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Abstract—Data centrism is a relatively young methodology
in deep learning and is thus sometimes misunderstood. Both
research and industry seem to use the term liberally, furthering
misconceptions. This contributes to a skewed view and lost
potential in the actual practice of data centric AI. In this project
thesis, I will present the core of data centrism, as well as
demonstrate its practical impact on the example of a computer
vision problem in autonomous driving. The Formula Student
ZHAW (FSZHAW) team competes among other categories in
the “driverless” category in a car-racing competition with
self-designed cars. They rely on a sophisticated network of
modules with specific functions such as mapping, or constructing
the racing lines. One of those modules is the visual perception
module which has been trained with a custom dataset. This
custom dataset, however, is of low quality and proved itself not
very effective for the task. In this project thesis, I construct
two new training datasets for the perception module. One is a
simple dataset with the typical methods like data cleaning and
standard image augmentations for object detection. The second
one has more effort put into creating it: I use the segmentation
masks to artificially insert new objects into the scene with realistic
perspective scaling. I show and explain multiple solutions to
improve the perception module’s performance on the test dataset
and discuss their effectiveness.

Index Terms—data-centric processing, object detection, object
recognition

I. INTRODUCTION

For this project, I chose to work on the computer
vision task of the Formula Student ZHAW (FSZHAW)’s
“driverless”-team, because their dedication to the Formula
Student competition is inspiring to me and I saw an
opportunity for me to contribute to their cause. The recent
emergence of data-centric AI (DCAI) has gained popularity
as well, and in a project where the model cannot be too
complicated because of inference time or memory restrictions,
looking at the problem from a data-centric viewpoint seemed
logical to me. With my findings I hope to help the team
towards placing high on the leaderboard of the international
Formula Student competition and also to contribute to the
research about DCAI. Therefore I will give an overview of
the current state of DCAI and demonstrate the importance
and impact of a data-centric approach on the example of the
perception module of the FSZHAW team1. In section II-A, the
current state-of-the-art of DCAI will be presented. Following

1Formula Student ZHAW (FSZHAW): https://fszhaw.ch/en/homepage/

that, section II-B will explain the context of the practical
part of this project, such as the context, the current state,
the model, the datasets etc. Further, I will formulate the
main points and sections of DCAI and later (see section III)
connect the concepts together in a concrete demonstration of a
DCAI-oriented approach to assess and improve the perception
system.

II. BACKGROUND

A. Data-Centric AI

In the recent years, the rise of DCAI signified a shift from a
model-centric approach to AI to a data-driven one. Although
the data aspect has not exactly been neglected in the field,
it could be argued that it has received less attention than
rightfully deserved. The key point being that data was only
seen as a means to the end.

The term ”data-centric AI” was originally coined by
ANDREW NG [18] and the concept behind it has received
greater attention ever since. DCAI shifted the focus from
extracting value out of data to seeing the value in data itself
– similar to how a farmer sees the value they can get out
of a horse, while a private horse owner sees value in the
horse itself, as [23] argues. It is a subtle but crucial shift
in the mindset of how to approach data science as a whole.
This fine distinction can lead to misunderstandings and myths
[14], which can in turn contribute to unmet expectations when
reading through the literature on DCAI. DCAI is a newer
discipline and can still profit from traditional data and ML
engineering, accroding to [20].

ANDREW NG defines DCAI as a three legged stool2,
consisting of (i) labeling and crowd-sourcing, (ii) data
augmentation, and (iii) data in deployment. The idea behind (i)
is that a clean, high-entropy dataset is more valuable to ML/DL
than a noisy, incomplete, low-entropy dataset. This seems
straight forward, but as [3] says, labeling data objectively
and consistently is hard. The source of the data and labels
is also important and could for example also by synthetic,
which can open up an avenue to dealing with lots of data
issues at the cost of having to deal with the transfer form
synthetic data to real-world data. Specifically for topics of
autonomous driving, simulations and tools for dataset creation

