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Abstract—This paper presents an exploratory data analysis
of the MIMIC-IV dataset, with the goal of identifying the
significant factors that influence mortality rates. This study uses
descriptive statistics, correlation analysis, and visualization tools
to discover the links between patient characteristics, clinical
factors, and mortality outcomes. The findings shed light on
the complicated processes of mortality prediction, underlining
the importance of additional research and specific analysis
to gain a better understanding of these complex connections.
This study’s findings contribute to continuing attempts to
improve mortality prediction approaches in healthcare settings.
This study emphasizes the need for additional research and
focused analysis to increase our understanding of the numerous
mechanisms that influence mortality outcomes.

Index Terms—MIMIC-IV, descriptive statistics; correlation
analysis; data visualization; EHR; mortality prediction; ex-
ploratory data analysis; clinical factors; machine learning;
random survival forrests, gradient boost models; penalized cox
models.

I. INTRODUCTION

In recent years, Electronic Health Records(EHRs) have
transformed the medical industry by delivering comprehen-
sive and detailed patient health records [1]. EHRs often cover
many aspects of patients’ health condition, such as demo-
graphics, diagnoses, prescriptions, procedures, vital signs,
test results, medical imaging, discharge summaries, physician
notes, and nursing notes in a sequence of visits [2]. They
allow more accurate tracking of patient status, promoting
informed decision-making through the use of data-driven so-
lutions [1]. Despite these advances, difficulties remain in the
field of EHR analysis, such as data irregularity. In response
to these difficulties, some recent research [3] [4] seeks to
address and overcome these barriers, notably in the context
of mortality prediction. These studies investigate the use of
advanced analytical approaches to fully realize the promise of
EHRs in forecasting patient mortality, widening possibilities
for more precise and timely treatments in healthcare settings.

One particularly popular analytical method in the field
of medicine is survival analysis, which looks at the time
frame just before important events like the development
of a disease or a person’s death. This method promotes a
more comprehensive understanding of the course of illnesses
in addition to providing insights into temporal trends and
prognostic variables. More and more healthcare facilities are
showing interest in working together to accelerate research
and improve generalizability as the amount of Electronic
Health Record (EHR) data available becomes more and more

abundant [5]. Despite the potential, this analytical technique
is primarily used on a case-by-case basis, concentrating on
particular illnesses such as myeloma [6], lung cancer [7],
prostate cancer [8], and heart failure [8], providing an in-
depth assessment for people impacted by a single medical
situation.

This paper explores EHR dataset MIMIC-IV [9], intro-
duces a data representation suitable for a more general case
using patient data from single hospital stay. Features are
generated both via a data pipeline [10] and manually. For
the experiments, machine learning techniques were used to
compare the features and mortality prediction. Structure is
as follows: After the introduction, related works are pre-
sented. Then methodology for re-structuring MIMIC-IV data
is explained. It is followed by exploratory data analysis and
evaluation of experiment results. Finally, concludes with a
discussion of the findings and directions for future research.

II. RELATED WORK

EHR data often contains significant patient health infor-
mation, demanding meaningful reorganization to meet with
specific aims, which range from improving general EHR
representation to resolving more complex issues. [11] demon-
strates progress in this task by creating concept-relationship-
concept tuples from clinical notes and audio transcripts. In a
separate study, Rasmy et. al. [12] compares the performance
of raw and processed terminology representations of ICD
codes in predictive models for two clinical prediction tasks,
using the Cerner HealthFacts dataset [13] to forecast the risk
of heart failure (DHF) in Type II diabetes mellitus (DMII)
patients and the risk of pancreatic cancer. Darabi et. al. [14]
uses natural language processing and a one-hot encoder to
predict duration of stay, readmission, and mortality, using
clinical codes and medical texts from the MIMIC-III [15].
Graph representations are also taken into account. According
to a review on EHR graph representations [16], laboratory
data, medications, patient information, diagnoses, anatomic
data, procedures and vital signs are the mostly used features.
While these techniques have demonstrated usefulness, none
of them specifically focuses on survival analysis using patient
data from both ICU and hospital admissions.

To represent data for MIMIC-IV [9], Rocheteau [17]
extracted some of the features as graphs and used graph rep-
resentation learning methods for her experiments. Majority
of the papers that are published in the last four years are



Fig. 1. Tables from MIMIC

either using hand-tailored features or they extract features
with the help of some data pipelines like [18], [19], [20].
Pipelines have substantial advantages in terms of facilitating
data representation easily and swiftly. Although they help
to streamline data processing and representation, relying
solely on these structures may limit the investigation of more
complex patterns and relationships within the information.

