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Abstract

Communication with patients suffering from locked-in syndrome, a condition where most if not
all motor functions of the body have been lost, has been and still is a tremendous challenge
in medicine. In recent decades there has been a surge in the development of brain computer
interfaces (BCls) that can be used as a means to overcome said challenge by recording and
interpreting the electrical activity of the user's brain. This project's goal was to design and
implement a BCl communication system with a flexible, decoupled architecture so that future
changes and enhancements can be easily developed. This system consists of three main
parts: The data acquisition hardware, a preprocessing & classification pipeline and a front end
application with which the end user interacts. As a proof of concept two different front ends,
a single stimulus visualiser and a typewriter application, based on steady-state visually evoked
potentials (SSVEPs) have been developed and used to test the system and its architecture.
Using a canonical correlation analysis (CCA) based classification approach the system was
able to achieve a high accuracy when tested using the single stimulus visualiser. This high
accuracy however did not carry over to the full system test in conjunction with the typewriter
application.



Preface

Nearly every day we interact with computers and various electronic devices. Being able to
control such devices with just our minds is such a fascinating concept. Being able to use our
love and skills in computer science to achieve something so seemingly futuristic drove us to
this project.

We would like to express our sincere gratitude to our supervisors Prof. Dr. Thilo Stadelmann
and Dr. Ricardo Chavarriaga for giving us the opportunity to conduct this project, for their
valuable guidance and patience throughout the entire project, and for their profound knowledge
and insights in the field of brain-computer interfaces and neuroscience.



Erklarung betreffend das selbstandige Verfassen einer
Projektarbeit an der School of Engineering

Mit der Abgabe dieser Projektarbeit versichert der/die Studierende, dass er/sie die Arbeit selbstandig
und ohne fremde Hilfe verfasst hat. (Bei Gruppenarbeiten gelten die Leistungen der tibrigen Gruppen-
mitglieder nicht als fremde Hilfe.)

Der/die unterzeichnende Studierende erklart, dass alle zitierten Quellen (auch Internetseiten) im Text
oder Anhang korrekt nachgewiesen sind, d.h. dass die Projektarbeit keine Plagiate enthélt, also keine
Teile, die teilweise oder vollstandig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe
der eigenen Urheberschaft bzw. ohne Quellenangabe Gibernommen worden sind.

Bei Verfehlungen aller Art treten die Paragraphen 39 und 40 (Unredlichkeit und Verfahren bei
Unredlichkeit) der ZHAW Prifungsordnung sowie die Bestimmungen der Disziplinarmassnahmen der
Hochschulordnung in Kraft.

Ort, Datum: Unterschriften:

Winterthur, 23. Dezember 2022

Das Original dieses Formulars ist bei der ZHAW-Version aller abgegebenen Projektarbeiten zu Beginn
der Dokumentation nach dem Abstract bzw. dem Management Summary mit Original-Unterschriften
und -Datum (keine Kopie) einzuftigen.

Zurcher Fachhochschule



Contents

(I__Introductionl

|2 Theoretical background|

[2.1 Brain-computer interfacel . . . . . . . ...

2.2 Typewriter Applications| . . . . . . . . . . ...

[2.2.1 P300 paradigm| . . . . . . . ...

[2.2.2  SSVEP paradigm| . . . ... ... ..

[2.2.3 Motor imagery paradigm| . . . . . . .. ...

[2.3  Steady-state visually evoked potential| . . . .. . ... ... ... 0 .

2.4 Canonical correlation analysis| . . . . . . . . . .. ...

3 Methods

[3.1 Prerequisites| . . . . . . . ..

[3.2.2  Lab Streaming Layer] . . . . . . ...

[3.2.3  Unicorn Hybrid Black| . . . . . . ... ... ... ... ... ......

[3.3 Choice of

BCl paradigm| . . . . . . . ...

[3.4 System architecturel . . . . . . . ...

3.5 System implementation| . . . . . .. ...

[3.5.1 Back end implementation| . . . . . . ... ... .. L.