2https://datacentricai.org/
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like CARLA [4] can be of great value. Synthetic data can
also solve issues like small data volume, but there are other
solutions like [17, 21, 25]. Also part of (i) are data cleaning
and analysis as explored with a data-centric view by [19] and
benchmarking datasets instead of only models as introduced
by [6, 15]. Data augmentations (ii) have been proven useful
for decades, with more recent examples like [1, 21, 25] which
take a more data-centric view on the topic. But one thing
that often gets neglected is the lifecycle of ML/DL systems in
deployment (iii). [22] sets the focus on technical debt in AI
with a data-centric lense, because although it is known that
models have to be adapted over time, a similar challenge shows
itself with data and its lifecycle. Similarly, [13] advocates for
reusability of data, which can help future work by leveraging
the value in existing curated datasets. Both model and data in
deployment are a big topic specifically in continual learning3.

The authors of [8] formulate six guiding principles for
DCAI: (1) Improving data fit in a systematic way, meaning
how well the data represents the complexities of the real world
context. (2) Systematic improvement of data consistency,
because as mentioned by [3], having consistent labeling is
important, although hard. (3) Mutual improvement of both
model and data through iteration. There are situations where
problems with the training data are not identifiable until
models train with it, so having an iterative process where
both data and model can get improved is recommended by
the authors. (4) Human-centerednesss of “data work”, meaning
that the human cannot be removed from the process and has to
be the focal point in the decisions to make like the shape of the
data, how to improve it, etc. (5) AI as a sociotechnical system,
meaning to uphold ethics while handling data. (6) Continuous
and substantive interactions between AI and domain experts,
ensuring that the data still adequately represents the real world
domain. Furthermore, the authors of [8] – just like [18] –
stress topics like (i) data preparation and augmentation, (ii)
crowdsourcing, and (iii) data in deployment.

B. The Perception module of FSZHAW

The autonomous driving system of the race car of FSZHAW
consists of an array of interconnected modules. One of which
is the perception module, which is the focus of the practical
aspect of this work. This is the module that solves the
object-recognition task that is crucial to the overall task of
autonomous driving. As it is the heart-piece, its performance
directly impacts the overall performance of the race car in the
”driverless” challenge4. The model has to detect four different
classes of traffic cones in an image. There are a few restrictions
on the complexity, such as no changes in elevation, because
the tracks on which the competitions are being held are all
flat. This aspect is crucial for section III-B, where we assume
a flat surface to calculate an artificial horizon.

The model was chosen to be a YOLOv5 network [12, 9]
for its simplicity and good performance without the need of

3https://www.continualai.org/
4Formula Student, Driverless Cup: https://www.formulastudent.de/about/

disciplines/

Fig. 1. The four classes of traffic cones: yellow, blue, orange, and big orange,
taken from [7].

Fig. 2. An example of how the cones are arranged on a racing track, taken
from [7].

tinkering with its source code. Before this project, the team
used a checkpoint trained on the Synthetic Cones dataset
(section II-C1). This dataset however breaks the rule of a flat
surface as well as the cones being

C. Datasets

The datasets relevant to the formula student competition are
object detection datasets with different types of traffic cones as
objects to be detected. For the competition, four types of traffic
cones (see figure 1) are designated to represent different roles:
(i) The small blue cones mark the left border of the track. (ii)
The small yellow cones respectively mark the right border of
the track. (iii) The small orange cones are used to mark exit
and entry lanes. (iv)The big orange cones are placed before
and after start, finish, and timekeeping lines.

The small cones have dimensions of 228×228×325 and the
big orange cones have dimensions of 285×285×505. During
competitions, the white/black stripes have “FSG” written on
them (with black/white colors respectively). The tracks look
similarly as seen in figure 2. The competition handbook [7]
goes into further detail.

