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Preface 
The ZHAW Centre for Artificial Intelligence (CAI) is a hub for excellence in AI research and appli-
cation. Our mission is to advance human-centric and trustworthy AI research in Switzerland and 
beyond, thereby providing students with career opportunities in the AI sector, attracting young 
talent and addressing the great challenges of our time through innovative use of AI.  

We believe in the power of interdisciplinary collaboration and engaging in dialogue with the research 
community, with our students, and with our partners outside academia. We offer expertise in the areas 
of Autonomous Learning Systems (reinforcement learning, multi-agent systems, and embodied AI), 
Computer Vision, Perception and Cognition (pattern recognition, machine perception, and neuromorphic 
engineering), Natural Language Processing (dialogue systems, text analytics, and spoken language 
technologies), Trustworthy AI (explainable AI, robust deep learning, and AI & society) and AI Engineer-
ing (MLOps, data-centric AI, and continuous learning). With this, the CAI’s vision is to contribute to a 
society that is worth living in, increasingly supported by AI-driven tools of increased generality that place 
humans at the centre. 

Keen observers will have recognized that I wrote almost the same in last year’s “Readings on AI”: still 
true, our mission continues unchanged, but we split our focus topic on XAI into “trustworthy AI” and “AI 
engineering”. Other things grew as well: Two new research groups where created (Frank Schilling’s on 
“Intelligent Vision Systems” and Jasmina Bogojeska’s on “Explainable AI”), we re-furnished our office to 
serve as a nice and practical hub for new (besides novel) work, and we completely re-financed the 
centre with 3rd-party funds, thereby growing our staff to 24 and counting. Highlights like a colloquium 
series on the intersections between AI and neuroscience (with plenty attendance from internationally 
renowned penalists) or DeepMind’s CEO Demis Hassabis being interviewed for his Global Swiss AI 
Award during an AI1 lab in class were only outdone by the massive surge in AI interest due to the release 
of ChatGPT end of November. We will have to say much more on this next year, but to me, the most 
important aspect of this rather well-known technology was the “usefulness singularity” it marked: For the 
first time, a single AI system could be truly used for plenty of purposes by laypeople – a practical (not 
scientific) revolution here to stay, and we will thoroughly discuss it e.g. in the upcoming new AI2 course. 

 

 

 

 

With this research report, we issue the second annual account of our work. This year, we add noteworthy 
news items to our scientific publications, and introduce you to our associated faculty members. Orga-
nized by research group, you will find a brief overview of the group’s development over the year 2022, 
followed by the full text of the published papers of our staff, in the order of their appearance. I wish you, 
dear reader, an insightful reading.  

 

Winterthur, Winter 2022/2023 

 

Thilo Stadelmann, Director of Centre for Artificial Intelligence 
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Video Analysis for Data-Driven 
Intensive Care of Patients 
07.01.2022 - In a newly-funded DIZH Rapid Action project, CAI and University Hospital Zurich 
team up to improve automatic data quality monitoring for intensive care interventions.  

Monitoring diverse sensor signals of patients in intensive care can be key to detect potentially fatal 
emergencies. But in order to perform the monitoring automatically, the monitoring system has to know 
what is currently happening to the patient: if the patient is for example currently being moved by 
medical staff, this would explain a sudden peak in the heart rate and would thus not be a sign of an 
emergency. 

 

 

 
To create such annotations to the data automatically, the CVPC-Team has teamed up with University 
Hospital Zurich’s Intensive Care Unit (ICU) under the lead of Prof. Emanuela Keller to equip the ICU-
Cockpit-Software with video analysis capabilities: based on cameras in the patient room that deliver a 
constant, privacy-reserving video stream from the patient’s bed (i.e., no person can be identified based 
on the video resolution), the location of patient and medical staff shall be automatically detected and 
tracked to extract simple movement patterns. Based on these patterns, it shall be classified if and what 
medical intervention is currently performed on the patient. The research challenge in this project is to 
realize such a system without access to many labels, i.e., to learn the detection, tracking and 
classification in mainly un- and self-supervised ways. 
 
Project AUTODIDACT is supposed to start in spring 2022 and deliver results until the year’s end. The 
project is funded by the Digitalization Initiative of the Zurich Universities (DIZH) under the Rapid Action 
Call in its Innovation Programme. Project lead is USZ’s Dr. Gagan Narula. 
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CAI focuses on autonomous 
systems as demonstrators for AI    
in teaching 
14.02.2022 - A current bachelor thesis transfers our AI research to four-legged walking robots. 
These will serve as demonstrators and training objects for teaching. 

Deep Learning has revolutionized the way pattern recognition problems like image analysis and 
natural language processing can be solved today in practice, and is thus permeating industry and 
society. Yet, the technology behind the success stories remains vague and mysterious to most, to a 
large degree because it all happens "in the virtual world" (inside a computer). It is less tangible than 
other technological artifacts involving customer-facing hardware like cars, robots etc. 

Claudio Ansaldi now started his bachelor thesis in computer science to build a tangible demonstrator 
for deep-learning-based computer vision technology like object detection and recognition for the 
ZHAW Centre for Artificial Intelligence, based on a camera-equipped robotic platform that can move 
autonomously based on the visual input it receives. This should become the starting point for more 
use of autonomous systems in AI education at the CAI: It does not just make core AI technology more 
tangible but offers the possibility to study its side effects when seen in interaction with humans and the 
physical world, making students aware of the multiple facets of the technology they create. We plan to 
use several such platforms in future courses in the computer science and data science programmes of 
the School of Engineering. Additionally, the robotic platforms also offer new opportunities for 
research into the embodiment of our methods. 
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Initiative for Large-Scale 
Development & Testing of 
Autonomous Systems launched in 
the Canton of Zurich 
14.02.2022 - ZHAW, UZH and ZHdK developed a concept for the safe development and testing 
of drones and robots together with renowned partners. 

The kick-off event 
organized by the 
Department of Economic 
Affairs of the Canton of 
Zurich last autumn on the 
topic of autonomous 
systems in the Zurich 
Innovation Park lived up to 
its name: many ideas 
were pursued after the 
event and the first results 
are already visible today. 
Probably the most 
concrete result is the 
successful submission of 
the project called LINA (A 
Shared Large-scale 
Infrastructure for the 
Development and Safe 

Testing of Autonomous Systems) unto the structure call of the innovation program of the Digitalization 
Initiative of the Zurich Higher Education Institutions (DIZH). 

LINA is a comprehensive proposal for the establishment of a test infrastructure for autonomous 
systems in the Canton of Zurich. The idea to create such a proposal was initiated by the CAI. The 
elaboration took place in an intensive collaboration between the University of Zurich, the Zurich 
University of the Arts and the Zurich University of Applied Sciences under the leadership of Michael 
Guillaume and Peter Lenhart from the ZHAW Centre for Aviation. A total of 21 Letters-of-Intent and 17 
Letters-of-Support by renowned companies and organizations from industry, research and 
administration testify to the usefulness and importance of this proposal. 

A decision regarding the launch of LINA is expected in May. 
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Google Researcher presents 
Computer Vision Highlights at      
CAI Colloquium 
22.04.2022 - On March 30, 2022, we welcomed a special guest at our CAI colloquium. Dr. Lucas 
Beyer, senior research engineer at Google Brain, presented the most recent breakthroughs in 
applying transformer architectures to computer vision. 

Deep learning architectures based on so-called Convolutional Neural Networks (CNNs) have proven 
to be successful in solving computer vision (CV) tasks such as image classification or object detection. 
On the other hand, recent years have seen breakthroughs in natural language processing (NLP) 
tasks, e.g.  text generation and understanding or automatic translation, by employing so-called 
Transformers in huge language models such as GPT or BERT.  

 

 

 

 

 

 

 

 

Such transformer architectures have now also been applied to computer vision, and with great 
success. This development has been spearheaded by Google research. Therefore, we welcomed Dr. 
Lucas Beyer, a senior research engineer with Google Brain in Zurich and one of the co-authors of 
several highly cited research publications in this domain, to our CAI colloquium to give us a deep-dive 
into the technical details and breakthroughs in the application of transformers in computer vision, e.g. 
as discussed in the famous ICLR paper “An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale” (https://arxiv.org/abs/2010.11929), where the Vision Transformer (ViT) was 
introduced. He also covered their most recent research, including “How to train your ViT?” 
(https://arxiv.org/abs/2106.10270), an exploration of its current limits at scale (“Scaling ViT”, 
https://arxiv.org/abs/2106.04560), and concluded by introducing a recent new alternative to the typical 
transfer-learning approach, locked image-text tuning (“LiT-tuning”, https://arxiv.org/abs/2111.07991). 

The colloquium was thus very relevant to both the NLP and CVPC research groups at CAI, especially 
in the light of the recent expressed intent of both groups to join forces and work on challenging tasks 
providing multi-modal input data (combining two or more of text, images, video, audio or tabular data), 
which could be an ideal application domain of transformer-based architectures. In this context, a 
recent call for participation has been issued by us via the Databooster platform, calling on potential 
use case providers to join our collaboration. 

Future CAI Colloquia are being planned. The next event will be a panel discussion “Pathways beyond 
present AI”, introduced by renowned Computer- and Neuroscientist Prof. Dr. Christoph von der 
Malsburg (Frankfurt Institute of Advanced Sciences, currently guest professor at UZH/ETHZ as well as 
at ZHAW), and chaired by ZHAW’s Dr. Ricardo Chavarriaga, head of the CLAIRE office Switzerland. 
The event will take place on Wednesday April 27, 2022. 
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Panel Discussion "Pathways 
beyond present AI" 
27.04.2022 - Artificial intelligence has made very important and impressive progress in recent 
years. Yet, in terms of ability to learn from few examples and generalize from them the human 
(or even animal) brain beats technology by orders of magnitude, as is admitted even by the 
exponents of that development.   

Convinced that the time is ripe for a breakthrough in understanding the nature of intelligence we want 
to explore this front by organizing, under the title "Pathways beyond Present AI" a short series of 
interdisciplinary panel discussions that bring together expertise from various fields spanning 
technology and biology.  

The first of these discussions will focus on recent insights into the way the structure of self-organized 
neural circuits acts as bias tuning the brain to the natural environment. 

Format: 

1. Introductory presentation by Prof. Dr. Christoph von der Malsburg (FIAS, UZH/ETH, ZHAW) 
2. Moderated panel discussion 

o Dr. Ricardo Chavarriaga (Moderator, ZHAW Centre for AI, CLAIRE office CH, 
AI&Neurotechnologies) 

o Prof. em. Dr. Rodney Douglas (UZH/ETHZ, Neuroinformatics) 
o Prof. Dr. Rudolf Marcel Füchslin (ZHAW, School of Engineering, Applied Complex 

Systems Science) 
o Prof. Dr. Verena Klamroth-Marganska (ZHAW, School of Health, Occupational 

Therapy) 
o Prof. Dr. Mike Martin (UZH, Gerontopsychology) 
o Prof. Dr. Thomas Ott (ZHAW, School of Engineering, Computational Life Sciences) 
o Prof. Dr. Thilo Stadelmann (ZHAW Centre for AI, AI and Deep Learning) 

You are very welcome to participate and join the discussion, ask questions, and bring in your thoughts 
and curiosity. This is meant to be an open format in a more informal setting, which should stimulate 
interdisciplinary discussion and exchange. Of course, even if you just want to listen, you are very 
welcome as well. 

The discussion will be stimulated with a short keynote by Prof. Dr. Christoph von der Malsburg. 
Christoph von der Malsburg studied physics, with a PhD done at CERN in Geneva.  He then reverted 
to neuroscience and spent 17 years in a Max Planck Institute in Göttingen developing a theory for the 
wiring of the brain under genetic control and a novel way to interpret neural activity  as data structure 
of the mind, the Dynamic Link Architecture.  In 1988 he became professor of computer science at the 
University of Southern California in Los Angeles, in 1990 in addition professor of systems biophysics 
at the Institute for Neuroinformatics at Ruhr-University Bochum.  Since 2007 he is Senior Fellow at the 
Frankfurt Institute for Advanced Studies.  He has founded two successful companies and has received 
a number of international awards. 

https://www.fias.science/de/fellows/detail/von-der-malsburg-christoph/ 

https://en.wikipedia.org/wiki/Christoph_von_der_Malsburg 

Christoph is currently on a research stay at UZH/ETH, as well as an associate with the ZHAW Centre 
for AI. 
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interdisciplinary panel discussions that bring together expertise from various fields spanning 
technology and biology.  

The first of these discussions will focus on recent insights into the way the structure of self-organized 
neural circuits acts as bias tuning the brain to the natural environment. 

Format: 

1. Introductory presentation by Prof. Dr. Christoph von der Malsburg (FIAS, UZH/ETH, ZHAW) 
2. Moderated panel discussion 

o Dr. Ricardo Chavarriaga (Moderator, ZHAW Centre for AI, CLAIRE office CH, 
AI&Neurotechnologies) 

o Prof. em. Dr. Rodney Douglas (UZH/ETHZ, Neuroinformatics) 
o Prof. Dr. Rudolf Marcel Füchslin (ZHAW, School of Engineering, Applied Complex 

Systems Science) 
o Prof. Dr. Verena Klamroth-Marganska (ZHAW, School of Health, Occupational 

Therapy) 
o Prof. Dr. Mike Martin (UZH, Gerontopsychology) 
o Prof. Dr. Thomas Ott (ZHAW, School of Engineering, Computational Life Sciences) 
o Prof. Dr. Thilo Stadelmann (ZHAW Centre for AI, AI and Deep Learning) 

You are very welcome to participate and join the discussion, ask questions, and bring in your thoughts 
and curiosity. This is meant to be an open format in a more informal setting, which should stimulate 
interdisciplinary discussion and exchange. Of course, even if you just want to listen, you are very 
welcome as well. 

The discussion will be stimulated with a short keynote by Prof. Dr. Christoph von der Malsburg. 
Christoph von der Malsburg studied physics, with a PhD done at CERN in Geneva.  He then reverted 
to neuroscience and spent 17 years in a Max Planck Institute in Göttingen developing a theory for the 
wiring of the brain under genetic control and a novel way to interpret neural activity  as data structure 
of the mind, the Dynamic Link Architecture.  In 1988 he became professor of computer science at the 
University of Southern California in Los Angeles, in 1990 in addition professor of systems biophysics 
at the Institute for Neuroinformatics at Ruhr-University Bochum.  Since 2007 he is Senior Fellow at the 
Frankfurt Institute for Advanced Studies.  He has founded two successful companies and has received 
a number of international awards. 

https://www.fias.science/de/fellows/detail/von-der-malsburg-christoph/ 

https://en.wikipedia.org/wiki/Christoph_von_der_Malsburg 

Christoph is currently on a research stay at UZH/ETH, as well as an associate with the ZHAW Centre 
for AI. 

  

Stanford’s Bill Newsome at the CAI 
06.05.2022 - As part of the Templeton Lecture Series, Stanford’s Prof. Bill Newsome gave a 
remarkable talk on how free our decisions are and what factors influence our decision making.  

Are we free to decide? How do traditional notions of free 
choice, personal responsibility and religious faith align to each 
other in terms of neuroscientific understanding of the brain and 
cognition? As part of the Templeton Lecture Series* and 
organized by the Christian student campus group (VBG) in 
cooperation with the Center for Artificial Intelligence (CAI) at 
the ZHAW, Stanford’s Prof. Bill Newsome gave a remarkable 
talk on the study of decision making and what factors do 
influence our decision making. From the neurobiological and 
psychological point of view, he argued that top-down 
influences, such as goals, beliefs, and aspirations are 

combined with bottom-up influences, such as individual genetics and conscious experiences to build 
up the decision-making process. 

More specifically, he pointed out that most of our 
decisions are a combination of biological drives and 
beliefs together with conscious and subconscious 
experiences. 

Furthermore, Prof. Newsome argued that the 
knowledge of neurons and synapses is essential for 
understanding how the brain shapes cognition.  But 
systems-level knowledge, including the level of the 
unique person, is essential to understand how and why 
specific behaviours emerge from the interactions of 
billions of neurons. This multilevel perspective allows us 
then to think about the relationship about human choice and freedom with the ultimate goal of 
enhancing human growth and health.  

Finally, Prof. Newsome pointed out that having defined moral principles and recognizing situational 
risk factors, can help us to be the people we most want to be.  

 

* The John Templeton Foundation funds research and catalyses conversations that inspire people with 
awe and wonder focusing on world affairs and religion. Its vision is to become a global catalyst for 
discoveries that contribute to human flourishing. 
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Frank-Peter Schilling appointed 
Senior Lecturer for Computer Vision 
and MLOps @ CAI 
10.05.2022 - Dr. Frank-Peter Schilling has been appointed as lecturer at the CAI with research 
focus on computer vision and MLOps, effective June 1, 2022. 

 

Frank-Peter Schilling received his PhD in physics with a focus on elementary particle physics from the 
University of Heidelberg. He then spent many years in research, including as a senior scientist and 
project leader at the European research centre CERN in Geneva. There, he was involved in the 
spectacular discovery of the Higgs particle in 2012. His intensive research activity is reflected in a long 
list of publications (h-index 150). 

He joined ZHAW in 2018, first at the Institute for Applied Informatics InIT and since its foundation in 
2021 at the Centre for Artificial Intelligence CAI. His research focus lies on artificial intelligence and 
machine learning, especially in the area of computer vision, including applications in medical imaging. 
In addition, with his group he will represent the topic of MLOps (machine learning operations), as well 
as coordinate all continuing education activities of the centre and represent AI in teaching. University-
wide, Frank-Peter Schilling is involved in the ZHAW Digital initiative, in the ZHAW Datalab, as well as 
in the promotion of doctoral students.  
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Interdisciplinary panel discussion at 
the CAI: What is intelligence                   
and how to advance present AI 
24.05.2022 - Artificial intelligence (AI) has made impressive progress in recent years.  Yet, its 
ability to learn from few examples and generalize pales compared to human intelligence. An 
interdisciplinary expert panel at CAI discussed what is intelligence and how can we improve AI 
from various perspectives including technology, neuroscience, and biology. 

Artificial intelligence (AI) has made very important and impressive progress in recent years.  Yet, in 
terms of ability to learn from few examples and generalize from them the human (or even animal) brain 
outperforms AI by orders of magnitude. A crucial way to reduce this gap is to better understand the 
actual nature of intelligence. That is the goal of the interdisciplinary panels "Pathways beyond Present 
AI", organized by the ZHAW Center for Artificial Intelligence (CAI). 

The first one of these panels took place within the frame of the CAI colloquia on April 27th. It focused 
on recent insights into the way the structure of self-organized neural circuits acts as bias tuning the 
brain to the natural environment. 

The event started by a brief on this topic by Prof. Dr. Christoph von der Malsburg (Senior Fellow at the 
Frankfurt Institute for Advanced Studies, and guest professor at UZH/ETH and ZHAW). His 
hypothesis, developed together with Prof Dr. Thilo Stadelmann (ZHAW CAI) and Prof Dr. Benjamin 
Grewe (UZH/ETHZ) in this paper, states that the structures of brain and natural environment are 
closely related. In particular, the structural regularity of the brain takes the form of net fragments (self-
organized network patterns) and that these serve as the powerful inductive bias that enables the brain 
to learn quickly, generalize from few examples and bridge the gap between abstractly defined general 
goals and concrete situations. Preliminary studies on computer vision applications provide supporting 
evidence to this hypothesis. 

The presentation was followed by a panel where Profs. von Der Malsburg, Stadelmann, and Grewe 
were joined by experts from various fields spanning technology and biology. The present panellists 
were Dr. Matthew Cook (UZH/ETHZ, Neuroinformatics, Cortical Computation), Prof. Dr. Rudolf Marcel 
Füchslin (ZHAW, School of Engineering, Applied Complex Systems Science), Prof. Dr. Mike Martin 
(UZH, Gerontopsychology), Prof. Dr. Thomas Ott (ZHAW, ZHAW School of Life Sciences and Facility 
Management, Computational Life Sciences). Prof. Dr. Verena Klamroth-Marganska (ZHAW, School of 
Health, Occupational Therapy), was also invited as panellists but could not attend due to a last minute 
contingency.  The panel was moderated by ZHAW’s Dr. Ricardo Chavarriaga, head of the CLAIRE 
office Switzerland. 

The panel covered multiple topics, starting from the fundamental question of what is intelligence. 
Besides the ability of generalization mentioned above, panellists mentioned the capacity defining (self-
generated) goals as one of the main signs of intelligent. This is complemented by common-sense -
achieving semantic meaning of things-and intentionality (that goes beyond simple activities and 
behaviours) which were all considered as particular characteristics of intelligence that AI has not yet 
fully achieved. 

Another important feature that was mentioned is the ability to establish connections between concrete 
scenes and these abstract goals, which enable e.g. intentionality. Additionally, the possibility of taking 
a very complex idea and transform it into a concrete stimulus (e.g. a picture) is an important element 
for intelligence. This process can be interpreted as inverse problem to processes characterised in the 
opening lecture. last but not least, it was mentioned that the fact that intelligence develops within a 
cultural environment should not be neglected. 
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While addressing which directions AI development should go, the discussion ensued addressing the 
need for having system that learns while embedded and interacting in an environment, as well as the 
need of asking the question of what would we like to use the AI for; e.g., Some applications may not 
require human-like intelligence to be efficiently solved, while others we may prefer to be solved by 
humans instead of machines. Interestingly, it was pointed out that increase in computing power may 
be hindering our possibility of creating artificial intelligence as we lose capacity to learn from small 
datasets. 

Interaction between panellists and audience delve into different aspects of learning and the role of 
collective intelligence in the advancement of this field. As well, as the possibility of identifying universal 
learning rules that, combined with specialised brain-like structures and architectures, can lead us 
closer to understanding intelligence and more powerful AI. We will continue exploring these topics in 
future panels in this series and in the CAI Colloquium. 
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New Theory Explains Intelligence as 
Emergent Phenomenon 
25.05.2022 - Does intelligence amount essentially to the learning and imitation of examples, as 
the current paradigm of machine learning suggests, or is it dominated by structure that is 
given a priori? In a new manuscript, a team of ZHAW and ETH/UZH presents convincing 
arguments for the latter. 

To this day the human and animal brain with its incredible ability to pursue vital goals in complex 
natural environments defies understanding. 

 

In the as of yet unpublished article "A Theory of Natural 
Intelligence" (Lead author Christoph von der Malsburg; 
see https://arxiv.org/pdf/2205.00002.pdf) a team of the 
ZHAW's CAI Group Computer Vision, Perception and 
Cognition, ETH/UZH's INI and the Frankfurt Institute for 
Advanced Studies proposes a totally novel explanation 
for this phenomenon. According to it the structure of the 
brain arises by emergence and is characterized by 
strong regularity that mirrors, in a natural way and ahead 
of all learning, the basic structure of the environment. 
Implicit in this structure is the capacity to enact 
genetically encoded abstract behavioural schemata in 
concrete situations. 

Besides putting Epistemology on a new grounding, the 
paper lays the basis for the artificial emulation of animal 
and human intelligence, and with that for a technology of 
autonomous vehicles and robots.  First applications of 
the new theory in the context of machine vision are 
currently attempted in a master thesis project. 
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Increased Storage for CAI           
GPU Infrastructure 
31.05.2022 - The CAI is continuously improving its compute infrastructure. After investing in 
additional computing power in recent years, now the storage system is being renewed. This 
will allow running machine learning experiments considerably easier and faster. 

The Centre for Artificial Intelligence (CAI) at the ZHAW specializes in the areas of Autonomous 
Learning Systems, Computer Vision, Perception and Cognition, Trustworthy AI, AI Engineering, and 
Natural Language Processing. All these areas utilize deep learning, a methodology that optimizes 
complex machine learning systems with enormous compute power and many examples in the form of 
large data sets. For these computationally intensive optimization problems, graphics processing units 
(GPUs) are typically used because they can process many calculations in parallel. In addition to 
GPUs, CPUs are needed to load the data from the file system, as well as memory (RAM) to 
temporarily store the large amounts of data on the system. 

For this purpose, the CAI, together with the 
InIT, maintains a state-of-the-art infrastructure 
that is constantly being renewed and 
optimized. Currently, staff researchers have 
access to several systems with a total of 124 
GPUs, 2648 CPU cores and 21.5 TB of RAM. 
After a massive increase in compute power in 
recent years, the storage system has now 
been renewed. This improves the 
management of deep learning training data 
sets that typically consist of millions of tiny files 
such as text snippets, images or short video 
sequences. To this end, a new storage system 
from DALCO that offers 216 TB HDD and 15 
TB SSD storage replaces the existing system. 
The new storage server is connected to the 
compute cluster with two redundant 100 GB 
network connections and thus allows lightning-
fast data access. 

With this new storage server, the CAI is 
equipped to train deep learning models even 
more efficiently and thus accelerates research 
and industrial applications. 

 

 

  

12

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



Increased Storage for CAI           
GPU Infrastructure 
31.05.2022 - The CAI is continuously improving its compute infrastructure. After investing in 
additional computing power in recent years, now the storage system is being renewed. This 
will allow running machine learning experiments considerably easier and faster. 

The Centre for Artificial Intelligence (CAI) at the ZHAW specializes in the areas of Autonomous 
Learning Systems, Computer Vision, Perception and Cognition, Trustworthy AI, AI Engineering, and 
Natural Language Processing. All these areas utilize deep learning, a methodology that optimizes 
complex machine learning systems with enormous compute power and many examples in the form of 
large data sets. For these computationally intensive optimization problems, graphics processing units 
(GPUs) are typically used because they can process many calculations in parallel. In addition to 
GPUs, CPUs are needed to load the data from the file system, as well as memory (RAM) to 
temporarily store the large amounts of data on the system. 

For this purpose, the CAI, together with the 
InIT, maintains a state-of-the-art infrastructure 
that is constantly being renewed and 
optimized. Currently, staff researchers have 
access to several systems with a total of 124 
GPUs, 2648 CPU cores and 21.5 TB of RAM. 
After a massive increase in compute power in 
recent years, the storage system has now 
been renewed. This improves the 
management of deep learning training data 
sets that typically consist of millions of tiny files 
such as text snippets, images or short video 
sequences. To this end, a new storage system 
from DALCO that offers 216 TB HDD and 15 
TB SSD storage replaces the existing system. 
The new storage server is connected to the 
compute cluster with two redundant 100 GB 
network connections and thus allows lightning-
fast data access. 

With this new storage server, the CAI is 
equipped to train deep learning models even 
more efficiently and thus accelerates research 
and industrial applications. 

 

 

  

CAI launches “Live Impact Series” 
of events for personal growth of 
students 
03.06.2022 - With a first afternoon on entrepreneurship, the CAI started a series of events on 
personal growth for its students and staff. It took off on May 4 at CAI premises with two invited 
speakers: Maurice Gonzenbach, successful founder of Caplena, and Matthias Rosenthal from 
the School of Engineering’s entrepreneurial initiative. 

The ZHAW Centre for Artificial Intelligence (CAI) has started a series of events to further the personal 
growth of its students (and, by extension: its staff). Its purpose is to help everyone realize their 
potential and have respective impact in life. To this end, the “Life Impact Series” will offer workshops 
and tutorials to improve non-technical skills and develop one’s career, e.g., by focusing on topics such 
as self-management, leadership, personality etc. The first event now focused on the topic of creating 
socio-economic impact as an entrepreneur: what it’s like to found a company, what it takes to be an 
entrepreneur, and where to find support. 

The first presentation was given by Maurice Gonzenbach, co-founder and 
machine learning engineer at Caplena, a Swiss company for AI-powered user 
feedback analysis. The company was founded almost 5 years ago and is now 
successfully established in the market, with large and important customers 
worldwide. Maurice gave valuable insights into his personal lessons learned 
and what to focus on when joining the endeavour of an own company. 

 

The second speaker was Matthias Rosenthal, co-founder and former CTO of 
sonic emotion ag and now one of the leaders behind the entrepreneurship 
initiative at the ZHAW School of Engineering. He explained the roadmap of the 
initiative and how it is embedded into the existing landscape of funding and 
supportive instruments for young entrepreneurs. 

 

 

The Life Impact Series will continue with a roughly quarterly schedule.  Specific events might be open 
also to external participants. The next event will take place on July 05 (later afternoon / evening) and 
shed light on the topic of personality types and their impact on one’s work and life. 
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CAI successfully co-organised the 
SwissText 2022 Conference in 
Lugano 
22.06.2022 - The 7th Swiss Text Analytics Conference (SwissText) took place from June 8 to 10. 
More than one hundred participants from industry and academia exchanged on new and 
exciting developments in Natural Language Processing (NLP). 

SwissText 2022 was organised jointly by SUPSI, SwissNLP and  the  ZHAW Centre for Artificial 
Intelligence (CAI). The annual conference is a forum for researchers and practitioners in NLP to meet 
and discuss. After two online editions, it was finally held again as a physical conference at the SUPSI 
East Campus in Lugano. 

