
WAVEVOICE: A WAVENET BASED ARCHITECTURE FOR SPEAKER VERIFICATION

Daniel Neururer

ZHAW Datalab
Zurich University of Applied Sciences

Winterthur, Switzerland

neurudan@students.zhaw.ch

ABSTRACT

In this paper we discuss a modified architecture of the
WaveNet applied to speaker verification, which is called
WaveVoice. The models were trained on VoxCeleb2, where
raw audio waveform as well as mel frequency spectrograms
extracted from the audio have been used. All models have
been evaluated on VoxCeleb1 with the EER metric. More-
over, a novel method to train a feature extraction model has
been analyzed. This method has been named the hyperepoch
setting. Furthermore we want to show the achieved improve-
ments regarding computational efficiency, where we were
able to reduce the training time of our chosen baseline from
∼3 years to ∼8 days on our available infrastructure.

1 Introduction

Speaker verification [1] is a sub-area of speaker recognition,
where two utterances are being compared and the goal is to
predict the likelihood of them being from the same speaker.
Deep Neural Networks that have been trained first on super-
vised speaker recognition [2][3][4][5], have proven to per-
form well on speaker verification, as those models can be used
to extract features that should represent the voice of a speaker.

In earlier work [3] we came to the conclusion that the raw
audio waveform may contain some information that get lost
when they are being transformed into a spectrogram. This
information may not seem important to a human, but could
still be of value for a neural network.

The WaveNet architecture as introduced by Oord et al.
[6] is a fully convolutional deep neural network for the gener-
ation of speech in the form of raw audio. The training works
by feeding the model a segment of speech and letting it pre-
dict the next following timestep of that segment. When be-
ing conditioned on text, it performs the task of text to speech
generation with great naturality. Also, when conditioned on
speakers, it is able to model speech that sounds incredibly
close to the conditioned speaker. This led us to the idea of
introducing it to speaker verification as well. As the WaveNet

is not bounded to raw audio, we also discuss and compare the
performance of the architecture using mel frequency spectro-
grams.

2 Related Work
With the release of the two large-scale datasets VoxCeleb1 [7]
and VoxCeleb2 [8], speaker verification has gained in popu-
larity. Xie et al. [2] have shown that with a thin-ResNet as a
frontend architecture, an EER of 3.22 % can be achieved on
VoxCeleb1. Their approach has been trained on spectrograms
and have set the new state of the art.

Closer to our architecture, the RawNet [5] as well as the
SincNet [9] have both been designed to perform the task on
raw audio. The SincNet applies frequency band pass filters in
the waveform domain using the initial convolutional layer and
yielded promising results. However, it has only been trained
on the TIMIT [10] and LibriSpeech corpus [11] and thus is
not well compareable to our setting. The RawNet on the other
hand comprises residual blocks, a gated recurrent unit layer
and fully connected layers for the embeddings and output.
This model has set the state of the art with an EER of 4.0
% in speaker verification when training on raw audio.

3 Experimental Setup

3.1 WaveVoice
We propose a modified version of the WaveNet architecture
[6], namely WaveVoice. Experiments using raw audio data
as well as mel frequency spectrograms have been executed to
test the performance of the model. In the following sections
we will discuss our proposed architecture, evaluation metrics
and show the achieved results compared to our baseline.

3.1.1 Model Architecture

The WaveVoice architecture differs from the WaveNet in
terms of causality, as future timesteps are not to be depended

Fig. 1. WaveVoice Architecture - In our setting, only the acausal model which selects the middle timestep has been tested.
Here, ”Dense” blocks represent fully connected layers and ”Conv” blocks 1D convolutional layers.

on anymore. Furthermore, the output layers of the network
have been changed. The whole architecture can be seen in
detail in Figure 1.

3.1.1.1 Dilated Convolutional Layer The basic founda-
tion of the WaveNet [6] and WaveVoice architecture are the
dilated causal convolutions. The dilation of a convolution
means, that it skips a certain amount of timesteps defined by
the dilation rate. E.g., if we set the dilation rate of 2, only
every second kernel weight is not set to zero. With a dilation
rate of 4, only every fourth kernel weight is not set to zero
and so on [12]. If multiple layers are stacked together, while
exponentially increasing the dilation rate for each layer, the
receptive field is increasing exponentially as well.

