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Whether it is the tv show we watch on a streaming platform after a long day
or the "people who bought X also bought..." recommendations in a web shop, neural
networks have a major impact on many of the decisions in our daily lives. These
algorithms are hungry for the immense amount of data collected every day, but is
the training of increasingly large networks the only path to success?

When comparing the training efficiency of a human to large deep learning mod-
els, we observe a gigantic discrepancy in sample efficiency between the two. While
it takes children a handful of examples to recognize animals, deep neural networks
typically need millions of examples to learn which pixels are indicative of a cat.

At its core, deep learning is about finding the best representations upon which
a multitude of tasks are enabled. And while we cannot ignore the vast knowledge
passed along through culture and genetics, we still believe that there must exist more
efficient ways to train neural networks — and specifically, learn representations.

We explore ideas from neuroscience and deep learning to learn a novel represent-
ation with increased robustness. Machine learning has based many of its successes
on the biological role model that is our brain and we believe both fields could benefit
from a closer relationship. After all, the goal is to reproduce human intelligence, and
chances are that it is best achieved by understanding the human mind.

In this thesis, we present the laterally connected layer (LCL), a novel neural net-
work layer architecture that uses lateral intra-layer connections that are formed us-
ing the Hebbian rule during the forward pass. The lateral connections use the notion
of self-organization, meaning they adjust themselves dependent on the input.

We show experimentally that a robustness increase can be achieved for object
recognition using the popular MNIST dataset. We show that for a small accuracy
reduction of 1% (from 98.28% to 97.30%), the performance on corrupted images can
be increased by as much as 21%, specifically for noisy types of corruptions that are
either contained locally or independent of neighboring pixels.
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Unabhängig davon, ob wir nach einem langen Tag eine Fernsehsendung auf
einer Streaming Plattform anschauen, oder "Kunden die X kaufen, kaufen auch ..."
Vorschläge in einem Webshop sehen, so sind es neuronale Netzwerke, die alltägliche
Entscheidungen massiv beeinflussen. Jedoch stellt sich die Frage, ob das Trainieren
von immer grösser werdenden Netzwerken der einzige Weg zum Ziel sein kann.

Wenn wir die Lerneffizienz eines Menschen mit derer von grossen Deep Learn-
ing Modellen vergleichen, so sehen wir eine grosse Diskrepanz in der Stichprobenef-
fizienz der beiden. Während Kinder eine Handvoll Beispiele benötigen, um Tier zu
erkennen, benötigen Deep Learning Modelle in der Regel Millionen von Beispielen,
um zu lernen, welche Pixel relevant sind um eine Katze zu erkennen.

Bei Deep Learning geht es hauptsächlich darum, eine ideale Repräsentation zu
lernen, welche ermöglicht, eine Vielzahl von weiteren Aufgaben zu lösen. Und ob-
wohl wir das enorme Wissen, welches über Kultur und Genetik weitergegeben wird,
nicht ignorieren können, so sind wir überzeugt, dass es effizientere Wege geben
muss, neuronale Netze zu trainieren und Repräsentationen zu lernen.

Dazu erforschen wir Ideen aus den Neurowissenschaften und Deep Learning,
um neuartige Repräsentationen mit verbesserter Robustheit zu lernen. Viele der
Erfolge im maschinellen Lernen basieren auf dem biologischen Vorbild unseres Ge-
hirns und wir sind überzeugt, dass beide Fachbereiche von einer Zusammenarbeit
profitieren könnten. Das langfristige Ziel besteht schliesslich darin, die menschliche
Intelligenz nachzuahmen, und es ist sehr wahrscheinlich, dass dies am besten durch
das Verständnis des menschlichen Gehirns erreicht werden kann.

In dieser Arbeit stellen wir die lateral vernetzte Schicht (LCL) vor, eine neuartige
Architektur, welche laterale Verbindungen innerhalb der Schicht verwendet. Die
Verbindungen werden während dem Vorwärtsdurchgang unter Verwendung der
Hebbśchen Regel gebildet. Die lateralen Verbindungen nutzen das Konzept der
Selbstorganisation, das heisst, sie passen sich selbstständig über den Input an.

In unseren Experimenten zeigen wir, dass eine Robustheitssteigerung auf dem
bekannten MNIST Datensatz erzielt werden kann. Wir zeigen, dass beim in Kauf
nehmen einer kleinen Reduktion der Genauigkeit von 1% (von 98.28% auf 97.30%)
die Genauigkeit bei beschädigten Bildern um bis zu 21% gesteigert werden kann.
Insbesondere bei Bildfehlern basierend auf Rauschen, welches entweder lokal an-
gewendet wurde oder unabhängig der benachbarten Pixeln ist.
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1

Introduction

1.1 Motivation

"We can only see a short distance ahead,
but we can see plenty there that needs to be done."

– Alan M. Turing, Computing Machinery and Intelligence [1]

We are now living in a golden age of information. Many of our teachers used to
torment us with the phrase "you’re not always going to have a calculator at hand",
but in current times, the vast knowledge of the human race through the internet
is at our fingertips wherever we go. While my parents needed to go to the library
and were limited by the availability of books, the knowledge bottleneck today is the
speed at which we can feed information through the senses into our brain.

This vast amount of information is not just available to us humans, however.
Many processes are automated through this data, supporting our daily choices.
Which movie are we watching tonight? What products and offers am I getting re-
commended? Will the bank give me a mortgage? Will my driving behavior have an
impact on my car insurance? These decisions are largely driven by machine learn-
ing systems that are trained on the plethora of data available — be it your browsing
history, the current weather forecast, or the health data from your smart watch.

Since all these systems are heavily dependent on extracting as much information
from the flood of data as possible, it becomes increasingly important to pore over
data efficiently. In an age where our civilization must tackle challenges such as cli-
mate change, we should use our resources sensibly and not add more oil to the fire.
On the other hand, the rules of physics are severely limiting processors from becom-
ing even smaller, preventing us from continuing along a linear trajectory of Moore’s
law — at least in its original conception [2]. Thankfully, the emergence of very spe-
cialized hardware has allowed machine learning (and in particular deep learning)
approaches to tackle immensely large amounts of data. However, we cannot solve
the problem of scalability solely through faster and more capable hardware alone.
After all, many state of the art models already consume significant compute and
power resources [3] with training times measured in thousands of days [4, 5].

This thesis aims to take a step back and rethink current trends — is scaling up
the only way forward, or should we instead explore different paths? Neuroscience
inspired the first models of artificial neural networks as our brains are hyper efficient
real neural networks, so what are further lessons to be learned? Deep learning today
still uses the concept of neurons and synapse-like connections, though diverging
from a biologically feasible model in many ways. Bridging the gap between artificial
intelligence and neuroscience thus builds the foundation of this thesis.



2 1. Introduction

1.2 Problem Statement

Modern machine learning, and in particular deep neural networks (DNN), have
shown proficiency in a large variety of tasks. From DeepMind’s AlphaGo [6] defeat-
ing the best human Go players, over OpenAI’s language models GPT-2 and GPT-3
[5, 7] writing articles about newly discovered unicorn races [8] to Google’s Imagen
model [9] creating impressively detailed images just from a text caption [10], it could
seem that the capability of deep learning models is unlimited and only increasing.

More critical voices were quickly able to find flaws in those systems, such as ask-
ing for an image of a horse riding an astronaut where the model showed images
of the more familiar constellation of an astronaut riding a horse [11]. Similarly, if
you ask GPT-3 for a step-by-step answer oh how long it takes for a dead cow to be
alive again, it will happily come up with an estimate of about nine months [12]. It is
possible to come up with additional counter examples, though they share the same
characteristic: A situation that is seldom (if ever) seen in the training data. Train-
ing datasets try to reflect our world and contain an implicit bias — common sense.
While a corpus of text has a non-zero probability of containing fiction, the majority
of occurrences of objects riding horses will be in that particular order. Furthermore,
there is an almost infinite space of objects pairs to fit the A rides B relationship,
which even immensely large datasets are not able to cover realistically.

These counter examples to the apparent near-mastery of the trained tasks does
not necessarily diminish the models’ accomplishments — after all, to err is human,
and aren’t we trying to replicate human behavior? — but they let us see through
the cracks. All these models were trained on immense amounts of data, in the case
of GPT-3 about 45 terabytes (TB) of text. To put that into context, if printed on A4
sheets of paper we could stack them to reach the international space station (ISS) 21
times or cover one sixth of Switzerland in paper. At 250 words per minute, it would
take approximately 5’000 human lifetimes solely spent reading to go through this
dataset just once. Clearly, we humans cannot compete with this amount of training
data, but we definitively still comprehend language better than them.

The efficiency at which we humans learn from a much smaller dataset during
infancy points towards significantly more efficient learning methods that are not
mimicked by current deep learning architectures. From this we derive the flaws of
deep learning, which guide us towards the research question of this thesis:

• Sample efficiency. Deep learning systems must reduce their dependence on
seeing samples in every configuration. To recognize a dog, a handful of samples
should suffice, rather than exposing the system to millions of dog images across
all breeds, sizes, and environments. Accomplishing this goal would allow such
systems to learn faster and require significantly smaller datasets.

• Robustness. Deep learning systems should be able to recognize patterns even
for disturbed input signals. A teacup remains a teacup even if it is viewed from
a different angle or is partially obstructed. Current systems overcome this issue
through scaling up the dataset and reducing the chance for situation that are
not encountered during training. Even so, the probability of encountering out
of distribution examples is only reduced and not averted completely1.

• Generalization towards common sense. In the current state, deep learning
systems are trained towards solving well defined tasks (e.g. playing Go, filling

1Data security topics such as membership inference or training data poisoning even rely on this.
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in blanks in sentences or learning categories of images); however, they rely on
human intervention to set up the task to be learned. Deep learning systems
should train a meta-task of common sense, to enable better decisions.

The goal of this thesis is to present a novel neural network architecture that ad-
dresses these flaws and shows both theoretically and experimentally, that it gener-
ates a fundamentally different representation. While solving all points raised above
is beyond the scope of a master thesis, we aim to answer one question:

How can we learn a more robust representation?

1.3 Contributions

This thesis makes the following contributions:

• We give an overview of concepts from machine learning and neuroscience to
bridge a gap between both areas. This contribution is presented in Chapter 2.

• We propose a novel neural network architecture, that improves the robustness
on computer vision tasks by introducing the notion of lateral intra-layer con-
nections. This contribution is presented in Chapter 3.

• We introduce a novel training paradigm for learning statistical correlations
from input signals using Hebbian learning. This unsupervised process takes
part in the forward pass rather than backpropagating an error through the net-
work. This contribution is also presented in Chapter 3.

• We conduct experiments to show the robustness improvements on the task of
recognizing handwritten digits. This contributions is presented in Chapter 4.

1.4 Organization of this Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 gives an overview of relevant literature and concepts, to bring both
fields of machine learning and neuroscience together. In addition, this chapter
allows to discuss the benefits of individual methods (especially Hopfield net-
works) and strengthens the foundation for the following chapters.

• Chapter 3 introduces the novel neural network layer architecture of the lat-
erally connected layer, which incorporates learning mechanisms that more
closely resemble how humans learn and form the connections in the brain. It
also contains reasoning for many of the design choices on the theoretical level
and gives room to discuss the design goal of the individual characteristics.

• Chapter 4 gives room to review the hyperparameters of our novel layer. A
multitude of experiments are performed to evaluate the performance of a tradi-
tional convolutional neural network against the same network with our layer.

• Chapter 5 summarizes the results of Chapter 4, discusses their significance and
shows which avenues are promising for future work.
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• The Appendix contains superfluous information about the codebase used for
implementing our experiments and the lateral connected layer. It also covers
our empirical studies to understand the inner workings of the novel architec-
ture and features visualizations of the experimental results of Chapter 4.



5

2

Fundamentals

In this chapter, we introduce a variety of fundamental concepts, which will be relev-
ant for the following chapters of this thesis. The goal is to cover ideas from neuros-
cience and machine learning, to build a common foundation.

2.1 Deep Learning

In its essence, deep learning is a statistical modelling technique that uses a large
number of labelled training samples (the dataset) to solve pattern recognition tasks
using neural networks with many layers. These neural networks are trained on vast
amounts of data, optimizing for a loss (or target) function using backpropagation
[13] and converging towards an optimal set of connection weights.

2.1.1 Neural Networks

The basis for artificial neural networks (ANN) comes from biology, aiming to recre-
ate the interaction of brain cells (neurons) with a mathematical model. Given that
this network structure of neurons and synapses governs the complexity of our hu-
man minds, an artificial replica should be able to achieve similar successes — while
in turn giving us the ability to further understand our own brain.

A first such model was the McCulloch and Pitts neuron model [14]. It takes
binary values and calculates the sum of its input. The neuron outputs 1 if the sum
reaches a threshold and 0 otherwise. Rosenblatt [15] later developed the Perceptron,
allowing inputs to be any real number. Furthermore, the Perceptron applies weights
to each input and calculates the linear combination of weights and inputs. Finally,
the activation function (here the binary step function) is applied to the sum.

