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Abstract—Current research in the area of speech data anal-
ysis with deep learning focuses mainly on speech recognition,
speech segmentation, speaker recognition, speech classification
and speech synthesis. The prediction of frames of speech is a
less studied area. In this thesis, a neural network based on Gated
Recurrent Units (GRUs) is proposed to predict the subsequent
frames of given Mel-spectrograms. The model is trained on the
TIMIT dataset to predict sequences up to one word in length.
It is found that an input length of approximately 2.5 words
performs best for the proposed network. Analyzing the mean
absolute error shows that frames closer in time to the given
sequence require less input data than frames that are further
away. Moreover, it is observed that certain phoneme types such
as closures, pauses, fricatives and affricates are predicted worse
than other phonemes. The main issue of regressive models to
predict frames of speech is that they tend to predict ranges
where the formants might lie instead of specific positions. As
a result, the predicted Mel-spectograms look blurry and have
missing details. Various well-known distance metrics such as
mean absolute error, mean squared error, or soft dynamic time
warping could not alleviate this problem. However, it is observed
that the system exhibits different characteristics depending on
the metric used as loss function. Based on the gained experience,
different measures such as learning a proper distance metric
or alternative architectures are proposed to improve the overall
prediction quality.

Index Terms—speech prediction, audio processing, deep learn-
ing

I. INTRODUCTION

In our everyday lives we encounter a variety of audio
signals such as human speech, music, animal voices or sounds
from human activity such as cars and machinery. Given the
prevalence of sounds, it is no surprise that there exist a vast
number of use cases for audio processing. Many of these
audio processing applications such as speaker recognition
[1], speech recognition [2], audio separation [3], audio
segmentation [4], audio classification [5] or text to speech
conversion [6] are scientifically well-studied areas. However,
the prediction of speech has been examined less.

* This project thesis was written by Pascal Sager as part of the “Master
of Science in Engineering with Specialisation in Data Science” program at
the Zurich University of Applied Sciences. This thesis was supervised by
Prof. Dr. Thilo Stadelmann. The code is publicly available on Github https:
//github.com/sagerpascal/speech-prediction.

In the field of text data processing, the prediction of
subsequent words has been widely researched. Such systems
are used, for example, for word correction and spell check
systems [7] or to compute vector representations of words
[8]. While systems for the prediction of written language
are well studied, the prediction of spoken language remains
relatively under-examined.

Processing audio signals is complex and characterised by
various challenges. For example, speech processing systems
need to be resistant to background noise but still tolerant
to slight variations in the speed and pitch of a signal [9].
For this reason, researchers have been working on more
reliable systems for decades. Earlier systems used methods
such as Vector Quantization (VQ) [10], Hidden Markov
Models (HMM) [11] or Gaussian Mixture Models (GMM)
[12]. Many systems that have been developed in recent
years use the powerful feature extraction capabilities of deep
neural networks (DNNs) [13]–[15]. More precisely, mainly
convolutional neural networks (CNNs) [16], recurrent neural
networks (RNNs) [17] or Transformer [18] are used nowadays
to process audio data.

In this project thesis, the prediction of frames of Mel-
spectrograms [19] is investigated using deep learning methods.
Thereby, the prediction is done without conversion to text
data (i.e. not combining existing speech recognition systems,
text prediction systems and speech synthesis models). The
task of predicting audio data is particularly interesting for
two reasons: First, such systems can be used in practice, for
example to optimize audio interfaces by completing truncated
signals. Second, such models can generate features from Mel-
spectrograms [20] which can be used for other downstream
tasks such as speaker classification. However, this project
thesis focuses on the accurate prediction of frames of speech
rather than feature generation for other tasks.

II. RELATED WORK

To the best of the author’s knowledge, no work has been
published that investigates the prediction of sequences of
Mel-spectrograms. Nevertheless, auto-regressive models for
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generating speech representations as well as speech synthesis
models are considered related. Auto-regressive models for
generating speech representations are trained to predict single
frames of Mel-spectrograms and subsequently used to gen-
erate representation vectors for other tasks. Speech synthesis
models, on the other hand, often generate Mel-spectrograms
based on text data and synthesize them into waveforms.

A. Auto-Regressive Models for Speech Representation Learn-
ing

In the field of text data processing, auto-regressive models
are often used for unsupervised pre-training [21]. This concept
applied to big data has led to the development of very
advanced and well-known models in recent years such as GPT
v1-v3 [22]–[24], Transformer-XL [25] or Reformer [26].
Recently, this concept has been applied to audio data as well
[20], [27]. Thereby, mainly Mel-spectrograms are used and
based on given frames a subsequent frame is predicted. This
pre-training takes place on large datasets such as LibriSpeech
[28]. The goal of the pre-training is to learn speech represen-
tations that can be used for different downstream tasks across
different datasets. Depending on the task, speech information
from different layers of the model are extracted. In particular,
the lower layers capture more information about the speakers,
while the upper layers capture more phonetic content.
However, instead of focusing on the accurate prediction of
frames, these models aim to generate good representations of
speech. Moreover, these systems are only used to predict single
frames with a specific offset from the given frames. These
systems are not able to predict multiple subsequent frames
based on a given sequence and can therefore not be used for
the prediction of speech.