3.1.1.2 Gated Activation Units Instead of using a simple
ReLU activation function, the WaveNet takes advantage of
gated activation units, as it has been proven to be beneficial
for the performance in earlier work [13].

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (1)

In Equation 1, Wf,k and Wg,k are the weights of the filter
and the gate convolution respectively. k stands for the layer
index, which determines the dilation rate bk of the convolu-
tion layers, with b being the dilation base. ∗ stands for the
convolution operator and � for the elementwise multiplica-
tion operator.

Each unit consists of a filter and a gate, where the filter
is intended to modify the input and the gate determines how
much of the modified input should actually go through the
unit. Both filter and gate are made out of a dilated causal
convolution, which then get activated by a hyperbolic tangent
and a sigmoid activation function respectively. Finally, the
output of filter and gate are being elementwisely multiplied
together, forming the output of the unit.

3.1.1.3 Residual Blocks So called residual blocks are
used in the WaveNet and WaveVoice, similar to the ResNet
architecture first introduced by He et al. [14]. Each block
consists of a gated activation unit followed by two separate
convolutional layers. One of them will afterwards be added to
the input of the block and thus forms the residual connection
and will be fed into the next block. The other one results in a
skip connection, which is being stored temporarily. The final
output of the blocks will be the sum of all skip connections.

3.1.1.4 Receptive Field The WaveNet [6] architecture as
mentioned in the paper is designed to predict timesteps in the
future. Therefore the dilated convolutional layers have to be
causal. However, we do not try to predict future timesteps
in our setting anymore. This gives us the possibility to use
acausal dilated convolutional in our architecture, similar to
the encoder part of the ByteNet [15] architecture. By using
a filter size of 3, we are able to encode the information of a
segment into the timestep in the middle instead of the last one.

As we have a sampling frequency of 16kHz for the raw
audio waveforms, we want to increase our receptive field as
much as possible. So instead of using a dilation base of 2 like
in the WaveNet [6] and ByteNet [15], we set it to 3.

The receptive field can be calculated by using the follow-
ing equation:

RF = bd +

d−1∑
i=0

bi ∗ (f − b) (2)

where b and d stand for the dilation base and number of resid-
ual blocks respectively, and f denotes the filter size.
Five residual blocks have been used for our models trained
on mel frequency spectrograms, leading to a receptive field of
243 (2.43 seconds). When switching to raw audio waveforms,
a maximum of eight residual blocks resulting in a receptive
field of 6’561 (∼0.410 seconds) were applied. Due to a lack

Fig. 2. Comparison of the receptive field (RF) for the orig-
inal WaveNet architecture (RF = 8), the ByteNet encoder
(RF = 15), the WaveNet architecture with a dilation base of
three (RF = 27) and our proposed approach (RF = 27) for
three residual blocks each.

of computational resources and time, we were not able to per-
form additional experiments using more residual blocks and
different sizes.

3.1.1.5 Training Setting As the primary research ques-
tion was to analyze if the WaveNet [6] architecture was ap-
propriate for speaker verification tasks, WaveVoice has been
designed to resemble the original structure as much as possi-
ble. Since our trained model eventually needs to extract fea-
tures compressed along the time axis, we select the timestep
where the temporal information is encoded in. Subsequently,
we feed them into a fully connected layer, called the embed-
ding layer.
The model is fist trained to predict the matching speaker of
an utterance. The output of the embedding layer is then be-
lieved to be able to represent a voice as expressive as possible.
Initially, the use angular margin softmax losses [16][17][18]
was intended, as earlier work [3][4][2] proved them to be use-
ful for speaker verification as well. However, due to the fact
that it needs a lot more hyperparameter tuning, and training a
model typically takes several days, we have decided to train
our models using the standard softmax loss.

Fig. 3. EER values of the tested similarity methods. We have
used the proposed WaveVoice architecture with a filter size
of 64, embedding filter size of 128 and 8 residual blocks and
trained it on the raw audio waveforms using the hyperepoch
setting.

