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Abstract
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Texte automatisch korrigieren

by Francis DU & Alexandre MANAI

Speech-to-Text engines have made great advances in recent years, though problems
like incomplete sentences, disfluencies and grammatically incorrect sentences still
persist. Especially when performing sentence boundary detection and punctuation
tasks poor performance is observed which contributes to a dreadful reading experi-
ence. This thesis deals with improving readability of such automatically transcribed
texts. We focus on the punctuation prediction aspect and develop an evaluation
pipeline that uses punctuation predictors from 2 different implementations. Several
experiments are conducted with mainly three corpora of three different readability
levels to establish the boundaries of model capabilities. The result of this work sug-
gests that appropriate punctuation placements improve the quality of synthesized
texts. Finally, we propose a simple agreement algorithm of how to combine two
punctuation models for optimal punctuation prediction and propose additional ap-
proaches to improve our solution in future works.
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ZÜRCHER HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN

Zusammenfassung

Computer Science

Center for Artificial Intelligence

Bachelor of Computer Science

Texte automatisch korrigieren

von Francis DU & Alexandre MANAI

Speech-to-Text Engines haben in vergangenen Jahren grosse Fortschritte gemacht,
obwohl Probleme wie unvollständige Sätze, Sprachunstetigkeit und grammatisch
inkorrekte Sätze immer noch bestehen. Insbesondere bei der Satzabgrenzungserken-
nung und Zeichensetzung kann man schlechte Leistungen erkennen, was zu einem
miserablen Leseerlebnis führen kann. Diese Arbeit beschäftigt sich mit der Verbesserung
der Leserlichkeit von solchen automatisch transkribierten Texten. Wir fokussieren
uns dabei auf die Vorhersage von Satzzeichen und entwickeln eine Evaluierungspipeline
welche Satzzeichenprädiktoren aus zwei verschiedenen Implementationen benutzt.
Diverse Experimente werden durchgeführt mit hauptsächlich drei Korpora mit ver-
schiedenen Leserlichkeitsstufen um die Grenzen der Modellfähigkeiten zu erken-
nen. Schliesslich schlagen wir einen einfachen Algorithmus vor, der in Kombination
von zwei Zeichensetzungsmodelle optimal Satzzeichen vorherzusagen und weisen
auf weitere Herangehensweisen für zukünftige Arbeiten hin um Lösung in zukün-
ftigen Arbeiten zu verbessern.
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Chapter 1

Introduction

In recent years research in the field of speech-to-text has made great advances. The
ever-growing amount of generated data and bigger computing power have con-
tributed massively towards this development. Engines like IBM’s Watson Speech
to Text1, Google Cloud2 and Microsoft Azure3 have been developed for commercial
use and perform quite well in the English language. However, spoken and writ-
ten dialogues differ greatly in structure and flow as there could be many mistakes
such as correcting a sentence mid speech or stuttering and other kinds of disfluen-
cies in the former, whereas the latter benefits from corrections and neat grammar.
Therefore, generated transcripts of spoken English suffer at readability because of
mistakes that seem basic for most people. Small mistakes like wrongly placed punc-
tuation marks could disturb the reading flow of the user.

This work focuses on the aspect of readability of such automatically generated tran-
scripts, especially of meeting transcripts where multiple people are involved. We
investigate how we could alleviate the reader from a painstaking experience when
perusing through a transcribed text and in a second step, using state of the art punc-
tuation models, we conduct experiments with the goal to improve readability.

1.1 Baseline

As mentioned previously, spontaneous spoken speech is accompanied by irregu-
larities such as repetitions, incomplete sentences, disfluencies and grammatically
incorrect sentences. To smoothen such artifacts several aspects need to be looked at:

• Extend incomplete sentences

• Remove self-corrections and repetitions, filler words and hesitations

• Correct grammatically incorrect sentences

• Insert punctuation

Several possible approaches have already been proposed. In the domain of gram-
mar correction, the paper of Lee and Seneff [1] investigates the problem by cre-
ating a paraphrase-generation-based approach. Additionally, this method can be
extended with other paraphrasing-based methods which could remove repetitions,
filler words, stutters and, furthermore, complete sentences.

1https://www.ibm.com/cloud/watson-speech-to-text
2https://cloud.google.com/speech-to-text
3https://azure.microsoft.com/de-de/
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With the idea of extension and adaptability in mind, Hori et al. [2] used a paraphras-
ing weighted Finite-State Transducer which deemed quite successful.
Another necessary post-processing step is punctuation prediction. Tilk and Alumäe
[3] put forward a trained language model combined with detected audio splitting
points capable of predicting punctuation.
Promising ideas have also been seen in the domain of language simplification. Espe-
cially an approach based on Siddhartan [4] which first identifies the structure of the
sentence, then simplifies the sentence according to the introduced rules and, finally,
corrects some expressions in order to make them resemble human writing.

The problem of punctuation prediction is not new, though still young. It is almost
solved for formal written language but faces challenges in synthetic or automati-
cally generated texts (Tuggener and Aghaebrahimian, 2021)[10]. Several approaches
have been researched over the last couple of decades. Earlier works make use of a set
of rules or regular expressions much like the system proposed by Grefenstette and
Tapanainen [11]. Most recent advances however, take the approach of deep learn-
ing by Kaur and Singh [12] or naïve bayes based models by Loper and Pardo[13].
Tuggener and Aghaebrahimian [10] also propose solutions for insertion of punctua-
tion marks into text produced by Natural Language Generation (NLG) systems. In
particular, they predict correct positions for periods and other punctuation marks
in general. One limitation though is that models are trained on a fixed set of cor-
pora in which they perform well. However, when faced with out-of-domain data
performance decreases significantly [10].

1.2 Objectives

The objective of this work is to propose a solution as how to improve readability
of automatically generated text by placing punctuation marks at appropriate posi-
tions. The challenge lies in dealing with transcribed spoken language and dealing
with various topic domains. Punctuation models are in the usual case trained on
one specific domain where they produce stellar results, but perform poorly when
dealing with another. Therefore, several experiments are conducted to analyse the
performance of punctuation models on corpora containing different levels of read-
ability. We will do so by designing a pipeline to automatically generate reports and
evaluations.

In chapter 2 we cover the theoretical foundations. Chapter 3 presents the corpora
used for this work and gives a short description of them. In chapter 4 and 5 the
punctuation models and tools used for our pipeline are introduced and briefly ex-
plained. Chapter 6 then explains our procedure and methodology by giving an in-
sight as to how we planned our experiments. Their results and interpretation are
shown in chapter 7. Chapter 8 shows what problems we encountered during this
work. To bring everything together, in chapter 9 we form our conlcusion and finally,
chapter 10 serves as a means to have a discussion and present possible ideas for
future works.
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Chapter 2

Theoretical foundations

In this chapter we’ll cover all the necessary theoretical background needed to be able
to understand and evaluate the models/procedure used.
Section 2.1 and 2.2 go in detail in the concepts of Recurrent Neural Networks, LSTMs
and Attention mechanisms. In section 2.3, we talk about Transformer architectures.
These sections are important to understand why we made the decisions explained
in Chapter 5.
Finally, section 2.4 is dedicated to understanding the metrics used to evaluate the
models.