B. Speech Synthesis

Speech synthesis models, also called text-to-speech (TTS)
models, generate waveforms from text data. Many prominent
methods such as Tacotron [29], Tacotron 2 [30] or FastSpeech
[31] generate Mel-spectrograms based on written text and then
synthesize raw waveforms from the Mel-spectrograms. The
models described use two different strategies to convert text to
Mel-spectrograms: Tacotron and Tacotron 2 use an end-to-end
approach based on a recurrent sequence-to-sequence feature
prediction network. FastSpeech, on the other hand, trains an
additional phoneme duration prediction module and argues that
this two-staged approach increases robustness and contrability
of the speaking rate. These networks are related because even
tough they have a different type of input (i.e. text), they also
generate Mel-spectrograms. Thus, similar principles can be
applied for the generation process.
Additionally, speech synthesis models are relevant when pre-
dicted Mel-specotrgrams are re-synthesized into waveforms.
The Tacotron model converts the Mel-spectrogram into a
linear-scale spectrogram, using a CBHG module consisting
of 1D convolutional filters, highway networks [32] and bidi-
rectional GRUs. Afterwards, the Griffin-Lim [33] algorithm is
used to reconstruct the signal. Other approaches use mainly

WaveNet [34] as vocoder or slight variations of this network
such as WaveGlow [35] or Parallel WaveGAN [36] for the
synthesis.
WaveNet is a generative model for raw audio waveforms and
was trained by predicting the next value of a waveform signal
using dilated causal convolutional layers [34]. However, the
authors of WaveNet state that the model is not feasible for
speech prediction due to the lack of long range coherence.
This is because the waveforms consists of 8′000-16′000 mea-
surements per second and therefore a very large receptive field
would be needed.

III. CONCEPT

In this project thesis, the audio files from the TIMIT [37]
speech corpus are used. This dataset includes recordings of
630 speakers of eight major dialects of American English
reading ten out of 2342 different phonetically rich sentences.
The TIMIT dataset was chosen mainly due to its cleanness
as well as the time-aligned phonetic transcriptions, which are
useful for evaluation purposes.
The recorded audio data in this corpus is the measured air
pressure per time and is converted to a digital signal via
sampling [38] with a sampling rate of 16kHz. This digital
speech signal has one dimension but contains information
about the linguistic content, background noise, as well as
information about the speaker (e.g. gender, origin, emotional
state etc.). In order to better separate these different kinds
of information, the speech signal is transformed into the
frequency domain.
The transformation from the time domain to the frequency
domain is done using the Fast Fourier Transformation (FFT)
[39], which requires the signal to be static. Therefore,
the quasi-stationary speech signal is split into frames of
25ms length using the Hann window function [40] with a
window-size of 400 sample points. During this short period,
the statistical parameters of the signal are relatively stable
and the FFT can be applied.
With the Fourier transformation, the time domain of a signal
is traded for the frequency domain. The result of the FFT is a
spectrum that represents the energy per frequency. However,
this spectrum only contains the energy per frequency for
a single frame (i.e. one sequence extracted with the Hann
window). Several spectrums are calculated by shifting the
Hann window by 50 percent of its size further on the time
axis. Thereby, the FFT is computed on overlapping windowed
segments of the signal, and the resulting spectrums are
stacked on each other. Through the simultaneous capture
of the time-frequency plane of a speech signal, the so
called spectrogram is calculated. It represents the energy per
frequency over the frames.
Humans do not perceive frequencies on a linear scale and
are better in distinguishing lower frequencies than higher
frequencies. Therefore, Volkman et al. [41] proposed the Mel
scale which scales the signal such that equal distances in pitch
sound equally distant to the listener. This scale also helps
to interpret the spectrogram and was therefore applied on
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the spectrogram. Spectrograms that use this scale are called
Mel-spectrograms and show the amplitude per frequency over
time.
Figure 1 depicts the entire concept of the application. It
shows the described transformation of the raw signal (i) into
a Mel-spectrogram (iv) as signal transformation (iii). Before
the described transformation, data augmentation is optionally
applied (ii). Data augmentation helps to obtain models that
generalise better and is described in more detail in section
IV-A.

Fig. 1. The concept of this work to predict sequences of Mel-spectrograms:
First, the raw audio signal is loaded (i) and optionally data augmentation (ii)
is applied. Then the audio signal is transformed (iii) to a Mel-spectrogram
(iv). A sliding window (v) is used to extract a segment, which is then split into
input and target (vi). A model (vii) is trained to predict the target sequence
(viii) based on the input sequence. Finally, the model parameters are updated
(x) by comparing the target sequence with the prediction using the Mean
Absolute Error (MAE) loss function (ix).

After the Mel-spectrogram of an audio signal is calculated,
a sliding window is shifted over the time axis of the Mel-
spectrogram (v). The sliding window is used to extract seg-
ments with a fixed length. The extracted segment is then split
into two sub-segments (vi). The chronological first segment
contains n frames and is fed as an input into the model. The
chronological second segment consisting of k frames is used
as the target of the prediction task. The network is trained to
predict the unseen segment consisting of k frames based on
the given segment with n frames.
The described sliding-window approach is a case of self-
supervised learning, where the targets are derived from the
input data. Self-supervised learning not only eliminates la-
belling costs, but also prevents label corruption and makes
it straightforward to add new data [42].
In this work, the window for extracting segments has been
shifted by one frame on the time axis. This implies that target
vectors yt1 are reused in a subsequent training sample as
input vectors xt2 . The reuse of target vectors is inspired by
similar training methods from the field of text processing. For
example, training methods of word2vec models [8] such as
c-bow or skip-gram also predict the context within a window
and reuse the target tokens as input tokens.
The definition of the number of given frames n and the number
of frames to predict k has a significant impact on the results. In
this work, the models were trained to predict one word. This

means that the parameter k was fixed to a specific number
of frames. Gráf [43] measured that a native English speaker
speaks 196 words per minute on average. With this assumption
it can be calculated that one word corresponds to 306ms as
shown in equation 1.

t1w =
1w · 60s
196wpm

≈ 0.306s (1)

