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Abstract

In recent years, deep neural networks have achieved breakthrough results in
diverse domains, from computer vision and natural language processing to game
playing and life sciences. However, harnessing the full power of this technology in
practical applications remains challenging. In this thesis, we explore strategies to
address the challenges of applying deep learning to real-world pattern recognition
problems. We tackle multiple practical problems, such as Optical Music Recog-
nition (OMR), automated machine learning (AutoML), or the design of robust
neural network architectures. In the context of OMR, we introduce two datasets,
DeepScores and DeepScoresV2, the largest and most complete OMR datasets to
date. Based on this data, we develop the first object detection method capable of
handling the challenges of written music and methods to harden neural networks
against the effects of degraded real-world data more than doubling detection
performance on messy, degraded data. We then investigate the current state of
AutoML, introduce a novel method for AutoML and extract design patterns for
resource-constrained AutoML settings. In the latter parts of this thesis, we focus
on the underlying issues that often cause neural networks to generalize poorly
to real-world data. We first investigate the dataset dependency of modern CNN
architectures. We show through an extensive empirical study that ImageNet alone
is not sufficient to judge the power of CNN architectures and propose strategies
for developing more universal evaluation methods. Finally, we tackle the lack of
rotation invariance in modern vision systems and introduce a novel bio-inspired
paradigm that significantly enhances the rotational robustness and outperforms
the current state of the art by 19%.
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