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Abstract—With the rise of accurate protein structure predic-
tion models, such as AlphaFold and RosettaTR, a new area for
protein design and engineering has begun. Due to the ability to
generate fast and accurate hypothesis of spatial protein properties
by means of a 1D sequence of amino acids alone the space of
putative protein structures has witnessed a cambrian explosion.
One hope is that by understanding the structure of a protein,
scientists can design drugs that bind to pre-selected regions,
allowing them to target specific biological pathways and reduce
the likelihood of off-target effects. Finding binding regions and
motifs is therefore of high importance in drug and biological
assay design, which is why we explore DARPins, a class of
designable protein-based antibody mimetics, and predict whether
two complementary regions of a protein complex bind to each
other or not. To investigate this, we create our own dataset of
protein complexes and decoys and transfer them into feature
augmented graph structures. Subsequently we extract the binding
region of the complex by a distance threshold and use geometric
deep learning for binding site classification on the subgraphs
which contain the protein-protein interaction space. We find that
2-hop-subgraphs, using the defined interaction atoms as seed,
together with atom element labels and bond information manage
to represent the binding region of the protein complex sufficiently
to achieve 88% accuracy on the training set using a Graph
Convolutional Network with a sum operation aggregation and
a binary classification output. On our test set, consisting of 12
DARPin complexes and 12 decoys, we achieve 87.5% accuracy.
We further find that our protein structure graph representations
seem to particularly benefit from shallow graph isomorphic
convolution layers which also employ sum operations by default
and train a Graph Isomorphic Network which exhibits 98.7 %
on the training and 91.7% accuracy on the test set.

Index Terms—protein structure modelling, binding affinity,
GNN, molecular fingerprint, DARPin

I. INTRODUCTION

Proteins are one of the four main molecular building blocks
of organic life, alongside nucleic acids (such as DNA, the
building block of the genetic code), lipids (also known as
fats), and carbohydrates (also known as sugars). Each of these
molecule classes plays a unique and important role in biology.
Proteins and DNA in particular are closely related since the
latter provides the one dimensional blueprint encoding the
sequence of individual amino acids (=residues) which chained
together make up the primary structure of proteins.

In proteins the secondary structure refers to the local folding
of the chain, which can take the form of alpha helices or beta
sheets. The tertiary structure is the overall three-dimensional
shape of the protein, and is determined by the folding of the
secondary structure elements and the interactions between the

amino acid side chains. The quarternary structure refers to
the arrangement of multiple protein subunits that make up a
protein complex.

In 2020, the scientific community studying protein struc-
tures was amazed when DeepMind introduced a computational
method for predicting the folding of chained 1D amino acid
sequences to 3D protein structures with unprecedented accu-
racy, providing a solution for the long-standing protein folding
problem [1f], [2].

This remarkable achievement is due to the combined efforts
of the scientific community, who collected atomic resolution
structures through extensive experimental procedures, compu-
tational advancements in the field of deep learning such as
transformers and the work of DeepMind [3]]. Since 2020 the
number of predicted protein structures has increased to around
220 million with AlphaFold2 and to more than 600 million
with Meta‘s newer language model based approach [4]. As,
admittedly unfair, comparison it took the scientific community
60 years to collect the first 180,000 structures.

While there is always room for optimization of the current
structural predictions as they are not perfect and still lack
accuracy depending on the sequence input, the most exciting
avenue for exploration is expected to be in questions arising
from the life sciences. Form and function are believed to be
closely related in biology, and given the importance of proteins
for all organic life, determining function given the form is one
of the most promising and useful avenues to explore. A central
hypothesis here is that in proteins a similar function displays
similar surface or interaction patterns [5], [6].

Protein functions however are difficult to characterize, espe-
cially in their quarternary structure. They are often organized
in various unit and subunits (=chains) forming a so called
complex together and also display dynamic behavior such as
conformational changes upon interaction with other molecules.
Their function is governed by interacting sites which are
regions on a protein that can bind to other target molecules
such as proteins, nucleic acids or small molecules.

Drug design and discovery in particular are interested in
the functional aspects of proteins since many drug targets
are proteins [9]. Investigating possible interactions therefore
is already part of the rationale design of drugs [10]. Current
drug development remains time and cost consuming [[1 1[]-[13]].
To bring a new drug to the market the estimated costs range
from 314 million to 2.8 billion, a timeline of up to 15 years
and around 90% failure rate from Phase 1 clinical trial to drug
admission [14], [15].



Fig. 1: The nuclear core complex, a protein jigsaw puzzle. It is
the largest molecular machine in the human body consisting
of more than 30 different protein subunits and 1000 protein
units in total. AlphaFold2 helped in completing the puzzle to
two thirds, twice as complete as before. Credit: Agnieszka
Obarska-Kosinska [[7]], [8]]

Structure-based approaches in drug selection are increas-
ingly being used with Nirmatrelvir as a recent example,
an antiviral Covid 19 drug developed by Pfizer, which was
strongly supported by structural data of the Covid spike protein
[10].

3D structures are thereby providing valuable insight into
drug and target mechanisms and may shorten the design-make-
test-analyse cycle (DMTA) in drug discovery [12]], [16].

The DMTA uses data and hypothesis based approaches for
designing and developing molecular candidates for subsequent
hypothesis testing.

DARPins(=designed ankyrin repeat proteins) are a class
of protein antibody mimetics [[17]. They possess self com-
patible repeats with variable surface residues which can
be designed and adapted. Furthermore they have favorable
structural properties such as being relatively rigid in their
conformation,aggregation resistant, which reduces toxicity to
organisms and target binding affinities that compare and even
surpass monoclonal antibodies [18]. Due to their modular
nature, as they possess variable regions which can be designed
through amino acid sequence variations, different DARPin
variants can bind to entirely different targets and even be used
for multispecfic binding. For example a recently developed
dimeric DARPIn (consisting of two different darpin units), se-
lected via directed evolution and rational design, was reported
to effectively eliminate Shiga toxin. Upon binding to two
different of the toxin‘s subunits via the interface region, the
conformational changes induced neutralizes the compounds

toxicity [19]].

The experimental process to select a DARPin for an ap-
propriate target can be done via multiple in vitro assays.
Ribosome display for example uses a DNA library of various
DARPin sequences to transcribe the DNA to mRNA and
translate the mRNA into a folded protein [20]. In the display
assay, in contrast to a Ribosome‘s normal mode of action,
protein and mRNA are hindered from release and stay attached
to each other. This favors stability, hinders degradation and
couples the folded protein structurally to its mRNA [20].
The produced complexes of mRNA-Ribosome-DARPin are
subjected to binding assays where complexes displaying the
desired properties are selected and through mutagenesis of
the mRNA new variants of the found binder can be used to
undergo another essay cycle. The whole process is termed
directed evolution as it mimics an evolutionary process where
proteins are undergoing a user defined selective pressure.

The process is time and money consuming since it takes
trained laboratory personal to perform the assays and usually
consists of many cycles before an appropriate candidate can
be selected.