[3.5.2  Front end implementation|. . . . . .. ... ..o

3.6 System Test| . . . . . . . .

4 Results

|4.1 Classification accuracy|. . . . . . . . . . . . ...

4.2 Typewriter| . . . . . . ...

11
11
11
11
11
12
12
12
12
14
14
14
16
18
18
18
18

19
19
19



1 Introduction

1.1 Motivation

Typical interaction with a computer or electronic device happens through some input device
like a touchscreen, mouse and keyboard or even our voice. But what if it isn't possible for a
person to use those types of input devices due to a disability or missing limbs? That is where
brain-computer interfaces (BCls) try to provide a solution by allowing people to interact with
computers or electronic devices using only their thoughts. BCls can therefore aid people with
disabilities in their day to day life by letting them control prosthetic limbs [1], wheelchairs [2]
or typewriting applications [3].

But Brain-computer interfaces also have use cases outside their utilities in the medical field.
For example is it possible to enhance attention and memory capabilities through playing a
neurofeedback computer game [4]. Another BCl based project provides a headset, which can
be used to reduce stress and improve engagement of employees [5]. It is even possible to
control drones with BCls and perform races between participants [6].

All of this can be achieved by measuring brain activity, extracting features from that activity
and converting those to outputs with which a device can be controlled. There are two types
of BCI, invasive and non-invasive. The focus of this project is on the non-invasive BCls, in
particular Electroencephalography (EEG)-based BCls. Which is a method to measure sponta-
neous electrical brain by attaching electrodes to the scalp. In the recorded data it is possible
to perceive visual and auditory responses induced by generated stimuli. By carefully selecting
the presented stimulus or stimuli control sequences can be defined.

In this project EEG-based BCls are used in a context of writing letters or words by generating
a visual stimulus for each letter and evaluating the measured brain activity to find out what
stimuli a user was looking at. It is discussed what solutions for said application already exist,
how they work and what solution was implemented.

1.2 Project objectives

The scope of this project comprises of literature study on the current state of BCl communi-
cation and typewriting implementations, an implementation of a typewriting application and
of testing the accuracy, ease of use and performance of that implementation.

The literature research provides knowledge about current implementations and limitations of
BCl interfaces and what kind of typewriting implementations have been done. The focus there
is a comparison of the different typing paradigms weighing their advantages and disadvantages.
Using that knowledge a typewriter application implementing one of the paradigms is developed,
which main objective it is to be a expandable, adaptable demonstrator of the functionalities a
BCl can achieve in this context.



2 Theoretical background

This chapter serves as an overview of the relevant topics that are required to understand the
domain this project finds itself in.

2.1 Brain-computer interface

A brain-computer interface (BCl) is a system that records and interprets electrical signals
produced by neurological activities in a brain. The recorded signal is usually sent through
a processing chain that includes preprocessing, feature extraction and classification. The
classified signal is then usually utilized to manipulate an application or a hardware device
which in turn provides the user of the BCl with feedback. [7]. This sequence of steps is
generally known as the BCl Loop (see Figure [2.1)).

Figure 2.1: Depiction of the BCI Loop.
There is a wide range of various BCI types, ranging from invasive devices, that need to

be inserted into the body via surgery, to non-invasive ones. This project made use of a
non-invasive electroencephalography (EEG) — enképhalos meaning brain, graphein meaning
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CHAPTER 2. THEORETICAL BACKGROUND 2.2. Typewriter Applications

writing — based device to record signals. EEG is a method with which voltage fluctuations on
the scalp can be measured using a set of methodically placed electrodes. These electrodes can
be used dry but generally it is preferred to use conductive gel to increase the signal quality.

Even though it is commonly preferred to cover the whole scalp with electrodes [7], one might
only be interested in the activity confined to a certain area of the brain. For example, if a
BCI application is stimulating brain activity using visual events, only the occipital lobe might
be of interest. In such a case the unwanted electrodes can be easily filtered out during
preprocessing.

