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ABSTRACT
While speaker recognition for studio recordings is consid-

ered solved, there is still room for improvement on speech in
the wild. The addition of background noise and otherwise ir-
relevant signals poses a more difficult challenge to overcome.
Deep neural networks have been acting as a backbone for
this application for years now. Our goal is to use a state of
the art architecture for studio recordings and scale it up to
speech in the wild. In this paper we show the effectiveness
of a RNN architecture on the VoxCeleb2 dataset, a now de-
facto standard benchmark for real-world speaker recognition.
Moreover, we use the highly efficient angular margin losses
to further improve performance, propose a sweet spot for the
segment length and investigate effects of different clustering
optimizations. Our model reaches a performance of 5.53 %
EER on the official VoxCeleb1 evaluation list.

Index Terms— Deep Learning, Speech Recognition,
VoxCeleb2, Angular Margin Loss

1. INTRODUCTION

The field of speaker recognition can be separated in several
key areas which fundamentally address tasks around compar-
ing speaker identities for a given audio recording. The most
prominent areas are as follows:

• Speaker verification decides if a given sample contains
a known speaker identity as a binary classification task.
When unlocking your phone using your voice, an algo-
rithm performs speaker verification for authentication.

• Speaker identification complicates speaker verification
by turning it into a multiclass classification problem
where the speaker identification is compared against
multiple known identities.

• Speaker clustering instead identifies and groups unique
speaker identities together without prior knowledge
about any of the speakers or how many distinct iden-
tities are present in the recording. Speaker diarization

(assigning speaker identities to segments of a record-
ing) is sometimes also referred to as speaker clustering,
but usually involves segmenting the recording as well.
Compared to both speaker verification and identifica-
tion, both supervised tasks, speaker clustering is an
unsupervised task with a higher complexity, as both
the number of clusters (speakers) and cluster affiliation
need to be decided.

Speaker recognition is not a new topic, some of the ear-
liest attempts were already made in the 1950’s and 1960’s
with Bell Lab’s AUDREY or IBM’s Shoebox [1], long be-
fore computers became as prevalent and powerful as today.
Traditionally, Mel Frequency Cepstral Coefficients (MFCC)
[2] have been used as acoustic features for Gaussian Mixture
Models (GMM) [3, 4]. Furthermore, so called i-vectors [5]
emerged as an abstract representation of a speaker model.

With growing computational power, deep neural networks
have also shown success as feature extractors, producing x-
vectors [6] or d-vectors [7], similar to the i-vectors. These
vector types can be grouped as speaker embeddings. Due to
the success on image datasets [8], convolutional neural net-
work (CNN) architectures are dominating the market for deep
speaker embeddings [9, 10, 11]. Their success stems from
the ability of the CNN kernels to read temporal information.
Moreover, the emergence of the residual network (ResNet)
architecture [12] further cemented the use of computer vision
building blocks for speaker recognition [13, 14, 15].

Other than CNNs, recurrent neural networks (RNNs) such
as long-short term memory networks (LSTMs) [16] are di-
rectly built to include the temporal aspect in their calculations
and are as such also used for speaker recognition tasks, show-
ing great performance [17, 18, 19].

While speaker recognition on studio quality datasets such
as TIMIT [20] is mostly solved [21], the same can not yet be
said for speech in the wild. However, the emergence of bench-
mark datasets such as VoxCeleb and VoxCeleb2 [10, 22] has
led to steady progress [14, 23, 24] in the field.

While we were unable to exceed current state of the art’s
[24] equal error rate (EER) of 1.02 %, we achieve an EER of



5.53 % and show the performance of an upscaled LSTM ar-
chitecture on a real-world dataset using angular margin losses
and propose improvements for the clustering step.

1.1. Related Work

The release of the VoxCeleb1 [22] and later VoxCeleb2 [10]
datasets allowed speech in the wild to finally have decent
benchmark dataset for comparability. Xie et al. [14] man-
aged to define a new state-of-the-art result on the VoxCeleb2
dataset using the angular margin losses combined with a thin
ResNet architecture, achieving an equal error rate of 3.22 %
on the VoxCeleb1 test dataset. The recent VoxSRC challenge
[25] winner [24] in late 2019 further pushed state-of-the-art
with reported equal error rates as low as 1.02 %.