 

The pre-conference day included interactive workshops on keyword extraction from scientific 
documents, Swiss German (Speech-to-Text and lexical normalisation), and NLP for Insurance, plus a 
co-located event on a programme for upskilling linguists for technical professions. 

During the two main conference days, there were a total of 18 presentations organised into thematic 
tracks such as “Speech-to-Text and Swiss German”, “Legal Applications”, “Generation and Parsing” 
and “Business Applications”. The newly created Junior Track, designed to provide a platform to young 
researchers, featured six insightful presentations. 

Two interactive events made sure that participants were able to further showcase their work and 
provided valuable networking opportunities: 
first, the exhibition on Thursday afternoon featured 21 research posters, 4 system demonstrations, as 
well as 11 booths by the conference sponsors and affiliated academic institutions. 

Second, in the “Battle of NLP Ideas” on Friday, participants discussed in small groups to come up with 
ideas for new NLP projects. In subsequent rounds, groups were merged in a pyramid fashion and 
selected the most promising suggestions before presenting them in a plenary meeting where the 
audience could award votes. The three winning ideas were on synthetic data generation, identifying 
bot-generated content and data anonymization for NLP. All participants were then able to sign up for 
those ideas where they are interested in a follow-up meeting. 
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The rich and varied programme was complemented by three keynotes by renowned experts: 

Raul Rodriguez-Esteban, Senior Principal Scientist at Roche, discussed Quantitative Social Media 
Listening, a relatively new trend in health care where social media are used to identify not yet 
documented symptoms of a disease or populations with unmet medical needs, or find the best location 
for a clinical trial. 

Google’s Enrique Alfonseca introduced their ongoing work on integrating structured knowledge into 
large language models. This is important in the context of enhancing the reasoning capabilities of 
these models and creating more factually correct responses. 

Marco Passarotti, professor at the Catholic University of Milan, talked about the benefits of Linked 
Data Interoperability when creating language resources, which he illustrated with his ongoing ERC 
project «LiLa: Linking Latin». 

Overall, it was a very successful conference and the beautiful Ticino weather was a big bonus! The 
slides and recordings of the talks will be made available on the conference website in the coming 
weeks. SwissText 2023 will continue the journey across Switzerland’s language regions: it will be held 
at Haute École Arc Ingénierie (HE-ARC) in Neuchâtel. 
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Novel methods for Domain 
Adaptation and Confidence-Rated 
Predictions enable Digitalization of 
Real-World Sheet Music 
24.06.2022 - CAI researchers make smart-phone-based digitalization of real-world musical 
scores possible by equipping the world’s most advanced optical music recognition system 
with a novel domain adaptation mechanism based on deep neural nets and confidence rated 
output for a sleek human user interface. 

ScorePad AG developed a music digitalization pipeline 
with a variety of applications, ranging from digitalization 
services for large-scale preservers of score collections 
like libraries to feeding a user-facing app with fresh and 
individual content that can be used by music students 
and professionals alike to practice and perform music 
alone and in groups. Specifically, it sets free from 
handling printed scores by displaying and manipulating 
the scores in computer-readable format (MusicXML) on 
a tablet or computer. 

This computer-readability of digitized music, as opposed to just displaying scanned images, enables 
novel and highly demanded features for the use cases described above, like ensemble coordination or 
automatic page turning for orchestra musicians, or enabling music analytics for scholarly users of 
digital sheet music collections in libraries. It builds on real digitization of the scores through the world's 
most advanced optical music recognition (OMR) system, whose foundation has been laid during the 
predecessor CTI project "DeepScore" that outperformed the state of the art in musical symbol 
recognition by a large margin. 

      

Goal of the RealScore project has been to enable the music digitalization pipeline by extending the 
use of the predecessor technology, which has been confined to high-quality (synthetic) musical scores 
as input, to real-world scans of sheets that may have lingered in the musician’s gig bag for an 
extended period of time and have seen many rehearsals. Dealing with such artifacts like yellowed 
pages, stains and tears requires breakthroughs in applied R&D for symbol recognition (to better detect 
less frequent musical symbols, the technology needs to be extended to detect dynamically-shaped 
symbols like slurs at arbitrary rotated angles), domain adaptation (from perfectly produced score PDFs 
to messy scans or photos) and confidence rating (to mark a potentially non-perfect recognition result 
with specific colours to indicate where the system is likely to be right and wrong with its detections, 
according to neural network outputs). These ambitious goals could be achieved by a team of 
researchers around technical project lead Lukas Tuggener within Prof. Thilo Stadelmann’s Computer 
Vision, Perception and Cognition Group. 
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The results of project RealScore are two-fold: (i) Transitioning the pipeline to a S2A-Net-based system 
with rotated detection capabilities and designing an array of domain adaptation techniques based on 
(i.a) advanced input data augmentation (“ScoreAug”, see Fig. 2) that combine artificial data 
degradation with real world wear and tear, (i.b) specific neural network training regimes and (i.c) an 
adversarial domain adaptation algorithm (see Fig. 1), together improving the music symbol recognition 
(MOR) on real-world noisy data by more than 50%. (ii) Confidence-rated output (see Fig. 3) has been 
achieved by adapting Snapshot Ensembles successfully to the S2A-Net architecture for the first time in 
an efficient manner, improving the average precision of the MOR task by 4.6 pp and speeding up 
subsequent manual post-processing of results by a factor of 3 through a through a user tailored and 
optimized digitalization toolchain. 

The training data has been released as an open research data resource. The final models are in 
productive use as ScorePad AG, Erlenbach, Switzerland. 
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CAI appoints four new associated 
faculty members 
11.07.2022 - Early July, four well-known ZHAW researchers from several departments and with 
diverse scientific backgrounds related to AI have been appointed as new associated faculty 
members at the CAI. 

The newly appointed CAI associates will be integrated into the life of the AI centre, engage in common 
research projects with CAI members and internal or external partners, contribute to teaching and 
student supervision, and help establishing new or intensifying existing research areas in AI. The 
associates have an excellent research track record and demonstrated their qualification through a 
thorough selection process. 

The following four ZHAW researchers have been appointed for a three-year period: 

Dr. Elena Gavagnin (Senior Lecturer, ZHAW School of Management and Law, 
Institute of Business Information Technology IWI): Elena brings a strong interest 
in astrophysical applications of deep learning, where a common ZHAW project 
embedded in the Swiss consortium within the Square Kilometre Array 
Observatory has just started. Her research interests extend into other 
applications of computer vision as well as AI for good and AI for society.  

 

Prof. Dr. Rudolf Marcel Füchslin (Professor for Complex Systems Science, ZHAW 
School of Engineering, Institute of Applied Mathematics and Physics IAMP): 
Ruedi has a long-standing research track record in AI, e.g., with evolutionary and 
morphological methods. On top of existing joint research projects in medical 
imaging, he is interested in physics-informed machine learning, ethics and 
philosophy of AI, and dynamical processes. 

 

Dr. Manuel Doemer (Senior Lecturer, ZHAW School of Engineering; Programme 
Director, BSc. Data Science; Head, ZHAW Datalab): Manuel is interested in 
computer vision as applied to earth observation (satellite) data, multimodal AI, as 
well as MLOps. His background as a senior data scientist in industry makes him 
also proficient in natural language processing. 

 

Prof. Dr. Christoph Heitz (Professor, ZHAW School of Engineering, Institute of 
Data Analysis and Process Design IDP): Christoph has a background in 
operations research and predictive maintenance. He is president of the largest 
Swiss innovation network, the data innovation alliance, where he also leads the 
Data Ethics group. His research interest is in algorithmic fairness, a topic that he 
also drives forward in joint teaching activities with the CAI.  

 

 

 

  

New projects aim at enabling the 
practical adoption of trustworthy AI 
14.07.2022 - Three new projects at the CAI address key challenges for practical adoption of 
reliable AI, comprising quality control, development, testing, and certification. 

Three newly awarded projects reinforce the mission of the ZHAW Center for Artificial Intelligence (CAI) 
to enable the practical adoption of Artificial Intelligence (AI). These projects address key aspects of 
safe and reliable AI deployment comprising quality control, development and testing and certification 
of AI systems. 

In the first project, termed DISTRAL (“Industrial Process Monitoring for Injection Molding with 
Distributed Transfer Learning”) and funded by Innosuisse, ZHAW CAI partners with Kistler Group and 
ZHAW Institute of Embedded Systems (InES) to develop a distributed machine learning system to sort 
out defect plastic parts during production. This project will develop a solution based on distributed 
machine learning that saves costs,  improves usability, and  improves production quality. The project 
entails specific research in transfer learning and federated learning: Using a novel data-centric 
development process for deep neural networks, it will achieve a semantic transfer of process 
knowledge that goes far beyond the current state of the art. The resulting model will be able to run on 
edge devices as well as in the cloud. 

The second project, LINA ("Shared Large-scale Infrastructure for the Development and Safe Testing 
of Autonomous Systems"), will build the largest European infrastructure for research, development, 
and safe testing of autonomous systems such as drones or service robots. This infrastructure, to be 
established in the Kanton of Zurich, will comprise a large-scale indoor flight-testing arena, an outdoor 
physical cage, as well as an outdoor digital cage. Together, these infrastructures will cater to the 
needs of different stakeholders in the autonomous systems space, providing facilities for research, 
development and testing from technology readiness levels (TRL) 1, observing basic principles, to TRL 
9, prove of actual system in operational environment. This project, funded by the DIZH Innovation 
program, will be developed in collaboration with the University of Zurich, the ZHAW Center for Aviation 
(ZAV), and the Zurich University of the Arts (ZHdK) with the support of more than 35 practice partners. 

Finally, upcoming regulations will require certain types of AI systems to be certified. However, 
certification bodies currently lack means that allow them to evaluate all aspects of an AI system, 
including dimensions such as autonomy and control, transparency, reliability, and safety. In the 
Innosuisse-funded certAInty project, the CAI addresses this gap by developing a comprehensive 
framework for evaluation of AI systems comprising the processes for its development and operation 
(e.g., document management, change management process), as well as the requirements, technical 
criteria, measures, and actions directly related to the product. As major innovation, our framework will 
include technical methods, developed in this project, for verifying relevant properties of the system 
(such as data management, model validation, verification and explainability). Our partners in this 
project are the ZHAW Institute of Applied Mathematics and Physics (IAMP) and CertX,  the first Swiss 
certification body for functional safety and cyber security of industrial systems. Outcomes of this 
project will strengthen the recently launched AI certification program (CertAI) launched by CertX, 
Fraunhofer IAS and MunichRE. 

Through these endeavours, CAI addresses key challenges in the development and deployment of 
reliable, trustworthy AI-powered systems. It leverages its expertise in applied science to advance the 
state-of-the-art in AI by developing novel methods and infrastructure for improving the reliability of 
industrial processes and for the certification and validation of AI systems. Altogether, these projects 
will benefit CAI partners and society by enabling and accelerating the deployment of more efficient, 
trustworthy products and systems. 
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Panel Discussion "Pathways 
beyond present AI" at CAI on      
July 20 
20.07.2022 - On April 27, the first interdisciplinary panel discussion with Prof. Christoph von 
der Malsburg in the mini series "Pathways beyond Present AI", organized within the frame of 
the CAI colloquium, took place. We would like to deepen some of the ideas developed in this 
first discussion in a follow-up event and 2nd panel discussion: 

Date & Time: Wednesday, 20.7., 11:00-12:30 

Place: ZHAW Winterthur, Technikumstrasse 71, Room TS O1.19 and Zoom 

Title: Artificial Intelligence: Game Over? 

Abstract: 

Machine Learning with its avalanche of sweeping success stories (Go Zero, BERT, GPT-3, DALL-E, 
LaMDA, Gato) is broadcasting the impression that the problem of intelligence is solved (see, e.g. here 
or here) and all that is left is to scale systems. As a result, academia with all its accumulated wisdom 
and current research results seems to be pathetically left behind, its role reduced to preparing 
students for earning humongous salaries at Google and their ilk. Is that the end of the story? Is 
intelligence just an issue of learning from massive amounts of human-generated samples? Even some 
of the ML gurus send signals that essential ingredients seem to be missing (e.g., here). What could 
those missing ingredients be? This question that will be addressed in our panel discussion. 

Panelists: 

• Prof. Dr. Christoph von der Malsburg (FIAS, UZH/ETH, ZHAW; Neuroinformatics) 
• Prof. Dr. Benjamin Grewe (UZH/ETZH, Neuroinformatics) 
• Dr. Yulia Sandamirskaya (Neuromorphic Computing, Intel Labs, Munich, Germany) 
• Prof. em. Dr. Rodney Douglas (UZH/ETHZ, Neuroinformatics) 
• Prof. Dr. Thilo Stadelmann (ZHAW Centre for AI, AI and Deep Learning) 
• Moderator: Dr. Ricardo Chavarriaga (Moderator, ZHAW Centre for AI, CLAIRE office CH, 

AI&Neurotechnologies) 

See here a news article on the first event in this series: https://www.zhaw.ch/en/about-us/news/news-
releases/news-detail/event-news/interdisziplinaere-diskussionsrunde-am-cai-kolloquium-eroertert-was-
intelligenz-ist-und-wie-man-die-ki-der-gegenwart-voranbringen-kann/ 

See also: https://www.zhaw.ch/en/engineering/institutes-centres/cai/colloquium/ 
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Improving the quality of CT images 
with AI and Deep Learning 
25.08.2022 - In the recently concluded Innosuisse project DIR3CT, researchers from ZHAW’s 
Centre for AI (CAI) could improve the quality of CT images with the help of AI and Deep 
Learning. The results of the project, which was carried out in collaboration with Varian Medical 
Systems, as well as with ZHAW’s Institute for Applied Mathematics and Physics (IAMP), could 
improve radiation therapy applied to patients with cancer. 

 

Cone beam computed tomography (CBCT) is widely used in clinical radiation therapy to quickly 
acquire volumetric (3D) images of the patient’s anatomy during treatment, e.g. for the correct 
positioning of the patient. On-board CBCT devices suffer however from reduced image quality 
compared with diagnostic CT scans, as well as from artefacts induced by patient motion (e.g., due to 
breathing, heartbeat, muscle relaxation or digestion). 

Varian Medical Systems (now a Siemens Healthineers company), a world market leader in radiation 
therapy, teamed up with researchers from two ZHAW institutes, the Centre for AI (CAI) and the 
Institute for Applied Mathematics and Physics (IAMP), in order to reduce the motion artefacts and thus 
improve the CBCT image quality with Artificial Intelligence (AI) and Deep Learning. 

In the project DIR3CT (funded by Innosuisse), a motion mitigation solution was developed, in which 
deep Neural Networks are trained to correct the artifacts. The developed “dual-domain” approach can 
significantly improve CBCT image quality, while operating on both the 2D X-ray projections, as well as 
the reconstructed 3D CBCT image. This allows end-to-end training of the model (see left figure), 
embedded within the CBCT image reconstruction. An example of the original and motion mitigated 
CBCT is shown in the right figure. 
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The quantitative evaluation, as well as clinical experts, confirmed the superiority of the motion 
mitigated CBCT images over the original images. A clinical study is currently underway. 

In addition, time resolved 4D-CBCT images were investigated, which require physically plausible 
concepts to model the anatomical motion. A motion model could be learned, which can use external 
conditioning data (e.g., a breathing signal) to predict the changes (so-called displacement vector 
fields) between different motion states in a single forward pass. 

In summary, the project could demonstrate that motion mitigated CBCT images are valuable in the 
clinical workflow, also for advanced applications such as adaptive radiation therapy. The results are 
being finalized for submission to a peer-reviewed scientific journal and were presented as a poster at 
the recent AAPM (American Association for Physicists in Medicine) scientific conference in 
Washington DC. 

The research collaboration between Varian and ZHAW continues in the recently started follow-up 
project AC3T, now also including additional project partners from South Korea. 
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Game Over? Experts panel at CAI 
discusses whether the current 
approach to AI is a dead end 
31.08.2022 - Experts discussed whether we are at the verge of achieving artificial general 
intelligence in the second panel of the series "Pathways beyond present AI". They provided 
Insights on the differences between natural and machine intelligence, and research lines that 
can help us understand the former and improve the latter. 

"The game is over" claimed triumphally a recent tweet announcing the release of "Gato", a generalist 
AI approach aimed at performing hundreds of different tasks. According to the announcement, artificial 
general intelligence (AGI) was now at reach and the key to achieve it laid on continuing to scale up 
current systems: i.e., using larger datasets and networks. Similar claims are now more and more 
common, based on sweeping success stories in the last years (Go Zero, BERT, GPT-3, DALL-E, 
LaMDA, Stable Diffusion). They purport the vision that access to a massive amounts of data and 
computing power is the direct way to achieve truly intelligent systems, with little role for further 
theoretical or formal research on the topic.  

Not everybody shares this vision. Voices from academia and industry argue that further foundational 
research on artificial intelligence is needed (see here and here). The second instalment of the ZHAW 
Center for Artificial Intelligence series of interdisciplinary panels on "Pathways beyond Present AI" 
focused on this topic. Panellists discussed whether the game was actually over and if not, what could 
be the missing elements and the roadmap towards AGI.  

The panel took place on July 20th 2022, gathering the following panellists: Prof. Dr. Christoph von der 
Malsburg (Senior Fellow at the Frankfurt Institute for Advanced Studies, and guest professor at 
UZH/ETH and ZHAW),  Prof. em. Dr. Rodney Douglas(UZH/ETHZ, Neuroinformatics),  Prof Dr. Thilo 
Stadelmann (ZHAW CAI), Prof. Dr. Rico Sennrich (Natural Language Processing, UZH),  Dr. Yulia 
Sandamirskaya (Neuromorphic Computing, Intel Labs, Munich, Germany),  and Prof Dr. Benjamin 
Grewe (UZH/ETHZ). The panel was moderated by ZHAW’s Dr. Ricardo Chavarriaga, head of the 
CLAIRE office Switzerland. 

Prof von der Malsburg pointed to the differences between machine and natural intelligence, noting that 
the learning environment of AI is composed by streams of human-provided samples while natural 
intelligence relies on self-driven exploration. Additionally, natural intelligence serves the pursuit of 
innate goals. This last point was supported by Prof. Grewe. He argued that a characteristic of 
intelligence is the ability of self-generating goals, a vision that was discussed in the first panel of this 
series.  

Panellists also addressed ways towards AGI. Prof Stadelmann argued that achieving AGI may not 
intrinsically need to be related to understanding natural intelligence. As pointed out by Prof. Sennrich, 
we may not need self-awareness in systems devoted to solving some specific tasks. Nonetheless, 
panellists agreed that cross-fertilization of these fields can significantly benefit each other. Dr. 
Sandamirskaya reminded the importance of research and stated that the field may benefit from 
supporting not only large-scale "flagship" projects but numerous smaller projects allowing to diversify 
the objects of study and try multiple approaches. She proposed as an alternative to generalist models, 
the idea of starting from simple models, like insect brains, and evolve to be able to solve more 
complex tasks. 

Regarding the differences between machine and natural intelligence, Prof Douglas challenged the 
common conception that the initial states of AI systems is "tabula rasa", clarifying that AI systems 
already encode some knowledge by the choice of architectures, and computational machinery. 
Interestingly, the role of the network architecture and learning biases is an important element of the 
"Theory of Natural Intelligence" advanced by Profs von der Malsburg, Stadelmann and Grewe. 
However, how does this theory maps into modern deep learning architectures is still an open question. 
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Besides the architectures, panellists also mentioned the importance of the learning rules. They stated 
that AI's reliance on backpropagation enforces consistency between the network output and the 
teacher's expected values. In contrast, bio-inspired self-organizing networks can potentially promote 
consistency in all levels, across connections and sensory inputs. Consistency over time and modalities 
was deemed of particular importance, highlighting the need for AI systems to interact with open 
environments, instead of treating their inputs as independent samples.  

The depth and richness of the panel makes it clear that the game is far from being over and there exist 
yet multiple gaps that need further research to achieve AGI  (or any considerable advance in AI 
systems towards “common sense”). The consensus was that only scaling up current systems is not 
likely to be the solution. The discussion led to several research directions that could provide insights 
into how to improve current artificially intelligent systems and get a better grasp on the principles that 
rule natural intelligence. 

More specific aspects of these directions will continue to be discussed in future panels. Please be 
attentive to the CAI colloquium webpage and our news page for further announcements on the panel 
series: "Pathways beyond Present AI". 

 

 

 

24

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



Besides the architectures, panellists also mentioned the importance of the learning rules. They stated 
that AI's reliance on backpropagation enforces consistency between the network output and the 
teacher's expected values. In contrast, bio-inspired self-organizing networks can potentially promote 
consistency in all levels, across connections and sensory inputs. Consistency over time and modalities 
was deemed of particular importance, highlighting the need for AI systems to interact with open 
environments, instead of treating their inputs as independent samples.  

The depth and richness of the panel makes it clear that the game is far from being over and there exist 
yet multiple gaps that need further research to achieve AGI  (or any considerable advance in AI 
systems towards “common sense”). The consensus was that only scaling up current systems is not 
likely to be the solution. The discussion led to several research directions that could provide insights 
into how to improve current artificially intelligent systems and get a better grasp on the principles that 
rule natural intelligence. 

More specific aspects of these directions will continue to be discussed in future panels. Please be 
attentive to the CAI colloquium webpage and our news page for further announcements on the panel 
series: "Pathways beyond Present AI". 

 

 

 

Rieter and the Johann Jacob Rieter 
Foundation Sponsor Professorship 
for Artificial Intelligence at the 
ZHAW 

06.10.2022 - The Rieter Group is constantly expanding its technology leadership. Together with 
the Johann Jacob Rieter Foundation, the company is therefore supporting a new Endowed 
Professorship for Industrial Artificial Intelligence (AI) at the ZHAW School of Engineering. The 
Professorship is dedicated to teaching and research in the field of industrial applications of 
Artificial Intelligence and will be announced later this year. 

The new Endowed Professorship will be established at the Center for Artificial Intelligence (CAI) of the 
ZHAW in Winterthur. It will focus, in particular, on the application of machine learning methods and 
knowledge-based systems in connection with processes in production and service. “The use of 
artificial intelligence in industry is becoming increasingly important, especially with regard to the 
potential of data for evaluation and control of complex processes. The support of the Johann Jacob 
Rieter Foundation and the Rieter Group will allow us to further expand AI research in the field of 
industrial applications,” explains Prof. Dr. Dirk Wilhelm, Director of the ZHAW School of Engineering. 

For Rieter, the commitment is related to the implementation of its technology leadership strategy. “The 
use of Artificial Intelligence will make a significant contribution to automation and process optimization, 
and thereby advance sustainability in the textile industry. This makes it an important element of the 
leading technology that Rieter offers,” emphasizes Rieter CEO Dr. Norbert Klapper. 

The contribution of the Johann Jacob Rieter Foundation to sponsoring the Professorship is in line with 
the Winterthur Cluster Initiative. The increasing digitalization of production processes opens up new 
perspectives for Winterthur as a business location. “The Smart Machines cluster is growing in 
importance,” says Thomas Anwander, member of the Foundation Board, and adds: “The Endowed 
Professorship for Industrial AI at the ZHAW aims to promote Winterthur as a technology location by 
pooling locally available strengths in mechanical engineering and Industry 4.0.” 

Building expertise in the field of Industrial AI  

The Endowed Professorship will serve to build expertise in the field of Industrial AI and will oversee a 
group that will focus on teaching and research pertaining to trustworthy machine learning. This 
involves, for example, the deployment of artificial intelligence with the aim of optimizing production 
processes in relation to the use of raw materials and energy, and making expert knowledge more 
readily available. 

In addition to research, for the purpose of knowledge transfer, the new professorship will also be 
active in teaching, in the bachelor's degree programs in Computer Science and in Data Science, in the 
Master of Science in Engineering, and in continuing education. 

The annual commitment of CHF 300 000 over a period of six years will be financed equally by the 
Rieter Group and the Johann Jacob Rieter Foundation. 
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Frank-Peter Schilling appointed as 
an adjunct professor at Victoria 
University of Wellington 
21.11.2022 - As part of the collaboration between Victoria University of Wellington and the 
ZHAW School of Engineering, Frank-Peter Schilling from the Centre for Artificial Intelligence 
(CAI) has been appointed as an adjunct professor. In this role, the ZHAW lecturer will, among 
other things, work to establish a joint PhD programme between the two universities. 

 

The agreement signed in February this year between the ZHAW School of Engineering and Te 
Herenga Waka – Victoria University of Wellington provides for collaboration in the fields of data 
science and artificial intelligence (AI). In addition to a joint PhD programme, cooperation on research 
projects and the mutual exchange of students, the partnership is aiming to establish bridge 
professorships. The two universities are now taking a major step towards achieving this objective by 
appointing ZHAW lecturer Dr Frank-Peter Schilling as an adjunct professor. The Head of the Intelligent 
Vision Systems Group at the Centre for Artificial Intelligence (CAI) conducts research in the area of 
artificial intelligence and deep learning and is also Academic Coordinator of the PhD Programme in 
Data Science, which exists as a collaboration between the ZHAW and the University of Zurich. 

Frank-Peter Schilling was enthusiastic upon receiving news of his appointment as an adjunct 
professor: “I am looking forward to the academic collaboration with Victoria University of Wellington 
and am motivated to advance the joint exchange in the areas of research and teaching.” As an adjunct 
professor, Frank-Peter Schilling will in future be involved in joint research projects and work to 
establish a PhD programme between the New Zealand university and the ZHAW School of 
Engineering. 

 

  

26

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



Frank-Peter Schilling appointed as 
an adjunct professor at Victoria 
University of Wellington 
21.11.2022 - As part of the collaboration between Victoria University of Wellington and the 
ZHAW School of Engineering, Frank-Peter Schilling from the Centre for Artificial Intelligence 
(CAI) has been appointed as an adjunct professor. In this role, the ZHAW lecturer will, among 
other things, work to establish a joint PhD programme between the two universities. 

 

The agreement signed in February this year between the ZHAW School of Engineering and Te 
Herenga Waka – Victoria University of Wellington provides for collaboration in the fields of data 
science and artificial intelligence (AI). In addition to a joint PhD programme, cooperation on research 
projects and the mutual exchange of students, the partnership is aiming to establish bridge 
professorships. The two universities are now taking a major step towards achieving this objective by 
appointing ZHAW lecturer Dr Frank-Peter Schilling as an adjunct professor. The Head of the Intelligent 
Vision Systems Group at the Centre for Artificial Intelligence (CAI) conducts research in the area of 
artificial intelligence and deep learning and is also Academic Coordinator of the PhD Programme in 
Data Science, which exists as a collaboration between the ZHAW and the University of Zurich. 

Frank-Peter Schilling was enthusiastic upon receiving news of his appointment as an adjunct 
professor: “I am looking forward to the academic collaboration with Victoria University of Wellington 
and am motivated to advance the joint exchange in the areas of research and teaching.” As an adjunct 
professor, Frank-Peter Schilling will in future be involved in joint research projects and work to 
establish a PhD programme between the New Zealand university and the ZHAW School of 
Engineering. 

 

  

New European research project    
for automated detection of 
disinformation campaigns in     
social media 
21.11.2022 - A new ChistERA Project tackles the problem of detecting organized intentional 
misinformation campaigns in social media. This project is a collaboration with international 
research partners from Spain, Estonia, and France. 

The NLP group at the ZHAW Center for Artificial Intelligence (CAI) has acquired a new ChistERA 
project called HAMiSoN. The goal of the project is to tackle the socially crucial problem of detecting 
organized intentional misinformation campaigns. 

Misinformation campaigns are not only limited to single instances of fake news. They are to be seen in 
a more holistic way: one must take into account the agents that introduce the misinformation, the 
supporting media that propagates it, and the social network dynamics, which lead to the adoption of 
this information. Furthermore, misinformation is not only a single instance of stating wrong facts, they 
are more about spreading narratives with a specific intention or goal. Finally, this problem is not limited 
to text; with current technologies it has become a multimodal problem including videos, images, and 
audio alongside text. 

In this project, we address these issues by taking all these aspects 
into account, that is, by taking a holistic approach to the problem 
detecting misinformation campaigns. The project will span over a 
period of three years, and includes partners form the National 
University of Distance Education in Spain, the University of Tartu in 
Estonia, and Synapse Developpement in France. 

We hope that thought this endeavour, the CAI can contribute to a 
more trustworthy and just consumption of information. 
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Thilo Stadelmann receives 
Fellowship and Impact Award 
28.11.2022 - Prof. Stadelmann, head of CAI, receives a DIZH Fellowship 2022 for research 
excellence and the ZHAW digital shaper award 2022 in the category “impact” 

DIZH Fellowships are awarded in a competitive selection process to ambitious ZHAW researchers. 
The university-wide funding scheme for research excellence sends its fellows to the joint research 
cluster of the Digitalization Initiative of the Canton of Zurich, DIZH, located at the University of Zurich. 
DIZH Fellowships last for up to 2 years and can fund a fellow plus a PhD student. 