1) Synthetic Cones Dataset: The Synthetic Cones dataset
(see figure 3) consists of images of cones on racetracks and
was constructed for FSZHAW by [16]. The cones come in
various poses and were randomly set onto the background
image of racetracks, which were sourced from the internet. The
pictures of the racetracks have various angles, most of which
are not consistent with the real-world environment as perceived
by FSZHAW’s race car’s camera. Therefore, this dataset was

https://www.continualai.org/
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Fig. 3. Two images from the Synthetic Cones dataset [12, 16], taken from
[12].

Fig. 4. Two images from the ZUR Testing Day Cones Dataset. The left image
was taken with the mounted GoPro camera and the right one with a reflex
camera [12, 16], taken from [12].

determined not to provide adequate training data for this
project thesis. For this reason it was no longer considered.

2) ZUR Testing Day Cones Dataset: In an effort to create
more significant real-world data, the FSZHAW team has
collected a small dataset consisting of images taken from a
GoPro camera, mounted on the top of the chair’s backrest
(see figure 4). This took place in 2021 in Dübendorf, when
the team was taking the race car for a test drive.

Unfortunately, this dataset was not labeled to completion
and the small volume of curated, labeled data is too small to
be of much value. Furthermore, the GoPro has a native fish-eye
effect, which distorts the imagery in a way not consistent to
the new camera, which makes the little data available even less
optimal to use. Because of this, it was decided not to work
with this dataset.

Similarly to the initial effort, a new test set was to be
constructed with the help of the team during the course of
this project. Unfortunately it did not come to pass, as the
members responsible were not available for setting up the car
and environment in time. Multiple attempts to get a realistic
test set have been made, but none of them were fruitful.

3) MIT Cones Dataset: The MIT cones dataset is a
small dataset containing real-world imagery from the Formula
Student racing team at MIT. It is taken from a camera mounted
on their racing car, driving on a track similar to the setup in
which the competitions are being held.

Unfortunately, this dataset was not considered a viable
option because it did not have a segmentation map, which
is important for section III-B. Therefore this dataset was also
not considered for this project.

4) TraCon Dataset: The authors of the TraCon dataset [11]
created their own dataset of traffic cones by annotating images
taken from the H2020 HERON project [10].

Fig. 5. Two images from the MIT Cones Dataset [24, 12, 16], taken from
[12].

Fig. 6. Two images from the TraCon Dataset [10].

This dataset does depict traffic cones different from the ones
used in the Formula Student competition and is therefore not
applicable. However, this work is mentioned explicitly because
the authors do point out the lack in datasets for traffic cones.

5) FSOCO Dataset: The FSOCO dataset [26] is the
result of a crowd-labeling effort, where teams had to label
images with both bounding boxes and segmentation maps
(see figure 7) in order to get access to the labeled dataset.
In summer 2022 it was released publicly after they had no
longer a need to label more data.

Because this dataset includes segmentation maps and has
a high number of labeled real-world data, it was ultimately
chosen to be used in this project.

D. Model

The model used by the team is YOLOv5 [9, 12] and has
shown weakness in detecting cones that are farther away
and therefore smaller. It does not suffer greatly from the
class imbalance in the various datasets (like in section II-C5),
but the imbalance does still show in evaluation metrics and
visual outputs (refer to section IV). To combat this, multiple
data-driven solutions have been conceptualized and tested in
section III.

III. METHODS

As explained in section II-D, the baseline model suffers
from bad performance for cones which are small in the picture.
From a data perspective there are a couple of possible solutions
to improve this. By manipulating the representation of the data,
the model can be enabled to focus more on its weaknesses.
During the course of this project, multiple avenues have been
explored, which are as follows.

