
A Survey on Voice Conversion using Deep Learning
Benjamin Meier

Report for module VT2, Master of Science in Engineering
Zurich University of Applied Sciences, Winterthur, Switzerland

meierbe8@students.zhaw.ch

Abstract—Voice conversion covers several topics and there are
many approaches available to partially solve the problem. This
survey explains the required fundamentals, presents different
methods to solve this task and contains more material about
similar problems. It focuses on end-to-end deep learning methods.

The objective of this work is to give an overview over the
state-of-the-art of voice conversion methods that are based on
deep learning.

Keywords-speech synthesis, voice, conversion, audio classifica-
tion, style transfer, audio style transfer

I. INTRODUCTION

Voice conversion describes the problem of changing a
speaker’s voice in a given audio sample to another voice,
leaving the content unchanged. A perfect system would be
able to take an audio input and a target voice input and do
the voice conversion in real-time. The generated audio should
sound natural and the content should not be changed. This
survey explains different models and methods that can help
solve this problem. It focuses on methods that are based on
neural networks.

Neural networks already proved their potential for computer
vision [1] [2] [3], but already many audio tasks also exist
for which neural networks are more effective than any other
previously used method [4]. Especially, they work great for
speech recognition tasks [5]. The created models are often
much simpler than previous approaches and contain far fewer
handcrafted features.

In many tasks, neural networks have the advantage that
much less pre-processing is required and therefore the models
are often more general. On the other side, the training requires
much labelled data. Sometimes it is very expensive to get these
labelled records. One approach to face this problem is to use
active learning [6]: The system gives feedback about what type
of labelled record is required for an optimal training. This idea
works sometimes very well (e.g. for captcha images [7]), but
this may depend on the specific training task.

A task with just a few records is, e.g., a speech recognition
system for rare languages. It is hard to get new data records
for these languages, because often there are not many speakers
available who can create huge amounts of new records in
the required quality. Fortunately, it is often a much simpler
problem to create a speech synthesis that produces well-
understandable audio for a given text in a given language.
The audio then does not sound extremely natural, but at
least it is well understandable. An idea is now to use this
simple speech synthesis system to produce endless amounts

of training data. A drawback is that the speech recognition
system then just learns to recognize the synthesized speech of
the second system. Because of this, one could train a neural
network that performs a voice conversion: The used voice of
an audio stream is changed to another given voice. This neural
network could then be used as pre-processing for the speech
recognition system for rare languages. It standardizes the input
voice and therefore the speech recognition system just has to
learn one single voice. Therefore, the generated speech and
the real dataset may be both used as training data, because the
input for the speech recognition system is always converted to
the same voice.

A well-working voice conversion system also has other use
cases like voice restauration, speech-to-speech translation and
security-related applications [8]. It is also assumed that not
only the resulting system is helpful, but also the developed
technologies and models could be used for similar problems.

The idea of voice conversion can also be generalized to the
idea of audio style transfer. This is an adaption of image style
transfer [9]. The idea behind it is to take the style of some
audio and transfer it to another piece of audio. An example
would be to convert the voice of a speaker to another speaker’s
voice or to change the used instrument in a piece of audio.
The idea behind (audio) style transfer is very general.

If a voice conversion system is given that produces good
and natural sounding outputs, it should also be possible to use
the synthesizer for a text-to-speech (TTS) model. There are
already many use cases for this subsystem, e.g. using TTS for
devices of blind people or to generate spoken text in computer
games in real-time.

In this paper, we give an overview over the state-of-the-
art of voice conversion with deep learning. We focus on
the general methods and on methods based on audio style
transfer. This paper contains surveys for all required main
topics. Speech synthesis is an essential part of voice con-
version; therefore, some papers and methods are introduced
in Section III. Section IV covers several methods to do the
voice conversion itself. Section V and Section VI focus on
the methods based on audio style transfer that may be used
for the voice conversion task. Finally Section VIII presents the
conclusions.

II. FUNDAMENTALS

Many of the explained approaches are based on convolu-
tional neural networks (CNNs) [10], because audio data fits
this type of network quite well [11]. This section explains the



basic data types and formats that are required for audio data
processing. Unlike in computer vision, it is not always that
simple to create good visualizations of audio data (e.g. it is
very hard to “read” the spoken audio content or to identify the
used voice). To make this section simple, it is assumed that
the audio data has only one audio stream.

A single audio stream is just a one-dimensional list of
floating point numbers where the time delta between all
numbers is fixed/known. The x axis usually describes the time
and the y axis the sound pressure in the SI unit “pascal”.
This form of the audio data is raw data. The only parameter
of the raw data is the sample rate. This rate defines the
samples/values per second. Often, this data is processed to
get another representation of the audio data that is easier to
use for further processing. The result is at most times some
kind of spectrogram. This spectrogram can be created with a
Fourier transform, a constant-Q transform or any other suitable
transform. The idea behind these transforms is very similar,
therefore, and because most people use the Fourier transform,
only the Fourier transform spectrogram is explained in more
detail.

The Fourier transform decomposes a signal over the time
into the frequencies that make it up. Because of the form of
our data, we use the discrete-time Fourier transform (DTFT).

The DTFT expects a periodic signal, but audio signals are
usually not periodic; therefore, a small window is used to
calculate the DTFT. To calculate the DTFT we assume the
wave in this window is always repeated. Then this window is
moved by a given step size, which is usually smaller than the
window size, and the DTFT is calculated again. The result is
a list of frequency intensities for each window. This so-called
spectrogram has about T/sizestep entries and each entry has
an intensity value (amplitude) for each frequency. The phase is
no longer used, because for many tasks it is not that important.

The frequency axis (used unit: “hertz”) of the spectrogram
is often converted to the mel scale. The mel scale has the
advantage of an equal distance for pitches. The scale is based
on data that was produced by listeners who had to judge the
distance from one pitch to another [12]. A popular formula
to convert f hertz into m mels is given by the following
expression [13]:

m = 2595 log10

(
1 +

f

700

)
It is important to see that this formula cannot be inverted

without additional errors if discrete values are used. In general,
it is doable, but the quality decreases.

To reconstruct audio from a spectrogram, the phase has
to be recovered [14]. The spectrogram contains implicitly
some phase information if the windows used for the Fourier
transform overlap. This information allows one to recover the
phase to some degree. Some neural networks that produce
audio prefer spectrogram outputs and therefore it is important
to convert a spectrogram back to audio.

III. SPEECH SYNTHESIS

Speech synthesis describes the problem of generating spo-
ken audio with computers. The source could be a text, but
also some other data. The main objective of speech synthesis
is to generate a natural-sounding voice. There are different
approaches to solve this problem, but nowadays mainly neural
networks are used for this difficult task. The problem can be
solved for one specific synthetic target voice or also more
dynamically, so that it may produce audio for any given voice.

On the technical side, there are different approaches to solve
the problem. Traditionally, hidden Markov models (HMM)
were used for speech synthesis tasks, but nowadays mostly
neural networks are used because of their flexibility. This
survey does not focus on HMM-based models, but for the
interested reader J. Yamagishi [15] gives a great introduction.

Even if the base technique is chosen, more details are
needed about the used data. The input data may be task-
dependent (e.g. text), but the output should be audio. Often
a mel-spectrogram or raw waveform [4] [16] is used for
the output. Some systems may use other data structures,
but generally, data structures that do not require much post-
processing are preferred. The neural network then must choose
an own encoding and abstraction of the data. A reason for this
so-called “feature learning” [17] is that handcrafted features
often require expert knowledge and do not generalize well.
Neural networks may learn better features that generalize
better and do not need any expert knowledge.

Different approaches based on neural networks may be
trained end-to-end [4] [16] or the different networks parts
are trained independently [18] and are fitted together at the
end. Some approaches [19] combine these two ideas: First
the different network parts are trained independently and then
the full network is trained end-to-end. In general, end-to-end
training is preferred, not only because it is often simpler, but
also because then the neural network, having learned the full
task, has the chance to see the big picture and use some non-
obvious improvements.