FIGURE 2.1: An example of Rosenblatt’s Perceptron model [15].
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More generally, an artificial neural network is a network of neurons that have
synapse-like connections. Unlike in a graph of people and their relationships, neur-
ons in an ANN are grouped into layers, forming a directed graph structure without
cycles (recurrent neural networks (RNN) are an exception to this rule, as the out-
put is fed back into the neuron as part of its input). The term multilayer perceptron
(MLP) is often used to describe the general architecture of perceptron neurons ar-
ranged in layers. Any input travels successively through all layers in a fixed order
with neurons from layer l only receiving an input from the previous layer l − 1.
Every connection between two neurons has a distinct weight associated with it.
Equation 2.1 shows how the output of a neuron j is calculated. wi, j corresponds
to the weight between neuron i and neuron j, xi is the output value of neuron i. The
bias term bj moves the threshold away from zero, allowing for arbitrary thresholds.
The activation function f is then applied to the sum to generate the final output.

aj = f

(
(

n

∑
i=0

wi, jxi) + bj

)
(2.1)

The main goal of the activation function is to both act as a threshold and allow
the learned model to exhibit nonlinear properties. Early models generally used the
sigmoid function σ(x) shown in Equation 2.2, as it was well known from logistic
regression and possesses a smooth derivative. Depending on the task and the model
architecture, a variety of activation functions have shown to be effective1.

σ(x) =
1

1 + e−x (2.2)

Network Training

ANNs are trained using algorithms from three groups: supervised, unsupervised
(sometimes also referred to as self-supervised) and reinforcement learning. In super-
vised learning, tagged or labelled examples are presented to the model and its pre-
diction is compared to the desired output, calculating the error difference, and using
it as a signal to adapt the model’s weights to better produce the desired output. In
unsupervised learning, there are no labels available, so the models extract patterns in
the data. Lastly, reinforcement learning describes a constant loop between an agent
choosing actions based on an expected reward and an environment responding with
how the change affected the environment and what reward was earned.

Back to supervised learning, the connection weights need to be adjusted such
that for any given input signal the resulting output matches our expectations. The
input x is given to the network and fed through all the layers until an output ŷ is cal-
culated. Knowing what the output y should look like, we can calculate the observed
error e(y, ŷ) = y − ŷ. The error magnitude should ideally converge towards zero.
The network weights are updated according to the gradient of the error, pointing
in the direction of steepest ascent. By adjusting the weights towards the negative
gradient, the iterative training process successively approaches a better state. If the
network only consists of a single layer, this step is rather straight forward. How-
ever, many ANNs are built from a large number of hidden layers (i.e. layers that are
between the input and output layers) that each directly influence the calculation of
the next layer. Because of this strict dependency, the error gradient is propagated in

1While a detailed discussion on the different activation functions is out of scope for this thesis, we
refer the interested reader to a recent review article [16].
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reverse order starting from the output layer. This allows the weights to be updated
in each layer relative to the impact of the layer on the overall output.

Loss functions further improve the process of backpropagation, by changing
how large the error is in various configurations. Instead of only calculating the er-
ror by subtracting the output (or prediction) from the desired output, loss functions
can further increase or decrease the error term. For example, if a network is ex-
pected to return the probability of any presented image showing a cat, it would
output a probability between 0 and 1. When showing an image without a cat,
seeing a prediction probability of 1 versus a probability of 0.5 leads to an error of
e(0, 1) = 0− 1 = −1 and e(0, 0.5) = 0− 0.5 = −0.5. The first case is thus twice as
bad as the second case. Using the squared function f (x) = x2 for the error instead
yields e(0, 1) = (0− 1)2 = 1 and e(0, 0.5) = (0− 0.5)2 = 0.25. Predicting that there
is a cat with a 100% compared to 50% chance is now four times worse, which in turn
punishes the network more strongly and updating the weights harsher in the first
case. The mean squared error loss functions thus punishes outliers more harshly.

2.1.2 Convolutional Neural Networks

For visual tasks in particular, deep neural networks use convolutional layers in addi-
tion to fully connected layers. A neural network that employs convolutional layers
is referred to as a convolutional neural network (CNN). Instead of connecting each
input neuron with each output neuron (and assigning a weight to all connections),
the convolutional layer uses an image kernel that slides across the two-dimensional
input, calculating a local sum of the element-wise pixel product. Because the same
kernel is used for the whole image, a much smaller number of weight parameters
needs to be trained and managed. In addition, sliding the kernel across the image
allows this layer to pick up identical patterns in different locations of an image, giv-
ing it translational invariance. The output of a convolutional layer is called a feature
map. CNNs often train a large number of kernels in each of their convolutional
layers, producing as many feature maps as there are filter kernels.

FIGURE 2.2: Various feature activations across the first five layers of
a convolutional neural network with increasingly complex features

[17].

Furthermore, Zeiler and Fergus showed that CNNs converge to kernels with
structures of increasing detail, in relation to the position of the convolutional layer
across the path through the network [17]. That means, the first layer learns to re-
cognize very simple structures, such as edges and blobs. The second layer starts to
combine previous patterns to form corners or curves. Finally, very complex patterns
are formed that are starting to be recognizable by us as objects - for example a face
or and eye. Figure 2.2 by the authors illustrates it for the first five layers of a CNN.
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As with the perceptron model, the idea for CNNs stems from biology. Hubel and
Wiesel [18–20] discovered, that neurons in the cortex of cats spiked when certain pat-
terns were shown. They experimented with the receptive field of a cat’s vision and
encountered accidentally that the neurons would fire for edges of glass plates on the
projector. This led to the discovery, that some neurons specialize to very distinctive
patterns, such as edges in one particular orientation. Different neurons would only
activate for complicated patterns, so the authors introduced the idea of simple and
complex cells. This combination allows to build pattern detectors through a hier-
archical combination of simple cells aggregating up to complex cells. Fukushima
implemented these concepts with the Neocognitron [21], a model that uses convo-
lutional and downsampling layers. The convolutional layers gave the ability to de-
tect patterns even if they were rotated or shifted, while the downsampling layers
increased the receptive field across the network. LeCun improved upon the Neo-
cognitron by using backpropagation of errors for training [22].

2.1.3 Spiking Neural Networks

A variant that is closer to our biological neurons are spiking neural networks (SNN).
Their main difference is the addition of time. Neurons only fire once their poten-
tial reaches a threshold value. Generated spikes interact with other neurons that are
either excited or inhibited, adjusting their potential. When a triggered neuron’s po-
tential crosses the threshold, it also sends out a spike, which can result in a tidal wave
of spikes. As with our biological neurons, the potential is lowered after a spike as
not to constantly fire. Some models even go as far as to introduce a refractory period,
where neurons are completely prohibited from firing following a spike.

Among the most used spiking neural networks are the (leaky) integrate-and-
fire models [23] introduced over hundred years ago. Of course, back then these
models were not run on a computer but were built as an electrical circuit, where a
firing neuron would lose all its charge and reset to a default voltage. An interesting
difference to other neural networks is that the curve shape of the spiking voltage
(be it a circuit or a value on a computer) is not relevant, but instead the existence
or absence of spikes. The resulting output of neuron spikes is referred to as a spike
train.

2.2 Synaptic Plasticity

The term synaptic plasticity describes the ability of synapses to rewire and change
how strong their connection is. The main mechanisms are described below:

2.2.1 Hebbian Plasticity

Hebb introduced the often quoted saying that "cells that fire together, wire together;
cells that fire out of sync, lose their link" [24]. This is a succinct summary of Hebbian
plasticity, describing a feedback loop dependent on the firing timings in neurons.
Given that two neurons activate in short succession, their synapse grows stronger
and increases the probability for those neurons to fire together in the future. This
process is a positive reinforcing feedback loop that builds up momentum.
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2.2.2 Homeostatic Plasticity

Opposing the nature of Hebbian plasticity’s positive feedback loop, homeostatic
plasticity aims to regulate Hebbian plasticity by scaling synaptic weights in accord-
ance with the activity of the neuron and the overall network. The refractory period
also belongs to homeostatic plasticity, as it limits how quickly a neuron can fire
again.

2.3 Associative Memory

2.3.1 Hopfield Networks

Over 40 years ago, Hopfield introduced a recurrent neural network architecture [25],
which is now known as a Hopfield network. This new model is inspired by biolo-
gical organisms, where from a simple rule set complex behavior emerges (i.e. the
flocking behavior of animals [26] or the defensive wing strokes of honey bees [27]).

Hopfield networks [25] are an associative memory system, where binary states
are stored and retrieved. Hopfield networks have only a single layer, simultaneously
acting as its own output layer. Every neuron is symmetrically connected to every
other neuron in the layer. While the signals travel synchronously through a feed-
forward network, updates in Hopfield networks can be performed asynchronously.

The binary state vector V with values v ∈ {0, 1} acts both as input and output
of the network2. The connection strengths (or weights) between neurons i and j are
stored as wi,j. The weights wi,j are symmetric (i.e. wi,j = wj,i) and there exist no
self-connections (they are represented as zero strength connections wi,i = 0).

To store a set of n states Vs with s ∈ 1, ..., n, the weight matrix W is adjusted with
the formula in Equation 2.3. States can be added and removed independently, to
remove a state Vs simply subtract the term (2vs

i − 1)(2vs
j − 1) from the weights wi,j.

wi,j = ∑
s
(2vs

i − 1)(2vs
j − 1) (2.3)

Retrieving a state Vs requires "any subpart of sufficient size" [25]. For example,
a Hopfield network with 6 neurons and the stored patterns V1 = 101001 and V2 =
001100 should retrieve V2 based on similarity given an initial state of Vinitial = 000000.

Retrieval is done by multiplying the current state of the network with the weights
and evaluating, whether each neuron lies above or below a threshold ti. In Hop-
field’s original paper, the threshold is generally chosen to be zero. Equation 2.4
shows how the individual neuron values vi of neuron i are updated. To avoid situ-
ations where updates are stuck in an endless loop, updates should be performed
sequentially and in random order. Neurons, for which their state value is known to
be correct, can be omitted from the update process.

vi =

{
1 if ∑j,j 6=i wi,j vj > ti

0 otherwise
(2.4)

Unlike in the neural networks discussed previously, where the minimization of a
loss function is achieved through gradient descent and back propagation, Hopfield
networks define an algorithmic update rule. However, the goal of applying the up-
date is rule is also the minimization of a similar function, the Hopfield energy E,

2In the literature, the state values are often changed to be v ∈ {−1,+1} in order to visually simplify
the equations. However, these variants are functionally identical to the equations shown below.
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given in Equation 2.5. Every stored pattern represents a local minimum for the en-
ergy function and updating a state through the update rule reduces its energy, mov-
ing the current state closer towards a stored state. One can think of a memory foam
mattress, where patterns are pressed into the foam. The update rule then moves a
ball along downwards facing grooves until a (local) minimum is reached.

E = −1
2 ∑

i
∑

j,j 6=i
wi,jvivj (2.5)

Limitations of Hopfield Networks

Hopfield estimated the storage capacity — the number of patterns that can be stored
without errors — of his Hopfield networks to be C = 0.15N [25], "before error in
recall is severe". Later work has shown that 0.15N was an overestimate and its value
is closer to C = 0.138N [28]. Intuitively it is reasonable that each stored pattern
should have a sufficient distance between other patterns, such that any initial state is
closest to one particular stored pattern. The smaller these distances between patterns
become, the harder it becomes to differentiate which pattern should be retrieved.

If however, too many patterns are stored, the retrieved states can take the form of
so called spurious states. These are either the negation of a stored pattern or become
a combination of multiple stored patterns. Spurious states can be caused by a lack of
capacity, or when patterns are too similar. Research showed that the state retrieval
is more successful if states are less correlated or ideally orthogonal [29].

From a biological standpoint, the symmetry of weights wi,j and wj,i is a mathem-
atical trick to keep the numbers at bay. In practice, it is doubtful that neurons for
example in our brain connect with the same symmetric intensity for every synaptic
connection. Furthermore, there is no biological need to fully connect every neuron
with every other neuron available. For example, receptors in the retina are only
connected to other receptors in their local neighborhood, but not on a global scale.

2.3.2 Hopfield Network Extensions

Many extensions to the original Hopfield network have been published over the
years, from the continuous Hopfield networks [30] over the reduction of spurious
states [31] to an increase in storage capacity [32, 33]. Krotov and Hopfield adjusted
the energy function from F(x) = x2 to any polynomial function F(x) = xn, increas-
ing the storage capacity greatly [32]. For n = 2 they again calculate the known
capacity of C = 0.14N, but they show that for larger n, the capacity grows "in a
non-linear way" with n in the exponent as the major contributing factor of the fol-
lowing Equation 2.6 for the storage capacity. n is the exponent of the energy function
F(x) = xn and N represents the number of neurons in the Hopfield network.

C ≈ 1
2(2n− 3)!!

Nn−1

ln(N)
(2.6)

While the increase in storage capacity is formidable, intuitively using values for
n > 2 forces the Hopfield network to connect groups of up to n neurons that inter-
act at once (instead of just two in the original Hopfield network). A mathematical
demonstration of the n-th order interaction of neurons is shown in the Appendix
A.1.3.