2.1 RNN - Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a type of Artficial Neural Network (ANN)
which is altered to be able to analyse temporal/sequence data well. More specifi-
cally, it allows the previous outputs to be used as inputs. This makes it suitable for
Natural Language Processing (NLP) tasks such as speech recognition.

FIGURE 2.1: Architecture of traditional RNN 0

The sequential nature of those neural networks is visible in Figure 2.1 where each
activation a<t> at timestep t is used as input for the block in layer t+1.
The block (depicted in blue in Figure 2.1) has following logic:
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FIGURE 2.2: Logic of RNN block 0

We can see in Figure 2.2, the dependence of a<t−1> for block at t. The output a<t> is
the direct summation of a<t−1>Waa, x<t>Wax and bias ba.

Additionally, this aspect is also visible directly in the definition of a<t> and y<t>:

a<t> = g1(Waaa<t−1> + Waxx<t> + ba)

y<t> = g2(Wyaa<t> + by)

with g1 and g2 being activation functions (see section 2.3)

The dependence of block t-1 for block t creates a problem. Each input needs to be
processed sequentially negating parallel processing which is favorable for training
and predicting for Neural Networks. Additionally, the forward dependency creates
a strict temporal order which gives current inputs context of previous inputs but not
of future ones. [5]

Forward and backwards context might be useful in NLP, therefore a solution to the
context problem has been developed called Bidirectional RNN (BRNN).
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2.1.1 Bidirectional RNNs

FIGURE 2.3: Bidirectional RNN architecture 0

In Figure 2.3, we can observe a forward pass through time, beginning from the start
of the sequence and another RNN starting from the end running backwards in time.
This idea gives the model a richer representation enabling better predictions. [5]

2.1.2 LSTM - Long short-term memory

LSTMs were first introduced by Hochreiter and Schmidhuber [6]. Their ideas was to
respond to the "vanishing gradient problem" where long-term gradients might "van-
ish" meaning tending towards zero or "explode" meaning tending towards infinity.
They found a way to remember long-term information for long periods of time.

FIGURE 2.4: LSTM internal architecture0



Chapter 2. Theoretical foundations 6

Their implementation included different types of gates to enable memory management[9]:

• Γ f (Forget Gate): dedicates if cell c<t−1> should be erased or not

• Γu (Update Gate): responsible for the amount of information c̃<t> that flows
through

• Γr (Relevance Gate): responsible if previous information a<t−1> gets forgotten
or not

• Γo (Output Gate): responsible for how much of c<t> should be revealed

Definition:
Γ = σ(Wx<t> + Ua<t−1> + b) (2.1)

where W, U, b depend on the gate used and σ is the sigmoid activation function (see
section 2.3)[9]

Bidirectional LSTMs

Bidirectional LSTMs have been introduced by Graves, Fernandez and Schmidhuber
[7] in the same mindset of BRNN to introduce more bilateral context.

FIGURE 2.5: BiLSTM Architecture 1

The cell present in Figure 2.4 is depicted as the blue circle in Figure 2.5.
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2.2 Attention mechanism

Attention mechanisms found in neural networks are somewhat similar to the ones
found in humans. They focus in high resolution on one part of the input and in low
resolution on the rest.[14]

FIGURE 2.6: Attention mechanism

Following architecture (see Figure 2.6) is based on an Encoder-Decoder architecture.
The encoder part is based on a Bidirectional Recurrent Network (BiRNN)[15] and
the decode part emulates searching through a sentence during the decoding for a
translation.

2.2.1 Encoder

Generally speaking, BiRNN have forward states
−→
h i and backwards states

←−
h i which

is calculated for T words.
They concatenated in one hi vector:

hi =

[−→
h i←−
h i

]
(2.2)

0 Graphs issued from here: https://stanford.edu/~shervine/teaching/cs-230/
cheatsheet-recurrent-neural-networks.

1 Graphs issued from here: https://www.researchgate.net/figure/
LSTM-and-BiLSTM-Architectures_fig2_324769532.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://www.researchgate.net/figure/LSTM-and-BiLSTM-Architectures_fig2_324769532
https://www.researchgate.net/figure/LSTM-and-BiLSTM-Architectures_fig2_324769532
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2.2.2 Decoder

In this part we try to decode the hi’s with help of an attention mechanism. We’re
trying to find yt = st defined in the following way:

si = f (si−1, yi−1, ci) (2.3)

Now let’s look at each component more in depth to understand the mechanism.

ci =
T

∑
j=1

αijhj (2.4)

Each weight αij is computed by:

ci =
exp(eij)

T

∑
k=1

exp(eik)

(2.5)

where
eij = a(si−1, hj) (2.6)

a is an alignment model which scores how well the inputs around hj and output at i
are similar.
αij is a probability that the word yi is aligned/translated from the word xj.
eij is also called energy and denotes the importance of hj to the previous layer si−1
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2.3 Transformer architectures

Transformers are deep-learning models which adopt a mechanism of self-attention.
Compared to RNN’s, previously seen, transformers don’t process data in sequential
order rather thanks to the attention mechanism which provides context for all po-
sitions in the input data. For NLP, for example, it wouldn’t have to start analysing
the start of the sentence, but it could start at the end. Additionally, it provides more
parallelism than RNN’s do.[16]

FIGURE 2.7: Transformer Architecture

Transformers are essentially based on a Encoder/Decoder architecture with the en-
coding part on the left side and the decoding part on the right side (see Figure 2.7).
Let’s look at each component to understand its workings:

2.3.1 Input Embedding

This unit of the model is responsible for passing a word into an embedding space.
Therefore creating a vector representation of the word to be suitable as input for the
model.
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We have unsupervised learning methods that are able to achieve that, for example,
GloVe 1

2.3.2 Positional Encoding

Solely the Input Embedding creates a vector representation of the word which is
stripped of his positional information in the sentence. That’s why we have an addi-
tional "Positional Encoding" unit which encodes this positional information(context)
into the vector.

2.3.3 Multi-head Attention

This is the block that provides the self-attention. For an NLP task such as translation,
for example, each word is compared to every other word in the sentence. An atten-
tion vector is computed which holds a value for each word in the sentence. That
value represents relevance of one word to all the other words in the sentence. It,
therefore, catches contextual information about the sentence.

2.3.4 Masked Multi-head Attention

This unit is essentially similar to "Multi-head Attention", but the difference lies in
the comparisons made for each word relative to the other words of the sentence. In
the "Multi-head Attention" unit every word is compared, but in this one we only
compare the word to words that appear before it and not after.

2.3.5 Feed Forward

This unit takes all attention vectors computed in the layer before and feeds it to a
feed forward neural network which has the task to bring to a dimension which is
usable for the next step.

2.3.6 Linear

This unit, in the case of translation, brings the input vector to the dimension of the
whole vocabulary of the target language.

2.3.7 Softmax

Finally, the "Softmax" unit brings the vector to a probability distribution making
it interpretable to humans. In the case of translation, this model would give out
the word with highest probability to appear next and this until we have the fully
translated input sentence.