The evaluation of a speech synthesis system is quite hard,
because currently no known measure is able to replace the
human ear. Especially, it is hard to measure the naturalness of
generated speech with an algorithm. For this reason, a mean
opinion score (MOS) is often used as a final measurement
to decide how good the quality of the generated voice is.
Unfortunately, such an MOS is expensive: Many people are
required to get a statistically useful value. It is also very costly
to have the people hear all samples and decide how good they
are.

Voice conversion always contains a synthesizer. Therefore, it
is helpful to understand different concepts of speech synthesiz-
ers and how they work. Speech synthesis also contains the part
of including a given target voice, which is also important for
the voice conversion task. This voice may be fixed or can be
dynamically chosen, depending on the used speech synthesis
system.



Fig. 1: Stacked dilated causal convolutions.
Source: [4]

A. WaveNet: A Generative Model for Raw Audio

WaveNet [4] is a deep neural network architecture proposed
by van den Oord et al. that generates raw audio output. The
authors show that, as per ratings by humans concerning natu-
ralness, the text-to-speech tasks outperform currently existing
parametric solutions. WaveNet may also be used to generate
music. The generated fragments are often realistic and novel.
The used architecture directly produces audio waveform and
therefore does not require any post-processing.

WaveNet is based on the idea of PixelCNN [20] and
is adapted to audio data. The network uses dilated causal
convolutions to deal with temporal dependencies. These con-
volutions are preferred over recurrent neural networks (RNNs)
[21] because they are faster and easier to train. Stacked
dilated causal convolutions allow the network to have a very
large receptive field, which is highly required for audio data.
Figure (1) visualizes a stacked dilated causal convolution.

The network generates in every timestamp the next value
for the raw output. This value then may be used as the next
input for the network. The output is trained with a sample
rate of 16 kHz and 256 different possible discrete values for
each sample. The discretization allows it to use “softmax” and
solve this problem as a classification problem.

Dilated causal convolutions have a dilation factor that
defines which elements should be processed from the previous
layer. If the factor is 2, then every second element is processed,
if it is 8, every 8th element is processed. A dilated causal
convolution also has a window length, like the classical
convolutions. This type of convolution allows an exponential
receptive field width according to the count of the dilated
convolution layers.

Additional inputs may be used to produce audio with
specific characteristics, e.g., to generate audio with a specific
voice, an input with the speaker identity may be added.

WaveNet allows the generation of raw audio that sounds
very natural. The flexibility of the network allows using it for
several audio-generating tasks, not only for speech generation.
A drawback of the network is that it requires much time to
generate raw audio (about 90min for 1 s of audio). This makes
it currently not useable for real-time tasks like real-time voice
conversion. Even for many offline calculation use cases, it
may be not fast (and energy efficient) enough. Nevertheless,
WaveNet highly improved the state-of-the-art of generated
audio.

Fig. 2: A SampleRNN module and its receptive field.
Source: [16]

B. SampleRNN: An Unconditional End-to-End Neural Audio
Generation Model

SampleRNN [16] is a network architecture for raw audio
generation based on RNNs. The hierarchical and stateful
architecture allows handling long-time dependencies. The nat-
uralness of the network is very good according to humans and
it is also very fast (especially compared to WaveNet [4]).

RNNs are used in a hierarchical architecture. The reason
for this is that audio correlates in different time scales, not
only to the neighboring samples, but also to samples that
are a few thousand steps away. Every such time scale is
handled by a so-called module. The lowest module directly
works with samples and higher modules with more abstract
versions of the audio data. Such a module hierarchy is shown
in Figure (2). The complete hierarchy may be trained end-to-
end with backpropagation.

To implement the idea, several tricks are required, e.g., to
discretize the network output. Only 256 discrete output values
are used. This allows the use of “softmax” to view the task
as a classification problem. For tasks that have longer time
dependencies, it is sometimes very hard to train RNNs. For
audio data, this is also the case and to avoid this problem,
truncated backpropagation through time [22] is used. Only
short snippets of the original sequence are fed into the network
and used for the training.

The audio quality is not as high as the WaveNet output, but
SampleRNN requires much less time for the generation of the
audio. Another advantage compared to WaveNet is that the
researchers published their code. This makes it much easier to
reimplement the architecture for third persons.

This network is a good candidate for audio generation.
The quality is quite good and it does not require very much
processing time. For example, Char2Wav [19] uses this raw
audio generator network to produce audio from text.

C. Deep Voice: Real-Time Neural Text-to-Speech

Deep Voice [18] is a real-time text-to-speech synthesizer
model that is completely based on neural networks. The
synthesizer is based on a smaller version of the WaveNet [4]
model. Deep Voice is inspired by traditional text-to-speech
architectures and adopts the different steps. Each of these steps
is replaced by a neural network.



Fig. 3: The Deep Voice model.
Source: [18]

Traditional text-to-speech systems contain five components
(grapheme-to-phoneme, segmentation, phoneme duration, fun-
damental frequency, audio synthesis). The main idea is to use
a neural network for each of these components.

Every single component is trained and the final combined
network may be used for the text-to-speech synthesis. All these
components are shown in Figure (3).

The grapheme-to-phoneme network is based on a bidire-
tional RNN that uses GRU [23] cells and builds an encoder-
decoder architecture. The segmentation model uses an RNN
to detect the alignment between utterances. Also, the funda-
mental frequency network uses RNNs in combination with
fully connected layers to predict the F0-frequency. The audio
synthesis model is a variant of WaveNet [4] with the difference
that the first layers are bidirectional RNN, because according
to the authors this performs better.

The different networks are trained independently of one
another; therefore, it is not trivial to change the system for
an end-to-end training.

The network architecture is more complex than
SampleRNN, but as mentioned by the authors, it requires 4-5
times less computational resources.

The described architecture and the training are not very
simple, but the network works well. The architecture and the
required details are well described in the paper.

D. TTS Synthesis with Bidirectional LSTM based Recurrent
Neural Networks

The described text-to-speech model [24] that produces
vocoder features is based on a deep recurrent neural net-
work (RNN) with LSTM [25] cells. The model requires pre-
processing to do feature extraction and produces vocoder
features (compared to raw waveforms [4] [16]).

The idea is to use a bidirectional LSTM network to handle
time dependencies. To make the training easier, the data is pre-
processed and post-processed. This allows creating a simple
network architecture and training the network’s output features
directly with a given ground truth.

The architecture works well with standard backpropagation
through time (BPTT) and does not require additional tricks like

Fig. 4: The Char2Wav encoder/decoder architecture.
Source: [19]

truncated backpropagation through time. On the other side,
there are handcrafted features in the text analysis, the input
feature extraction and in the vocoder. The used neural network
has a clean and simple design, because it only uses stacked
bidirectional LSTM-layers.

The paper focuses on the transformation of the input fea-
tures to the features for the vocoder. It is then compared to an
HMM-based model. The system works well, but it contains
many handcrafted features and has also a not very flexible
structure that is given by the pre- and post-processing.

It is probably not the preferred solution for audio generation.
Models that use more neural networks and fewer fixed features
should be used instead, because they are more flexible for
different tasks and therefore can be reused much better.

E. Char2Wav: End-to-End Speech Synthesis

Char2Wav [19] describes a two-stage neural network ar-
chitecture that has a text input and outputs waveforms. The
network is based on an RNN and uses SampleRNN [16].
With traditional speech synthesis systems, expert linguistic
knowledge is required to define the linguistic features. This
approach does not require them because they are trained by
the system.

The two-stage network contains a reader component and a
vocoder component. The reader uses an RNN with attention
mechanism [27] to produce vocoder features. These features
are then processed by the neural vocoder that is based on
SampleRNN [16]. The network architecture is visualized in
Figure (4).

The reader and the neural vocoder are pre-trained in a first
step. WORLD vocoder features [28] are used as target for this
step. Finally, the complete network is trained end-to-end. The
neural vocoder is mainly based on SampleRNN [16], which
is also a non-trivial network.



TABLE I: A comparison of all speech synthesis models.