Prof. Stadelmann’s research endeavour for the fellowship builds on top of the CAI panel discussions 
on pathways beyond present AI and the recently released "Theory of Natural Intelligence" that 
proposes a possible key to the emergence of intelligence in biological learners. Goal of the fellowship 
is to develop a technical implementation of the concept of self-organizing net fragments within 
contemporary deep artificial neural nets. Together with a PhD student, the team will start ca. mid-
2023, supported by colleagues from neuroinformatics and theology in the context of techno-ethics and 
society. 

The Impact Award of ZHAW digital recognizes outstanding contributions through projects and 
initiatives that are impacting the digital transformation at the ZHAW and/or at the societal level. The 
price comes with an 

With this award, Prof. Stadelmann’s impact at the three levels of teaching, research (exemplary, in the 
DeepScore/RealScore projects) and building the respective environment for such endeavours to thrive 
(e.g., co-creation of the ZHAW Datalab, data innovation alliance, and the ZHAW Centre for AI) have 
been recognized. 

The award comes with a cash price of CHF 
1’000 that will be used to further enhance the 
dialog and discussion with fellow scientists. 
In Absence of Thilo Stadelmann, who was on 
interdisciplinary speaking assignment, Prof. 
Frank-Peter Schilling accepted the prize and 
gave a short address on the kind of impact 
we a re striving for at the CAI. 
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ZHAW and Mindfire seal partnership 
for AI 
19.12.2022 - The newly signed cooperation involves the ZHAW Center for AI and other ZHAW 
units as well as Lab42, a globally connected AI Lab operated by Mindfire, which spans joint 
activities in research, education, start-ups, events, and dialogue with the general public. 

Building on joint initiatives since 2019, the Zurich University of Applied Sciences (represented by 
ZHAW digital and the ZHAW Centre for AI) and the Mindfire Foundation recently signed an agreement 
to collaborate more closely in the context of Mindfire’s Lab42. Cornerstones of this initiative are 
scientific advice and support for Lab42, joint research and innovation projects, involvement of ZHAW 
students in Lab42 activities, creation of joint education and training activities, promotion of start-ups 
and innovation in the field of AI, and dialogue with the general public and specialist audiences on AI in 
the context of joint events. 

The festive setting for the ceremonial sealing of the partnership was provided by the Swiss AI Gala 
Dinner, which took place on December 15 at the historic Zunfthaus zur Zimmerleuten in Zurich. As 
part of the  program, renowned scientist Jürgen Schmidhuber and DeepMind CEO Demis Hassabis 
addressed a select audience of AI lab heads, scientists, entrepreneurs, investors and journalists, and 
the question of what is missing in current AI systems was discussed passionately. 

The Swiss AI Gala Dinner 2022 offered the perfect setting 
for the ceremonial sealing of the cooperation. 

 

 

 

 

 

 

 

Director of CAI Prof. Dr. Thilo Stadelmann and 
Mindfire president Pascal Kaufmann shake hands 
after signing the memorandum of understanding. 
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2 Student Affairs 
The ZHAW Centre for Artificial Intelligence offers method-oriented courses in both the BSc and 
MSc programmes of the ZHAW School of Engineering. In addition to their academic 
coursework, our students are exposed to applied research in our core topics and get 
opportunities to also develop their non-technical capabilities and skills to advance their 
careers.  

At the Bachelor level we teach the fundamentals of machine learning, data mining, artificial 
intelligence, and various specialisations in the focus areas of the CAI. Our goal is to ensure that the 
latest advances in research and development are incorporated in our teaching. As one of the 
contributing activities, we offer you the opportunity to carry out one of the limited Research Project 
Theses in the final year of your studies. 

The CAI also offers Master’s profiles in Computer Science and Data Science. During their studies, our 
students are directly incorporated into one of our research groups and personally mentored by a 
senior researcher in that group. This gives them direct exposure to the latest AI methods at the highest 
scientific level, and their application to solve challenges within real-world projects in collaboration with 
practice partners, e.g., industrial, or clinical.  

In 2022, 10 Master students were hosted at the CAI while 14 students made their BSc thesis with us. 
Besides their coursework, they developed practical projects on fields including language modelling, 
chatbots, machine translation, speaker verification, medical imaging, brain-machine interfacing, 
computer vision for autonomous cars, and others.  

The CAI offers tools for developing technical and non-technical skills. 

Besides their academic credentials, Master students at the CAI will also develop other key 
competences for advancing their career. Through our Life Impact event series, we offer regular 
seminars and workshops aimed at inspiring and equipping young researchers with non-technical 
knowledge and skills that allow them to develop their full potential. Throughout this series we have 
organized activities on, e.g., entrepreneurship, personality types and leadership skills. 

Want to know more? 

CAI Students in 2022: 

MSc students: Raphael Emberger, Nicola Good, Livia Lüscher, Janick Michot, Sydney Nguyen, 
Pascal Sager, Samuel Stucki, Manuel Weiss. Not pictured: Sebastian Salzmann, and Juan Ribera. 
BSc Students: Not Pictured: Nathalie Achtnich, Aurora Alitjaha, Nico Ambrosini, Lukas Bamert, Lukas 
Boner, Benjamin Berli, Manuel Berweger, Michael Häseler, Gian Hellinger, Maurice Hostettler, Besmir 
Kadrii, Kevin Kläger, Mario Küng, Tenzin Samdrup Langdun, Urban Lutz, Alexandre Manai, Kai 
Mannhart, Lars Mosimann, Lucian Nicca, Martin Oswald, Benjamin Stern, Marvin Tseng, Patrik 
Randjelovic, Mika Ruch, Ralph Scheu, Samuel Stucki, Florian Witschi, and Simon Zaugg. 

Student projects at the CAI BSc Project thesis at the CAI Why doing a MSc at the CAI? 
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Completed Student Theses 2022 
Student work at the CAI typically has a method-oriented focus and contributes its own research in the 
context of an exciting application. We are very proud of the achievements of our students, who 
regularly outdo themselves, achieve excellent results, and often contribute to the latest research 
through their publications, as also shown through various prices. In the following, we briefly present 
works from 2022 in descending order by date and thesis level. 

When  Type Title Group  

Fall 2022 Master Thesis Entropy-Aware Active Vision Through Voxelized Octree 
Exploration of 3D Scenes  CVPC 

Fall 2022 Second Master 
Project  Supporting DARPin binder selection through deep learning  CVPC 

Fall 2022 First Master 
Project CVPC 

Fall 2022 First Master 
Project CVPC 

Fall 2022 First Master 
Project CVPC 

Fall 2022 First Master 
Project NLP 

Fall 2022 Bachelor Project 
Thesis  NLP 

Fall 2022 Bachelor Project 
Thesis  NLP 

Fall 2022 Bachelor Project 
Thesis  NLP 

Fall 2022 Bachelor Project 
Thesis  CVPC 

Fall 2022 Bachelor Project 
Thesis  CVPC 

Fall 2022 Bachelor Project 
Thesis  CVPC 

Spring 2022 Master Thesis CVPC 

Spring 2022 First Master 
Project CVPC 

Spring 2022 Bachelor Project 
Thesis  CVPC 

Spring 2022 Bachelor Project 
Thesis  

Evaluation of Data Augmentation Strategies for Motor 
Imagery BCI Classification Tasks Based on EEG Data / top 
grade, Student: Manuel Weiss 

The Practical Impact of Data-Centrism on the Example of 
Autonomous Driving  

Reproducing a large-scale Speaker Verification System  

Base System for a Language Learning Chatbot / top grade, 
Student: Janick Michot  

Dialekte raten – Erweiterung einer Web-Applikation / top 
grade, Students: Kai Mannhart, Nathalie Achtnich 

Digitalization of Chess Score Cards  

Corpus Evaluation for Automatic Speech Recognition 2.0 
(“CEASR 2.0”) 

Machine Learning-Based Analysis of Data from the ZHAW 
Movement Analysis Laboratory for Fatigue Detection during 
Sports Exercises  

Speak your mind! Brain Computer Interfaces for 
Communication  

Building a Vision-Based AI Demonstrator with Unitree A1 
Quadruped Robot / top grade, Students: Tenzin Samdrup 
Langdun, Martin Oswald  

Leveraging Neuroscience for Deep Learning Based Object 
Recognition  

Automatic extraction of anthropometric features and body 
composition parameters from computer tomography images 
enables improved BMI prediction at scale  

Hitting the Jackpot: Optimizing Neural Networks with 
Composite Pruning Strategies / top grade, Students: Urban 
Lutz, Alexandre Manai 

Improved Speech Translation for Swiss German Using a 
Hybrid DynamicWindow Approach  NLP 
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When  Type  Title  Group  

Spring 2022  Bachelor Project 
Thesis  Was hast du gesagt? Gespräche automatisch vereinfachen  NLP  

Spring 2022  Bachelor Project 
Thesis  

Auswirkungen von Speech Enhancement auf die 
automatische Spracherkennung  NLP  

Spring 2022  Bachelor Project 
Thesis  Digitalization of Chess Scorecards  NLP  

Spring 2022  Bachelor Project 
Thesis  Ensemble Methods for Speech Recognition  NLP  

Spring 2022  Bachelor Project 
Thesis  

Summarize This! Automated Generation of Meeting 
Highlights  NLP  

Spring 2022  Bachelor Project 
Thesis  

Exploring Wav2Vec2 Pre-Training on Swiss German 
Dialects Using Speech Translation and Classification  NLP  

 

3 Research Output of the Computer 
Vision, Perception and Cognition 
Group 

The CVPC group, led by Prof. Stadelmann, conducts pattern recognition research on a wide 
variety of tasks relating to image, audio, and generally signal data. It focuses on deep neural 
network and reinforcement learning methodology, inspired by biological learning.  

Each studied task has its own learning target (e.g., detection, classification, clustering, segmentation, 
novelty detection, or control), corresponding use case (e.g., predictive maintenance, speaker 
recognition for multimedia indexing, document analysis, industrial quality control, automated game 
play or building control), and research challenge (e.g., domain adaptation, practical robustness, or 
limited data), which in turn sheds light on different aspects of the learning process. This experience is 
used to create increasingly general AI systems built on neural architectures. 

In 2022, the group underwent some natural change with research associate Dr. Javier Montoya being 
appointed senior lecturer at HSLU, senior researcher Dr. Frank Shilling becoming senior lecturer at 
ZHAW CAI and adjunct professor at the University of Wellington, and intern Adhiraj Ghosh leaving to 
pursue further studies at Tübingen University, while doctoral student Mohammadreza Amirian handed 
in his thesis at Ulm University. With most research projects ending in early summer (e.g., RealScore 
on optical music recognition and DIR3CT on CT motion artifact reduction) and many new ones starting 
from summer on (e.g., the Mobile Inclusion Lab on brain-computer-interfaces, LINA on the safe 
development and testing of autonomous systems, DISTRAL on transfer learning in industrial anomaly 
detection, and Master3D on engineering sketch understanding), new researchers joined the team, 
among them Paul Luley and Benjamin Meyer as research assistants, Peng Yan as doctoral student 
(co-supervised at the UZH/ETH Institute of Neuroinformatics), and two master students. 

The group’s publications in 2022 reflect the diverse use cases that are being worked on, including 
some highly interesting side projects: Stadelmann et al.’s work on data centrism as the foundation of 
data science and, together with co-authors von der Malsburg and Grewe, on a “Theory of Natural 
Intelligence”, and Dr. Chavarriaga’s continued work on data governance and cognitive workload. 
Pascal Sager (and colleagues) was able to turn his second master project into a journal publication on 
vertebrae detection with semi-supervised domain adaptation, and co-supervised PhD student Felix 
Schmitt-Koopmann published his first paper in IEEE Access, together with open research data to build 
document analysis systems to help the visually impaired with assistive technology. Finally, final year 
PhD student Lukas Tuggener published his brilliant analysis of ImageNet as a basis to derive CNN 
architectures in Frontiers of Computer Science.  

We thank our project partners, students, and funding bodies for their generous support and effort, 
without which these results (and the results forthcoming in future years) would not have been possible! 

The CVPC 2022 team 

Thilo Stadelmann, Ricardo Chavarriaga, Lukas Tuggener, Mohammadreza Amirian, Peng Yan, Pascal 
Sager, Raphael Emberger, Paul-Philipp Luley, and Benjamin Meyer (along with three Master students, 
two external PhD students and three associated faculty members) 
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recognition for multimedia indexing, document analysis, industrial quality control, automated game 
play or building control), and research challenge (e.g., domain adaptation, practical robustness, or 
limited data), which in turn sheds light on different aspects of the learning process. This experience is 
used to create increasingly general AI systems built on neural architectures. 

In 2022, the group underwent some natural change with research associate Dr. Javier Montoya being 
appointed senior lecturer at HSLU, senior researcher Dr. Frank Shilling becoming senior lecturer at 
ZHAW CAI and adjunct professor at the University of Wellington, and intern Adhiraj Ghosh leaving to 
pursue further studies at Tübingen University, while doctoral student Mohammadreza Amirian handed 
in his thesis at Ulm University. With most research projects ending in early summer (e.g., RealScore 
on optical music recognition and DIR3CT on CT motion artifact reduction) and many new ones starting 
from summer on (e.g., the Mobile Inclusion Lab on brain-computer-interfaces, LINA on the safe 
development and testing of autonomous systems, DISTRAL on transfer learning in industrial anomaly 
detection, and Master3D on engineering sketch understanding), new researchers joined the team, 
among them Paul Luley and Benjamin Meyer as research assistants, Peng Yan as doctoral student 
(co-supervised at the UZH/ETH Institute of Neuroinformatics), and two master students. 

The group’s publications in 2022 reflect the diverse use cases that are being worked on, including 
some highly interesting side projects: Stadelmann et al.’s work on data centrism as the foundation of 
data science and, together with co-authors von der Malsburg and Grewe, on a “Theory of Natural 
Intelligence”, and Dr. Chavarriaga’s continued work on data governance and cognitive workload. 
Pascal Sager (and colleagues) was able to turn his second master project into a journal publication on 
vertebrae detection with semi-supervised domain adaptation, and co-supervised PhD student Felix 
Schmitt-Koopmann published his first paper in IEEE Access, together with open research data to build 
document analysis systems to help the visually impaired with assistive technology. Finally, final year 
PhD student Lukas Tuggener published his brilliant analysis of ImageNet as a basis to derive CNN 
architectures in Frontiers of Computer Science.  

We thank our project partners, students, and funding bodies for their generous support and effort, 
without which these results (and the results forthcoming in future years) would not have been possible! 

The CVPC 2022 team 

Thilo Stadelmann, Ricardo Chavarriaga, Lukas Tuggener, Mohammadreza Amirian, Peng Yan, Pascal 
Sager, Raphael Emberger, Paul-Philipp Luley, and Benjamin Meyer (along with three Master students, 
two external PhD students and three associated faculty members) 
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Workshops of the Eighth International Brain-Computer Interface 
Meeting:  BCIs: The Next Frontier 
Abstract 

The Eighth International Brain-Computer Interface (BCI) Meeting was 

held June 7-9th, 2021 in a virtual format.  The conference continued the BCI 

Meeting series’ interactive nature with 21 workshops covering the bread of 

topics in BCI (also called brain-machine interface) research.  Some 

workshops provided detailed examinations of methods, hardware, or 

processes.  Others focused on BCI applications or user groups.  Several 

workshops continued consensus building efforts designed to create BCI 

standards and improve comparisons between studies and the potential for 

meta-analysis and large multi-site clinical trials.  Ethical and translational 

considerations were the primary topic for some workshops or an important 

secondary consideration.  The range of BCI applications continues to 

expand, with more workshops focusing on approaches that can extend 

beyond the needs of those with physical impairments.  This paper 

summarizes each workshop, provides background information and 

references for further study, summarizes discussions, and describes the 

resulting conclusion, challenges, or initiatives.   

Keywords: brain-computer interface; brain-machine interface, 

neuroprosthetics; conference;   

Introduction 

The field of brain-computer interface (BCI) research has many names, most 
historically originating from related research domains with converging objectives.  
The terms BCI and brain-machine interface (BMI) are quite common and the term 
neuroprosthetic also applies.  In general, a BCI is a device that interprets 
information directly from the brain to provide a means of interacting with 
technology. Brain activity can be measured using either implanted electrodes or 
external sensors. The technology can be operated through a variety of methods, 
including a direct connection between the brain and the effector (e.g., to operate a 
prosthetic), or a secondary interface such as a keyboard display (e.g., for 
communication).  Recent work has also used electrical stimulation of the brain itself 
to “close the loop” and provide sensory feedback about the state of the technology.  
The defining feature of a BCI is that the brain activity itself is interpreted, the 

 

 

information to control a device is not derived from activity propagated through 
peripheral nerves. Many BCIs were initially developed for use by people with 
physical impairments, but the current broad range of applications also targets other 
neurological and cognitive impairments, abled-bodied users, and even 
opportunities for human enhancement.  The 8th International Brain-Computer 
Interface Meeting provided a venue for exploration of the breadth of BCI topics and 
this paper is designed to provide a window into the workshops that occurred at that 
Meeting.     

The BCI Meeting Series 
The 8th International Brain-Computer Interface Meeting was originally 

scheduled to be held in 2020.  However, due to travel restrictions and health 
concerns during the global pandemic, the 2020 in-person meeting was postponed 
to June 7-9th, 2021 and ultimately converted to a virtual meeting format.  The goal 
of the BCI Meeting Series (1999 [1] 2002 [2], 2005 [3], 2010 [4], 2013 [5, 6], 2016 
[7-9], and 2018 [10, 11]) is to create a single venue for people representing all the 
diverse backgrounds, disciplines, expertise, and application areas necessary for 
successful and practical BCI research and development.   

The Eighth International Brain-Computer Interface (BCI) Meeting was hosted in 
the Pheedloop platform (Toronto, Ontario, Canada), which managed individual 
sessions using the Zoom platform (San Jose, California, USA).  Poster sessions 
and social events were held on the GatherTown platform (gather.town).  This 
Meeting was attended by 395 delegates from 35 countries, a significant growth 
from the 50 delegates in 1999 [1], although not quite as many as the previous in-
person meeting in 2018.  Respondents to the 2021 BCI Meeting evaluation survey 
identified themselves as 40% students, 13% postdocs, 25% faculty members, and 
22% other.  The BCI Meeting Series is intentionally designed to promote 
interaction between different groups and different career stages and has advanced 
the careers of numerous BCI researchers.  Many activities are designed to provide 
educational content and networking opportunities for students and early-career 
investigators.  The 2021 BCI Meeting had a theme of "BCIs: The Next Frontier." 
The workshops of the BCI Meeting Series provide examples of how BCIs are 
advancing the frontiers of science and details on both how close we are to realizing 
new applications and the challenges that remain to be overcome.  The workshop 
summaries presented here serve as an overview of the current status of BCI 
research and development and present a roadmap to the next steps needed to 
advance that frontier.   

 

Organization of Workshop Summaries 
Workshops for the BCI Meetings are proposed by members of the BCI 

community, then evaluated and curated by the Program Committee.  For the virtual 
BCI Meeting of 2021, the workshops were assigned to four different schedule slots 
with three to four workshops running concurrently. In addition, six of the workshops 
volunteered to run as part of a five-month preliminary series of “BCI Thursdays.”  
These workshops were the same length and format as the workshops that 
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occurred during the Meeting, but did not overlap with other BCI Society events and 
had a separate registration structure.  However, they retained the strong emphasis 
on attendee participation that is central to workshops of the BCI Meeting series.  
The BCI Thursday series also included free events designed to provide technical 
background for students on cutting-edge topics in BCI research.   

The workshop summaries presented here are divided into three themes and 
ordered to provide a progression of topics.  They can be read sequentially as an 
overview of the field or separately to provide detail on a topic of interest.  However, 
acronyms are only defined on their first use.  For each summary, we report the 
primary organizer, who is also a co-author of this paper, and list all additional 
presenters. Each summary is designed to introduce the workshop topic, the latest 
developments or central ideas presented in the workshop, and the topics of 
discussion and eventual conclusions. Of course, nothing will substitute for the 
actual experience of being part of an interactive workshop, even a workshop in a 
virtual platform.  However, the summaries are intended to at least provide an 
overview and pointers to the information that workshop attendance would have 
provided. Further, the summaries provide the key points, conclusions, or 
consensus opinions that resulted from the workshop discussions and may include 
opportunities to participate in ongoing discussions or collaborations.    

Each workshop focused on a specific topic area, yet these topics overlap and 
complement each other, so that the summaries sometimes create a mosaic 
examining related ideas from different angles and at other times build on each 
other.  For example, the workshops “Toward an international consensus on user 
characterization and BCI outcomes in settings of daily living” and “On the need of 
good practices and standards for Benchmarking Brain-Machine Interfaces” 
examine different aspects of standards.  Similarly, BCI use for children and people 
with congenital disabilities are examined in the pair of workshops “The design of 
effective BCIs for children” and “Non-invasive BCIs for people with cerebral palsy.”   

Three general themes provide the structure for this article, although many 
alternative organizations could be proposed.  The themes are independent of the 
time slot in which the workshop occurred.  The first theme is Tools and Methods 
and contains workshops providing detailed examination of a particular hardware, 
software, or analysis method.  The second theme is BCIs for Specific Populations 
or Applications and is less concerned with hardware and software than with the 
outcome produced or the common considerations for working with a specific group.  
The final theme is Expanding BCI Usability and Availability.  The workshops in this 
theme focus on big picture topics such as standards, translational issues, and 
ethics as well as the expansion of BCIs into the broad consumer market through 
applications such as entertainment and human enhancement.    

The trajectory of these three themes, and the workshop summaries presented 
here, creates a progression from foundational topics to translational efforts for 
standardized clinical applications and BCIs for the population at large.  Together 
these workshops show the diversity of BCI applications and intended users and the 
complexity of the issues that must be solved to make BCIs into useful tools for the 
many intended user groups.   

 

 

Tools and Methods 

Focal Bi-Directional Brain Computer Interfacing with Concentric 
Electrode Technology 
Organizer:  Charles Anderson (Colorado State University) 
Additional Presenters: Walter Besio (University of Rhode Island and CREMedical), Barry Oken (Oregon 
Health & Science University), Myles McLaughlin (KU Leuven) 

 
This workshop focused on EEG BCI experiments and stimulation studies using 

tripolar concentric-ring electrodes (TCREs) and the advantages of this technology 
over conventional disc electrodes. Compared to conventional disc electrodes, 
TCREs have significantly better spatial resolution and signal-to-noise ratio [12-14]. 
TCREs increase signal bandwidth for high-frequency signals useful for localizing 
epileptic brain regions and possibly imagined movements [15, 16]. Imagined 
movement BCI improved significantly with TCREs [17, 18]. TCREs’ increased 
spatial resolution and signal-to-noise ratio may enable discrimination between 
finger movements, currently only possible with implanted electrodes. Experiments 
involving real and imagined finger movements found that EEG from TCREs 
produced significantly better discrimination among movements of individual fingers 
(about 70% correct classification) than conventional disc electrodes (about 40%) 
[19]. 

TCREs are safe for stimulation [20, 21], and can be used for seizure control 
[22-26]. The stimulation can block epileptogenesis [27] and alter neurotransmitters 
to increase the effectiveness of anti-seizure drugs [28-30]. Stimulation experiments 
are underway to determine if transcranial focal stimulation via concentric ring 
electrodes is effective for modulating human brains. 

Pain is a common medical problem but difficult to objectify as a personal 
experience of a sensation. Using TCREs both to selectively stimulate pain fibers 
and to record pain-related evoked potentials (PREPs) is one method of objectifying 
pain sensation [31-37].  Custom-made concentric stimulating electrodes can 
selectively stimulate pain afferents where conventional electrical stimulation with 
mono- or bi-polar stimulating electrodes failed. TCREs delivered paired electrical 
stimulations to the dorsal non-dominant hand. PREPs were recorded at Cz 
referenced to ear. For control participants, average PREP N1-P2 amplitude was 
significantly diminished by electroacupuncture. In another experiment control 
participants showed the expected habituation of PREP N1-P2 amplitude over time, 
but those with chronic low back pain showed an increase in PREP amplitude, 
presumably a physiological marker of central sensitization, the increased 
responsiveness to sensory information such as nociception.  

TCREs on the skull under the skin may be an effective middle ground between 
implanted stimulation electrodes and the non-invasive but less effective 
transcranial stimulation. TCREs provide higher magnitude stimulation in gray and 
white matter than transcranial stimulation. Focused and unfocused stimulation on 
neurons have been studied in Macaque. Increased spatial precision with TCREs 
was demonstrated when stimulating rat motor cortex area for rear limb movement. 
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occurred during the Meeting, but did not overlap with other BCI Society events and 
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on attendee participation that is central to workshops of the BCI Meeting series.  
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The workshop summaries presented here are divided into three themes and 
ordered to provide a progression of topics.  They can be read sequentially as an 
overview of the field or separately to provide detail on a topic of interest.  However, 
acronyms are only defined on their first use.  For each summary, we report the 
primary organizer, who is also a co-author of this paper, and list all additional 
presenters. Each summary is designed to introduce the workshop topic, the latest 
developments or central ideas presented in the workshop, and the topics of 
discussion and eventual conclusions. Of course, nothing will substitute for the 
actual experience of being part of an interactive workshop, even a workshop in a 
virtual platform.  However, the summaries are intended to at least provide an 
overview and pointers to the information that workshop attendance would have 
provided. Further, the summaries provide the key points, conclusions, or 
consensus opinions that resulted from the workshop discussions and may include 
opportunities to participate in ongoing discussions or collaborations.    

Each workshop focused on a specific topic area, yet these topics overlap and 
complement each other, so that the summaries sometimes create a mosaic 
examining related ideas from different angles and at other times build on each 
other.  For example, the workshops “Toward an international consensus on user 
characterization and BCI outcomes in settings of daily living” and “On the need of 
good practices and standards for Benchmarking Brain-Machine Interfaces” 
examine different aspects of standards.  Similarly, BCI use for children and people 
with congenital disabilities are examined in the pair of workshops “The design of 
effective BCIs for children” and “Non-invasive BCIs for people with cerebral palsy.”   

Three general themes provide the structure for this article, although many 
alternative organizations could be proposed.  The themes are independent of the 
time slot in which the workshop occurred.  The first theme is Tools and Methods 
and contains workshops providing detailed examination of a particular hardware, 
software, or analysis method.  The second theme is BCIs for Specific Populations 
or Applications and is less concerned with hardware and software than with the 
outcome produced or the common considerations for working with a specific group.  
The final theme is Expanding BCI Usability and Availability.  The workshops in this 
theme focus on big picture topics such as standards, translational issues, and 
ethics as well as the expansion of BCIs into the broad consumer market through 
applications such as entertainment and human enhancement.    

The trajectory of these three themes, and the workshop summaries presented 
here, creates a progression from foundational topics to translational efforts for 
standardized clinical applications and BCIs for the population at large.  Together 
these workshops show the diversity of BCI applications and intended users and the 
complexity of the issues that must be solved to make BCIs into useful tools for the 
many intended user groups.   

 

 

Tools and Methods 

Focal Bi-Directional Brain Computer Interfacing with Concentric 
Electrode Technology 
Organizer:  Charles Anderson (Colorado State University) 
Additional Presenters: Walter Besio (University of Rhode Island and CREMedical), Barry Oken (Oregon 
Health & Science University), Myles McLaughlin (KU Leuven) 

 
This workshop focused on EEG BCI experiments and stimulation studies using 

tripolar concentric-ring electrodes (TCREs) and the advantages of this technology 
over conventional disc electrodes. Compared to conventional disc electrodes, 
TCREs have significantly better spatial resolution and signal-to-noise ratio [12-14]. 
TCREs increase signal bandwidth for high-frequency signals useful for localizing 
epileptic brain regions and possibly imagined movements [15, 16]. Imagined 
movement BCI improved significantly with TCREs [17, 18]. TCREs’ increased 
spatial resolution and signal-to-noise ratio may enable discrimination between 
finger movements, currently only possible with implanted electrodes. Experiments 
involving real and imagined finger movements found that EEG from TCREs 
produced significantly better discrimination among movements of individual fingers 
(about 70% correct classification) than conventional disc electrodes (about 40%) 
[19]. 

TCREs are safe for stimulation [20, 21], and can be used for seizure control 
[22-26]. The stimulation can block epileptogenesis [27] and alter neurotransmitters 
to increase the effectiveness of anti-seizure drugs [28-30]. Stimulation experiments 
are underway to determine if transcranial focal stimulation via concentric ring 
electrodes is effective for modulating human brains. 

Pain is a common medical problem but difficult to objectify as a personal 
experience of a sensation. Using TCREs both to selectively stimulate pain fibers 
and to record pain-related evoked potentials (PREPs) is one method of objectifying 
pain sensation [31-37].  Custom-made concentric stimulating electrodes can 
selectively stimulate pain afferents where conventional electrical stimulation with 
mono- or bi-polar stimulating electrodes failed. TCREs delivered paired electrical 
stimulations to the dorsal non-dominant hand. PREPs were recorded at Cz 
referenced to ear. For control participants, average PREP N1-P2 amplitude was 
significantly diminished by electroacupuncture. In another experiment control 
participants showed the expected habituation of PREP N1-P2 amplitude over time, 
but those with chronic low back pain showed an increase in PREP amplitude, 
presumably a physiological marker of central sensitization, the increased 
responsiveness to sensory information such as nociception.  