1More Information: https://nlp.stanford.edu/projects/glove/
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2.4 Activation functions

2.4.1 Sigmoid

Definition:

g(z) =
1

1 + e−z (2.7)

FIGURE 2.8: Sigmoid activation function

2.4.2 Tanh

Definition:

g(z) =
ez − e−z

ez + e−z (2.8)

FIGURE 2.9: Tanh activation function

2.4.3 ReLU

Definition:
g(z) = max(0, z) (2.9)
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FIGURE 2.10: ReLU activation function

2.5 Evaluation metrics

In this section, we’ll look at different metrics and the mediums we used to present
them with.

2.5.1 Important Information

In our classification tasks, the empty space is denoted as ”0”.

2.5.2 Classification Report

Classification types

True Positive = TP
True Negative = TN
False Positive = FP
False Negative = FN

Accuracy

Accuracy = TP+TN
TP+TN+FP+FN

Precision

Precision = TP
TP+FP

Recall

Recall = TP
TP+FN

F1-score

F1 = 2∗Precision∗Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN

Support

Represents the amount of occurrences of a certain classification prediction
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2.5.3 Confusion Matrix

True
label

Predicted label

p n

p′ True
Positive

False
Negative

n′ False
Positive

True
Negative

To have a better understanding of the nature of the mistakes compared to the classi-
fication report, we’d look into the Confusion Matrix.
In the confusion matrix, we can see the relation between the labels predicted by the
model and the actual ground-truth labels. We can observe which labels have been
wrongly predicted and by which making the models behavior more understand-
able.
Essentially, the confusion matrix shows the ways your classification model is con-
fused when it makes predictions. 2

2Quote from: https://machinelearningmastery.com/confusion-matrix-machine-learning/

https://machinelearningmastery.com/confusion-matrix-machine-learning/
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Chapter 3

Corpora

In this chapter we will present all the datasets used for conducting our experiments.
Section 3.1 will show the structure of the ICSI dataset. In section 3.2 we elaborate on
the BBCNews dataset and finally, in section 3.3 we present the interscriber output.

3.1 ICSI Meeting Corpus

The ICSI Meeting Corpus consists of over 70 hours of meeting recordings. It was
built by transcribing meetings that occurred at the International Computer Science
Institute (ICSI) in Berkeley, California. It contains audio, word-level transcripts of
meetings and various metadata on participants, meetings and hardware[19].

Transcripts / Metadata: All transcripts of every meeting are saved as xml files. They
include the following metadata:

Per word (tag <w>):

• Id

• Start time

• End time

• Type of word

Per vocalsound (tag <vocalsound>):

• Id

• Start time

• End time

• Description

Per disfluency maker (tag<disfmarker>):

• Id

• Start time

• End time

An example can be seen in Listing 1
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1 <w nite:id=" Bdb001.w.1 ,266" starttime ="339.926" endtime ="340.256" c="W
">could </w>

2 <disfmarker nite:id=" Bdb001.disfmarker .51" starttime ="" endtime =""/>
3 <w nite:id=" Bdb001.w.1 ,267" starttime ="340.256" endtime ="340.426" c

="W">all </w>
4 <w nite:id=" Bdb001.w.1 ,268" starttime ="340.426" endtime ="" c="W">you

</w>
5 <w nite:id=" Bdb001.w.1 ,269" starttime ="" endtime ="340.586" c="W">’d

</w>
6 <w nite:id=" Bdb001.w.1 ,270" starttime ="340.586" endtime ="340.756" c

="W">have </w>
7 <w nite:id=" Bdb001.w.1 ,271" starttime ="340.756" endtime ="340.876" c

="W">to </w>
8 <w nite:id=" Bdb001.w.1 ,272" starttime ="340.876" endtime ="341.276" c

="W">change </w>
9 <w nite:id=" Bdb001.w.1 ,273" starttime ="341.276" endtime ="341.556" c

="W">is </w>
10 <w nite:id=" Bdb001.w.1 ,274" starttime ="341.556" endtime ="341.936" c

="W">the </w>
11 <w nite:id=" Bdb001.w.1 ,275" starttime ="341.936" endtime ="341.936" c

="CM">,</w>
12 <vocalsound nite:id=" Bdb001.vocalsound .42" starttime ="" endtime =""

description =" breath"/>
13 <w nite:id=" Bdb001.w.1 ,278" starttime ="342.469" endtime ="343.009" c

="W">um </w>
14 <w nite:id=" Bdb001.w.1 ,279" starttime ="343.009" endtime ="343.009" c

="CM">,</w>

LISTING 3.1: Sample ICSI

3.1.1 Conclusion

The extracted texts stem from speech and include interruptions, stutterings, sentence
repetition and other types of disfluency. These fit perfectly to our use case. We expect
our models to encounter problems with inserting the punctuations at the correct
place.

3.2 BBCNews Dataset

This dataset consists of 2225 documents from the news site BBC containing articles
in five topical areas from 2004-2005[20]. These are texts written by many different
journalists in different styles. For every article there is one text file with the headline
at the first line followed by the article. The article itself is divided randomly into
multiple lines with empty lines in between. See Listing 2 as example.

1 Ink helps drive democracy in Asia
2

3 The actual technology behind the ink is not that complicated. The ink
is sprayed on a person ’s left thumb.

4

5 Widely circulated articles compared the use of ink to the rural
practice of marking sheep

6

7 David Mikosz works for the IFES , a non -profit organisation that
supports the building of democracies.

LISTING 3.2: Sample BBCNews
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3.2.1 Conclusion

These are texts written in English with correct punctuations and sentence structure.
Though they are not transcripts of spoken language they serve as a means to eval-
uate our punctuation models under optimal conditions. Therefore, we expect our
models to be able to replicate the punctuations with a good performance.

3.3 Interscriber transcripts

The Interscriber transcripts used for our experiments consist of transcribed audio
files that were downloaded from the internet. They can range from interviews to
monologues and we assess the quality of sentence to be in the middle of the ICSI
corpus and the BBC dataset. We expect our models to perform moderately over
these transcripts.
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Chapter 4

Punctuation models

In this chapter we present the different punctuation models we use in this work and
explain why we chose to use them. We narrowed down our choices to two models.

4.1 Punctuation restoration

The implementation of this model is based on the paper by Tanvirul et. al[17] and is
able to restore punctuation for the English language. They fine tuned a transformer1

based architecture for the task. While they provide means to train the model on
custom data, pretrained models are also available. In this example, we used the
RoBerta-large model which is pretrained on a large corpus of English data. The
transformer encoder is followed by an LSTM2 and a final linear layer that predicts
punctuation. For our task, this model presents itself as a good choice for conducting
experiments as they themselves obtain state-of-the-art results and neatly provide
code and a pretrained model. Their implementation is available in this repository3

that also offers examples on how to use it.