Demercigil et al. took adjusting the energy function a step further and introduced
an exponential energy function F(x) = ex [33], by taking the limit of Krotov and
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Hopfield’s polynomial energy function [32]. Their paper goes on to rigorously proof
that their choice of ex is sound and retains the properties of the Hopfield network,
while increasing the storage capacity in proportion to c

N−1
4 [34]. The implications of

taking n to infinity are explored in the Appendix A.1.4.

2.3.3 Modern Hopfield Networks

Ramsauer et al. [34] extend the exponential energy function [33] to continuous state
patterns and introduce a novel update rule. Furthermore, they show that their new
update rule can be rewritten as the attention mechanism of the very successful Trans-
former architecture [35], to which the paper title "Hopfield Networks is All You
Need" pays homage to. The authors claim to reach an exponential storage capacity
of C = 2d/2 and provide additional information and proofs in their Appendix.

2.3.4 Introduction of Hidden Neurons

Krotov and Hopfield recently discussed the problem of using larger order energy
functions, where connections between neurons are no longer between pairs, but
between triplets (for the cubic function, or even larger sets of neurons for higher
order polynomials) [36]. Triplet connections are not feasible in a biological system at
large, so they suggest the incorporation of hidden units (as in deep learning). These
would allow to keep the improvements in storage capacity described in the previous
sections but bring synapses back to a biologically sensible pair-level.

2.4 Metamers & Foveated Imaging

Freeman and Simoncelli [37] coined the term visual metamer for sensory input to
the visual system, where a human observer is unable to distinguish between two
different images of the same scene. These metamer images use the fact that the
receptive field scales with eccentricity [38, 39]. In other words, we detect the highest
level of detail where we focus our eyesight and the further away something is from
our focal point, the less detail we perceive. If any changes are applied to an image,
we are much less likely to perceive them in away from our focus areas.

With foveated imaging, this characteristic of the human visual system is ex-
ploited. Using this technique, the images feature a higher level of detail around
a single or multiple focal points. The remainder of the image is kept at an progress-
ively lower level of detail, potentially saving bandwidth or storage space in general.
The name originates from the fovea in the center of our eye’s retina.

Figure 2.3 [37] shows examples of visual metamers. (a) shows an approximation
of the receptive field sizes, (b) is the original image of the scene, (c) illustrates a
strongly foveated and (d) a less strongly foveated metamer of the same scene.

Psychophysical experiments have been conducted with those images [37], where
participants were shown white noise and then two different metamers (for example
(b) and (d)) with white noise in between. They were then asked if the two images
were the same or different, allowing the authors to find a threshold at which it was
not possible to differentiate between two different images anymore. This threshold
encapsulates a many-to-one mapping, where all images with changes that are smal-
ler than the threshold are mapped to the same intrinsic representation in our mind.
If we translate this idea into a latent vector representation for images, there exists a
volume around each point, for which all images are perceived identically.
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FIGURE 2.3: Example images of metamers as shown by Freeman and
Simoncelli [37]. The original image (b) is unaltered, samples 1 (c) and

2 (d) are foveated to different degrees.

2.4.1 Object Recognition Through Hierarchical Building Blocks

Biederman [40] views object recognition as a process dealing with components. These
components are defined through 36 primitive shapes (cylinders, spheres, wedges,
etc.), called geons. Differentiating between the geon shapes is done primarily through
five invariant or non-accidental properties (NAPs): curvature, collinearity (straight
lines), symmetry, parallelism and cotermination (edges ending in the same vertex).
In contrast to the NAPs are metric properties (MPs), such as length, aspect ratio, in-
tersection angles or the degree of curvature. MPs can vary greatly between objects
of the same class, meaning a strong object recognition method should be invariant
to metric transformations. Biederman even hypothesizes, that if the arrangement
of geons can be captured, the original object can be recognized. From this idea, the
unique combination of geons would hierarchically identify any object in our world
and be a prototypical unique identifier — a kind of object metamer.

2.4.2 Texture Synthesis: An Application of Metamers

Gatys et al. [41] presented a breakthrough in texture synthesis. They presented a
new representation of texture images, which is calculated from pixel-wise statistical
measurements (primarily correlations) between different layers and feature maps of
a CNN (a VGG19 [42] to be precise), called the gram matrix Gl at layer l. They have
found that for texture images with very similar gram matrix values, images display
the same kind of texture (see Figure 2.4 below for examples of this).
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To synthesize a new texture of i.e., gravel, the gram matrix Gl for the original im-
age is calculated by running it through their CNN. A white noise image is then fed
through the same network and its gram matrix Ĝl is also calculated. Through gradi-
ent descent, the necessary changes to the input image are back propagated through
the network to iteratively converge Ĝl to become identical to Gl , at which point the
white noise image has morphed into an image of similar looking gravel. Therefore
I hypothesize that the gram matrix can be understood as a measurement for tex-
ture metamers, where similar textures are clustered together in the gram space. This
idea is not necessarily new, over half a century ago Julesz showed that two different
images of the same type of texture have very similar n-th order statistics [43].

For calculating the gram matrix Gl , the authors generate a n× n matrix, where
n is the number of feature maps of layer l. Each entry Gl

i,j represents the sum of
pixel-wise products, shown in Equation 2.7, across both feature maps i and j. The
Fl

i,k value stands for the pixel of network layer l in feature map i at position k3. The
calculated sum in Gl

i,j is only bounded by the size of the feature maps in question.
Individual values of the gram matrix are uninterpretable on their own and only gain
meaning in relative comparisons. Even so, the authors showed that this measure-
ment is meaningful enough to synthesize entirely new versions of the input texture.

Gl
i,j = ∑

k
Fl

i,k ∗ Fl
j,k (2.7)

FIGURE 2.4: Original input image (bottom) and the synthesized tex-
ture (top), starting from a white noise image and using the gram mat-

rix differences for gradient descent [41].

Figure 2.4 from the author’s paper [41] show four example of this synthesis4,
where the bottom image is given to the network and the top image is synthesized
from white noise. This technique works very well for textures without global struc-
tures, as shown in the first three columns of Figure 2.4. The right most column how-
ever illustrates a lack of global awareness, where large patches of the input image are
textured together, losing a large degree hierarchical information in the process. The

3In practice, the feature maps are two-dimensional and k iterates over both dimensions, encom-
passing all pixels of the feature map.

4We encourage the interested reader to take a look at the author’s website with hundreds of addi-
tional astonishing examples here: http://bethgelab.org/deeptextures/

http://bethgelab.org/deeptextures/
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image shows a room with two screens on the wall and two persons standing next to
them. The synthesized image loses the notion of a room and arranges patches ran-
domly. Attentive readers can spot the same loss of global arrangement in the other
three images as well, where the yellow label ’source: Simoncelli’ is moved across the
image, partially obstructed and made unreadable in the first three columns.

The authors also conducted an experiment to investigate the outcome of exchan-
ging the white noise initialization with structurally rich images, such as faces, leads
to interesting outcomes, where the global structure of the to-be-synthesized image
is kept and back propagating its gram matrix performs a mixture between texture
synthesis and style transform. An example is shown in Figure 2.5 below.

FIGURE 2.5: Performing texture synthesis on a profile picture of this
thesis’ author (center), using an image of a cloudy sky (left) and a

motherboard (right) instead of white noise.

2.5 Related Work

2.5.1 Lateral Connections

Lateral connections have been used for spiking neural networks (SNN) where the
biology shows exemplary how and where they should be implemented. It is less
clear, how they should be employed in perceptron-based feed forward networks.

SNN have not seen the level of success compared to regular ANN or CNN ar-
chitectures. An open problem remains how these models should be trained in a
supervised setting, as current methods (e.g. Hebbian learning and spike-timing-
dependent plasticity (STDP) [44]) are ultimately unsupervised. First attempts have
been made to train a SNN in a supervised fashion through backpropagation [45].

Because of the similarity with our brain, lateral connections in SNN are a natural
choice to connect neurons and propagate spikes locally, achieving good results for
digit recognition [45, 46]. The authors of [46] also observe, that the lateral inhibition
stabilizes the learning process such that no performance degradation can be seen
for numbers of iterations where overfitting normally is observed. This finding gives
credence to the hypothesis that lateral connections increase the robustness.

In feed-forward networks, lateral connections were proposed as part of a fully
connected hidden layer [47]. Static connections are added from every j-th neuron to
every j + 1-th neuron to force a dependence on neurons in hidden layers. Their goal
is to mitigate the herd effect [48], where neurons focus on reducing the most domin-
ant error at the cost of less frequent errors, e.g., by focusing on the most prominent
class in an imbalanced dataset. Added lateral connections were shown to be effective
at making different hidden units target other sources of errors to mitigate.
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2.5.2 Learning Algorithms

Backpropagation is the de-facto standard algorithm for training a neural network.
Alternatives are the previously described Hebbian rule or genetic algorithms, where
weights are evolved by trying multiple configurations and breeding the best per-
forming ones to form a new generation of configurations [49].

Attempts have been made to introduce algorithms that propagate forward, for
example in reinforcement learning [50]. The authors inject observed errors from the
environment (e.g. steering too far from the road to be followed) into the input and
calculate the errors on each layer alongside the signals. Weights are updated using
the Hebbian learning rule while calculating the output of the network.

Another very recent publication uses Hebbian updates to train a neural network
during the forward pass in a supervised setting [51]. Their approach reduces the
necessary structural complexity of backward connections and removes the sequen-
tial nature of backpropagation-based learning where a backpropagated update step
always follows a forward pass. In their forward signal propagation (FSP) learning
algorithm, labels are passed through the same network as the input to generate tar-
gets at every level. The loss Li(hi, ti) is calculated between the output hi of the i-th
layer and the target ti at layer i, without the need to wait for all subsequent layer’s
calculations first. Even though FSP does not outperform traditional backpropaga-
tion in their experiments, their results show a significant improvement in both time
and memory, by rough factors of 2 and 4, respectively.
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Method

In this chapter we present our prototype architecture, by first summarizing our in-
spiration, and second describing the processes for training and inferencing. The
model outlined in this chapter is primarily based on implementing the ideas of
Christoph von der Malsburg outlined in [52, 53]. While this thesis does not fully
implement all aspects of their works, it should be seen as a steppingstone in explor-
ing the possibilities of the proposed ideas in generating a different representation.

3.1 Inspiration

Many cells in the visual system of us humans either exhibit short or far-reaching con-
nections, interacting with a local or global context of other cells. Classically, every
neuron in an artificial neural network layer is only connected to neurons of the pre-
vious and following layers. Our goal is to replicate the behavior of the visual system,
by breaking the typical feed-forward architecture of artificial neural networks and
introducing intra-layer connections that connect neurons in local neighborhoods,
that in turn correspond to local regions in the input images.

According to [52], excitatory connections make up the representation of memory
in the brain. Synaptic plasticity governs the strength of these connections and con-
trols it by up- and downscaling synapses in relation to their activity. As such, memor-
ies can be seen as subgraphs in the network of synapses, where existing memor-
ies build hierarchically upon the pre-existing structure of others. Network self-
organization is the process to build this network structure of neurons that fits the
statistical characteristics of the passed signals best. Each update is part of a larger
feedback loop mechanism — Hebbian plasticity — where pairs of neurons that ac-
tivated in close proximity (both geographically and temporally) increase their con-
nection strength as well as their probability to activate in the future.

Implementing this mechanism of network self-organization in a deep learning
model requires a new kind of neurons that exhibit the ability to form lateral con-
nections. These connections should only allow to connect to neurons from the same
layer and in a small local neighborhood. Generally speaking, it is not obvious what
the local neighborhood represents for an arbitrary deep learning layer, so we will fo-
cus on the locality in a convolutional layer, where pixel values at similar coordinates
represent signals from similar regions of the given input. The primary assumption
is, that any input to our laterally connected layer (LCL) will be the feature map
output of a convolutional layer (as part of a much larger CNN like the VGG19 archi-
tecture [42]) or describe similar characteristics (e.g. Gabor filters). Our eyes receive
the input on the retina in a two-dimensional grid as well, so the limitation to work
on feature maps is comparable to the limitation of our own visual system.

Our implementation takes inspiration from the proposed implementations [52],
and in particular what they call rapidly switching connections: multi-cellular units.
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Multi-cellular units (MCU) simply represent a set of identically repeated neurons.
Each repeated neuron can have connections with the same set of different MCU
neurons, but with different connection strengths. When activated, all repeated neur-
ons in an MCU receive signals via their connections and only the strongest repeated
neuron is chosen to be activated in a Winner-Take-All (WTA) fashion (see Figure
3.1). This allows the same neuron feature to be part of varying kinds of substruc-
tures through variable connectivity and allows for overlap without interference.

FIGURE 3.1: Example of four multi-cellular units, each containing
three repeated neurons. In this configuration, the dark blue, green,
and purple neurons are activated due to their connection strengths.