TCREs on the skull under the skin may be an effective middle ground between 
implanted stimulation electrodes and the non-invasive but less effective 
transcranial stimulation. TCREs provide higher magnitude stimulation in gray and 
white matter than transcranial stimulation. Focused and unfocused stimulation on 
neurons have been studied in Macaque. Increased spatial precision with TCREs 
was demonstrated when stimulating rat motor cortex area for rear limb movement. 
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Conventional electrodes produced movement in both contralateral and ipsilateral 
limbs, but TCREs only produced contralateral limb movement [38]. 

Discussion covered practical considerations and design variations, including 
different numbers of rings and different spacing.  TCREs sizes include 10mm, 
6mm, 4mm, and even 3.5mm.  TCREs use 10-20 paste, but work on using gels 
and possible dry electrode designs are being considered. Caps to hold TCREs 
were described, but need work for the smallest TCREs. Two disadvantages of 
TCREs are the need for a custom pre-amplifier from CREMedical and for precise 
scalp placement because higher spatial precision means steep attenuation over 
short distances. Laplacian transforms can be applied to EEG recorded from 
conventional disc electrodes, but 92 disc electrodes are required to obtain results 
similar to that provided by one TCRE. Publicly available sample data recorded from 
TCREs can be found at 
https://www.cs.colostate.edu/~anderson/res/eeg/tripolar/tripolar.zip. 

 

Invasive brain computer interface technology: Open loop and closed 
loop decoding applications 
Organizer: Christoph Kapeller (g.tec medical engineering GmbH, Austria) 
Additional Presenters:  Kyousuke Kamada, MD, PhD, (Megumino Hospital, Japan); Aysegul Gunduz, PhD, 
(University of Florida, USA); Peter Brunner, PhD, (Washington School of Medicine, St. Louis, USA); Kai Miller, 
MD, PhD, (Mayo Clinic Rochester, Minnesota, USA) 

 
The workshop discussed state-of-the art BCI applications using open-loop and 

closed-loop decoding and neuromodulation.  Implementation of these experimental 
setups in existing BCI platforms was also discussed. 

Invasive electroencephalographic (iEEG) signals, such as electrocorticography 
(ECoG) or stereo EEG, contain information with high spatial and temporal 
resolution [39]. Several invasive BCIs have been realized over the past two 
decades.  Closed-loop invasive BCIs have been used for control of  prosthetic 
limbs [40] as well as avatars or cursors [41, 42].  Open-loop invasive BCIs have 
been used for decoding of speech [43-46], movements [47, 48] and vision [49, 50]. 
Establishing useful invasive BCI applications requires interdisciplinary efforts for 
the development of sensors and machine learning algorithms, with specialized 
efforts to make the resulting technology practical for a medical environment and 
matched to each individual’s clinical indications. Further, the risk of implanting 
sensors has to be surpassed by the benefit that the BCI provides to meet the 
specific need of each patient [51].  

Recent developments showed a transition from proof-of-concept 
demonstrations to clinical applications, including open-loop decoding for brain 
mapping [52-54] and BCI implants [55]. Such implants can provide ALS patients 
with a powerful BCI [42] and will be further investigated over the next years. The 
concept of open-loop electrical brain stimulation for neuromodulation has been 
widely used in presurgical brain mapping. Stimulating the somatosensory cortex 
can induce sensation in individual fingers [56], while stimulating the visual cortex 
causes illusory percepts like appearing faces or moving rainbows [57]. Open-loop 
deep brain stimulation (DBS) has been utilized for more than 40 years to manage 

 

 

tremor [58].  More recently DBS has been used to treat Parkinson’s disease, 
Tourette syndrome, dystonia, and depression [59]. Closed-loop stimulation based 
on iEEG signals improves the battery lifetime during the treatment of Tourette 
syndrome [60] and essential tremor [61]. Most of the aforementioned studies 
required the integration of sensors and amplifiers into signal processing platforms 
that are capable of real-time processing and synchronized with the patient’s 
condition and/or stimulus presentation. Example BCI platforms in the workshop 
were BCI2000 [62] and the rapid prototyping platform g.HIsys in MATLAB/Simulink 
[63]. 

Riemannian Geometry Methods for EEG preprocessing, analysis and 
classification 
Organizer: Louis Korczowski (Siopi.ai)  
Additional Presenters:  Marco Congedo (GIPSA-lab, CNRS, Université Grenoble- Alpes), Florian Yger 
(LAMSADE, CNRS, Univ. Paris-Dauphine, PSL Research Univ.), Sylvain Chevallier (LISV - UVSQ - Univ. 
Paris-Saclay), Pierre Clisson (Timeflux Research Group), Quentin Barthélemy (Foxstream) 

 
Riemannian Geometry (RG) is a subject of growing interest within the BCI 

community. Machine learning methods based on RG have demonstrated 
robustness, accuracy and transfer learning capabilities for the classification of 
motor imagery [64], ERPs [65], SSVEPs [66], sleep stages [67], and other mental 
states [68]. This workshop provided an overview of RG, demonstrating its practical 
use for signal pre-processing, data analysis, mental state classification, and 
regression.  

RG was first applied to BCI in 2010 [64].  Key articles highlighting different 
applications of RG include multi-class classification (e.g. minimum distance-to-
mean (MDM) classifier) [69], transfer learning (e.g. Riemannian Procrustes 
Analysis) [70, 71], the first online BCI system using it (e.g. Brain Invaders) [65, 72], 
and milestone-like performance of RG methods in international competitions [73, 
74]. Intrinsic properties of RG methods were discussed to explain their 
performances (e.g., simple parametrization of models, robustness induced by 
affine-invariant metrics) but also some drawbacks and how they can be managed 
(e.g. sensitivity to rank deficiency at high dimensionality) [75, 76]. Interestingly, RG 
can be used in combination with other effective methods such as common-spatial 
pattern and/or deep learning to outperform methods using Euclidean space alone, 
e.g. by projecting data in a tangent space [74]. 

The ecosystem of open-source libraries (that was scattered and scarce before) 
is now mature enough to improve several steps of the BCI system. For example, 
Riemannian methods outperforms Euclidean methods in accuracy and simplicity in 
use cases such as automatic artifact detection (e.g., Riemannian potato) [77, 78] or 
ERP classification (e.g. MDM with super covariance matrix). These performances 
are tested using the fair benchmarking approach [79] and are easy to replicate in 
online BCI thanks to libraries such as Timeflux [80]. 

Despite its performance advantages, publication data from 
https://www.dimensions.ai/ show that articles mentioning new contribution of 
“Riemannian Geometry” applied to BCI has remained in the range of 7 to 21 per 
year in the period 2016-2020 (mean citations : 27.71). For comparison, mention of 

50

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



 

 

Conventional electrodes produced movement in both contralateral and ipsilateral 
limbs, but TCREs only produced contralateral limb movement [38]. 

Discussion covered practical considerations and design variations, including 
different numbers of rings and different spacing.  TCREs sizes include 10mm, 
6mm, 4mm, and even 3.5mm.  TCREs use 10-20 paste, but work on using gels 
and possible dry electrode designs are being considered. Caps to hold TCREs 
were described, but need work for the smallest TCREs. Two disadvantages of 
TCREs are the need for a custom pre-amplifier from CREMedical and for precise 
scalp placement because higher spatial precision means steep attenuation over 
short distances. Laplacian transforms can be applied to EEG recorded from 
conventional disc electrodes, but 92 disc electrodes are required to obtain results 
similar to that provided by one TCRE. Publicly available sample data recorded from 
TCREs can be found at 
https://www.cs.colostate.edu/~anderson/res/eeg/tripolar/tripolar.zip. 

 

Invasive brain computer interface technology: Open loop and closed 
loop decoding applications 
Organizer: Christoph Kapeller (g.tec medical engineering GmbH, Austria) 
Additional Presenters:  Kyousuke Kamada, MD, PhD, (Megumino Hospital, Japan); Aysegul Gunduz, PhD, 
(University of Florida, USA); Peter Brunner, PhD, (Washington School of Medicine, St. Louis, USA); Kai Miller, 
MD, PhD, (Mayo Clinic Rochester, Minnesota, USA) 

 
The workshop discussed state-of-the art BCI applications using open-loop and 

closed-loop decoding and neuromodulation.  Implementation of these experimental 
setups in existing BCI platforms was also discussed. 

Invasive electroencephalographic (iEEG) signals, such as electrocorticography 
(ECoG) or stereo EEG, contain information with high spatial and temporal 
resolution [39]. Several invasive BCIs have been realized over the past two 
decades.  Closed-loop invasive BCIs have been used for control of  prosthetic 
limbs [40] as well as avatars or cursors [41, 42].  Open-loop invasive BCIs have 
been used for decoding of speech [43-46], movements [47, 48] and vision [49, 50]. 
Establishing useful invasive BCI applications requires interdisciplinary efforts for 
the development of sensors and machine learning algorithms, with specialized 
efforts to make the resulting technology practical for a medical environment and 
matched to each individual’s clinical indications. Further, the risk of implanting 
sensors has to be surpassed by the benefit that the BCI provides to meet the 
specific need of each patient [51].  

Recent developments showed a transition from proof-of-concept 
demonstrations to clinical applications, including open-loop decoding for brain 
mapping [52-54] and BCI implants [55]. Such implants can provide ALS patients 
with a powerful BCI [42] and will be further investigated over the next years. The 
concept of open-loop electrical brain stimulation for neuromodulation has been 
widely used in presurgical brain mapping. Stimulating the somatosensory cortex 
can induce sensation in individual fingers [56], while stimulating the visual cortex 
causes illusory percepts like appearing faces or moving rainbows [57]. Open-loop 
deep brain stimulation (DBS) has been utilized for more than 40 years to manage 

 

 

tremor [58].  More recently DBS has been used to treat Parkinson’s disease, 
Tourette syndrome, dystonia, and depression [59]. Closed-loop stimulation based 
on iEEG signals improves the battery lifetime during the treatment of Tourette 
syndrome [60] and essential tremor [61]. Most of the aforementioned studies 
required the integration of sensors and amplifiers into signal processing platforms 
that are capable of real-time processing and synchronized with the patient’s 
condition and/or stimulus presentation. Example BCI platforms in the workshop 
were BCI2000 [62] and the rapid prototyping platform g.HIsys in MATLAB/Simulink 
[63]. 

Riemannian Geometry Methods for EEG preprocessing, analysis and 
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Organizer: Louis Korczowski (Siopi.ai)  
Additional Presenters:  Marco Congedo (GIPSA-lab, CNRS, Université Grenoble- Alpes), Florian Yger 
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Riemannian Geometry (RG) is a subject of growing interest within the BCI 

community. Machine learning methods based on RG have demonstrated 
robustness, accuracy and transfer learning capabilities for the classification of 
motor imagery [64], ERPs [65], SSVEPs [66], sleep stages [67], and other mental 
states [68]. This workshop provided an overview of RG, demonstrating its practical 
use for signal pre-processing, data analysis, mental state classification, and 
regression.  

RG was first applied to BCI in 2010 [64].  Key articles highlighting different 
applications of RG include multi-class classification (e.g. minimum distance-to-
mean (MDM) classifier) [69], transfer learning (e.g. Riemannian Procrustes 
Analysis) [70, 71], the first online BCI system using it (e.g. Brain Invaders) [65, 72], 
and milestone-like performance of RG methods in international competitions [73, 
74]. Intrinsic properties of RG methods were discussed to explain their 
performances (e.g., simple parametrization of models, robustness induced by 
affine-invariant metrics) but also some drawbacks and how they can be managed 
(e.g. sensitivity to rank deficiency at high dimensionality) [75, 76]. Interestingly, RG 
can be used in combination with other effective methods such as common-spatial 
pattern and/or deep learning to outperform methods using Euclidean space alone, 
e.g. by projecting data in a tangent space [74]. 

The ecosystem of open-source libraries (that was scattered and scarce before) 
is now mature enough to improve several steps of the BCI system. For example, 
Riemannian methods outperforms Euclidean methods in accuracy and simplicity in 
use cases such as automatic artifact detection (e.g., Riemannian potato) [77, 78] or 
ERP classification (e.g. MDM with super covariance matrix). These performances 
are tested using the fair benchmarking approach [79] and are easy to replicate in 
online BCI thanks to libraries such as Timeflux [80]. 

Despite its performance advantages, publication data from 
https://www.dimensions.ai/ show that articles mentioning new contribution of 
“Riemannian Geometry” applied to BCI has remained in the range of 7 to 21 per 
year in the period 2016-2020 (mean citations : 27.71). For comparison, mention of 
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"common-spatial patterns" associated with BCI increased from 71 to 119 articles 
per year (mean citations: 20.75) and "deep learning" from 15 to 179 articles per 
year (mean citations : 11.67) in the same period.  

We argue that the gap between the observed performance of RG applied to 
BCI and the proposal number of contributions in this field may be attributed to 
some combination of a perceived lack of easily accessible resources to make RG 
widely available to BCI research (e.g. 65.7% of respondents to the workshop 
questionnaire had never used RG before ) and the lack of reproducible tools for 
benchmarking different methods while taking into consideration datasets 
heterogeneity (discussed at the previous BCI meeting workshop [81]). 

This workshop was created to address these issues by increasing awareness of 
available resources for RG  and encourage benchmarking with tools such as 
MOABB on a larger scale of datasets [79].  We encourage everyone to report 
benchmarking results.  Further, we invite everyone to join us by using the open-
source RG tools, and by contributing to the improvement of these tools either by 
providing feedback, or contributing to the open source project pyriemann.  All the 
workshop resources are accessible, including slides, code tutorial, online demo, 
exhaustive workshop Q&A, and linked data: https://github.com/lkorczowski/BCI-
2021-Riemannian-Geometry-workshop. 

  

Open-source Python tools for BCIs 
Organizer: Pierre Clisson (Timeflux Research Group) 
Additional Presenters: Raphaëlle Bertrand-Lalo (Timeflux Research Group), Sylvain Chevallier (LISV, 
Université Paris-Saclay), Marco Congedo (GIPSA-lab, CNRS, Université Grenoble-Alpes) 
 

Python started as a general-purpose programming language but has evolved 
into a tool of choice for the scientific community, quickly overtaking specialized 
languages such as R and MATLAB [82]. Several factors account for its success: 
Python is easy to learn, has a strong community, and benefits from a rich and 
efficient data science ecosystem. 

This workshop had a two-fold objective: give an overview of the Python BCI 
landscape and provide hands-on instructions on a few chosen open-source tools. 

As a foundation for the focus on practical BCI, we first reviewed the main BCI 
paradigms and the typical workflow of a BCI pipeline. We discussed common 
challenges for BCI applications: the need for precise synchronization of the EEG 
signal and the stimuli, the difficulty of obtaining good quality signals in real-life 
conditions, and the challenges of calibration. 

Riemannian geometry (RG) for EEG-based BCI [65, 83] has produced state-of-
the-art results in international competitions [76]. Machine-learning algorithms 
based on RG offer many advantages. They are computationally efficient and thus 
suitable for online applications. They usually converge to optimal results relatively 
quickly, reducing calibration duration (ongoing studies on transfer learning are 
attempting to remove this phase completely [70] [84]). Finally, they do not depend 
on the BCI paradigm and work equally well for ERP, SSVEP, and motor imagery 
tasks. 

 

 

PyRiemann [85] is an actively maintained Python package for manipulating 
covariance matrices. It implements multiple data transformation techniques and 
classification methods. Workshop participants were guided through a Python 
notebook and instructed on using this library with concrete examples. 

The RG framework includes multiple signal classification strategies and BCI 
researchers use many other algorithms, such as Logistic Regression, Regulated 
LDA, Support Vector Machines, and Neural Networks [86]. Valid comparisons 
between methods are essential. The Mother Of All BCI Benchmarks (MOABB) [79, 
87] project offers comprehensive comparison tools that enable ranking new and 
existing algorithms with publicly available datasets, paving the way for reproducible 
research. We reviewed a practical example and explained the underlying code. 

Timeflux (https://timeflux.io/) [80] is an open-source framework for building 
online BCIs. It is capable of acquiring, recording, and processing biosignals in real-
time. It can also present precisely scheduled stimuli. It works hand-in-hand with 
PyRiemann and MOABB and rests on the shoulders of standard libraries such as 
Pandas [88], Scikit-learn [89], Lab Streaming Layer [90], and HDF5 [91]. It comes 
with a rich set of nodes and plugins for dynamic epoching, matrix manipulation, 
digital signal processing, machine learning, and other tools. It also provides a 
convenient JavaScript API for developing web interfaces. We reviewed the 
architectural principles of Timeflux and explained how to use it to design a P300 
speller, finishing with a functional demo that runs in a web browser. 

We only introduced the potential of the Python language for the BCI field. For 
instance, we only briefly described MNE [92], a full-fledged framework for offline 
analysis of EEG and MEG signals. This workshop provided a good starting point 
for further exploration. The presentation slides, notebooks, and code are publicly 
available [93]. 

Artificial Intelligence in Brain-Computer Interfacing 
Organizer: Moritz Grosse-Wentrup (University of Vienna)  
Additional Presenters:  Tonio Ball (University of Freiburg), Aldo Faisal (Imperial College London), Gernot 
Müller-Putz (Graz University of Technology) 
 

Artificial intelligence (AI) methods in general, and deep learning algorithms in 
particular, have revolutionized the field of machine learning [94]. Current AI 
systems outperform human experts in various cognitively challenging tasks [95, 96] 
and have enabled scientific insights that arguably could not have been obtained by 
human intelligence alone [97]. More recently, deep learning methods have been 
adapted to and developed for brain decoding and BCI systems [98, 99]. Building on 
a long history of discussions on the benefits of nonlinear decoding methods in BCI 
[100], this workshop discussed whether AI can outperform traditional BCI machine 
learning methods and which challenges should be addressed to realize the full 
potential of AI in BCI.  

The consensus on the current performance of AI-BCI methods was that they 
perform essentially on par with the best non-deep decoding algorithms. However, a 
rigorous comparison of state-of-the-art Riemannian decoding methods [76, 101] 
with AI algorithms has yet to be done. The workshop participants concluded that a 
large-scale brain decoding challenge, e.g., hosted by a major AI or machine 
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"common-spatial patterns" associated with BCI increased from 71 to 119 articles 
per year (mean citations: 20.75) and "deep learning" from 15 to 179 articles per 
year (mean citations : 11.67) in the same period.  

We argue that the gap between the observed performance of RG applied to 
BCI and the proposal number of contributions in this field may be attributed to 
some combination of a perceived lack of easily accessible resources to make RG 
widely available to BCI research (e.g. 65.7% of respondents to the workshop 
questionnaire had never used RG before ) and the lack of reproducible tools for 
benchmarking different methods while taking into consideration datasets 
heterogeneity (discussed at the previous BCI meeting workshop [81]). 

This workshop was created to address these issues by increasing awareness of 
available resources for RG  and encourage benchmarking with tools such as 
MOABB on a larger scale of datasets [79].  We encourage everyone to report 
benchmarking results.  Further, we invite everyone to join us by using the open-
source RG tools, and by contributing to the improvement of these tools either by 
providing feedback, or contributing to the open source project pyriemann.  All the 
workshop resources are accessible, including slides, code tutorial, online demo, 
exhaustive workshop Q&A, and linked data: https://github.com/lkorczowski/BCI-
2021-Riemannian-Geometry-workshop. 

  

Open-source Python tools for BCIs 
Organizer: Pierre Clisson (Timeflux Research Group) 
Additional Presenters: Raphaëlle Bertrand-Lalo (Timeflux Research Group), Sylvain Chevallier (LISV, 
Université Paris-Saclay), Marco Congedo (GIPSA-lab, CNRS, Université Grenoble-Alpes) 
 

Python started as a general-purpose programming language but has evolved 
into a tool of choice for the scientific community, quickly overtaking specialized 
languages such as R and MATLAB [82]. Several factors account for its success: 
Python is easy to learn, has a strong community, and benefits from a rich and 
efficient data science ecosystem. 

This workshop had a two-fold objective: give an overview of the Python BCI 
landscape and provide hands-on instructions on a few chosen open-source tools. 

As a foundation for the focus on practical BCI, we first reviewed the main BCI 
paradigms and the typical workflow of a BCI pipeline. We discussed common 
challenges for BCI applications: the need for precise synchronization of the EEG 
signal and the stimuli, the difficulty of obtaining good quality signals in real-life 
conditions, and the challenges of calibration. 

Riemannian geometry (RG) for EEG-based BCI [65, 83] has produced state-of-
the-art results in international competitions [76]. Machine-learning algorithms 
based on RG offer many advantages. They are computationally efficient and thus 
suitable for online applications. They usually converge to optimal results relatively 
quickly, reducing calibration duration (ongoing studies on transfer learning are 
attempting to remove this phase completely [70] [84]). Finally, they do not depend 
on the BCI paradigm and work equally well for ERP, SSVEP, and motor imagery 
tasks. 

 

 

PyRiemann [85] is an actively maintained Python package for manipulating 
covariance matrices. It implements multiple data transformation techniques and 
classification methods. Workshop participants were guided through a Python 
notebook and instructed on using this library with concrete examples. 

The RG framework includes multiple signal classification strategies and BCI 
researchers use many other algorithms, such as Logistic Regression, Regulated 
LDA, Support Vector Machines, and Neural Networks [86]. Valid comparisons 
between methods are essential. The Mother Of All BCI Benchmarks (MOABB) [79, 
87] project offers comprehensive comparison tools that enable ranking new and 
existing algorithms with publicly available datasets, paving the way for reproducible 
research. We reviewed a practical example and explained the underlying code. 

Timeflux (https://timeflux.io/) [80] is an open-source framework for building 
online BCIs. It is capable of acquiring, recording, and processing biosignals in real-
time. It can also present precisely scheduled stimuli. It works hand-in-hand with 
PyRiemann and MOABB and rests on the shoulders of standard libraries such as 
Pandas [88], Scikit-learn [89], Lab Streaming Layer [90], and HDF5 [91]. It comes 
with a rich set of nodes and plugins for dynamic epoching, matrix manipulation, 
digital signal processing, machine learning, and other tools. It also provides a 
convenient JavaScript API for developing web interfaces. We reviewed the 
architectural principles of Timeflux and explained how to use it to design a P300 
speller, finishing with a functional demo that runs in a web browser. 

We only introduced the potential of the Python language for the BCI field. For 
instance, we only briefly described MNE [92], a full-fledged framework for offline 
analysis of EEG and MEG signals. This workshop provided a good starting point 
for further exploration. The presentation slides, notebooks, and code are publicly 
available [93]. 

Artificial Intelligence in Brain-Computer Interfacing 
Organizer: Moritz Grosse-Wentrup (University of Vienna)  
Additional Presenters:  Tonio Ball (University of Freiburg), Aldo Faisal (Imperial College London), Gernot 
Müller-Putz (Graz University of Technology) 
 

Artificial intelligence (AI) methods in general, and deep learning algorithms in 
particular, have revolutionized the field of machine learning [94]. Current AI 
systems outperform human experts in various cognitively challenging tasks [95, 96] 
and have enabled scientific insights that arguably could not have been obtained by 
human intelligence alone [97]. More recently, deep learning methods have been 
adapted to and developed for brain decoding and BCI systems [98, 99]. Building on 
a long history of discussions on the benefits of nonlinear decoding methods in BCI 
[100], this workshop discussed whether AI can outperform traditional BCI machine 
learning methods and which challenges should be addressed to realize the full 
potential of AI in BCI.  

The consensus on the current performance of AI-BCI methods was that they 
perform essentially on par with the best non-deep decoding algorithms. However, a 
rigorous comparison of state-of-the-art Riemannian decoding methods [76, 101] 
with AI algorithms has yet to be done. The workshop participants concluded that a 
large-scale brain decoding challenge, e.g., hosted by a major AI or machine 
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learning conference, would be well suited for realizing a fair comparison of 
competing decoding architectures (e.g., https://beetl.ai/). 

The workshop participants then considered which issues prevent, at least so 
far, AI methods from revolutionizing BCI systems in the same way they have 
already transformed other data-driven applications. The primary bottleneck 
identified in the discussion was the absence of large-scale datasets in the field of 
BCI. These datasets would ideally comprise thousands or even millions of BCI 
users from heterogeneous settings, i.e., including numerous experimental 
paradigms, recording setups, and user groups. While the workshop participants 
acknowledged the efforts of the BCI community to record large-scale datasets 
[102], they also noted that collecting datasets on a similar scale as those available 
in other scientific disciplines [103] is probably beyond the capabilities of the 
academic community. Consequently, the discussion shifted to the role of 
commercial BCI applications in recording and providing access to large-scale 
datasets. Several consumer EEG headsets have reached market readiness with 
the expectation of prompt deployment in passive BCI applications[104]. 
Comprehensive access to data recorded by these applications could provide the 
large-scale datasets required to realize the full potential of AI-BCI systems. In 
particular, the heterogeneous nature of such data, which stands in contrast to the 
homogeneous data typically recorded in academic settings, could be considered 
an advantage.  The diversity of data might be leveraged to create feature 
representations that are user- as well as hardware-independent. Such feature 
representations would be essential to realize zero-training BCIs for commercial 
applications [105-107]. 

However, leveraging commercially recorded EEG datasets poses significant 
practical, legal, and ethical challenges. It is unclear what incentives companies 
would have to share their data publicly. Also, procedures would have to be 
developed that realize informed consent and honor data privacy regulations. The 
workshop participants considered an active engagement of the BCI community 
with industrial partners essential to make large-scale datasets a reality and realize 
the full potential of AI-BCI systems. 

 

Adaptation in closed-loop BCIs 
Organizer: Tetiana Aksenova (University Grenoble Alpes, CEA, LETI, CLINATEC)  
Additional Presenters: Amy L. Orsborn (University of Washington), Martin Bogdan, Sophie Adama 
(Universität Leipzig), Blaise Yvert (U1205 Inserm, University Grenoble Alpes), José del R. Millán (University of 
Texas at Austin), Jean Faber (Universidade Federal de São Paulo) 

 
BCI decoders calibrated in an open-loop, offline paradigm but then applied in 

close-loop, online paradigm show a significant drop in decoding performance. 
Adaptive algorithms in a close-loop session decrease this shortcoming by directly 
adjusting BCI parameters to incoming data. In addition, both the user and machine 
learn in a closed-loop BCI.  

Closed-loop paradigms are often applied to BCIs that decode motor signals.  
Intracranial ECoG [108, 109] from a participant with tetraplegia was decoded with a 
fully adaptive decoder to operate a 4-limb exoskeleton. The decoder used an 

 

 

adaptive Markov mixture of multilinear experts [110] to switch between 
independent decoders (experts) to interpret multiple degrees of freedom.   

Closed-loop paradigms enable user/decoder co-adaptation to maximize 
performance through synergistic user-machine interactions between the two 
learners [e.g., 111]. However, learning trajectory models are needed to optimize 
these co-adaptive systems. A new game-theoretic model of co-adaptation [112] 
provides a framework to analyze system equilibria and predicts learning 
trajectories, but requires validation. 

The balance of decoder vs patient adaptation is important. EEG-based motor 
BCIs illustrate the pros and cons of extensive machine-learning adaptation. Non-
supervised context-aware algorithms can rapidly adapt so users can use a 
language model-based speller [113] without a calibration phase [114, 115]. 
However, this does not promote user learning—EEG patterns for BCI commands 
actually became less separable with practice rather than improving [115]. True 
mutual learning, where decoder and user learn from each other, seems to require 
slow decoder adaptation to promote improved EEG features [116] as seen in 
several longitudinal studies [117].  

Mutual learning implies cortical plasticity and the BCI use as a 
neurorehabilitation tool specifically designed to support plasticity (i.e., user 
learning).  A clinical trial in patients with severe hand plegia from stroke compared 
the effect of BCI-operated vs random functional electrical stimulation. Only the BCI 
group had significant and clinically important functional improvement and a 
significant increase of functional connectivity in the damaged sensorimotor 
hemisphere [118]. Regulation of the magnitude of the required EEG response was 
critical to keep the patient’s attention high and promote recovery.  

Hybrid BCIs (HBCIs) integrate brain and non-brain data sources with different 
classifiers schemes (serial, parallel, mixed) to achieve better results [119]. Thus, 
neuroplasticity can happen in multiple dimensions and temporal scales. Different 
learning times are associated with different physiological systems such as 
autonomic learning (heart/breath adaptation) [120, 121], motor learning (agency 
and control refinement) [122, 123], central learning (cortical adaptations) [124], and 
cognitive learning (embodiment, ownership and spatial perception) [125]. HBCIs 
therefore present a more complex challenge for balancing classifier adaptation rate 
vs. neural plasticity.  