Paper Method Availability
(code)

End-to-End Training
Time

Real-Time Elegant

WaveNet: A Generative Model for
Raw Audio [4]

Deep learning with dilated
convolutions

yes (third-
party)

yes data depen-
dent/long

no yes

SampleRNN: An Unconditional
End-to-End Neural Audio Genera-
tion Model [16]

Hierarchical RNNs yes yes 1 day yes yes

Deep Voice: Real-Time Neural
Text-to-Speech [18]

Uses for each classical TTS
component a neural network

no no unknown yes complex

TTS Synthesis with Bidirectional
LSTM based Recurrent Neural
Networks [24]

Stacked bidirectional LSTM-
cells: Input and output are ab-
stract features

no yes (given
the abstract
features)

unknown yes no (many
handcrafted
features)

Char2Wav: End-to-End Speech
Synthesis [19]

Train vocoder features; based
on SampleRNN

Alpha
version

Pre-training,
then end-to-
end

unknown yes yes (except
for the
pre-training)

Tacotron: Towards End-to-End
Speech Synthesis [26]

Encoder-decoder networks that
produce a spectrogram

yes (third-
party)

yes multiple
days

yes yes

There is some code available on GitHub, but unfortunately
it does not run and it is not documented. As described in
the “issues” the used hyperparameters are not yet available.
The authors of the paper already created a voice conversion
software [29], but the used technology is not published.
Probably, it is based on Char2Wav, but this is not known.
Therefore, a modification of this network should also work
for the voice conversion task.

As the authors have written on GitHub, they have sub-
mitted a more detailed paper, but it is not yet published.
Probably one should wait for this paper before the system
is used/implemented, because currently some relevant details
are missing (e.g. hyperparameters).

F. Tacotron: Towards End-to-End Speech Synthesis

Tacotron [26] is a neural network architecture for the text-to-
speech task that can be trained end-to-end. Unlike Char2Wav
[19] it does not require that the encoder and the decoder are
pre-trained before the end-to-end training is done. The network
requires only text/audio-pairs for the training.

The input for the network is a character embedding. The
encoder network creates a stable sequential representation
of the content. This representation is then transformed in
the decoder network to an 80-band mel scale spectrogram.
This spectrogram is finally converted to a waveform with the
Griffin-Lim reconstruction algorithm [30] with 50 iterations.

The complete model, including the Griffin-Lim reconstruc-
tion algorithm (it has no trainable weights), is implemented as
a single graph. It then can be trained end-to-end. The authors
used TensorFlow [31] to implement this model.

As experiments show, the synthesis works quite well. Com-
pared to Char2Wav [19], the training of the Tacotron network
is much easier, because it does not use vocoders and can be
trained end-to-end in one step.

G. Comparison

All described papers about speech synthesis are compared
in Table (I) to give an overview over the described methods.

IV. VOICE CONVERSION

Voice conversion may be seen as an extension of the speech
synthesis problem, but it is generally more difficult to solve
the voice conversion problem. The objective is to create a
function fa→b(xa) = xb that converts an audio sample xa

that is spoken with the voice a to an audio sample xb that is
spoken with the voice b. The content of the audio sample must
not change. The easiest version of the problem is if the source
voice and target voice are fixed and just one single conversion
is possible. The most general version would be if the audio
input could be spoken by any voice and it would be possible
on-the-fly to define the target voice (e.g. by an audio sample).
A big problem for the general case may be that the voice
extraction and the training have to be done with only a little
bit of data. The problem becomes much easier if the source
and target voice are fixed and there are many data records
for both voices. In the best case, the data records are evenly
paired: For both speakers/voices there are audio samples with
the same content and with the specific speaker voice.

In the past years many approaches based on vector quantiza-
tion (VQ) [32] [33], hidden Markov models (HMMs) [34] [35]
and Gaussian mixture models (GMMs) [36] [37] were used for
these tasks. Currently, there are more and more neural network
based approaches available. Some of them use deep belief
networks (DBN) [38] and Boltzmann machines [39]. None of
the currently available systems are able to generate extremely
natural and correct sounding samples, but the current state-of-
the-art is already performing quite well [40]. In this work, we
focus on the neural network-based approaches.

For speech synthesis (see Section III), there is the problem
that it is hard to automatically evaluate the results. Because
voice conversion is generally an even harder task, the same
problem presents itself, especially because no good measure
exists for the naturalness of speech. The voice conversion
challenge 2016 (VCC2016) [40] uses humans for the eval-
uation. They have to choose between five values: from 1 for
completely unnatural to 5 for completely natural. Of course,
this measure is not well-defined mathematically and does not



scale, but it is currently the best available measure for this
task.

There are still some other measures available that at least
give a good hint if the generated output has a good quality.
Huang et al. [41] use an automatic evaluation based on percep-
tual background noise distortion and a speaker similarity score.
Sun et al. [42] calculate the Euclidean distance between the
mel-cepstral (mel-cepstral Distortion). This measure is used to
see how close the converted speech is to the target speech.

Another approach from Chen et al. [43] uses the logspectral
distortion (LSD) to measure the quality of the voice conver-
sion; this approach is especially useful to compare the content.
Unfortunately, the only measure that works very reliably for
this task is the human ear.

Sotelo et al., the authors of [19], implemented a non-
publicly available voice conversion algorithm and have an API
[29] published. It is not explained how the voice conversion
algorithm works, but it may be assumed that it is based on the
ideas of Char2Wav [19].

A. Phone-Aware LSTM-RNN for Voice Conversion

Lai et al. [44] describe a voice conversion model based on
an LSTM-RNN. They not only use a mel-cepstral as input,
but also monophone features that are generated by a speech
recognition system.

It is important for the training to have aligned data for
the source and target speaker. This is not always given
and therefore a dynamic time warping (DTW) algorithm is
introduced in the paper. The neural network itself is relatively
simple: The inputs are the log(F0) frequency, the mel-cepstral
and the monophone features. Just a basic LSTM-architecture
is used.

To convert the generated output of the network, combined
with the log(F0), back to audio, the STRAIGHT [45] method
is used. In general, there is much pre- and post-processing
required.

The network produces good results, as shown in the
VCC2016 [40]; so it is a good candidate for an implementa-
tion. The network is tested with the VCC2016 data; therefore,
all results should be reproducible for anyone. On the other
side, the network may not be trained end-to-end, because of
the pre- and post-processing. A speech recognition system is
also required, which sometimes may be a problematic point.

B. Voice Conversion using Deep Bidirectional Long Short-
Term Memory based Recurrent Neural Networks

Speech is highly correlated over time. This requires a model
that is able to handle this. Sun et al. [42] use for this reason
a deep bidirectional long short-term memory-based recurrent
neural network (DBLSTM-RNN). A simple architecture with
pre-processed audio features as input is used.

The source audio is pre-processed. Features like the F0-
frequency and the aperiodicity are extracted and not processed
by the neural network. The neural network gets only the mel-
cepstrum as input. Several bidirectional LSTM layers are used
to process this input and to produce a new mel-cepstrum

for the output. This output is then combined with the other
extracted features of the input to create the final converted
speech.

The STRAIGHT [45] method is used to extract parameters
like the F0-frequency. The neural network itself is trained with
standard BPTT. The synthesis at the end is also done with
the STRAIGHT method. This includes a smoothening of the
parameters to create a better output.

The network has a clean and simple structure and is
therefore an easy-to-use solution. Unfortunately, much pre-
processing and post-processing is required. In general, the
architecture of the network is similar to [24]. The network
is a good example that it is possible to use the mel-cepstrum
to analyse and generate speech.

C. Multi-Output RNN-LSTM for Multiple Speaker Speech
Synthesis and Adaptation

Pascual et al. [46] propose a multi-layer neural network that
may be used for speech synthesis and for voice conversion.
The architecture uses an output branch for each available
speaker.

The core network may be trained with some speakers and
can then be frozen and reused for other speakers. This highly
improves the training time for new speakers.

Standard backpropagation may be used to train the complete
model. There are good comparisons available about the model
quality, whether it is trained with only one output speaker
or multiple output speakers. The authors found out that the
quality improves if the network is trained with multiple
outputs.