ZHAW Deep Voice

Previous works at ZHAW Datalab1 on the TIMIT dataset have
shown great progress both using CNN [26] and LSTM [27]
approaches for studio recordings, but need to be scaled up for
use in real-world scenarios. Moreover, it was shown that the
Pairwise Kullback-Leibler Divergence (PKLD) used as loss
function is unsuitable for a growing dataset, such as Vox-
Celeb2 [28]. Angular Margin Losses, (e.g. CosFace, ArcFace
and SphereFace [29, 30, 31]), on the other hand are known
from the domain of facial recognition, a domain where large
number of classes common. These loss functions were shown
to be more suitable for the task of speaker recognition [32]
and we will investigate how to apply them in the wild.

2. METHODS

2.1. Angular Margin Losses

After their success in the field of facial recognition [31], An-
gular Margin Losses quickly became the standard for speaker
recognition in real-world settings [33] due to their ability to
maximize the angular distance between class centres in high-
dimensional space, while keeping class clusters condensed.

These losses are based upon the softmax loss, which is
heavily used as a classification loss function, shown here:
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In Equation 1, N denotes the batch size, n the total num-
ber of classes. xi belong to class yi and is the calculated fea-
ture of the i-th sample in a given batch.

Deng et al. [31] state that there exists an issue for tasks
where intra-class samples can be very diverse due to the fact
that the softmax loss function ”does not explicitly optimize the
feature embedding to enforce higher similarity for intra-class

1https://www.zhaw.ch/datalab

samples and diversity for inter-class samples”. This applies to
speaker recognition, as voices can take many different shapes
ranging from murmurs to shouting and head voice.

Wang et al. [34] propose a fix to this issue transforming
WT

j xi + bj by setting the bias bj to zero and rephrasing the
remaining term as ‖Wj‖‖xi‖ cos(θj), where θj denotes the
angle between the weights and the feature Wj and xi. By
normalizing both the weights and features, they are able to
simplify the expression further as 1 = ‖Wi‖ = ‖xi‖. The
resulting formula WT

j xi = cos(θj) builds the foundation for
the Angular Margin Losses, where additional margin param-
etersm are added as a marginmc to the cosine space for Cos-
Face. For SphereFace and ArcFace, the margins ms and ma

are added and multiplied in the angular space, respectively.
The final resulting formula can be seen as follows:
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Note how the CosFace margin mc is subtracted from the
result of the cosine function, whereas both ArcFace’s ma and
SphereFace’s ms act upon the angle provided to the cosine
function. Unintuitively, these margins can be combined as
seen fit (see Deng et al. [31] for more details).

2.2. Network Architecture

For our model we combine bidirectional LSTM layers with
fully connected dense layers, as shown in Figure 1. The bidi-
rectional LSTM cells have a network width of 512 neurons,
but due to the bidirectional nature the output is always twice
its size, i.e. 1’024. The dense layers match this dimension-
ality and shrink down for the second dense layer to 512 neu-
rons, acting as a bottleneck layer (see [30, 31] for more de-
tails). The final dense layer has a width equal to the number
of classes used, in our case 5’994. Dropout layers help reduce
the overfitting problem, as L1 andL2 regularization cannot be
used in conjunction with LSTMs. Bengio et al. [35] state that
”this prevents the model to learn generator networks, nor can
it exhibit long term memory traces”. We could confirm this
statement during our own training optimizations.

Fig. 1. Bidirectional LSTM network architecture showing
both training (black) and inference (blue, dotted) data paths.



2.3. Proxy Learning Task

Ideally, we want our model to learn to model any (unseen)
speaker into a generalized embedding. During training how-
ever, all the speakers are known and part of our dataset. As
such, our goal is to train the network on a proxy task that
will allow the intermediate layers to form a generalized rep-
resentation of the speaker model (our speaker embedding).
To achieve this, the model is trained on speaker identification
using the training dataset. At inference, the dense layers are
removed and we extract our speaker embedding directly from
the output of the second bidirectional LSTM layer (see blue
arrows in Figure 1). This allows us to use the dataset to model
all known speakers through the LSTM layers and classify it
through the dense layers, but keep the LSTM structure as a
generalized speaker embedding feature extractor, generating
a speaker embedding that uses a highly generalized represen-
tation of the speaker’s prosodic features.