2.2 Typewriter Applications

Typewriter applications are one of numerous different kinds of BCI applications that are being
developed nowadays. As one of the project’s requirements was to create such a typewriter
application, this section serves as an overview of the various typewriter implementations, also
called paradigms, that have been developed.

2.2.1 P300 paradigm

The P300 paradigm relies on the fact that when a subject is given a set of elements to look
at, for example alphanumeric symbols, which randomly light up, the subjects brain produces
an event-related potential (a response to an external stimulus) with a latency of about 300
milliseconds when the gazed at element of the set lights up [8]. This potential is typically most
evident in the EEG signals measured by electrodes covering the parietal and occipital lobe.

Figure 2.2: Graphical user interface for a P300 typewriter [9].

Figure displays one of the earliest designs of a graphical user interface (GUI) used in
conjunction with the P300 paradigm. The idea is that the rows and columns of the displayed
matrix flash in a random order and if the subjects target letter is among those lit up letters a
P300 response is evoked and measured. Based on the timing of the response one can determine
which letter the subject targets and subsequently write it to the display, as is the case with
the letter B at the top of the depiction [9).
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2.2.2 SSVEP paradigm

Steady-state visual evoked potentials (SSVEPs) is, as the name implies, a technique to stim-
ulate brain activity by supplying a subject with a visual stimulus that changes its state with a
constant frequency, for example a blinking light-emitting diode (LED) [10].

As depicted in Figure[2.3] the application makes use of target surfaces akin to clickable buttons
in conventional GUI applications. Each of these target surfaces flicker with a distinct frequency,
often called target frequency, that evokes a measurable response in the subject’s brain in the
same frequency band as the target surface’s flicker frequency. Similarly to the P300 paradigm
the evoked potential is most prominent in electrodes the covering the parietal and occipital
lobe.

Figure 2.3: Graphical user interface for an SSVEP typewriter.

The application utilizes a two-stage selection process where in the first stage the user has to
select one of the seven symbol groups by gazing at it. When a group gets selected the group's
symbols are distributed over six of the seven target surfaces — a back button appears on the
seventh — which in turn can be selected again by the subject to either write a symbol or go
back to stage one.

2.2.3 Motor imagery paradigm

The motor imagery paradigm differs from P300 and SSVEP in that it does not require any ex-
ternal stimulation in order to work. Subjects imagine moving a body part which activates areas
of the brain that are responsible for movement [11]. This is be measured using EEG, magneto-
encephalography (MEG), and functional Magnetic Resonance Imaging (fMRI) based methods
of which the former is more applicable due to its lower experimental cost and spontaneous and
evoked signals are used in EEG-based BCls [12].

The GUI depicted in Figure was designed in a similar fashion to the SSVEP example in
Section [2.2.2] where symbols can be chosen in a two-stage process. The subject could then for
example control the green arrow by imagining right-hand movement and select the target the
arrow points to by imagining left-foot movement [9].

2.3 Steady-state visually evoked potential

In this section SSVEP is further elaborated due to it being applied in the project which will
be covered in Section [3.3] As the P300 and motor imagery paradigms are not applied in the

8



CHAPTER 2. THEORETICAL BACKGROUNIDR.3. Steady-state visually evoked potential

Figure 2.4: Graphical user interface for a motor imagery typewriter [9].

project no detailed explanation is done.

As already touched upon in Section [2.2.2) SSVEP is a phenomenon where the brain responds
to a perceived visual stimulus oscillating at a steady frequency with an increase in amplitude
in the EEG signal in the same frequency band as well as in its harmonics [7] — a harmonic
being a multiple of a base frequency. For example, if a brain perceives a light flashing at a
frequency of 15 Hz, one can observe amplitude spikes in the EEG signal at the frequencies 15
Hz, 30 Hz etc.

When designing SSVEP based BCl systems some limitations concerning the number of usable
target frequencies arise. Due to that circumstance that SSVEPs are reflected not only in the
base frequency, but also in its harmonics, it is undesirable to have target frequencies being
harmonics of each other as this might lead to misclassifications with certain classification

algorithms (see Figure [2.5]).