A. Temporally-aware Frames

The images coming from the camera are temporally
correlated, which means that the input and output of successive
frames have things in common. Specifically the bounding
boxes are similar but have been transformed in accordance



Fig. 7. Two images from the FSOCO Dataset [26]. The upper one shows the
ground truth bounding boxes and the lower one the segmentations of those
cones.

bounding boxes segmentations
# % # %

blue cones 86,116 40.3 8,844 44.0
yellow cones 93,257 43.7 8,300 41.3
orange cones 25,991 12.2 2,955 14.7

big orange cones 8,217 3.8 0 0.0
total 213,581 100.0 20,099 100.0

TABLE I
STATISTICS ABOUT THE FSOCO DATASET.

to the car’s movement. In order to encourage continuity in
predictions and harness the common traits between frames of
a video, it was hypothesised that combining frames would help
the model to make better predictions. Since the FSOCO dataset
(see section II-C5) does not contain videos but still images, a
different dataset was used: In a project where object detection
is used to detect patients in hospital beds with members of staff
walking around, it was deemed feasible to test this hypothesis.

To construct the new frame, the three channels (RGB) were
repurposed as to not have to change the structure of the model.

1) The red channel was storing the grayscale image of the
original frame.

2) The green channel was repurposed to show the
magnitude of pixel change from the last to the latest
frame on the grayscaled frames. If it is the first frame in
the sequence of a video, then the magnitude would be
zero. In order to not bias the model too much towards
requiring this channel, only half of all the images were
assuming a last frame and were therefore non-zero.

3) The blue channel was reserved for storing the shapes of
the bounding boxes. The intensity of the pixels did not
change with the class of the bounding box. For the same
reason as for the “green” channel, this channel would be
non-zero half of the times – coinciding with the “green”
channel.

Because the FSOCO dataset does not contain videos and those
images that were taken in succession were too spaced out, this
hypothesis was only tested on the aforementioned dataset of

hospital beds. We trained a baseline model (also YOLOv5 [9])
with early stopping to compare the performances.

B. Cone Duplication using Perspective Transformation

As explained in section II-B, the data at hand (specifically
FSOCO) consists of perspective images taken on flat ground.
This means there is a visible correlation between the size
of the bounding boxes and the y-position in the picture. 5

When looking at the bounding boxes, they get smaller the
closer they get to the horizon and detections above the horizon
are impossible. Taking this into account, by applying linear
regression on the size of the bounding boxes to their y position
in the image, one can approximate the position of the artificial
horizon in the form of a linear equation (see figure 8).

sbbox = y ·m+ c

yhoriz = − c

m

In order to normalize the data, the large orange cones were
scaled down to the same size as the small cones. To make
the estimation more stable, the size of a bounding box was
calculated with sbbox = wbbox·hbbox. Furthermore, to increase
accuracy, we considered both the bounding boxes as well as
the segmentations per image for this calculation.

With the artificial horizon yhoriz and the parameter c, one
can calculate how big the bounding boxes are supposed to be
at the position (x, y) y ∈ [yhoriz, ymax], where ymax is the
height of the image [5].

For the linear regression, we ignore those annotations which
are touching the borders of the image, as they are likely
cropped cones and therefore would skew the calculations
unfavourably. We also dropped those pictures which had less
than six annotations (both bounding boxes and segmentations
together, as they are probably overlapping). Furthermore, we
calculate the mean squared error of the annotations based
on the fitted linear equation and selected 25 to be a good
threshold, above which we do not process the image further,
as the variance is deemed too high to achieve confident and
precise results.

For duplicating cones, we make a list of five times
the amount of existing annotations or up to 100, while
oversampling the small orange cones, to combat the class
imbalance6. Before we select a new position for a cone, we
create a mask, which is zero if there are no bounding boxes
and the y position is in [yhoriz, ymax]. Then we randomly
select a new position for the next segmentation in the list
anywhere from x ∈ [0, wimg], y ∈ [yhoriz, ysegmax

], where
we set ysegmax

= min(himg,max(y · 1.5, y + 20)) to not
scale up the segmentation too much, which would impact the
quality of the cone. Then, we randomly select a new position,
transformation the bounding box to the new size, check against
the mask if there is overlap and accept the new position if

5Note that the big orange cone is bigger than the other three classes of
traffic cones in our dataset.

6Note that it is shown in table I that there are no segmentations for the big
orange cones.