2.4. Linkage Criteria Intuition

In speaker clustering, observations representing utterances
are to be grouped according to their speaker identity. Hier-
archical clustering uses the linkage criterion to measure the
proximity between observations and decide, which observa-
tions are merged into a cluster. The choice of this criterion
is crucial, since the proximity can vary wildly for different
criteria. In the following paragraph, we will give a brief
overview of linkage criteria and their intuition. We consider
the choice whether a cluster Ca should be added to Cb, where
both Ca and Cb can be single observations or clusters of
multiple observations. Observations are denoted as x.

Single Linkage, also referred to as nearest neighbor, defines
the proximity as the minimum distance between any of
the observations x in clusters Ca and Cb. As such, it is
prone to building chain-like clusters, only considering
the local surroundings.

Complete Linkage is the opposite of single linkage, com-
paring the distance between the two observations that
are furthest apart in Ca and Cb. This leads to globally
compact clusters that are forced to generate spherical
clusters and at the same time avoids building elongated
chain clusters.

Average Linkage (or UPGMA) uses the distance d(xi, xj)
between all observations xi ∈ Ca and xj ∈ Cb and
takes the average. This produces clusters to be con-
nected with compactness in mind, then the lowest dis-
tance can be scored if all d(xi, xj) are minimized. With
this criterion, clusters with small variance are joined
with priority and outliers affect the distance less (espe-
cially compared to single and complete linkages).

Weighted Average (or WPGMA) is remarkably close to
average linkage and only differs as each observation x

in both clusters Ca and Cb is summed equally, com-
pared to average linkage where the average can be
shifted through the amount of observations at each
clustering attempt.

Group Median (or UPGMC) and Weighted Centroid (or
WPGMC) behave very similarly to average linkage,
again using weighted and unweighted variants. These
centroid based criteria behave very similar to K-means,
but introduce so called inversions, where the centroid
positional change after merging can decrease the mini-
mum distance to remaining clusters in time step tn be-
low the minimum distance of time step tn−1.

Ward’s method is an outlier in this list. Instead of measur-
ing the proximity between clusters, Ward’s method cal-
culates the changes in variance for each potential clus-
ter merge and chooses the pairing which minimizes the
total deviation after a merge.

3. EXPERIMENTS

3.1. Datasets

Our models were trained using the VoxCeleb2 [10] dataset,
using the ’dev’ part for training and the ’test’ part to report
model performance. The VoxCeleb1 [22] dataset was then
used for final evaluations (see Section 4.1 for more details).
Table 1 shows a comparison of the two datasets below:

VoxCeleb1 VoxCeleb2
(Dev and Test) (Dev)

Unique speakers 1’251 5’994
# utterances 153’516 1’092’009
Avg. # / speaker 116 185
Utterance length 4.0 / 8.2 / 145.0 4.0 / 7.8 / 220.2

Table 1. Comparison of VoxCeleb datasets 1 and 2. Utterance
length denotes min, mean and max length, respectively

3.2. Training Loss

All our models were trained using the Angular Margin Losses
outlined in Section 2.1, with a focus on the CosFace [29] and
ArcFace [31] variants. We settled at values: mcosface =
0.0001, marcface = 0.05 and s = 30. The original PKLD
loss function used in [27] was not further investigated, as the
Angular Margin Loss directly outperformed it by 7 EER per-
centages. Furthermore, the PKLD calculations were slower
by over an order of magnitude.



3.3. Training Details

The audio files are converted to Mel Spectrograms with 128
frequency bins using a sample rate of 16’000 and a window
length of 1’024. All audio files are pre-processed to their re-
spective spectrogram to speed up training performance. Be-
fore storing them in h5py format, dynamic range compres-
sion is performed as proposed by Dieleman et al. [36]. As the
network expects a constant width spectrogram, a fixed-length
spectrogram segment is extracted with a randomized offset
during training. In case of utterances that are shorter than the
segment length used, the utterance is looped. This segment
is then normalized using the mean and standard deviation of
the full spectrogram. Intuitively, looping an utterance acts as
if a speaker is repeating what he just said, which can occur
naturally. We do not remove silence of any kind and apply no
voice activity detection. We use a batch size of 256 in con-
junction with the Adam optimizer [37], using default standard
parameters with a learning rate of 0.0003. The model was
trained for a maximum of 32 epochs, with early stopping ter-
minating after a lack of improvement over 3 epochs. Most
models converged between 20 and 25 epochs.

The code for our experiments can be found online2 and is
based upon the original ZHAW Deep Voice repository3.