4.2 Punctuator2

This is a punctuator implementation that is based on the paper by Ottokar Tilk and
Tanel Alumäe[18]. Their model uses a bidirectional recurrent neural network4 archi-
tecture with an attention mechanism in order to punctuate text. An online repository
that provides some documentation on usage can be found here5. They offer the pos-
sibility to train the models on own data, but also provide pretrained models. These
have been trained on English TED talks6 data which consists of 2.1M words and
the English EuroparlvV77 corpus which consists of 40M words. For this task, this
punctuator seemed like a good choice due to its usability right out of the box and
available pretrained models.

1See chapter 2.3
2See chapter 2.1.2
3https://github.com/xashru/punctuation-restoration
4see Chapter 2.1.3
5https://github.com/ottokart/punctuator2
6https://www.idiap.ch/en/dataset/ted
7https://www.statmt.org/europarl/
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Chapter 5

Interscriber tool

In this chapter we introduce Interscriber1, an auto-transcription tool by Spinning-
Bytes AG, which is a joint spin off of the Swiss Federal Institute of Technology and
the Zurich University of Applied Sciences.

5.1 Features

5.1.1 Audio Transcription

The website features automatic transcription of more than 15 different audio for-
mats. Via a new project or an import project button the tool is able upload an audio
file and transcribe it within minutes. Though it is able to combine several speech
processing engines by Google, IBM, etc. they also offer a confidential mode where
data never leaves servers from Switzerland. However, the engine for confidential
mode was developed in-house and doesn’t perform as well as other engines from
the big companies.

FIGURE 5.1: Interscriber Upload Tool0

5.1.2 Editor

After transcribing audio the site offers a powerful editor. On the upper left the au-
dio track can be seen and played at a desired timestamp. The current word is then

1See https://interscriber.com/de/
1https://spinningbytes.com/
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highlighted in the text. It additionally offers following features:

On the mid left:

• Assign phrases to other speakers

• Change speaker names

In the text:

• Auto-merge sentences

• Correct errors in text

• Export the text for editing in word

The buttons on the upper right:

• Export the text as a word document

• Export as an Excel sheet

FIGURE 5.2: Interscriber Edit Tool0

0 Graphs issued from here: https://www.youtube.com/watch?v=sN_N9js8vp8&ab_channel=
SpinningBytes.

https://www.youtube.com/watch?v=sN_N9js8vp8&ab_channel=SpinningBytes
https://www.youtube.com/watch?v=sN_N9js8vp8&ab_channel=SpinningBytes
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Chapter 6

Procedure and methodology

6.1 Initial analysis

This section will concentrate on the initial analysis we did to be able to filter feasible
objectives out of the broad given baseline.
Essentially, we had four major aspects to consider:

• Extend incomplete sentences

• Remove self-corrections and repetitions, filler words and hesitations

• Correct grammatically incorrect sentences

• Insert punctuation

The result of this analysis gave us an aspect to focus on.

6.1.1 Procedure

The procedure used was relatively straight forward.
We let speech files run through Interscriber1, collect the output, proceed to identify
the occurrence of each artifact and, finally, interpret the results and decide which
artifact to focus on.

6.1.2 Data

We used two 5 minute recordings of the meetings we had for our Projektarbeit in-
cluding four speakers and, to diversify, we took a 10 minute recording of an inter-
view with clear voices and separations between two speakers.

6.2 Main analysis

In this section we present the procedures and methodology of our main evaluation
pipeline. We elucidate on the elements of our pipeline and all the artifacts that are
generated and used.

6.2.1 Overview Pipeline

The whole evaluation process is depicted in Figure 6.1. It can be seen that it consists
of 3 stages:

1See how we run in through in Chapter 5
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FIGURE 6.1: Evaluation Pipeline

1. Pre-processing:

FIGURE 6.2: Architecture pre-processing

Within this stage all the raw data are processed and restructured in such a way,
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that our punctuation models can take them as input. Depending on the type
of punctuation model and corpus used, we preprocess differently. At the end,
two files are generated. One serves as input for our models while the other
is an evaluation file that serves as the ground truth for calculating scores /
validation at the end of the whole pipeline.

2. Punctuation:

FIGURE 6.3: Architecture punctuation

In this part of the pipeline we feed our preprocessed data to the punctuation
models. Outputs with restored punctuation marks are generated which are
used for evaluation and analysis.

3. Postprocessing and analysis:
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FIGURE 6.4: Architecture postprocessing

In postprocessing the generated outputs are further cleaned so that they can
be evaluated by comparing them to the ground truth. Finally, in this last step
reports are produced for analysis.

Preprocessing

During this stage we gather the raw data and see how we need to modify the texts
so that they can be accepted by our punctuation models. Depending on the corpus
different measures had to be taken:

• ICSI Corpus:
First of all, all words had to be extracted from the XML files. They are saved
in a text file. In a second step, we remove empty lines. If the pipeline goes
through punctuator2, we also preprocess following words in a set manner for
model input:

1. gonna −→ going to

2. gotta −→ got to

3. wanna −→ want to

Finally, we output 2 copies, namely the evaluation file in evalFiles2 folder and
the test file as input for the punctuator in the data folder3.

• BBCNews dataset:
This dataset already comes in text format so we only do preprocessing for

2https://github.zhaw.ch/manaiale/PA/tree/pipeline/evalFiles
3https://github.zhaw.ch/manaiale/PA/tree/pipeline/punctuation_models/punctuation-

restoration/data
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the model. The preprocessing part involves removing hyphen and redundant
white spaces as well as duplicate punctuation marks. Same as in the ICSI cor-
pus, we remove empty line spaces so that it can be accepted by the punctuator.

• Interscriber dataset:
Not much preprocessing has to be done by texts generated by the Interscriber
tool. Since we only used a small dataset, manually copying and pasting it to a
text file was sufficient for generating an experiment input and evaluation file.

Punctuation prediction

In the main part of our pipeline the punctuation models take the preprocessed files
as input. All punctuations are removed, predicted and restored by the model. All
experiments were conducted by the two models:

• Punctuation Restoration4

• Punctuator25

Postprocessing

In postprocessing the files produced by our punctuation models are further pro-
cessed to increase validation. Generated text from the previous stage is given as
input for the postprocessing. Depending on the punctuation model used, different
kind of errors that are generated in the output are cleaned. Double empty spaces or
faulty modifications to words are corrected. The corrected texts are then analysed
and used for calculating model performance with the metrics explained in chapter
2.4.

Evaluation

In this step, model performance is measured. We use accuracy, recall, F1-score and
support to generate a classification report. Also, a confusion matrix is produced in
order to see how the model decided to set different punctuation marks compared
to the ground truth. We use functions from the sklearn6 module to generate these
reports. Lastly, a docx document is generated using the docx7 module to manually
compare the result with the evaluation file. In there, punctuation mistakes are color
coded to show what kind of errors occurred in order to better understand our statis-
tics.

6.2.2 Experiments

In this section we elucidate on the procedures of our experiments. We use three
different datasets of different levels of readability and conduct experiments with
them. In the first Iteration, we use the best readable dataset, namely the BBCNews
dataset since it is written text by journalists. For Iterations two and three we use the
ICSI and Interscriber datasets in order to do an analysis of less readable text.