3.1.2 Evaluation

To evaluate the performance of our architecture, the model
is cut after the embedding layer and the extracted features
are used to compare two utterances with each other using a
similarity measure. With the resulting scores, the equal error
rate (EER), which is the commonly used evaluation metric in
speaker verification, is then calculated. As our proposed ar-
chitecture is only able to extract the features of short segments
with a fixed length, an utterance is splitted into parts of that
length and fed to the model. Since this results in multiple fea-
tures, we calculate the mean feature values of all parts.
We have compared the effect on the performance of the fol-
lowing four similarity measures, where ~A and ~B denote the
extracted feature vectors of two utterances, N the length of
the feature vectors and s the resulting similarity score.

3.1.2.1 Dot-Product Similarity

s(~A, ~B) = ~A · ~B (3)

As used by Xie et al. [2], one can simply calculate the dot
product of ~A and ~B and use it as a score. The lower boundary
of the score is 0, as a ReLU activation in the embedding layer
is used. However, it has no upper boundary which means that
decision thresholds have to be computed for the scores when
the EER is calculated. Therefore, during inference it is impos-
sible to decide if ~A and ~B are from the same speaker, if the
thresholds have not been stored at evaluation time and either
only two utterances, strictly utterances from the same speaker
or strictly from different speakers are being compared.

3.1.2.2 Residual Similarity

s(~A, ~B) = −
N∑
i

∣∣∣ ~Ai − ~Bi

∣∣∣ (4)

Another idea was to take the negative of the sum of the ab-
solute difference from ~A and ~B. With this measure, the sum
of all absolute distances between each feature can be calcu-
lated. It is important that the result is then negated, as a small
distance between the features means that the values are more
similar to each other than when they have a large distance.
Still, this method has the same drawback as the dot product
similarity, with the difference that the upper boundary is 0 and
the lower boundary −∞.

3.1.2.3 Cosine Similarity

s(~A, ~B) =
~A · ~B∥∥∥ ~A∥∥∥∥∥∥ ~B∥∥∥ (5)

Cosine similarity measures the cosine of the angle between
two vectors in an inner product space. This metric has proved
to beat the two previously mentioned methods and addition-
ally yields scores between −1 and 1. In our case as we have
strictly positive results, the scores will range from 0 to 1.

3.1.2.4 Similarity Model We assume, that depending on
the mood or health situation of a speaker in an utterance, the
resulting feature vectors may look completely different. E.g.,
let us consider two utterances of one speaker, where he has
a sore throat and is in a delirious mood in one of them and
healthy and in a euphoric state in the other. We expect dis-
similarities of some expressive features. Those changes do
not necessarily have an effect on the training, as the model
can learn the pattern of those states. Therefore, it will still
be able to predict the correct speaker. However, using simple
mathematical similarity measure, one may not be able to as-
sociate the features to the same speaker anymore.

Fig. 4. Similarity Model architecture. The ”Association
method” block can be selected as pleased (concatenate, sum,
multiply, etc.). In our approach, we have only tested the sum
of the two feature Vectors.

Therefore, we have trained a simple MLP that learns if
two feature vectors originate from the same speaker, and used
the prediction scores as our similarity score. The similarity
model needs to be trained from scratch for 100 epochs on the
whole VoxCeleb2 [8] dataset every time the front-end archi-
tecture is evaluated. Thus, we have only been able to apply
the model on eight evaluation steps, due to time constraints.
The resulting EERs are shown in detail in Figure 3.

Albeit having only eight values, it is clearly visible that
the EER can be typically reduced when switching to the sim-
ilarity model. Compared to the cosine similarity, we have a
mean decrease of 1.13%, which leads to the assumption that
there could be some potential in the measure.

3.1.3 Results

We have chosen the results of Jung et al. [5][19] and the
results of Xie et al. [2] as a baseline to compare our mod-
els trained on raw audio and on mel frequency spectrograms
with, respectively. (results are shown in Table 1)

3.2 Hyperepoch Setting
A big problem when training a DNN to extract features, is
that it cannot actively be controlled what the features should
represent. E.g., when looking at speaker verification, we first
train our model on utterances from a large set of speakers to
classify the corresponding speaker. This will lead the model
to learn how to represent the speakers in the dataset.