By a given sample rate of fs = 16kHz, a Hann window size
of hl = 400 frames and a window shift of hs = 200 frames,
306ms corresponds to 24.5 frames as shown in equation 2.
Therefore, the parameter k was set to k = 25 and thus
the model was trained to predict approximately one word of
speech.

k1w =
t1w · fs

hl

hl/hs

=
0.306s · 16000s−1

400
2

≈ 24.5 (2)

The second parameter n which determines how many
frames are used as an input to the model was treated
as a hyper-parameter. If more frames are fed into the
model (i.e. n is larger), the model has more information
available. Theoretically, this allows the model to extract more
speaker-dependent features as well as more information about
the context than from shorter sequences. However, longer
sequences also have disadvantages. For example, models
based on RNNs process the data sequentially. For n given
frames, this leads to n recurrent steps which cannot be
parallelized. Therefore, the number of given frames n has a
significant impact on the performance of the entire model.
Another disadvantage of longer input sequences is that less
segments can be extracted from the Mel-spectograms which
results in fewer training samples.

Auto-regressive models for text typically calculate the
probability of a token at time t, given the previous tokens
(xt−n, xt−(n−1), ..., xt−1). Therefore, they usually use a Soft-
max layer at the end of the network to estimate the probability
distribution over the tokens [24], [25], [44]. However, for
speech data, each token tk corresponds to a frame rather than
a written word. Since the set of target tokens for speech data is
infinite, the Softmax layer is replaced with a regression layer.
Consequently, the model directly predicts the k subsequent
target frames for n given frames and does not calculate a
probability over all existing frames.
The model is optimized by minimizing the L1 loss between
the prediction and the ground truth, as it is done for many
speech synthesis models [29], [45]. Different loss functions
are examined in more detail in section V-A.

IV. IMPLEMENTATION

The Mel-spectrograms are calculated using 80 Mel-
filterbanks. After applying the window function to extract a
segment and splitting the segment into the two sub-segments
of length n and length k, two vectors of the size [80×n] and
[80× k] are obtained. The first vector consisting of n frames
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is used as an input for the model and the second vector with
k frames as a target.
As shown in figure 2, the model consists of a pre-net, a GRU-
net and a post-net. This architecture is an extended version
from Ref. [20] with additional post-processing.
First, the input vector is fed into the model’s pre-net. The
pre-net consists of 5 similar blocks, each containing a fully
connected layer, followed by a ReLU activation, a dropout
layer [46] and layer normalization [47]. This pre-net is used
to extract features from the Mel-spectrogram. Thereby, the first
fully connected layer increases the feature dimensionality per
frame from 80 to 512. All the subsequent layers keep the
dimensionality of 512 and thus the pre-net calculates latent
representations with a dimensionality of [512× n].

Fig. 2. The input sequence is first fed into a pre-net (i), which consists of
5 identical blocks, each containing a fully connected layer, followed by a
dropout layer and layer normalization. The extracted latent representations
are then fed into 4 GRUs (ii) with residual connections around it. Finally, the
post-net (iii) maps the latent representations to the target size, and the final
convolutional layer reduces the number of channels.

The GRU-net processes the generated latent representations.
This sub-network consists of 4 Gated Recurrent Units with
residual connections [48] around each unit. The residual
connections allow the gradient to flow directly to the pre-
net during backpropagation. This improves convergence by
addressing well-known issues of RNNs such as vanishing or
exploding gradients [49]. In addition to residual connections,
gradient-clipping with a clip coefficient of c = 1 was used to
further mitigate these issues.
Finally, a post-net is used to map the obtained sequence to the
target number of frames [512 × k]. The post-net consists of
3 similar modules, each containing a fully connected layer,
followed by a ReLU activation, a dropout layer and layer
normalization. Afterwards, a convolutional layer reduces the
feature dimensionality per frame from 512 to 80 to obtain the
target dimensionality of [80× k].
The model was trained with the Adam optimizer [50]. Thereby,
the learning rate was set to α = 8 · 10−5, the weight decay to
dw = 1 · 10−4 and a mini-batch size of b = 32 was used.
In addition to the model proposed in this section, other archi-

tectures based on CNNs and sequence-to-sequence modeling
were also evaluated. However, these architectures have per-
formed worse and are therefore only described in the appendix
in chapter A to provide insights for eventual follow-up work.

A. Data Augmentation

In order to achieve better generalization, data augmentation
was used. The augmentation was directly applied to the raw
signal and not to the Mel-spectrogram. It is important that
the augmentation does not disrupt the raw signal excessively,
otherwise the phonemes would not be clearly identifiable in
the Mel-spectrogram and the performance would drop.
In this work, only a resampling function and an amplification
method were used. The resampling augmentation method uses
a high-quality implementation with a Kaiser window [51] for
band-limited sinc interpolation. It was used with a probability
of presample = 0.75 and resampled the original signal by a
random factor between 0.7 and 1.3.
In addition to resampling, amplification of individual segments
within the entire sequence was applied with a probability of
pampl = 0.75. This augmentation method amplified or de-
amplified random sub-sequences by a random factor between
0.8 and 1.2. Since the TIMIT corpus is relatively small, data
augmentation is considered necessary to achieve good results
on the test dataset.

B. Pre-Training

Pre-training was conducted for 10 epochs on the “train-
clean-360” subset of the LibriSpeech corpus. This subset
contains 360 hours of read English audio books [28]. During
pre-training, the model learned general aspects of speech.
After pre-training, the models were fine-tuned on the TIMIT
corpus. The models with pre-training not only learned faster,
but also generalised better. This indicates that some general
features can be learned and transferred to other datasets with
different speakers.