Shortening the selection process therefore targets a part of
the DMTA cyle and lowers costs. With 3D structures now
so readily available it only makes sense to explore this new
wealth of data in order to gain better predictions and under-
standing of binder-target interactions which are instrumental
in protein based therapeutics supporting rationale design in the
search of an appropriate target epitope [21].

A type of computational modelling approach which is
often named in one breath with molecules are graphs and
graph neural networks (GNNs). GNNs are a type of machine
learning model that use data represented as graphs, which
consist of nodes and connecting edges, and learn from their
relationship by passing messages between nodes in order to
extract structural information that is deemed relevant.

Since chemical structures of molecules can be represented
as graphs with atoms as nodes and chemical bonds as edges,
the similarity in representation makes them easier to rea-
son with. Additionally molecular properties such as electro-
static forces or hydrophobicity, representing non-euclidean
attributes, can be attached to the nodes as features, while edges
can carry node-node distance information and thereby contain
positional information. Due to these favorable characteristics
GNNs have been used to predict a wide range of molecular
properties, such as drug-likeness [14], toxicity [22], and bind-
ing affinities [23]] and have been proposed as a possible method
for molecule epitope scoring in molecular docking problems.
[21]

In recent years, graph neural networks (GNNs) have gained
increasing attention and new methods have been developed
for various fields such as chemistry, physics and neuroscience
[24]-[26]. While the first GNNs aimed to expand convolu-
tional neural networks [27] more recent developments are the
addition of gating and attention mechanisms [28]] as well as the
introduction of new architectures which are able to deal with
isomorphic graphs or operate on pointclouds [29], [30]. Graph
isomorphism intuitively describes two graphs that are identical
except for the labels. They therefore have the same number



of nodes, edges and edge connectivity [31] yet GNNs fail to
distinguish simple isomorphism which becomes particularly
important in graph classification tasks [29].

Graph classification in conjunction with proteins or bio-
molecules in general is an important task to accomplish since
we often want to predict a particular whole graph/molecule
property such as binding affinity or toxicity.

A. Related Work

Various computational approaches have been proposed for
protein binding predictions.

They are varied in their nature though usually produce
scores receiving different binder-target conformations as input,
sampled from the space of possible conformations [32], [33]].

Radom et al. [21] describes a computational approach for
DARPin-target docking modelling which works in a semi-
automated fashion and mainly uses available filtering functions
in the Rosetta [34] and ClusPro software [35]]. This approach
however, while successful for the selected DARPIns, is time
consuming due to its semi-automated nature, relies on hand-
crafted experimental settings and omits difficult targets know-
ingly. Neural net approaches have therefore also been proposed
for ameliorating time lines, due to their fast inference, as well
as their ability to deal with high dimensional data [21]].

In the domain of neural networks McNutt [36] and Ahmet et
al. [37] proposed two different Convolutional Neural Network
(=CNN) approaches for predicting binding affinity though
focus on protein-ligand predictions and not protein-protein
ones.

In the domain of GNNs Nguyen et al. [23|] proposed a model
for predicting protein-ligand binding affinity and find that their
model predictions worked better than non-neural approaches.

Wang et al. [[38]] however are the closest to our proposed
research since they also focus on protein-protein interactions
using GNNs. They manage to surpass their own, previous
CNN approach by making the GNN model focus on the
interface region of the protein complex.

As we explore a very specific class of proteins and want
full control over the data input we therefore build a dataset
of proteins using publicly available data from the Protein
Data Bank, transform it into feature augmented interface
region graph data and apply Graph Neural Network variants to
perform a classification task, discriminating between binding
and non-binding protein regions. Our performance on DARPin
binding predictions is always directly evaluated since our test
set is made up of DARPin-Target structures only.

II. EXPERIMENTAL DESIGN AND OUTCOMES
A. Experimental outline

The procedure for dataset generation can be described as
follows:

1) Train and test set definition

2) PDB/Structure File download and preprocessing

3) Decoy Generation

4) Feature augmentation of

edges(bonds)
5) Subgraph and 2-hop-subgraph generation

nodes (atoms) and

6) Transfer of subgraph and 2-hop-subgraph into Pytorch-
Geometric format

B. Training and Validation set

The decision which proteins to include into the training and
validation set was performed by querying the Protein Data
Bank (=PDB) with the following parameter:

o Refinement atomic resolution of maximally two
Angstrom

o Protein as chain entity type (as oposed to DNA or
metabolites)

o Consisting of two chains

The resulting IDs were used for downloading and prepro-
cessing of the PDB files.

Since we rely on the PDB ID or PDB File alone the input
of the workflow can therefore be expanded to all artificially
generated structures as well as all structures in the Protein
Data Bank.

C. Test set

As the test set 6 PDB IDS (one did not generate a decoy)
of existing DARPin complexes from the publication of Radom
et al. [21] were taken as well as 6 additional PDB IDs that
were found in a PDB query. The test set therefore serves as
direct assessment of a prediction for a DARPin binding site.
The IDs are listed in appendix

D. PDB file preprocessing

PDB Files were loaded and ligands and water molecules
removed from the structure. Hydrogen atoms were corrected
using reduce and singular chains of the protein complexes
were separated. Coordinates and atom elements were extracted
from the given structure using Biotite [39] and saved as python
objects.

E. Decoy generation

Decoys, non-existent protein structures, serve the important
role of a negative dataset in protein structure assays. For
investigating binding we therefore generated decoys of the
original structures under the assumption that if the protein
chains of the protein complex are rotated randomly a non-
binding protein structure is constructed.

The two protein chains were randomly rotated as regards
rotation angle and rotation axis (x,y or z). Additionally for a
decoy to be accepted the number of interaction edges had to
match + 20% of the number of real interaction edges defined
by the distance of 4 Angstrom of each Atom of one chain to
any atom of the other chain.

In case no appropriate decoy was found in 2000 random
rotation iterations, chains did not display any interaction edges
at the given distance or less than two chains were present the
structures were discarded.

The chosen parameters were selected in order to create
an appropriate, non-binding protein dataset which displays
roughly the same number of (non-binding) interaction sites


https://github.com/rlabduke/reduce

with similar distance. Sterical clashes are less frequent since
the number of interactions indirectly influences the relative
positions (eg. if one protein rotates into the complementary
one it produces many more interaction sites while violating the
natural laws of physics) though cannot be excluded since not
all data was checked visually. A display of decoy generation
is shown in Figure

(a) Original protein on the left (chainl in yellow, chain2 in blue) and
rotated decoy on the right(chainl in purple, chain 2 in red).

(b) Original protein (chain 1 in turquoise, chain 2 in orange) and rotated
decoy (chain 1 in red, chain 2 in blue). Chain 1 is kept in the same
rotational conformation to make the relative change in position to chain
2 visible.

Fig. 2: Display of decoy generation by rotation. The displayed
protein has the PDB ID 6AS80, a transporter protein.

1) Decoy RMSD: The root mean squared distance
(=RMSD) is a common measure of protein structure similarity.