3.2 Forward Pass Learning

Typically, neural networks are trained by backpropagation of the error gradients
through the layers in reverse direction. Since network self-organization does not rely
on a target state that is to be converged onto, but rather the statistical properties of
the input, we propose updates to our novel architecture to be performed during the
forward pass in an unsupervised fashion. By comparing the sensory input and find-
ing correlations the connections between cells and their strengths will be updated
through a Hebbian learning process. In our particular case where the input consists
of feature maps from a convolution layer, we can directly calculate pixel-wise de-
pendencies and use this information to build the lateral connections. Since our LCL
is a subset of the full network, this forward pass learning and backpropagation of
errors directly influence each other and will have to be aligned carefully.

3.3 Prototype Description

The following section outlines the prototype architecture of our novel laterally con-
nected layer (LCL), named after its main differentiating factor — the lateral, intra-
layer connections. Figure 3.2 gives an overview of the relevant processing steps
inside the LCL, though some steps are only performed during the training phase.

FIGURE 3.2: Overview of the training and inference process of the
laterally connected layer (LCL).

Our LCL implementation is based on two core concepts, the idea of connections
between neurons of the same layer (referred to as lateral connections due to their
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orientation orthogonal to the information flow through the layers of a deep learn-
ing model) and allowing every neuron to be replicated several times, similar to the
multi-cellular units in [52] (referred to as multiplex units). Lateral connections are
represented through kernel filters, similar to the kernel filters of convolutional lay-
ers. That allows us to benefit from years of research in understanding and efficiently
computing said filters, as well as fully utilizing current deep learning hardware (e.g.
GPUs and TPUs). Furthermore, we automatically earn a degree of translational in-
variance where a pattern has not to be shown in every possible location. The kernel
filters that govern the lateral connections are formed to represent statistical correl-
ations between provided features and form the basis of a consistent network of in-
formation flow. Given the popularity of the Transformer architecture [35], we hypo-
thesize that our lateral connections are comparable to the attention mechanism.

As mentioned in Section 3.1, any input given to this type of layer is expected to
describe a set of two-dimensional feature maps. We expect the LCL to be adaptable
for different kinds of features in the future but see it as an additional step outside the
scope of this thesis. Furthermore, the activation function of the convolutional layer
just before the LCL is exchanged for the hyperbolic tangent function, simplifying the
numeric ranges that can be achieved by various calculations as part of the LCL.

3.3.1 Populating Multiplex Units

Multiplex units increase the space for possible lateral connections, creating addi-
tional possibilities to combine the same feature in completely different sub-networks.
Because the connections are completely independent, a feature A can have very little
influence on feature B in one configuration and completely dominate in combination
with a different set of multiplex cells. In addition, it is biologically impossible for a
neuron to constantly fire. While we do not strictly implement a refractory period for
our neurons, spreading the work across cells reduces their individual duty cycle.

All N identical repetitions of a feature (referred to as multiplex cells) form a mul-
tiplex unit, for which only one cell can finally be activated through the selection pro-
cess described later in this section. A multiplex unit can be seen as a meta-neuron,
which does not activate one of its cells for each and every input signal. It is thus per-
fectly acceptable that a multiplex unit chooses not to activate at all. Multiplex cells
abstractly represent a neuron that activates given a feature, but in practice we rep-
resent each multiplex cell as a feature map activation. That means, each and every
feature map given to the LCL as an input is represented through a multiplex unit,
that repeats the feature map N times to populate its multiplex cells.

3.3.2 Calculating the Lateral Impact

Before calculating the influence of lateral connections, we need to describe the ker-
nel filters’ desired behavior. Lateral kernel filters connect two multiplex cells from
different units and represent a directional relationship between the source feature
map and the target feature map. Applying the convolution onto the source feature
map outputs the signal of the target feature map that should be strengthened.

Figure 3.4 shows how a kernel could look like, given that feature map A and fea-
ture map B are active together (in the Hebbian sense) and thus strengthen the pattern
seen in target feature map B. In order to simplify the example, all cells marked with
1 are active and all empty cells are inactive (0). We now iterate over all pixel po-
sitions of feature map B and compare the visible part of feature map A relative to
this position, remembering which pixels are activated relative to the current pixel to



20 3. Method

FIGURE 3.3: Example of populating four multiplex units with three
cells each (lower part of the figure) from the input feature maps given

to the LCL (top part of the figure).

form a partial kernel. The partial kernels are shown with a blue and orange header
for the two corresponding pixels of feature map B. Summing up all partial kernels
gives the final kernel, describing the lateral connection from A to B.

FIGURE 3.4: Example of a 5 × 5 lateral kernel that is formed to
strengthen the pattern in feature map B given the pattern of feature
map A. The partial kernels show the pattern of feature map A in
relation to every strongly activated pixel in feature map B (partial

kernels), as well as the resulting final kernel "A->B".

Given the kernel, we should be able to reproduce the pattern of feature map B
just from feature map A by performing a convolution using the lateral kernel "A->B".
Figure 3.5 visualizes this convolution. On the left side of the figure, feature map A
is shown and in the middle is the kernel "A->B". When calculating the convolution
operation, we get the output on the right side of the figure, which we refer to as the
lateral influence of feature map A on feature map B. While a certain degree of blurriness
is visible, we calculate a value of 0.7 at the pixel positions where feature map B is
activated, while all other positions reach at most 0.3. In this example we only use a
single lateral connection, but our LCL stabilizes its pattern using a larger number of
lateral influences and thus performs as an ensemble of different lateral influences.

The lateral impact is similar to the lateral influence, but instead of generating the



3.3. Prototype Description 21

FIGURE 3.5: Example of applying the learned lateral kernel to feature
map A. The resulting output of the convolution strongly correlates to

the activated pixels in feature map B (see Figure 3.4).

convolution as a feature map, we sum up all activations in the lateral influence1.
This scalar value describes how strongly a feature map stabilizes another and is a
valuable tool in comparing different multiplex cells inside the same multiplex unit.

Unlike in later steps where the convolution is only performed with lateral con-
nections between active multiplex cells, the lateral impact is calculated for all avail-
able cell combinations, as it is at the foundation of the multiplex selection process.

3.3.3 Adding Noise

Repeating a feature multiple times will result in identical signals. Because of this,
initial lateral signals are very close in strength because the lateral kernels have not
had the time to specialize yet. Since only the active multiplex cells and their chosen
connections are updated, it is vital that a certain degree of randomness is introduced
to break the symmetry in every multiplex unit. Of course, the long term vision is
that the multiplex selection process becomes deterministic and chooses to activate
those cells which specialized on the given input signals. However, getting to this
point takes time and an equal opportunity has to be given to all cells to specialize2.

Random noise sampled from a uniform distribution causes all multiplex cells to
be chosen at random for initial updates. By doing so, we artificially spread patterns
across different combinations of active multiplex cells and ensure that a larger part
of the available state space is used. The magnitude of the noise is controlled by the
η parameter. With increasing number of training iterations, the η is slowly reduced
to zero until the input signals fully deterministically decide which sets of multiplex
cells are activated. At inference however, this step is skipped.

3.3.4 Selecting Active Multiplex Cells

After calculating the lateral impact of all possible connections and the addition of
noise, we are able to start choosing for each multiplex unit, which cell is activated.

Figure 3.6 shows an overview of how the lateral connections calculating the lat-
eral impact. Since all multiplex cells can be the source and target feature map of a

1The inspiration is drawn from the gram matrices used in the popular texture synthesis method by
Gatys et al. [41], summarized in Section 2.4.2.

2This process has similarities in reinforcement learning, where models initially act randomly and
slowly converge on acting according to the learned weights (exploration vs. exploitation).
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lateral connection, we display every multiplex cell once in the left column as source
and once on the right side as a target feature map. We only portray the connections
for a single target feature map (marked as a yellow circle with a blue border). Dot-
ted lines represent connections that are never used, due to the Winner-Take-All con-
straint on multiplex units. On either side of the feature maps, we added examples
of what they would look like for an input image showing the digit 9.

FIGURE 3.6: Visualization of the possible lateral influences between
source feature maps (left column) and target feature maps (right
column). For visual clarity, only the connections towards a single
target feature map are shown. Every feature map is drawn both as
source (left column) and target feature map (right column). Lateral
connections are characterized by a filter kernel, shown for three con-
nections. To give an example of the activations in these feature maps,
the feature maps of the digit 9 in the MNIST dataset are shown next

to every multiplex unit.

For every connection in Figure 3.6, we hold a k× k sized filter kernel (in our ex-
ample, k = 5) that is applied to the source feature map to strengthen the learned
pattern in the target feature map. The sum over the resulting feature map — the
lateral impact — governs, which connections remain active and which ones are de-
activated. For every multiplex unit, only the cell’s connection with the highest lat-
eral impact is kept and all others are set to zero. In Figure 3.7, we demonstrate the
updated example from Figure 3.6 after removing all inactive connections.

3.3.5 Hebbian Update of Lateral Connections

The core of the LCL lies within the lateral connections, represented, and learned as
convolutional kernel filters. Atypically though, the update does not depend on a
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FIGURE 3.7: Visualization of selecting the most active lateral connec-
tions according to the lateral impact for a single target feature map.
Compared to Figure 3.6, only the active connections are still shown.
The selected multiplex cells in the source column are shown in bold
colors. Note that not every multiplex unit (here green) needs to have

an active connection to every target.

backpropagated error, but rather the simultaneous activation of two feature maps at
the same position. The central pixel of the lateral kernel measures how often both
feature maps (source and target) are active at the same time - similar to the value of
the gram matrices in [41]. For all other pixels, the source feature map is shifted to
match the relative position of the kernel pixel relative to the central pixel.

We call this update Hebbian, in the sense that when feature maps are both ac-
tivated simultaneously in the same pixel locations, their lateral kernel value in-
creases. If only one or none of them are active, their value decreases. By this process,
we follow the Hebbian rule where cells that often activate together associate and
strengthen their connection, while their connection strength decreases for all other
cases. For the lateral multiplex cells to be active, it is thus not only necessary that the
input must be right, but also the surrounding environment.

The Lateral Kernel

More concretely, the lateral kernel K is a four-dimensional structure containing the
two-dimensional kernels between two multiplex cells (or feature maps). The first
two dimensions describe the source and target cells, while the last two dimensions
hold the height and width of a kernel. The size of the two-dimensional kernels is
given by k = 2 ∗ d + 1, where d describes how large the distance between pixels can
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be at most to influence another pixel laterally and F is the set of feature maps (in-
cluding all n repetitions). Following these instructions, we arrive at shape for K of
[FSource, FTarget, kHeight, kWidth]. Given feature maps a and b ∈ F and pixel posititions
x ∈ kHeight and y ∈ kWidth, the top left pixel on the kernel defining the lateral connec-
tion "b -> a" is given by Kb,a,0,0. The directionality of these connections is important
since they are not expected to behave symmetrically (and neither do so in practice).

Updating K requires to iterate over all lateral connections from active multiplex
cells and generate the pixel-wise product of the source and target feature map pairs,
defined by the lateral connection. For kernel sizes k larger than zero, the source
feature maps must be shifted across to match the relative position of every pixel in
the [k × k] lateral connection kernel. For example, with a 3× 3 kernel, calculating
the top left pixel requires the source feature maps to be shifted one pixel to the left
and up, with the target feature map unshifted to calculate the diagonal influence.

Equation 3.1 shows how the changes to the lateral kernel are calculated using a
Hebbian update. A represents the activations given to the LCL after setting up the
multiplex cell repetitions and has shape [F, H, W], where H and W are the height
and width of the feature maps, respectively. Please note that the activations are
zero padded with a d-pixel wide border around the feature maps (i.e. the last two
dimensions H and W). The padding enables convolutions centered at border pixels
with source and target feature map pairs translated relative to each other. We leave
out the padding in Equation 3.1 in order to reduce the complexity of indexing A.

∆Kb,a,x,y =
1

HW

H−1

∑
i=0

W−1

∑
j=0

ASource
b,i−d+x,j−d+y ∗ ATarget

a,i,j (3.1)

The changes ∆K are zero for all inactive lateral connections and all nonzero val-
ues are scaled to the range [0, 1], though a value of one would only be achieved if
both feature maps are entirely made up of ones. To simplify the combinatorial pos-
sibilities for all numbers involved, we assume that A ∈ [−1, 1] and K ∈ [0, 1]. This
can for example be achieved by changing the activation function of the previous
convolution layer to the tangens hyperbolicus function, instead of the in convolu-
tional layers more commonly used ReLU function. In Equation 3.2, the calculated
changes ∆K are updating the kernel K, with t indicating the time step. The update is
only performed on active lateral connections (see Section 3.3.4), otherwise the kernel
values would further decrease over time and introduce a passive forgetting mech-
anism. α is the kernel learning rate, controlling how quickly changes are impacting
the LCL. We expect this hyperparameter to behave similarly compared to learning
rates encountered in other machine learning algorithms.