V. PRELIMINARY EXPERIMENTS

A. Loss Function

The loss function has a significant impact on the character-
istics of the prediction. In the field of speech synthesis, the L1
loss is often used to optimize the model [29], [45]. The same
applies for models which reduce noise in Mel-spectrograms
[52]. Since the loss function in the domain of frames of speech
prediction has not been investigated before, the following loss
functions were evaluated in a preliminary experiment:
• L1-Loss: Mean Absolute Error (MAE)
• L2-Loss: Mean Square Error (MSE)
• Soft-DTW L1-Loss: Soft dynamic time warping with the

MAE as distance metric
• Soft-DTW L2-Loss: Soft dynamic time warping with the

MSE as distance metric
• Adaptive Robust Loss Function: A generalization of dif-

ferent loss functions which allows an automatic adaption
of the robustness during training
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Fig. 3. The ground truth of a randomly chosen sentence and five correspond-
ing predictions from models trained with a different loss function. In order to
compare the whole sentence and not only a short sequence, several predictions
were concatenated.

The L1 loss calculates the mean absolute error between the
ground truth and the prediction in order to update the model.
The L2 loss, on the other hand, gives more importance to large
deviations by calculating the mean square error between the
ground truth and the prediction.
A concern of these two loss functions is their limited robust-
ness to shifts on the time axis [53]. For example, a high loss
could occur if the prediction is good, but not well aligned
on the time axis. To address this problem, soft dynamic
time warping (soft-DTW) [54] was used for the L1 loss as
well as for the L2 loss. Soft-DTW is based upon dynamic
time warping (DTW) [53]. In general, DTW can compare
vectors with different length in time and is robust to shifts
or dilatations across the time dimension. Compared to DTW,
soft-DTW computes the soft-minimum of all alignment costs.
By doing so, the method becomes differentiable and can be
used to optimize the model.
Furthermore, experiments with the adaptive robust loss func-
tion [55] were conducted. This loss was used to add more
robustness to the model, i.e. that the model is less influenced
by outliers than by inliers [56]. The adaptive robust loss
function is a generalization of different loss functions with
different robustness properties. By analyzing the gradients it
automatically determines how robust the loss should be and
adjusts the function accordingly without any manual parameter
tuning.
Each of these loss functions were used to optimize a model.
Figure 3 shows a representative sentence predicted by models
trained with different loss functions. At a first glance, the
predictions from these models look similar. However, a closer
look reveals different characteristics.

Models trained with the adaptive robust loss or the L2 loss
predict smaller amplitudes for the upper frequencies (i.e. the
upper part of the Mel-spectrogram is less pronounced). The
L1 loss and the two Soft-DTW versions, on the other hand,
pronounce these upper frequencies stronger. The fact that the
soft-DTW version of the L2 loss pronounces these higher
frequencies more than the L2 loss indicates that dynamic
time warping may be helpful for better predicting these upper
frequencies.
It is also observable that the predictions of the L1 loss appear
overall smoother and the phonemes are less separated. The
adaptive robust loss and the L2 loss lead to predictions with
more separated phonemes, while the two Soft-DTW losses
show partly sharp transitions along the time axis.
However, the actual goal is the prediction of speech. Therefore,
the acoustic perception is particularly important besides the
visual evaluation of the Mel-spectrograms. For this purpose,
the Mel-spectrograms were re-synthesized to waveforms us-
ing the Griffin Lim reconstruction algorithm [33]. Since the
predicted Mel-spectrograms contain a lot of noise, perception
experiments with a test group were not feasible and therefore
not conducted. From the author’s perception, the prediction of
the model trained with the L1 loss sounded best.
The loss functions are further analyzed in the appendix in
chapter B. By comparing time-shifted predictions with the
average of the input, it is shown that the L1 loss is more
robust than the L2 loss for predictions which are not well
aligned on the time axis. In addition, it is found that the two
soft-DTW versions are not well suited for predicting very short
sequences. Consequently, the MAE was used as loss function
for the project thesis but should be reconsidered in future work.

VI. RESULTS

In all conducted experiments, the standard TIMIT training
and test split [37] was used. For hyper-parameter tuning,
the training dataset was subdivided and 10 percent of it was
used as a validation dataset. After optimising the hyper-
parameters, the model was retrained on the entire training
dataset including the validation set. The test dataset was
only revealed after tuning the hyper-parameters to evaluate
the model. Thus, no information from the test split was
incorporated into the training process or the optimization of
the hyper-parameters.

Overall, the predicted sequences look blurry and some
details are missing as shown in figure 4. For example, the
formants are not clearly separated, and often only the outline
of the predicted phonemes is identifiable but not the inner
structure. This effect was observed for all tested models
independent of the loss function. One reason for this behavior
could be the fact that the formant frequency, the speaking
rate, and the pronunciation are speaker-dependent [57]. For
different speakers, this leads to different positions of the
formants on the time-axis and on the frequency-axis of the
Mel-spectrogram, even for identical sentences and words. This
makes the prediction task for the model difficult. By using
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Fig. 4. Four random examples of predicted frames. The ground truth is shown
on the left and the prediction of the model on the right.

simple distance metrics such as the L1 loss or the L2 loss, the
model tends to predict a “range” in which the formants could
lie, instead of predicting specific locations. Predicting such
ranges instead of exact positions leads to the blurred looking
predictions.

A. Number of Frames

While the number of frames to predict was fixed, the number
of input frames n was treated as a hyper-parameter. Tuning this
parameter is a trade-off between providing more information
to the model (i.e. larger n) and having more training samples
available (i.e. smaller n). Different numbers of frames were
fed into the model and the MAE of each of the 25 predicted
frames was calculated. Figure 5 shows the result.