III. METHODOLOGY

In this section, the system and methodology is explained
for re-structuring the data as well as the overall arhitecture of
MIMIC-IV dataset [9]. The approach of [10] is used to re-
structure the dataset which creates data points that contain
all the information for each stay of a single patient. [10]
included MIMIC-CXR-JPG [21] and MIMIC-Note [22] but
this project does not cover these two datasets.

MIMIC-IV contains 2 modules: one for hospital
stays(hosp) and one for ICU stays(icu).

The hospital’s administrative data, laboratory values, mi-
crobiology cultures, pharmaceutical orders, and billing meth-
ods are all stored in the hosp module together with the ad-
mission, discharge, and transfer records. Detailed information
about all the tables in hosp module is introduced Table I.

Data recorded at the ICU bedside are included in the ICU
module. It consists of intravenous infusions, patient outputs,
recorded observations, and continuing process documenta-
tion. Detailed information about all the tables in icu module
is introduced in Table II.

IV. DATA ANALYSIS

For the data analysis, 42,960 data points were selected.
80% of these(34,368) were random selections of living
patients. Remaining 20% of them(8,592) were deceased pa-
tients. This ratio is selected to reduce computational require-
ments. In addition, some of the data like poe, hcpc events,
pharmacy and all information about billing is not included
in the dataset. Also, precedure events is not included as
that table contains information that is not required for the
documentation field, and consistency is not guaranteed [9].
The selected data tables are shown in Figure 1.

14,767 data points in total are from ICU patients, 6,452
of them are associated with deceased cases in the icu.

TABLE I
DESCRIPTION OF DATA TABLES IN HOSP MODULE

Data Table Definition
omr The Online Medical Record (OMR) table

includes various EHR-sourced data.
provider List of the deidentified provider IDs that

the database uses.
admissions Detailed information regarding hospital

stays.
d hcpcs CPT code descriptions are given in the

dimension table for hcpcsevents.
d icd diagnoses Descriptions of ICD-9/10 billable diag-

noses.
d icd procedures Explanations of ICD-9/10 billable proce-

dures.
d labitems All of the lab items are described in the

dimension table for labevents.
diagnoses icd ICD-9 and ICD-10 diagnoses that are

billed for hospital stays.
drgcodes Hospitalizations with coded diagnostic re-

lated group (DRG) billing.
emar Barcode scanning of pharmaceuticals at

the moment of administration; the Elec-
tronic Medicine Administration Record
(eMAR).

emar detail Additional data for electronic prescrip-
tions that are stored in emar table.

hpcsevents. Events that were billed while the patient
was in the hospital, including CPT codes.

labevents Measures taken in the lab from specimens
obtained from patients.

microbiology events Microbiology cultures.
patients table Gender, age, and date of death of the

patient, if available.
pharmacy Dosage, formulary, and further details for

prescription drugs.
poe Orders related to patient care given by

clinicians..
poe detail Additional details regarding orders given

by hospital providers.
prescriptions Prescribed medications.
procedures icd Procedures that are billed to patients while

they are in the hospital.
services The hospital service or services that pro-

vided care for the patient while they were
in the hospital.

transfers Details on the transfer of patients to other
units.

Remaining 2,140 deceased data points collected from hosp
module.

At first, the information about demographics, mainly age,
is investigated. It can be seen in Figure 2 that the we have at
least 100 patients in every age group and no particular age
group dominates over the others.

In Figure 3, the relationship between average age and most
observed 20 diagnoses(diseases) is investigated. Distribution
is relatively balanced and it can be said that commonly ob-
served diseases affects mostly middle-aged to elderly people.

Lab results are investigated in such a way that considering
abnormality for both deceased and living patients. Most of
the results in the table have some missing information on
which hospital stay(hadm id) it belonged to. There was no
distinct way to understand which hospital stay the lab results
are belonged to. Because of that, each patient’s all lab results



TABLE II
DESCRIPTION OF DATA TABLES IN ICU MODULE

Data Table Definition
caregiver table Deidentified provider identifiers used in

the ICU module are listed in the caregiver
database.

d items The itemid-describing dimension table.
Explains ideas that are listed in the ICU
module’s events table.

chart events Items that are charted while a patient is in
the ICU. Includes most of the data that is
recorded in the intensive care unit.

datetime events Date-formatted information that has been
documented.

