
Reproducing a large-scale Speaker Verification
System
Sydney Nguyen
Project Thesis 1

CAI, ZHAW School of Engineering
Winterthur, Switzerland

Technikumstrasse 71

Abstract—In recent years, the field of machine learning has
experienced tremendous growth, resulting in the development
of complex and large-scale systems. However, reproducing the
results of these systems has become a major challenge. This
thesis presents a comprehensive examination of the challenges
and solutions involved in reproducing the results of a speaker
verification system as described in the paper ”In defence of
metric learning for speaker recognition”. The study focuses on
reproducing the baseline speaker verification system presented
in the paper, which is selected based on its level of detail
and consideration of training time and computational resource
constraints. Through the application of standards and guidelines,
this study identifies gaps and improves reproducibility. The
results show that an equal error rate (EER) of 2.5% is achieved,
which is close to the EER value of 2.22 reported in the original
paper. The difference in results is attributed to the limited
training time used in this study. Despite these limitations, this
thesis demonstrates the successful reproduction of the baseline
result, and sets the base for further research and advancements
in the field of speaker verification. The proposed methods can be
utilized to develop more robust and accurate speaker verification
systems in the future. This study highlights the importance of
documenting intermediate results during the training process in
order to have a better understanding of the learning process and
make informed assumptions for future improvements.

Index Terms—speaker recognition, speaker verification, repro-
ducibility, equal error rate, machine learning, standards

I. INTRODUCTION

Speaker verification is a crucial task in the field of machine
learning, as it has the potential to revolutionize various areas
such as security, forensics, and personalization. Speaker veri-
fication is a technique used to identify the speaker of a given
speech signal by comparing it to a previously enrolled speaker
model.

With the rise of big data, the use of deep learning models
in speaker verification has grown rapidly, as they are able
to effectively handle the large amount and complexity of
unstructured data. However, with the increasing complexity of
these models, it has become increasingly important to ensure
their reproducibility.

Reproducibility is fundamental requirement for the advance-
ment of knowledge and scientific progress. It is important
to differentiate between the concepts of reproducibility and
replication. A study is considered reproducible if, by using the
same data and analysis code, an independent group can obtain
the same results as the original study. However, reproducibility

does not guarantee that the study’s findings are accurate,
it only means that the results can be verified by another
researcher not involved in the original study. A study is
considered replicable if another independent group researching
the same phenomenon reaches the same conclusion after
conducting similar experiments or analysis on new data. [2]
Reproducibility is the ability to obtain consistent computa-
tional results using the same input data, computational steps,
methods, code, and conditions of analysis. In speaker verifi-
cation, reproducibility is particularly important as it ensures
the reliability and robustness of the model. To accomplish
this, researchers should have access to detailed information
such as data splitting procedures, model architectures, and
hyperparameter values. Additionally, data, models, and code
should be made publicly accessible for other scientists to
reproduce the work. This allows for reproducibility and the
ability to detect any potential biases or bugs. Without this
level of transparency, it becomes difficult for other scientists
to reproduce the work and identify any issues post-hoc. In
order to ensure the reliability of machine learning models,
reproducibility should be given high priority.

This study aims to reproduce a large-scale speaker verifi-
cation system described in the paper ”In defence of metric
learning for speaker recognition” [10], referred to as the base-
line system. The process of this study involves the following
steps:

1) Analysis of the baseline system and selection of the
setup based on implementation details and computa-
tional limitations.

2) Application of standards and guidelines to identify gaps
and improve reproducibility.

3) Implementation of the baseline speaker verification sys-
tem.

4) Reproduction of the training process and evaluation of
performance.

5) Comparison of the results to the ones reported in the
original paper.

6) Discussion of the findings and conclusion.

II. RELATED WORK

This chapter will review the existing literature on repro-
ducibility in machine learning and speaker recognition.

A. Reproducibility

1) Reproducibility Challenges for Machine Learning: Re-
producibility in machine learning refers to the ability to
consistently achieve similar results when running an algorithm
on specific datasets [13]. Reproducibility in machine learning
can be challenged by a number of factors. These include:

• A lack of records, which makes it difficult to replicate
results when inputs and decisions are not recorded.