The prediction accuracy of the first three frames was higher
when only a few frames (n in the range of 15-44 frames)
were fed into the model. This indicates that only a couple
of frames are sufficient to predict the immediately following
frames. At the same time, the first predicted frames benefited
from having more training data. This suggests that the frames
which are closer in time to the given data are based on more
local information (i.e. more dependent on the immediately
preceding frames).
Predicting frames that are further away in time from the given
sequence requires more input data. For example, the prediction
of the sequence that is 10-25 frames away from the given data
achieved better results when more frames were given as an
input (n in the range of 45 and 74 frames). This suggests
that the prediction of frames further away in time rely on
more global information. They benefit from more data being
fed into the model even though if this leads to fewer training
samples. The lowest MAE over all frames was obtained when
approximately 60 frames were fed into the model. Given the
assumption in equation 1 and the parameters from equation 2,
60 frames corresponds to ≈ 2.5 words as shown in equation 3.

Fig. 5. The Mean Absolute Error (MAE) per predicted frame for various
numbers of given frames. The y-axis shows the MAE, the x-axis show the
predicted frame (e.g. 3 means the error for the 3rd frame) and the lines
represent the error for different numbers of given frames.

This means that the best result to predict a word was obtained
when 2.5 words were used as an input.

n60fr =
60 · hs
fs · t1w

=
60 · 200

16000s−1 · 0.306s
≈ 2.45 (3)

Because the frames of a Mel-spectogram evolve slowly over
time, the frames that are closer to the input sequence have a
lower MAE than the frames that are further away in time.
The first predicted frames are more similar to the last given
frames and consequently easier to predict. In addition, the
uncertainty increases for frames that are further away in time.
Figure 6 shows the predicted Mel-spectrograms with a fixed
offset. For a given sequence, 25 frames were predicted, but
only the frame at the position “offset” was kept. Afterwards,
the sliding window was shifted forward by one frame on the
time axis and the process was repeated. Finally, all kept frames
were stacked and thus the resulting Mel-spectrogram shows
the prediction with a specific offset from the given data.

The plots show that the prediction with an offset of one
frame contains more detail. However, when frames that lay
further in time are predicted, the predictions are blurrier.
Consequently, the accuracy per predicted frame can not only
be measured in numbers using the mean absolute error, but is
indeed visible in the plotted Mel-spectrograms.

B. Error per Phoneme and Error per Speaker

The TIMIT dataset provides various additional informa-
tion about the audio sequences. For example, time-aligned
phonetic transcriptions and additional information about the
speakers are included. The phonetic transcriptions were used
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Fig. 6. The plot in the upper left corner shows the Mel-spectrogram of
a randomly chosen sentence. For the other plots, multiple predictions were
made and only the frame at the position “offset” was kept. Afterwards, all
kept frames were concatenated. Thus, only the predicted frames that are a
specific number of frames away from the given data are shown.

to evaluate the prediction accuracy per phoneme category. A
detailed evaluation is included in the appendix in chapter C.
The analysis of the prediction per phoneme type has shown
that especially pause duration and closures of the lips are
incorrectly predicted. This could be due to the facts that it is
difficult in general to estimate transitions near a closure of the
lips [58] and the pause durations is highly speaker dependent
[59]. The model also has more difficulty predicting affricates
and fricatives than other phoneme types. A reason for this
could be that affricates and fricatives are generally difficult to
determine, as their frequencies contain a random component
by definition.
Chapter D of the appendix examines the prediction error per
speaker. This evaluation shows that systems to predict frames
of speech could have issues regarding fairness. For example,
frames of speech spoken by individuals with a lower level of
education or an African-American origin are predicted worse
than frames spoken by individuals with a higher level of
education or an European-American origin. This demonstrates
that measures must be taken to ensure that such systems do not
discriminate against groups of individuals based on attributes
such as race, gender or education.

C. Perception of the Results

Some of the results can be found on https://sagerpascal.
github.io/speech-prediction/results.html. The predictions are
noisy which is reflected in the blurred plots of the predicted
Mel-spectrograms as well as the re-synthesised waveforms.
Nevertheless, most of the predicted words can be identified
acoustically. This suggests that DNNs are able to predict
speech.

D. Predicting Longer Sequences Using a Seed

So far, only k = 25 frames were predicted. Nevertheless,
the number of frames to predict can be increased. However, by
increasing this parameter also the error increases, because the
further away a predicted frame is from the given frames, the

less accurate the prediction becomes. Moreover, the number
of predicted frames is always limited by an upper bound (i.e.
the parameter k). Another approach to predict sequences of
arbitrary length is to reuse the output of the model as an
input. Thereby, an initial sequence (a.k.a. a seed) is fed into
the model. The model then predicts the subsequent frames
of this seed. By reusing this prediction as input, the model
can theoretically predict the subsequent frames of the previous
prediction. If this process is repeated continuously, sequences
of any length can be predicted.
However, in this approach, the model faces the challenge that
if a prediction contains noise and is reused as input, the next
prediction must be made based on noisy data. Consequently,
the prediction task becomes more difficult.
Another issue is that usually fewer frames are predicted than
are needed as an input. Consequently, only a part of the input
can be replaced by the prediction. Therefore, the chronologi-
cally oldest frames of the input are removed and the predicted
frames are appended to the remaining input sequence. Hence,
the input is gradually replaced by the predictions.
A model trained according the principle described in chapter
III was not able to predict longer sequences. As soon as noisy
predictions were fed into the model, the output became a
constant vector.
Various measures were taken to counteract this behaviour.
Chapter VI-A shows that the frames that are closer in time
to the given data have a much smaller prediction error than
the frames that are further away. Therefore, less frames were
predicted and used as an input. By doing so, the output and
therefore also the input becomes more accurate and the noise
in the system is reduced.
As a second measure, the principle of reusing the output as an
input has already been applied during training. Thereby, the
model is explicitly trained and optimized on this specific task.
As a final measure, the L1 loss was replaced by a weighted L1
loss as it is done in the field of text data prediction for longer
sequences [8]. Predicting frames further away from the seed
becomes more challenging because of the accumulated noise.
Therefore, a smaller weight was assigned to these frames so
that they have less influence on the overall loss.
All these measures have contributed to improve the predic-
tions. The model is in some cases able to predict longer
sequences if a seed from the training dataset is used. However,
with seeds from the test dataset, multiple words are only
predicted in a few cases. Often the model collapses and
predicts a constant vector for a longer time. In some cases,
the model can recover and starts again to predict meaningful
words.