The table [I] and [[I] display the statistical description of the
train and test dataset as regards the RMSD.

TABLE II: Statistical RMSD description of the test set

Decoy generation was not considering the RMSD which
represents also a good parameter to measure similarity and
when included as threshold value for decoy acceptance can
help in appropriate dataset generation such as for example
generating near native solution structures or very dissimilar
structures.

F. Node and edge features

In order to bridge communication between the graph and
protein world atoms from now on will be referred to as nodes
and the bonds between them as edges. Edges were modelled
as undirected. The following node and egde attributes were
collected.

Name Edge or Node Source
Hydrophobicity Node Kyte Doolitle scale
Chemical Embeddings Node dMasif
Binding-Factor Node dMasif
Atom radius Node Wikipedia (Atomic radius)

Atom element Node PDB File
Residue indices Node PDB File
Atom coordinates Node PDB File
Covalent Edge Edge PDB File
Interaction Edge Edge Computed
Distance Edge Computed

TABLE III: Overview of node and edge features

Features were normalized across all samples where neces-
sary.

G. dMasif node feature augmentation

Dmasif is a geometric deep learning model that generates
chemical and abstract feature embeddings as well as a binding
factor prediction of protein point clouds and thereby can
provide useful fingerprints in a fast and automated way. The
original code was dockerized and features were generated for
all proteins. The method produces a pointcloud with various
features assigned to each point and therefore does not represent
atoms directly. In order to assign the features to our atom
nodes we computed for each point the closest atom and
summed up the feature properties. For detailed parameters for
running the model, some visual examples and the methods‘s
mode of action please refer to the appendix [C| and the original
masif and dmasif publications [5]], [6].

H. Interaction site definition

Interaction sites (=binding region or interface region) were
defined as two chains that are within a threshold of 4 Angstrom
distance of each other. All atoms of one chain within 4
Angstrom of the other chain were therefore labelled as in-
teraction nodes/atoms.

Covalent bindings, representing edges between nodes, were
defined as one binding class and saved as edge attributes.
Interaction edges between interaction nodes were labelled as
a second class.


https://github.com/FreyrS/dMaSIF

(a) Bound complex of the 1A4K protein. The green, transparent protein
chain is overlayed above its interaction sites (red) with the second chain
(blue).

(b) One protein chain of the 1A4K protein with its interaction sites in
red.

Fig. 3: Interaction sites visible in red in (a) the bound complex
and (b) the single chain of the 1A4K protein complex.

1. Subgraphing of protein interfaces

To focus the models attention on the interface regions of
the binding subgraphs of the interaction site interface were
extracted in two different ways.

For this the pytorch geometric subgraph and k-hop-subgraph
using two hops was used.

The subgraph functions returns a subgraph containing only
the interaction atoms, while the k-hop-subgraph functions
returns the interaction atoms and all atoms reachable via edges
in two hops. The result of this operation is visible in Figure
[ and intuitively shows what a standard graph convolutional

neural network receives as input when only considering nodes
and edges.

(a) Display of the full graph with its nodes (n, = 3444) and edges
(ne = 7410, grey=covalent, red=interaction) in the 4HRN DARPin-
protein complex.

(b) Display of the 2-hop-subgraph of the 4HRN DARPin-protein com-
plex with its nodes (n,, = 350) and edges (n. = 1160, grey=covalent,
red=interaction).

(c) Display of subgraph edges of the 4HRN DARPin-protein complex
with its nodes (n, = 260) and edges (n. = 724, grey=covalent,
red=interaction).

Fig. 4: Display of different graph structures without 3D
positional information and n,, as the number of nodes and
n. as the number of edges. Interaction edges are displayed in
red, covalent edges in grey.

The generated subgraphs and 2-hop-subgraphs were com-
bined with the node and edge feature additions for all original
structures and decoys and the two datasets were saved on the
disk as PyTorch Geometric Datal object.

A more detailed description of the Data objects and the
parameter assignments can be found in section of the
appendix as well as the node and edge feature overview in
table


https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.subgraph
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.k_hop_graph
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.Data.html#torch_geometric.data.Data

J. Deep Learning Approach

All deep learning models used stem from the [Pytorch
Geometric library. As modelling framework we used PyTorch
Lightning and Wandb for metric monitoring and model selec-
tion. For training and validation the two generated datasets
(subgraph and 2_hop_graphs) were each split in a 80-20 split
ratio and the test set was defined as the set of DARPin-protein
complexes as described in section Random seed was set
to 42 and batchsize was tuned for each dataset according to
the maximum fit into memory. For each training run the top
two checkpoints based on maximum validation accuracy were
saved for evaluating the test set.

1) Graph convolutional Network: The first model tried was
a standard Graph convolutional network (GCN) with a binary
cross entropy loss distinguishing between binding (real pro-
tein) and non-binding (decoy protein) protein partners/chains.
For a display of the detailed architecture and hyperparameters
refer to the Appendix section[DI] For the full graph dataset the
graph convolution operations would result in a Cuda memory
error which is why the were not used for the Graph Neural
Networks.

We first compared the difference in performance on both
the subgraph and 2-hop-graph visible in Table When
varying the node features some resulted in a decrease, some
in increased training stability (data not shown). Further abla-
tion experiments should be conducted though to evaluate the
usefulness of each of the features. Th information that did
matter nevertheless was giving node labels in terms of atom
element labels. The following experiments were therefore only
conducted with the atom element labelling.

Dataset | Dataset part | Accuracy |
Subgraph train 83%
Subgraph test 74%
2-Hop train 89%
2-Hop test 79%

TABLE IV: Comparison of subgraph and 2-hop-subgraph with
mean aggregations

2-hop-subgraph showed better performance than the sub-
graph methods. An additional benefit of using k-hop-subgraphs
is that the hop parameter provides a tunable parameter which
can be used to extract variably sized regions around the
interaction site. The variable graph size together with the batch
size also determines the memory usage of the training which
can thereby also be influenced. Further experiments using
higher hop numbers under consideration of memory usage
should therefore be conducted in the future.

Due to the performance increase we conducted all following
experiments with the 2-hop-subgraph dataset only.

The most prominent difference in performance as regards
the architectural choices with GCNs was achieved with the
addition of the sum-pooling method. The global-add-pool
operation, in contrast to mean or maximum, is used to generate
graph-sized embeddings which are then forwarded to the
classification output.