Kt+1
b,a =

{
(1− α) ∗ Kt

b,a + α ∗ ∆K if lateral connection is selected
Kt

b,a otherwise
(3.2)

3.3.6 Generating Output from Active Multiplex Cells

The final output calculation is very similar to the process of calculating the lateral
impact outlined in Section 3.3.2. However, we only use the lateral connections that
survived the multiplex selection process of Section 3.3.4. The lateral influences for
every active target multiplex cell are summed up to form the result. Because we
choose one multiplex cell per multiplex unit, we return the same number of feature
maps as are given to the LCL (i.e., every multiplex units yields one feature map).
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The output of the LCL forms a small ensemble of multiplex cells, where active
regions correspond to a consensus across all lateral influences of said feature map.
Equations 3.3 and 3.4 demonstrate how the output O is generated by calculating the
convolution result L of all lateral kernels and then is scaled to match the mean of
the input activations A. We do not believe this scaling relative to the input is a long-
term solution, but we found measurable improvements after starting to use it as the
output would otherwise become too small for subsequent layers.

La,x,y =
|F|−1

∑
b=0

Conv(Ab, Kb,a) =
|F|−1

∑
b=0

(
kH

∑
i=0

kW

∑
j=0

Kb,a,i,j ∗ Ab,x+i,y+j

)
for all active lateral connections Kb,a

(3.3)

Oa,x,y = La,x,y ∗
∑a ∑x ∑y La,x,y

∑b ∑i ∑j Ab,i,j
(3.4)
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4

Experiments

4.1 Datasets

We chose the MNIST and MNIST-C datasets as they allow us to test our novel LCL
architecture on a simple but well understood benchmark, while providing a large
array of corruptions to evaluate the different representation learned by our layer.

4.1.1 MNIST

The MNIST dataset is a very famous benchmark of handwritten Arabic digits (zero
through nine). The goal is to classify each image and assign the correct digit. The
MNIST dataset contains 60′000 training and 10′000 test samples. All images are
28 by 28 pixels large, each digit is centered and all pixel values are black or white
(corresponding to zero and one). Examples of such images are shown in Figure 4.1.

FIGURE 4.1: Examples from the MNIST dataset across all digits.

Because of the small size and ease of understanding, the majority of students
and academics will have seen and played with this dataset in one form or another. It
became famous through the success of LeCun et al. [22] over thirty years ago, when
they demonstrated convolutional layers for the recognition of handwritten digits.
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4.1.2 MNIST-C

The MNIST-C dataset [54] was created in order to evaluate the robustness of com-
puter vision algorithms on a benchmark that is considered to be solved by the com-
munity1. However, the authors of the MNIST-C dataset argue that "models lack ro-
bustness to small translations of the input, small adversarial perturbations, as well
as commonly occurring image corruptions such as brightness, fog and various forms
of blurring" [54]. Examples of the corruptions in MNIST-C are shown in Figure 4.2.

FIGURE 4.2: Examples of the 31 corrptions in the MNIST-C dataset.
The top left sample shows the clean reference image from MNIST.

4.1.3 Relevance of MNIST-C Corruptions

The authors of the MNIST-C dataset used four principles to create the dataset:

• Non-triviality: The corruptions should have a significant impact on the per-
formance of modern convolutional networks and not be simply overcome by
what the authors call "naive data augmentation".

• Semantic preservation: Even though modern convolutional networks should
be fooled, it remains important that humans are still able to recognize the de-
picted digits. The authors verified this claim by visual inspection.

• Realism: All corruptions should have a legitimate chance to be encountered in
the real world. They attribute the corruptions to "perturbations to the camera
setup, environmental factors, or physical modification".

• Breadth: Even though they published 31 variations of image corruptions, the
authors only used a subset of 15 to conduct their evaluations as to reduce over-
lap in checking corruptions with the same kind of error.

The 31 corruptions provide a broad spectrum of challenges on which to test our
novel LCL architecture. However, we do not expect the LCL to be able to cope with
all corruptions equally. Depending on the receptive field (given by the previous

1Error rates have been shown to reach below 1% on MNIST [55] and an extended MNIST dataset
(EMNIST) [56] has been released to increase the difficulty of the dataset.
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convolutional layers and the size of the lateral kernels), especially global changes to
the images will pose a potentially insurmountable challenge. By contrast, the LCL
should perform well with small perturbances (e.g., locally applied noise).

For this reason, we categorize the corruptions in the following groups. Short
summaries of what each corruption does are taken from [54]. The scripts to generate
all corruptions can be found in their GitHub repository2.

Local Noise

Corruptions in this group only apply changes to the pixels accounting for the digit
but leave the background unchanged. This fact alone reduces the difficult of the
corruptions in this group, as the errors are clustered at the digit markings.

The main challenge in these corruptions is that the pixel values either do not
reach the same magnitude due to blurring or the lines are not continuous with large
differences between neighboring pixels. We expect the LCL to perform best (across
all groups) on this particular set of corruptions, given that the lateral connections can
strengthen very small discrepancies on the pixel level. Futhermore the LCL does not
have to deal with random spurious signals in the background areas.

Figure 4.3 shows examples from the nine corruptions in this group. They are:
canny_edges (applying the Canny edge detector), defocus_blur (replicating a cam-
era out of focus), gaussian_blur (using Gaussian blur), glass_blur (recreating the
view through glass), motion_blur (applying blur along a randomly chosen line),
pixelate (scaling the image down and then back up), shot_noise (random corrup-
tions from a Poisson distribution), speckle_noise (random corruptions from a nor-
mal distribution) and zoom_blur (changing the focal length during capture).

FIGURE 4.3: MNIST-C examples of the local noise group.

Global Noise

Unlike the local noise group described above, the corruptions in this group not only
affect the digit but are applied on the whole image. An argument could be made
to put the spatter corruption into the group of superimposed objects. However, we

2https://github.com/google-research/mnist-c/blob/master/corruptions.py

https://github.com/google-research/mnist-c/blob/master/corruptions.py
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believe the spatters to be more similar to noise, since they exhibit random patches
rather than identical objects that are only translated and oriented differently.

A different argument could be made that the LCL is exposed to Gaussian noise
during the training process. However, our added noise is applied to the lateral im-
pact rather than the input of the whole network and does not directly impact the
output of the LCL (but rather the multiplex selection process). We expect the LCL
to struggle with these kinds of corruptions, as they require a large receptive field,
which would result in a stronger low-pass (or blurring) effect on the produced fea-
ture maps. In addition, all the noisy activations in the background can stabilize
random net fragments, rather than the ones activated by the digit sections alone.

In Figure 4.4, we show examples of the corruptions in this group. They are:
fog, frost (added patterns of real frost), jpeg_compression (adds the artefacts of a
lossy JPEG compression), gaussian_noise (applies Gaussian noise), impulse_noise
(adds randomly replaces pixels with a constant value), pessimal_noise (adversari-
ally trained noise), snow (simulates falling snow) and spatter (adds random patches).
pessimal_noise was created by the dataset authors to adversarially add noise calib-
rated specifically to one of their models and is only kept for completeness.

FIGURE 4.4: MNIST-C examples of the global noise group.

Image Transformations

In this group, the corruptions alter the shape of the digit. Depending on the variance
of the digits written in MNIST, there exists a good chance that many of the trans-
formed digits were seen during training through a different handwriting. We believe
the LCL has no mechanisms to perform significantly better than a typical convolu-
tional layer as the statistical properties of the digits remains largely untouched.

The transformations in this group are: elastic_transform (applying an affine
transformation), rotate (rotating around a randomly chosen point), scale (downscal-
ing while preserving the aspect ratio), shear (displacing the digit with increasing
magnitude along a line) and translate (shifting the digit to a different position).

Superimposed Objects

This group contains objects of a fixed type (lines, dotted lines, and zigzag lines)
which are placed on top of the image in random orientations and locations. This
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FIGURE 4.5: MNIST-C examples of the image transformations group.

group is very challenging, as there exist many possibilities to turn one digit into an-
other by adding lines in specific spots (for example turning a one into a seven into a
five, as can be seen in Figure 4.6). Correcting these corruptions likely requires a large
receptive field. We believe the LCL will struggle with this kind of corruption, as it
goes beyond denoising. Furthermore, the continuous lines share statistical proper-
ties with the lines used to draw the digits, making it hard to detect whether a line
belongs to a digit or was randomly added by the corruption.

All three corruptions are shown in Figure 4.6. They are: dotted_line, line and
zigzag. The main differences between the corruptions are the shape (straight vs.
zigzag) and whether the lines are continuous or not (dotted_line vs. line).

FIGURE 4.6: MNIST-C examples of the superimposed objects group.

Global Image Settings

In this group, all corruptions change the global image statistics (e.g., brightness and
contrast), that could be reversed by applying pre-processing step that take into ac-
count the average brightness or contrast. Since this group always applies their trans-
formations on the whole image (or in the case of stripe a large majority), we believe
the LCL will be affected comparable to a convolutional network.

The six corruptions in this group are shown in Figure 4.7. They are: bright-
ness (increasing the brightness of the whole image), contrast (reducing the contrast
across the whole image), inverse (inverting all pixel values), quantize (reducing the
color range by rounding pixel values), saturate (increasing the saturation) and stripe
(inverting the pixels in the left and right most quarter of the image).

4.2 Model Overview

In this section, we describe the models used in our experiments. In order to measure
the effectiveness of our LCL architecture, we compare between a small convolutional
neural network and the identical network with an added LCL.
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FIGURE 4.7: MNIST-C examples of the global image settings group.

FIGURE 4.8: Schematic view of the models used in our experiments.

4.2.1 TinyCNN

The TinyCNN is designed to represent a very small convolutional neural network
(hence the name). Input images are given to a convolutional layer with ten feature
maps, followed by the tangens hyperbolicus activation3. A max pooling layer fur-
ther increases the receptive field of the network. The output of the pooling layer is
flattened and fed to a fully connected layer with 100 neurons. Finally, the output
layer assigns probabilities for the ten classes of digits found in the MNIST dataset.

We differentiate between the fully trained (FT) version, where the TinyCNN is
trained completely from scratch, and the pre-trained (PT) version, where the convo-
lutional layer is initialized with the best model across all fully trained TinyCNNs.
When the convolutional layer is pre-trained, its weights are frozen and only the re-
maining part of the model (the fully connected layer) is trained. Figure 4.8 depicts
and overview of the TinyCNN’s building blocks. Marked in green is the convolu-
tional layer, for which the weights are frozen in the pre-trained variant.

3A numerical simplification compared to ReLU, for more details see Section 3.3.5.



4.3. Experimental Setup 33

4.2.2 TinyLateralNet

The TinyLateralNet is a copy of the TinyCNN, where the only difference is an ad-
ded laterally connected layer before the fully connected layer. Analogous to the
TinyCNN, we also differentiate between fully trained (FT) and pre-trained (PT) ver-
sions, where the convolutional layer’s weights are taken from the best fully trained
TinyCNN in the latter version (the same model checkpoint as for the pre-trained
TinyCNN). Figure 4.8 shows an overview of the TinyLateralNet components.

4.3 Experimental Setup

In our experiments, we use the official training and test sets of MNIST4 and the static
MNIST-C dataset5. The training set consists of 60’000 samples with 6’000 samples
per digit class, the training set contains 10’000 samples with 1’000 per digit. We use
5
6 of the training set for training and 1

6 as the validation set. All models were trained
using early stopping, terminating after no improvement on the validation loss for
three epochs and using the model weights at the lowest validation loss.

The magnitude of the added noise in the LCL is kept at η for half an epoch before
it is reduced linearly to zero towards the end of the first epoch. The lateral kernel
is initialized to weights drawn from a uniform distribution ∈ [0, 1) and then multi-
plied by 0.02. This value has been empirically found6 to be smaller than the mean
value of change introduced to the lateral kernel by ∆K. In theory, this allows the
kernel to start in a non-zero state but increase its magnitude over the initial state
across time. However, given that the lateral connections are expected to organize
themselves sparsely and converge to several activated patterns, the observed mean
both for the lateral kernel and the changes applied to it quickly decrease across the
first epoch (during which noise is added). After this period, they have reached an
equilibrium state, where the statistical properties remain constant.

The code has been written in Python version 3.8.10 using the PyTorch environ-
ment for efficient, scalable execution on the GPU. Experiments were conducted on
an NVidia GTX 1080Ti with CUDA using the dependencies provided in our GitHub
repository7. A detailed overview of the code base can be found in the Appendix B.1.

4.4 Discussion on LCL-specific Hyperparameters

The laterally connected layer (LCL) presented in the previous chapter introduces a
variety of new hyperparameters that ought to be tuned. In this section we outline
their impact on the training of the LCL and propose ranges to fit their interactions.

The number of multiplex cells n per multiplex unit controls how much room is
given to the lateral connections for spreading the subnetwork structures across
the layer. We hypothesize that increasing this parameter will have diminishing
returns as only as much space has to be provided for all necessary patterns to
be stored. Further increasing n beyond this point should have no effect.