4. RESULTS

In the following section we show the performance of our
LSTM architecture using Angular Margin Losses. We com-
pare our results against current state-of-the-art and take a
closer look at the performance of varying clustering tech-
niques to further improve upon the results. Moreover, we
propose potential applications for gender identification.

4.1. Evaluation on VoxCeleb1

The performance of our models is measured on the Vox-
Celeb1 [22] evaluation lists provided online4. The original
evaluation list is based upon the ’test’ part of the VoxCeleb1
dataset, including just 40 unique speakers. Because the two
VoxCeleb datasets are completely disjunct and we train only
using VoxCeleb2, two additional evaluation lists can be used.
The extended list includes all speakers from both the train-
ing and test split of the VoxCeleb1 dataset. Moreover, the
hard evaluation list was created using pairs of the same
gender and nationality, further increasing the difficulty.

During evaluation, random fixed-length segment of the
evaluation utterances are extracted and fed into our partial
model (see Figure 1). The resulting speaker embeddings are
then compared using cosine similarity. We also experiment

2https://github.com/edualc/ZHAW_deep_voice
3https://github.com/stdm/ZHAW_deep_voice
4http://www.robots.ox.ac.uk/˜vgg/data/voxceleb/

vox2.html

with the dot product as a distance measure, as well as multi-
ple clustering algorithms such as Agglomerative Hierarchical
Clustering (AHC) and Dominant Sets [21] (see Section 4.4).

Table 2 shows a comparison of current state of the art
systems against our model using the VoxCeleb1 evaluation
lists. Note that shortly after their release cleaned versions of
the lists were published, removing duplicates from the orig-
inal, extended and hard lists. Results followed by a † sym-
bol denote results that were achieved using the non-cleaned
versions of the respective evaluation lists. Noteworthy are
the results from the VoxSRC challenge [25] taking place in
late 2019, which drastically improved the performance on the
VoxCeleb2 dataset from the 3 % EER region down to as low
as 1.02 % EER, as shown by Zhou et al. [38], Garcia-Romero
et al. [39] and Zeinali et al. [24]. Even the hard evaluation
list can now be mostly considered solved, with an EER of
2.12 %. The architectures of the VoxSRC winners shows a
focus on much larger models (ResNet-150 and 256 instead of
ResNet-34 and 50), the addition of time delay neural networks
(TDNN) and the heavy use of ensembles to further increase
model performance. The overall winning model by Zeinali et
al. [24] combines all these aspects.

4.2. Network Complexity

The ZHAW Deep Voice bidirectional LSTM network used on
the TIMIT dataset produced state-of-the-art results on studio
recordings, but clearly the model complexity had to be in-
creased to fit the additional data complexity of a speech in
the wild dataset. As such, we explore different layer widths
for the bidirectional LSTM blocks. The pre-existing classi-
fication dense layers were already expanded to fit this larger
classification task with 5’994 classes instead of the 100 and
470 classes of the TIMIT dataset respectively. This increase
in dense layer width is already represented in the network
architecture depicted in Figure 1. For reference we show
the performance of an unchanged LSTM capacity and dou-
ble it until performance decreases. As shown in Figure 25,
the EER can be improved from 33.8 % down to 26.1 % by us-
ing a layer width of 512 instead of 256. Further doubling the
width to 1’024 decreases the performance slightly to 26.9 %
EER. These measurement suggest that the ideal LSTM width
lies between 1’024 and 256. We decided to go further using
the LSTM512 architecture, without conducting more fine-
grained experiments. As an added benefit, the LSTM1024 ar-
chitecture is be much more prone to overfit due to the number
of trainable parameters. While overfitting remains an issue,
using a network half the size helps reduce this risk.

5Note that the network architectures are denoted as LSTM followed by
the width of both bidirectional LSTM layers, e.g. LSTM512 has network
width of 512 neurons.