ICUstays Monitoring details on ICU stays.
Ingredient events Ingredients of continuous or intermittent

administrations including nutritional and
water content.

Input events Information recorded about intermittent or
continuous administrations.

output events Details about the patient’s outputs, such as
their drainage and urine.

procedure events procedures that were recorded during the
ICU stay but weren’t always performed
there.

Fig. 2. Ages of Patients

are considered for the analysis. It is expected that deceased
patients have more abnormal results. Figure 4, which shows
the number of average abnormal results per patient, confirms
this expectation.

Procedures are investigated and as expected, deceased
patients had more procedures than living patients. Results
can be seen in Figure 6.

Correlation analysis is made on drgcodes table as it con-
tains similar values like drg severity, drg mortality which
holds the patient’s likelihood of dying and the severity of
their condition. It can clearly seen on Figure 7 and Figure
8, there is high correlation between those 2 values so one
of them should be omitted when using ML or DL methods.
Drg severity and drg mortality values are not derived, in real
life they’re used to determine the billing information for the
patient.

Data in the tables chart events and datetime events are
valuable when doing mortality prediction in ICU stays with

Fig. 3. Average Ages for Top 20 Diagnosis

Fig. 4. Average Abnormal Lab Results

Fig. 5. Average Abnormal Lab Results by Categories

Fig. 6. Average Abnormal Lab Results



Fig. 7. Average Abnormal Lab Results

Fig. 8. Average Abnormal Lab Results

certain amount of time like [23]. After comparing the data
from hosp and icu modules, it can be said that icu includes
more details about both time of events, patient’s inputs,
and outputs. Therefore, data is more suitable for mortality
prediction. Additionally, most of the deceased data points are
from icu module. However, this study focuses on mortality
prediction as a whole and analyses are made taking this into
consideration.

V. EXPERIMENTS

A dataset is created with the help of the results from data
analysis. Cutoff point of deceased patient is the time of the
death. For living patients, discharge time is the cutoff time.
Time series data is grouped and mean value is taken.

Drg mortality avg is derived from the drgcodes ta-
ble, specifically the drg mortality parameter. Inspection on
Drg codes parameter showed that patients are likely to be
associated with multiple Diagnosis Related Groups (DRG),
and drg codes group holds information about how many
groups the patient is associated with during their hospital
stay. The severity of illness and likelihood of mortality for
each associated DRG group are recorded in the drg severity
and drg mortality parameters [9]. Drg mortality avg repre-
sents the average of the drg mortality values. Drg severity
didn’t considered because of it correlates with drg mortality.

The variable medic count is created using information
from the prescriptions, pharmacy, and emar tables. The
emar and prescription tables are subsets of the pharmacy
table, containing detailed information about given doses of
specific drugs, times, and contents. Number of given drugs
and prescribed medicine information is scraped from these
tables.

Labevents and chartevents tables have similar contents but
chartevents contains only data from ICU patients. Flag count
variable is derived from these tables. It is the abnormal
resulted lab test results a patient had.

Procedure count is derived from procedures icd table and
holds the information of procedures a patient underwent.

Careunit and gender information are collected from pa-
tients table. Careunit is originally text data but each unique
name is mapped to numeric values. Age value is also con-
sidered to be added to the dataset but anchor age is not the
real age of the patients, values are shifted and the shifting
calculation is not available. So it is not included.

Remaining features(Phosphate, Glucose, Bicarbonate,
White Blood Cells, Hematocrit, Urea Nitrogen, Creatinine,
Hemoglobin, pO2, Red Blood Cells, Chloride) are derived
from lab events table. They are selected because they rep-
resent the most abnormal laboratory test results among all
the deceased patients. These test findings are compared to
the usual ranges for the relevant laboratory measurements.
If a test result falls below the expected range, the difference
between the lower interval and the measurement is calculated.
When the test result falls within the usual range, a value of 0
is assigned. In contrast, if the result is excessively high, the
difference between the measurement and the upper interval
is calculated. Then mean of the results are calculated for the
selected lab tests.

The summaries of the feature definitions can be found at
Table III.

Random survival Forests, Gradient Boosted Models, and
Survival Support Vector Machines from Python scikit-
survival library [24] are used for the experiments. A subsam-
ple of 3000 patients from each class is collected to reduce
the computational requirements. Train-test-validation sets are
created with a split of 60%, 20%, and 20%.