VII. FUTURE WORK

The main problem with the system presented in this work
is that the predictions are blurred. The model rather learns
to predict a range where the formants of the phoneme could
lie. This range can be interpreted as an average of the Mel-
spectrograms produced by different speakers. As a result, the
formants are not well separated on the frequency axis and
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the phonemes have missing details. According to the author’s
intuition, this blurry effect occurs for most regressive model
which use a simple distance based metric as loss function
and could be explained by the fact that the average loss is
smaller if ranges and not specific formants are predicted.
This implies that an alternative metric could be helpful for
regressive models.
To the best of the author’s knowledge, no metric exists that
is very good at measuring the quality of predicted frames.
A suitable metric should take various aspects into account.
It needs to be robust to shifts and dilatations on the time-
axis as well as on the frequency-axis. It should also evaluate
whether correct phonemes are predicted, if they are accurate
and whether they are consistent with the characteristics of the
speaker.
However, developing such a metric is difficult and requires
a lot of expertise. Besides the development of new metrics,
the following modifications could help to further reduce the
existing blurry effect in the predicted Mel-spectrograms:

• Learn a suitable loss function
• Use a different network architecture

Loss Function - An alternative to the development of a
new loss function could be to learn a suitable metric. For
example, a Siamese network [60], [61] could be trained
to compare sequences of Mel-spectrogram. Therefore, two
Mel-spectrograms are fed into this additional network and the
last layer outputs a similarity score. If augmented sequences
are used during training, this network could learn a metric
which is robust to shifts or dilatations across the time and the
frequency dimensions. After training, the parameters of the
Siamese network could be frozen and then used to calculate
the distance between the ground truth and the predicted
frame. By doing so, the L1 loss function could be replaced by
a Siamese network, which was trained with a much simpler
cross entropy loss (i.e. similar or not similar).
If the dataset has phoneme-level transcriptions, also a
classification network could be used instead of a Siamese
network. This network could be trained to predict the
phonemes contained in a Mel-spectrogram. After training, the
classification network could process the predicted sequences.
It will only be able to classify the predicted sequences
correctly if the predictions look like actual phonemes. This
would allow to combine an existing distance metric with an
additional classification score.

Different Architecture - The predictions could also be
improved with changes to the architecture. Currently, post-
processing is only used to map the latent representations to
the size of the output vector. However, this could also be
extended to optimize the result. For example, Wang et al.
[29] used post-processing in their end-to-end speech synthesis
model to convert the spectrograms from a Mel scale to a linear
scale. This was done to apply the Griffin-Lim algorithm [33] to
a spectrogram with linear scale. Moreover, the post-network
was used to correct the predicted sequence. Since the post-

processing network has access to the entire predicted sequence,
it can use forward and backward information to correct the
prediction error of individual frames.
An alternative to regressive models are Generative Adversarial
Networks (GAN). Due to their architecture, these networks
do not require the use of distance metrics to compare the
prediction to the ground truth. GANs consist of two modules:
The generator learns to predict plausible data, while the
discriminator learns to discriminate between the prediction
from the generator and the real data. The discriminator pe-
nalizes the generator for producing implausible predictions.
Thus, the generator gradually improves its predictions. Since
the discriminator learns to predict whether the prediction is
correct, there is no need for a loss function to compare frames.
Eskimenz et al. [62] have already applied GANs to genereate
Mel-spectrograms and achieved realistic looking results.

A. Further Improvements

Using More Data - The proposed architecture is based on
RNNs, more precisely on GRUs. A typical characteristic of
RNNs is that they process the data sequentially. This means
that one frame after the other is fed into the recurrent layer.
The use of RNNs is feasible when using relatively small
datasets like TIMIT and only few input frames n. However,
in the field of text data processing, auto-regressive models
have continuously used larger datasets in recent years [63].
This has mainly been enabled by using Transformer or slight
variations of it such as Sparse Transformers [44] instead
of RNNs. In order to develop better models for predicting
speech data, it might be necessary to use more data and
larger models as well. In this case, RNNs may no longer
be sufficient due to computational limitations and the GRU
network could be replaced by the Transformer’s encoder as
feature extractor. Whether a complete Transformer consisting
of encoder and decoder should be used is questionable, as
such sequence-to-sequence models have led to worse results
as described in the appendix in chapter A-B.

Metadata - The model must not only learn to predict
the correct phonemes, but also to predict them with the
correct pitch and speed. These characteristics are sentence
and speaker dependent. Chapter C shows that especially the
speed or duration of pauses are wrong predicted and harm
the performance. Adding metadata to the input vectors could
help to reduce these issues. For example, it is feasible that
the network can better estimate the speech rate if it knows the
characteristics of the speaker or what sentence is being said.