• Changes in data, which can make it impossible to obtain
the same results when the data used in the original work
is altered.

• Inconsistency in hyperparameters, which can yield dif-
ferent results when default values are changed during
experimentation and not properly recorded.

• Randomization, which is prevalent in machine learning
and can affect reproducibility.

• The experimental nature of machine learning, which can
make it hard to keep track of important details as changes
are made to algorithms, data, and environments.

• Changes in machine learning frameworks and libraries,
which can cause different results when a version used to
achieve a certain outcome is no longer available or when
switching from one framework to another.

• GPU floating-point discrepancy, which can also lead to
different results due to hardware, software, or compiler
settings.

• Nondeterministic algorithms, which can generate differ-
ent outputs for the same input at different runs, posing a
greater reproducibility challenge.

2) Reproducibility Standards: An attempt has been made to
make research reproducible in a paper titled ”Reproducibility
standards for machine learning in the life sciences” [3]. It
suggests standards that involve the publication of data, models,
and code, programming best practices and the utilization of
workflow automation. The paper suggests that it is challenging
to establish a one-size-fits-all standard for the reproducibility
of machine learning systems. As an alternative, the authors
propose three standards with different levels for reproducibil-
ity. The Bronze standard involves making the data, models, and
code accessible to the public. This is the minimum requirement
for reproducibility as without these elements, reproduction is
not possible. The Silver standard adds to the Bronze standard
by ensuring that the dependencies can be installed, providing
documentation on how to reproduce the work, including details
such as the operating system and resource requirements. This
standard offers a balance between minimal availability and full
automation. Works that comply to this standard will require
less time to reproduce than those only meeting the Bronze
standard. The Gold standard builds upon the Silver standard
by making the analysis reproducible with a single command,
resulting in full automation. Works that meet this standard
is claimed to be easily reproducible. Apart from the Bronze-
Silver-Gold standards, the authors also debate the issue of
compute-intensive analysis. Analysis can be demanding in
terms of computational resources and can take a lot of time

to complete. In some instances, the time it takes to run the
analysis may be so long that it becomes almost infeasible for
another research group to reproduce it. To address this issue,
authors should track and share intermediate outputs, making
it possible for others to verify the final results even if they
cannot run the entire pipeline themselves.

B. Automatic Speaker Recognition

1) Speech Representation: Spectrogram: Speech can be
represented in a number of ways for speaker verification tasks,
however one of the most common ways is through the use
of spectrograms. A spectrogram is a visual representation of
the frequency components of a speech signal over time. It
is obtained by applying a Fourier transform to the speech
signal, which separates the signal into its different frequency
components. The speech signal is divided into small over-
lapping segments and the Fourier transform is applied to
each segment. The resulting frequency components are then
represented in a 2D plot where the x-axis represents time
and the y-axis represents frequency. The amplitude of each
frequency component is represented by a color, with brighter
colors indicating higher amplitudes. [8]

Mel Spectrograms are a variant of the spectrogram. They
are generated in a way to mimic the way the human au-
ditory system responds to different frequencies and results
in a representation that is more representative of the speech
signal as perceived by a human. [8] Mel Spectrograms are
typically used as input features to machine learning models in
speaker verification tasks [10], where they are used to extract
discriminative information from the speech signal that can be
used to distinguish between different speakers.

2) Speaker Recognition: Speaker recognition tasks involve
identifying and verifying the identity of a speaker based on
their voice. Some common speaker recognition tasks include
[5]:

• Speaker Identification: This task involves determining the
identity of a speaker from a given speech sample. It
involves training a model on a dataset of labeled speech
samples from multiple speakers and then using the trained
model to predict the identity of a speaker from a new,
unseen speech sample.

• Speaker Verification: This task involves determining
whether a given speech sample belongs to a specific
speaker or not. This involves comparing a new speech
sample to a set of known speech samples from a specific
speaker, and determining whether the new sample belongs
to the same speaker or not.

• Speaker Diarization: This task involves segmenting a
speech signal into different speakers and then labeling
the segments with the corresponding speaker identities.