Figure 2.5: Display of harmonics in frequency band for 10 Hz SSVEP [10].

Furthermore, one needs to consider the facts that EEG signals of awake subjects reside in the
frequency band between 1 Hz to 30 Hz and that the frequencies need to be integer fractions
of the computer monitors refresh rate.
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This limits the amount of usable target frequencies drastically. However, some of these limita-
tions can be circumvented by applying techniques like phase shifting, which allows the system
to use the same frequency for different stimuli at the same time [13].

Due to the flickering nature of SSVEP acting as a trigger stimulus is ineligible for people with
photosensitive epilepsy due to the high risk of seizures.

2.4 Canonical correlation analysis

In order to detect SSVEP in EEG signals, frequency detection algorithms can be utilized.
A common choice is the canonical correlation analysis (CCA) method [14], [15], which was
employed for developing this project’s typewriter application.

Generally, CCA tries to find correlations between two sets of variables, z(¢) and y(t), rather
than only two variables in classical correlation analysis.

Lin, Zhang, Wu, et al. [14] exploits this method to detect SSVEPs in EEG signals. The idea
is to let x(t) be the EEG signal and y(t) the Fourier decomposition of the target frequency’s
harmonics:

(2.1)

Equation shows said Fourier decomposition where f is the target frequency, T is the
amount of sampling points and .S the sampling rate.

CCA will be able to find a significantly higher correlation to y(¢) when an SSVEP occurs as
the amplitude in the EEG signal spikes at the target frequency and at the harmonic frequencies
as opposed to when no SSVEP occurs.

10



3 Methods

This chapter discusses the applied tools for building the system, employed algorithms and
implementation details of the system, as well as how the system tests were set up in order to
test the system performance.

3.1 Prerequisites

The main requirement for this project was to build a modular implementation of a typewriter
BCI application with the Python programming language. Other than that there were no
constraints set on how the system should be realised.

The time required to get the system up and running should be as short as possible as the goal
is to use it in demonstrations. Furthermore, it is preferable to not need extensive training for
both the subject using the system as well as the classification algorithm. All this ensures that
the system is as accessible and easy to use as possible.

3.2 Tools

This section describes all tools used during the project’s development.

3.2.1 OpenViBE

OpenVIBE [16] is a software suite that enables a fast set up of BCl experiments thanks to its
intuitive graphical pipeline programming interface. It has wide driver support for a multitude
of EEG devices out of the box, including the Unicord Hybrid Black (see Section EEG
headset. All relevant steps of acquiring data, filtering, processing, classifying and visualizing
EEG signals can be done in real time.

This tool was employed to quickly experiment with new ideas that arose during development
as well as to acquire and verify the EEG signal captured by the EEG device.

3.2.2 Lab Streaming Layer

Lab Streaming Layer (LSL) is a software that enables its users to write sensor data to a stream
from which consumers can read. It supports a wide variety of programming languages, such as
Python, C# and Java, and runs as an independent process on the operating system. Processes
can read from and write to streams locally or over a network [17].

This software was used as a communication channel between all parts of the developed BClI
system.
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3.3. Choice of BCl paradigm CHAPTER 3. METHODS

3.2.3 Unicorn Hybrid Black

The EEG device used for measuring brain activity is a commercial headset by g.tec medical
engineering GmbH, specifically the Unicorn Hybrid Black product. The headset measures EEG
signals sampled with a bit depth of 24 bit and a frequency of 250 Hz [18]. For this project
only channels 5, 6, 7, and 8 were of interest as they are positioned on the parietal and occipital
lobe as the application uses visual events.

3.3 Choice of BCI paradigm

When planing a BCI system, the decision as to what kind of paradigm it should follow is the
foundation for all further development. During this project’s planing phase three paradigms
were considered: the P300, the SSVEP and the motor imagery paradigm.

Motor imagery was quickly ruled out as it requires subject training [19] which would not be
always feasible, especially when one wants to demonstrate the system during an exhibition.