VIII. CONCLUSION

The implemented model can successfully predict frames of
Mel-spectrograms if previous frames are given as an input.
Using Mel-spectrograms, the results suggest that frames that
are closer to the given input rely more on local features, while
frames that are further away rely on more global features.
The frames closer to the given data tend to be more accurately
predicted. The reason is that these frames are more similar
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to the last given frames due to the slow evolution of Mel-
spectrograms over time. This makes their prediction simpler,
as the uncertainty in the prediction process is smaller.
Furthermore, the accuracy also depends on the phoneme
category and the speaker. The model predicts pause durations,
closures, affricates and fricatives worse than other phoneme
types. This could be due to the fact that pause durations
and lip closures are highly speaker-dependent and that both
affricates and fricatives contain random frequencies which
are hard to predict. The accuracy is also lower when speech
spoken by individuals with a lower level of education or
an African-American origin is predicted. This illustrates
that such systems can have issues regarding fairness and
corresponding measures must be taken.
In this work, only the prediction of frames of Mel-
spectrograms was investigated. The examination and
application of methods for re-synthesizing Mel-spectrograms
into speech was not within the scope. However, chapter II-B
provides references to state-of-the-art models that could be
used to re-synthesize the predictions to waveforms.
Overall, the predictions of the model are noisy. Since the
model is optimized to achieve the smallest possible loss
for all speakers, it predicts a cross-speaker average value
for the phoneme lengths and formants. As a result, the
individual formants often span multiple frequency ranges
and are not separated well from each other. Therefore, the
author considers the definition of appropriate metrics and loss
functions as the main challenge for the task of predicting
Mel-spectrograms based on regressive models. Besides
defining such metrics, alternative approaches such as learning
a proper metric or using alternative networks architectures
could improve the result.
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APPENDIX A
OTHER ARCHITECTURES

Besides the proposed model based on GRUs, other archi-
tectures were also examined. However, these architectures
have led to less accurate predictions. Nevertheless, they are
described in this chapter in order to provide insights for any
follow-up work.

A. CNN Architectures

Different architectures based on Convolutional Neural Net-
works (CNNs) were trained for predicting frames of speech.
Among others, a U-Net [64] like architecture with a down-
sampling encoder and an up-sampling decoder was trained.
The CNN architectures tested generally performed worse than
the architectures based on RNNs. The lower accuracy can not
be directly explained by the properties of CNNs, but could
also be the result of the way they were implemented. A
presumption of the author is that the used receptive field was
not suitable.
For example, the first predicted frames depend strongly on
the last given frames. This manifests itself in the fact that
the transition between the given frames and predicted frames
should be smooth. The same applies also along the frequency
axis. Phonemes often span a wide range of frequencies and
therefore also require a large enough receptive field. Conse-
quently, convolutional layers with large enough kernels need
to be used. The activation maps only have a proper receptive
field if the kernels can capture enough information from the
previous layers.
Another challenge is that down-sampling reduces the feature
maps. Experiments have shown that the results are worse if the
feature maps become too small. A hypothesis of the author is
that too much information about the temporal context as well
as some part of the frequencies is lost, which results in larger
prediction errors.
Overall, worse results were achieved with architectures based
on CNNs. However, this could also be due to the fact that such
architectures are more difficult to tune for the task of frame
prediction. Thus, it cannot be concluded that CNNs in general
work worse, but that their definition is more complex.

B. Seq2Seq Models

A sequence-to-sequence (seq2seq) model [65] converts a
sequence of arbitrary length to another sequence of arbitrary
length. These models typically consist of an encoder that maps
the given sequence into a context vector and a decoder that
predicts the target vector based on the context vector. Many
architectures are based on RNNs and are often combined with
attention mechanisms for longer sequences [66], [67]. In recent
years, Transformers have become state-of-the-art for seq2seq
modeling. Therefore, Transformers were also used in this work
for the prediction of frames of speech.
During training, the input sequence is typically fed into the
encoder and the target sequence is fed into the decoder.
Thereby, the target sequence is masked and shifted by one
frame, such that only the previous frames are accessible for

the model. The target sequence is fed into the decoder for two
reasons: First, the model learns to predict a token based on
the previous tokens. The learning process is more stable if a
token ht is predicted based on the previous tokens h0, ..., ht−1
instead of the previous predictions ĥ0, ..., ĥt−1. Second, by
feeding the target sequence in the decoder, all tokens can be
processed in parallel and the training time decreases. However,
the target sequence is not known during inference and the
prediction of the previous frame has to be re-used as an input
to the decoder.
The Transformer performed very well in predicting the next
frame. However, when longer sequences (i.e. more than one
frame) were predicted and therefore predictions had to be
reused as an input, the results were very poor. This could
be due to the fact that a prediction has to be made based on
more noisy inputs. In order to ensure that the model improves
its prediction based on noisy inputs, teacher forcing [68] was
randomly deactivated. Accordingly, either correct frames or
frames from the previous prediction were fed randomly into
the decoder during training. This slightly improved the results,
but longer predictions were still very inaccurate. Overall, good
results could only be obtained for frames directly following
the given frames but not for longer sequences.