Model Architecture Loss Dims Traning Dataset EER (%)
Vox1-O Vox1-E Vox1-H

Nagrani et al. [22] I-vectors + PLDA - - VoxCeleb1 8.80 † - -
Nagrani et al. [22] CNN + Embedding - - VoxCeleb1 7.80 † - -
Chung et al. [10] ResNet-34 Softmax + Contrastive 512 VoxCeleb2 5.04 † - -
Chung et al. [10] ResNet-50 Softmax + Contrastive 512 VoxCeleb2 4.19 † - -
Xie et al. [14] Thin ResNet-34 AM-Softmax 512 VoxCeleb2 3.23 † 4.42 † 7.33 †
Xie et al. [14] Thin ResNet-34 Softmax 512 VoxCeleb2 3.24 3.13 5.06
Cai et al. [40] ResNet-34 Softmax 128 VoxCeleb2 2.00 - -
Zhou et al. [38] ResNet Softmax 128 VoxCeleb2 1.85 1.70 3.13
Zhou et al. [38] ResNet A-Softmax 128 VoxCeleb2 4.43 4.05 8.46
Zhou et al. [38] ResNet L2-Softmax 128 VoxCeleb2 1.81 1.68 3.12
Garcia-Romero et al. [39] TDNN + PLDA Softmax 512 VoxCeleb2 - 1.93 -
Garcia-Romero et al. [39] TDNN AM-Softmax 256 VoxCeleb2 - 1.61 -
Garcia-Romero et al. [39] Ensemble - - VoxCeleb2 - 1.22 -
Zeinali et al. [24] ResNet-256 Softmax + AAM 256 VoxCeleb2 1.42 1.35 2.48
Zeinali et al. [24] ResNet-160 Softmax + AAM 160 VoxCeleb2 1.31 1.38 2.50
Zeinali et al. [24] TDNN Softmax + AAM 512 VoxCeleb2 1.46 1.57 2.89
Zeinali et al. [24] TDNN Softmax 512 VoxCeleb2 1.94 2.03 3.97
Zeinali et al. [24] Ensemble - - VoxCeleb2 1.02 1.14 2.12
Ours BiLSTM AAM 1024 VoxCeleb2 5.53 5.84 9.49

Table 2. Results of our bidirectional LSTM system compared against multiple state of the art systems, including winners of
the VoxSRC challenge [25]. The listed EER results are evaluated using the VoxCeleb1 evaluation lists Vox1-O, Vox1-E and
Vox1-H, denoting original, extended and hard respectively. † indicates a result on the non-cleaned evaluation list.
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Fig. 2. Network complexity comparison using the bidirec-
tional LSTM approach with varying network width.

4.3. Segment Length

Stadelmann et al. [27] showed a sweet spot for the segment
length on the TIMIT dataset, which is comprised of studio
recordings. For the VoxCeleb2 dataset, this experiment had
to be repeated under speech in the wild conditions. Further-
more, Xie et al. [14] compared different segment lengths for

evaluation and concluded that longer segment lengths deliver
superior performance, which can be explained since more in-
formation is given to the model. Our next set of experiments
takes this idea and applies it to our LSTM512 model by ex-
amining the performance at various segment length thresh-
olds. The LSTM architecture proposed by Stadelmann et al.
[27] used a segment length of 400ms on studio quality record-
ings, while Xie et al. [14] experimented with segment lengths
up to 6 seconds on VoxCeleb2. In our experiment we sam-
ple between 400ms and 5 seconds, as any longer segments
overburdened our available resources.

Figure 3 shows the performance at varying segment
lengths. During experiments we used both cosine similarity
and the dot product as a distance metric to compare speaker
embeddings. This figure clearly shows a downwards trend
towards longer segment lengths, with most configurations at
or above 2 second segment length achieving an EER of 10 %
or below. Due to the nature of the angular margin loss func-
tion it is to be expected that the cosine similarity performs
better than the dot product for a loss function that maximizes
intra-class angles. Moreover, as segment lengths increase the
additional performance gain is diminished and the EER for
4 and 5 seconds is almost identical (7.770 % and 7.787 %
respectively) using the cosine similarity. We believe to have
found a sweet spot for segment length at 4 seconds.
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Fig. 3. Equal error rate as a function of the input segment
length on the VoxCeleb1 cleaned evaluation list, using the co-
sine similarity and the dot product as a distance metric.

4.4. Speaker Clustering Optimizations

When comparing if two utterances are from the same speaker,
currently we generate two speaker embeddings and measure
the distance using the cosine similarity or another distance
metric. What if instead we apply clustering algorithms such
as agglomerative hierarchical clustering (AHC)? The idea we
propose is to extract overlapping spectrograms from an ut-
terance and create multiple embeddings per utterance. The
spectrograms are overlapping by 50%, experiments with 75%
overlap showed almost identical results. When we now com-
pare two utterances, instead of measuring a distance between
two points in the embedding space, we are able to apply clus-
tering algorithms as a different distance metric, for example
the distance between the biggest two clusters. Furthermore,
as clustering does not require a direct domain knowledge and
acts unsupervised, the choice of algorithm is not evident.