Adaptive BCIs also exist for non-motor applications. The hybrid Adaptive 
Decision Making system was designed for a patient with complete locked-in 
syndrome (CLIS) and uses multiple EEG features (Granger causality, the 
imaginary part of the coherency, and multiscale sample entropy) to increase the 
probability of correctly evaluating consciousness level [126]. Caregiver 
observations regarding the patient’s state were input into the machine learning 
system to personalised consciousness level estimation. An adaptive speech BCI 
application illustrates the risk of audio contamination of neuronal activity recordings 
[127]. 

Group discussion placed a priority on developing better understanding of co-
adaptation from both theoretical and experimental viewpoints to optimize BCI 
training and user benefit. 
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learning conference, would be well suited for realizing a fair comparison of 
competing decoding architectures (e.g., https://beetl.ai/). 

The workshop participants then considered which issues prevent, at least so 
far, AI methods from revolutionizing BCI systems in the same way they have 
already transformed other data-driven applications. The primary bottleneck 
identified in the discussion was the absence of large-scale datasets in the field of 
BCI. These datasets would ideally comprise thousands or even millions of BCI 
users from heterogeneous settings, i.e., including numerous experimental 
paradigms, recording setups, and user groups. While the workshop participants 
acknowledged the efforts of the BCI community to record large-scale datasets 
[102], they also noted that collecting datasets on a similar scale as those available 
in other scientific disciplines [103] is probably beyond the capabilities of the 
academic community. Consequently, the discussion shifted to the role of 
commercial BCI applications in recording and providing access to large-scale 
datasets. Several consumer EEG headsets have reached market readiness with 
the expectation of prompt deployment in passive BCI applications[104]. 
Comprehensive access to data recorded by these applications could provide the 
large-scale datasets required to realize the full potential of AI-BCI systems. In 
particular, the heterogeneous nature of such data, which stands in contrast to the 
homogeneous data typically recorded in academic settings, could be considered 
an advantage.  The diversity of data might be leveraged to create feature 
representations that are user- as well as hardware-independent. Such feature 
representations would be essential to realize zero-training BCIs for commercial 
applications [105-107]. 

However, leveraging commercially recorded EEG datasets poses significant 
practical, legal, and ethical challenges. It is unclear what incentives companies 
would have to share their data publicly. Also, procedures would have to be 
developed that realize informed consent and honor data privacy regulations. The 
workshop participants considered an active engagement of the BCI community 
with industrial partners essential to make large-scale datasets a reality and realize 
the full potential of AI-BCI systems. 
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BCI decoders calibrated in an open-loop, offline paradigm but then applied in 

close-loop, online paradigm show a significant drop in decoding performance. 
Adaptive algorithms in a close-loop session decrease this shortcoming by directly 
adjusting BCI parameters to incoming data. In addition, both the user and machine 
learn in a closed-loop BCI.  

Closed-loop paradigms are often applied to BCIs that decode motor signals.  
Intracranial ECoG [108, 109] from a participant with tetraplegia was decoded with a 
fully adaptive decoder to operate a 4-limb exoskeleton. The decoder used an 

 

 

adaptive Markov mixture of multilinear experts [110] to switch between 
independent decoders (experts) to interpret multiple degrees of freedom.   

Closed-loop paradigms enable user/decoder co-adaptation to maximize 
performance through synergistic user-machine interactions between the two 
learners [e.g., 111]. However, learning trajectory models are needed to optimize 
these co-adaptive systems. A new game-theoretic model of co-adaptation [112] 
provides a framework to analyze system equilibria and predicts learning 
trajectories, but requires validation. 

The balance of decoder vs patient adaptation is important. EEG-based motor 
BCIs illustrate the pros and cons of extensive machine-learning adaptation. Non-
supervised context-aware algorithms can rapidly adapt so users can use a 
language model-based speller [113] without a calibration phase [114, 115]. 
However, this does not promote user learning—EEG patterns for BCI commands 
actually became less separable with practice rather than improving [115]. True 
mutual learning, where decoder and user learn from each other, seems to require 
slow decoder adaptation to promote improved EEG features [116] as seen in 
several longitudinal studies [117].  

Mutual learning implies cortical plasticity and the BCI use as a 
neurorehabilitation tool specifically designed to support plasticity (i.e., user 
learning).  A clinical trial in patients with severe hand plegia from stroke compared 
the effect of BCI-operated vs random functional electrical stimulation. Only the BCI 
group had significant and clinically important functional improvement and a 
significant increase of functional connectivity in the damaged sensorimotor 
hemisphere [118]. Regulation of the magnitude of the required EEG response was 
critical to keep the patient’s attention high and promote recovery.  

Hybrid BCIs (HBCIs) integrate brain and non-brain data sources with different 
classifiers schemes (serial, parallel, mixed) to achieve better results [119]. Thus, 
neuroplasticity can happen in multiple dimensions and temporal scales. Different 
learning times are associated with different physiological systems such as 
autonomic learning (heart/breath adaptation) [120, 121], motor learning (agency 
and control refinement) [122, 123], central learning (cortical adaptations) [124], and 
cognitive learning (embodiment, ownership and spatial perception) [125]. HBCIs 
therefore present a more complex challenge for balancing classifier adaptation rate 
vs. neural plasticity.  

Adaptive BCIs also exist for non-motor applications. The hybrid Adaptive 
Decision Making system was designed for a patient with complete locked-in 
syndrome (CLIS) and uses multiple EEG features (Granger causality, the 
imaginary part of the coherency, and multiscale sample entropy) to increase the 
probability of correctly evaluating consciousness level [126]. Caregiver 
observations regarding the patient’s state were input into the machine learning 
system to personalised consciousness level estimation. An adaptive speech BCI 
application illustrates the risk of audio contamination of neuronal activity recordings 
[127]. 

Group discussion placed a priority on developing better understanding of co-
adaptation from both theoretical and experimental viewpoints to optimize BCI 
training and user benefit. 
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Optimising BCI performance by integrating information on the user's 
internal state 
Organizer: Sebastian Halder (University of Essex) 
Additional Presenters: Philipp Ziebell, University of Würzburg), Angela Riccio (Fondazione Santa Lucia), 
Yiyuan Han (University of Essex)  

 
Ideally, a BCI could detect the physical and mental state of the user and adapt 

accordingly to allow optimal BCI control for both unimpaired and motor impaired 
end-users. This adaptation could (1) determine when to start, pause or stop a BCI 
session, (2) adapt parameters of the BCI session such as trial length, stimulus and 
feedback modality or (3) switch between BCI and other assistive technology types. 
User-centered design (UCD) is critical to optimize BCI control in this manner [128]. 
In general terms, an assistive technology should enable a person with a disability 
to overcome barriers in daily life, education, work, or leisure [129]. This can only be 
achieved if the needs and requirements of the user are investigated [130, 131]. 
Regarding BCI design, the cognitive [132-134] and physical [135, 136] 
characteristics of end-users need to be considered [132, 133]. Based on this 
knowledge, we can implement a system that adapts to the internal state of the 
user.  

The UCD evaluation process is built around metrics to determine effectiveness 
(accuracy in percent of correct responses), efficiency (information transfer rate in 
bits/min and subjective workload) and satisfaction (via visual analogue scale, 
questionnaire, or user interview) [137, 138]. These metrics should also inform 
earlier stage BCI development before end-user evaluation [139, 140]. Further 
factors should be considered when designing the BCI paradigm, for instance, the 
design of tasks, feedback, instructions, and signal processing [86, 141-143]. 
Performance may improve via engaging task design (e.g., a “Star Wars Mission” 
task) and exploring different stimulus modalities (such as auditory and tactile) and 
better understanding of the mechanisms underlying training with a BCI [140, 144]. 

User characteristics ranging from physiological (e.g., the amplitude of the 
sensorimotor rhythm during rest [145]) to psychological (e.g., the ability to 
concentrate [132, 146]) can influence performance in varying degrees. For 
example, a user with a traumatic brain injury may be in a minimally conscious state 
with only transient windows of consciousness [147, 148]. Identifying such windows 
is an undeniable prerequisite to BCI control [149]. Evaluation of the efficacy of such 
measures and any new measures that will be developed can be accomplished 
during pharmacologically induced loss of consciousness such as the Wada test 
[150]. More subtle influences on BCI control may arise due to mood and 
motivation, fatigue and workload or whether the user is experiencing pain, which 
can be detected using integrative features such as phase-based connectivity [151-
153]. Ideally, the BCI could adapt to all changes in the users’ state. Doing this 
efficiently requires knowledge of features in the EEG (or other signals) that reflect 
the state of the user.  

Many challenges must be resolved before the full potential of the state of the 
user can be reliably used to optimize BCI performance. The main challenge comes 
from the variety of states that need to be decoded, each requiring the identification 

 

 

of signal features that reflect these states, and integrating real-time identification of 
the states into the BCI design and usage environment. 

BCIs for Specific Populations or Applications 

The design of effective BCIs for children 
Organizers: James J.S. Norton (National Center for Adaptive Neurotechnologies), Disha Gupta (National 
Center for Adaptive Neurotechnologies), Eli Kinney-Lang (University of Calgary) 
Additional Presenters: Kim Adams (University of Alberta), Tom Chau (University of Toronto), Erica Floreani 
(University of Calgary), Kathleen M. Friel (Burke Neurological Institute), Dion Kelly (University of Calgary), 
Adam Kirton (University of Calgary), Ilyas Sadybekov (University of Calgary), Corinne Tuck (Glenrose 
Rehabilitation Hospital-I CAN Centre) 

 
BCIs have the potential to enhance, restore, or replace function in children with 

neurodevelopmental disorders, neurodegenerative disorders, and severe motor 
disabilities caused by stroke, spinal cord injury, or other acquired injuries [154-
157]. However, few studies have investigated BCIs for children [158-161] and 
these studies show conflicting results; it remains unclear whether children—
especially those with neurological disabilities—can effectively use BCIs. Thus, this 
workshop was organized into three discussion panels that: 

1. Examined how BCIs can improve children’s quality-of-life –Children can 
use BCIs to [162] communicate, play games, and express themselves 
creatively. The greatest benefit BCIs offer children with motor disabilities is a 
sense of control, motivating children to engage more with BCIs and enabling 
them to practice repetitive tasks that lead to learning. Thus, the child’s 
perception of a successful BCI may not match that of a researcher.  For 
example, operating a BCI using a combination of brain activity and artifacts 
may improve the child’s life and be considered a success from the child’s 
perspective.  Therefore, special consideration is needed to simultaneously 
engage children in activities that are educational, therapeutic, meet the 
goals of researchers, and are engaging for the children. Recommended 
strategies are gamification [163-167] and close interdisciplinary 
collaboration between diverse experts.  

2. Discussed the interfacing, signal-processing, and physiological 
challenges encountered during the design of BCIs for kids – 
Developing BCIs for children presents unique signal acquisition, data 
analysis, and reporting challenges [154]. Signal acquisition hardware for 
pediatric BCIs needs to be more portable, lighter, more comfortable, and 
easier to use (e.g., faster setup, dry electrodes, robust to artifacts). 
Presently only a few signal analysis pipelines exist for pediatric BCIs [168, 
169], due in part to differences in the EEG from children compared to adults 
[170]. For example, P300 timing varies more in children and BCIs may be 
more fatiguing for children. Improved and consistent reporting of 
demographic information and experimental details would allow for better 
cross-study analyses. Lastly, improved user interfaces are an area of critical 
need for pediatric BCIs. 
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Ideally, a BCI could detect the physical and mental state of the user and adapt 

accordingly to allow optimal BCI control for both unimpaired and motor impaired 
end-users. This adaptation could (1) determine when to start, pause or stop a BCI 
session, (2) adapt parameters of the BCI session such as trial length, stimulus and 
feedback modality or (3) switch between BCI and other assistive technology types. 
User-centered design (UCD) is critical to optimize BCI control in this manner [128]. 
In general terms, an assistive technology should enable a person with a disability 
to overcome barriers in daily life, education, work, or leisure [129]. This can only be 
achieved if the needs and requirements of the user are investigated [130, 131]. 
Regarding BCI design, the cognitive [132-134] and physical [135, 136] 
characteristics of end-users need to be considered [132, 133]. Based on this 
knowledge, we can implement a system that adapts to the internal state of the 
user.  

The UCD evaluation process is built around metrics to determine effectiveness 
(accuracy in percent of correct responses), efficiency (information transfer rate in 
bits/min and subjective workload) and satisfaction (via visual analogue scale, 
questionnaire, or user interview) [137, 138]. These metrics should also inform 
earlier stage BCI development before end-user evaluation [139, 140]. Further 
factors should be considered when designing the BCI paradigm, for instance, the 
design of tasks, feedback, instructions, and signal processing [86, 141-143]. 
Performance may improve via engaging task design (e.g., a “Star Wars Mission” 
task) and exploring different stimulus modalities (such as auditory and tactile) and 
better understanding of the mechanisms underlying training with a BCI [140, 144]. 

User characteristics ranging from physiological (e.g., the amplitude of the 
sensorimotor rhythm during rest [145]) to psychological (e.g., the ability to 
concentrate [132, 146]) can influence performance in varying degrees. For 
example, a user with a traumatic brain injury may be in a minimally conscious state 
with only transient windows of consciousness [147, 148]. Identifying such windows 
is an undeniable prerequisite to BCI control [149]. Evaluation of the efficacy of such 
measures and any new measures that will be developed can be accomplished 
during pharmacologically induced loss of consciousness such as the Wada test 
[150]. More subtle influences on BCI control may arise due to mood and 
motivation, fatigue and workload or whether the user is experiencing pain, which 
can be detected using integrative features such as phase-based connectivity [151-
153]. Ideally, the BCI could adapt to all changes in the users’ state. Doing this 
efficiently requires knowledge of features in the EEG (or other signals) that reflect 
the state of the user.  

Many challenges must be resolved before the full potential of the state of the 
user can be reliably used to optimize BCI performance. The main challenge comes 
from the variety of states that need to be decoded, each requiring the identification 

 

 

of signal features that reflect these states, and integrating real-time identification of 
the states into the BCI design and usage environment. 

BCIs for Specific Populations or Applications 

The design of effective BCIs for children 
Organizers: James J.S. Norton (National Center for Adaptive Neurotechnologies), Disha Gupta (National 
Center for Adaptive Neurotechnologies), Eli Kinney-Lang (University of Calgary) 
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Rehabilitation Hospital-I CAN Centre) 

 
BCIs have the potential to enhance, restore, or replace function in children with 

neurodevelopmental disorders, neurodegenerative disorders, and severe motor 
disabilities caused by stroke, spinal cord injury, or other acquired injuries [154-
157]. However, few studies have investigated BCIs for children [158-161] and 
these studies show conflicting results; it remains unclear whether children—
especially those with neurological disabilities—can effectively use BCIs. Thus, this 
workshop was organized into three discussion panels that: 

1. Examined how BCIs can improve children’s quality-of-life –Children can 
use BCIs to [162] communicate, play games, and express themselves 
creatively. The greatest benefit BCIs offer children with motor disabilities is a 
sense of control, motivating children to engage more with BCIs and enabling 
them to practice repetitive tasks that lead to learning. Thus, the child’s 
perception of a successful BCI may not match that of a researcher.  For 
example, operating a BCI using a combination of brain activity and artifacts 
may improve the child’s life and be considered a success from the child’s 
perspective.  Therefore, special consideration is needed to simultaneously 
engage children in activities that are educational, therapeutic, meet the 
goals of researchers, and are engaging for the children. Recommended 
strategies are gamification [163-167] and close interdisciplinary 
collaboration between diverse experts.  

2. Discussed the interfacing, signal-processing, and physiological 
challenges encountered during the design of BCIs for kids – 
Developing BCIs for children presents unique signal acquisition, data 
analysis, and reporting challenges [154]. Signal acquisition hardware for 
pediatric BCIs needs to be more portable, lighter, more comfortable, and 
easier to use (e.g., faster setup, dry electrodes, robust to artifacts). 
Presently only a few signal analysis pipelines exist for pediatric BCIs [168, 
169], due in part to differences in the EEG from children compared to adults 
[170]. For example, P300 timing varies more in children and BCIs may be 
more fatiguing for children. Improved and consistent reporting of 
demographic information and experimental details would allow for better 
cross-study analyses. Lastly, improved user interfaces are an area of critical 
need for pediatric BCIs. 
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3. Considered the use of BCIs for children as augmentative and alternative 
communication devices and for rehabilitation in clinical settings – The 
design of BCIs for communication and rehabilitation in children benefits from 
a patient-centered and neurologic deficit specific approach [161, 171]. For 
example, many children express an interest in using BCIs for gaming and 
social play. Collaborative and competitive interactions between family 
members, and especially siblings, are a critical social outlet for children with 
motor deficits that motivate them to use BCIs. Neurological deficits may be 
caused by damage to small areas of the brain that were acquired very early 
in life. Thus, the brain may reorganize and researchers should work with 
clinicians to consider neuroplasticity in the design of BCIs for children [172, 
173]. In addition, working with clinicians and families will increase 
awareness of the potential of BCIs for children [174].  

As members of the pediatric BCI community, we must put children first, 
understand what children want out of BCIs, and make it happen.  

  
 

Non-invasive BCIs for people with cerebral palsy 
Organizer:  Jane E. Huggins (University of Michigan) 
Additional Presenters: Katya Hill (University of Pittsburgh), Petra Karlsson (Cerebral Palsy Alliance, 
University of Sydney), Reinhold Scherer (University of Essex) 

 
This workshop included extensive discussion about BCI design considerations 

for people with cerebral palsy (CP), the most common childhood physical disability 
[175].  CP is caused by injury or genetic abnormalities affecting the brain early in 
life leading to 15-19% without a communication method even with assistive 
technology [176-179]. However, BCIs that provide augmentative and alternative 
communication (AAC) for individuals with adult-onset impairments may 
unintentionally rely on skills that people with CP have not had an opportunity to 
learn.  

Issues from the workshop Design of Effective BCIs for Children apply to 
children and adults with CP because of missed educational opportunities.  Even 
those who have successful communication technology may need a BCI as age 
increases the severity of motor impairments. This makes BCI a competitive access 
option. For example, a participant with CP had similar communication rates on an 
AAC device with head-pointer access (1.33 words-per-minute, wpm) and BCI 
access (1.29 wpm).   

Overall, BCI studies with people with CP show mixed results [162, 180, 181].  
Some comparisons of BCI designs showed that SSVEP and SMR designs were 
preferred to the P300 design and had better performance [181]. Other comparisons 
of naïve users showed that some had significant SMR-BCI control (2 classes, 
82±12%), others significant SSVEP-BCI control (4 classes, 43±7%), but few could 
use both and some could not use any BCI [182, 183].   

Such results raise the specter that current BCI methods may not be appropriate 
for people with CP.  If a person has no voluntary motor control, can they operate a 

 

 

motor imagery BCI?  Can people with limited access to schooling count flashes of 
a P300 BCI or perform mental arithmetic or spatial navigation?    

EEG recordings are complicated in people with CP due to head shape 
variations or improper electrode cap fit [184, 185] as head asymmetry is reported 
among 40% of people with the most severe impairments from CP [186] and 
microcephaly at 30% [187] to 60% [188]. Abnormal neuroanatomy can also cause 
unusual localization of cortical function [189]. The impact on BCI is uncertain, but 
people with severe CP can benefit from individualized electrode locations [184, 
190].  

Extraneous movements, which are common [191], can also create EEG 
artifacts [e.g., [182]] and may make it difficult to focus on the BCI display. Further, 
gaze or visual impairments including ptosis (drooping) of the eye lid, nystagmus, 
and cerebral visual impairment (CVI) can lead to difficulty interpreting visual stimuli 
[192]for an SSVEP or P300 BCI device or visual feedback for an SMR BCI.  Thus, 
special care is needed to understand how well the user can interpret visually 
presented information.  

Indeed, user-centered design is important throughout BCI design and user 
training. Acclimation regimes may be needed with step-by-step introduction of 
individual BCI concepts.  Family interactions, cooperation, and competition can 
increase motivation and engagement, which are essential for learning, but not a 
guarantor of good performance [193]. These factors are crucial as people with CP 
may have a long history of unsuccessful attempts to operate technology. Thus, the 
ideal BCI would be calibrated without the user following instructions, have intuitive 
operation and be inherently engaging.  In addition, systems should build on familiar 
concepts, such as row-column scanning, to simplify the transition from calibration 
to end-use [183].   

Ultimately, we need improved understanding of the effect of CP on EEG, user-
centered design to match the BCI to the interest and needs of individual users, and 
user-tailored training paradigms.  Finally, it is vital to recognize that for children 
with congenital disabilities, technology use and even communication itself, are 
skills that must be taught.    

    
 

From Speech Decoding to Speech Neuroprostheses 
Organizer: Christian Herff (Maastricht University) and Sergey Stavisky (University of California, Davis)  
Additional Presenters: Jon Brumberg (Kansas University), Phil Kennedy (Neural Signals Inc.), Miguel 
Angrick (University of Bremen), Julia Berezutskaya (Radboud University), Qinwan Rabbani (Johns Hopkins 
University) 

 
Despite impressive recent results in decoding speech from neural recordings, 

there remain many challenges to achieving a real-time, large-vocabulary BCI for 
restoring lost speech. In this workshop, five of these challenges, and potential 
solutions, were discussed. 

First, existing speech decoding demonstrations have not yet achieved 
consistently intelligible outputs. Multiple groups presented new decoding 
architectures, including recurrent neural networks and GANs. Workshop 
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3. Considered the use of BCIs for children as augmentative and alternative 
communication devices and for rehabilitation in clinical settings – The 
design of BCIs for communication and rehabilitation in children benefits from 
a patient-centered and neurologic deficit specific approach [161, 171]. For 
example, many children express an interest in using BCIs for gaming and 
social play. Collaborative and competitive interactions between family 
members, and especially siblings, are a critical social outlet for children with 
motor deficits that motivate them to use BCIs. Neurological deficits may be 
caused by damage to small areas of the brain that were acquired very early 
in life. Thus, the brain may reorganize and researchers should work with 
clinicians to consider neuroplasticity in the design of BCIs for children [172, 
173]. In addition, working with clinicians and families will increase 
awareness of the potential of BCIs for children [174].  

As members of the pediatric BCI community, we must put children first, 
understand what children want out of BCIs, and make it happen.  

  
 

Non-invasive BCIs for people with cerebral palsy 
Organizer:  Jane E. Huggins (University of Michigan) 
Additional Presenters: Katya Hill (University of Pittsburgh), Petra Karlsson (Cerebral Palsy Alliance, 
University of Sydney), Reinhold Scherer (University of Essex) 
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technology [176-179]. However, BCIs that provide augmentative and alternative 
communication (AAC) for individuals with adult-onset impairments may 
unintentionally rely on skills that people with CP have not had an opportunity to 
learn.  

Issues from the workshop Design of Effective BCIs for Children apply to 
children and adults with CP because of missed educational opportunities.  Even 
those who have successful communication technology may need a BCI as age 
increases the severity of motor impairments. This makes BCI a competitive access 
option. For example, a participant with CP had similar communication rates on an 
AAC device with head-pointer access (1.33 words-per-minute, wpm) and BCI 
access (1.29 wpm).   

Overall, BCI studies with people with CP show mixed results [162, 180, 181].  
Some comparisons of BCI designs showed that SSVEP and SMR designs were 
preferred to the P300 design and had better performance [181]. Other comparisons 
of naïve users showed that some had significant SMR-BCI control (2 classes, 
82±12%), others significant SSVEP-BCI control (4 classes, 43±7%), but few could 
use both and some could not use any BCI [182, 183].   

Such results raise the specter that current BCI methods may not be appropriate 
for people with CP.  If a person has no voluntary motor control, can they operate a 

 

 

motor imagery BCI?  Can people with limited access to schooling count flashes of 
a P300 BCI or perform mental arithmetic or spatial navigation?    

EEG recordings are complicated in people with CP due to head shape 
variations or improper electrode cap fit [184, 185] as head asymmetry is reported 
among 40% of people with the most severe impairments from CP [186] and 
microcephaly at 30% [187] to 60% [188]. Abnormal neuroanatomy can also cause 
unusual localization of cortical function [189]. The impact on BCI is uncertain, but 
people with severe CP can benefit from individualized electrode locations [184, 
190].  

Extraneous movements, which are common [191], can also create EEG 
artifacts [e.g., [182]] and may make it difficult to focus on the BCI display. Further, 
gaze or visual impairments including ptosis (drooping) of the eye lid, nystagmus, 
and cerebral visual impairment (CVI) can lead to difficulty interpreting visual stimuli 
[192]for an SSVEP or P300 BCI device or visual feedback for an SMR BCI.  Thus, 
special care is needed to understand how well the user can interpret visually 
presented information.  

Indeed, user-centered design is important throughout BCI design and user 
training. Acclimation regimes may be needed with step-by-step introduction of 
individual BCI concepts.  Family interactions, cooperation, and competition can 
increase motivation and engagement, which are essential for learning, but not a 
guarantor of good performance [193]. These factors are crucial as people with CP 
may have a long history of unsuccessful attempts to operate technology. Thus, the 
ideal BCI would be calibrated without the user following instructions, have intuitive 
operation and be inherently engaging.  In addition, systems should build on familiar 
concepts, such as row-column scanning, to simplify the transition from calibration 
to end-use [183].   

Ultimately, we need improved understanding of the effect of CP on EEG, user-
centered design to match the BCI to the interest and needs of individual users, and 
user-tailored training paradigms.  Finally, it is vital to recognize that for children 
with congenital disabilities, technology use and even communication itself, are 
skills that must be taught.    
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Despite impressive recent results in decoding speech from neural recordings, 

there remain many challenges to achieving a real-time, large-vocabulary BCI for 
restoring lost speech. In this workshop, five of these challenges, and potential 
solutions, were discussed. 

First, existing speech decoding demonstrations have not yet achieved 
consistently intelligible outputs. Multiple groups presented new decoding 
architectures, including recurrent neural networks and GANs. Workshop 
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participants agreed that these modern machine learning approaches should benefit 
from additional data in future studies, and noted that all of the work presented used 
less than 20 minutes of neural recordings. Further, their performance did not 
saturate with training data quantity subsampled within these limited datasets. 

A second challenge is how to obtain highly informative neural correlates about 
speech intent. Previous research almost exclusively relied on ECoG signals, which 
are not regularly used for long-term measurement. However, high-quality speech 
decoding and synthesis can also be achieved using penetrating microarrays 
implanted in the dorsal motor cortex [194], even though that area is not typically 
associated with speech production [195]. These Utah arrays have been used for 
multiple-year recordings in a number of participants and achieved high 
performance in, e.g., online decoding of attempted handwriting in people with 
tetraplegia [196] or speech perception decoding [197]. Alternatively, stereotactic 
EEG, which is very similar to Deep Brain Stimulation electrodes [198] that routinely 
remain implanted for decades, was proposed for high-quality speech synthesis. 
The neurotrophic electrode, an entirely different type of electrode with good long-
term potential [199], was also proposed for speech neuroprosthesis [200]. 

Third, a functioning neuroprosthesis needs to generate or decode speech in or 
near real-time [45]. However, previous studies demonstrating speech synthesis 
[44, 201] or speech recognition [202, 203] from ECoG data have primarily (except 
for [204, 205]) been done offline on previously recorded overt or whispered 
speech. Approaches that process and decode intracranial EEG in real-time will 
provide direct feedback to the patient. This has been done using imagined speech 
processes [206], building on prior work such as [207]. Recent progress towards a 
low latency (250 ms) ECoG speech synthesis pipeline shows proof-of-concept 
open-loop results. A non-invasive EEG neuroprosthesis based on an artificial vocal 
tract model [207] provides auditory and visual feedback to the user and might 
therefore help train speech neuroprosthesis users and pilot online speech BCI 
methods. 

Fourth, the field would benefit from better speech synthesis performance 
metrics. Recent works typically uses variants on measuring correlation between 
true and decoded audio (e.g. for spectral or pitch features), which are poor proxies 
for intelligibility. Workshop participants agreed that adopting subjective intelligibility 
metrics is important, but this may need to wait until decoding performance is good 
enough for these metrics to become relevant (or else they will suffer from floor 
effects). 

Fifth, all presenters agreed that data sharing is key to accelerating progress. 
One recently shared large dataset of speech perception in fMRI, ECoG, and sEEG, 
along with the associated impressive reconstruction quality provides the public 
research community with a fully annotated dataset [208]. 