Random Survival Forest (RSF) is utilized with the
following hyperparameters using grid search: 500 de-
cision trees (n_estimators=500), a minimum num-
ber of samples necessary for splitting an internal node
(min_samples_split=5), and each leaf node con-
tains at least 10 samples (min_samples_leaf=10). The
model was parallelized with n_jobs=-1, employing all
available processors. To ensure reproducibility, the ran-
dom state was set to a predefined seed value of 0,2
(random_state=0.2).

Permutation-based feature importance matrix indicated
icd codes group and gender is not important so they are
excluded. Figure 9 shows the importance of each feature.
Concordance index value of the model is 0,792. Thus, it can
be said that the results are neither random nor excellent. The



Fig. 9. Random Forrest Feature Importance

most important feature is drg mortality avg. AUC score of
the model is 0,814.

Two gradient boost models are considered: one of which is
component-wise least squares as base learner and the other is
a regression tree base learner. Grid search is used for finding
optimal hyperparameters. The least squares as base learner
model uses 1000 decision trees (n_estimators=1000)
with a learning rate of 0.1. The random state was set
to a predetermined seed value of 0.2. The regression tree
base learner model makes use of 1000 decision trees
(n_estimators=1000) with a learning rate of 0.1. The
random state was additionally set to a specified seed value
of 0.2 (random_state=0.2).

The regression tree base learner model had a concordance
index of 0.817 and an AUC of 0.863. In comparison, the least
squares based gradient boost model did marginally worse,
with a concordance index of 0.789 and an AUC score of
0.827.

Finally, tests were performed with a survival support vector
machine. The alpha parameter is set to 0.0156 according
to the grid search results (alpha=0.0156). AVL tree
optimizer is used, and the maximum number of iterations
is specified to 1000 (max_iter=1000). The tolerance
parameter is set to 1e-5, and the random state is set to 20, as
the model only accepts positive random variables.The results
were somewhat better than random. The confidence index
value is 0.691.

VI. CONCLUSIONS AND FUTURE WORK

At last, this study sought to predict patient survival out-
comes using multiple variables taken from a dataset generated
through intensive data analysis.

Key features like drg mortality avg, medic count,
flag count, procedure count, careunit, and gender were
taken into account, providing insights into patients’
diagnoses, medications, abnormal lab results, medical
procedures, care unit information, and gender. Additionally,
a group of aberrant lab test findings was chosen for
additional investigation.

Random Survival Forest, with hyperparameters adjusted
for best performance, recognized icd codes group and gen-
der as less relevant characteristics and excluded them. The
model had a concordance index of 0.792, indicating accept-
able prediction performance. The most influential feature,

TABLE III
FEATURES USED FOR THE EXPERIMENTS

Data Table Definition
drg codes group How many DRG’s patients is a member

of.
drg mortality avg Average of the drg mortality parameter

for each patient from the drg codes table.
medic count Number of medications the patient uses.
flag count Average number of abnormal test results

a patient had.
procedure count Number of procedures the patient under-

went.
careunit Care unit in which the patient stays.
gender Gender of the patient.
phosphate Parameter representing the average differ-

ence between the phosphate test results
and the average value range.

glucose Average difference between the glucose
test results and the average value range.

bicarbonate Average difference between the bicarbon-
ate test results and the average value
range.

white blood cells Average difference between the white
blood cell test results and the average
value range.

hematocrit Average difference between the hemat-
ocrit test results and the average value
range.

urea nitrogen Average difference between the urea ni-
trogen test results and the average value
range.

creatinine Average difference between the creatinine
test results and the average value range.

hemoglobin Average difference between the
hemoglobin test results and the average
value range.

pO2 Average difference between the pO2 test
results and the average value range.

red blood cells Average difference between the red blood
cell test results and the average value
range.

chloride Average difference between the chloride
test results and the average value range.

drg mortality avg, considerably contributed to the model’s
accuracy, as demonstrated by the AUC score of 0.814.
The two gradient boost models, performed differently. The
regression tree base model was better than the component-
wise least squares model, with a concordance index of 0.817
and an AUC score of 0.863, vs 0.789 and 0.827, respec-
tively. Finally, a Survival Support Vector Machine was used.
Despite producing outcomes just slightly better than chance,
the confidence index value of 0.691 indicates potential for
improvement.

In conclusion, the study explored multiple survival pre-
diction models on a handpicked dataset, offering insights
into the significance of individual variables in predicting
patient outcomes. Further improvement of models and feature
selection may improve predicted accuracy in future iterations
of this investigation.
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