For a comparison of mean, max and sum aggreations please
consult the Table [V]

Method | Dataset part | Accuracy |

Mean train 89%
Mean test 79%
Max train 85%
Max test T1%
Sum train 88%
Sum test 87%

TABLE V: Comparison Mean Max and Sum Aggreation
Operations in a GCN

This is seen as one of the strengths of the summation since
we expect this to perform better on graph classification. For
a more detailed explanation see this excellent explanation on
injectivity and graph isomorphism,

While the final performance improved with the summation
the learning and loss metrics were much more unstable and
without selecting the checkpoints on the two best validation
accuracy performances this result might have been missed. The
curves can be inspected in the appendix [E]

2) Graph Isomorphic Networks: As noted in the article (see
the link about injectivity standard GCN architectures
are not able to distinguish simple graph structures. Xu et
al. [29] therefore proposed the graph isomorphic architecture
(=GIN) to overcome this limitation. Technically it works by
using the same summation method as above with addition
of concatenating the embeddings of different layers and an
adapted message passing system. For an overview of the
architecture please have a look at the appendix

Interestingly only a combination of the more shallow hidden
layer embedding size of 50 is able to surpass GCN perfor-
mance (see Table [V) with the summation method. The results
are displayed in Table The training exhibited more stable
curves when compared to the GCN as visible in the appendix

B

Dataset part | Hidden layer Size | Accuracy

train/val 100 94/91%
test 100 79 %

train/val 50 97/94%
test 50 92%

TABLE VI: GIN Results when using different layer sizes.

The lower hidden layer sizes helped in the test dataset
performance while the higher layer size model possibly ex-
hibits overfitting which could be counteracted with more
regularization.

III. DISCUSSION

The results of this study outline a complete, automatable
process going from Protein Databank IDs to protein interface
graph structures while adding and computing various node and
edge features. We welcomed very much the flexibility that
this approach offers since the modularity of the preprocessing
allows tuning parameters such as decoy RMSD cutoffs, inter-
action distance threshold, subgraph size and thereby adaption
to memory restrictions in resource constrained settings as well
as creation of balanced or unbalanced datasets at wish.

Our results indicate that Graph Neural Networks (GCN and
GIN) can learn subgraph embeddings of protein interface sites


https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.pytorchlightning.ai/
https://www.pytorchlightning.ai/
https://wandb.ai
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.pool.global_add_pool.html#torch_geometric.nn.pool.global_add_pool
https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ
https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ

and distinguish them well from our artificially constructed
decoys, which are the same protein with alternative inter-
action sites yet similar number of interactions. Applied on
a whole different set of proteins, our DARPin test set, we
achieve comparable results exhibited in training and validation
accuracy. This is not entirely natural since apart from atomic
resolution and that the structural entities are proteins consisting
of two chain units no similarity measure with the DARPin
set influenced our PDB query. The GNNs during training
therefore seem to learn either sub or whole structural protein
embeddings useful for discriminating between the classes
and applicable to proteins in general. This by itself would
need more investigation but might lead to more sophisticated
initial dataset construction. If protein structures in the interface
exhibit certain pattern it could allow selection of protein
interfaces which possess certain structural motifs. This would
permit fine tuning of what the graph model receives as input
which is essential for the data-centric approach that neural
networks are and might influence down-stream performance.
Tailoring the dataset in general is a nice options to have since
it allows posing different research questions without changing
much of the boilerplate architecture and thereby allows quick
adaptation to specific protein classes such as our DARPins.

The approach outlined by Wang et al. [38] is close to our
work. Nevertheless they used a different modelling approach
by using a siamese graph neural network which they hy-
pothesize, through graph embedding substraction, can focus
on the interface region. Our approach of focus on the other
hand lies with our subgraphing technique. By initializing the
atoms defined as interaction nodes as seed nodes together with
building interaction edges we allow the graph structure to grow
step wise in size with the interface regions as starting point
(see Figure [)). Furthermore they use different model layer
mechanisms (Attention and Gate Augmentation) as well as
different prediction targets since they are focusing on docking
scores, a regressional task. An interesting comparison therefore
would be to use the datasets (DOCKGROUND and CAPRI
Score dataset) described in the publication and change our
classification output to a regressional one while keeping the
rest of the architecture the same. Another interesting obser-
vation is that Wang et al. also chose a summation operation
in their GAT layer which is in accordance with our findings
that sum operations enhance performance on whole graph
classification. Theory agrees that aggregation functions play
an important role in the network‘s representational power and
performance [29]. According to Xu mean aggregation captures
the distribution of elements, max aggregation proves to be
advantageous to identify representative elements, and sum
aggregation enables the learning of structural graph properties
[29]. Trying out the proposed GAT layer by Wang et al. or
even combining it with our shallow GIN model could be an
avenue to explore.

Another recent research study on protein interfaces that is
related to our work was performed by Jha et al. [40] who,
similar to Wang, used GAT and GCN networks. Neverthe-
less they perform prediction on amino acid residue level (in
contrast to atom level as we do) and use language models to
create per residue embeddings which they attach to their nodes

as features. They therefore provide an interesting approach
as regards the node feature augmentation which could serve
as a valuable avenue to explore. Furthermore they use a
classification output for binding and non-binding where they
achieve 98% on the human PPI dataset which is above the
reported performance with our dataset. A direct comparison
in performance would have to be made though using the
same dataset and using the residues as nodes. Furthermore
we have to keep in mind that our test dataset might stem from
a different distribution of proteins since training and validation
set come from the PDB query while our test set contains
the DARPins and served as a direct measure to tackle our
research question, to ameliorate rational design in the context
of DARPin binding prediction. Whether the named datasets
are controlled as regards certain data distribution aspects (as
for example protein structure variety) should also be looked at.
In case of absence we suggest to just use the excellent Protein
Databank Query to narrow down the search to proteins with
the desired properties and simply provide them as PDB IDs
to our workflow while decoys can either be generated or used
from other sources.

In contrast to our findings as regards pooling method Jha et
al. choose a mean pooling aggregation though lack to explain
why or show performance data. Nguyen et al. [23]], who also
model drug-target interactions as graphs and then predicts
binding affinities, in contrast to us reports the best performance
with a max pooling method. They also tried out the GIN
layer but reported a less good performance though it remains
to mention that only the right combination of hidden layer
size resulted in our best performant GIN model. As stated
above theory agrees with our findings in favor of summation
yet in practice different methods seem to achieve the best
performance.

All in all our performance seems comparable yet is difficult
to evaluate. without a direct comparison on the same dataset.

A. Limitations

There are various limitations in this work. Many parameters,
like interaction distance thresholds, decoy acceptance or the
hop size play an important role in the resulting final subgraph
structure and therefore should be more thoroughly looked at.

Decoy generation also should be evaluated critically and
thought should be put into a good set of metrics that then
governs the artificial structure generation. It would need to
be excluded that the generated decoys exhibit for example
very obvious non-binding characteristics which made it easy
for the model to distinguish them. At the same time can
any decoy produced without not entirely be excluded from
exhibiting binding properties. Decoy examples were visually
looked at to exclude strong sterical clashes but most of the files
remain uninvestigated. When looking at the RMSD statistics
in Table [l and [I] the minimum value shows 0.5 Amstrong
for the training set which means that at least one decoy has
basically the same structure as the target molecule which
might make it very difficult, if not impossible to distinguish
for a discriminative model. Most structures are around 25
Armstrong difference which is a considerable shift from the



original position. The RMSD at the same time provides a good
control mechanism on how different the decoy should be and
can serve to test where the model‘s limits are. For example an
interesting approach would be to generate a variety of RMSD
similarity range datasets (eg. from 0-10 Amstrong, 20-30,...
etc.), test the model‘s limits as regards its discriminatory power
and investigate which architectural changes would need to be
implemented work in that regime or whether other additions
are needed.

