap and gentle washing of incisions recommended
• No baths or swimming until cleared by surgeon
• No lotions, cream, powder, ointments, or other products to incisions
• Morning weight and evening temperature should be recorded
• No driving for approximately one month after surgery and while taking narcotics
• Patients can call with questions or concerns during off hours

Original Instruction

• Follow up with all outpatient appointments as listed
• Take discharge paperwork to appointments
• Continue all medications as directed
• Avoid abusing alcohol and any drugs (prescription or illegal)
• Contact outpatient psychiatrist or other providers if concerns
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• Call 911 or go to emergency room if feeling unsafe and unable to reach healthcare providers

Generated Instructions

• Discharge Instructions for Mr. [ANONYMIZED]
• Continue medications as directed
• Avoid abusing alcohol and drugs to worsen medical and psychiatric illnesses
• Call or go to emergency room if feeling unsafe
• Best wishes for continued health.

Original Instruction

• The patient has recovered well from lung surgery and surgery on their right leg and is ready
for discharge.

• Continue to use the incentive spirometer 10 times an hour while awake.
• Check incisions daily and report any increased redness or drainage. Cover the area with a

gauze pad if it is draining.
• If chest tube site starts to drain, cover it with a clean dry dressing and change it as needed to

keep site clean and dry.
• Change right leg wound daily with dry sterile dressings and also change it when the gauze is

wet. Visit Dr. [ANONYMIZED] next week.
• Pain medication will still be needed once the patient is home, but it can be weaned over a

few weeks as discomfort resolves. Make sure to have regular bowel movements while on
narcotic pain medications and use a stool softener or gentle laxative to stay regular.

• No driving while taking narcotic pain medication.
• Take 500 mg of Tylenol every 6 hours in between narcotic pain medications.
• Stay hydrated and eat well to heal incisions.

Generated Instructions

• The patient has recovered from lung surgery and is ready for discharge.
• Continue using incentive spirometer 10 times an hour while awake.
• Chest tube dressing may be removed in 48 hours, cover with clean dry dressing and change

as needed to keep site clean and dry.
• Pain medication will be needed at home but can be weaned over time.
• Regular bowel movements are important when on narcotic pain medications, use stool

softener or gentle laxative.
• No driving while taking narcotic pain medication.
• Take Tylenol [ANONYMIZED] mg every 6 hours in between narcotic pain medication.
• Stay hydrated
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