Fig. 8. A sample plot of sbbox plotted against the y position of the bounding
boxes, with the red line showing the fitted line. The intersection of the red
line with the black line shows where the artificial horizon was determined to
be.

Fig. 9. A sample image where the cone duplication algorithm with perspective
transformation was applied to.

there is no overlap and it is not crossing outside the image.
Otherwise we try up to 19 more times. We then copy the
RGB values of the cone selected by the segmentation as a
mask over to the new position and save the new bounding
box. The duplicated cone is flipped horizontally at random to
counteract overfitting.

The figure 9 demonstrates the effect of the algorithm: There
are new cones, many of which are far away, increasing the
hard to detect cones. This was hypothesized to increase the
performance of the model by putting more stress on small
cones and increasing the overall amount of annotations.

C. Custom Domain Loss

Inspired by the perspective transformation from
section III-B and [21], it was hypothesized that adding
a domain-specific loss would improve continuity and prevent
the detection in places which do not agree with the perspective
relationship between the bounding boxes and the artificial
horizon. The idea of this is to use the linear regression to
fit a line through the proposals of the network and then
calculate the mean squared error to pose as an additional loss
for the model to optimize. For this, we changed scaled the

proposals for the big orange cones by a factor so that they
have potentially the same size as the small cones. Then, we
perform linear regression on the cones and return the mean
squared error against the fitted line as the loss.

IV. RESULTS

We trained a baseline model on the FSOCO (section II-C5)
dataset for 300 epochs and achieved a mAP@0.5 score of
74%. When looking at the confusion matrix (figure 10), it is
evident that the strong class imbalance (refer to table I) does
not impact the performance greatly.

The model still detects big orange cones the worst, but there
is only little overlap between the big orange cone and the small
orange cone. Nonetheless, the small amount of large orange
cones does make it the least detected class. Also important to
note is that it does still struggle to differentiate between cones
and background.

A. Temporally-aware Frames

The baseline model takes almost twelve times as
long to achieve an almost identical performance as the
temporally-aware-frames (refer to section III-A) model (see
table III). Unfortunately the gain in performance is not as big
as hypothesized. However, the model does learn faster than
the baseline model.

This shows that although the performance does not increase
significantly, the training can be made faster using this
method. However, this does involve reducing an RGB image
to grayscale, which is not a good idea for the traffic cones
datasets (sections II-C1 to II-C3 and II-C5, as they rely on
the colors of the traffic cones for classification. Furthermore,
those datasets do not contain video material like it was used
on the hospital bed dataset. This means that actual video data
is needed for this transformation to work.

So although promising, a better transformation should be
found to preserve the colors and use a different dataset.

B. Cone Duplication using Perspective Transformation

We trained a model on the data according to section III-B
and tested it along with the baseline model on the untouched
test set (see table II). The result seems to suggest that the juice
was not worth the squeeze; the improvement in performance
is negligible.

There is only minimal differences between the confusion
matrix from this new model (figure 11) and the one from the
baseline (figure 10).

It seems that the proposed method in section III-B does
not improve the model’s performance significantly. It can be
ruled out that the quality of the data dropped, because the
transformations have been applied very carefully with great
deliberation. The resulting dataset does look realistic and does
indeed mirror what the idea behind it is. But the model
evidently does not profit from this augmentation. This seems
to suggest that the model itself needs adjustments to see an
improvement in performance.



Fig. 10. The confusion matrix of the baseline, tested on the normal test set.

Fig. 11. The confusion matrix of the model trained with the cone duplication
dataset (ConeDup, see sections III-B and IV-B), tested on the normal test set.

C. Custom Domain Loss

The custom domain loss (refer to section III-C) did
not behave like loss functions usually behave: Looking at
figure 13, it is clear that the model has trouble optimizing
this loss. As seen in table II, the performance also did neither
increase not decrease. And although the desired effect did not
come to pass, the model did not completely fail.

It appears that the loss function is hard to optimize
because it takes into account all predictions – even those
with low confidence that would be discarded by the
non-max-suppression (NMS) algorithm.