Another limitation not touched in this work are protein
dynamics and conformational changes that can happen upon
binding. Proteins in reality behave like living structure that
move and twist around and are also subject to weak and
indirect interactions which are hard to measure in dynamic
settings. DARPins are in that sense favorable since they are
quite rigid and their paratope (binding region) is known. As
regards their target however we can only assume behavior by
for example looking at the chain sequence statistics which can
have parameters like occupancy, describing the flexibility of a
certain region. In docking problems the usual approach is to
generate many structures sampled from the space of possibil-
ities (homology modelling) defined by the flexible parts [21].
This creates the real life scenario of having many decoys and
hopefully some near native structures ( 1-2 Armstrong) which
usually do not score best [21]. Testing the discriminatory limits
of our subregion approach in high decoy number setting we
therefore regard as essential for benefitting in DARPin-target
binding assessments.

B. Considerations for future work and conclusion

Protein docking remains a difficult problem despite the
newly available wealth on structural data. A recent survey [32]
found that current molecular docking predictions when applied
to protein-ligand interactions exhibit weak performance yet
can be improved with machine learning rescoring approaches.
While their findings cannot be directly transferred for protein-
protein interactions it is evident that protein dynamics and
physics remains a topic where active research is needed.
We still think that the future shines bright in the space of
protein structures and the proximal fields of research. Similar
to how advances in sequencing technology, in particular in
cost reduction, amplified and fueled genetic research, accurate
computational protein structure predictions might do the same
for this second, highly important bio-molecule.

As regards future improvements on our work the possibili-
ties are manyfold though some are already in close reach.

Our “from scratch” approach as regards the dataset con-
struction permits changing the base dataset completely with
modification of the PDB query/PDB IDs input alone. Thanks is
also owed here to the excellent Pytorch Lightning framework
that due to its modular nature allows simply writing another
datamodule which can be plugged interchangeably into the
existing code. With addition of some minor extra modifications
(such as a quality control module, which for example sets a
confidence cutoff) it would also allow computational structures
from for example AlphaFold2 as input. At the same time
the incorporation of other benchmark datasets used in other
publications is not far from reach.

Furthermore our current approach only uses atom element
labels and their connectivity without any further information
such as positional atom information or the different edge labels
(covalent and interaction) defined. While it is on one hand
fascinating that a neural network can possibly distinguish these
structural differences, the wealth of information present as
regards node and edge features is far from explored and leaves
room for a wide range of further experimentation and feature
addition.

Another easy addition would be to use the GINE layer, a
GIN layer which permits edge attributes. The edge attributes
in our case contain interaction edge labels which would give
the model information about the type of binding that occurs
between atoms yet can be adapted to any other information
suitable.

Besides edge attributes there is also the whole domain of
positional information that has not been used but is present in
the data. dMasif [6] for example is a pointcloud based protein
feature prediction model which provides ample possibilities
of ablation experiments to find out whether certain of its
feature embeddings can aid in our prediction tasks. While we
found the features we used arbitrariliy to stabilize training in
certain cases (data not shown) we did not see an increase in
performance. Though since the predictions by the model were
quite impressive when inspected visually (see Appendix [C) we
believe that there still many things to try out.

An interesting exploration would also be in terms of going
back into biology and try to find an explanation of why certain
structures fail to be classified correctly. Are there structural
motifs that are special to them or do they possess properties
which make them different? Why do the models fail and if
the structural motifs are present in the initial dataset how
can we make sure that predictions take these more difficult
cases under consideration? Attention mechanism come to mind
since it essentially provide a weighing mechanism assigning
importance.

Our initial research question of whether DARPin selection
can be improved by deep learning might be too early to
answer since theoretical results will always have to be looked
at in practice. A next step could be to design an even
more DARPin centric approach. Models could be trained
on a variety of proteins, computationally produced or not,
and then fine tuned to a large DARPin library, consisting
of many DARPin variants. Here data from the Ribosome
display could be a valuable source of input. The assay
outputs approximate binding properties as well as mutated
sequence variations of the same initial DARPins. Therefore
differences in binding properties could possibly be correlated
to structural differences. Tricky is that the variant structures
can not be so easily produced since for example AlphaFold2
relies on evolutionary conservation methods and therefore is
not expected to work well with single mutational changes
introducing strong structural changes which is also listed as an
official limitation. There are however efforts to take this into
account and Akdel et al. [41]] for example couple the structure
predictions with additional mutation-analysis algorithms for
increased accuracy of the mutated structures. Weissenow et
al. [42] on the other hand propose a more protein-specific


https://pytorch-lightning.readthedocs.io/en/stable/data/datamodule.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=gine#torch_geometric.nn.conv.GINEConv

Convolutional Neural Network based approach rather than
AlphaFold‘s family averaged prediction which fare better in
mutational experiments. For DARPins certainly an exciting
thing to try.

Experimental binding affinity data in general can be ben-
eficial since it allows to change the classification task into a
regression one and using only minor changes converting our
classification model into a docking scorer.

The ultimate system of DARPin selection would probably
act in many dimensions. Taking in the target information alone
it would preselect and determine the best possible binders for
it or even dream up new possible ones. Network hallucination,
a term coined for protein networks powered by the same em-
beddings learned from the folding task, are already generating
entirely new structures that were confirmed to be functional
[43]]. Realizing that these trained neural network embeddings
contain a broad amount of information about protein structures
we can only guess of what else could be done with them if
steered into the right direction.

In the end we believe that the complexity and dynamics
of these living protein structures and the questions we are
posing are so complex that it might be hard to cover them by
one model or technique alone. In reality multiple modular sub
networks, heuristics and (classical) algorithms specialized for
a particular subtask will need to work in ensemble. Large deep
learning architectures like AlphaFold2 exhibit these character-
istics which to create require interdisciplinary teams, research
infrastructure in terms of curated databases, detailed experi-
ment monitoring, computational resources, as well as extensive
experimentation and engineering efforts. Deep learning shines
in high data regimes and with new combinatorial architectures
like stable diffusion already making their way into structural
molecular biology generating molecules [44] like they were
images we believe that this is just the tip of the iceberg of
what can be accomplished in the coming decades in structural
protein research.