P300 and SSVEP both require no subject training, however SSVEP has been shown to have
greater performance concerning the information transfer rate [19]. Another positive aspect
of SSVEP is that, due to its nature of not being a reaction based paradigm, it does not rely
on correct timing between what is happening on the subject’'s screen and the time of signal
classification.

Due to the aforementioned reasons it was decided to create a system with SSVEP in mind.

3.4 System architecture

As modularity was an important requirement for the system architecture, it was decided to
design it in an object-oriented way. This allows the decomposition of the system into small
decoupled components, which promotes the ability to introduce component-local changes that
do not affect the system as a whole as well as replaceability of components as long as the
interfaces of the components stay the same.

To achieve high modularity, the architecture was split up into two high level components: a
back end component, comprising of submodules concerned with the EEG signal acquisition,
preprocessing and classification, and a front end component that would be the actual applica-
tion that reacts to the classifications, a typewriter, for example. The two components would
communicate via a separate communication channel, where the back end would notify the
front end as soon as a successful classification has been made.

3.4.1 Back end architecture

The highest level component of the back end system is a Pipeline, whose responsibility is to
conduct the flow of the EEG data throughout the system, i.e. pass it to the correct subcom-
ponents in the correct order.

For the implementation of a BCI typewriter system, four subcomponents were identified: a
Signal Aggregator, responsible for aggregating the EEG signal and pass it to the back end

12



CHAPTER 3. METHODS

3.4. System architecture

system in a usable format; a Preprocessor, responsible for preprocessing the EEG signal to
remove noise from the signal and remove unwanted channels; a Classifier whose purpose is to
classify the EEG signal; and a Notifier that communicates asynchronously with the front end

component.

Figure [3.1] depicts how the Pipeline component controls the data flow between all subcompo-
nents. Furthermore, one can see how the Signal Aggregator component is the system'’s ingress
boundary, handling incoming EEG signals, and the Notifier component is the system’s egress
boundary, handling the communication with listening front end systems.

The instantiation of all components is delegated to the back end system’s main class Applica-
tion. This serves to keep the business logic as free of dependencies as possible, thus leading
to a more loosely coupled system which in turn improves the system'’s modularity.

sd Pipeline Data Flow J

‘ :SignalAggregator ‘ ‘
T

:Pipeline

‘ ‘ :Preprocessor ‘ | :Classifier ‘ | :Notifier

I
rovideSignal(signal) -
¢ pull()

preprocess(signal)
preprocessedSignal :|

I
cldss

(\assify(prsprcln(essedswgnalj ]
T

notify(class)

»l
b/
notify(class)

Figure 3.1: A depiction of the Pipeline sequence diagram.

The subcomponents have been designed to be replaceable as long as the interfaces that the
Pipeline component expects are adhered to. As seen in Figure[3.2]the subcomponents’ consist
of only one method for each subcomponent. This is by design to promote ease of use and

decoupling.

«interfaces
SignalAggregator

pull(): Samples

Pipeline

Pipeline(

notifier: Notifier
): Pipeline

aggregator: SignalAggregator,
preprocessor: Preprocessor,
classifier: Classifier,

winterfaces
Naotifier

notify(class: Class): void

winterfaces
Preprocessor

«interfaces
Classifier

preprocess(samples: Samples): PreprocessedSamples

classify{preprocessedSamples: PreprocessedSamples): Class

Figure 3.2: A depiction of the class diagram of the Pipeline and its subcomponents’ interfaces.
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3.5. System implementation CHAPTER 3. METHODS

3.4.2 Front end architecture

The front end architecture loosely follows the common Model-View-Controller (MVC) pattern.
The Experiment Controller is in charge of managing the whole application and its program
flow. It houses an instance of the Experiment View and the Experiment Model and reads data
from the separate communication channel.

The structure of the Experiment View is based on components, meaning that, for example, a
square shaped component can be combined with a text component to create a new combined
component. By employing this technique, one can create visual stimuli for evoking SSVEPs
by additionally adding a flickering behaviour to said component.