3) State-of-the-Art Speaker Verification Systems: Speaker
verification systems identify and authenticate individuals based
on their unique voice patterns. These systems are used to verify
the identity of a speaker by comparing an input voice sample
to a reference voiceprint stored in a database. They can be

used in a variety of applications, such as security systems,
voice assistants, and call centers [1].

Fig. 1. Block Diagram Speaker Verification System

Figure 1 shows a block diagram of a basic speaker verifi-
cation system. During the training phase, audio inputs from
various speakers are collected and processed. First, the raw
audio inputs undergo feature extraction to generate embed-
dings with their respective labels. These embeddings are then
fed into a speaker modeling stage. When an unknown speech
sample is received by the speaker verification system, it is
compared to the samples that the model is familiar with. A
resemblence measure is performed and a decision is made
based on a threshold value, either to accept or reject the
speaker verification.

There are several state-of-the-art speaker verification sys-
tems that are widely used in the research community and
industry, some of which include:

• i-Vector based systems: i-Vector based systems are widely
used for speaker verification tasks. These systems use
a technique called factor analysis to extract a low-
dimensional speaker representation called an i-vector
from a speech signal. These i-vectors are then used to
train a classifier such as a support vector machine (SVM)
or a probabilistic linear discriminant analysis (PLDA) to
perform speaker verification. [14]

• Deep Neural Network (DNN) based systems: DNNs have
been shown to be very effective in speaker verification
tasks. These systems use a deep neural network architec-
ture, such as a convolutional neural network (CNN) or a
recurrent neural network (RNN), to extract features from
a speech signal. These features are then used to train a
classifier to perform speaker verification. [9]

• x-vector systems: x-vector systems are an extension of
DNN-based systems, which are widely used for speaker
verification. These systems are based on a deep neural
network architecture called an x-vector, which is trained
to extract speaker-discriminative features from a speech
signal [15].

• Joint Factor Analysis (JFA) based systems: JFA is a
speaker verification technique that uses two factor analy-
sis models to extract speaker-discriminative information
from speech signals. The first model extracts the speaker-

specific information, and the second model extracts the
channel-specific information [12].

• End-to-end systems: End-to-end systems are a recent
trend in speaker verification, which use a single neural
network to extract features and perform speaker verifi-
cation in one step. These systems have been shown to
be effective in speaker verification tasks, as they are able
to learn the best feature representation and classifier in a
single network [7].

• Adversarial training based systems: The Adversarial
Speaker Verification (ASV) method involves the use of a
deep embedding that is trained to be invariant to different
conditions through adversarial multi-task training. This
involves the joint optimization of two networks: a speaker
classification network and a condition identification net-
work. The aim is to minimize the speaker classification
loss while simultaneously maximizing the condition loss
through a mini-maximization process [11].

4) Performance Metrics for Speaker Verification Systems:
The evaluation of speaker verification systems can be per-
formed using the equal error rate (EER) and the minimum
decision cost function (minDCF). These metrics showcase dif-
ferent aspects of the system’s performance and their accuracy
is dependent on the number of trials used for calculation. A
detection error trade-off (DET) plot can also be utilized to
visualize the system’s performance. The EER is reached when
the false acceptance rate and false rejection rate are equal, and
a lower EER indicates improved performance as it represents
a decrease in the combined error of false acceptance and false
rejection. The decision cost function (DCF) considers both
the cost of each error and the prior probability of target and
impostor trials. The DCF can be calculated as

DCF = Cmiss · Pmiss · Ptarget + Cfa · Pfa · Pimpostor (1)

where Cmiss and Cfa are the cost functions for missed
detection and false alarm, respectively, and Pmiss and Pfa are
the percentage of missed target and falsely accepted impostor
trials. Ptarget and Pimpostor represent the prior probabilities
of target and impostor trials. The minDCF is obtained by
selecting the minimum value of the DCF, which can be
estimated by changing the threshold value.

minDCF = min[Cmiss·Pmiss·Ptarget+Cfa·Pfa·Pimpostor]
(2)

The minDCF provides a way to evaluate speaker verification
by considering the minimum total cost of missed detections
and false alarms. [1]

5) In defence of metric learning for speaker recognition:
The authors of [10] argue the benefits of using metric learn-
ing in speaker recognition. To support their argument, they
perform a comprehensive evaluation of various loss functions
on the VoxCeleb dataset.