4http://yann.lecun.com/exdb/mnist/
5https://zenodo.org/record/3239543#.YsD4M3ZBxhE
6We encourage the interested reader to take a look at the Python notebooks provided in our GitHub

repository: https://github.com/edualc/mt_object_recognition/tree/master/notebooks
7https://github.com/edualc/mt_object_recognition/blob/master/requirements.txt

http://yann.lecun.com/exdb/mnist/
https://zenodo.org/record/3239543#.YsD4M3ZBxhE
https://github.com/edualc/mt_object_recognition/tree/master/notebooks
https://github.com/edualc/mt_object_recognition/blob/master/requirements.txt
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The size of the lateral kernels k (or d, given that k = 2 ∗ d + 1) governs the size
of the neighborhood which can laterally influence any given pixel. Because
the proposed kernel structure does not inherently differentiate the lateral in-
fluence proportional to the distance of the central pixel, we expect to see an
increasingly visible blurring effect (or low pass filter) on the produced output.
Additionally, the number of parameters (kernel weights) of the LCL grows
quadratically with the size of the kernel. Because of these reasons, the value of
k should be kept small (for example by stacking multiple LCLs).

The lateral learning rate α governs how drastic the changes to the kernel weights
are. Given that we do not want to erase previously learned patterns and that
during training a large number of update steps will be performed, we believe
it makes sense to choose small values for α. However, the LCL is to some
extent modelled after the associative abilities of i.e., Hopfield networks and
their update in the original binary form is performed as a concrete update step
where the learning rate would be one. Given this analogy, we will explore up
to the upper limit of one but expect optimal values to lie much closer to zero.

The noise magnitude η has to be set relative to the kernel changes ∆K and the lat-
eral impact, such that a enough multiplex cells are switched away to explore
otherwise unchosen cells. However, we still want a significant part of the ker-
nel adapting to the statistical patterns seen during the training. When the noise
is eventually reduced, the space of multiplex cells should have formed mean-
ingful lateral connections to deterministically active those net fragments that
are responding to the current input. Similar to the lateral learning rate, we also
believe an optimal value to be rather small. The overall signals of the lateral
influence are scaled to the range of [0, 1], but likely never reach that high, since
that would mean both the kernel and the input are mostly made up ones.

Summarizing this list, we summarize our proposed ranges for the hyperpara-
meter search in Table 4.1 below. The ranges have been iterated upon through the
lifetime of this thesis and we have converged empirically to the listed ranges below.
We refer the interested reader to Section B.2 in the Appendix, where we outline addi-
tional information about the process involved in learning about the inner workings
of the LCL architecture and confirm the theoretically expected behavior.

TABLE 4.1: Proposed search space for LCL hyperparameters.

Hyperparameter Range Search Space
Number of multiplex cells n [2, 8] Discrete
Lateral distance d {0, 1, 2} Discrete
Lateral learning rate α [1e-4, 1e-0] Continuous
Noise magnitude η [1e-3, 5e-1] Continuous

4.4.1 Hyperparameter Optimization

To find appropriate hyperparameters, we performed a large scale hyperparameter
search using the Optuna8 library. Optuna allowed us to automatically search through
the vast space of potential hyperparameters and do so efficiently.

8https://optuna.readthedocs.io/en/stable/index.html

https://optuna.readthedocs.io/en/stable/index.html
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Since our goal was to keep both TinyCNN and TinyLateralNet as similar as pos-
sible, we did not investigate different number of feature maps in the convolutional
layer or changing its kernel size. These values were fixed at ten feature maps and
3× 3-sized kernel filters. The only parameter left to be tuned is the learning rate.

For the TinyLateralNet, the number of tuneable hyperparameters is larger (as
shown in the previous section). Given that the search space scales exponentially
with the number of hyperparameters, we increased the number of trial runs for the
TinyLayerNet, but only linearly. That means for every T trials runs of the TinyCNN,
we ran a multiple of T trials runs on the TinyLateralNet. While this gives an advant-
age to the TinyCNN, we believe that the learning rate of the TinyCNN has a larger
impact on the overall performance compared to every individual hyperparameter
of the TinyLateralNet and is thus acceptable. Furthermore, we chose the number of
trials T to be 100, giving a large sample size for both models.

TinyCNN Hyperparameter Search

The hyperparameter search for the TinyCNN is much simpler compared to the TinyLat-
eralNet, because only the learning rate needs to be adjusted. We quickly found an
optimal value for the fully trained TinyCNN at 4e− 4 and 2e− 4 for the pre-trained
version. Given that the pre-trained variant already has well-adjusted filter kernels
in the convoluational layer, it is not surprising that the learning rate is lower.

Initial Hyperparameter Search for the TinyLateralNet

FIGURE 4.9: Parameter importance of the TinyLateralNet given by
Optuna for a fixed learning rate of 3e− 4. The objective value is the

validation loss on MNIST.

Figure 4.9 shows the hyperparameter importance for a fixed learning rate of 3e−
4 in 400 trials. It is clearly visible that the size of the lateral kernel k given by k =
2 ∗ d+ 1 has the most impact on the overall performance, followed by the magnitude
of the noise added by eta and both the lateral kernel learning rate alpha and the
number of multiplex cells n barely impact the performance. A parallel coordinate
plot of the distance d can be seen in Figure 4.10. In this figure, we clearly see that
the larger kernel negatively impacts the model’s performance by up to 1% accuracy.
Note that not all 400 trials are shown in this figure, but only the best 40 trial runs.
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FIGURE 4.10: Parallel coordinate plot of the distance parameter d,
the validation loss and accuracy on MNIST across 400 trials on the

TinyLateralNet (only the best trials are visualized).

From this hyperparameter search we chose the distance d to be set to zero, resulting
in 1× 1-sized lateral kernels (i.e., without influence from neighboring pixels).

TinyLateralNet (Fully Trained) Hyperparameter Search

The hyperparameters that dominate the TinyLateralNet training are the learning rate
and the magnitude of the noise η, as shown in Figure 4.11. We hypothesize that the
lateral learning rate α has a lower importance, as the number of iterations during the
training process is large enough to iterate over and store all required patterns. Simil-
arly, the importance of the number of multiplex cells n points towards enough space
being available even for lower values. If there was not enough space to save all ne-
cessary pattern combinations, the overall performance of the TinyLateralNet would
increase significantly, which we did not observe in our hyperparameter search.

TinyLateralNet (Pre-Trained) Hyperparameter Search

Figure 4.12 depicts the hyperparameter importance for the TinyLateralNet with pre-
trained convolutional weights. Compared to the fully trained variant, the learning
rate is much less important. Given that a significant part of the network starts in a
well calibrated setting, it is not surprising that α and η see an increase in importance
instead. n, however, is equally unimportant and shows that the MNIST dataset is
simple enough to be represented even with few multiplex cell repetitions.

Final Hyperparameters

The final values of our hyperparameter search are given in Table 4.2.
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FIGURE 4.11: Parameter importance of the fully trained TinyLateral-
Net with a kernel size of 1. The objective value is the validation loss

on MNIST.

FIGURE 4.12: Parameter importance of the pre-trained TinyLateral-
Net with a kernel size of 1. The objective value is the validation loss

on MNIST.

TABLE 4.2: Final hyperparameters per model type

Hyperparameter TinyCNN (TCNN) TinyLateralNet (TLN)
Fully Trained Pre-Trained Fully Trained Pre-Trained

Learning Rate 4e-4 2e-4 3.6e-4 3.9e-4 2e-4
Noise Magnitude η - - 0.05 0.031 0.25
Lateral Learning Rate α - - 0.0012 0.11 0.05
Number of Multiplex Cells n - - 5 3 3
Lateral Distance d - - 0 1 0
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TABLE 4.3: Experiment results on the TinyCNN and TinyLateralNet.

Dataset CG† TinyCNN (TCNN) TinyLateralNet (TLN)

Fully Trained Pre-Trained
Fully Trained

(d=0)
Fully Trained

(d=1)
Pre-trained

(d=0)

MNIST test set - •
∗0.9828± 0.0017 •0.9840± 0.0008 0.9730± 0.0047 0.9543± 0.0339 0.9745± 0.0019

canny_edges LN 0.4488± 0.0391 •0.3905± 0.0446 •0.6471± 0.1494 •0.5942± 0.1570 0.3168± 0.0259
defocus_blur LN 0.5768± 0.0770 •0.4314± 0.0319 •0.7884± 0.0540 •0.8038± 0.1661 0.3226± 0.0181
gaussian_blur LN 0.6517± 0.0581 •0.5606± 0.0171 •0.8393± 0.0451 0.7640± 0.2959 0.4687± 0.0094
glass_blur LN 0.8600± 0.0296 0.7617± 0.0153 •0.9114± 0.0168 •0.9040± 0.0263 •0.8164± 0.0095
motion_blur LN ∗0.8403± 0.0382 •0.7413± 0.0217 0.8428± 0.0409 0.7447± 0.0963 0.6817± 0.0415
pixelate LN 0.9385± 0.0090 0.9182± 0.0045 0.9349± 0.0166 0.9304± 0.0358 0.9144± 0.0076
shot_noise LN 0.8806± 0.0299 •0.7551± 0.0194 •0.9627± 0.0068 •0.9303± 0.0387 0.6663± 0.0289
speckle_noise LN 0.9107± 0.0218 •0.8172± 0.0149 •0.9653± 0.0066 0.9378± 0.0371 0.7388± 0.0232
zoom_blur LN ∗0.9300± 0.0182 •0.9086± 0.0100 0.9186± 0.0165 0.8561± 0.1011 0.8438± 0.0193
fog GN ∗0.4518± 0.0757 0.2702± 0.0491 0.4532± 0.0952 0.1921± 0.1250 0.2690± 0.0397
frost GN ∗0.4168± 0.0604 •0.2939± 0.0340 0.5141± 0.2115 0.2110± 0.1746 0.0478± 0.0282
jpeg_compression GN •

∗0.9774± 0.0021 •0.9781± 0.0005 0.9690± 0.0039 0.9477± 0.0296 0.9414± 0.0052
gaussian_noise GN 0.3705± 0.0597 •0.1124± 0.0088 0.4479± 0.2269 •0.5885± 0.2634 0.1025± 0.0107
impulse_noise GN 0.4601± 0.0460 •0.1746± 0.0293 0.4418± 0.1844 •0.7108± 0.2835 0.1171± 0.0166
pessimal_noise GN •

∗0.8842± 0.0292 •0.8088± 0.0109 0.8072± 0.0771 0.8290± 0.0529 0.6851± 0.0210
snow GN ∗0.6012± 0.0702 •0.3785± 0.0201 0.6517± 0.2296 0.3115± 0.2058 0.0609± 0.0225
spatter GN •

∗0.9620± 0.0025 •0.9587± 0.0016 0.9438± 0.0040 0.8971± 0.0218 0.7781± 0.0163
elastic_transform IT •

∗0.7544± 0.0160 •0.7551± 0.0080 0.7049± 0.0296 0.6764± 0.0891 0.7061± 0.0185
rotate IT •

∗0.8668± 0.0077 •0.8751± 0.0051 0.8384± 0.0159 0.8047± 0.0578 0.8434± 0.0084
scale IT •

∗0.7269± 0.0432 •0.7719± 0.0129 0.5831± 0.1069 0.5310± 0.1326 0.6726± 0.0654
shear IT •

∗0.9418± 0.0030 •0.9396± 0.0033 0.9192± 0.0145 0.8789± 0.0610 0.9159± 0.0087
translate IT •

∗0.3755± 0.0205 •0.4056± 0.0118 0.3006± 0.0344 0.3020± 0.1075 0.3662± 0.0167
dotted_line SO •0.8722± 0.0169 •0.8151± 0.0079 0.7984± 0.0434 0.8414± 0.0767 0.6673± 0.0234
line SO •

∗0.8033± 0.0167 •0.7714± 0.0045 0.7379± 0.0505 0.7088± 0.0305 0.6109± 0.0170
zigzag SO •

∗0.7244± 0.0155 •0.6797± 0.0086 0.5492± 0.0567 0.6248± 0.0867 0.5132± 0.0296
brightness GIS ∗0.4076± 0.0705 •0.3005± 0.0445 •0.6019± 0.2697 0.2056± 0.1840 0.0800± 0.0314
contrast GIS 0.1308± 0.0223 •0.1283± 0.0096 0.2051± 0.1105 •0.4003± 0.1247 0.1158± 0.0029
inverse GIS 0.0604± 0.0277 0.1223± 0.0268 •0.0957± 0.0295 0.0736± 0.0408 0.1370± 0.0301
quantize GIS 0.9643± 0.0086 •0.9489± 0.0028 0.9670± 0.0064 0.9464± 0.0348 0.8380± 0.0151
saturate GIS ∗0.8327± 0.0344 •0.6131± 0.0349 0.7906± 0.0952 0.4960± 0.2279 0.3680± 0.0402
stripe GIS ∗0.5916± 0.1545 •0.3494± 0.0327 0.5412± 0.2456 0.2374± 0.1904 0.0320± 0.0381

(Shown dataset performance is measured as accuracy on the test set ± one standard deviation.)
† CG refers to the grouping of MNIST-C corruptions outlined in Section 4.1.3. The abbreviations used are: Local Noise
(LN), Global Noise (GN), Image Transformations (IT), Superimposed Objects (SO) and Global Image Settings (GIS).
• Marked cells indicate a statistically significant improvement over the corresponding other model (with identical training,
e.g. TinyCNN Pre-trained compared to TinyLateralNet Pre-trained). In the case of the fully trained TCNN, we use • to
signify significance compared to the fully trained TLN using d = 0 and ∗ in comparison with TLN using d = 1. The
significance has been evaluated using Welsch’s T-test with p < 0.05.
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4.5 Results

In this section, we analyze the performance of the TinyCNN (TCNN) and TinyLat-
eralNet (TLN) on MNIST and the corruptions in MNIST-C. Table 4.3 shows the per-
formance of the models on all datasets and corruptions. For a visual overview, we
refer the interested reader to Figures B.7 and B.8, put in the Appendix for brevity.