The layout of the components as well as their content is managed by the Experiment Controller.
It continuously listens on the communication channel for classifications sent by the back end
system, which it then forwards to the Experiment Model, that in turn updates its internal state
based on the received classification. This way the Experiment Model always holds the current
state of the application that is mirrored by the Experiment View.

3.5 System implementation

This section explores how the concepts described in Section have been implemented and
explains why certain approaches were favoured over others.

At the project's inception it was decided to implement the back end as well as the front end
system with Python due to its highly portable nature — since its executable artifacts run in a
virtual machine [20] — and good library support for BCl development.

3.5.1 Back end implementation

This section discusses how each individual component of the back end system has been imple-
mented and reasons choices made.

Pipeline

The Pipeline component is the heart of the back end system and thus implements the main
program loop. Thanks to the narrow interfaces of the components it handles its implementation
is rather compact, only managing the the communication between its subcomponents.

LSL Signal Aggregator

The Signal Aggregator’s responsibility is to capture the recorded EEG signal and supply the
back end system with that data.

It is implemented as a component that reads a predefined amount of samples from an LSL
stream that is populated by OpenViBE with the recorded EEG signal. The amount of samples
is calculated by multiplying the EEG headset’s sampling frequency by a time window in seconds,
which both are defined during the components instantiation. The ability to overlap the EEG

14



CHAPTER 3. METHODS 3.5. System implementation

signal instead of pulling separate chunks of samples each cycle has not yet been implemented
but is a plausible future addition for this component.

The decision to use LSL to transfer the EEG data to the back end application was a natural one
as it had already been successfully employed that way in conjunction with OpenViBE and the
Unicorn Hybrid Black EEG headset during the knowledge acquisition phase of the project.

Identity Preprocessor

The Preprocessor’s responsibility is to clean the incoming signal from any noise and highlight
important features.

It's current implementation does not manipulate the signal in any way as the preprocessing
is done through OpenViBE. This decision was made in order to allocate more time to the
development of other system parts. This means that the back end system currently already
receives preprocessed signals instead of raw ones.

However, if one were to implement the Preprocessor component in-system in the future, a
sensible approach would be to implement multiple small cohesive preprocessing components
using the pipes-and-filters architectural pattern [21], where e.g. multiple spectral and spatial
filters could be chained together in a flexible way in order to form a complete processing
chain.

CCA Classifier

The Classifier's responsibility is to receive an EEG signal — possibly preprocessed — and
classify it using a classification algorithm.

Due to the front end system being an SSVEP typewriter, a statistical method was used for
classifying the signals, as such classifiers have shown great success with such systems in the
past [14]. The canonical correlation analysis method was chosen in the end as it seemed like
a robust choice due to many articles and papers covering its application in BCI settings [14],
[15].

The Classifier component makes use of a subcomponent called Canonical Correlation Analysis
that maps the EEG signal to a list of correlation coefficients. Each correlation coefficient
corresponds to one of the front end system's target frequencies. This allows the Classifier
component to detect SSVEP peaks in the EEG signal by looking for correlation coefficients
that exceed a certain adjustable threshold and pick the target frequency with the largest one.

For future performance enhancements of the Classifier component’s implementation one could
develop a more sophisticated CCA based algorithm. See Nakanishi, Wang, Wang, et al. [15]
for a comparison of different CCA based algorithms.
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LSL Notifier

The Notifier's responsibility is to send classifications to the front end system.

Three different implementation options were identified that could be used to implement this
component. The first option was to build it as a TCP server that communicates over IP.
Front end systems could then establish a connection with this server and subsequently receive
classification notifications. This solution would allow communication on a local machine as
well as over a network, which would allow the back end and front end systems to run on
different machines.

The second option was to develop the Notifier component in a way where it would communicate
with front end systems through interprocess communication on a single machine. This would
allow very fast communication speeds at the cost of tighter coupling between the back end
and front end systems.