The network input contains a set of phonetic features and
the output is also a set of features. The output features include
40 mel-cepstral coefficients, maximum voiced frequency, the
log(F0) value and a voiced/unvoiced flag. A vocoder [49] is
used to convert these features to a waveform.

An adavantage is that the architecture is simple. On the
other side, a disadvantage is that the network does not output
a waveform but a set of features. There are no detailed
benchmarks about the quality available, which makes it hard
to get a feeling for the effective network quality.

D. Voice Conversion using Convolutional Neural Networks

Mobine et al. [48] try to solve the voice conversion task by
not only transforming the pitch, but also the timbre. A CNN
is used for this task. The background is that, e.g., a human
can differentiate between a piano and a trumpet that play the
same pitch because they have a different timbre.

The main idea is to create a relationship like f(d)−f(c) ∼
f(b)− f(a). Given a, b, c it should be possible to predict d.
To learn this f(x) operator, a CNN is used. A GAN-like [50]
network is used to produce an output that should sound like
a real voice.

The input and the output for the network are pre-processed
with the constant-Q wavelet transform (CQT). This transform
makes it easier to process the data. Unfortunately, the paper
does not go into details about the network architecture.



TABLE II: A comparison of all voice conversion models.

Paper Method Availability
(code)

End-to-
End

Input Data Type Output Data
Type

Elegant

Phone-Aware LSTM-RNN
for Voice Conversion [44]

A LSTM-RNN is used
with different input
features (mel-cepstral,
log(F0), monophones)
and produces a mel-
cepstral

no no mel-cepstral,
log(F0),
monophone
features
generated
by a speech
recognition
system

mel-cepstral The neural network is
simple, but much pre-
and post-processing is re-
quired

Voice Conversion using
Deep Bidirectional Long
Short-Term Memory based
Recurrent Neural Networks
[42]

Using a BDLSTM that
takes a mel-cepstral as
input and produces a
mel-cepstral; the cepstral
is combined with several
handcrafted features to
produce audio

no no mel-cepstral mel-cepstral The neural network is
quite elegant, but there are
many handcrafted features
involved.

Multi-Output RNN-LSTM
for Multiple Speaker Speech
Synthesis and Adaptation
[46]

Using a core model
that has multiple output
branches: one for each
speaker

no no Several features
extracted by [47]

mel-cepstral,
log(F0),
etc.

yes

Voice Conversion Using
Convolutional Neural
Networks [48]

Using a GAN to produce
audio

yes (alpha) yes CQT
spectrogram

CQT
spectrogram

yes

The used dataset is very small and there are no detailed
tests available. The authors do not write much about how the
network is implemented, but there is some code available. It
does not seem that there is any progress. Nevertheless, the idea
to use a discriminator network to refine the produced output
is good. In general, it could be a good idea to use a GAN-
architecture. The method is not described in much detail and
therefore it is probably hard to use it for real tasks.

E. A Survey on the Evolution of Various Voice Conversion
Techniques

Sathiarekha et al. [51] explain and compare voice conver-
sion models that are based on vector quantization (VQ) [32]
[33], HMMs [34], GMMs and neural networks [36] [37]. Only
a few approaches of each method are compared, but the paper
gives a good overview over the methods and the state-of-the-
art. It also explains the history of voice conversion.

Neural networks that are based on deep belief networks
(DBN) and Boltzmann machines are presented and briefly ex-
plained. A final table shows the advantages and disadvantages
of the different voice conversion methods. Not specific models
are compared, but classes like HMM-based models and neural
network based models. Neural networks have the advantage
that they can be used to fully do the learning and synthesis
process. They are also able to produce good signals, even
in noisy environments. A disadvantage is that the synthesis
accuracy is only high on deeper architectures and therefore
more complex architectures are required.

The paper gives some information about the different ways
to implement voice conversion (GMMs, HMMs, etc.). None
of these ways is based on audio style transfer, but on more
specific models. Sathiarekha et al. [51] write that it is a
disadvantage that solutions based on neural networks require
complex architectures. We think there is still the advantage

that often almost no handcrafted features are required and this
is a good trade-off, because the neural network itself is often
general and may be used for similar tasks. This is often not
true for other models (HMMs, GMMs, etc.).

F. Comparison

All described papers about voice conversion are compared
in Table (II) to give an overview over the different methods.
These methods do not use audio style transfer, but solve the
more specific problem of voice conversion directly. These
algorithms do solve the complete problem, but many of them
use handcrafted features and the results still have potential
for improvements. Still, new ideas are required to solve this
problem with neural networks.

V. AUDIO CLASSIFICATION FOR VOICE CONVERSION
USING AUDIO STYLE TRANSFER

Audio classification describes the task where a given audio
sample has to be classified. Classes may be, e.g., different
audio genres [52] or speakers [11]. In general, the audio input
size is fixed, but it would also be possible to create a system
with dynamic input sizes.

There exist approaches based on HMMs [53] [54] [55]
and neural networks [52] [11]. As shown, the solutions based
on neural networks use simple models and are already very
accurate. In this work, we focus on the neural network-based
solutions.

There are several possible input data types for classification
networks: Raw audio, a spectrogram as 1D image, where each
frequency is an input feature, or a spectrogram as 2D image
(frequencies × time). Raw data has the advantage that no pre-
processing is required, on the other side, spectrograms also
produce very accurate results. All these data types may be
used for CNNs, which are powerful for hierarchical feature



TABLE III: A comparison of all audio classification models.

Paper Method Availability
(code)

End-to-End Input Data
Format

Training
Time

Elegant

End-to-End Learning for Music
Audio [52]

Using a CNN to classify audio no yes Raw data or
spectrogram
(1D: F
features, or
2D: F × T )

unknown yes

Convolutional Neural Network-
based continuous Speech
Recognition using Raw Speech
Signal [5]

Using a CNN to classify audio no yes Raw data unknown yes

Speaker Identification and Clus-
tering using Convolutional Neural
Networks [11]

Using a CNN to train a classi-
fication process and then use an
embedding for clustering

no yes Spectrogram
(2D, F × T )

9 h yes

extraction. As already shown by Krizhevsky et al. [1], CNNs
work extremely well on image data, even for complex object
datasets like [56]. Several approaches like [11] show that
CNNs also work great if a spectrogram is interpreted as a
2D image.

The evaluation of this task is quite easy. It is possible to
calculate the accuracy and therefore it is known how well an
audio classifier works.

Classification networks are an important part of some
style transfer models (e.g. [9]) and therefore for audio style
classification-based voice conversion. These networks also
have to handle audio input data, which is also an important
point for any voice conversion model. Because of these
reasons, some audio classification networks are explained in
this section.

A. End-to-End Learning for Music Audio

Dieleman et al. [52] use a CNN to classify music. They also
test if raw input works as well as a spectrogram input.

CNNs are used for image classification tasks and work well
there. For this reason, the authors use also a CNN for the audio
classification task. The used CNN is only 1D (compared to
images where usually 2D CNNs are used). The authors try
to avoid handcrafted features and compare a CNN with raw
input to a CNN with a spectrogram as input. A third test is
done with an extended network with raw input. The authors
are able to show that raw input works as well as a spectrogram
input.

The used CNN has a simple and standard architecture.
The strided convolution for the raw input uses parameters
that are similar to a Fourier transform (window length=200,
stride=200).

The paper shows that CNNs are able to perform audio
classification. It is also impressive that also raw audio input
works as well as a spectrogram input. This means the neural
network is able to train the otherwise required pre-processing.

For the style transfer as described in [9] it is important to
have a CNN that is able to extract good features. In general,
it is also preferred if the data has not to be pre-processed and
the network is able to learn this step.

B. Convolutional Neural Networks-based continuous Speech
Recognition using Raw Speech Signal

Palaz et al. [5] present a neural network that uses raw input
and does classification. They also show that the learned filters
in the initial convolutional layers may be reused for other audio
classification networks.

A small CNN is used to do the audio classification. The
initial convolution is used to extract frequency features. These
features are then processed in two dense layers. It can be
shown that the first convolution learns filters for specific
frequencies. This is similar to a Fourier transform.