REFERENCES

[1] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Zl’dek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-
Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W.
Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly
accurate protein structure prediction with alphafold,” Nature 2021

596:7873, vol. 596, pp. 583-589, 7 2021. [Online]. Available:
https://www.nature.com/articles/s41586-021-03819-2
[2] R. Evans, M. O’Neill, A. Pritzel, N. Antropova, A. Senior,

T. Green, A. Zl’dek, R. Bates, S. Blackwell, J. Yim, O. Ronneberger,
S. Bodenstein, M. Zielinski, A. Bridgland, A. Potapenko, A. Cowie,
K. Tunyasuvunakool, R. Jain, E. Clancy, P. Kohli, J. Jumper, and
D. Hassabis, “Protein complex prediction with alphafold-multimer,”
bioRxiv, p. 2021.10.04.463034, 3 2022. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2https:
/Iwww.biorxiv.org/content/10.1101/2021.10.04.463034v2.abstract

[31 S. K. Burdey and S. O. Burley@rcsb, “Impact of
structural biologists and the protein data bank on small-
molecule  drug discovery and development,” Journal of
Biological Chemistry, vol. 296, p. 100559, 1 2021. [Online].
Available: http://www.jbc.org/article/S0021925821003379/fulltexthttp:
/Iwww.jbc.org/article/S0021925821003379/abstracthttps://www.jbc.org/
article/S0021-9258(21)00337-9/abstract

[4]

[5

—_

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

E. Callaway, “Alphafold’s new rival? meta ai predicts shape of 600
million proteins,” Nature, vol. 611, pp. 211-212, 11 2022.

P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. Bron-
stein, and B. Correia, “Deciphering interaction fingerprints from protein
molecular surfaces using geometric deep learning,” Nature Methods,
vol. 17, no. 2, pp. 184-192, 2020.

F. Sverrisson, J. Feydy, B. E. Correia, and M. M. Bronstein, “Fast end-to-
end learning on protein surfaces,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp.
15267-15276, 2021.

P. Fontana, Y. Dong, X. Pi, A. B. Tong, C. W. Hecksel, L. Wang, T. M.
Fu, C. Bustamante, and H. Wu, “Structure of cytoplasmic ring of nuclear
pore complex by integrative cryo-em and alphafold,” Science, vol. 376,
6 2022.

T. U. Schwartz, “Solving the nuclear pore puzzle:using a battery of tools,
the architecture of the nuclear pore complex is revealed,” Science, vol.
376, pp. 1158-1159, 6 2022.

R. Santos, O. Ursu, A. Gaulton, A. P. Bento, R. S. Donadi, C. G.
Bologa, A. Karlsson, B. Al-Lazikani, A. Hersey, T. I. Oprea, and J. P.
Overington, “A comprehensive map of molecular drug targets,” Nature
Reviews Drug Discovery 2016 16:1, vol. 16, pp. 19-34, 12 2016.
[Online]. Available: https://www.nature.com/articles/nrd.2016.230https:
//www.nature.com/articles/nrd.2016.230/

D. R. Owen, C. M. Allerton, A. S. Anderson, L. Aschenbrenner,
M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman,
A. Dantonio, L. Di, H. Eng, R. A. Ferre, K. S. Gajiwala, S. A. Gibson,
S. E. Greasley, B. L. Hurst, E. P. Kadar, A. S. Kalgutkar, J. C. Lee,
J. Lee, W. Liu, S. W. Mason, S. Noell, J. J. Novak, R. S. Obach,
K. Ogilvie, N. C. Patel, M. Pettersson, D. K. Rai, M. R. Reese, M. F.
Sammons, J. G. Sathish, R. S. P. Singh, C. M. Steppan, A. E. Stewart,
J. B. Tuttle, L. Updyke, P. R. Verhoest, L. Wei, Q. Yang, and Y. Zhu,
“An oral sars-cov-2 mpro inhibitor clinical candidate for the treatment
of covid-19,” Science, vol. 374, pp. 1586-1593, 12 2021. [Online].
Available: https://www.science.org/doi/10.1126/science.abl4784

K. Smietana, M. Siatkowski, and M. Mgller, “Trends in clinical success
rates,” Nature Reviews Drug Discovery, vol. 15, pp. 379-380, 6 2016.

“Rethinking drug design in the artificial intelligence era,” Nature
reviews. Drug discovery, vol. 19, pp. 353-364, 5 2020. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/31801986/

A. Mullard, “2020 fda drug approvals,” Nature reviews. Drug discovery,
vol. 20, pp. 85-90, 2 2021.

D. Sun, W. Gao, H. Hu, and S. Zhou, “Why 90fails and how to improve
it?” Acta Pharmaceutica Sinica B, vol. 12, pp. 3049-3062, 7 2022.

0. J. Wouters, M. McKee, and J. Luyten, “Estimated research and
development investment needed to bring a new medicine to market,
2009-2018,” JAMA, vol. 323, pp. 844-853, 3 2020. [Online]. Available:
https://jamanetwork.com/journals/jama/fullarticle/276231 1

“Chemical predictive modelling to improve compound quality,” Nature
Reviews Drug Discovery 2013 12:12, vol. 12, pp. 948-962, 11 2013.
[Online]. Available: https://www.nature.com/articles/nrd4 128

P. Forrer, M. T. Stumpp, H. K. Binz, and A. Pliickthun, “A novel
strategy to design binding molecules harnessing the modular nature of
repeat proteins,” FEBS Letters, vol. 539, pp. 2-6, 3 2003. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/12650916/

A. Pliickthun, “Designed ankyrin repeat proteins (darpins): binding
proteins for research, diagnostics, and therapy,” Annual review of
pharmacology and toxicology, vol. 55, pp. 489-511, 1 2015. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/25562645/

Y. Zeng, M. Jiang, S. Robinson, Z. Peng, V. Chonira, R. Simeon,
S. Tzipori, J. Zhang, and Z. Chen, “A multi-specific darpin potently
neutralizes shiga toxin 2 via simultaneous modulation of both
toxin subunits,” Bioengineering, vol. 9, p. 511, 10 2022. [Online].
Available: https://www.mdpi.com/2306-5354/9/10/511/htmhttps://www.
mdpi.com/2306-5354/9/10/511

C. Zahnd, E. Wyler, J. M. Schwenk, D. Steiner, M. C. Lawrence,
N. M. McKern, E. Pecorari, C. W. Ward, T. O. Joos, and A. Pliickthun,
“A designed ankyrin repeat protein evolved to picomolar affinity to
her2,” Journal of molecular biology, vol. 369, pp. 1015-1028, 6 2007.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/17466328/

F. Radom, E. Paci, and A. Pliickthun, “Computational modeling of
designed ankyrin repeat protein complexes with their targets,” Journal
of Molecular Biology, vol. 431, pp. 2852-2868, 7 2019.