The third option was to use LSL and write the classifications into a stream from which front
end systems could read.

Eventually, after exploring all of the above approaches, the LSL variant was chosen. The two
main reasons for this decision were ease of implementation and that no new technology needed
to be added to the back end system, keeping its complexity at bay.

3.5.2 Front end implementation

Implementation of the front end is done with the help of PsychoPy, an application for the
creation of experiments in behavioural science [22]. The application also provides a Python
interface to build the experiment in a Python application.

The decision to use PsychoPy was mainly because of its automatic synchronization of displayed
frames with the refresh rate of the monitor. With this feature in place it is guaranteed that
there are no skipped frames or stutters in the front end GUI which otherwise would disrupt
the smooth display of frequencies.

An alternative to PsychoPy was pygame [23], a Python library for writing video games. While
testing the front end it was not possible to achieve a synchronous display of the GUI frame rate
and the screen refresh rate. There were randomly skipped frames, which were very noticeable
when compared with the otherwise consistent flickering of the stimulus target.

Typewriter

The typewriter application uses a multilayer design, as discussed in Section 2.2.2 The ap-
plication can either be started as a version with seven stimuli which uses two layers as seen
in Figure or as a version with four stimuli and three layers pictured in Figure [3.3] Im-
plementation of the flickering is achieved by only drawing the white version of the stimulus
component on every nth frame, e.g. drawing the white stimulus every 5th frame on a 60 Hz
monitor would result in a 12 Hz flickering frequency.

The application frequently reads on the LSL stream for incoming classifications. Behind each
frequency a control action is defined for the current state, with which the action on selection
and transition to the next state is defined, e.g. selecting of a character group or writing a
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CHAPTER 3. METHODS 3.5. System implementation

character. Such an action gets triggered when the same classification is received two times in
a row. All the actions also trigger a small transitional period, which shows the made selection
and then the next state without flickering to give the user time to decide on a new target.

Figure 3.3: Three layers of typewriter interface with four stimuli.

Single stimulus presenter

To test single frequencies a simple GUI was developed which only displays one flickering stimulus
as seen in Figure 3.4, The main use of this application is to test the classification algorithm
by continuously presenting a steady frequency and being able to change that frequency in the
running application.

Figure 3.4: Simple GUI with one flickering stimulus.

17



3.6. System Test CHAPTER 3. METHODS

3.6 System Test

The goal of the system test is to test the accuracy and reliability of the BCI typewriter system
in an online scenario. By defining a sentence to type, the number of needed inputs can
be determined. When a signal gets misclassified and a wrong action gets executed, the test
subject should try to correct it by either going back to the previous view or by deleting the input
character with the backspace functionality of the application. The reason for this approach is
to represent a real world use of the application as accurately as possible.

The accuracy of the system is then calculated by taking the number of correctly classified
inputs and dividing it by the number of total inputs:

number of correct inputs

accuracy =

1
number of total inputs (3.1)

3.6.1 Setup

To achieve consistency and reproducibility the following prerequisites need to be followed.

Firstly, the sentence for the subject to write must be agreed on, so the inputs can be accurately
recorded. The test environment should be void of unnecessary distractions. However, the test
should still be comparable with a real world scenario so it is to be conducted in normal lighting
conditions. The application is to be run in full screen mode. The proper functioning of the
EEG headset must be verified by letting the subject clench their teeth and looking for the
appropriate response in the EEG signals.

3.6.2 Execution

For the test execution, four pieces of software are required: OpenViBE Acquisition Server to
connect to the EEG headset and receive data, OpenViBE Designer to run the scenario specific
to this test, and finally the back end and front end systems developed in this project.

After each prerequisite has been met, the test conductor signals the subject to start writing.
While the subject is writing, the conductor keeps track of all commands that are executed
and marks which were successful inputs and which ones were missed. When the subject has
finished writing all required symbols, the test execution is complete.