The numbers shown in both Table 4.3 and Figures B.7 and B.8 display the accur-
acy from eight models trained with the hyperparameters described in Section 4.4.1.
The value after the ± sign indicates one standard deviation. Bold numbers indicate
the best accuracy of any model on the same dataset. The prefix • signifies a statistic-
ally significant improvement over the other architecture with the same training (e.g.
TCNN fully trained vs. TLN fully trained). Because the LCL architecture puts an
emphasis on potential influences from neighboring pixels on the presented feature
maps, we show both experiments with lateral distance d ∈ {0, 1}.

4.5.1 Network Comparisons Between Fully Trained and Pre-trained

Since all models were trained using only the clean MNIST dataset, we start by com-
paring the performance on the MNIST test set. For the purpose of this comparison,
we will look at the TLN with d = 0, that is, without influence from neighboring
pixels, given its superior performance given its lower standard deviation on the
MNIST test set. Both TCNN models significantly outperform the TLN counterparts
by 1%. Both the TCNN and TLN reach a comparable performance when comparing
fully training the network and starting with a pre-trained convolutional layer. Both
architectures achieve a higher median accuracy when using the pre-trained convo-
lutional layer and a smaller standard deviation, though this could be expected, as
the pre-trained weights already converged in the training of the model checkpoint
used. However, a look at the MNIST-C variants paints a drastically different picture.

Using a pre-trained TCNN results in significant performance reductions of more
than 20% points of accuracy on a variety of MNIST-C datasets. While a comparable
performance on the MNIST test set can be achieved, the network is not trained ex-
plicitly to deal with image corruptions. We believe this causes a reduction in the
generalization ability of the network, as the number of learnable network weights is
reduced to only the neurons of the fully connected classifier.

The pre-trained TLN’s accuracy plummets on a handful of datasets to below
15% accuracy (frost, gaussian_noise, impulse_noise, snow, brightness, contrast, and
stripe), even when the fully trained variant performs two or more times better. These
results indicate that the feature maps given to the LCL need to be calibrated differ-
ently compared to a regular CNN. Even though the pre-trained TLN reports a higher
accuracy on six datasets (MNIST test set, elastic_transform, rotate, scale, translate
and inverse), the difference is only significant on scale, translate and inverse, where
the performance is already subpar with 67.26%, 36.62% and 13.7%, respectively.

As indicated by the • markings in Table 4.3, the difference between the pre-
trained TCNN and TLN grows large enough that the TCNN significantly outper-
forms the TLN on all but four datasets. In contrast, the pre-trained TLN is only a
significant improvement over the TCNN on the glass_blur dataset.

4.5.2 A Question of Robustness

Given that adding the LCL to a convolutional network yields inferior results, our
main question still remains: Can we increase the robustness by accepting a decrease in
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overall accuracy? To answer this question, we will now only compare the fully trained
variants of both models, choosing the TLN without neighborhood influences (d = 0).

Local Noise (LN) Group

We hypothesized that this group would benefit our LCL architecture the most, be-
cause relevant signals are arranged locally, and the background does not contain
random signals. As expected, we can observe a statistically significant accuracy dif-
ference across six of the nine datasets (canny_edges, defocus_blur, gaussian_blur,
glass_blur, shot_noise and speckle_noise), where the TLN achieves a median accur-
acy up to 21% points higher than the TCNN. For the remaining three datasets (mo-
tion_blur, pixelate and zoom_blur), we observe comparable results for both model
types, with differences inside the margin of error. These results show that for the spe-
cific use case of locally arranged corruptions where global knowledge is not required
to overcome the corruption, the TLN is able to match or outperform the TCNN.

Global Noise (GN) Group

Evaluating the global noise group, the median accuracy of both models drops by up
to 60 points compared to the MNIST test set. On fog, frost, gaussian_noise and im-
pulse_noise datasets, both models struggle to recognize digits. On jpeg_compression
and spatter, where the corruption impacts the whole image, but are more focused to
small areas, both models remain above 95% accuracy, though the TCNN signific-
antly outperforms the TLN. We believe introducing noise of global scale requires
the TLN to have a much larger receptive field to be competitive.

Image Transformations (IT) Group

The TLN is no match for the TCNN on the datasets of this group. • markers show a
significant dominance across all the corruptions, though both models show a similar
relative degradation. However, there is a visible difference between corruptions that
partially overlap due to the differences in handwriting (rotate and shear), compared
to corruptions with a lower overlap probability (elastic_transform and scale) or com-
pletely out of distribution corruptions (translate). In particular, the MNIST dataset
was created by centering the 20× 20 large digits in the 28× 28-sized image with a
4-pixel wide band of empty pixels on the outside. Because of this, any corruptions
where the digit is moved into this boundary has a much larger impact compared to
rotating the digit (where different handwritings easily differ in rotation9).

Superimposed Objects (SO) Group

Among the superimposed objects, the dotted_line has the least impact on the per-
formance. The digits are presented using continuous lines, rendering the dots in
the dotted_line corruptions at least conceptually different from the strokes that truly
represent the digit. Even so, the TCNN outperforms the TLN by 8% at 87.88% versus
79.84% and with a three times smaller standard deviation of about 1.5%. Between
dotted_line and line, the performance degradation is larger for the TCNN, narrow-
ing the performance gap to 7%. zigzag lines with their distinctive corners pose an
even larger challenge, further decreasing the performance of both models. In this

9My handwriting for example is tilted forward by about 30 degrees.
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group, the TCNN significantly outperforms the TLN on all datasets and by a good
margin. In addition, the standard deviation is up to three times larger for the TLN.

Global Image Settings (GIS) Group

The last group features the largest discrepancy in accuracy across all its variants,
where quantize is in the top three of least affected corruption variants across all
models (fully and pre-trained) with 96.43% accuracy for the TCNN and 96.70% for
the TLN, while also featuring the most impactful corruption, inverse, with 6.04% and
9.57% accuracy, respectively. Even though both TCNN and TLN are facing difficult
challenges with all but the quantize corruption, the differences between the TCNN
and TLN remain largely within the margin of error with the exception of brightness
and inverse, where the TLN significantly outperforms the TCNN.

4.5.3 Increasing the Lateral Kernel Size

We will now take a look at the difference between a fully trained TLN with no neigh-
borhood influences (d = 0) and a fully trained TLN with 1-pixel radius influences
(d = 1). As shown in our hyperparameter search in Section 4.4.1 and Figure 4.9, the
lateral distance d is the most impactful hyperparameter for tuning. As presented in
Table 4.3, the fully trained TLN with d = 0 reaches a higher median accuracy on the
MNIST test set with 97.30% versus 95.43% with d = 1. At a six times larger standard
deviation, there exists a run among the eight trained models with d = 1 that reaches
98.21% accuracy, which is higher than all TLN with d = 0 and is close to compar-
able to the TCNN models. However, this configuration is much less stable during
training and prone to diverge catastrophically during training, with runs as low as
89.25%, diverging into an unsuitable state during the first three epochs.

Given that the performance of the TLN with d = 1 is diluted by runs that did
not train until successful completion, it is not a surprise that there are much larger
measured standard deviations compared to the TLN with d = 0. However, four
datasets stand out: gaussian_noise, impulse_noise, dotted_line and contrast.

In the global noise group (GN), the accuracy of the TLN model with d = 1 de-
creases by 50% or more on fog, frost, and snow. These corruptions all affect the
images with modest changes to surrounding pixels, but rather introduce broad pat-
terns across the whole image that are strongly correlated throughout neighboring
pixels. Compared to gaussian_noise and impulse_noise, pixels are corrupted in-
dependently of their neighbors, which the LCL architecture is able to pick up and
mitigate, resulting in a significant improvement over the TCNN.

Among the superimposed objects (SO) group, the TLN with d = 1 outperforms
the TCNN for some runs classifying dotted_line digits. The small pixel errors in-
troduced by the dotted lines feature statistical characteristics that a 3× 3 kernel is
able to process, but a 1× 1 kernel failed. The previously significant advantage of the
TCNN over the TLN with d = 0 is no longer significant for the TLN with d = 1.

All models on contrast reach an accuracy of 20% of below, except for the TLN
with d = 1 at 40.05%. While the reduced minimum and maximum ranges between
strongly activated and deactivated regions in the feature maps are drastically re-
duced on the input, the larger LCL kernel is able outperform its competitors.





43

5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we set out to find a more robust representation learned by a perceptron-
based layer. We presented and evaluated a novel architecture based on lateral, intra-
layer connections that are trained using Hebbian learning. We demonstrated signi-
ficant benefits on groups of image corruptions, in particular where noise is concen-
trated to local regions or when adjacent pixels are disturbed independently.

While we currently must accept a performance reduction on the main task, we
believe our work is the first step in learning representations that take the best ideas
from both neuroscience and machine learning and yield more robust results. There
remains still much to be done, but we believe our findings take a step out of the
comfort zone of established machine learning credos and into unexplored territory.

Recently, discussions about the sentience of Google’s chatbot LaMDA [57] have
sparked conversations on the scientific social media channels about where artificial
intelligence is headed. Hinton, one of the grandfathers of AI, is quoted saying he is
"deeply suspicious" of backpropagation [58]. Meanwhile, LeCun — another grand-
father of AI — released a paper draft [59] outlining a cognitive architecture that
should bring us closer to human intelligence, including world models. What we
gather from those discussions is that scaling up — as demonstrated so successfully
by language models — will likely only bring us closer to human intelligence, but not
surpass it. To paraphrase Marcus [60], scaling up the length of a ladder will bring us
higher up, but a ladder is unlikely to bring us to the moon. As such we believe our
findings could make a step in finding ladder alternatives for the future.

5.2 Discussion

Our experiments in Chapter 4 on MNIST and MNIST-C demonstrate, that our novel
LCL architecture provides a representation capable of dealing with some, but not all
types of corruptions introduced in MNIST-C. Under real circumstances, we would
argue that a 1% drop in accuracy (as measured on the MNIST test set) can be worth-
while, given the significant advantage on a subset of corruptions.

From our results, we conclude that the LCL architecture shows promising poten-
tial and implements in practice, what we designed it to do in theory. We started by
looking for a way to learn a more robust representation and were successful, but not
yet in all possible parameters and without trade-offs. There remains a solid amount
of future work to be done, as we outline in the next section.

In particular, our experiments were conducted on very small networks that are
closer to a proof of concept, rather than networks applied in real-world use cases.
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Similarly, the MNIST dataset has been considered solved for years and we look for-
ward to upscaling the LCL architecture both in terms of scope and challenge.

5.3 Future Work

5.3.1 Limitations of the LCL architecture

We note a need for future work, given by the limitations that we observed. In our
view, the following areas have a high potential impact on the LCL architecture:

Dependence on clean training data: Because the LCL kernel learn statistical de-
pendencies in the local neighborhood regions of the given feature maps, it is
important that the feature maps are processed without any artifacts, like the
border effect caused by zero padding (see Section B.1.2 in the Appendix).

Training instability: Compared to the TinyCNN, we observed erratic behavior in
many of the trained TinyLateralNet. The instabilities look to be correlated with
the size of the lateral kernel k and need to be further investigated.

Low-pass filter: With larger lateral kernels, the output of the LCL is visibly blurred
as if a low-pass filter was applied. This phenomenon is to some extent expec-
ted, given that the convolutions with the lateral kernel are calculated using the
neighborhood region of a pixel (which scales with kernel size), rather than the
pixel alone. We believe further changes are necessary, to decouple this effect
from the purpose of the pattern stabilization of the lateral kernel. CNNs are
often structured with blocks convolutional layers that are followed by a pool-
ing layer. We would propose to locate the LCL in front of the pooling layer,
counteracting any low-pass filtering by the pooling operation.

Numerical limitation to LCL input: We limited the LCL to expect input feature
maps to remain within the range of [0, 1] to ease calculations of the Hebbian
kernel update. However, we believe this limitation should be overcome to
allow for example the more commonly used ReLU activation function to be
applied to the convolutional layer before the LCL and reduce the changes ne-
cessary for incorporating a LCL into any neural network in the future.

Computational efficiency: Currently, the LCL is memory hungry, as it scales with
the number of multiplex cells n, the number of incoming (and thus outgoing)
feature maps F and the size of the lateral kernel k, all quadratically in complex-
ity class O(n2k2F2). In addition, the calculation of the Hebbian kernel update
with shifted feature maps was sped up drastically using Einstein sum nota-
tions1 in PyTorch, but scales in execution time quadratically with the lateral
kernel size k. Both memory and speed can likely be improved upon — and is
highly probable to be required — for use in larger neural networks.