J. Chen, Y. W. Si, C. W. Un, and S. W. Siu, “Chemical toxicity
prediction based on semi-supervised learning and graph convolutional
neural network,” Journal of cheminformatics, vol. 13, 12 2021.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/34838140/


https://www.nature.com/articles/s41586-021-03819-2
https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2 https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.abstract
https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2 https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.abstract
http://www.jbc.org/article/S0021925821003379/fulltext http://www.jbc.org/article/S0021925821003379/abstract https://www.jbc.org/article/S0021-9258(21)00337-9/abstract
http://www.jbc.org/article/S0021925821003379/fulltext http://www.jbc.org/article/S0021925821003379/abstract https://www.jbc.org/article/S0021-9258(21)00337-9/abstract
http://www.jbc.org/article/S0021925821003379/fulltext http://www.jbc.org/article/S0021925821003379/abstract https://www.jbc.org/article/S0021-9258(21)00337-9/abstract
https://www.nature.com/articles/nrd.2016.230 https://www.nature.com/articles/nrd.2016.230/
https://www.nature.com/articles/nrd.2016.230 https://www.nature.com/articles/nrd.2016.230/
https://www.science.org/doi/10.1126/science.abl4784
https://pubmed.ncbi.nlm.nih.gov/31801986/
https://jamanetwork.com/journals/jama/fullarticle/2762311
https://www.nature.com/articles/nrd4128
https://pubmed.ncbi.nlm.nih.gov/12650916/
https://pubmed.ncbi.nlm.nih.gov/25562645/
https://www.mdpi.com/2306-5354/9/10/511/htm https://www.mdpi.com/2306-5354/9/10/511
https://www.mdpi.com/2306-5354/9/10/511/htm https://www.mdpi.com/2306-5354/9/10/511
https://pubmed.ncbi.nlm.nih.gov/17466328/
https://pubmed.ncbi.nlm.nih.gov/34838140/

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh,
“Graphdta: predicting drug-target binding affinity with graph neural
networks,” Bioinformatics (Oxford, England), vol. 37, pp. 1140-1147, 4
2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/33119053/

D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gdémez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams,
“Convolutional networks on graphs for learning molecular fingerprints,”
9 2015. [Online]. Available: https://arxiv.org/abs/1509.09292

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. W. Battaglia, “Learning to simulate complex physics with
graph networks,” pp. 8459-8468, 11 2020. [Online]. Available:
https://proceedings.mlr.press/v119/sanchez- gonzalez20a.html

J.  Vohryzek, A. Griffa, E. Mullier, C. Friedrichs-Maeder,
C. Sandini, M. Schaer, S. Eliez, and P. Hagmann, “Dynamic
spatiotemporal patterns of brain connectivity reorganize across
development,” Network Neuroscience, vol. 4, pp. 115-133, 2
2020. [Online]. Available: https://direct.mit.edu/netn/article/4/1/115/
95802/Dynamic-spatiotemporal-patterns- of-brain

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” Faculty of Informatics -
Papers (Archive), vol. 20, pp. 61-80, 1 2009. [Online]. Available:
https://ro.uow.edu.au/infopapers/3165

S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” 5 2021. [Online]. Available: https://arxiv.org/abs/2105.
14491v3

K. Xu, S. Jegelka, W. Hu, and J. Leskovec, “How powerful
are graph neural networks?” 7th International Conference on
Learning Representations, ICLR 2019, 10 2018. [Online]. Available:
https://arxiv.org/abs/1810.00826v3

“Dynamic graph cnn for learning on point clouds,” ACM Transactions
on Graphics, vol. 38, p. 146, 10 2019. [Online]. Available:
https://doi.org/10.1145/3326362

A. Njanko and D. B. Rawat, “On the identification of isomorphic graphs
for graph neural network using multi-graph approach,” 2022 IEEE 13th
Annual Information Technology, Electronics and Mobile Communication
Conference, IEMCON 2022, pp. 61-66, 2022.

F. Wong, A. Krishnan, E. J. Zheng, H. Stirk, A. L. Manson, A. M. Earl,
T. Jaakkola, and J. J. Collins, “Benchmarking jscp;alphafoldi/scp,
-enabled molecular docking predictions for antibiotic discovery,”
Molecular Systems Biology, vol. 18, 9 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.15252/msb.202211081

S. Y. Huang, “Exploring the potential of global protein-protein docking:
an overview and critical assessment of current programs for automatic
ab initio docking,” Drug discovery today, vol. 20, pp. 969-977, 8 2015.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25801181/

A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson,
R. Jacak, K. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler,
I. W. Davis, S. Cooper, A. Treuille, D. J. Mandell, F. Richter,
Y. E. A. Ban, S. J. Fleishman, J. E. Corn, D. E. Kim, S. Lyskov,
M. Berrondo, S. Mentzer, Z. Popovié, J. J. Havranek, J. Karanicolas,
R. Das, J. Meiler, T. Kortemme, J. J. Gray, B. Kuhlman,
D. Baker, and P. Bradley, “Rosetta3: an object-oriented software
suite for the simulation and design of macromolecules,” Methods
in enzymology, vol. 487, pp. 545-574, 2011. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/21187238/

D. Kozakov, D. R. Hall, B. Xia, K. A. Porter, D. Padhorny, C. Yueh,
D. Beglov, and S. Vajda, “The cluspro web server for protein-protein
docking,” Nature protocols, vol. 12, pp. 255-278, 2 2017. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/28079879/

A. Ahmed, B. Mam, and R. Sowdhamini, “Deelig: A
deep learning approach to predict protein-ligand binding
affinity,”  https://doi.org/10.1177/11779322211030364, vol. 15, 7

2021. [Online]. Available: https://journals.sagepub.com/doi/full/10.1177/
11779322211030364

X. Wang, S. T. Flannery, and D. Kihara, “Protein docking model eval-
uation by graph neural networks,” Frontiers in Molecular Biosciences,
vol. 8, p. 402, 5 2021.

P. Kunzmann and K. Hamacher, “Biotite: A unifying open source
computational biology framework in python,” BMC Bioinformatics,
vol. 19, pp. 1-8, 10 2018. [Online]. Available: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-018-2367-z

K. Jha, S. Saha, and H. Singh, “Prediction of protein-protein interaction
using graph neural networks,” Scientific reports, vol. 12, 12 2022.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/35589837/

M. Akdel, D. E. V. Pires, E. P. Pardo, J. Jdnes, A. O.
Zalevsky, B. Mészaros, P. Bryant, L. L. Good, R. A. Laskowski,

G. Pozzati, A. Shenoy, W. Zhu, P. Kundrotas, V. R. Serra,
C. H. M. Rodrigues, A. S. Dunham, D. Burke, N. Borkakoti,
S. Velankar, A. Frost, K. Lindorff-Larsen, A. Valencia, S. Ovchinnikov,
J. Durairaj, D. B. Ascher, J. M. Thomton, N. E. Davey,
A. Stein, A. Elofsson, T. I. Croll, and P. Beltrao, “A structural
biology community assessment of alphafold 2 applications,”
bioRxiv, p. 2021.09.26.461876, 9 2021. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2021.09.26.461876v L https:
/Iwww.biorxiv.org/content/10.1101/2021.09.26.461876v 1.abstract

K. Weissenow, M. Heinzinger, and B. Rost, “Protein language-model
embeddings for fast, accurate, and alignment-free protein structure
prediction,” Structure (London, England : 1993), vol. 30, pp. 1169—
1177.e4, 8 2022. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/
35609601/

I. Anishchenko, S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot,
S. Ovchinnikov, J. Hao, K. Bafna, C. Norn, A. Kang, A. K.
Bera, F. DiMaio, L. Carter, C. M. Chow, G. T. Montelione, and
D. Baker, “De novo protein design by deep network hallucination,”
Nature, vol. 600, pp. 547-552, 12 2021. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/34853475/

L. Wu, C. Gong, X. Liu, M. Ye, and Q. Liu, “Diffusion-based molecule
generation with informative prior bridges,” 9 2022. [Online]. Available:
https://arxiv.org/abs/2209.00865v 1

[42]

[43]

[44]

APPENDIX

A. Glossary of important concepts

Protein Data Bank: Comprehensive database of experimen-
tal and computational 3D protein structures.