==

initial training

1. spkrs = sample N random speakers
2. train model on spkrs for #train_epochs

Hyperepoch training

for hyperepoch in range(#hyper_epochs):

pretraining phase

3. spkrs = sample N random speakers
4. reset weights of output dense layer
5. make only output dense layer trainable
6. train model on spkrs for #pretrain_epochs

feature training phase

7.1 make whole model trainable
7.2 make whole model trainable, except last

layer

8. train model on spkrs for #feat_train_epochs
==

Listing 1. Hyperepoch Setting Pseudocode. Step 7.1 is used
in the first variant of the setting, where we train the whole
network including the output layer in the feature training
phase, and use step 7.2 for the second variant, where we do
not train the output layer anymore.

However, since our task requires us to learn how to repre-
sent any voice, rather than learning how to represent a speaker
in the dataset, we have came up with an original way to train

Input Features Frontend Backend Loss EER (%)
Jung et al. [19] Raw waveform CNN-LSTM Cosine Sim. Softmax 8.7
Jung et al. [19] Raw waveform CNN-LSTM b-vector Softmax 7.7
Jung et al. [5] Raw waveform RawNet Cosine Sim. Softmax+Center+BS 4.8
Jung et al. [5] (baseline) Raw waveform RawNet Concat+Mul Softmax+Center+BS 4.0
Ours Raw waveform WaveVoice Cosine Sim. Softmax 24.4
Ours Raw waveform WaveVoice Dot-Prod Sim. Softmax 30.9
Ours Raw waveform WaveVoice Residual Sim. Softmax 28.9
Xie et al. [2] (baseline) Spectrogram Thin ResNet-34 Dot-Prod Sim. Softmax 3.22
Xie et al. [2] Spectrogram Thin ResNet-34 Dot-Prod Sim. AM-Softmax 3.23
Jung et al. [5] Mel-Spectrograms i-vector PLDA - 5.1
Ours Mel-Spectrograms WaveVoice Cosine Sim. Softmax 30.9
Ours Mel-Spectrograms WaveVoice Dot-Prod Sim. Softmax 34.6
Ours Mel-Spectrograms WaveVoice Residual Sim. Softmax 32.3

Table 1. Comparison of the results for speaker verification on the original VoxCeleb1 test set. We did not see it as necessary
including the latest state of the art results from VoxSRC [20], as our results did by no means match up with the chosen baselines.

the model, which we call the hyperepoch setting.
Usually when a model is retrained on new labels, it will forget
some information, that it has learned before. Still, the learned
information should be kept and the association to a specific
label forgotten. This is why the output layer is trained first
when starting a hyperepoch. By doing so, it should learn how
to predict the speaker based on the features the model has
learned so far. When starting the feature training, the output
layer already knows how to associate the features with the
speakers.
We tried two variants of training the feature extractor. The
first one will train each layer, whereas the second one will
only train the layers up to the feature extraction fully con-
nected layer. By applying this setting, we try to force the
model to separate the information it knows about the speak-
ers to only persist in the output fully connected layer and what
it knows about how a voice can be represented in the feature
extractor part of the desired architecture. To check how much
a model profits from the setting, the pretrain accuracy of the
model after each hyperepoch can be analyzed, as well as by
simply comparing its EER to the achieved EER of a saturated
model that has been trained on all speakers without the hy-
perepoch setting.

Results showed that the model for both variants will in
fact improve in terms of accuracy of the pretraining phase af-
ter each hyperepoch (see Figure 6). However, compared to the
baseline we notice a typically larger fluctuation of the EER,
which furthermore is also larger. This leads to the conclusion
that the proposed new setting does not yield the originally in-
tended effect on the model. A possible reason for the negative
effect of the hyperepoch setting could be, that we cannot make
use of the full potential of the used Adam optimizer anymore,
since the stored moving averages of the gradients have to be
reset at the beginning of every hyperepoch. That being said,

Fig. 5. EER of the hyperepoch setting applied to the baseline
model by Xie et al. [2], compared to the original baseline. As
the hyperepoch setting typically needs more training epochs
and not being finished, we have decided to show the training
progress in percentage of both models, with 100% being the
last state of the hyperepoch model.

the more obvious reason seems to be that the model keeps un-
learning most of the information that it has already learned.
The setting has been tested on the architecture proposed by
Xie et al. [2]. However, as training uses 15 days upwards, we
did not finish the final calculation of the model in time.