5.3.2 Outlook

The following list is not directly dependent on the limitations of the LCL but look at
broader applications of the presented architecture.

1See https://pytorch.org/docs/stable/generated/torch.einsum.html for the documentation.

https://pytorch.org/docs/stable/generated/torch.einsum.html
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Forward learning vs. backpropagation: During training, the whole network is
updated with backpropagation except for the LCL. We believe this interaction
between forward learning and backpropagation must be researched more thor-
oughly, as there needs to be a balance between how the convolution input of
the LCL is trained and what the output of the LCL gravitates towards. Our
suggestions would be to alternate the training direction every t time steps to
keep the training targets more consistent and investigating the demonstrated
supervised forward pass learning [51] mentioned in Section 2.5.

Incorporate additional concepts: Our LCL is based primarily on the works of von
der Malsburg [52, 53], but does not fully implement every aspect. Area of
interest include scaling mechanisms for individual multiplex cells, building
hierarchical representations through stacked layers and distributing the usage
of multiplex cells across the available space (e.g., sparsity constraint).

Corruption types: The current LCL architecture primarily excels for a subset of
local or independent noise corruptions. We believe the LCL should be able to
cope with many more, given the right setup (i.e., larger kernels, stacked layers
and a receptive field that spans the majority of the input image).

Segmentation for padding and the border effect: See Section B.1.2 on the issues
around the border artefacts, introduced by the padding of previous convolu-
tion layers (as well as our convolution step). This works well in our setting,
but for a general (noisy) case, a more sophisticated approach needs to be taken
into consideration. A solution could be to use image segmentation to single
out objects in an image. By doing so, a new image without noisy background
could be generated that more closely resembles the images in our dataset.
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Calculations

A.1 Hopfield Calculations

A.1.1 Hopfield Network Update
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A.1.2 Hopfield Network Update for Quadratic Polynomials

In this section, we will show the equations when choosing F(z) = z2. The sign
function is omitted for brevity and the ξ’s belong to the µ of the outer most sum.
Because the ξ in Equation A.5 belong to two different indices (i and j), connections
are always between pairs of cells.
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A.1.3 Hopfield Network Update for Cubic Polynomials

In this section, we will show the equations when choosing F(z) = z3. The sign
function is omitted for brevity and the ξ’s belong to the µ of the outer most sum.
Analogous to Equation A.5, from Equation A.8 follows that connections with higher
order polynomials (n > 2) force connections to be between n-sized tuples of neurons
(in this example n = 3 with indices i, j, k).
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The squared sum of Equation A.8 should be resolved as:
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A.1.4 Hopfield Network Update for Exponential Functions

In this section, we will show the equations when choosing F(z) = ex. The case for the
exponential function can only be solved by replacing ex with its infinite expansion
(the Maclaurin series) as follows:
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As such, all stored patterns (up to the choice of n) need to be known to calculate
the σ

(t−1)
i values. Because this is an infinite expansion, this energy function pushes

the tuple requirement to theoretically include all neurons.
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Additional Content

B.1 Code

All code is available in our repositories on GitHub. The lion’s share of this thesis’
implementation can be found in the mt_object_recognition1 repository. An ad-
ditional repository mt_image_generation2 contains an implementation base on the
popular Unity3 game engine to generate image datasets of arbitrary 3d objects.

B.1.1 Lateral Connections Package

The code found in the mt_object_recognition GitHub repository includes all code
used for the experiments of this thesis and features the implementation of the later-
ally connected layer (LCL). The necessary information to install and run the depend-
encies can be found in the README.md file, located in the base directory. Additionally,
the base directory contains many of the python scripts used to run experiments or
longer running tasks, often remotely on a GPU cluster. The provided Dockerfile
allows you to create a Docker container with all the necessary dependencies to run
the code remotely. The other directories are explained below in more detail:

_old

This directory contains experimental, but finally unused code, such as part of
the implementation of the "Texture Synthesis using CNN" paper [41] and older
iPython notebooks. We do not recommend spending further time here.

experiment_results

This directory hosts the many CSV files from our experiments with class pre-
dictions and results across the various datasets (primarily MNIST-C).

images

A few samples images, as well as all datasets can be found here. Note that
the datasets are not directly provided in the GitHub repository, but rather ex-
pected to be downloaded and put into this directory. For MNIST, you can use
the torchvision library to automatically download it for you (into the mnist
directory). For MNIST-C, please use the static dataset provided by the pa-
per authors on their GitHub repository4 and store it in the mnist_c directory.
For example, the MNIST-C variant dotted_line is expected to be found at path
mt_object_recognition/images/mnist_c/dotted_line/train_images.npy.

1https://github.com/edualc/mt_object_recognition
2https://github.com/edualc/mt_image_generation
3https://unity.com/
4https://github.com/google-research/mnist-c

https://github.com/edualc/mt_object_recognition
https://github.com/edualc/mt_image_generation
https://unity.com/
https://github.com/google-research/mnist-c
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lateral_connections

The main implementation code for the LCL is found in this directory. The
character_models.py file hosts a variety of models with and without using
the LCL. dataset.py implements different datasets that were largely used for
debugging purposes, but not in the most recent version of ablation studies.
lateral_model.py implements an older variant of an integrated LCL, but is
not used anymore. layers.py contains the LCL implementation, of which
there are three variants5. Please use LaterallyConnectedLayer3, as it is the
most recent version and implements the architecture described in this thesis.
Versions one and two implement an inferior set of characteristics, such as a
scaling mechanism and multiplex selection on a per-pixel basis (rather than
per feature map). The loaders.py file implements utility methods for quickly
loading the datasets as PyTorch loaders. Similarly, model_factory.py imple-
ments methods to quickly load a model with default configurations and even
loads the checkpoint weights, if a path is provided. torch_utils.py features a
variety of methods that were used to apply min-max scaling and softmax on a
feature map level, rather than across the whole data cube.

models

All the network checkpoints are stored in this folder. This also includes pre-
trained checkpoints that were used for fine-tuning or re-training the networks
with an added LCL. It is currently not planned that we upload our model
checkpoints, as they can easily be recreated locally with the training scripts.

notebooks

All the iPython notebooks are stored here, most of which should be visible
through GitHub already (though just rendered without interactivity in mind.)
All notebooks with the Ablation__ prefix include ablation studies and debug-
ging scenarios to test, whether the LCL performs as it should.

scripts

Here you can find helper scripts to quickly activate the Python environment,
start Jupyter or check the GPU usage. dgx_get_gpu.sh is an example call for
running this code on the ZHAW GPU cluster infrastructure.

The experiments of this thesis outlined in Chapter 4 using the hyperparameter
search with Optuna can be recreated using the scripts found in the base directory
and are marked with the prefix optuna_. Any future changes to the repository will
be marked in the README.md file, please check here first in case of differences.

B.1.2 Padding / Border Effect Issues

For CNNs, it has become the norm to use to so called same padding, where every
feature map receives and additional kernel_size−1

2 pixels on every side. This is done
to keep the feature map sizes constant across multiple convolution steps and to al-
low each pixel on the border of a feature map to interact with the same number of
kernel positions as any pixel in the feature map. The values of the added pixels can
differ, often they are zero. The VGG19 network that we planned to use applies same
padding with zeros [42], and so do the TinyCNN and the TinyLateralNet.

5LaterallyConnectedLayer, LaterallyConnectedLayer2 and LaterallyConnectedLayer3
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FIGURE B.1: The input image and a selection of four feature map
activations of VGG19, demonstrating unusual activity at the edges.

However, as presented by [61], the choice of padding has a significant impact on
the performance of the CNN model. As shown in Figure B.1, the feature maps pro-
duced by VGG19 depict unusual activity at the edges that do not intuitively match
the kind of edge detection patterns otherwise observed in the activations.

FIGURE B.2: The input image and lateral activites of our model.

The goal of our lateral model is to learn from the statistical correlation between
local features. Because the artifacts at the edge of the feature maps are not caused by
the content of an input image, but zero value padding, the edges are a strong feature
pattern which stabilizes itself through the training iterations, as shown in Figure B.2.
While the outlines of the cube are clearly visible, all around the edges (and especially
in the corner pixels), we can observe a strong lateral activity.

In order to repair these artifacts as a source for our network, we remove the con-
tent of the border edges relative to the padding and kernel size of VGG19’s last con-
volution layer that we use. In addition, we increased the radius even further, to also
catch the propagation of this effect through layered applications of multiple convo-
lution steps. For the Pool2 pooling layer with a kernel size of 3× 3 and padding
of 1 pixel, we would ordinarily remove kernel_size−1

2 pixels on all sides. However, be-
cause there are two convolutional layers between the pooling layers, we use 2 pixels.
Missing values are filled in through symmetrical padding, which has been shown to
exhibit comparable foveation properties to not padding feature maps at all [61].

FIGURE B.3: The input image, VGG19’s feature map activation with
border effect artifacts and repaired with symmetric padding.
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This solution works well in this particular dataset, as well as MNIST, as objects
are not overlapping the borders and the background is of a single color without
disturbances. For real-world images, a different solution would need to be applied.
For example, a segmentation algorithm could differentiate between objects and the
background, such that an analogous clear separation as in our dataset is available.

B.1.3 Dataset Generation: Geometric Shapes

As a training dataset, we decided to start with easily detectable objects, based upon
the geon idea by Biederman [40]. We built a piece of software using Unity6, a game
engine and development software often used for video game development and vir-
tual reality applications. The code base for the dataset generation can also be found
on GitHub. The images are generated to fit VGG19 at 224 by 224 pixels.

FIGURE B.4: Sample images of the geometric shapes dataset.

B.2 Ablation Studies & Integration Tests

A number of ablation studies and integration tests have been conducted empiric-
ally and that are available in the form of Python notebooks. We refer the interested
reader to our GitHub repository described in detail in Section B.1 of the Appendix.
These experiments helped to get an intuition into the inner workings of the LCL and
confirm that theoretically expected behavior is also seen in practice.

FIGURE B.5: Example of the LCL debug plot. From left to right, the
plots show the lateral impact of every source feature map (y-axis) to
every target feature map (x-axis) and how the stages of multiplex se-
lection narrow down which cells are eventually activated. The right

most plot shows a heat map of selections across all time steps.

The following capabilities and tests were conducted:

Storing and Retrieving Patterns7: The LCL represents its lateral connections through
the learned kernel K. If the Hebbian learning mechanism during the forward
pass is successful, it should be able to store multiple patterns and stabilize

6https://unity.com/
7For more details, see the Python notebooks Ablation__LCL__SavingASinglePattern.ipynb and

Ablation__LCL__SavingASinglePattern_MultiplexTargetSelection.ipynb

https://unity.com/
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FIGURE B.6: Percentage of multiplex cells that are selected differently
(y-axis) given the noise multiplier η (x-axis).

them, given the same input patterns. To do this, we extracted the LCL code
and fed a dataset containing either horizontal or vertical lines through the net-
work. Over time, the LCL started to reproduce both types of lines successfully
when excited with the corresponding input signals, but the output images ex-
hibit a low-pass filter or blurring effect due to the size of the lateral kernels.

Multiplex Cell Selection8: The selection process of multiplex cells is one of the
main driving forces of the LCL architecture. In this notebook we devised a set
of debug plots to visualize the process and measure how the selections vary
across time (for example if all cells are used or if a small subset dominates the
selected cells). An example of such a plot is shown in Figure B.5.

Lateral Kernel Initialization9: There is a strong feedback loop acting between the
kernel initialization, the magnitude of the noise during the multiplex selec-
tion process and dataset. We experimented with different multiplex selection
processes and how they interact with various kernel initializations.

Noise10: Given that noise plays an important role, we set out to check the impact
of different levels of noise. We concluded that the noise levels only change
the multiplex selection up to a certain degree, but that an equivalence between
the chosen value of η and the percentage of multiplex cells that are chosen
differently can be estimated empirically. Figure B.6 shows the percentage of
changed multiplex cells given a TinyLateralNet with n = 5 and d = 0. In that

8For more details, see the Python notebook Ablation__LCL__MultiplexSelection.ipynb
9For more details, see the Python notebooks starting with Ablation__LCL__KernelInitialization

10For more details, see the Python notebook TinyLateralNetwork_DebugMalsburgNoise.ipynb
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case, the TLN with d = 0 from our experiments in Chapter 4 switched around
50% of multiplex cells during the time that noise was applied.

B.3 Experiment Figures

FIGURE B.7: Visualization of the results shown in Table 4.3 (Part
1). Abbreviations used are TinyCNN (TCNN), TinyLateralNet (TLN),

Fully trained (FT) and Pre-trained (PT).
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FIGURE B.8: Visualization of the results shown in Table 4.3 (Part
2). Abbreviations used are TinyCNN (TCNN), TinyLateralNet (TLN),

Fully trained (FT) and Pre-trained (PT).
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