In this next set of experiments we focus on AHC and
Dominant Sets introduced by Hibraj et al. [21]. For com-
parison we will keep both the cosine similarity and dot prod-
uct, although applied to the mean of the overlapping spec-
trograms. For AHC we measure the distance between the
last two clusters that are combined, which is equivalent to the
maximum height in a dendrogram. The intuition behind this
choice is, that for a comparison between two different speak-
ers this distance is expected to be high while for the same
speaker we expect it to be low. We further experimented with
different secondary and tertiary cluster distances beyond the
last two clusters without success.

The approach using Dominant Sets generated dominant
sets to reduce the utterance spectrogram clusters to a more
refined set of embedding vectors such that for every dominant
set a new utterance is made by creating a weighted average
of the embeddings in each dominant set cluster. These new
embeddings are then fed into the same AHC methods used

above, as well as the dot product and cosine similarity.
For comparison with an established speaker recogni-

tion system, we perform these experiments not only on our
LSTM512 model but also the Thin ResNet-34 model pro-
posed by Xie et al. [14]. Figures 4 and 5 show the perfor-
mance of these clustering approaches on our LSTM512 and
the Thin ResNet-34 model using the best performing cluster-
ing approaches among AHC and Dominant Sets (DS). The
Dominant set variants perform very poorly, with an EER of
6.42 % and above for the LSTM512 and 3.62 % and above
for the Thin ResNet-34 model. On the LSTM512 model,
we could improve the performance from 5.84 % (cosine
similarity) to 5.54 % EER using AHC with average link-
age, while extracting just one fixed-length segment during
evaluation yielded an EER of 7.52 % on the LSTM model.
This improvement through clustering could not be recreated
on the Thin ResNet-34 architecture, where the dot product
remained the best performing similarity measure. We are
unsure why the cosine similarity is outperformed by the dot
product for this model, as the additive softmax should in
theory behave better using a distance metric that focuses on
the angle between cluster centers. This anomaly should be
further investigated, but we are unable to follow up at this
moment due to time constraints.

Since we do not create just one speaker embedding per
utterance, comparisons are based upon a plethora of utter-
ances where outliers exists due to small disturbances in the
audio recording (e.g. background noise). These disturbances
seem to be crucially responsible for model performance, as
both the LSTM and ResNet models perform best on centroid-
and average-based linkage criteria using AHC (see Figures
4 and 5). Both these criteria are much less affected by out-
liers compared to single or complete linkage, which points at
a significant presence of outliers in these embeddings. These
outliers explain the performance drop for complete linkage
with AHC (6.60 % EER) against centroid and average link-
ages (5.66 % and 5.54 % respectively). However, through the
use of dominant sets this can be improved to 6.42 %. As we
discussed criteria intuitions in Section 2.4, complete linkage
aims to produce spherical clusters. In the embedding space
of the whole VoxCeleb datasets, embeddings of the same ut-
terance are expected to be compact clusters with few out-
liers (where short disruptions in a recording skew embeddings
away from the mean). Dominant sets are able to filter out this
effect and work hand in hand with the complete linkage crite-
rion. Note how for the ResNet model both complete linkage
and Ward’s method without dominant sets perform the worst,
compared to other linkage criteria. This seems to be caused
by the arrangement of embeddings in the embedding space.
Since clusters appear to be spread out, both criteria struggle
to form reasonable clusters. A more conclusive table of re-
sults is available in the Appendix in Section A.1.

An issue of these clustering algorithms is the quality of
the speaker embeddings itself. When looking at the dendro-
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Fig. 4. Comparison of clustering techniques against our best
LSTM512 model.
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Fig. 5. Comparison of clustering techniques against the Thin
ResNet-34 model proposed by Xie et al. [14].

grams of such speaker embeddings we could identify about
2% of comparisons in the VoxCeleb1 original evaluation list
where the comparison between the same speaker and two dif-
ferent speakers look almost identical. Figure 6 shows two
such examples where it is impossible to determine if the two
utterances are by the same speaker or not.