4 Speed Improvement
The WaveVoice architecture by itself is not all too complex
if we compare it to our baseline by Xie et al. [2] who have
∼11 million trainable parameters, our largest architecture us-
ing 128 filters for the embedding layer and all convolutional
layers only takes ∼1.8 million trainable parameters. How-
ever, as we use four convolutional layers per residual block,
with the input of each always having the same length of 6’561
or 243, we have a massive amount of gradients for a single

Fig. 6. Pretraining (orange) and feature training (blue) accu-
racy curve of the hyperepoch setting applied to the baseline
model.

sample during training. This has a drastic influence on the
batchsize we are able to use, as the memory of our available
GPU’s is limited to ∼11.4 GB. Thus, our model was rather
quick in terms of calculation and therefore was limited to the
speed we were able to load the data.

Using the framework [21] of the work by Xie et al. [2],
the audio files are being read and preprocessed in 10 sepa-
rate threads. As the storage system of our GPU-cluster is not
located on the same machine as the GPU itself, we have to
transfer the data over ethernet, slowing us down already con-
siderably. Moreover, the storage devices are not designed to
repeatedly read a huge amount of files efficiently. Thus, for
a single epoch of training the model using this framework,
we would have needed ∼8 days to train a single epoch. As
the standard setting in the framework were 128 epochs, the
training would have taken ∼3 years.

In earlier work we have created datasets using the pickle
module of python which is fast as long as our whole dataset
fits in the available RAM of 64 GB. However, the extracted
VoxCeleb2 [8] dataset is ∼76 GB large for the raw audio
waveforms and even larger when loaded into a numpy array.
This is why we would need to split it into subfiles and con-
tinuously read parts of the dataset. Since pickle uses object
serialization, the disk space required for the data would in-
creases usually by a factor of two.

Those problems led us to the need of a more efficient way
to store and read our data. We came to the conclusion that the
HDF5 format solves most of our problems the best. The for-
mat uses a binary data pipe, enabling us to decrease the disk
space used compared to pickle. We can look at the format
as a form of a file system, with a group being the equivalent
to a folder and a dataset being a data storage. To simplify
readability and handling for later usage, we have decided to
create a group for the actual data, one for storing the names
of the audio files separately as well as one that contains sta-
tistical information about the audiofiles. For all of those three
groups, we create a dataset for each speaker. So instead of
searching through the whole dataset for a specific sample, we
first access the speaker dataset and search through a smaller

space, which proved to increase the access speed to a specific
sample furher. Another major benefit of HDF5 is the ability
of slicing. To read a defined part of specific sample, we do not
have to load a whole dataset into our RAM, but can exactly
access that part of the sample.

The dataset with the statistical data contains up to now
only the length of an audiofile, as well as the total length of
all audiofiles from a speaker. We intend to add more statisti-
cal information in future work. Because of all the additional
information and the data being not compressed in a specific
format anymore, the whole processed dataset takes ∼560 GB
of disk space and takes up to 8 days to generate.

During training, we have noticed that we still were not
able to use the full potential of our GPU performance as we
have had an average utilization percentage of ∼10 %. To im-
prove our reading speed, we decided to load the lengths of
each audiofile in advance and calculate the start and end of
each utterance of the train and validation part and store that
information together with the speaker id and location of the
utterance in the dataset in a list which we call the location
list. We can now calculate a random slicing range for the
samples without having to load any further information from
our dataset and thus can draw samples much faster. Doing
this, the GPU utilization has been increased to a mean of∼18
%.