APPENDIX B
LOSS OF SHIFTED PREDICTIONS

This chapter examines the robustness of loss functions to
slight shifts. Therefore, the same sequence was used as ground
truth and as prediction, whereby the prediction vector was
slightly shifted on the time axis or on the frequency axis.
Afterwards, the loss of the shifted sequence with respect to
the original was calculated. In addition, the average over the
input sequence was calculated and its loss was also determined
with respect to the original sequence. By comparing the loss
of the shifted sequence and the loss of the mean vector, the
characteristics of the loss function are investigated.
In the following the L1 loss (MAE), the L2 loss (MSE), the
soft-DTW loss with MAE as the distance metric and the soft-
DTW loss with MSE as the distance metric are considered.
The adaptive robust loss as described in section V-A is not
examined in this chapter, because this function adapts during
training and an evaluation is therefore not feasible.
If the loss of a shifted vector is larger than the loss of the
mean vector, then the loss function is considered not robust
enough to the corresponding shift. This is due to the fact that
the model achieves a smaller loss when an average value is
predicted instead of the correct sequence that is shifted.
Figure 7 shows the loss value of different loss functions for
the ground truth and the same vector shifted by 1, 2, 4, 6, 10
and 20 frames on the time axis. The grey background indicates
the loss of the mean vector compared to the ground truth. It
can be observed that the L1 loss is more robust against shifts
on the time axis than the L2 loss. For example, if the vector is
shifted by 4 frames on the time axis (green line), the L1 loss of
the shifted vector is on average smaller than the L1 loss of the
mean vector. For the L2 loss, on the other hand, the average
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loss of a vector shifted by 4 frames is larger than the loss
of the mean vector. The two soft-DTW losses show similar
behavior. When the MAE is used as a distance metric, the
shifted predictions achieve on average better results in relation
to the mean vector than when the MSE is used as a distance
metric.
The plot also shows that a lower limit of number of frames
to predict exists when using soft-DTW as loss function. If
only a few frames are predicted (i.e. left range on the x-axis),
then the loss of slightly shifted predictions is often larger than
the mean vector. This indicates that soft-DTW should only be
used if longer sequences are predicted.

Fig. 7. The average loss of sequences which were shifted by different numbers
of frames on the time axis. The y-axis shows the loss, the x-axis the sequence
length of the prediction in frames. The gray background marks the area with
a higher loss than a mean vector.

The same analysis was done for shifts on the frequency
axis. Figure 8 shows the loss between the ground truth and
the same vector shifted by 100, 200, 300, 400 and 500Hz. It
can be observed that slight shifts on the frequency axis are in
general less affected by the problem that they have a larger
error than the mean vector.

Based on these findings, the L1 loss is preferred, as it is
more robust than the L2 loss for shifts on the time axis.
Unlike the soft DTW losses, the L1 loss is also suitable for
the prediction of shorter sequences.

APPENDIX C
ERROR PER PHONEME

The model learned to classify some sentences better than
others. One reason for this effect is that the network is
better at predicting certain phonemes than others. The TIMIT
corpus contains time-aligned phonetic transcriptions which
were used to evaluate this behaviour. In the TIMIT dataset, the
phonemes are categorised as stops, affricates, fricatives, nasals,

Fig. 8. The average loss of sequences which were shifted by different
frequencies on the frequency axis. The y-axis shows the frequency, the x-
axis the sequence length of the prediction in frames. The gray background
marks the area with a higher loss than an average noise vector.

semivowel, glides and vowels. In addition, the lip closure
intervals of stops and affricates are transcribed individually.
The additional category “others” contains the transcriptions
for the start and end of sentences as well as pauses.

Figure 9 shows the MAE per phoneme. Additionally, the
colors indicate which phonemes belong to which category. It
can be seen that the model has the highest error for closures
of the lips near stops and near affricates. This is due to the
fact that it is difficult to estimate transitions near a lip closure
as Ref. [58] has shown.
The same applies to the detection of stops in general. Espe-
cially pauses (label “pau”) between individual phonemes are
poorly predicted. The reason is that pause durations are context
and speaker dependent [59] and thus has a high variance.
Besides closures of lips and pauses, affricates and fricatives
have a larger MAE on average than the other phonemes.
Affricates are sounds made up of a stop, immediately followed
by a fricative. A fricative, on the other hand, includes by
definition an occlusion or obstruction in the vocal tract great
enough to produce noise (frication). This process is not only
speaker dependent, but the generated air stream of fricatives
creates a mix of random frequencies, lasting only a short time
[69]. Therefore, these types of phonemes are more difficult to
predict because they contain a random component.

APPENDIX D
ERROR PER SPEAKER

Besides different errors per sentence, also a variance per
speaker is observable. The TIMIT dataset provides additional
information on the 630 speakers. Four characteristics that are
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Fig. 9. The mean absolute error (MAE) per phoneme according to the
TIMIT phoneme definition. The phonemes are grouped into categories “stop
closures”, “affricate closures”, “others”, “affricates”, “fricatives”, “stops”,
“vowels”, “nasals” and “semivowels and glides”.

provided per speaker are gender, dialect, education, and race.
A important requirement of artificial intelligence (AI) systems
in general is fairness [70], [71]. A system should not discrim-
inate against groups of individuals based on attributes such as
race, gender or education [72].

The evaluations as shown in figure 10 suggest that the model
has issues regarding fairness. The model works about equally
well for men and women, although there are twice as many
recordings from men as from women in the dataset. This
indicates good generalization with respect to gender. Likewise,
all dialect regions are recognized about equally well.
However, some issues arise regarding education and race. For
example, speech of people with lower levels of education (i.e.
High School or undefined) is predicted worse than speech
of people with higher levels of education (i.e. Associate
degree, Bachelor’s degree, Master’s degree or PhD). With
respect to race, speech frames spoken by African Americans
are predicted worse than if they are spoken by European
Americans.
Solving these problems is outside the scope of this work.
Various approaches on how to tackle such issues can be

Fig. 10. The Mean Absolute Error (MAE) for various speaker characteristics.
Top left shows the MAE differentiated by gender, top right shows the MAE
by dialect region, bottom left the MAE by the speaker’s education, and bottom
right shows the MAE by race.

found in the literature [73]–[75]. However, the purpose of the
evaluation in this section is to draw attention to this problem.
Such systems should be evaluated for fairness before they are
deployed and used in production.
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