4https://github.com/xashru/punctuation-restoration
5https://github.com/ottokart/punctuator2
6https://scikit-learn.org/stable/
7https://python-docx.readthedocs.io/en/latest/
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Iteration 1

In Iteration one, the BBCNews dataset is run twice through the pipeline with a dif-
ferent punctuator each run. The purpose of this is to see how the models perform
with correctly hand written texts. The outputs generated are used to analyse each
run. We look at each report individually by analysing the scores, classification re-
ports and text.

Iteration 2

In Iteration 2, we concatenate 20 pre-processed ICSI files(see Chapter 3 Section 1)
run them through both models, collect the output and analyse it comparatively to
Iteration 1’s results. We use the result we got during Iteration 1 to guide our search
and analysis in Iteration 2.

Iteration 3

Iteration 3 is the final Iteration. It builds on the discoveries of both previous Iter-
ations to draw conclusions on an interview audio file which was run through In-
terscriber. We’ll proceed with the same analysis done in both other Iterations and
consequently compare all three to each other.

Human Evaluation

We also do experiments involving human evaluation. It is important to see how
people actually perceive our generated outputs. For this we take the interscriber
output. We select randomly 5 paragraphs of different lengths and their 3 different
versions of punctuation. They are processed to be all lower cased. In the end, we
have 5 blocks containing three identical texts each with different punctuations from
punctuation restoration, punctuator2 and Interscriber. Within these blocks we shuf-
fle the texts randomly and survey people on which text is the most readable within
the blocks. In the end, we gather all the points together.
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Chapter 7

Results

This chapter elaborates and discusses the results from the experiments described in
chapter 6.

7.1 Initial analysis

For the syntax analysis, following color coordination was used:

• this : Segmentation mistake

• this : Punctuation mistake

• this : Capitalization mistake

• this : Special/unforeseen mistake

• this : Disfluencies

7.1.1 Syntax result

1 Aufgefallen dass er schweizerdeutsch geredet hat starken Dialekt und

ah dann transkribiert Ich bin perfekt also praktisch fehlerfrei .

FIGURE 7.1: Text snippet from the recording from a Teams meeting

1 Also Ich mochte mich mal ein bisschen vom Innenminister losen weil
2 hier spricht die kulturstaatsministerin F seine

begrifflichkeit Wirsind nicht Burka hatte ich nie gewahlt

aber die Frage die .

FIGURE 7.2: Text snippet from the interview
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7.1.2 Error distribution

File Segmentation mis. Punctuation mis. Capitalization mis. Special mis. Disfluencies

Meeting_1 29 39 10 17 14
Meeting_2 74 55 30 30 17

Interview_1a 6 54 29 15 0
Interview_1b 5 86 49 33 0

TABLE 7.1: Error distribution per Input File

Total Mistakes % Segmentation % Punctuation % Capitalization % Special % Disfluencies

595 0,191596639 0,393277311 0,198319328 0,159663866 0,057142857

TABLE 7.2: Overall Mistake percentages

Total Mistakes % Segmentation % Punctuation % Capitalization % Special % Disfluencies

315 0,326984127 0,298412698 0,126984127 0,149206349 0,098412698

TABLE 7.3: Meetings Mistake percentages

Total Mistakes % Segmentation % Punctuation % Capitalization % Special % Disfluencies

280 0,039285714 0,5 0,278571429 0,171428571 0,010714286

TABLE 7.4: Interview Mistake percentages

7.1.3 Interpretation

We’ll do a distinction between the Meeting recordings and the Interview recordings
due to their strong differences in nature.
Meetings have bad microphone quality, jumpy noise, speakers cut each other, and
there is a mix of English and German and many disfluencies which normally appear
during free speech.
Interviews have, contradictingly, have a clearer microphone input, speakers cut each
other less, talk in longer sentences and use an elaborate vocabulary.
Thus, we’ll list 2 of the most recurrent mistakes per File Type:

• Meetings:

1. Segmentation mistakes because this audio input possesses more speakers
which are speaking over each other often

2. Punctuation mistake due to unclear sentences and people cutting each
other

• Interviews:

1. Punctuation mistakes happening because of difficult and long sentences

2. Capitalization mistakes caused by a difficult and extensive vocabulary
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7.1.4 Conclusion

Segmentation being clearly a relevant artifact isn’t, unfortunately, in the scope of our
work. Segmentation mistakes are most likely due to a wrong SpeechToText transla-
tion which isn’t included in our Projektarbeit.
Additionally, we can see that for both file types, punctuation mistakes are extremely
recurrent and make the text difficult to read for human beings.
Therefore, we revised the objectifs to correct punctuation mistakes.

7.2 Main analysis

7.2.1 Iteration 1

Our experiments in Iteration 1, described in chapter 6 show the following results:

Punctuation restoration

precision recall f1-score support

! 0.00 0.00 0.00 4
, 0.50 0.69 0.58 209
. 0.83 0.85 0.84 323
0 0.99 0.97 0.98 5842
: 0.00 0.00 0.00 8
? 0.86 0.67 0.75 9

TABLE 7.5: Report generated by using Punctuation restoration on
BBCNews dataset

Initially, it can be seen that the model performs placing a dot quite well with a recall
of 0.85. Even the precision and f1-score stay consistent. When it comes to commas
though, it performs worse with a recall of just 0.58.
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FIGURE 7.3: Punctuation restoration classification report BBC

When looking at the classification report, it can be seen that 11 per cent of dots did
not get predicted. Also, when analysing the commas it becomes clear that 11 per
cent of them were predicted as dots whereas 20 per cent are missing.

For the syntax analysis we show a few sentences and highlight some of the typical
mistakes that were made. Next to these the ground truth is displayed in brackets:

1 Stephen Toulouse , a Microsoft security manager , said the flaws were

known about .[]and although the firm ...

2 These were considered to be less critical.[,] however,[.] If not
updated , either automatically or manually , ...

3 To be infected,[] users must open up the attachment travelling with

the message,[.] which bears the code ...

FIGURE 7.4: Text snippet from punctuation restoration output on
BBCDataset

Conclusion Generally, we can see that the model performs quite well on written
texts such as news articles. It produces a relatively high f1-score when it comes to
predicting dot placement, but shows some weakness when placing commas. One
typical mistake that can be easily removed by postprocessing is the dot before an
"and". Also, the only mistake when it comes to commas is when they are predicted
as dots and mistaking commas for dots does not hinder readability in a massive way
in our opinion. In a few cases, commas are placed after introductory clauses which
are intuitively correct, even though in the ground truth they are often omitted.
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Punctuator2

precision recall f1-score support

! 1.00 0.75 0.86 4
, 0.47 0.89 0.62 209
. 0.66 0.95 0.78 323
0 1.00 0.94 0.97 5842
: 0.53 1.00 0.70 8
? 1.00 0.78 0.88 9

TABLE 7.6: Report generated by using Punctuator2 on BBCNews
dataset

Even though this model has a high recall when placing a dot, it has only an f1-score
of 0.78. Also, the commas do not show a good result by having an f1-score of 0.62.

FIGURE 7.5: Punctuator 2 classification report BBC

When looking at the classification report, it can be seen that 11 per cent of dots did
not get predicted. Also, when analysing the commas it becomes clear that 11 per
cent of them were predicted as dots whereas 20 per cent are missing.