The training data set VoxCeleb2 contains 5994 distinct
speakers, also referred to as classes. For classification learning
objectives, a mini-batch consists of N utterances, each from
a different speaker, and is represented by embeddings xi and

the corresponding speaker label yi, where the index i ranges
from 1 to N and the label y ranges from 1 to C.

The following loss functions are used in their experiments:

• Softmax: The softmax loss uses a softmax function
followed by a multi-class cross-entropy loss:

L = − 1

N

N∑
i=1

log
exp(Wyi

· xi + byi
)∑C

j=1 exp(Wj · xi + bj)
(3)

where N is the number of samples in a mini-batch, C is
the number of classes, Wj is the weight of the j-th class
in the last layer of the trunk architecture, bj is the bias
of the j-th class in the last layer of the trunk architecture
xi is the embedding of the i-th sample in the mini-batch
yi is the label of the i-th sample in the mini-batch. It
only addresses classification error and doesn’t specifically
ensure compactness within the same class or separation
between different classes.

• AM-Softmax (CosFace): The softmax loss can be ex-
pressed in a new form by normalizing the weights and
input vectors so that the resulting probability only de-
pends on the cosine angle between the weights and input
vectors. It is also called Normalised Softmax Loss (NSL).
The resulting loss function is expressed as:

L = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑C

j=1,j ̸=yi
es cos(θj,i)

(4)
where N is the number of samples in a mini-batch, C
is the number of classes, yi is the label for sample xi,
cos(θj,i) =

Wj ·xi

|Wj ||xi| is the cosine similarity between the
normalised weight vector Wj and normalised input vector
xi, and m is the cosine margin. However, the NSL-
generated embeddings lack enough discrimination as the
NSL only focuses on penalizing classification errors. To
address this issue, an angle-based margin m is added to
the equation, known as the cosine margin. s is a fixed
scale factor to make sure the gradient does not get too
small during training.

• AAM-Softmax (ArcFace): ArcFace is similar to CosFace,
with the exception that it has an additional angular margin
penalty of m added between the xi and Wyi vectors.
This angular margin penalty is equivalent to a geodesic
distance margin penalty in a normalized hypersphere.

L = − 1

N

N∑
i=1

log
es(cos(θyi,i)+m)

es(cos(θyi,i)+m) +
∑C

j=1,j ̸=yi
es cos(θj,i)

(5)

For metric learning objectives, a mini-batch contains M
utterances from N speakers. Embeddings are xj,i, where the
index j ranges from 1 to N and the label i ranges from 1 to
M.

• Prototypical: Each mini-batch consists of a support set
S and a query set Q. The query is the M-th utterance
from every speaker. Each query instance is then classified

against N speakers during training time. This is done with
a softmax over distances to each speaker:

L = − 1

N

N∑
j=1

log
eSj,j∑N
k=1 e

Sj,k

(6)

where Sj,j is the squared Euclidean distance between
query and prototype of the same speaker from the support
set.

• Angular Prototypical: The same batch formation as pro-
totypical loss is used. One utterance from every class is
reserved as the query. A cosine-based similarity metric is
then used with learnable scale and bias:

Sj,k = w · cos(xj,M , ck) + b (7)

The angular loss function introduces scale invariance,
which improves the robustness of objective against fea-
ture variance and leads to more stable convergence [10].
The objective is the same as the prototypical loss, in
equation (6)

The authors of [10] conduct numerous experiments, keeping
other training elements constant. The results of their experi-
ments suggest that the GE2E and prototypical networks exhibit
better performance compared to traditional classification-based
methods. Furthermore, the networks trained with vanilla triplet
loss showed similar performance to most networks trained
with AM-Softmax and AAM-Softmax, but those trained with
their proposed angular objective surpassed all comparable
methods. The authors also introduce an angular version of
the prototypical networks that outperforms the other training
methods.