4.5. Gender Identification Potential

Visualizing the speaker embeddings generated by our mod-
els we realized that our LSTM512 model can distinguish be-
tween male and female voices remarkably well. This is char-
acterized by the formation of two distinct clusters for our
LSTM512 model, while the Thin ResNet-34 model clusters
the genders much more closely. Figure 7 shows the PCA
plots for both models using the first two components. Note

Fig. 6. Two dendrograms from comparisons of the same (left)
and different (right) speakers using overlapping spectrograms
to generate multiple embeddings.

that the embeddings for the LSTM model are spread between
x, y ∈ [−2, 4], while the Thin ResNet-34 creates embeddings
that are clumped much tighter with x, y ∈ [−0.4, 0.4]. We
believe that this shows a preference for gender when identi-
fying a given voice from our LSTM512 model. This is much
less present for the Thin ResNet-34 model. We believe while
our model was unable to surpass the performance of current
state of the art, it might see use for gender identification pur-
poses. Additional t-SNE plots and enlarged versions of the
PCA plots are included in the appendix (see Section A.3).

Fig. 7. PCA plot of speaker embeddings from the VoxCeleb1
Original evaluation list generated by the LSTM512 (left) and
Thin ResNet-34 (right) models, colored by gender.

Figure 7 shows how the features of the LSTM and ResNet
models are very different; the LSTM model clearly separates
gender and uses it heavily to identify the speaker model for
given utterances. The same LSTM architecture was able to
solve the task of speaker recognition on the clean studio au-
dio recordings [27] using comparable embeddings, generating
concrete features to perform optimally under optimal audio
conditions. The ResNet model instead captures noise and ad-
ditional data complexity better, but at a cost of interpretability.

5. CONCLUSION

In this work we introduced an upscaled version of an LSTM
architecture that is able to use the VoxCeleb2 dataset for
speaker recognition. We also introduce a clustering improve-
ment step for the LSTM architecture that might be applicable
to different architectures as well. The network is not able to
achieve state of the art performance, but performs similarly to
state of the art systems that are from early 2019. We further



showed how the segment length affects the performance and
that a longer length in general is desirable.

5.1. Future Work

We propose to investigate larger networks such as used by
the VoxSRC winners, as well as the use of ensembles to fur-
ther refine the performance. Furthermore, while the cluster-
ing steps might not be applicable to all network architectures,
we see a lot of potential still for improvements in this seg-
ment. It could even be useful to train a different network on
speaker embeddings that replaces the distance metrics and in-
stead learns the best comparisons for a model’s embeddings.

The usefulness of ensembles cannot be ignored. Another
idea would be to train some models on pure male and female
split datasets, where models would be able to focus more
on differences within gendered voices. We believe it could
be beneficial to create an ensemble using a trio of the same
model trained on three different datasets: the original dataset,
a male-only and a female-only version.

The surprising separability for the LSTM512 to be sepa-
rated by gender leads us to believe that there might be more
information hidden in the speaker embeddings. With official
labels of the nationality available as well as the gender, further
experiments in this direction could uncover interesting results
perhaps even around the interpretability of these embeddings.

During training we observed a certain degree of overfit-
ting and variance. Data augmentation could be useful in the
sense of adding random noise, as included in the Kaldi toolkit
by Povey et al. [41]. This would allow a network to see
the VoxCeleb2 dataset with a richer spectrum of background
noise, reverberations, et cetera while reducing variance.
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A. APPENDIX

A.1. Speaker Clustering Results

The following Tables 3 and 4 show a detailed overview of
the clustering results on the LSTM512 and Thin ResNet-34
models discussed in Section 4.4. Dominant Set results are de-
notes with the prefix DS-, agglomerative hierarchical cluster-
ing results with the prefix AHC-. Due to poor performance,
the results using dominant sets were only performed on the
VoxCeleb1-Original list.

LSTM512

Vox1 Vox1-E Vox1-H
Mean-DotProduct 5.99 6.45 11.19
Mean-CosSim 5.84 6.09 9.97
AHC-Average 5.54 5.84 9.49
AHC-Centroid 5.66 5.85 9.56
AHC-Complete 6.60 6.81 11.06
AHC-Median 5.74 6.02 9.81
AHC-Single 6.17 6.36 10.29
AHC-Ward 5.81 6.01 9.77
AHC-WeightedAvg 5.61 5.97 9.74
DS-Average 6.73 - -
DS-Centroid 6.48 - -
DS-Complete 6.42 - -
DS-Median 7.62 - -
DS-Single 16.33 - -
DS-Ward 8.17 - -
DS-WeightedAvg 8.23 - -

Table 3. Results of the LSTM512 model using different clus-
tering approaches for the comparison distance metric.