Eventually, we have implemented a multi-threaded data
generator, consisting of an indexer and several enqueuers.
The indexer shuffles the location list at the beginning of an
epoch and splits the location list into batches. It then feeds
all those batches into an index queue. Each enqueuer initially
opens the dataset file and then repeatedly reads out a batches
from the index queue and then draws the data and feeds it to
a sample queue. It is important that the file handler is being
left open, since this further decreases the reading times. We
then only have to read out batches from the sample queue and
train our model on it.

Using all above mentioned modifications with up to 100
enqueuer threads, we were able to decrease the reading time
for a batch of 80 samples from ∼55 seconds to ∼50 millisec-
onds. In the end, to train our models we always had a mean
GPU utilization percentage of ∼90 %, which seems to be the
limitation of them. Thus, the training time decreased from the
initial ∼3 years to ∼8 days.

5 Conclusions

As the correct implementation of the speed improvement part
took the most of the available time, we were not able to per-
form many experiments since most of them still take several
days to complete. The models trained on the mel frequency
spectrograms usually showed a the phenomenom of learning
to forget, as visible in Figure 8. However, we are not certain
if the WaveVoice architecture could have performed better on

Fig. 7. GPU utilization of two separate GPU’s while training
the baseline model by Xie et al. [2]. Before applying the
speed improving modifications, both of the curves were on
the same level as the x axis.

Fig. 8. Accuracy curve of the WaveVoice model being trained
on mel frequency spectrograms.

the raw audio waveform data, as there seemed to be room for
improvement in some runs. With some further experiments,
the architecture may lead to a better performing model.

One of the possible reasons for the bad performance is that
we did not properly preprocess our input data. In hindsight,
we should have normalized the data appropriately. Also,
adding some sort of data augmentation could have improved
performance. We see the augmentation steps introduced
by Povey et al. [22] as promising, which have recently been
reused by Karafiát et al. [23] in automatic speech recognition.
Furthermore, we did not apply voice activity detection (VAD)
to our data and may have a lot of silent or noise parts in it.
This should not have that big of an influence on the models
trained using mel frequency spectrograms, as their input is
2.43 seconds long. The models trained on the raw waveforms
on the other hand easily could encounter a sample containing
only silence or noise, leading to possible confusion.

As we take a look at the hyperepoch setting, we can savely
say that we did not achieve the intended effect. Some of the
runs even encountered a time of catastrophic forgetting.

6 Future Work

With the preparation and proper handling of a dataset always
being relatively time consuming, we see the idea of imple-
menting a framework to simplify those tasks as a great help
for future projects.

The WaveVoice architecture is currently not in a state
where we can say much about how much we could take profit
of. We see room for improvement in the structure of the ar-
chitecture, especially when applied on raw audio waveforms.
Additional experiments using angular margin softmax losses
[16][17][18] could lead to an increase in performance and
further understanding about structures of generated features.

We see the idea of adding SincNet filters [9] on the initial
convolutional layer as promising. This would let us have only
certain filter bands in the waveform domain, and proved to
be beneficial for speaker recognition and verification tasks on
raw waveforms.

Furthermore, we would like to perform a detailed sta-
tistical analysis of the extracted features during training, as
it could lead to new insights of how we can best compare
them. Methods to transform them into a lower dimensional
space like PCA [24] or t-SNE [25] could help us gaining more
knowledge about how certain features influence the EER.

As the similarity model has shown a clear beneficial effect
on the EER, performing additional experiments with it seems
interesting as well. Finally, we see the implementation of the
kaldi augmentation [22][23] as promising.

7 References

[1] Homayoon Beigi, “Speaker recognition,” in Funda-
mentals of Speaker Recognition, pp. 543–559. Springer,
2011.

[2] Weidi Xie, Arsha Nagrani, Joon Son Chung, and
Andrew Zisserman, “Utterance-level aggregation for
speaker recognition in the wild,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp.
5791–5795.

[3] Daniel Neururer, Claude Lehmann, Patrick Walter, Jan
Sonderegger, and Thilo Stadelmann, “Anglevoice:
Leveraging angular margin losses for real world speaker
recognition, clustering and diarization,” 2019.