III. SOLUTION AND DISCUSSION

This section presents the results of the implementation of
the speaker verification system, and provides an evaluation of
the success of reproducing the baseline system. The baseline
system is implemented according to the methods outlined
in section IV, and its performance is evaluated using the
equal error rate (EER) and minimum decision cost function
(MinDCF) metrics on the VoxCeleb1 dataset. The scores
of the evaluation are recorded in a score.txt file to ensure
reproducibility of the results.

Figur 2 shows the accuracy in %, the loss and learning rate
during the training process. The evaluation of these metrics
is conducted on the training set VoxCeleb2 over 160 epochs.
These metrics are analyzed at each epoch, as they are crucial
for the model’s learning. The accuracy curve is showing a
strict increase towards 1, leading to the assumption that if the
training is continued for a longer period of time, the accuracy
would eventually reach 1 for the training set. This is logical
because the model will have learned all of the utterances
in the training set, allowing it to correctly perform speaker
verification for speakers it already knows. The performance
of the model is evaluated by measuring the EER and minDCF
on the VoxCeleb1 test set during a 160 epoch. These values
are plotted in figur 3. The evaluation is carried out every

Fig. 2. Accuracy (%), Loss and Learning Rate on VoxCeleb2 Training Set

Fig. 3. Equal Error Rates (EER, %) and Minimum Decision Cost Function
(minDCF) on VoxCeleb1 Test Set

10 epochs, saving time as each evaluation takes almost 10
minutes. The results show a decrease in EER from around 4.7
to 2.5, as seen by fitting a 4th degree interpolated function
on the evaluation points. The assumption is that additional
training time would result in a further reduction in EER.

In this project work, the scores of the utilized metrics
are recorded at each iteration and stored in a file for later
analysis. This process of documenting the intermediate results
is essential in understanding the learning process and making
informed predictions for the future. It becomes especially cru-
cial in cases of computationally intensive analyses and limited
hardware resources, as it allows for a clear understanding of
the trend and direction of the values.

The authors of [10] only present the final result of their
experiment, which is an EER of 2.22 % on the test set. As they
do not provide intermediate results, it is difficult to assess the
accuracy of the reproduced training process. Hence, only the

trend and progression of the learning process can be compared.
Despite this, the trend of the EER on the test set indi-

cates that it is moving in the right direction and, given the
assumptions made in this analysis, has the potential to reach
the desired value of 2.22. The discrepancy between the goal
value and the current result is believed to be due to the number
of epochs. The authors of [10] trained for 500 epochs, while
this project work only trained for 160 epochs due to the
aforementioned limitations.

IV. IMPLEMENTATION OF THE BASELINE SYSTEM

The goal of this chapter is to determine the setup for
implementing the baseline system, as described in [10]. First,
the key aspects of the baseline system are analyzed and
decisions are made based on performance. Then, standards
for reproducibility outlined in [chapter rules] are applied to
the baseline system.

1) Baseline System: The authors of [10] conduct several
experiments, as described in II-B5. They keep the input
representation, data, and training elements constant, but vary
the models and hyperparameters. They find that the model
trained with the angular prototypical function outperforms
other training methods. As a result, this project work chooses
to use a model with the angular prototypical function. The
following list shows the key details for the implementation of
the baseline system for this study:

• General Information: The system is based on a trained
ResNet model which accepts two audio samples, either
from the same or different speakers, compares them and
produces a binary output that classifies whether the audio
samples are from the same speaker.

• Input Representation: In the training phase, a fixed length
2-second segment is randomly selected from each utter-
ance. Spectrograms are created using a 25ms hamming
window and a 10ms step. The input for the Fast ResNet
are 40-dimensional Mel filterbanks. Mean and variance
normalization is performed through instance normaliza-
tion to the network input. The VoxCeleb dataset mainly
contains continuous speech, so voice activity detection is
not used during training and testing.