When doing a syntax analysis like in the previous section we observe following pat-
terns:



Chapter 7. Results 31

1 The Kyrgyz Republic„[] a small , mountainous state of the former

Soviet republic„[] is using invisible , ink and ultraviolet readers ...

2 If.[] The ink shows under the UV light the voter will not be allowed

to enter the polling.[] Station.

FIGURE 7.6: Text snippet from punctuator2 output on BBCDataset

Conclusion The punctuator2 model performs moderately well on the used dataset.
There are no dots or commas that were predicted as empty spaces. When looking
at dots we see that they are predicted as commas sometimes. Most common mis-
takes are doubled punctuation marks and random dots followed by capitalized let-
ters since it starts a new sentence. These problems considerably decrease experience
when reading the text. This outcome could be derived from the fact, that this model
was mainly trained on parliament texts and ted talks. Considering the fact that the
used dataset consists of news articles covering technical and sports topics the results
are understandable.

7.2.2 Iteration 2

Our experiments in Iteration 2, described in chapter 6 show the following results:

Punctuation restoration

precision recall f1-score support

! 0 0 0 28
, 0.33 0.73 0.45 3039
. 0.71 0.55 0.62 3111
? 0.52 0.51 0.51 453

TABLE 7.7: Report generated by using Punctuation Restoration on
x20 ICSI dataset

Certain labels were omitted for reasons of weak importance and information hold-
ing:

• Label ”0” was omitted because it presented with near perfect results 0.95 min-
imum precision and for an enormous support. In our context, this result isn’t
important. We’d much more focus on ending or segmenting punctuations.

• Label ” : ” which had a support of 2 wasn’t strong of significance

We see a small Precision for commas which could lead to believe that this result
is bad, but further contextual analysis is necessary, because cases of swapping of
commas and dots could still yield a grammatically correct and readable output even
though this score might lead to think otherwise.
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FIGURE 7.7: Punctuation Restoration Confusion matrix x20 ICSI

Observing the Confusion Matrix several results can be labeled as worrisome and
others not. For example, that ”!” have been predicted as ”, ” for 64% is problematic
because a stopping punctuation has been predicted as a comma for most occasions.
Then again, values such as 29% of ”!” have been predicted as ”.” aren’t a problem
because both can be used interchangeably in most times and still be readable.

Consequently, we’ll list all worrisome results related by the Confusion Matrix:
(we’ll use "→" as "predicted as")

• ”!”→ ”, ” for 64%: we can see in the text snippets 1 & 2 of the Syntax analysis
that the usage of ”, ” instead ”!” is reasonable and logical.

• ”, ”→ ”.” for 10%: text snippets 3 & 4 in Figure 7.8 show that ”.” have been put
logically after or before words, such as ”Right” or ”but”, which could signal
the start of another sentence, especially in spoken language. Mostly, looking
at the whole output, ”.” were put before words like ”because”, ”Imean” and
”and” which makes sense grammatically and stays perfectly readable.

• ”.” → ”, ” for 35%: The text snippet 5 is recurrent where ”, ” are predicted
before ”Hmm” or after ”Yeah”. This scenario is rather a question of writing
style than a question of right or wrong making this prediction acceptable.

• ”?”→ ”, ” for 20%: Predictions that we can see in text snippet 6 happen most of
the time for those predictions. These mistakes are clearly unproblematic. The
text is still correct and perfectly readable.
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Syntax analysis1:

1 ... should , Andreas was saying , Yeah , Ach,[!] Well then , But then ...

2 ... intentions. So I thought , " Mmm,[!] Maybe for a deep ...

3 ...to take pictures of. Or very rarely.[,] but you usually ...

4 ... different type.[,] Right? Right? Yep , Right.[,] ...

5 ... have question mark because it ’s extracted. Yeah,[.] Hmm. ...

6 ... that have these features , OK,[?] and then you ’d like ...

FIGURE 7.8: Text snippets from punctuation restoration for Iteration
2

Conclusion Thanks to the analysis, we can observe that most mistakes are inoffen-
sive. These predictions seem to appear around words such as ”because”, ”Imean”,
”and” and ”Hmm” which are very frequent in spoken language. But, generally, pre-
dictions done by the punctuation restoration model in Iteration 2 seem to be very
promising.

Punctuator2

precision recall f1-score support

! 0 0 0 28
, 0.23 0.51 0.32 3039
. 0.15 0.11 0.13 3111
? 0.3 0.14 0.19 453

TABLE 7.8: Report generated by using Punctuator2 on x20 ICSI
dataset

Certain labels were omitted for reasons of weak importance and information hold-
ing:

• Label ”0” was omitted because it presented with near perfect results 0.95 min-
imum precision and for an enormous support. In our context, this result isn’t
important. We’d much more focus on ending or segmenting punctuations.

We see a small metrics overall indicating an sub-optimal model, but then again it
needs to be seen in context to agree or disagree with the results from the classification
report.

1For the syntax analysis we show a few sentences and highlight some of the typical mistakes that
were made. Next to these the ground truth is displayed in brackets
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True
label

Predicted label

! , . ? 0

! 0.0 1.0 0.0 0.0 0.0

, 0.0 0.51 0.153 0.007 0.330

. 0.0 0.37 0.109 0.013 0.507

? 0.0 0.272 0.052 0.143 0.532

FIGURE 7.9: normalized Confusion Matrix for punctuator2 model on
x20 ICSI for Iteration 2

Observing the Confusion Matrix (Figure 7.9), we can filter out several instances:
(we’ll use "→" as "predicted as")

• ”!”→ ”, ” for 100%: We can see in text snippet 1 of Figure 7.10, which is the only
occurrence of this misclassification, that both punctuations are interchangeable
keeping the meaning of the sentence intact. A necessary step to keep a com-
fortable reading is to post-process the capitalization of ”And”, but that is a
rather simple extra step.

• ”, ”→ ”.” for 15%: The times this misclassification happened (see text snippet
2 & 3 for example) the choice taken by the model is reasonable, keeping it
readable.

• ”.”→ ”, ” for 37%: Text snippets 4 & 5 summarize all the mistakes done in this
case. We can observe that in both cases the text stays fluid, even though the
context of text snippet 5 seems to be broken, because the listing of numbers
was intended for a phone number in that case and the model didn’t break up
with a dot at the right spot making the listed number senseless. A possible
solution to this problem is to have a human post-process these rare situations
which shouldn’t be too much of a hassle.

• ”.”→ ”0” for 50%: We can deduce from text snippets 6 & 7 that this model likes
to omit punctuation before junction words such ”and” & ”so” which makes
sense and keeps the flow and meaning of the text the same. Whereas, in text
snippet 8, we can see that the omission of ”.” destructures the text completely
making it extremely unenjoyable to read and syntactically wrong furthermore.

• ”?” → ”, ” for 27%: This misclassification (text snippet 9 & 10) deemed to be
problematic, because a clear sentence structure of a question was at hand, but
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the model still did a mistake. Additionally, questions only read themselves in
one way for humans and when it doesn’t fit, it stands out immediately.