[4] Claude Lehmann and Thilo Stadelmann, “Real-world
speaker recognition on voxceleb2 using angular margin
losses,” 2020.

[5] Jee-weon Jung, Hee-Soo Heo, Ju-ho Kim, Hye-jin
Shim, and Ha-Jin Yu, “Rawnet: Advanced end-to-
end deep neural network using raw waveforms for

text-independent speaker verification,” arXiv preprint
arXiv:1904.08104, 2019.

[6] Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv
preprint arXiv:1609.03499, 2016.

[7] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” in INTER-
SPEECH, 2017.

[8] Joon Son Chung, Arsha Nagrani, and Andrew Zisser-
man, “Voxceleb2: Deep speaker recognition,” arXiv
preprint arXiv:1806.05622, 2018.

[9] Mirco Ravanelli and Yoshua Bengio, “Speaker recogni-
tion from raw waveform with sincnet,” in 2018 IEEE
Spoken Language Technology Workshop (SLT). IEEE,
2018, pp. 1021–1028.

[10] John S Garofolo, Lori F Lamel, William M Fisher,
Jonathan G Fiscus, and David S Pallett, “Darpa timit
acoustic-phonetic continous speech corpus cd-rom. nist
speech disc 1-1.1,” NASA STI/Recon technical report n,
vol. 93, 1993.

[11] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2015, pp. 5206–5210.

[12] Sik-Ho Tsang, “Review: Deeplabv3 —
atrous convolution (semantic segmentation),”
https://towardsdatascience.com/review-deeplabv3-
atrous-convolution-semantic-segmentation-
6d818bfd1d74, Jan 2019, accessed 2020-02-12.

[13] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espe-
holt, Oriol Vinyals, Alex Graves, et al., “Conditional im-
age generation with pixelcnn decoders,” in Advances in
neural information processing systems, 2016, pp. 4790–
4798.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[15] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu, “Neural machine translation in linear
time,” arXiv preprint arXiv:1610.10099, 2016.

[16] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou, “Arcface: Additive angular margin loss for

deep face recognition,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2019, pp. 4690–4699.

[17] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu, “Cos-
face: Large margin cosine loss for deep face recogni-
tion,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 5265–
5274.

[18] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,
Bhiksha Raj, and Le Song, “Sphereface: Deep hyper-
sphere embedding for face recognition,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 212–220.

[19] Jee-Weon Jung, Hee-Soo Heo, IL-Ho Yang, Hye-Jin
Shim, and Ha-Jin Yu, “Avoiding speaker overfit-
ting in end-to-end dnns using raw waveform for text-
independent speaker verification,” extraction, vol. 8, no.
12, pp. 23–24, 2018.

[20] Joon Son Chung, Arsha Nagrani, Ernesto Coto, Weidi
Xie, Mitchell McLaren, Douglas A Reynolds, and
Andrew Zisserman, “Voxsrc 2019: The first vox-
celeb speaker recognition challenge,” arXiv preprint
arXiv:1912.02522, 2019.

[21] Weidi Xie, “VGG-Speaker-Recognition, Keras imple-
mentation,” https://github.com/WeidiXie/VGG-Speaker-
Recognition, 2019, accessed 2020-02-11.

[22] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al., “The kaldi speech recognition toolkit,” in IEEE
2011 workshop on automatic speech recognition and
understanding. IEEE Signal Processing Society, 2011,
number CONF.

[23] Martin Karafiát, Murali Karthick Baskar, Igor Szöke,
Hari Krishna Vydana, Karel Veselỳ, Jan Černockỳ,
et al., “But opensat 2019 speech recognition system,”
arXiv preprint arXiv:2001.11360, 2020.

[24] Svante Wold, Kim Esbensen, and Paul Geladi, “Princi-
pal component analysis,” Chemometrics and intelligent
laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[25] Laurens van der Maaten and Geoffrey Hinton, “Visu-
alizing data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579–2605, 2008.

	Introduction
	Related Work
	Experimental Setup
	WaveVoice
	Model Architecture
	Evaluation
	Results

	Hyperepoch Setting

	Speed Improvement
	Conclusions
	Future Work
	References