• Model Architecture: Paper [10] presents different types
of ResNet models and among them, Fast ResNet-34.
Fast ResNet-34 is similar to the ResNet with 34 layers
described in [10], but it uses only one quarter of the
channels in each residual block to decrease computational
cost. The model has 1.4 million parameters as opposed to
the 22 million of the standard ResNet-34. Additionally,
the input dimensions are smaller and the strides are earlier
to decrease computation requirements. The performance
is comparable to the ResNet model, while the computa-
tion cost is less than half of those models. Due to the
hardware limitations faced in this project work, the Fast
ResNet is deemed to be the most suitable option.

• Data: The dataset used is a large-scale dataset, named
VoxCeleb, which comes in two versions: VoxCeleb1
and VoxCeleb2. VoxCeleb1 includes more than 150’000

utterances from 1251 celebrities, while VoxCeleb2 has
over 1’000’000 utterances from 5’994 celebrities. The
network is trained on the development set of VoxCeleb2
and evaluated on the test set of VoxCeleb1. It is important
to note that the development set of VoxCeleb2 and the test
set of VoxCeleb1 have no speakers in common. No ad-
ditional data augmentation techniques are applied during
training, apart from the random sampling of utterances
from each identity.

• Training: The authors of [10] implement their model
using the PyTorch framework. The models are trained
using a NVIDIA V100 GPU with 32GB memory for
500 epochs. During training, a random selection of a
maximum of 100 utterances from each of the 5’994
identities per epoch are made to address class imbalance.
The Adam optimizer is used with an initial learning rate
of 0.001, which decrease by 5% every 10 epochs. For
metric learning objectives, the authors use the largest
batch size that fit on their GPU which is 800. Due to
the limited RAM capacity of 16 GB in this study, the
batch size had to be decreased to 200.

2) Application of Bronze-Silver-Gold Standards: The
Bronze-Silver-Gold standards are applied to the chosen base-
line system.

a) Bronze:

• Data: The Bronze standard requires that all datasets used
in a publication be publicly accessible. [3] This includes
not only the raw data, but also the information and tools
needed to download and process the data. The authors
of the baseline paper provide the code for downloading
the VoxCeleb dataset on their GitHub repository, however
the access credentials to the webpage are not included.
The authors do not provide a script to preprocess the
data, which has to be done during this project work. To
obtain the VoxCeleb dataset, I had to contact the relevant
authorities for permission to access it for educational
purposes. After obtaining the necessary credentials, I was
able to download the dataset. To process the dataset,
I created a pipeline which involved downloading the
dataset, saving it as a zip file on my local machine,
verifying the download’s completeness with a provided
checksum, unzipping the data, and organizing it for model
training and evaluation. This step is crucial as large-scale
datasets may be uncertain when downloading over the
internet.

• Model: A critical component of reproducibility is sharing
of trained models. [3] This is because access to the
model is important to determine its generalizability to
other datasets, fairness in predictions, and the absence
of bias or artifacts in the data. The authors of the
baseline system have met this requirement by providing
the implementation of their used model and the weights
of the pre-trained model in a public repository. In this
project, the model is saved at each iteration, also known
as an epoch. This allows the training to be resumed in

case of an interruption, such as a server crash. The model
checkpointing strategy ensures that the process of training
can continue from the last saved checkpoint, rather than
starting from scratch. The saving of the checkpoint is
performed at every epoch, which takes 3-4 hours with
the current system and set up to complete.

• Source Code: The source code is as important as the
methods section in a study. The code includes the im-
plementation details that may not be accurately replicated
from the description in the methods section. This can lead
to differences in results and require a lot of effort to re-
implement the entire analysis. The source code for the
baseline including training, tuning, testing models and
generating results has been made publicly available on
GitHub. The necessary arguments for hyperparameters
can be obtained from their paper. Hence, this standard
has been met.

b) Silver:

• Dependencies: Reproducing a paper result using just
its data, models, and code can be done by following
best practices from software engineering. These include
package management and managing randomness. [3]

• Package Management: A challenge encountered when
trying to reproduce is the issue of incompatibility of
package versions which can result in altered behavior.
The difficulty lies in determining which version has been
originally used in order to successfully reproduce the
results. Using dependency management tools correctly
can remove these challenges for both the original authors
and those trying to build upon their work, as it keeps
track of which versions of packages were used. [3] The
authors provide a requirements.txt file to install prior the
training.
In addition to that, during this project, a Docker container
has been set up. This helps managing dependencies and
allows to specify the system state in which to run the code
more precisely than just versions of software packages.