3.6.3 Back end system test

To give more insight on certain problems or errors of the system, the back end implementation
is additionally tested separately with a simple, single frequency stimulation application. The
subject will look at a single stimulus blinking at a certain frequency until a defined amount of
classifications were made by the back end system. This is used to investigate the accuracy of
the back end system.

18



4 Results

This chapter discusses the results achieved while testing the front- and back end system
following the outline described in Section (3.6

4.1 Classification accuracy

First tests were conducted with the simple GUI (see Figure with a single stimulus to test
performance and accuracy of the classification algorithm. Tested were the frequencies 8.57,
10, 12 and 15 Hz. All frequencies were tested with 4 and 2 seconds worth of EEG samples.
Each of the tests ran until 20 classification samples were collected.

The test results as shown in Figure [4.1] display a high accuracy for 10 Hz with 100 % accuracy
for both 2- and 4-second time windows. Similar high results with the 4-second time window
were found for 12 Hz and 8.67 Hz with 100 % accuracy and 90 % accuracy respectively. The
worst performance was seen with 15 Hz with only 40 % accuracy in the 4-second time window
and only 25 % accuracy in the 2-second time window.

The results of the 15 Hz tests do not align with previous unrecorded tests, where the accuracy
was much higher.

Figure 4.1: Accuracy of CCA classification.

4.2 Typewriter

It was not possible to conduct the complete system tests as defined in Section due to the
performance of the typewriter system not being consistent enough.
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4.2. Typewriter CHAPTER 4. RESULTS

Starting with the main problems faced in the seven stimuli version of the front end applica-
tion,

The main problem in the seven stimuli version of the front end application was the limitation of
usable frequencies in combination with a 60 Hz monitor. This limitation made it only possible
to use frequencies which were subharmonics of some smaller frequencies, e.g. 15 Hz and 7.5
Hz. This led to frequent misclassifications of those frequency pairs. When retesting the single
frequencies on their own with the single stimulus GUI the classification worked consistently
again as shown in Section [4.1]

Concerning the four stimuli version of the front end application which uses fewer frequencies
and with that expanding the number of possible frequency combinations, harmonics can be
avoided. But even then the classifications were not consistent enough to write something effec-
tively and three layers of selection make each misclassification a costly error to fix, i.e. needing
up to three correct classifications to correct a misclassification. Changing the positioning or
the frequency allocation of the stimuli in the GUI did not show any significant improvement
or deterioration to the performance.

The subpar performance of the typewriter application could have multiple causes. The near
proximity of the stimuli may be causing some unwanted interfering evoked potential in the
peripheral vision of the subject. There may be an error in the implementation of the CCA or
how the stimuli are generated. During testing subjects have noted that they saw stutters in
the frequencies they were looking at. This might have been a visual illusion but might point
to an error in the front end GUI. but might point to an error in the front end GUI.
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5 Discussion

The goal of the project was to develop a highly modular BCl typewriting system that could be
employed as a demo at exhibitions as well as act as a framework for future BCl experiments.

We created a decoupled BCl system with SSVEP as the leading paradigm in mind. However
it is designed in a way that it not limited to SSVEP alone. Developing applications following
other paradigms, such as P300 or motor imagery, with this system as a basis should work just
as well. This level of modularity also present in the system’'s subcomponents: one can easily
swap out preprocessors or classifiers to suit one's needs.

However, we are disappointed that we could not get the typewriter itself to work properly. We
are certain that we were rather close to a working solution but due to time constraints we
were not able to reach it. Our main suspect for the misclassifications discussed in Chapter
is that the front end GUI is not capable of displaying multiple flickering stimuli without small
stutters.

Furthermore, during the first few weeks of the project we were rather overwhelmed with all
the information we had to absorb and make sense of, as we were completely new to this field.
This led to situations where we had to experiment with a multitude of different concepts and
ideas in order to finally understand them and figure out, if that particular concept or idea is
of any use for the project.

Nevertheless we do consider the delivered product a success. It represents a good foundation
for future development of BCI systems and due to its modularity supports effortless experi-
mentation with different preprocessing chains and classifiers.
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