This paper shows that the filters on the raw input learn
something like a Fourier transform and that the filters of this
layer are very general and may be reused. It is important to
see that a neural network is able to learn how to deal with raw
audio input.

Especially the information that the first layer learns some-
thing general may be used for transfer learning and therefore
provide shorter learning times for new (audio) networks. The
classification with the proposed architecture works very well.

C. Speaker Identification and Clustering using Convolutional
Neural Networks

Lukic et al. [11] describe a network architecture that may be
used for audio/speaker classification. They also use a network
embedding to do clustering. The network uses a spectrogram
as input and outputs a distribution for the classification.

The described architecture is simple and shows that a 2D
CNN is able to learn useful features to identify speakers (or
more specific: to do audio classification) and to do speaker
clustering. The idea to interpret and process audio as a 2D-
image may be helpful, especially for audio style transfer tasks.

D. Comparison
The described papers about audio classification are com-

pared in Table (III) to give an overview of the different
methods. All three described architectures are simple and work
well. For the audio style transfer only CNN based solutions
are required, if any classification network must be used to
solve the style transfer task. Such pre-trained networks are
only required for some style transfer approaches, but not for
all (see Section VI).



VI. STYLE TRANSFER METHODS TO DO VOICE
CONVERSION USING AUDIO STYLE TRANSFER

Style transfer describes the idea of taking the style of one
input and transferring it to another input to create a new output.
This may be very general and is not limited to one specific
data type (e.g. images [9] [57], text [58], ...). Style transfer
could be done with many models, but we focus on neural
networks, because they currently offer the most powerful and
general models to do style transfer.

Style transfer is still a general expression. There are still
different types of styles transfers for a single data type, e.g.
images: Some models transfer the drawing style [9] and some
can also transfer the style of a product on an image to another
product type on an image [57] (e.g. create an image of a shoe
that has the same style as a bag on a given input image). It
may be task-dependent what exactly the style transfer is.

The required training data may be very different for some
approaches. Some just require a pre-trained good CNN-based
feature extraction network [9], others two unpaired sets of
images for a source domain and the target domain [59] [57]
and others require two sets of paired images for the given
domains [60]. Sometimes for applications it may be hard to get
a large dataset of paired data records, so the required training
data may be critical for custom tasks.

All described style transfer networks are trained on images.
In general, it is possible to use the architecture for any data
type, but of course it may be more difficult to train the style
transfer for other data types.

Style transfer could be used for spoken audio where the
style should be the used voice. As described in Section II there
are different audio encodings available. For example, raw data
may be used as input. For the CNN-based approach, a 1D-
CNN may be used. Another approach is to use a spectrogram
as input and output. It is possible to do 1D-convolutions (over
the time) or also to interpret the spectrogram as a 2D image
and use this as data type, then 2D-convolutions are used.
Especially the image-based approaches may be preferred for
the given network architecture, because they already work well
for images. One difference may be that the style is encoded
in another way. It is hoped that the end-to-end trained neural
networks are capable of generalizing for this task.

A voice conversion model could be created with a style
transfer like the one described by Gatys et al. [9] combined
with the classification network of Lukic et al. [11]. Some tests
we have done show that this combination does not produce
good results. It seems that audio classification networks do not
use the same features to detect a voice/speaker as the human
ear does. This explains why it did not work. Other possibilities
would be to use another style transfer architecture (like [57]
or [60]) or another classification or feature extraction network.

A. A Neural Algorithm of Artistic Style

The proposed neural style transfer by Gatys et al. [9] allows
copying the style of an image and reusing it on another image.
For example, the style could be extracted from an art painting

and can be adapted to another picture. This picture will then
look like if it was drawn by the artist of the original painting.

CNNs and neural networks generally allow reconstructing
the input from a given representation at some layer. Deeper
layers normally contain less information about specific in-
puts/pixels, which is the reason why lower layers produce
finer reconstructions; this is especially true for CNNs. This
information is all about the content. For the style transfer itself,
a style loss is required. Style information can be extracted from
every convolutional layer with the help of the Gram matrix
[61].

To do a style transfer, the style features of the original
painting/image are extracted at several convolutional layers
and the content features of the new image are extracted at
one fixed convolutional layer. A new image that only contains
white noise is used as network input and the sum of the
differences between the new content features and the original
content features and the new style features and the original
style features is minimized. To minimize this sum, the input
is changed. This is done by an iterative algorithm.

The main novelty is in the use of the Gram matrix. For a
convolutional layer, a matrix M can be created, where each
column is a feature of a specific convolutional layer and each
row a position of such a feature (therefore, the 2D map of
each feature is unrolled to a long vector). The Gram matrix
then is MTM . It contains the correlations between different
filters/features and, in the diagonal values, the absolute occur-
rences of a specific feature. An important note is that the style
loss is taken as a sum over several layers and not only one
layer (unlike the content loss).

To use this algorithm, a trained CNN must be given.
For image data VGG-16 [2] works fine. As shown, simple
architectures like VGG-16 work much better than complex
architectures like GoogLeNet [62].

This idea of a style transfer could be used for audio. The
input could be an image (e.g. a spectrogram) or also raw data.
In both cases, a CNN has to be used. It could be trained
for classification (like VGG-16 [2]) and be used for the style
transfer. A big advantage of the proposed architecture is that
since it does not require any training for the style transfer,
only a classification network has to be trained (this is usually
much easier). Unfortunately, currently no big pre-trained audio
classification network (like VGG-16 for images) is available.
Another disadvantage is that the iterative algorithm is slow,
even on high-end GPUs.

B. Perceptual Losses for Real-Time Style Transfer and Super-
Resolution

Neural style transfer [9] is slow. This is because the
proposed algorithm is iterative. The proposed technique by
Johnson et al. [63] uses an architecture that is based on a
single feed-forward network and therefore works much faster.
The proposed architecture may also be used for the image
super-resolution task.

An image transformation network is trained to do the
style transfer. There are several possible architectures for this



Fig. 5: The loss function for the fast style transfer.
Source: [63]

transformation network. The style loss in combination with
the content loss, as described in [9], is used as loss function
for this image transformation network. The loss function is
therefore another neural network that is fixed during the
training. The training is then done for one specific style.
In Figure (5), the coarse architecture and especially the loss
function are visualized.

The image transformation network is a residual network, but
other architectures are possible. Convolutions and transposed
convolutions are used to downsample and upsample the image
representation. As described in [9], the loss network already
has to be available and it must be pre-trained. A good choice
for images is the VGG-16 [2] network.

This architecture is important and useful if the style transfer
of Gatys et al. [9] is implemented for real-time applications,
because otherwise the style transfer is slow. Like [9], the
architecture could also be used for audio data.

C. Learning to Discover Cross-Domain Relations with Gen-
erative Adversarial Networks

The proposed network architecture by Kim et al. [57] is
designed to identify relations between different domains, e.g.
handbags and shoes. It is the able to transform a shoe into
a related handbag. The architecture does not even require
labels for the training of the relations, but only image datasets
of different domains. The architecture is based on generative
adversarial networks (GANs) [50].

A function/generator GAB exists to map an object from the
domain A to the domain B. There is also a function/generator
GBA that maps an object from the domain B to the domain
A. There are two discriminator networks: DA for the domain
A and DB for the domain B.

A GAN [50] architecture is used to build the network.
A difference is that the generators (GAB and GBA) do not
use noise as input, but an image/object from another domain.
These generators are therefore some kind of transformation
networks.

Given the mapping functions, the objectives of the network
are:
• GBA(GAB(xa)) = xa, xa ∈ A
• GAB(GBA(xb)) = xb, xb ∈ B
• Train the discriminator DA

• Train the discriminator DB

The objectives are visualized in Figure (6).

Fig. 6: The GAN-based architecture proposed by
Kim et al. [57] to do domain transfer.

Source: [57]

This architecture could be used for audio data. Examples
show that the architecture is powerful and able to detect
complex relations between domains. If audio is used, the input
could be raw data or also a spectrogram. Different domains
then relate to different speakers/voices.