• ”?” → ”0” for 53%: Similarly to the misclassifaction described above for text
snippet 11.

Syntax analysis2:

1 ...we did diff Exactly,[!] And , that ’s how Yeah But , you ...

2 ... and so forth. Uh.[,] so, um, if...

3 ...Mm , hmm , Ah.[,] well , For...

4 ... data. OK Yeah,[.] Right,[.] Time time times ...

5 ...nine , nine , zero,[.] seven , seven , nine ...

6 ... for this sort of stuff [.] And. so the only question ...

7 ...if you want to [.] So that , um...

8 ... particular items that it can take [.] Sure [.] If. you ...

9 ... features in right,[?] Mmm. And...

10 ...what ’s the advantage of doing that versus just putting it into

this format,[?] ...

11 ... Are? they ready to go or [?] ...

FIGURE 7.10: Text snippets from punctuator2 for Iteration 2

Conclusion Punctuator2 in Iteration 2 had underwhelming metrics, but each mis-
classification needed to be seen case by case to make sure of it. Seeing the Syntax
analysis, we observed that for cases of ’ ”, ” → ”.” ’ and ’ ”.” → ”, ” ’ the mistakes
kept the flow and meaning of the text intact. But in cases such as ’”.” → ”0” ’ and
’ ”?” → ”, ” ’, it made the predicted text unenjoyable to read and even incorrect at
times. These created problems that are also not easily post-processed. Punctuator2
seems, therefore, to be difficult to use for texts similar to ICSI.

7.3 Iteration 3

Our experiments in Iteration 3, described in chapter 6 show the following results:

Punctuation restoration

precision recall f1-score support

! 0 0 0 1
, 0.43 0.78 0.55 49
. 0.68 0.51 0.58 75
? 0.33 0.67 0.44 3

TABLE 7.9: Report generated by using Punctuation Restoration on an
Interview run through Interscriber

2For the syntax analysis we show a few sentences and highlight some of the typical mistakes that
were made. Next to these the ground truth is displayed in brackets
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Certain labels were omitted for reasons of weak importance and information hold-
ing:

• Label ”0” was omitted because it presented with near perfect results 0.95 min-
imum precision and for an enormous support. In our context, this result isn’t
important. We’d much more focus on ending or segmenting punctuations.

• Label ” : ” which had a support of 2 wasn’t strong of significance

We can see promising metrics for the Precision of ”.”, all Recalls and the f1-score of
”.” and ”, ”. Let’s look at it more in detail with the Confusion Matrix and Syntax
analysis to deduce if the model is applicable for data similar to an interview output
of Interscriber.

FIGURE 7.11: Punctuation Restoration Confusion matrix Interview
Interscriber

Worrisome results from the Confusion Matrix are listed here:
(we’ll use "→" as "predicted as")

• ”, ” → ”.” for 14%: We have here another occurrence of the model where the
model cuts a sentence short at a joining word like ”so” (see text snippets 1 & 2
in Figure 7.12). The created sentences stay fully readable and keep their flow
which is essential for the reader.

• ”.” → ”, ” for 32%: In text snippets 3 & 4, we observe that the model, in this
case, decided to place a ”, ” making the sentence still understandable and fully
readable. A post-processing step still needs to be taken to correct the capital-
ization mistakes.

• ”.”→ ”0” for 13%: We can understand from text snippets 5 & 6 that the ”.” was
misplaced to later in the text. After analysing the text more, we summarize that



Chapter 7. Results 37

this displacement of the ”.” still makes the text perfectly understandable and
comfortable to read.

Syntax analysis3:

1 ... you move into the way of another.[,] so the amount of rain ...

2 ... the number of meters You travel.[,] so to stay ...

3 ... depend at all on its slant,[.] Then no matter ...

4 ... drops from the side,[.] And you ’ll get ...

5 ... the number of meters [.] You travel. so to stay ...

6 ... has to lead the world [.] Getting to zero greenhouse ...

FIGURE 7.12: Text snippets from punctuation restoration for Iteration
3

Conclusion We can conclude that in Iteration 3, punctuation restoration performed
extremely well. The text keeps its context and flow intact. The readability is surpris-
ingly good. This model seems very promising for this use-case.

Punctuator2

precision recall f1-score support

! 0 0 0 1
, 0.35 0.51 0.42 49
. 0.57 0.32 0.41 75
? 0.0 0.0 0.0 3

TABLE 7.10: Report generated by using Punctuator2 on Interview in
Interscriber

Certain labels were omitted for reasons of weak importance and information hold-
ing:

• Label ”0” was omitted because it presented with near perfect results 0.95 min-
imum precision and for an enormous support. In our context, this result isn’t
important. We’d much more focus on ending or segmenting punctuations.

Knowing the fact that the support is low, we have rather small results suggesting an
inadequate model for this task. Then again, the context needs to be analysed to be
certain.
This model has the specificity to capitalize the next word after having predicted a
”.” at some position.

3For the syntax analysis we show a few sentences and highlight some of the typical mistakes that
were made. Next to these the ground truth is displayed in brackets
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FIGURE 7.13: Punctuator2 Confusion matrix Interview Interscriber

Observing the Confusion Matrix (Figure 7.13), we should observe these misclassifi-
cations:
(we’ll use "→" as "predicted as")

• ”, ”→ ”.” for 12%: Both classifications are interchangeable and perfectly read-
able. (see Text snippets 1 & 2 in Figure 7.14)

• ”.”→ ”, ” for 25%: In text snippet 3 & 4, we can find predictions which are plau-
sible and surely still readable even though one small step of post-processing
needs to be made.

• ”.”→ ”0” for 39%: Text snippet 5 is one part of the mistakes happening of that
type, but in that case the text stays readable. Whereas in text snippet 6, the
flow of the sentence gets broken and the sentence simply doesn’t make sense
anymore.

• ”?” → ”, ” for 33%: This instance (text snippet 7) is interesting, because the
model fully reconstructed the sentence with the surrounding words and con-
text making it still understandable and logical in the reading of the text.
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Syntax analysis4:

1 ... more educated people than ever.[,] We have a generation ...

2 ... made in a different way.[,] The steel in the ...

3 ... change , new ideas,[.] That ’s way greater ...

4 ... Europe every year,[.] Exactly The ...

5 ... has to lead the world [.] Getting to zero ...

6 ... has ever faced [.] Absolutely ...

7 ... low hanging fruit,[?] Passenger cars , Part ...

FIGURE 7.14: Text snippets from punctuator2 for Iteration 3

Conclusion This model seems to do well in certain instance, but does very poorly
on others such as ’ ”.”→ ”0” ’ creating illogical sentences which make the text diffi-
cult to read.