• Randomness: The use of randomness in machine learning
includes the splitting of datasets, initialization of neural
networks, and some GPU-accelerated mathematical oper-
ations in model training. As the output of models relies
on these factors, it is essential to seed the pseudorandom
number generators used in the analyses to maintain con-
sistency in results. The way seeds are set varies based on
the programming language, and authors must be cautious
when working with deep learning libraries as they may
not prioritize determinism, particularly when it comes to
GPU acceleration. [3]
The authors’ system is based on Python and employs the
PyTorch framework, which offers options to address the
issue of non-determinism in operations. Results obtained
using PyTorch will not remain consistent across different
releases, commits, or platforms. Even if using identical
seeds, the results between CPU and GPU executions may
not be reproducible. However, it is possible to limit the

sources of non-determinism and control the sources of
randomness by configuring PyTorch. This ensures that
multiple calls to these operations with the same inputs
will yield consistent results. [4]
The authors provide their random seed in the code base
which makes it possible to reproduce the randomness.
Additionally, the DataLoader is set up to reseed its work-
ers to handle randomness in its multiprocess data loading
algorithm. This is achieved by using the worker init fn()
and generator functions as seen in figure 4.

Fig. 4. Data Loader with Random Seed

c) Gold: To meet the highest level of reproducibility, all
steps of an analysis, including data downloading, preprocess-
ing, model training, and output creation must be automated and
reproducible with a single command. This involves tracking
dependencies, making data and code available, and automating
all steps. [3] The implementation of the rule has been achieved
through a Python project that separates the project into differ-
ent components, including dataset, training, and evaluation.
The dataset component involves downloading and processing
data, while the training and evaluation components train the
model and evaluate it, respectively. By running the main.py
file, the pipeline from data collection to the final result of
the analysis can be initiated and executed without additional
effort. Note: insert class diagram?

d) Compute-intensive analyses: The authors train their
models using a NVIDIA V100 GPU with 32GB memory for
500 epochs. It takes them five days to train the Fast ResNet
model. [10] For individuals without access to a physical GPU,
a cloud server can be used instead. This project utilized the
APU Cluster of the InIT, a cloud environment accessible to
InIT/CAI staff.

Training the model on the server cluster takes approximately
3-4 hours per epoch, which amounts to a total of 1750 hours of
computation time for the same model. This equates to roughly
10 weeks of uninterrupted training. The slower training time
is due to the inefficiency of data storage and retrieval with
remote hard disk storage. Since hardware limitations cannot
be improved, the only option is to optimize the software. The
analysis of the server cluster has revealed that the main issue
lies with the data loader. This is confirmed by the observation

that the GPU usage is not at full capacity when prompted
through the command line.

One bottlenecks in this process is the speed of reading
samples from disk. This becomes even more critical when
working on the cloud, as the data has to be transferred from
disk to CPU to GPU. [6] If data is loaded sequentially as
shown in figure 5 the performance becomes slow.

Fig. 5. Sequential Data Loading and Training

In this study’s implementation, the PyTorch data loader
allows for faster access to the next batch of data as soon as the
current batch is processed. This is achieved by implementing a
parallel data generator, as depicted in figure 6, which produces
batches ready for the model to consume. The PyTorch data
loader makes use of multiple subprocesses to generate data in
parallel using multiple CPU cores. This way, the main process
does not have to wait for data loading and can easily access
the available batches of data generated by the data generator.

Fig. 6. Sequential Data Loading and Training

V. CONCLUSION

The objective of this project work is to reproduce the
baseline system presented in [10]. The choice of the baseline
system is made considering the availability of enough details to
implement the system while taking into account the constraints
of training time and computational resources.

The application of the standards to the baseline system
reveals the potential gaps that can be filled with proposed
methods to achieve reproducibility.

The evaluation of the implemented system demonstrates that
an equal error rate (EER) of 2.5 % is obtained, which is close
to the EER value of 2.22 % reported in [10]. The difference is
attributed to the limited training time of 160 epochs compared
to the 500 epochs used in [10].