A.2. Active Learning

We explore an Active Learning (AL) approach, initially pro-
posed in a bachelor thesis [42] to reduce the total amount of
data shown to a network and in return decrease training times
while still reaching similar results. AL is usually used when
a dataset is not fully labelled and the network can be used to
determine which subsets of unlabelled data is most useful for
further training. Shen et al. [43] reached 99% performance
compared to current state of the art system in named entity
recognition while only actively using up to 25% of training
data. Our idea is to only train on a small subset of the Vox-
Celeb2 dataset and act as if the remainder is unlabelled and
thus unusable data. During multiple iterations the remainder
would be passed through the network and compared against
the desired output. The n results that exhibit the furthest dis-
tance from the desired output are chosen to be added to the



ThinResNet− 34

Vox1 Vox1-E Vox1-H
Mean-DotProduct 3.38 3.46 5.47
Mean-CosSim 3.45 3.57 5.67
AHC-Average 3.49 3.60 5.70
AHC-Centroid 3.42 3.55 5.63
AHC-Complete 5.31 5.53 8.38
AHC-Median 3.75 3.88 6.16
AHC-Single 4.25 4.39 6.86
AHC-Ward 5.65 5.61 8.17
AHC-WeightedAvg 3.78 3.92 6.23
DS-Average 6.58 - -
DS-Centroid 6.32 - -
DS-Complete 6.37 - -
DS-Median 7.15 - -
DS-Single 12.74 - -
DS-Ward 8.63 - -
DS-WeightedAvg 7.50 - -

Table 4. Results of the Thin ResNet-34 model using different
clustering approaches for the comparison distance metric.

dataset. This process is repeated until convergence. In our
experiments we set n = 213 = 8′192 and performed the
uncertainty sampling after every epoch. The initial dataset
was comprised of 10% of each speaker’s utterances and due
to rounding equates to about 17% of the VoxCeleb2 ’dev’
dataset. This ensured that all classes are available in the initial
dataset. Models were trained up to 32 epochs with early stop-
ping after 3 epochs of no improvement. The baseline model
without AL reached an EER of 30.3, with AL enabled 32.9.

As shown by this experiment, the AL approach does not
bring an impressive advantage and instead performs as we
would expect: If we are only using a smaller subset of the full
dataset, the model is not able to reach the same performance
as when using the full dataset. Moreover, training times were
similar, while the uncertainty sampling added an additional
step that prolonged total training time further instead of re-
ducing it. While this approach can be useful for a hardware
limited system, enabling multiprocessing to our models ren-
ders this approach obsolete. Furthermore, the act of adding
more data during training on a performance basis introduces
a shifting class balance throughout training, which might in-
terfere with model performance.

A.3. Speaker Embedding Visualizations

As discussed in Section 4.5, our LSTM model is able to bet-
ter separate genders than the Thin ResNet-34 model. While
this needs further investigating, the PCA and t-SNE plots are

added below. Each dot represents a speaker embedding that
was extracted from a spectrogram. Spectrograms were ex-
tracted with 50% overlap and multiple utterances were used
per speaker, meaning there are multiple dots per speaker and
utterance.



Fig. 8. PCA plot of the LSTM512 network’s speaker em-
beddings on the original VoxCeleb1 evaluation list. Each dot
denotes a speaker embedding. Embeddings are colored by
their speaker (top) and gender (bottom).

Fig. 9. PCA plot of the Thin ResNet-34 network’s speaker
embeddings on the original VoxCeleb1 evaluation list. Each
dot denotes a speaker embedding. Embeddings are colored
by their speaker (top) and gender (bottom).



Fig. 10. t-SNE plot of the LSTM512 network’s speaker em-
beddings on the original VoxCeleb1 evaluation list. Each dot
denotes a speaker embedding. Embeddings are colored by
their speaker (top) and gender (bottom).

Fig. 11. t-SNE plot of the Thin ResNet-34 network’s speaker
embeddings on the original VoxCeleb1 evaluation list. Each
dot denotes a speaker embedding. Embeddings are colored
by their speaker (top) and gender (bottom).