 

Brain-computer interfaces for the assessment of patients with disorders 
of consciousness 
Organizer: Christoph Guger (g.tec Guger Technologies OG)  
Additional Presenters:  Damien Coyle, (Ulster University), Kyousuke Kamada, (Hokashin Group Megumino 
Hospital), Rossella Spataro, (University of Palermo), Jing Jin, (East China University), Steven Laureys, (Brain 

 

 

Centre & GIGA Consciousness, Coma Science Group, University and University Hospital of of Liege, Belgium; 
International Disorders of Consciousness Institute, Hangzhou Normal University, China; CERVO Brain 
Research, U Laval) 

 
Bedside evaluation to assess conscious awareness after coma requires 

inferences based on patients’ motor responsiveness [209] with limited diagnostic 
precision and prognostic information, increasing the ethical difficulty of decisions 
on life-prolonging therapies. Technologies such as functional neuroimaging and 
BCIs provide objective tools for diagnostic, prognostic and therapeutic purposes 
[210]. About two thirds of patients clinically diagnosed with “unresponsive 
wakefulness syndrome (UWS)” (or “persistent vegetative state”) may show residual 
brain activity in PET studies [211] and are hence actually in a minimally conscious 
state (MCS) with a better chance of recovery.  

BCIs can help reduce the diagnostic and prognostic uncertainty of both acute 
and chronic disorders of consciousness [212, 213].  BCI should first be used to 
establish a reliable and reproducible response to a simple command.  Then one 
can attempt functional communication with simple yes/no questions and eventually 
spelling or message creation [212, 213].  The mindBEAGLE (g.tec medical 
enginering GmbH ) uses auditory P300, vibro-tactile P300 and motor imagery 
paradigms for these steps and rehabilitation protocols. Paradigms include a quick 
(2-8 minute) system calibration or patient assessment. Other BCI systems have 
also been designed for this purpose, including using auditory sensorimotor rhythm 
feedback for those with visual impairments [214, 215].  

BCI assessment of DOC with locked-in and completely locked-in patients found 
9 out of 12 patients could demonstrate command following by answering  YES/NO 
questions [216]. Building on the pilot of 15 patients reported in [215], the workshop 
reported an update with 25 patients who each participated in 10, one-hour motor 
imagery BCI sessions. Of these, 5/9 UWS, 7/11 MCS, and 3/4 locked-in syndrome 
demonstrated significant capacity to modulate brain activity in stage I (assessment) 
and progressed to stage II/III (auditory feedback training and Q&A response).  All 
participants in stage II/III responded significantly to YES/NO questions. Another 
study with unresponsive patients showed 3 out of 12 patients could successfully 
answer the YES/NO questions on some assessment days [217], showing that 
these patients have fluctuations in consciousness that can be detected by BCI 
systems.   

BCIs can also help predict eventual recovery. Auditory P300 and vibro-tactile 
P300 provided a predictor of functional recovery for two patients with DOC. One 
patient did not show any auditory P300 or vibro-tactile P300 after three weeks and 
coma continued for more than 6 months. A second patient responded to auditory 
P300 and vibro-tactile P300 and after 6 months had recovered from coma and 
understood verbal commands. Such patients may benefit not only from BCI 
assessment, but also from BCI-based rehabilitation [218]. Longitudinal observation 
of 12 DOC patients showed that achieving mindBEAGLE classification accuracy of 
at least 50% predicts recovery of behavioural responsiveness (after six months) as 
measured by the coma-recovery scale revised (CRS-R) [219]. Moreover, 12 of 20 
patients showed CRS-R score improvement after 10 sessions of a vibrotactile 
stimulation protocol [218]. 
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participants agreed that these modern machine learning approaches should benefit 
from additional data in future studies, and noted that all of the work presented used 
less than 20 minutes of neural recordings. Further, their performance did not 
saturate with training data quantity subsampled within these limited datasets. 

A second challenge is how to obtain highly informative neural correlates about 
speech intent. Previous research almost exclusively relied on ECoG signals, which 
are not regularly used for long-term measurement. However, high-quality speech 
decoding and synthesis can also be achieved using penetrating microarrays 
implanted in the dorsal motor cortex [194], even though that area is not typically 
associated with speech production [195]. These Utah arrays have been used for 
multiple-year recordings in a number of participants and achieved high 
performance in, e.g., online decoding of attempted handwriting in people with 
tetraplegia [196] or speech perception decoding [197]. Alternatively, stereotactic 
EEG, which is very similar to Deep Brain Stimulation electrodes [198] that routinely 
remain implanted for decades, was proposed for high-quality speech synthesis. 
The neurotrophic electrode, an entirely different type of electrode with good long-
term potential [199], was also proposed for speech neuroprosthesis [200]. 

Third, a functioning neuroprosthesis needs to generate or decode speech in or 
near real-time [45]. However, previous studies demonstrating speech synthesis 
[44, 201] or speech recognition [202, 203] from ECoG data have primarily (except 
for [204, 205]) been done offline on previously recorded overt or whispered 
speech. Approaches that process and decode intracranial EEG in real-time will 
provide direct feedback to the patient. This has been done using imagined speech 
processes [206], building on prior work such as [207]. Recent progress towards a 
low latency (250 ms) ECoG speech synthesis pipeline shows proof-of-concept 
open-loop results. A non-invasive EEG neuroprosthesis based on an artificial vocal 
tract model [207] provides auditory and visual feedback to the user and might 
therefore help train speech neuroprosthesis users and pilot online speech BCI 
methods. 

Fourth, the field would benefit from better speech synthesis performance 
metrics. Recent works typically uses variants on measuring correlation between 
true and decoded audio (e.g. for spectral or pitch features), which are poor proxies 
for intelligibility. Workshop participants agreed that adopting subjective intelligibility 
metrics is important, but this may need to wait until decoding performance is good 
enough for these metrics to become relevant (or else they will suffer from floor 
effects). 

Fifth, all presenters agreed that data sharing is key to accelerating progress. 
One recently shared large dataset of speech perception in fMRI, ECoG, and sEEG, 
along with the associated impressive reconstruction quality provides the public 
research community with a fully annotated dataset [208]. 
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Bedside evaluation to assess conscious awareness after coma requires 

inferences based on patients’ motor responsiveness [209] with limited diagnostic 
precision and prognostic information, increasing the ethical difficulty of decisions 
on life-prolonging therapies. Technologies such as functional neuroimaging and 
BCIs provide objective tools for diagnostic, prognostic and therapeutic purposes 
[210]. About two thirds of patients clinically diagnosed with “unresponsive 
wakefulness syndrome (UWS)” (or “persistent vegetative state”) may show residual 
brain activity in PET studies [211] and are hence actually in a minimally conscious 
state (MCS) with a better chance of recovery.  

BCIs can help reduce the diagnostic and prognostic uncertainty of both acute 
and chronic disorders of consciousness [212, 213].  BCI should first be used to 
establish a reliable and reproducible response to a simple command.  Then one 
can attempt functional communication with simple yes/no questions and eventually 
spelling or message creation [212, 213].  The mindBEAGLE (g.tec medical 
enginering GmbH ) uses auditory P300, vibro-tactile P300 and motor imagery 
paradigms for these steps and rehabilitation protocols. Paradigms include a quick 
(2-8 minute) system calibration or patient assessment. Other BCI systems have 
also been designed for this purpose, including using auditory sensorimotor rhythm 
feedback for those with visual impairments [214, 215].  

BCI assessment of DOC with locked-in and completely locked-in patients found 
9 out of 12 patients could demonstrate command following by answering  YES/NO 
questions [216]. Building on the pilot of 15 patients reported in [215], the workshop 
reported an update with 25 patients who each participated in 10, one-hour motor 
imagery BCI sessions. Of these, 5/9 UWS, 7/11 MCS, and 3/4 locked-in syndrome 
demonstrated significant capacity to modulate brain activity in stage I (assessment) 
and progressed to stage II/III (auditory feedback training and Q&A response).  All 
participants in stage II/III responded significantly to YES/NO questions. Another 
study with unresponsive patients showed 3 out of 12 patients could successfully 
answer the YES/NO questions on some assessment days [217], showing that 
these patients have fluctuations in consciousness that can be detected by BCI 
systems.   

BCIs can also help predict eventual recovery. Auditory P300 and vibro-tactile 
P300 provided a predictor of functional recovery for two patients with DOC. One 
patient did not show any auditory P300 or vibro-tactile P300 after three weeks and 
coma continued for more than 6 months. A second patient responded to auditory 
P300 and vibro-tactile P300 and after 6 months had recovered from coma and 
understood verbal commands. Such patients may benefit not only from BCI 
assessment, but also from BCI-based rehabilitation [218]. Longitudinal observation 
of 12 DOC patients showed that achieving mindBEAGLE classification accuracy of 
at least 50% predicts recovery of behavioural responsiveness (after six months) as 
measured by the coma-recovery scale revised (CRS-R) [219]. Moreover, 12 of 20 
patients showed CRS-R score improvement after 10 sessions of a vibrotactile 
stimulation protocol [218]. 
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BCI can also evaluate the effectiveness of other treatments for arousing DOC 
patients by analyzing EEG recorded during mental tasks before and after 
intervention.  BCI methods have been used to assess the effectiveness of spinal 
cord stimulation and deep brain stimulation surgeries in arousing vegetative 
patients. Auditory, vibro-tactile, or motor imagery-based BCI systems have been 
used to assess 5 unresponsive patients and 3 vegetative patients in this on-going 
study.  

BCIs are being cross-validated against neuroimaging techniques such as PET 
and fMRI [220]. The current challenge is to integrate BCIs with our increasing 
scientific understanding of recovery from severe brain injury to optimized the 
trajectory of clinical care after coma and improve the quality-of-life in disorders of 
consciousness and locked-in syndrome [221]. 

 

The promise of BCI-driven functional recovery after stroke: leveraging 
current evidence to define next steps 
Organizer: A Nicole Dusang (Brown University/Providence VA Medical Center/ Massachusetts General 
Hospital) 
Additional Presenters:  Murat Akcakaya (University of Pittsburgh); Febo Cincotti (Sapienza University); 
Cuntai Guan (Nanyang Technological University); Christoph Guger (g.tec medical engineering GmbH); 
Kyousuke Kamada (Asahikawa Medical University); David Lin (Massachusetts General Hospital/ Providence 
VA Medical Center); Donatella Mattia (Fondazione Santa Lucia IRCCS); José del R. Millán (University of 
Texas at Austin); Ander Ramos-Murguialday (University of Tübingen / TECNALIA Research and Innovation); 
Vivek Prabhakaran (University of Wisconsin-Madison); and George F. Wittenberg (Pittsburgh VA Healthcare 
System / University of Pittsburgh) 

 
Stroke is a leading cause of long-term disability worldwide, and 30–50% of 

stroke patients experience limited recovery. Rehabilitative EEG-BCIs are a 
promising neurotechnology for restoration of function after stroke. The hypothesis 
behind rehabilitative BCIs is that coupling neural activity with sensory feedback of 
limb movement induces cortical plasticity, improving functional recovery. This 
workshop featured twelve researchers developing rehabilitative EEG-BCIs for 
functional recovery from ten institutions around the globe. Presenters were split 
into two panels to consider how to translate this technology from the lab to the 
clinic. Randomized controlled trials (RCTs) have demonstrated the benefit of 
Rehabilitative EEG-BCIs, but employed diverse control methods, therapy doses, 
dosing intervals, and different types of neural dynamics and sensory feedback.  

 Panel 1 discussed optimal EEG-BCI support for stroke rehabilitation. Spatial 
neglect is an often overlooked deficit in stroke patients though it can significantly 
impact a patient’s response to therapeutic intervention [222]. Technology is needed 
to objectively map neglect, quantify changes during recovery, and provide a 
rehabilitation platform to target spatial neglect. Although BCI addresses a gap in 
standard neurorehabilitation medicine [223], it still lacks an American Heart 
Association (AHA) class and evidence rating. BCIs empirically measure the signals 
of the damaged cortex and patients’ functional disability during recovery. 
Rehabilitative EEG-BCIs restore the neural activity-functional output connection, 
supporting the retraining of neural activity. This is demonstrated by a RCT 
evaluating an EEG-BCI intervention for distal upper extremity function in a chronic 

 

 

stroke population [224]. Results showed 64% of participants made significant gains 
in both primary and secondary outcome measures.  

Panel 2 reflected on stakeholders’ needs for translating this promising 
technology to a clinical environment. Though RCTs have demonstrated the 
therapeutic efficacy of rehabilitative EEG-BCIs, commercialization requires clear 
clinical and economic benefit and reliable function within the rigors and 
environment of long-term clinical use. BCI-FES systems must address both 
patients’ and clinicians’ needs [118]. Patients need an effective and engaging 
rehabilitation platform, while clinicians require a plug-n-play system with remote 
technical assistance and joint analysis. Unanswered questions remain along the 
spectrum of basic research to patient care [225]. The field has yet to determine the 
optimal neural modalities or features for rehabilitative EEG-BCIs, resulting in 
significant feature extraction variability in current EEG-BCI platforms. Additionally, 
past and current RCTs employed diverse outcome measures since no measure is 
clearly best for capturing recovery. Further, stroke is itself a heterogeneous 
condition and much remains unknown about the relationship between the type and 
location of damage and resulting deficits. The RecoveriX system (Guger 
Technologies), a certified medical product, analyzes motor imagery to trigger FES 
for upper and /or lower limbs. RecoveriX has shown effectiveness for spasticity 
reduction and movement restoration in upper and lower limbs [226, 227]. 

Convincing clinicians, patients, and payers that Rehabilitative BCIs are a worthy 
technology for investment was felt to require a large, multi-site, randomized control 
trial study, incorporating methods to minimize, or scientifically account for, 
heterogeneity between technology and control populations at various sites. Ideally, 
it will also address knowledge gaps such as long-term effects, dose-response 
curves, patient stratification, control features, and a comprehensive outcome 
evaluation. 

Towards the decoding of neural information for motor control: present 
and future approaches 
Organizer: Gernot Müller-Putz (Graz University of Technology)  
Additional Presenters: Andrea I. Sburlea (Graz University of Technology), Valeria Mondini (Graz University 
of Technology), Damien Coyle (Ulster University), Cuntai Guan (NTU Singapore), Tonio Ball (University of 
Freiburg) 

 
For people with a cervical spinal cord injury (SCI) from trauma or disease, 

upper extremity function is often reduced or lost, resulting in dependency on a 
caregiver or family member for most daily activities. BCI researchers have for 
decades worked to derive motor commands directly from brain activity to bypass 
the interrupted spinal cord pathways and establish direct control of a 
neuroprosthetics device [228] or robotic arm/exoskeleton [229]. Implantable BCI 
approaches have produced many advances [230, 231], however, in recent years, 
non-invasive approaches have moved beyond proof of concepts [232-234] and 
made major steps towards full arm control. This workshop focused on state-of-the-
art approaches to non-invasive neural control of movement.  

Non-invasive detection of multiple types of hand movements have been 
reported, including for people with cervical SCI [235, 236]. Analysis of movement-
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BCI can also evaluate the effectiveness of other treatments for arousing DOC 
patients by analyzing EEG recorded during mental tasks before and after 
intervention.  BCI methods have been used to assess the effectiveness of spinal 
cord stimulation and deep brain stimulation surgeries in arousing vegetative 
patients. Auditory, vibro-tactile, or motor imagery-based BCI systems have been 
used to assess 5 unresponsive patients and 3 vegetative patients in this on-going 
study.  

BCIs are being cross-validated against neuroimaging techniques such as PET 
and fMRI [220]. The current challenge is to integrate BCIs with our increasing 
scientific understanding of recovery from severe brain injury to optimized the 
trajectory of clinical care after coma and improve the quality-of-life in disorders of 
consciousness and locked-in syndrome [221]. 
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System / University of Pittsburgh) 

 
Stroke is a leading cause of long-term disability worldwide, and 30–50% of 

stroke patients experience limited recovery. Rehabilitative EEG-BCIs are a 
promising neurotechnology for restoration of function after stroke. The hypothesis 
behind rehabilitative BCIs is that coupling neural activity with sensory feedback of 
limb movement induces cortical plasticity, improving functional recovery. This 
workshop featured twelve researchers developing rehabilitative EEG-BCIs for 
functional recovery from ten institutions around the globe. Presenters were split 
into two panels to consider how to translate this technology from the lab to the 
clinic. Randomized controlled trials (RCTs) have demonstrated the benefit of 
Rehabilitative EEG-BCIs, but employed diverse control methods, therapy doses, 
dosing intervals, and different types of neural dynamics and sensory feedback.  

 Panel 1 discussed optimal EEG-BCI support for stroke rehabilitation. Spatial 
neglect is an often overlooked deficit in stroke patients though it can significantly 
impact a patient’s response to therapeutic intervention [222]. Technology is needed 
to objectively map neglect, quantify changes during recovery, and provide a 
rehabilitation platform to target spatial neglect. Although BCI addresses a gap in 
standard neurorehabilitation medicine [223], it still lacks an American Heart 
Association (AHA) class and evidence rating. BCIs empirically measure the signals 
of the damaged cortex and patients’ functional disability during recovery. 
Rehabilitative EEG-BCIs restore the neural activity-functional output connection, 
supporting the retraining of neural activity. This is demonstrated by a RCT 
evaluating an EEG-BCI intervention for distal upper extremity function in a chronic 

 

 

stroke population [224]. Results showed 64% of participants made significant gains 
in both primary and secondary outcome measures.  

Panel 2 reflected on stakeholders’ needs for translating this promising 
technology to a clinical environment. Though RCTs have demonstrated the 
therapeutic efficacy of rehabilitative EEG-BCIs, commercialization requires clear 
clinical and economic benefit and reliable function within the rigors and 
environment of long-term clinical use. BCI-FES systems must address both 
patients’ and clinicians’ needs [118]. Patients need an effective and engaging 
rehabilitation platform, while clinicians require a plug-n-play system with remote 
technical assistance and joint analysis. Unanswered questions remain along the 
spectrum of basic research to patient care [225]. The field has yet to determine the 
optimal neural modalities or features for rehabilitative EEG-BCIs, resulting in 
significant feature extraction variability in current EEG-BCI platforms. Additionally, 
past and current RCTs employed diverse outcome measures since no measure is 
clearly best for capturing recovery. Further, stroke is itself a heterogeneous 
condition and much remains unknown about the relationship between the type and 
location of damage and resulting deficits. The RecoveriX system (Guger 
Technologies), a certified medical product, analyzes motor imagery to trigger FES 
for upper and /or lower limbs. RecoveriX has shown effectiveness for spasticity 
reduction and movement restoration in upper and lower limbs [226, 227]. 

Convincing clinicians, patients, and payers that Rehabilitative BCIs are a worthy 
technology for investment was felt to require a large, multi-site, randomized control 
trial study, incorporating methods to minimize, or scientifically account for, 
heterogeneity between technology and control populations at various sites. Ideally, 
it will also address knowledge gaps such as long-term effects, dose-response 
curves, patient stratification, control features, and a comprehensive outcome 
evaluation. 

Towards the decoding of neural information for motor control: present 
and future approaches 
Organizer: Gernot Müller-Putz (Graz University of Technology)  
Additional Presenters: Andrea I. Sburlea (Graz University of Technology), Valeria Mondini (Graz University 
of Technology), Damien Coyle (Ulster University), Cuntai Guan (NTU Singapore), Tonio Ball (University of 
Freiburg) 

 
For people with a cervical spinal cord injury (SCI) from trauma or disease, 

upper extremity function is often reduced or lost, resulting in dependency on a 
caregiver or family member for most daily activities. BCI researchers have for 
decades worked to derive motor commands directly from brain activity to bypass 
the interrupted spinal cord pathways and establish direct control of a 
neuroprosthetics device [228] or robotic arm/exoskeleton [229]. Implantable BCI 
approaches have produced many advances [230, 231], however, in recent years, 
non-invasive approaches have moved beyond proof of concepts [232-234] and 
made major steps towards full arm control. This workshop focused on state-of-the-
art approaches to non-invasive neural control of movement.  

Non-invasive detection of multiple types of hand movements have been 
reported, including for people with cervical SCI [235, 236]. Analysis of movement-

63

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



 

 

related cortical potentials (MRCP) can detect and decode single hand movements 
[237] or movement attempts (e.g., hand open vs. hand close) or even different 
grasps (e.g., palmar vs. lateral grasp) [238, 239].  

Understanding the neural and behavioral mechanisms involved in grasping is 
important for successful decoding. Investigations included the relationship between 
the broad-band EEG representation of observing and executing a large variety of 
hand-object interactions and the muscle and kinematic representations associated 
with the grasping execution [240]. Object properties and grasp types can be 
decoded during the planning and execution of the movement. Properties of the 
objects could be decoded even during the observation stage, while the grasp type 
could be accurately decoded even during the object release stage [241].  

While the decoding of arm/hand trajectories has mainly been shown in 
intracortical recordings, major steps in the non-invasive field have been 
demonstrated. Closed-loop continuous decoding of executed [242, 243] but also 
attempted arm movement [244] has been done from low frequency EEG. 
Movement parameters like position and velocity, necessary for decoding [245, 246] 
were presented. In particular, the contribution of non-directional movement-
parameters (distance and speed) has been highlighted [247-249]. Also, the first 
evidence for online decoding of attempted continuous movement has been 
reported [244]. Eye movement artifacts present a special challenge for all non-
invasive decoding studies. Participants must be permitted to use their gaze to 
follow the feedback, electroc-oculogram (EOG) signals must therefore be removed 
from the EEG online [250]. 

In addition to decode of low frequency EEG components, decoding of executed 
and imagined 3D reaching tasks have involved delta frequencies, but also alpha, 
low and high beta frequencies [251, 252]. These studies include decoding of 3D 
lower limb movements that could be important for gait rehabilitation [253]. 

In the area of motor imagery and stroke rehabilitation, deep learning methods 
and convolutional neural networks (CNN) have been used for participant specific 
[254, 255], participant-independent [256], and adaptive classifiers [257]. CNNs 
have also been used in assistive robot control with online adaptive motor 
classification [258]. 

Beyond the pure application of CNNs for decoding [98], the internal data 
representation and the effects of hidden unit activations provide possible insights 
into what the units of such networks learn and the possible hierarchical 
organization of spectral features [259]. These first insights may open a new way of 
understanding brain processes.  

Biomimetic approaches to restore somatosensation 
Organizer: Robert Gaunt (University of Pittsburgh) 
Additional Presenters: Sliman Bensmaia (University of Chicago), Karthik Kumaravelu (Duke University), 
Alberto Mazzoni (Scuola Superiore Sant’Anna), Emily Gracyzk (Case Western Reserve University), Luke 
Bashford (California Institute of Technology), Chris Hughes (University of Pittsburgh) 

 
Rapid advances in BCI capabilities to decode and restore upper limb motor 

functions [260] often ignore the accompanying sensory losses. Strategies to 
restore somatosensation include intracortical microstimulation [261, 262], cortical 

 

 

epidural stimulation [263-265], peripheral nerve stimulation [266-268] and spinal 
cord stimulation [269]. Regardless of approach, it is difficult to select stimulus 
parameters that improve the quality of conscious percepts and maximize functional 
capabilities. This workshop explored the idea of using biomimicry as a framework 
to create stimulus trains. Biomimetic stimulation leverages knowledge of intact 
somatosensory neurophysiology with the intuition that stimulation parameters that 
evoke patterns of neural activity that match normal patterns will improve perception 
and function. 

Decades of work characterizing skin mechanoreceptor responses in the hand 
during object manipulation [270] were integrated into TouchSim to accurately 
simulate primary afferent responses to a mechanical input [271]. The simulated 
population-level activity resembles the spatiotemporal dynamics of somatosensory 
neurons in the cortex during the same mechanical stimuli [272], with large transient 
signals at contact onset and offset [270, 273]. However, simply replacing recorded 
or simulated spikes with stimulation pulses does not replicate the sensation. 
Additional computations are required to address anatomical complexities and 
electrical stimulation biophysics. A simulation platform using genetic algorithms 
and finite element models of the cortex, populated with realistic neurons, was 
developed to address these complexities [274]. Critically, the stimulus trains 
created through simulation more faithfully represented the desired cortical activity 
than stimulus trains designed using standard methods. 

The utility of this computational tool and the principles of biomimicry were 
tested in peripheral nerve stimulation experiments in amputees. As a baseline, 
linear stimulation encoding schemes that did not capture important features of 
natural neural coding were effectively used by participants [266]. Similarly, event-
based stimulation encoding that mimicked the natural onset-offset dynamics of 
primary afferents was also effective [275]. However, in a direct comparison, 
TouchSim was used to create multiple stimulation trains that were increasingly 
biomimetic. The most natural sensations were obtained with the stimulus trains that 
maximized biomimicry [276]. In other experiments, early work suggested that a 
particular biomimetic train could improve naturalness [268]. Upon repetition, and 
despite considerable effort to combine modeled fascicle recruitment with 
biomimetic and non-biomimetic stimulation trains, just two of five participants 
reported more natural sensation using biomimetic trains, highlighting the limitations 
of single-subject studies of perception. 

Two different aspects of biomimicry were explored in human intracortical BCIs. 
Motor imagery and actual movement evoke similar brain activity. To explore this 
concept for somatosensation, neural activity patterns were recorded in 
somatosensory cortex and the supramarginal gyrus during imagined sensations 
[277]. Different imagined sensations were encoded stably in the somatosensory 
cortex, suggesting that imagined sensation could guide stimulus train design, even 
in people left insensate from their injury. Finally, in a direct test of biomimetic 
principles, intracortical stimulus trains using fixed amplitudes and frequencies were 
compared to trains with stimulation amplitudes modulated by cortical activity 
patterns recorded from non-human primates [273]. The participant frequently rated 
the biomimetic trains as more natural, especially when the overall intensity was 
matched. 
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grasps (e.g., palmar vs. lateral grasp) [238, 239].  

Understanding the neural and behavioral mechanisms involved in grasping is 
important for successful decoding. Investigations included the relationship between 
the broad-band EEG representation of observing and executing a large variety of 
hand-object interactions and the muscle and kinematic representations associated 
with the grasping execution [240]. Object properties and grasp types can be 
decoded during the planning and execution of the movement. Properties of the 
objects could be decoded even during the observation stage, while the grasp type 
could be accurately decoded even during the object release stage [241].  

While the decoding of arm/hand trajectories has mainly been shown in 
intracortical recordings, major steps in the non-invasive field have been 
demonstrated. Closed-loop continuous decoding of executed [242, 243] but also 
attempted arm movement [244] has been done from low frequency EEG. 
Movement parameters like position and velocity, necessary for decoding [245, 246] 
were presented. In particular, the contribution of non-directional movement-
parameters (distance and speed) has been highlighted [247-249]. Also, the first 
evidence for online decoding of attempted continuous movement has been 
reported [244]. Eye movement artifacts present a special challenge for all non-
invasive decoding studies. Participants must be permitted to use their gaze to 
follow the feedback, electroc-oculogram (EOG) signals must therefore be removed 
from the EEG online [250]. 

In addition to decode of low frequency EEG components, decoding of executed 
and imagined 3D reaching tasks have involved delta frequencies, but also alpha, 
low and high beta frequencies [251, 252]. These studies include decoding of 3D 
lower limb movements that could be important for gait rehabilitation [253]. 

In the area of motor imagery and stroke rehabilitation, deep learning methods 
and convolutional neural networks (CNN) have been used for participant specific 
[254, 255], participant-independent [256], and adaptive classifiers [257]. CNNs 
have also been used in assistive robot control with online adaptive motor 
classification [258]. 

Beyond the pure application of CNNs for decoding [98], the internal data 
representation and the effects of hidden unit activations provide possible insights 
into what the units of such networks learn and the possible hierarchical 
organization of spectral features [259]. These first insights may open a new way of 
understanding brain processes.  
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Rapid advances in BCI capabilities to decode and restore upper limb motor 

functions [260] often ignore the accompanying sensory losses. Strategies to 
restore somatosensation include intracortical microstimulation [261, 262], cortical 

 

 

epidural stimulation [263-265], peripheral nerve stimulation [266-268] and spinal 
cord stimulation [269]. Regardless of approach, it is difficult to select stimulus 
parameters that improve the quality of conscious percepts and maximize functional 
capabilities. This workshop explored the idea of using biomimicry as a framework 
to create stimulus trains. Biomimetic stimulation leverages knowledge of intact 
somatosensory neurophysiology with the intuition that stimulation parameters that 
evoke patterns of neural activity that match normal patterns will improve perception 
and function. 

Decades of work characterizing skin mechanoreceptor responses in the hand 
during object manipulation [270] were integrated into TouchSim to accurately 
simulate primary afferent responses to a mechanical input [271]. The simulated 
population-level activity resembles the spatiotemporal dynamics of somatosensory 
neurons in the cortex during the same mechanical stimuli [272], with large transient 
signals at contact onset and offset [270, 273]. However, simply replacing recorded 
or simulated spikes with stimulation pulses does not replicate the sensation. 
Additional computations are required to address anatomical complexities and 
electrical stimulation biophysics. A simulation platform using genetic algorithms 
and finite element models of the cortex, populated with realistic neurons, was 
developed to address these complexities [274]. Critically, the stimulus trains 
created through simulation more faithfully represented the desired cortical activity 
than stimulus trains designed using standard methods. 