Proteins: Made up of amino acids determined by their
amino acid sequence. Fold to a functioning protein often as
protein complexes.

Primary protein structure: Amino acid sequence of the
protein.

Secondary protein structure: Local structures such as beta
sheets and alpha helices.

Tertiary protein structure: 3D structure after the folding
process.

Quartnerary structure: Arangement of multiple protein
structures to a protein complex.

Protein complexes: Can be arranged as monomers (one
binder, one target) or oligomers (one binder, multiple target
components).

Hetero/homo: Used in conjunction with complex descrip-
tion. Hetero — consist of components which differ from each
other. Homo — consists of components which are the same.

Homology: Similarity possibly due to shared ancestry eg.
in when talking of similar genes that are related -; Produce
possibly similar proteins that are related.

DARPin: Designed Ankyrin Repeat Proteins are a class
of antibody mimetics that have proven useful in clinics,
diagnostics and research. Limited conformational flexibility
reduces the sampling space, simplifying homology mod-
elling/Introduction to DARPins.

Ligand: Synonym for Binder/DARPin.

Receptor: Synonym for Target.

Epitope: Target substructure to which the DARPin binds.
Typically determined by Xray Cristallography of the complex
since computationally still many possible binding geometries
exist-;, Uncertain time lines.

Paratope: DARPin (or protein in general) substructure
which binds the target.
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Decoy Artificially generated protein which competes with
the real protein in evaluation metrics of a variety of problems
for example such as docking scores.

Rigid body Docking: No conformational changes consid-
ered are considered for docking.

Flexible body docking: Conformational flexible parts of
the proteins changes are considered for docking.

Binding affinity: Describes the amount of binding of a
DARPIn to a target structure.

Dissociation constant K ;: Describes the dissoociation from
the target.

Enzyme: Protein which catalyzes a chemical reaction.

Allosteric binding: Does not bind at the active site of an
enzyme but rather at another site and eg. through conforma-
tional changes leads to altered enzyme activity.

SMILES: Molecular representation of molecules

Molecular Fingerprinting: Computational representation
of molecular structures. various approaches, SMILES based,
Machine learning based

Translation: process which converts mRNA into a chain
of amino acids which then folds into a protein. (Cool Youtube
Video

Ribsome: Molecular protein factory

Ribosome display: In vitro method which links mRNA,
which encode the DARPin to the translated DARPin protein
via the Ribosome. The produced DARPin-Ribosome-mRNA
complexes are then subjected to the target/ligand of interest
upon which additional bio essays are performed to determine
the best binder (eg. ELISA)

ELISA: Enzyme-linked immunosorbent assay = immuno-
logical assay which produces a colorimetric response and
measures which binder is the best

B. Pytorch Geometric Data objects

In order to break down complexity the Data objects with
their data are displayed here. Subgraphs and graphs only
differ in their used atoms(=nodes) and the according binding
property edge_index and edge_attribute reduction.

# Input description

pdb_id=protein_identifier

atom_features = [atom_element,
hydrophobicity, dmasif_features]

pos = 3D coordinates

edge_index=edge_connections # In COO Format

edge_attr=[binding_type[covalent,
interaction]]

edge_distance = distance of edges

y=[binding (1) or not_binding(0)]

# Pytorch Geometric DataType definition

GRAPH = Data(
pdb_id=protein_identifier,
x=atom_features_protein,
pos=protein_coords,
edge_index=protein_edge_index,
edge_attr=edge_distance,
y=torch.ones (1) .long(),

C. DMasif Model

1) Parameters: Below are the parameters as taken by
argparse when running the prediction.py file of dMasif in
python.

Namespace (atom_dims=6,
curvature_scales=[1.0, 2.0, 3.0, 5.0,
10.0], device=’cuda’, distance=1.05,
dropout=0.0, emb_dims=16,
embedding_layer='dMaSIF’,
experiment_name=’'model’,
in_channels=16, k=40, n_epochs=50,
n_layers=3, n_rocauc_samples=100,
no_chem=False, no_geom=False,
orientation_units=16,
pdb_list="pdb_ids.txt’, post_units=8,
profile=False, radius=12,
random_rotation=False, resolution=0.7,
restart_training=’’, search=False,
seed=42, single_pdb="",
single_protein=False, site=True,
sup_sampling=100,
unet_hidden_channels=8,
use_mesh=False,
validation_fraction=0.1,

batch_size=1,

variance=0.1)

2) Binding site prediction examples: An example where
dMasif predicted the correct binding site factor (red). While
there are other regions that are colored in red they are less
pronounced so the prediction serves as a good estimation
which can be performed fast and automatically. The model
however is not perfect and there are other examples where the
prediction did not work well (data not shown).


https://www.youtube.com/watch?v=TfYf_rPWUdY
https://www.youtube.com/watch?v=TfYf_rPWUdY

(a) 1A7X single protein chain. The example shows a good binding
site prediction of the model which can be confirmed when overlaying
it with the transparent second chain structure as visible in (b).

(b) 1A7X protein complex with the binding site prediction chain
(visible also in (a)) in color and the complementary chain in transparent
solid color.

Fig. 5: Correct binding site prediction as performed by dMasif

D. Model architectures

1) Graph Convolutional Network Architecture: Below the
baseline model summary as given out by PyTorch.

| Name | Type | Params
0 | loss_module | BCEWithLogitsLoss | 0
1 | convl | GCNConv | 300
2 | conv2 | GCNConv | 10.1 K
3 | fc_1 | Linear | 1.6 K
4 | out_layer | Linear | 17

2) Graph Isomorphic Network Architecture: Below the
GIN model summary as given out by PyTorch.

| Name | Type | Params
0 | loss_module | CrossEntropyLoss | 0
1 | convl | GINConv | 10.5 K
2 | conv2 | GINConv | 20.4 K
3 | conv3 | GINConv | 20.4 K
4 | linl | Linear | 90.3 K
5 | 1lin2 | Linear | 602

E. GCN: Mean Max and Sum Operation Comparison

Fig. 6: Test Accuracy

Fig. 7: Validation Accuracy

Fig. 8: Training Accuracy



FE. Graph Isomorphic Training

Fig. 9: Test Accuracy

Fig. 10: Validation Accuracy

Fig. 11: Training Accuracy

G. DARPin Test PDB IDs

« 5SMA6
« 4HRN
. 7TZ0
« 4HRL
. 5028
. 2V5Q
« 5KNH
« 5MBL
« SFIO
.« 500Y
« 5OPI
. 6H47
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