While the reproduction of the baseline system was success-
ful, the results highlight some limitations in the current im-
plementation. One of the limitations is the hardware resource
which results in a high training time. This limits the number
of epochs to 160, compared to the 500 epochs used in [10].
This may have impacted the final EER result, as faster training
time would lead to more epochs and more likely to a lower
EER.

Another limitation is the lack of intermediate results pro-
vided by the authors of the paper [10], which made it difficult
to determine if the metrics during learning and evaluation
meet the same values. This highlights the importance of
documenting intermediate results during the training process
in order to have a better understanding of the learning process
and make informed assumptions for future improvements.

During this study, several attempts to optimize training com-
putation time has been done by solely adapting the software.
Even though, the training time could be reduced by almost
half of its time, it still falls short in comparison to the training
epochs required. Mastering this task requires to know the used
server cluster in detail.

Despite the limitations, this study successfully reproduces
the baseline result, providing a foundation for future research
and advancements in speaker verification. The proposed tech-
niques have the potential to contribute to the development of
more robust speaker verification systems in the future.

REFERENCES

[1] Atlassian. Speaker recognition and verification. Available at
https://wiki.aalto.fi/display/ITSP/Speaker+Recognition+and+Verification
(2023/02/12).

[2] Manrai A. K. Ghassemi M. Beam, A. L. Mchallenges to the
reproducibility of machine learning models in health care. Technical
report, Boston, 2019.

[3] Florian Markowetz Su-In Lee Casey S. Greene Benjamin J. Heil,
Michael M. Hoffman and Stephanie C. Hicks. Reproducibility standards
for machine learning in the life sciences. NaturE MEthoDs, 18(1):1122–
1144, 2021.

[4] PyTorch Contributors. Reproducibility. Available at
https://pytorch.org/docs/stable/notes/randomness.html (2023/01/10).

[5] Maël Fabien. Basics of speaker verification. Available at
https://maelfabien.github.io/machinelearning/basicsspeech(2023/02/12).

[6] Srishti Gureja. How to eliminate the data processing bottleneck with
pytorch. Available at https://wandb.ai/srishti-gureja-wandb/posts/How-
To-Eliminate-the-Data-Processing-Bottleneck-With-PyTorch–
VmlldzoyNDMxNzM1?galleryTag=advanced (2023/01/17).

[7] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer.
End-to-end text-dependent speaker verification. CoRR, abs/1509.08062,
2015.

[8] Prof. Dr. H.-P. Hutter. Analysis of Sequential Data, InIT/ZHAW,
November 2022.

[9] Amna Irum and Ahmad Salman. Speaker verification using deep neural
networks: A review. International Journal of Machine Learning and
Computing, 9:20–25, 02 2019.

[10] Seongkyu Mun Minjae Lee-Hee Soo Heo Soyeon Choe Chiheon Ham
Sunghwan Jung Bong-Jin Lee Icksang Han Joon Son Chung, Jae-
sung Huh. In defence of metric learning for speaker recognition. PhD
thesis, South Korea, 2020.

[11] Zhong Meng, Yong Zhao, Jinyu Li, and Yifan Gong. Adversarial speaker
verification. CoRR, abs/1904.12406, 2019.

[12] Patrick Kenny Niko Brummer Pierre Ouellet Pierre Dumouchel Na-
jim Dehak, Reda Dehak. Support Vector Machines versus Fast Scoring
in the Low-Dimensional Total Variability Space for Speaker Verification.
PhD thesis, Brighton UK, 2009.

[13] Ejiro Onose. How to solve reproducibility in ml. Available at
https://neptune.ai/blog/how-to-solve-reproducibility-in-ml (2023/01/16).

[14] Pradip K. Das Pulkit Verma. i-Vectors in Speech Processing Applica-
tions: A Survey. PhD thesis, Guwahati, Assam 781039, India, 2021.

[15] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and
Sanjeev Khudanpur. X-vectors: Robust dnn embeddings for speaker
recognition. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5329–5333, 2018.