The utility of this computational tool and the principles of biomimicry were 
tested in peripheral nerve stimulation experiments in amputees. As a baseline, 
linear stimulation encoding schemes that did not capture important features of 
natural neural coding were effectively used by participants [266]. Similarly, event-
based stimulation encoding that mimicked the natural onset-offset dynamics of 
primary afferents was also effective [275]. However, in a direct comparison, 
TouchSim was used to create multiple stimulation trains that were increasingly 
biomimetic. The most natural sensations were obtained with the stimulus trains that 
maximized biomimicry [276]. In other experiments, early work suggested that a 
particular biomimetic train could improve naturalness [268]. Upon repetition, and 
despite considerable effort to combine modeled fascicle recruitment with 
biomimetic and non-biomimetic stimulation trains, just two of five participants 
reported more natural sensation using biomimetic trains, highlighting the limitations 
of single-subject studies of perception. 

Two different aspects of biomimicry were explored in human intracortical BCIs. 
Motor imagery and actual movement evoke similar brain activity. To explore this 
concept for somatosensation, neural activity patterns were recorded in 
somatosensory cortex and the supramarginal gyrus during imagined sensations 
[277]. Different imagined sensations were encoded stably in the somatosensory 
cortex, suggesting that imagined sensation could guide stimulus train design, even 
in people left insensate from their injury. Finally, in a direct test of biomimetic 
principles, intracortical stimulus trains using fixed amplitudes and frequencies were 
compared to trains with stimulation amplitudes modulated by cortical activity 
patterns recorded from non-human primates [273]. The participant frequently rated 
the biomimetic trains as more natural, especially when the overall intensity was 
matched. 
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In summary, biomimicry is a principled and likely fruitful approach to create 
stimulation trains to restore somatosensation. Simulation and modelling tools can 
help design these trains, which have outperformed less realistic trains in both the 
peripheral and central nervous systems. Nevertheless, considerable development 
is still necessary, and these results must be validated in larger numbers of 
participants. 

Expanding BCI Usability and Availability  

Toward an international consensus on user characterization and BCI 
outcomes in settings of daily living 
Organizers: Mariska Vansteensel (UMC Utrecht) and Nataliya Kosmyna (Massachusetts Institute of 
Technology) 
Additional Presenters: Andrew Geronimo (Department of Neurosurgery, Penn State College of Medicine, 
Hershey, PA, USA), Katya Hill (AAC-BCI iNNOVATION LAB, University of Pittsburgh, Pittsburgh, PA, USA), 
Theresa Vaughan (National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, 
USA) 

 
BCI research is growing fast, and implantable and non-invasive communication-

BCIs are being introduced to people with significant motor disability for 
independent use in daily living situations [e.g., 42, 278, 279-285], allowing end-
users to participate in research and development experiments and provide critical 
input into iterative user-centered design [286]. Such studies are crucial for the 
development of usable communication-BCIs and for their eventual widespread 
implementation to resolve the communication problems of people with diseases 
such as amyotrophic lateral sclerosis. However, most studies include only limited 
numbers of participants.  Since the target user population for communication-BCIs 
is relatively small [287], large studies may not actually be possible. For translation 
of communication-BCIs to practical use, it is therefore essential to compare results 
across studies and in this way learn about environmental and participant/user 
characteristics affecting BCI performance [e.g., 288, 289, 290] and the different 
usability perspectives of users, caregivers and other stakeholders. Such 
comparison will strongly benefit from standardized reporting about 
users/participants and their environment, and from the use of similar metrics to 
assess BCI performance and outcome [291]. This workshop was designed to 
initiate a consensus list of reporting recommendations, specifically directed at the 
use of communication-BCIs in the daily life settings of people with significant motor 
disability. After brief presentations to introduce the topics of discussion [196, 292-
301], workshop participants shared their experiences and built consensus in 
breakout rooms. Key outcomes of these discussions include: 

1. Standardization is hard. Standardization is a hard and complex task. Part 
of this complexity comes from the different focus areas of experiments 
designed by different disciplines.  

2. Age group matters. Adult and pediatric BCI users need different training 
procedures and different primary outcome measures. But researchers need 
as much comparison as possible. 

 

 

3. Meeting users’ end goals is paramount. For any system to be introduced 
in their environment, end-users should be strongly involved in BCI design, 
goal setting, and outcome measure selection. Even existing standard 
metrics for reporting BCI system performance must be adapted to the goals 
of the end-user. 

4. Needs of primary users and their caregiver(s) may be different. A BCI 
has multiple types of end-users and researchers must report on how well a 
BCI meets the needs and goals of both primary and secondary (e.g. 
caregivers) users. 

5. Different tasks produce different outcomes. BCI outcome measures 
should consider the importance of each task to be conducted with the BCI, 
as well as the desired and accomplished frequency of conducting each task.  

6. Fatigue strongly affects BCI performance. Both cognitive and physical 
fatigue need to be assessed and reported on.  

7. Medication can affect brain signals. The effect of medication should not 
be underestimated, but medication use is seldom reported in papers. 

As our next steps, we plan to engage in the bigger discussion about 
standardization, to collect more input from BCI researchers, and to use all collected 
information for a formal publication on reporting recommendations related to user 
characterization and outcome measures for the use-case of communication-BCIs 
in settings of daily living. 

On the need of good practices and standards for Benchmarking Brain-
Machine Interfaces 
Organizer: Ricardo Chavarriaga (Zurich University Applied Sciences, ZHAW Switzerland) 
Additional Presenters: Paul Sajda (Columbia University, USA), José Contreras-Vidal (IUCRC BRAIN, 
University of Houston, USA), Luigi Bianchi (“Tor Vergata” University of Rome, Italy), Zach McKinney (Scuola 
Superiore Sant’Anna, Italy), Laura Y. Cabrera (The Pennsylvania State University, USA) 

 
Translating Brain-Machine Interface (BMI) systems onto real applications 

requires accepted, well-defined criteria to assess their effectiveness, usability, and 
safety. Benchmarking, specification, and performance evaluation are perceived as 
main priorities for standardization in the field [291, 302, 303].  This workshop 
discussed translational challenges, and ethical issues of BMI systems, as well as 
existing initiatives to address them. 

The Future Neural Therapeutics technology roadmap [304] analyzes closed-
loop neurotechnologies aimed at treating movement disorders and neurological 
diseases. This document summarizes the state of the art and identifies key 
technological challenges required to successfully develop a new generation of 
these technologies, including computational power, robustness and safety, 
usability and appropriate regulatory frameworks. As BMIs approach commercial 
availability, attention must be paid to concerns generated by the possibility of 
repurposing, misusing, or maliciously using consumer-oriented neurotechnology. 
These concerns include overstated claims on their efficacy or the influence of 
neurotechnology in markets related to employment or cognitive enhancement [305-
307]. Moreover, widespread use of consumer-oriented technology can lead to 
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In summary, biomimicry is a principled and likely fruitful approach to create 
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help design these trains, which have outperformed less realistic trains in both the 
peripheral and central nervous systems. Nevertheless, considerable development 
is still necessary, and these results must be validated in larger numbers of 
participants. 
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disability. After brief presentations to introduce the topics of discussion [196, 292-
301], workshop participants shared their experiences and built consensus in 
breakout rooms. Key outcomes of these discussions include: 

1. Standardization is hard. Standardization is a hard and complex task. Part 
of this complexity comes from the different focus areas of experiments 
designed by different disciplines.  

2. Age group matters. Adult and pediatric BCI users need different training 
procedures and different primary outcome measures. But researchers need 
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has multiple types of end-users and researchers must report on how well a 
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caregivers) users. 
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should consider the importance of each task to be conducted with the BCI, 
as well as the desired and accomplished frequency of conducting each task.  

6. Fatigue strongly affects BCI performance. Both cognitive and physical 
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7. Medication can affect brain signals. The effect of medication should not 
be underestimated, but medication use is seldom reported in papers. 
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standardization, to collect more input from BCI researchers, and to use all collected 
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characterization and outcome measures for the use-case of communication-BCIs 
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Translating Brain-Machine Interface (BMI) systems onto real applications 

requires accepted, well-defined criteria to assess their effectiveness, usability, and 
safety. Benchmarking, specification, and performance evaluation are perceived as 
main priorities for standardization in the field [291, 302, 303].  This workshop 
discussed translational challenges, and ethical issues of BMI systems, as well as 
existing initiatives to address them. 

The Future Neural Therapeutics technology roadmap [304] analyzes closed-
loop neurotechnologies aimed at treating movement disorders and neurological 
diseases. This document summarizes the state of the art and identifies key 
technological challenges required to successfully develop a new generation of 
these technologies, including computational power, robustness and safety, 
usability and appropriate regulatory frameworks. As BMIs approach commercial 
availability, attention must be paid to concerns generated by the possibility of 
repurposing, misusing, or maliciously using consumer-oriented neurotechnology. 
These concerns include overstated claims on their efficacy or the influence of 
neurotechnology in markets related to employment or cognitive enhancement [305-
307]. Moreover, widespread use of consumer-oriented technology can lead to 
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indiscriminate collection of neural data or user harm due to maladaptive processes 
triggered by neurostimulation devices. 

The neuroethics subcommittee of the IEEE Brain Initiative focuses on the 
ethical and societal issues related to research and development of 
neurotechnologies  They developed the IEEE Neuroethics Framework 
(https://brain.ieee.org/publications/ieee-neuroethics-framework/), a collective effort 
to evaluate the ethical, legal, social, and cultural issues that arise with the 
deployment of neurotechnologies and provide explicit guidance on how to address 
them. The framework is organized as a matrix that covers existing and emerging 
neurotechnologies for both current and foreseen applications. This framework is 
conceived as a living document that will evolve with the technology. Participation in 
this effort is open to interested participants. 

Despite the large number of BMI publications, it is seldom possible to evaluate, 
verify or compare published results. Meta-analyses showed that a significant 
number of BCI publications lack necessary information [308, 309]. However, two 
standardization activities are addressing this issue. The IEEE Standards Working 
Group P2794: Reporting Standard for in vivo Neural Interface Research (RSNIR) 
(https://sagroups.ieee.org/2794/) aims to improve the transparency, interpretability, 
and replicability of neural interface research by specifying a set of technological 
and methodological characteristics to be reported in scientific literature and 
technical documentation.  

They recently published a set of preliminary requirements for implantable neural 
interfaces [310] and are seeking broad community input and participation to ensure 
the Standard reflects the needs of a more diverse range of neuroscience and 
neurotechnology stakeholders, including device regulators, funding officers, 
clinicians, and end users. Information on providing such input can be found through 
the working group website. Another standardization project, IEEE P2731: Standard 
for a Unified Terminology for Brain-Computer Interfaces (BCI) 
(https://sagroups.ieee.org/2731/) aims at developing a comprehensive BCI 
lexicography and a functional model of BCI systems [311-313].  It is also working 
on identifying the required information to be stored in BCI files to enable efficient 
sharing of data and tools among stakeholders [314]. These activities can contribute 
to the development of standard experimental and usage protocols, benchmarking 
procedures, and increased interoperability of neurotechnology systems.  

Overall, this workshop highlighted the need to continuously evaluate the state-
of-the-art and the implications of neurotechnologies. This requires multi-
stakeholder, anticipatory processes for developing appropriate tools -including 
ethical and technical guidelines, standards, and regulatory instruments- that allow 
translation of neurotechnologies for both consumer and medical applications [315-
317]. 
 

Lessons from successfully implanted neurotechnology 
Organizer: Erik Aarnoutse (Brain Center, University Medical Center Utrecht) 
Additional Presenters: Fabien Sauter-Starace (CEA, LETI, Clinatec, University of Grenoble); Leigh 
Hochberg (Brown University; Massachusetts General Hospital; Providence VA Medical Center), RI Aysegul 
Gunduz (J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida) 

 

 

 
Over the last 16 years, various clinical trials of implantable neurotechnology in 

humans have demonstrated successful applications. This technology has enabled 
users to move arms [318, 319], walk [108], and communicate [42] and has also 
alleviated disease symptoms [61]. Clinical trials require a great deal of effort but 
are an important and informative step along the route to wide availability of 
neurotechnology for users in need.  

The route from design to clinical trial was illustrated by the Wimagine implant to 
operate an exoskeleton [108]. First, the medical needs of people with quadriplegia 
were combined with the neurosurgical requirements: no transcutaneous 
connection, no limit to battery lifetime and limited invasiveness. This created 
design choices of wireless data transmission, inductive charging, and epidural 
ECoG electrodes. Technical requirements were a trade-off between wishes and 
constraints. Animal studies assessed signal stability [320]. Regulatory compliance 
to the EU Medical Device Regulation meant proving compliance to ISO standards 
for quality management and standards for mechanical, electrical, and thermal 
safety, biocompatibility, and software. The clinical trial with bilateral implants has 
enrolled two patients so far [108]. Training was progressive by adding more 
complexity in the adaptive machine learning algorithm, from brain switch to 3D + 
pronation/supination [321]. The signal proved to be stable over months. The 
exoskeleton was only used in the laboratory. 

The 17 years of BCI research with penetrating multi-electrode arrays produced 
many lessons [318]. Participants are colleagues, but also customers. They request 
new features (user needs), which are added to the design [196, 322]. The 
participants’ motive is to advance science, they do not expect gain for themselves. 
However, the obligation of the field is to give users gain in daily life as soon as 
technology allows it [42, 285]. Neuroethics is important here. Hardware advances 
ease the technical constraints making neural data ever easier to gather and use.  

With the entry of industry in this field, the question of the role of academia 
becomes more important, where academia is better equipped to ask fundamental 
(hypothesis based) questions of neuroscience. Development is important but is not 
easy to publish. Mainly, academia investigates (hardware agnostic) decoding 
principles.  

A good example of the input of academic expertise is seen in the use of cortical 
ECoG recordings as part of essential tremor DBS therapy [61]. This cross-field 
input produced knowledge on biomarkers both for fundamental questions and 
treatment efficacy. Here, user needs for individualized therapy, reduction of side 
effects [323], and increased battery life were addressed. The research triggered a 
new hardware design that reduced stimulation artefacts. 

So, academia provides design input (user needs, technical requirements, 
decoding principles) for future neurotechnology for home use. Academia seeks to 
create knowledge, optimize designs, and provide a foundation of information that 
can support translation of BCI to commercial availability.   We have also identified 
barriers that must be overcome for home use (wireless link, power constraints, 
limits on the number of electrodes, portability, larger scale manufacturing). 
Overcoming these barriers requires more time and money than academia has, but 
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indiscriminate collection of neural data or user harm due to maladaptive processes 
triggered by neurostimulation devices. 
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them. The framework is organized as a matrix that covers existing and emerging 
neurotechnologies for both current and foreseen applications. This framework is 
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Lessons from successfully implanted neurotechnology 
Organizer: Erik Aarnoutse (Brain Center, University Medical Center Utrecht) 
Additional Presenters: Fabien Sauter-Starace (CEA, LETI, Clinatec, University of Grenoble); Leigh 
Hochberg (Brown University; Massachusetts General Hospital; Providence VA Medical Center), RI Aysegul 
Gunduz (J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida) 

 

 

 
Over the last 16 years, various clinical trials of implantable neurotechnology in 
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constraints. Animal studies assessed signal stability [320]. Regulatory compliance 
to the EU Medical Device Regulation meant proving compliance to ISO standards 
for quality management and standards for mechanical, electrical, and thermal 
safety, biocompatibility, and software. The clinical trial with bilateral implants has 
enrolled two patients so far [108]. Training was progressive by adding more 
complexity in the adaptive machine learning algorithm, from brain switch to 3D + 
pronation/supination [321]. The signal proved to be stable over months. The 
exoskeleton was only used in the laboratory. 

The 17 years of BCI research with penetrating multi-electrode arrays produced 
many lessons [318]. Participants are colleagues, but also customers. They request 
new features (user needs), which are added to the design [196, 322]. The 
participants’ motive is to advance science, they do not expect gain for themselves. 
However, the obligation of the field is to give users gain in daily life as soon as 
technology allows it [42, 285]. Neuroethics is important here. Hardware advances 
ease the technical constraints making neural data ever easier to gather and use.  

With the entry of industry in this field, the question of the role of academia 
becomes more important, where academia is better equipped to ask fundamental 
(hypothesis based) questions of neuroscience. Development is important but is not 
easy to publish. Mainly, academia investigates (hardware agnostic) decoding 
principles.  

A good example of the input of academic expertise is seen in the use of cortical 
ECoG recordings as part of essential tremor DBS therapy [61]. This cross-field 
input produced knowledge on biomarkers both for fundamental questions and 
treatment efficacy. Here, user needs for individualized therapy, reduction of side 
effects [323], and increased battery life were addressed. The research triggered a 
new hardware design that reduced stimulation artefacts. 

So, academia provides design input (user needs, technical requirements, 
decoding principles) for future neurotechnology for home use. Academia seeks to 
create knowledge, optimize designs, and provide a foundation of information that 
can support translation of BCI to commercial availability.   We have also identified 
barriers that must be overcome for home use (wireless link, power constraints, 
limits on the number of electrodes, portability, larger scale manufacturing). 
Overcoming these barriers requires more time and money than academia has, but 
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the generation of this knowledge by academic reduces the risk for industry and 
thus advances the likelihood that BCI will become widely, commercially available.  

 

Next steps for practically useful BCI ethics 
Organizer: Brendan Allison (UC San Diego) 
Additional Presenters: Pim Haselager (Radboud University Nijmegen), Dr. Sonja Kleih-Dahms, (University of 
Würzburg), Donatella Mattia (Fondazione Santa Lucia, IRCCS) 

 
 This workshop was designed not for review or abstract academic discourse, 

but to develop practical next steps for BCI-related ethical issues. The organizers 
briefly presented examples of these issues [324-328] to promote discussion.  

A public database of ethical use cases was proposed to raise awareness with 
an associated forum where people could share their perspectives on each case. 
The ethical use cases could also help professors and others who want to teach 
BCI ethics. Further discussion and development of ethical use cases would benefit 
from an ongoing collaborative effort, perhaps via online seminars, to develop a 
framework, assign people to develop different use cases, and create an online 
database. These efforts might be hosted by the BCI Society.  

An immediate ethical concern is that research study participants do not usually 
keep the devices used in the study. Thus, people with disabilities may regain the 
ability to communicate or control a device with an experimental BCI, but then lose 
that ability when their study participation ends. Workshop contributors agreed that 
this is a serious and currently unresolved problem. Most funding sources do not 
support leaving devices with patients, nor providing ongoing technical support. 
However, several researchers include such considerations in their research plans.  
Possible next steps include raising awareness of this problem (such as through an 
online forum, survey, paper, or approaching journalists) and further engagement of 
funding organizations. 

The rise of “Big BCI” through the recent initiation of BCI projects by high-profile 
companies creates its own set of ethical concerns. Workshop participants desired 
collaboration between the huge companies working on BCIs and the existing BCI 
community on efforts such as an online workshop or paper. This step was hoped to 
foster joint work on proposed ethical guidelines and regulatory issues.  

Another concern comes from the many online articles and videos with 
misinformation about BCIs from different groups, including some manufacturers, 
neurofeedback practitioners, enthusiasts, and conspiracy theorists. Of course, 
such misinformation will continue indefinitely to some extent, but might be reduced 
through next steps such as publicly commenting on inaccuracies and producing 
and promoting high-quality information about BCIs. Indeed, some for-profit and 
non-profit entities do provide good BCI content. The ongoing increase in online 
BCI-related classes, conferences, workshops, competitions, and other activities 
has led to ample recorded material from reputable organizers and speakers that is 
usually available for free.  

Many participants had seen online postings from, and/or been directly 
contacted by, people who believe that they are being involuntarily mind-controlled 
by a BCI or a similar device. A few participants reported trying to direct such 

 

 

persons to appropriate mental health professionals, but without apparent success. 
Next steps at this time are not obvious aside from a possible paper or position 
statement with suggested guidelines, developed with mental health experts.  

The workshop focused on specific, actionable next steps to raise awareness of 
ethical issues in BCI and further engage relevant groups through workshops, 
papers, online discussions and a database of use cases and surveys [329-331]. 

 

Brain-Computer Interfaces for Human Enhancement 
Organizer: Davide Valeriani (Neurable Inc.) 
Additional Presenters: Riccardo Poli (University of Essex), Maryam Shanechi (University of Southern 
California), Hasan Ayaz (Drexel University), Nataliya Kosmyna (MIT Media Lab), Yannick Roy (NeuroTechX), 
Marcello Ienca (ETH Zurich) 
 

This workshop highlighted recent advances in BCI technologies that go beyond 
clinical applications and instead focus on augmenting human capabilities. The 
workshop brought together neuroscientists, engineers, neuro-ethicists, 
entrepreneurs and researchers at the cutting-edge of BCI development for human 
augmentation. Discussion focused on current trends and future prospects, as well 
as the critical role played by international communities such as NeuroTechX in 
educating and stimulating interest in BCI and neurotechnologies. 

BCIs for cognitive human augmentation are intended to improve the process of 
acquiring knowledge and communicating with other individuals [332]. Passive BCIs 
can enhance individual decision-making in target detection by recognizing event-
related potentials [333] or aggregating brain activity from multiple people [334]. 
Collaborative BCIs can also decode decision confidence from brain activity and 
use it to weigh individual opinions, leading to significant improvements in group 
performance in a variety of tasks [335-337]. These BCIs can also facilitate human-
machine teaming in face recognition [338]. 

Combining brain recording (e.g., EEG, fNIRS) and stimulation (e.g., tDCS, 
TMS) improves processing speed [339] and spatial working memory [340], and 
introduces novel communication forms, such as brain-to-brain communication 
[341]. Moreover, it enables the development of BCIs capable of regulating 
abnormal mental states, with direct applications in the treatment of mental 
disorders [342, 343]. 

BCIs and other wearables support studying the brain in complex environments 
and diverse domains, a research field called neuroergonomics [344]. Advances in 
recording technologies, such as EEG and fNIRS, enable study in operational and 
realistic settings to monitor cognitive function, improve human-to-human 
communication, and enhance human-machine interaction [345]. Moreover, the 
integration of brain recordings with other physiological signals can provide 
biofeedback to users through audio, light, or haptic inputs, promoting performance, 
attention, and overall well-being [346]. These hybrid, multimodal BCIs will also help 
increase the reliability, accuracy, and commercial potential of non-invasive BCIs, 
which can be limited by the low signal-to-noise ratio of non-invasive neural 
recordings. Yet to implement multimodal BCIs we need to identify relationships 
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the generation of this knowledge by academic reduces the risk for industry and 
thus advances the likelihood that BCI will become widely, commercially available.  
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Würzburg), Donatella Mattia (Fondazione Santa Lucia, IRCCS) 

 
 This workshop was designed not for review or abstract academic discourse, 

but to develop practical next steps for BCI-related ethical issues. The organizers 
briefly presented examples of these issues [324-328] to promote discussion.  

A public database of ethical use cases was proposed to raise awareness with 
an associated forum where people could share their perspectives on each case. 
The ethical use cases could also help professors and others who want to teach 
BCI ethics. Further discussion and development of ethical use cases would benefit 
from an ongoing collaborative effort, perhaps via online seminars, to develop a 
framework, assign people to develop different use cases, and create an online 
database. These efforts might be hosted by the BCI Society.  

An immediate ethical concern is that research study participants do not usually 
keep the devices used in the study. Thus, people with disabilities may regain the 
ability to communicate or control a device with an experimental BCI, but then lose 
that ability when their study participation ends. Workshop contributors agreed that 
this is a serious and currently unresolved problem. Most funding sources do not 
support leaving devices with patients, nor providing ongoing technical support. 
However, several researchers include such considerations in their research plans.  
Possible next steps include raising awareness of this problem (such as through an 
online forum, survey, paper, or approaching journalists) and further engagement of 
funding organizations. 

The rise of “Big BCI” through the recent initiation of BCI projects by high-profile 
companies creates its own set of ethical concerns. Workshop participants desired 
collaboration between the huge companies working on BCIs and the existing BCI 
community on efforts such as an online workshop or paper. This step was hoped to 
foster joint work on proposed ethical guidelines and regulatory issues.  

Another concern comes from the many online articles and videos with 
misinformation about BCIs from different groups, including some manufacturers, 
neurofeedback practitioners, enthusiasts, and conspiracy theorists. Of course, 
such misinformation will continue indefinitely to some extent, but might be reduced 
through next steps such as publicly commenting on inaccuracies and producing 
and promoting high-quality information about BCIs. Indeed, some for-profit and 
non-profit entities do provide good BCI content. The ongoing increase in online 
BCI-related classes, conferences, workshops, competitions, and other activities 
has led to ample recorded material from reputable organizers and speakers that is 
usually available for free.  

Many participants had seen online postings from, and/or been directly 
contacted by, people who believe that they are being involuntarily mind-controlled 
by a BCI or a similar device. A few participants reported trying to direct such 

 

 

persons to appropriate mental health professionals, but without apparent success. 
Next steps at this time are not obvious aside from a possible paper or position 
statement with suggested guidelines, developed with mental health experts.  

The workshop focused on specific, actionable next steps to raise awareness of 
ethical issues in BCI and further engage relevant groups through workshops, 
papers, online discussions and a database of use cases and surveys [329-331]. 

 

Brain-Computer Interfaces for Human Enhancement 
Organizer: Davide Valeriani (Neurable Inc.) 
Additional Presenters: Riccardo Poli (University of Essex), Maryam Shanechi (University of Southern 
California), Hasan Ayaz (Drexel University), Nataliya Kosmyna (MIT Media Lab), Yannick Roy (NeuroTechX), 
Marcello Ienca (ETH Zurich) 
 

This workshop highlighted recent advances in BCI technologies that go beyond 
clinical applications and instead focus on augmenting human capabilities. The 
workshop brought together neuroscientists, engineers, neuro-ethicists, 
entrepreneurs and researchers at the cutting-edge of BCI development for human 
augmentation. Discussion focused on current trends and future prospects, as well 
as the critical role played by international communities such as NeuroTechX in 
educating and stimulating interest in BCI and neurotechnologies. 

BCIs for cognitive human augmentation are intended to improve the process of 
acquiring knowledge and communicating with other individuals [332]. Passive BCIs 
can enhance individual decision-making in target detection by recognizing event-
related potentials [333] or aggregating brain activity from multiple people [334]. 
Collaborative BCIs can also decode decision confidence from brain activity and 
use it to weigh individual opinions, leading to significant improvements in group 
performance in a variety of tasks [335-337]. These BCIs can also facilitate human-
machine teaming in face recognition [338]. 

Combining brain recording (e.g., EEG, fNIRS) and stimulation (e.g., tDCS, 
TMS) improves processing speed [339] and spatial working memory [340], and 
introduces novel communication forms, such as brain-to-brain communication 
[341]. Moreover, it enables the development of BCIs capable of regulating 
abnormal mental states, with direct applications in the treatment of mental 
disorders [342, 343]. 

BCIs and other wearables support studying the brain in complex environments 
and diverse domains, a research field called neuroergonomics [344]. Advances in 
recording technologies, such as EEG and fNIRS, enable study in operational and 
realistic settings to monitor cognitive function, improve human-to-human 
communication, and enhance human-machine interaction [345]. Moreover, the 
integration of brain recordings with other physiological signals can provide 
biofeedback to users through audio, light, or haptic inputs, promoting performance, 
attention, and overall well-being [346]. These hybrid, multimodal BCIs will also help 
increase the reliability, accuracy, and commercial potential of non-invasive BCIs, 
which can be limited by the low signal-to-noise ratio of non-invasive neural 
recordings. Yet to implement multimodal BCIs we need to identify relationships 
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between modalities and develop new techniques to integrate neural recordings at 
different scales. 

While neuroscience and neuro-engineering have shown that it is technically 
possible to develop BCIs that augment human capabilities in a variety of domains, 
neuro-ethicists are working to identify which applications are morally desirable 
[316]. Two main ethical principles should guide the development of BCIs for human 
augmentation: (1) cognitive liberty, which protects the rights of individuals to make 
free and competent decisions on using such devices, and (2) fair and equitable 
access to enhancement, which ensures they are available to everyone, regardless 
of race, gender or socioeconomic status. As with all biomedical devices, safety and 
data privacy are key pillars to make these devices ethically acceptable. 

Overall, the workshop showcased the tremendous advantages of expanding 
BCIs from assistive devices to technologies for human enhancement, with a variety 
of potential applications. The most promising approaches seem to be the fusion of 
different physiological signals and integration with artificial intelligence, with a 
continuous awareness of the ethical challenges of enhancement applications. 