D. Image-to-Image Translation with Conditional Adversarial
Networks

Isola et al. [60] describe a method to do image-to-image
translation. They use a GAN [50] to implement a network
that is able to translate images from one domain to another.

There is a dataset of paired images required, e.g., satellite
pictures and a street map for those images. The discriminator
has then to learn and to decide if such a pair is real or
generated. The generator is trained to translate one image of
such a pair into the other. Therefore a generated pair contains
a real image and a second image that is translated by the
generator with the first image. The network can just be trained
like any other GAN [50].

A detail of the network is the generator: Often simple
encoder-decoder networks with a bottleneck are used, but the
chosen architecture in this case has skip-connection from the
layer i to the layer n − i, where n is the total layer count.
This network architecture is based on U-Net [64].

The network architecture could be used for voice conver-
sion. Pairs are then just two audio samples with the same
sentence spoken by two different people. One drawback is that,
depending on the task, relatively many such paired samples
have to exist and the network must be trained for each speaker
pair. The input could be a spectrogram or just raw data.

E. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks

The proposed network architecture by Zhu et al. [59] is
able to do a domain transfer on images. For example, it could



TABLE IV: A comparison of all style transfer models.

Paper Method Availability
(code)

End-to-
End

Training
Time

Real-
Time

Required Training
Data

Elegant

A Neural Algorithm of Artistic
Style [9]

Using the Gram matrix and an
already existing CNN to ex-
tract and transfer a style with
an iterative algorithm

yes (third-
party)

no (it-
erative
opti-
miza-
tion)

No training
required,
assuming
the CNN is
given

no None, assuming the
CNN is given

yes

Perceptual Losses for Real-
Time Style Transfer and
Super-Resolution [63]

Improving [9] to allow real-
time style transfer; an already
existing CNN is required

yes yes unknown yes Original images and
style transferred ver-
sion (may be gener-
ated with [9])

yes (es-
pecially
the loss
func-
tion)

Learning to Discover Cross-
Domain Relations with Gen-
erative Adversarial Networks
[57]

Create two functions to con-
vert objects from two different
domains; using GANs

yes yes unknown yes Two datasets with im-
ages of the two do-
mains (unpaired)

yes

Image-to-Image Translation
with Conditional Adversarial
Networks [60]

A GAN is used to check if a
pair of datarecords from two
domains is real or generated

yes yes unknown yes Paired data from two
different domains

yes

Unpaired Image-to-Image
Translation using Cycle-
Consistent Adversarial
Networks [59]

Create two functions to con-
vert objects from two different
domains; using GANs

yes yes unknown yes Two datasets with im-
ages of the two do-
mains (unpaired)

yes

change a horse to a zebra on an image. The training does not
require any image pairs, but only two datasets of images.

The architecture is similar to the architecture proposed by
Kim et al. [57]. Two mapping functions F and G are defined,
which map from domain A to B and from domain B to A. The
networks are trained that F (G(xb)) = xb and G(F (xa)) =
xa. There is also a discriminator loss that forces F (xa) to
produce images from the domain B and G(xb) to produce
images from the domain A. The network can also be seen as
two autoencoders that are trained at the same time. The style
transfer is done via the domain transfer.

A GAN-architecture [50] is used to implement the network.
For the discriminator 70× 70 sized convolutional PatchGANs
are chosen for the implementation. These GANs only penalize
structure at the scale of image patches.

One big difference to [57] is the used loss function. The
proposed CycleGAN [59] uses the mean squared error, where
the hinge loss is preferred for [57].

Compared to [60], the network is more complex, but on
the other side, image pairs are no longer required. This makes
the network much more useful, because in reality such pairs
are often expensive. The network could be trained on audio
data for two different speakers. The audio could be there as
raw data or as a spectrogram. Depending on the task, many
samples have to be available for good training results.

F. Comparison

All described papers about style transfer are compared in
Table (IV) to give an overview over the different methods.
For audio style transfer, [9] is an easy-to-implement choice,
assuming a CNN is given that extracts good features. If no
such CNN is given, but a paired dataset (audio files with the
same content spoken by different voices), then [60] might be
a good choice. If only two unpaired sets of data are available,

then [57] or [59] are possible solutions for audio style transfer.
If the audio style transfer for voices works, then the more
specific task of voice conversion is also solved.

VII. DISCUSSION

As described in Section IV, there are currently no perfect
solutions based on neural networks for the voice conversion
problem available. The only currently available candidate with
good results is [29], but it is proprietary and it is not even
known how it is implemented. Most solutions with neural
networks contain much pre- and post-processing, but end-
to-end solutions would be preferred. Audio style transfer-
based solutions do not work well for our tests, because the
classification networks do not focus on the same audio features
as humans; therefore, the voice that is generated based on these
features does not sound natural and almost no voice conversion
is done. We did not test methods based on CycleGAN [59] and
[60]; therefore, they could still work for voice conversion. It
may also be the case that the used CNN for the audio style
transfer could be trained somehow else to perform better on
the style transfer task. Maybe it is easier to use an architecture
without style transfer to solve voice conversion.

VIII. CONCLUSIONS

More research has to be done to solve the voice conver-
sion task. Impressive results for images with style transfer
show that neural networks are even able to solve complex
transfer/conversion tasks. Also for the voice conversion itself,
there are some networks available, but unfortunately there are
no end-to-end solutions. Therefore, it should also be possible
to solve the voice conversion with an end-to-end learning net-
work architecture. This survey summarizes currently available
methods that may help to solve this task, or at least to give
an introduction into this topic.



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” CoRR abs/1609.03499, 2016.

[5] D. Palaz, M. M. Doss, and R. Collobert, “Convolutional neural networks-
based continuous speech recognition using raw speech signal,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 4295–4299.

[6] B. Settles, “Active learning literature survey,” University of Wisconsin,
Madison, vol. 52, no. 55-66, p. 11, 2010.

[7] F. Stark, C. Hazırbas, R. Triebel, and D. Cremers, “Captcha recognition
with active deep learning,” in GCPR Workshop on New Challenges in
Neural Computation, 2015.

[8] J. Nurminen, H. Silén, V. Popa, E. Helander, and M. Gabbouj,
“Voice conversion,” in Speech enhancement, modeling and recognition-
algorithms and applications. InTech, 2012.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[11] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann, “Speaker identifica-
tion and clustering using convolutional neural networks,” in Machine
Learning for Signal Processing (MLSP), 2016 IEEE 26th International
Workshop on. IEEE, 2016, pp. 1–6.

[12] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the
measurement of the psychological magnitude pitch,” The Journal of the
Acoustical Society of America, vol. 8, no. 3, pp. 185–190, 1937.

[13] D. O’Shaughnessy, Speech communication: human and machine.
Addison-Wesley Publishing Company, 1987.

[14] E. (https://dsp.stackexchange.com/users/7390/edouard), “Reconstruction
of audio signal from spectrogram,” Digital Signal Processing. [Online].
Available: https://dsp.stackexchange.com/a/13401/26784

[15] J. Yamagishi, “An introduction to hmm-based speech synthesis,” Tech-
nical Report, 2006.

[16] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “Samplernn: An unconditional end-to-end
neural audio generation model,” arXiv preprint arXiv:1612.07837, 2016.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[18] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta et al., “Deep voice:
Real-time neural text-to-speech,” arXiv preprint arXiv:1702.07825,
2017.

[19] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner, A. Courville,
and Y. Bengio, “Char2wav: End-to-end speech synthesis,” 2017.

[20] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves
et al., “Conditional image generation with pixelcnn decoders,” in Ad-
vances in Neural Information Processing Systems, 2016, pp. 4790–4798.

[21] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[22] H. Jaeger, Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the” echo state network” approach. GMD-
Forschungszentrum Informationstechnik, 2002, vol. 5.

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[24] Y. Fan, Y. Qian, F.-L. Xie, and F. K. Soong, “Tts synthesis with
bidirectional lstm based recurrent neural networks.” in Interspeech, 2014,
pp. 1964–1968.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[26] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-
to-end speech syn,” arXiv preprint arXiv:1703.10135, 2017.