7.3.1 Human Evaluation

In this section we show how humans evaluate our outputs, though only a small
sample can be evaluated on a small group of people. In our survey 40 people partic-
ipated. Results can be seen in in the following chart:

punctuation rest. punctuator2 interscriber

20

40

60

80

100

FIGURE 7.15: Results from human evaluation

Conclusion Much like our previous analyses we observe that the punctuation restora-
tion model is seen superior as punctuator2. It is perceived better than the interscriber
and shows the best results by getting voted 98 times as the best readable text within
a block. The interscriber tool received 82 votes and punctuator2 only 20. This sur-
vey serves as an first impression and illustrates our previous analysis in a positive
way. However, the small amount of people, namely 40, is not enough to come to
a definitive conclusion. Additionally, this experiment would have to be conducted
with many more text examples than just 5 paragraphs. Nevertheless, it gives us a
convincing first impression.

4For the syntax analysis we show a few sentences and highlight some of the typical mistakes that
were made. Next to these the ground truth is displayed in brackets



40

Chapter 8

Encountered Issues

8.1 Disfluency

In this section we talk about our thoughts and goals when considering disfluency
removal as a means to improve readability.

8.1.1 Motivation

During our meetings, one of the methods for improving reading quality that we con-
sidered was disfluency removal. Intuitively, it made sense that removing stutterings
and word / sentence repetitions could result in a cleaner text.

8.1.2 Work

For our work, we tried an initial analysis using the deep disfluency 1 module. We
did a small experiment on a few sentences and produced some promising results.
However, scoring proved to be a difficult task as we didn’t know what kind of metric
should be used to evaluate readability after disfluency removal.

8.1.3 Issue

Disfluency removal in itself is a complex problem that required much more research
and time. In the end, we decided to leave this topic for future works as we focused
more on punctuation restoration for our task.

8.2 Curl request for Punctuator2 model

8.2.1 Motivation

During the inserting of the punctuator2 model into our pipeline, we had several
options to go with. We could clone the repository or use an in-built API curl request
where we could send our text to punctuate and it would come back to us punctuated,
which was rather appealing to us so we could avoid the inconvenience of having to
install libraries etc... We simply had some pre-processing steps to take, but it seemed
rather simple and faster to implement.

1https://github.com/clp-research/deep_disfluency



Chapter 8. Encountered Issues 41

8.2.2 Work

To be able to insert this curl request into our pipeline we had several pre-processing
steps to follow:

• text needed to be lower cased

• concatenated

• formatted into utf-8 adding every ASCII breaking points

• finally, add ’text=’ in front of the desired text to punctuate

Having formatted the input text, we introduced the curl request into our bash script
and it worked. We received a punctuated text in return.

8.2.3 Issue

During the evaluation of the input, we observed a discrepancy between the pre-
dicted labels and the ground-truth labels in size. After long hours of debugging,
we found out that their model would change words such ”gotta”, ”wanna” and
”gonna” into their written form ”goingto”, ”wantto” and ”goingto”. These permuta-
tions wrongly created predictions labels in our algorithm.

To remedy to that problem, we cloned the repository and changed parts of the source
code to fit our needs. After some time, it worked and we could get a perfect output
that fits our evaluation pipeline.

8.3 Sentence Compression

This section discusses our ideas and problems encountered with the method of sen-
tence compression.

8.3.1 Motivation

Reducing a long sentence to a smaller size without significant information loss was
one approach we deemed appropriate for an improved reading experience. The goal
was to see what impact such a shortening of a sentence could have on the readability
of text and whether or not it still conveyed the same meaning before compression.

8.3.2 Issue

One issue we encountered were with available tools for sentence compression. First
of all, the number of github repositories available for testing this task were limited
and if available, offered minimalistic documentation. Almost none of these offered
publicly available pretrained models. Also, we encountered dependency problems
where programs and modules had compatibility issues. We did some small tests
using sentence simplification from this github page2, but since it was not the focus
of our task we decided to close this topic and leave it for future works due to much
more required time for research.

2https://github.com/garain/Sentence-Simplification
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8.4 General Pipeline

8.4.1 Motivation

The general pipeline was an idea that we thought of during the same time we were
building the evaluation pipeline. The general pipeline was a first draft that concep-
tualized the communication of Interscriber and our evaluation pipeline.

8.4.2 Work

FIGURE 8.1: General Pipeline Idea

8.4.3 Issue

Unfortunately, this work turned out to be out of scope of our Projektarbeit. So we
dropped the idea, but it could maybe be used as a first idea later on.
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8.5 Learning the Theory

8.5.1 Motivation

We, both, are very interested in Machine Learning and want to understand how
things function before we blindly use them. We wanted to develop a real under-
standing of the models, we were using, so we could evaluate and understand better
where mistakes could come from.

8.5.2 Work

It was extremely instructive, but also very difficult to keep track and understand
everything that we used. We spent several hours each week, especially at the be-
ginning, looking at lectures online, reading chapter of books, reading papers and
experimenting with the code to be able to understand our models better.

8.5.3 Issue

It’s not an issue per say, because we really wanted to understand, but was a very
challenging part of our Projektarbeit that we wanted to put forward.
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Chapter 9

Conclusion

As described in our objective in chapter 1.2 we aimed to improve readability of tran-
scriptions of spoken English by appropriate punctuation detection. Thus, we anal-
ysed two punctuation models on different text that vary in quality. As expected
they performed best in written language, generating recall scores around 0.8 when
punctuating dots. In other texts with worse quality due to speech transcription we
observed lower scores. However, scores alone are not the only factor to be consid-
ered when evaluating models in NLP domains. By manually reading the outputs of
our predictors we observed that mistakes did not significantly distort context and
worsen readability. Except of a few basic mistakes we noticed better placed punc-
tuation. In the end, having generated text files with more appropriate punctuation
positioning, we observed an increase in quality and perceived readability. Our sur-
vey with 40 people confirmed our findings, though much more needs to be done in
a larger scale.
In a next step training the models with other domain datasets could prove to be help-
ful in this task. Adding other punctuators into our evaluation pipeline could also
prove to be useful. Involving other approaches like disfluency removal, sentence
compression and fixing incomplete sentences could further enhance readability.
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Chapter 10

Future Works

In this chapter we discuss how future works could improve on our learnings in
improving readability. An algorithm based on the punctuation models used in this
work could be built.

10.1 Agreement

The idea is to develop an agreement between both models punctuation restoration
and punctuator2. We hope that by taking the decisions of both into consideration
that we could get better results in detecting appropriate places for punctuation and
therefore improve readability. Following algorithm is proposed by comparing out-
puts from the models. Let out1 be the output of punctuation restoration and out2 be
the output of punctuator2. We then do the following:

Algorithm 1 An agreement algorithm for two punctuator models

for p1 in out1, p2 in out2 do
if p1 equals p2 then

Choose p1
else if p1 equals dot and p2 equals comma then

Choose p1
else if p1 equals comma and p2 equals dot then

Choose p2
else if p1 equals empty space and (p2 equals dot or comma) then

Choose empty space
else if p2 equals empty space and (p1 equals dot or comma) then

Choose empty space
end if

end for

With this algorithm we cover three cases. If both agree on the prediction, we simply
punctuate like suggested. When they are in a disagreement where they cannot agree
between dot and comma we simply choose the predictor that suggests a dot. How-
ever, if one of them predicts empty space while the other one predicts a punctuation
mark we simply place an empty space, as there is likely to be a false positive.
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