Fig. 12. The confusion matrix of the custom domain loss method (see
sections III-C and IV-C), tested on the normal test set.

FSOCO mAP@0.5
YOLOv5 model epochs normal ConeDup
baseline 300 73.9% 71.3%
ConeDup 300 74.1% 73.3%
DomLoss 300 73.9% 73.0%

TABLE II
COMPARISON BETWEEN THE BASELINE MODEL AND THE MODEL TRAINED

USING THE PROPOSED METHODS IN SECTIONS III-B AND III-C ON BOTH
FSOCO TEST SETS: THE ORIGINAL ONE AND THE ONE GENERATED USING

CONEDUP (SEE SECTION III-B).

YOLOv5 model epochs mAP@0.5
baseline 119 87.2%
TaF 10 88.9%

TABLE III
COMPARISON BETWEEN THE BASELINE MODEL AND THE MODEL TRAINED

USING THE TEMPORALLY-AWARE FRAMES HOSPITAL BED DATASET (SEE
SECTIONS III-A AND IV-A).

V. CONCLUSION AND DISCUSSION

The proposed hypotheses only brought about minimal
improvement to the baseline model. It seems that the model
might profit more from model-centric adjustments than from
data-driven ones due to it not being able to handle small
objects in general. There is also a lack of video data available
for this traffic cone detection use-case, with which it would
be possible to leverage the strong point of fast convergence
(as demonstrated and discussed in sections III-A and IV-A).

It stands to reason that investing in labeled video data
would bring about benefits to the learning speed of the model.
This way other, more costly optimizations can be incorporated
without having to train the models for many epochs. We also
identify a need to investigate into the effectiveness of the
temporally-aware-frames method (see section IV-A) in frames
with movement. It should be emphasized that this method
should be improved in such a way that the color information



Fig. 13. The custom domain loss during the training.

is retained, which is crucial for detecting the four classes of
traffic cones.

The results from the cone duplication with perspective
transformation (see section IV-B) show that the model is not
well equipped enough to detect small cones. To fix this, there
are a couple of possible solutions to try out: (i) Applying a
visual transformation to the image that enlarges small objects
using a perspective transformation, similar to a fish-eye. This
would make it easier for models to detect small shapes. (ii)
Adjust the model so it can handle small objects better: (ii.a)
The authors of [2] demonstrate a model-centric approach to
achieve up to 6.9% improvement in mAP. (ii.b) Change the
convolutional depth of YOLOv5.

As already pointed out in section IV-C, the custom domain
loss probably failed because it took into account every
prediction without applying NMS to them. Although costly,
this could improve the usefulness of the domain loss greatly.
What the domain loss is also lacking is punishing proposals
above a calculated artificial horizon. This however assumes
that an appropriate horizon can be found (i.e. m > 0). If
no horizon can be found, then the loss should still be bigger
than if it does find a horizon and penalized all proposals
above that y value. Otherwise the loss function would increase
once an artificial horizon is found. There are lots of other
considerations to be made in the design of the loss function,
but ultimately it should prove useful to models.

A different hypothesis which could be explored would be
leveraging test subsets for explainability. The FSOCO dataset
is very diverse: (i) There are differing levels of illumination
and times of day represented in the data. (ii) Different ground
types are available. (iii) Images taken from cameras from
varying pitch and roll angles exist. (iv) Cameras have different
levels of elevation. (v) The traffic cones may have the “FSG”
logo written on their stripes (as mentioned in section II-C). (vi)
The traffic cones may be positioned in a way that makes them
show up at an angle or extra wide. All those attributes could be
made use of by enriching the labels with that extra information
and then selected for test sets representing a specific attribute
that might have an influence on the model’s performance.
Using such an array of test sets would allow for a more
detailed error analysis and higher explainability of the model.

There are a lot of potential improvements to be made to
the model and it is suggested to also consider model-centric
approaches, because data-centrism alone also has its limits.
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