[27] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-end attention-based large vocabulary speech recognition,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 2016, pp. 4945–4949.

[28] M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE
TRANSACTIONS on Information and Systems, vol. 99, no. 7, pp. 1877–
1884, 2016.

[29] A. de Brébisson, J. Sotelo, K. Kumar, A. Auvolat, É. Simon,
R. Kumar, and T. Szymkowiak, “Lyrebird, an api for speech synthesis,”
https://lyrebird.ai/. [Online]. Available: https://lyrebird.ai/

[30] N. Perraudin, P. Balazs, and P. L. Sondergaard, “A fast griffin-lim
algorithm,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[32] K. Shikano, K.-F. Lee, and R. Reddy, “Speaker adaptation through
vector quantization,” in Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’86., vol. 11. IEEE, 1986, pp.
2643–2646.

[33] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
through vector quantization,” Journal of the Acoustical Society of Japan
(E), vol. 11, no. 2, pp. 71–76, 1990.

[34] K. Tokuda, T. Kobayashi, and S. Imai, “Speech parameter generation
from hmm using dynamic features,” in Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95., 1995 International Conference on, vol. 1.
IEEE, 1995, pp. 660–663.

[35] E.-K. Kim, S. Lee, and Y.-H. Oh, “Hidden markov model based voice
conversion using dynamic characteristics of speaker.” in EUROSPEECH,
1997.

[36] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-

https://dsp.stackexchange.com/a/13401/26784
https://lyrebird.ai/


speech synthesis,” in Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, vol. 1.
IEEE, 1998, pp. 285–288.

[37] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous probabilistic
transform for voice conversion,” IEEE Transactions on speech and audio
processing, vol. 6, no. 2, pp. 131–142, 1998.

[38] T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice conver-
sion in high-order eigen space using deep belief nets.” in Interspeech,
2013, pp. 369–372.

[39] T. Nakashika, T. Takiguchi, and Y. Ariki, “Voice conversion in time-
invariant speaker-independent space,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014, pp. 7889–7893.

[40] D. Saito, F. Villavicencio, J. Yamagishi, T. Tomoki, M. Wester, Z. Wu,
L.-H. Chen et al., “The voice conversion challenge 2016,” 2016.

[41] D. Huang, L. Xie, Y. Lee, J. Wu, H. Ming, X. Tian, S. Zhang, C. Ding,
M. Li, Q. H. Nguyen et al., “An automatic voice conversion evaluation
strategy based on perceptual background noise distortion and speaker
similarity,” in 9th ISCA Speech Synthesis Workshop (SSW9), 2016.

[42] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep
bidirectional long short-term memory based recurrent neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4869–4873.

[43] L.-H. Chen, Z.-H. Ling, L.-J. Liu, and L.-R. Dai, “Voice conver-
sion using deep neural networks with layer-wise generative training,”
IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP), vol. 22, no. 12, pp. 1859–1872, 2014.

[44] J. Lai, B. Chen, T. Tan, S. Tong, and K. Yu, “Phone-aware lstm-rnn
for voice conversion,” in Signal Processing (ICSP), 2016 IEEE 13th
International Conference on. IEEE, 2016, pp. 177–182.

[45] H. Banno, H. Hata, M. Morise, T. Takahashi, T. Irino, and H. Kawa-
hara, “Implementation of realtime straight speech manipulation system:
Report on its first implementation,” Acoustical science and technology,
vol. 28, no. 3, pp. 140–146, 2007.

[46] S. Pascual and A. Bonafonte, “Multi-output rnn-lstm for multiple
speaker speech synthesis with α-interpolation model,” way, vol. 1000,
p. 2.

[47] A. Bonafonte, P. D. Agüero, J. Adell, J. Pérez, and A. Moreno, “Ogmios:
The upc text-to-speech synthesis system for spoken translation,” in TC-
STAR Workshop on Speech-to-Speech Translation, 2006, pp. 199–204.

[48] S. Mobin and J. Bruna, “Voice conversion using convolutional neural
networks,” arXiv preprint arXiv:1610.08927, 2016.

[49] D. Erro, I. Sainz, E. Navas, and I. Hernáez, “Improved hnm-based
vocoder for statistical synthesizers.” in INTERSPEECH, 2011, pp. 1809–
1812.

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[51] K. Sathiarekha and S. Kumaresan, “A survey on the evolution of
various voice conversion techniques,” in Advanced Computing and
Communication Systems (ICACCS), 2016 3rd International Conference
on, vol. 1. IEEE, 2016, pp. 1–5.

[52] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 6964–6968.

[53] I. Karpov and D. Subramanian, “Hidden markov classification for
musical genres,” Course Project, 2002.

[54] K. M. Chit and K. Z. Lin, “Audio-based action scene classification using
hmm-svm algorithm,” International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET), vol. 2, no. 4, pp. pp–
1347, 2013.

[55] E. Batlle and P. Cano, “Automatic segmentation for music classification
using competitive hidden markov models,” 2000.

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[57] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover cross-
domain relations with generative adversarial networks,” arXiv preprint
arXiv:1703.05192, 2017.

[58] W. Xu, A. Ritter, W. B. Dolan, R. Grishman, and C. Cherry, “Para-
phrasing for style,” in 24th International Conference on Computational
Linguistics, COLING 2012, 2012.

[59] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” arXiv preprint
arXiv:1703.10593, 2017.

[60] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arXiv preprint
arXiv:1611.07004, 2016.

[61] E. W. Weisstein, “Gram matrix. From MathWorld—A Wolfram Web
Resource,” http://mathworld.wolfram.com/GramMatrix.html. [Online].
Available: http://mathworld.wolfram.com/GramMatrix.html

[62] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[63] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European Conference on
Computer Vision. Springer, 2016, pp. 694–711.

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2015, pp. 234–241.

[65] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue, “Timit acoustic-phonetic continuous speech
corpus,” Linguistic data consortium, vol. 10, no. 5, p. 0, 1993.

[66] D. Ulyanov and V. Lebedev, “Audio texture synthesis and
style transfer.” [Online]. Available: https://dmitryulyanov.github.io/
audio-texture-synthesis-and-style-transfer/

[67] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[68] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[69] K. Park, “A (heavily documented) tensorflow implementation of
tacotron.” [Online]. Available: https://github.com/Kyubyong/tacotron

[70] J. Sotelo and K. Kumar, “Speech synthesis using recurrent neural
networks.” [Online]. Available: https://github.com/sotelo/parrot

http://mathworld.wolfram.com/GramMatrix.html
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
https://github.com/Kyubyong/tacotron
https://github.com/sotelo/parrot


APPENDIX

A. Preliminary Experiments

During this work many experiments have been conducted.
Some of these experiments and the most important results are
documented in this section.

The main idea is to use audio style transfer to do the voice
conversion. It should work similar like the style transfer for
images. Our implemented style transfer is based on the method
described by Gatys et al. [9], because it already works very
well for images and the architecture is relatively simple. To
implement this architecture, a classification network for audio
data that is based on a CNN is required. To train this network,
we use different datasets: A proprietary speech dataset, TIMIT
[65] and a YouTube dataset that contains about 1′000 speakers
with each 1 h of audio. Other possible large datasets of spoken
text would be audio books.

For our experiments, we mostly use the YouTube dataset,
because it is the largest of the three datasets. The TIMIT
dataset has the highest quality, but it is quite small. The
proprietary dataset is required for the final task, but it is also
very small; therefore, it is not the preferred choice for the
development of a network architecture.

For each network architecture, we test different input for-
mats: Raw audio (1D stream) [5] [52], mel-cepstral as 1D
image [52] [66] and mel-cepstral as 2D image [11]. The
trained network is a classification network that is used to do the
style transfer described by Gatys et al. [9]. Networks with 1D
convolutions have the advantage that often much less training
time is required, because the processing of the data requires
fewer computations. On the other side, 2D convolutions may
be more powerful for some tasks, especially [11] shows that
2D convolutions also work very well for audio data. For audio
data it is not obvious if 1D convolutions or 2D convolutions
should be preferred, because audio data is in general 1D, but
spectrograms may be seen as a 2D image.

The network described by Lukic et al. [11] is not able
to generate high quality voice conversion results with the
given style transfer. An example of this style transfer with
a mel-cepstral that is handled as a 2D image is shown in
Figure (7). The input is a female voice of the TIMIT dataset
and it should be converted to a male voice. This conversion
does not work and the output sounds similar to the input,
except for some noise that is added. The reason why this
architecture does not work is probably, because the network
uses different features to classify a voice than humans do. The
network is not very deep and therefore it can be assumed that
the generated features are less abstract than, e.g., the features
that are used in the style transfer described by Gatys et al. [9].

For image data, there is the public available VGG-16
network [2]. All pre-trained weights may be downloaded for
free in the internet. This deep network architecture is based
on a simple CNN and performs very well for the style transfer
task for images [9]. We use a network that has a similar
architecture, but that includes batch normalization [67] and
uses audio data as input. The classification quality for the

Fig. 7: An example of an audio input (left) and audio output
(right) of a style transfer with the architecture described by

Lukic et al. [11]. A female voice from the TIMIT [65]
dataset should be converted to a male voice. The x axis

describes the time and the y axis the mel-scale. The values
are normalized to the range [0, 1].

Fig. 8: Some trained weights for an initial 1D convolution
with the length 320 and a stride of 160.

YouTube dataset is good, but the style transfer based on [9]
does not work. At this point it must be assumed that neural
networks use other features to classify a voice than humans
do. A possible solution to this problem could be if a larger
dataset with not only voices, but many more different sound
classes is used for the training. This would force the network
to include more different features in the classification process.
We still assume that the style transfer described by Gatys et
al. [9] works also well for audio data, but it depends a lot on
a good and very general trained classification network. This
seems to be a much harder issue for audio data than for image
data.

In general, our experiments are done with fixed-size inputs,
because this makes the development easier and the training
faster. Both described architectures are tested with different
input data types. They are compared in Table (V). Both
approaches are based on a simple CNN. The main difference
between these two architectures is that the architecture pro-
posed by Lukic et al. [11] is much smaller than the VGG-
16 [2] based model. Therefore, it requires less training time.
The quality, at least for the tested speaker classification task,
is very similar and both architectures reach high accurate
results. All tests are conducted on a NVIDIA TITAN Xp. For
the audio style transfer / voice conversion task none of these
networks works well. The outputs are always similar to the
inputs, except for some additional noise. It does not seem that



TABLE V: Different trained classification networks for the style transfer described by Gatys et al. [9] are compared to each
other. For all networks a YouTube dataset with 1′000 speakers is used for the training. The voice conversion task does not
work for any of these networks in a minimum required quality; therefore, there are no more details about the voice conversion
in this table.

Architecture Input Format Classification works Training Time
Based on [11] 2D mel-cepstral yes 7 h

1D mel-cepstral yes 3 h
2D Fourier spectrogram ok, but not very well > 10 h, slow convergence
1D Fourier spectrogram yes 3 h
raw audio / 1D after initial layer yes 5 h
raw audio / 2D after initial layer no no convergence

Based on VGG-16 [2] 2D mel-cepstral yes 22 h
1D mel-cepstral yes 10 h
2D Fourier spectrogram ok, but not very well > 25 h, slow convergence
1D Fourier spectrogram yes 10 h
raw audio / 1D after initial layer yes 12 h
raw audio / 2D after initial layer no no convergence

any style or voice transfer is done.
It is notable that the raw input forces the network architec-

ture to learn something like a Fourier transform in the initial
convolutional layer. To obtain this result we use a convolution
with the length 320 and a stride of 160. The used non-linearity
is ReLU [68] and we do not use a bias. If the resulting lists of
feature weights are ordered by their lowest frequency and are
plotted, it might be seen that they look like sine-curves with
different frequencies. This is visualized in Figure (8). This fact
is already described by Palaz et al. [5]. It allows to do “feature
learning” [17] and the network then no longer depends on a
specific transform, e.g. the Fourier transform, and therefore
does not need any pre-processing. This initial trained layer
may be frozen and reused for other networks. Unfortunately,
this learned transform is only powerful if the following layers
are also 1D convolutions and not 2D convolutions. The main
reason for this is, because of the initial 1D convolution
there is a random order for the frequencies of the trained
transform. This is not a problem for 1D convolutions, but for
2D convolutions the order of the frequencies is very important.
The training does not converge to a good solution, if directly
after the initial 1D convolution 2D convolutions are used.

Ulyanov et al. [66] describe a simple network that is
able to do audio style transfer based on [9]. They use a
spectrogram as input and then one 1D convolutional layer
for their network. All weights are initialized randomly and
therefore no classification network has to be trained. For some
sounds this architecture works well, but for voices the style
transfer does not work. Our tests include different filter sizes
and layer counts, but in the end it does not seem to be possible
to implement voice transfer with randomly initialized weights.
It is still impressive that this architecture already works a bit
for some simple sounds.

Additional tests could be done with the CycleGAN [59]
network. This architecture directly may be used if a fixed-
size spectrogram is used as a 2D input image. It also might

be modified to take a fixed-size raw input or a spectrogram
as a 1D image with a feature for each frequency. Probably
much data is required for the training, therefore the audio
dataset should be large. A big advantage of the architecture is
that it does not require a paired dataset. On the other side,
the architecture only allows to train a conversion between
two speakers, therefore the training has to be done for each
possible speaker pair. Nevertheless, this approach is already
very powerful for a general domain transfer on images and
could also work for audio data.

If a paired dataset is available, where each spoken text is
present for two speakers, the pix2pix [60] architecture may be
used. The training is more efficient and it creates often better
results than CycleGAN as shown in [59]. On the other side,
often there is no paired dataset available. Especially for real
use cases this might be a problem.

The audio synthesizer is a very important part of the final
neural network, therefore we also try to analyse Tacotron
[26] and Char2Wav [19] . The available third-party Tacotron
implementation [69] still does not produce good results after
one week of training and the public Char2Wav implementation
[70] is not complete and therefore the training does not
produce any useable results. Wavenet is not tested, because
it takes too much time for the training and for the runtime.
Especially Tacotron would be a good solution, because it is
trained end-to-end and therefore could be included easily in a
custom neural network architecture.

Our experiments do not produce any audio style transfer
or voice conversion, but we are able to describe why our
network architectures do not work well in combination with
the style transfer described in [9]. We also show that for 2D
CNNs the mel-cepstral works much better as an input than
a plain Fourier spectrogram. Another interesting fact that we
can show, is that a neural network learns a transform that is
similar to the Fourier transform, if the input of the network is
raw data and the initial layer is a convolutional layer.


	Introduction
	Fundamentals
	Speech Synthesis
	WaveNet: A Generative Model for Raw Audio
	SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
	Deep Voice: Real-Time Neural Text-to-Speech
	TTS Synthesis with Bidirectional LSTM based Recurrent Neural Networks
	Char2Wav: End-to-End Speech Synthesis
	Tacotron: Towards End-to-End Speech Synthesis
	Comparison

	Voice Conversion
	Phone-Aware LSTM-RNN for Voice Conversion
	Voice Conversion using Deep Bidirectional Long Short-Term Memory based Recurrent Neural Networks
	Multi-Output RNN-LSTM for Multiple Speaker Speech Synthesis and Adaptation
	Voice Conversion using Convolutional Neural Networks
	A Survey on the Evolution of Various Voice Conversion Techniques
	Comparison

	Audio Classification for Voice Conversion using Audio Style Transfer
	End-to-End Learning for Music Audio
	Convolutional Neural Networks-based continuous Speech Recognition using Raw Speech Signal
	Speaker Identification and Clustering using Convolutional Neural Networks
	Comparison

	Style Transfer methods to do Voice Conversion using Audio Style Transfer
	A Neural Algorithm of Artistic Style
	Perceptual Losses for Real-Time Style Transfer and Super-Resolution
	Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
	Image-to-Image Translation with Conditional Adversarial Networks
	Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
	Comparison

	Discussion
	Conclusions
	References
	Appendix
	Preliminary Experiments