 
 

Brain-Computer Interfaces for outside the lab: Neuroergonomics for 
human-computer interaction, education and sport 
Organizers: Antonia Thelen (eemagine Medical Imaging Solutions GmbH, Berlin, Germany)  
Additional Presenters: Fabien Lotte, (Inria Bordeaux Sud-Ouest); Camille Jeunet (CNRS, Bordeaux 
Neurocampus); Frédéric Dehais (ISAE-SUPAERO, Toulouse); Patrique Fiedler (TU Ilmenau, Ilmenau); Martijn 
Schreuder (ANT-Neuro, Enschede) 

 
Traditionally, BCI research has been bound to the investigation of perceptual, 

cognitive and motor processes within stationary, hardware-intensive laboratory 
setups. While these studies provide intriguing real-time insights into such 
processes, the translation of these findings into real-world brain interactions is 
limited. The emergence of lightweight, high-density EEG solutions has permitted 
the extension of BCI applications into mobile setups within real-world 
situations. Use of high-density EEG enables the simultaneous utilization of different 
sensor configurations, providing greater adaptability with a single hardware setup. 

This workshop focused on the efforts undertaken towards the 
instrumentalization of EEG and specifically BCI techniques within the field of 
neuroergonomics. The panel comprised experts who strove to provide 
methodological strategies to facilitate the transition of BCI applications into real-
world and/or every-day settings. First, advances and current limitations of existing 
solutions were discussed. Second, an outlook upon possible new technological 
and methodological innovations was presented which could provide new avenues 
of interacting with the world by implementing systems with an explicit awareness of 
the concepts of embodied cognition.  Embodied cognition, as described in [347], 
acknowledges that physical elements of the world are often integrated seamlessly 
into our cognitive processes in a way not easily captured by static diagrams with 
separate boxes for sensory inputs and physical outputs.  Instead, cognition 
happens in conjunction and in parallel with the sensorimotor loops that provide 

 

 

interactions with the world.  Various neuroergonomics applications of BCI use 
outside the lab were also discussed, including evaluating 3D User Interfaces [348], 
Sport Science [349, 350] and Aviation [351].  

Specifically, the robustness of signal processing methods used by BCI 
classifiers was discussed. How to apply such algorithms reliably across a large 
variety of application fields and how to make them cope with inter- and intra-
individual variability is still a topic under investigation [352]. The contribution of 
state-of-the-art, lightweight, dry sensors resulting in varying signal-to-noise ratios 
and their impact upon such signal processing algorithms was highlighted [353, 
354]. Moreover, the tradeoff between laboratory-based and real-world applications 
was discussed with regards to sensor application within these fundamentally 
different environments [350, 355]. Lastly, discussion focused on difficulties 
encountered when translating BCI-based interventions across different 
demographics, specifically differences in cognitive states and/or perceptual 
processes that were investigated within a research context or focused on 
clinical/therapeutic interventions.  

Taken together, the workshop provided an overview of current advances made 
within the field of neuroergonomics.  

    

Brain-Computer Interfaces for Art, Entertainment, and Domestic 
Applications 
Organizer: Anton Nijholt (University of Twente) 
Additional Presenters:  Christoph Guger (g;tec medical engineering GmbH); Elisabeth Hildt (Illinois Institute 
of Technology); Erika Mondria (University of Art and Design); Ellen Pearlman (Massachusetts Institute of 
Technology); Stephanie Scott (Colorado State University); Aleksander Valjamae (Tallinn University)  

 
BCI technology enables neurophysiological data from an individual user’s 

affective and mental state to be used for online adaption of system and interaction 
methods [356]. Artistic, domestic, or entertainment use of such information shift the 
focus from efficiency to the importance of affect in social and playful interactions 
such as in family, community, playful, and artistically challenging situations. This 
workshop addressed the use of BCI for artistic, entertainment, educational, and 
health applications. 

BCI has been used for many artistic applications  [357-359].  In general, artistic 
projects reduce inhibitions and encourage people to engage with unfamiliar 
technologies such as BCI. Synergies of design, art, and research have shown 
interesting results which may also enrich clinical settings. 

BCIs have been used for creative arts therapy [360, 361] as part of a 
conceptual framework bringing together several disciplines for researching the 
expansion of treatment modalities in the intersection of art, technology, and 
therapeutics. A recent insight is that a post-phenomenological approach towards 
human-technology interaction and technological artifacts in general will be useful 
when applied to BCI for therapy, art, and creative expression. In this approach 
user-specific needs for enabling self-expression are integrated in a 
transdisciplinary design perspective on meaningful and self-expressive 
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situations. Use of high-density EEG enables the simultaneous utilization of different 
sensor configurations, providing greater adaptability with a single hardware setup. 
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instrumentalization of EEG and specifically BCI techniques within the field of 
neuroergonomics. The panel comprised experts who strove to provide 
methodological strategies to facilitate the transition of BCI applications into real-
world and/or every-day settings. First, advances and current limitations of existing 
solutions were discussed. Second, an outlook upon possible new technological 
and methodological innovations was presented which could provide new avenues 
of interacting with the world by implementing systems with an explicit awareness of 
the concepts of embodied cognition.  Embodied cognition, as described in [347], 
acknowledges that physical elements of the world are often integrated seamlessly 
into our cognitive processes in a way not easily captured by static diagrams with 
separate boxes for sensory inputs and physical outputs.  Instead, cognition 
happens in conjunction and in parallel with the sensorimotor loops that provide 

 

 

interactions with the world.  Various neuroergonomics applications of BCI use 
outside the lab were also discussed, including evaluating 3D User Interfaces [348], 
Sport Science [349, 350] and Aviation [351].  

Specifically, the robustness of signal processing methods used by BCI 
classifiers was discussed. How to apply such algorithms reliably across a large 
variety of application fields and how to make them cope with inter- and intra-
individual variability is still a topic under investigation [352]. The contribution of 
state-of-the-art, lightweight, dry sensors resulting in varying signal-to-noise ratios 
and their impact upon such signal processing algorithms was highlighted [353, 
354]. Moreover, the tradeoff between laboratory-based and real-world applications 
was discussed with regards to sensor application within these fundamentally 
different environments [350, 355]. Lastly, discussion focused on difficulties 
encountered when translating BCI-based interventions across different 
demographics, specifically differences in cognitive states and/or perceptual 
processes that were investigated within a research context or focused on 
clinical/therapeutic interventions.  

Taken together, the workshop provided an overview of current advances made 
within the field of neuroergonomics.  
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BCI technology enables neurophysiological data from an individual user’s 
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methods [356]. Artistic, domestic, or entertainment use of such information shift the 
focus from efficiency to the importance of affect in social and playful interactions 
such as in family, community, playful, and artistically challenging situations. This 
workshop addressed the use of BCI for artistic, entertainment, educational, and 
health applications. 

BCI has been used for many artistic applications  [357-359].  In general, artistic 
projects reduce inhibitions and encourage people to engage with unfamiliar 
technologies such as BCI. Synergies of design, art, and research have shown 
interesting results which may also enrich clinical settings. 

BCIs have been used for creative arts therapy [360, 361] as part of a 
conceptual framework bringing together several disciplines for researching the 
expansion of treatment modalities in the intersection of art, technology, and 
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transdisciplinary design perspective on meaningful and self-expressive 
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communication exploring brain activity underlying artistic creation and using 
neurofeedback research [362]. 

The BR41N.IO BCI Hackathon series, now in its 5th year [363, 364], provides 
opportunities for team-based development of new BCI applications within 24 hours. 
During the 2021 BCI & Neurotechnology Spring School, 321 developers, artists, 
programmers, and hackers participated in 38 teams and created many interesting 
and cutting-edge new applications or improved the signal processing of BCI data 
sets. 

In neurotheatre and neurocinema research [365, 366], new media art and 
neurotechnologies allow for co-creation between actors, director, and audience to 
shape a performance by emotional experiences using BCI and other sensors and 
multisensory actuators. From a research perspective, neurotheatre can be seen as 
a novel integrative research environment for prototyping and exploring new social 
neuroscience paradigms, like collective decision making or shared affective 
experiences. From a societal perspective, the fusion of science, technology, and 
arts allows for so-called design fiction, a design practice aiming at exploring and 
criticizing possible futures by creating speculative, and often provocative, scenarios 
narrated through designed artifacts. 

Affective brain-computer music [367, 368] Interface applications use affective 
BCIs for music-making and music listening. Given recent developments in direct-
to-consumer devices (wearable BCIs, headphone sensors) and music streaming 
services these BCI applications aim at influencing the user’s affective state (mood 
enhancement) by individualized music choices. Exaggerated claims about 
capabilities, increasing dependency on technology and limiting one’s own 
capabilities, and privacy issues arising from long-term monitoring of a user's 
affective state are  pitfalls related to a potential future, relatively widespread use of 
EEG-based affective brain-computer music interfaces in entertainment contexts 
[369]. 

A brain opera called “Noor” provides an example that combines these concepts 
through the use of artificial intelligence (AI). In “Noor”, biometric variables, including 
BCI are integrated with natural language processing and machine learning. In the 
near-future, such integrated systems will be tasked with more responsibilities 
relating to many aspects of human congress, often with confusing legal oversight 
and minimal accountability, potentially leading to scenarios enforcing dystopic 
digital societies of control [370-372]. 

The workshop discussions revealed consensus about the benefit of the joint 
effort of art and science research for BCI research in general and the acceptance 
of BCI for the general public. 

Conclusion 

Together, these workshops provide foundational information, explore diverse 
applications for different populations, and further develop big picture ideas for new 
frontiers of BCI use.  Many of these ideas will be further developed in the 
workshops of the planned in-person Ninth International Brain-Computer Interface 
Meeting, currently scheduled for June 7-10th, 2022 in the Sonian Forest, Brussels, 
Belgium.   
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Data Centrism and the Core of Data Science as a
Scientific Discipline

Thilo Stadelmann, Tino Klamt and Philipp H. Merkt

Abstract Data science is one of the most significant developments in computing
in the 21st century. It is also described as a discipline in the making, drawing
principles, methods and tools from established fields like computer science,
statistics, science, business, politics, and any domain with adequate data. What
are data science’s underlying principles and techniques (models, methods) that
are applicable across different use cases and fields of application? What novel
aspect of science underlies this emerging discipline? We argue that it is data
centrism – the reliance on data itself, in mindset, methods and products – that
makes data science more than the sum of its parts, as this is not done in any
other discipline.
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1 Introduction

Data science has been defined previously as “a unique blend of principles and
methods from analytics, engineering, entrepreneurship and communication that
aim at generating value from the data itself” (Stadelmann et al, 2019a). A
similar notion was conveyed by Stadelmann et al (2013) and later refined in
(Stadelmann et al, 2019b) when by referring to the data scientist the authors
actually defined the activity of doing data science as being determined by what
is taken out of the contributing disciplines (see Figure 1).

Fig. 1 The definition of a data scientist and, by implication, of the activity of doing data science,
according to Stadelmann et al (2019b) (used with permission). In this paper, we argue that data
science can not be defined merely as a unique cut of contributions from such contributing disciplines –
it needs to have a scientific core of its own to warrant the designation of a discipline.

Now, several years after the main wave of the data science hype, one could
ask heretically: “what remains of this ’discipline in the making’ (Brodie, 2019b)
if all there is in novelty is foremost a contribution to or from one of its constitut-
ing disciplines?” For example, when a data scientist develops a new analytical
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method, it will foremost be a novelty in the field of statistics or machine learn-
ing, not specifically in data science. “No scientific discipline” would be the
correct answer, if there wasn’t more than a selection of contributions from
other fields – if there wasn’t more to data science than the sum of its parts
(Denning, 2005). Data science needs to contribute theories of its own that must
be falsifiable (Popper, 1961) to warrant the designation of a science.

In this paper, we argue that there needs to be a scientific core of data science
that is (or: is going to become) unique to data science, i.e., that is not the
core issue in one of the contributing disciplines. We introduce our proposal
for this core in Section 2, followed by an example from medical data analysis
practice in Section 3 to illustrate the point. We then discuss limitations of this
proposal in Section 4, which might indicate that this view is only partial, and
draw conclusions in Section 5.

2 Data centrism

Naturally, this disciplinary core of data science has to materialize in aspects
that transcend what was taken out of the contributing disciplines. It needs to
amount to more than the adoption of singular methods and tools by

(a) designating a unique object (or: phenomenon) of study (Denning, 2013) as
well as by

(b) containing an overarching principle under which this study is performed
(Denning, 2005).

Regarding (a), we agree with previous definitions like (Dhar, 2013; Luna-
Reyes, 2018; Braschler et al, 2019) and others that the object of study in data
science is the creation of value from data. With respect to (b), it is our view that
the overarching principle is “data centrism”.

2.1 Data centrism and other disciplines

By data centrism we mean that data science, in contrast to the contributing dis-
ciplines, puts the highest value on data itself, by making the data itself central to
the data-scientific mindset (source of inspiration), the conduct of doing data sci-
ence (processes and methods) and its outcome (data products and predictions).
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We believe this aspect to be the core of data science because it firmly differ-
entiates data science from related fields, as is demonstrated by the following
exemplary consideration of such related fields.

Machine learning revolves around learning from data (not data itself): prin-
ciples and methods to gain general knowledge out of finite data (Samuel (1959)
put the highest weight on the learning outcome itself in his famous definition
and neglected the input entirely). Despite the efforts of Andrew Ng to teach
the field otherwise (Ng, 2021), this is still mainly a model-centric endeavour,
i.e., conferences, sub-fields and projects revolve around model architectures as
the centre pieces. Then, suitable data to satisfy the needs of the predominantly
supervised modeling approaches has to be delivered for machine learners to
usually take up the work. It is arguably the influence of data science that un-
and semi-supervised methods are increasingly researched and used in recent
years: Unsupervised learning was for a long time mainly equated to cluster-
ing (Mitchell, 1997). The rise of unsupervised learning as, e.g., spearheaded
by Meta’s Yann LeCun (LeCun and Misra, 2021), coincides with the rise of
data-driven companies like Meta’s Facebook and their needs as addressed by
data science.

Statistics is concerned with quantifying data: its distribution, variability, the
certainty of predictions, etc. Data thereby is the main object of analysis, while
models again are the center of thinking and acting as well as the main outcome
(Breiman, 2001). Specifically, the main stream of statistics revolves around
certain modeling assumptions (e.g., linearity, normal error distribution (0,σ2))
to which the data has to comply in order to permit claims to be made.

Data management cares for proper processing of data in an efficient, reliable
and accessible fashion. Again, data is the object under focus, while algebra pro-
vides the theoretical backdrop for modelling, machine learning may provide
means for optimizing queries (Heitz and Stockinger, 2019) and tools may pro-
vide support for data integration (Stonebraker et al, 2013; Stadelmann et al,
2015). Data here (as before) is not the subject determining the course, but
merely the object of study under the specific perspective of manageability.

Service engineering secures value creation from data: not just commercially,
but for all stakeholders of the value chain, including providers and customers.
It thus puts the pains and gains of all stakeholders at the center (Meierhofer
et al, 2019), making data a natural resource rather than the centerpiece.

The list could be continued to include all major disciplines mentioned in
Figure 1 as contributors to data science, but the pattern is already established,
at least on an intuitive scale: These disciplines have data as an object of study
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(to varying degrees). In contrast, data science has data at the centre, as the sub-
ject (or: the driving force), and methods are employed that expect everything
from the data itself (e.g., structure, patterns, supervision, value). Specifically,
data science is the science of studying the data as is: it doesn’t impose assump-
tions on the quality or quantity of data before its methods can be applied, but
seeks methods that can make the most out of the data that is available. This
is what is implied in having “value-creation from [actual] data” as the focus
of the discipline. It includes both the current data at hand, but also data that
can realistically be produced by improved data acquisition and preprocessing
methods.

2.2 The effects of data at the centre

The unique point of view upheld by data science, hence, and in contrast to any
of the contributing disciplines, is the one that looks for supreme value in the
data itself (and not just out of it, as one ingredient). The distinction is subtle,
but crucial: “in” the data means that data is the main ingredient, the centerpiece,
at the same time ultima ratio and conditio sine qua non. On the other hand, by
“out” of data we mean that data is a mere resource in the pursuit of some further
end. The difference can be likened to a private horse owner who sees value
in a horse (e.g., relational value), in contrast to a farmer of old who saw value
out of a horse (as a means to pull a plow). Let’s exemplify how data science
implements this principle with a couple of examples.

Empiricism is the driving force in data science: in contrast to pre-conceived
models of reality, data science reinforces the mindset to establish theories out
of the patterns that arise from potentially vast amounts of data (i.e., empirical
evidence rather than human intuition) (Hey et al, 2009). The effect of this is that
data science models tend to become complex and opaque, as they didn’t origi-
nate in a simple human idea, but emerged in a data-driven way. Deep learning
methods are a good example for this, and the recent trend to research and apply
explainable and trustworthy methods (Samek et al, 2019; Amirian et al, 2021)
can be seen as a direct reaction to the data science mindset: If the data itself
is determining the model, the discipline responsible for this development, as
a next step, has to provide methods that make this machine-conceived models
again amenable to human intuition, decision and control.
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again amenable to human intuition, decision and control.
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Learning from less (e.g., less data with as little as possible human-provided
interpretations/supervision) can guide the learning of decision-making func-
tions out of mere observations and probably also should do so in order to avoid
human-introduced biases (Glüge et al, 2020; Wehrli et al, 2021). While this
naturally employs machine learning methods, it is the mindset of data science
(seeking a solution that relies on data alone instead of human annotations) that
prompts the selection of un- and semi-supervised methods and not vice versa.
Additionally, such methods are also applied by data scientists to gain models
(and out of them value) from obviously imperfect data sets. It is again the
data science mindset that asks “what can be done to exploit the actual data
best” rather than “who can bring me better data or labels to train my method”
(Hollenstein et al, 2019; Simmler et al, 2021).

Data products are outcomes (digital services, physical products or anything
in between) that have data at their core (Loukides, 2011) and not just as an
ingredient. While again certain methods from the contributing disciplines are
necessary conditions for them to function, a prime candidate being service
engineering (Meierhofer et al, 2019), only by adding the data itself the sufficient
conditions for value generation are met. Hence, they derive their added value
from the added data.

2.3 Data centrism in the literature

This list in Section 2.2 could (and should) be extended as well to establish
the pattern more strongly. However, intuitively, what the list resembles is the
same mindset reinforced several times in the 2020-2021 issues of Andrew Ng’s
“The Batch” (DeepLearning.AI editorial team, 2021) of thinking data-centric
rather than {model, user, customer, theory, application, . . . }-centric. Similar
arguments are provided for example by Della Corte and Della Corte (2021) and
Gerdes (2021).

Putting data at the centre of thinking (i.e., assuming data necessary (Jeffreys
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(Siegl et al, 2016), database (Haas et al, 2011) and middleware development
(Chen et al, 2008) as well as the build-up of whole embedded (Alvarez-Coello
et al, 2021) and enterprise software architectures (Rajabi and Abade, 2012).

However, the furthering of the data-centric mindset as the core of a scientific
discipline on a broader scale within the data-related community, with the subse-
quent consideration within the contributing disciplines to data science in recent
years (Lau et al, 2018; Nwokeji et al, 2015; Ng et al, 2021), is arguably the
effect and contribution of data science. This view is shared by Leonelli (2019)
and Fekete et al (2021). However, while we are concerned here with a proper
delineation of the fields of science and technology such as the ones identified
by (Braschler et al, 2019) as being contributors to data science (cp. Figure 1),
Leonelli presents a philosophical analysis of data-centric research, and Fekete
and colleagues are concerned with data science teaching.

3 An example from practice

To illustrate the contrasting approaches in data science and related disciplines,
an example is presented from resilience research. It is a prototypical example
of a use case that could build on multiple highly different data sources, which
would require different methodology to exploit them, leading to different re-
search outcomes in terms of type and scope.

The example research is concerned with increasing the resilience of emer-
gency workers from heterogeneous professional backgrounds such as fire
brigade, rescue service, police, military and NGOs, to stressful situations. This
comprises answering the two questions of (a) how to effectively and efficiently
(i.e., practically possible for professionals in service) measure stress under
realistic conditions, and (b) how to increase the resilience to such stress by in-
terventions like individual trainings. The setup for this research in a first phase
is as follows (with the prospect to scale up to larger samples in the next phase):
over a period of 72 hours, a group of ca. 20 participants are cast into a series
of role-playing scenarios belonging to a fictitious foreign catastrophe situation
(Merkt and Wilk-Vollmann, 2021). In these scenarios, they face constantly in-
creasing challenges of asymmetric threat (cp. Figure 2) while data is being
recorded. Specifically, all radio traffic is recorded, physiological parameters are
taken (heart rate; blood pressure; blood gas analysis for lactate, base excess,
glucose; and neurophysiological biomarkers like cortisol and α-amylase), and
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Learning from less (e.g., less data with as little as possible human-provided
interpretations/supervision) can guide the learning of decision-making func-
tions out of mere observations and probably also should do so in order to avoid
human-introduced biases (Glüge et al, 2020; Wehrli et al, 2021). While this
naturally employs machine learning methods, it is the mindset of data science
(seeking a solution that relies on data alone instead of human annotations) that
prompts the selection of un- and semi-supervised methods and not vice versa.
Additionally, such methods are also applied by data scientists to gain models
(and out of them value) from obviously imperfect data sets. It is again the
data science mindset that asks “what can be done to exploit the actual data
best” rather than “who can bring me better data or labels to train my method”
(Hollenstein et al, 2019; Simmler et al, 2021).

Data products are outcomes (digital services, physical products or anything
in between) that have data at their core (Loukides, 2011) and not just as an
ingredient. While again certain methods from the contributing disciplines are
necessary conditions for them to function, a prime candidate being service
engineering (Meierhofer et al, 2019), only by adding the data itself the sufficient
conditions for value generation are met. Hence, they derive their added value
from the added data.

2.3 Data centrism in the literature

This list in Section 2.2 could (and should) be extended as well to establish
the pattern more strongly. However, intuitively, what the list resembles is the
same mindset reinforced several times in the 2020-2021 issues of Andrew Ng’s
“The Batch” (DeepLearning.AI editorial team, 2021) of thinking data-centric
rather than {model, user, customer, theory, application, . . . }-centric. Similar
arguments are provided for example by Della Corte and Della Corte (2021) and
Gerdes (2021).

Putting data at the centre of thinking (i.e., assuming data necessary (Jeffreys
and Jeffreys, 1988) for the realization of the expected added value, and data
plus data science methods sufficient), has been already hinted at in Hey et al
(2009) for applications in the sciences, and is of course discussed in contributing
disciplines like machine learning (Ng, 2021; Ng et al, 2021). Data centrism has
further been discussed (and partially been dismissed) as a guiding principle
for physical computer network organisation (Shenker, 2003) and server design
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(Siegl et al, 2016), database (Haas et al, 2011) and middleware development
(Chen et al, 2008) as well as the build-up of whole embedded (Alvarez-Coello
et al, 2021) and enterprise software architectures (Rajabi and Abade, 2012).

However, the furthering of the data-centric mindset as the core of a scientific
discipline on a broader scale within the data-related community, with the subse-
quent consideration within the contributing disciplines to data science in recent
years (Lau et al, 2018; Nwokeji et al, 2015; Ng et al, 2021), is arguably the
effect and contribution of data science. This view is shared by Leonelli (2019)
and Fekete et al (2021). However, while we are concerned here with a proper
delineation of the fields of science and technology such as the ones identified
by (Braschler et al, 2019) as being contributors to data science (cp. Figure 1),
Leonelli presents a philosophical analysis of data-centric research, and Fekete
and colleagues are concerned with data science teaching.

3 An example from practice

To illustrate the contrasting approaches in data science and related disciplines,
an example is presented from resilience research. It is a prototypical example
of a use case that could build on multiple highly different data sources, which
would require different methodology to exploit them, leading to different re-
search outcomes in terms of type and scope.

The example research is concerned with increasing the resilience of emer-
gency workers from heterogeneous professional backgrounds such as fire
brigade, rescue service, police, military and NGOs, to stressful situations. This
comprises answering the two questions of (a) how to effectively and efficiently
(i.e., practically possible for professionals in service) measure stress under
realistic conditions, and (b) how to increase the resilience to such stress by in-
terventions like individual trainings. The setup for this research in a first phase
is as follows (with the prospect to scale up to larger samples in the next phase):
over a period of 72 hours, a group of ca. 20 participants are cast into a series
of role-playing scenarios belonging to a fictitious foreign catastrophe situation
(Merkt and Wilk-Vollmann, 2021). In these scenarios, they face constantly in-
creasing challenges of asymmetric threat (cp. Figure 2) while data is being
recorded. Specifically, all radio traffic is recorded, physiological parameters are
taken (heart rate; blood pressure; blood gas analysis for lactate, base excess,
glucose; and neurophysiological biomarkers like cortisol and α-amylase), and
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questionnaires for subjective assessment of the stress level are taken based on
standardized interview settings.

Fig. 2 Example of a catastrophe scenario as used in the described resilience research (Merkt and
Wilk-Vollmann, 2021): Role play is used to create realistic, stressful crisis situations; data is collected
during and after the scenarios from the participants to reflect their stress level (picture shows one of
the authors). Copyright © by Stefan Mikolon (used with permission).

Typical resilience research would focus on structured questionnaires as
data sources to account for human factors in the dealing with stress (Merkt
et al, 2020), evaluating them using a qualitative research approach based on
Grounded Theory (Adolph et al, 2011). The advantage of these methods lies
in the inductive development of categories and theories. This means that the
heterogeneous and complex situations within catastrophe scenarios that cannot
be standardized beforehand could be dealt with very individually. As part of
the qualitative content analysis according to Mayring (2015), which is based
on the Grounded Theory, the inductive theory formation is specified by a con-
crete methodological analysis process. The core of this process is the coding
of individual statements, aiming at assigning the interview content to different
categories. These categories, in turn, are validated as part of a reliability test
on the basis of various statistical measures, after which an evaluation and in-
terpretation takes place. This is the strength of the qualitative, social science
approach, which is based on a formal, structured process of data acquisition.

However, when this resilience research project enters the next phase, it has
to scale up to thousands of participants, not only in controlled settings of role-
playing scenarios, but in emergency operations in practice. As there is simply
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no way of getting structured, standardized questionnaire data from all subjects
in practice, a data-centric approach rooted in data science is a valid alternative:
Subjects are equipped with few easily manageable sensors and post-hoc stress
analysis is attempted with the data that these deliver. Additionally, communi-
cation under stress reveals a lot about the communicators’ stress level, so it is
worthwhile to decode the radio communication using AI-based emotion recog-
nition (Biondi et al, 2017). While qualitative methods might in principle deliver
more meaningful results based on smaller samples, such methods are excluded
by the use case. Only a data science approach with its mindset of “creating
value from the actual data” can lead to any result, where “actual” data is the
data either readily available or at least realistically producible.

4 Limitations

Focusing on a single aspect is necessary for any detailed study, and identifying
the core of an emerging scientific discipline is no exception. We are convinced
that data centrism as discussed above is of utmost importance to the scientific
core of data science in the sense that it serves as a focal point in deciding what
is data science and what is part of a contributing discipline. However, we do
not see clearly enough yet if this is the scientific core itself, or some inner ring
around it.

Particularly, the following duality illustrates that zooming in too much on
data as a subject in data science rather than mere object of study can be mislead-
ing in the limit: Making data the “subject that determines the course” naturally
assumes given data as the starting point of data science endeavours, and we
have presented examples above that illustrate the importance of data science
in working with the data one has, the given data, to subsequently research and
apply methods that make the most of it rather than dismissing it.

However, already the (real) use case in Section 3 shows that also a data-
centric approach rooted in data science has to take into consideration the source,
acquisition and quality improvement of data. It will develop adequate methods
for this distinct from data acquisition methods in, e.g., qualitative analysis.
But this case shows that equating data centrism with “creating value out of
given data” falls short of the scope of data science and the power of the data-
centric paradigm: Data science does contain methods, data-centric methods, to
improve on the data by getting more adequate data. Such methods for example
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et al, 2020), evaluating them using a qualitative research approach based on
Grounded Theory (Adolph et al, 2011). The advantage of these methods lies
in the inductive development of categories and theories. This means that the
heterogeneous and complex situations within catastrophe scenarios that cannot
be standardized beforehand could be dealt with very individually. As part of
the qualitative content analysis according to Mayring (2015), which is based
on the Grounded Theory, the inductive theory formation is specified by a con-
crete methodological analysis process. The core of this process is the coding
of individual statements, aiming at assigning the interview content to different
categories. These categories, in turn, are validated as part of a reliability test
on the basis of various statistical measures, after which an evaluation and in-
terpretation takes place. This is the strength of the qualitative, social science
approach, which is based on a formal, structured process of data acquisition.

However, when this resilience research project enters the next phase, it has
to scale up to thousands of participants, not only in controlled settings of role-
playing scenarios, but in emergency operations in practice. As there is simply
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no way of getting structured, standardized questionnaire data from all subjects
in practice, a data-centric approach rooted in data science is a valid alternative:
Subjects are equipped with few easily manageable sensors and post-hoc stress
analysis is attempted with the data that these deliver. Additionally, communi-
cation under stress reveals a lot about the communicators’ stress level, so it is
worthwhile to decode the radio communication using AI-based emotion recog-
nition (Biondi et al, 2017). While qualitative methods might in principle deliver
more meaningful results based on smaller samples, such methods are excluded
by the use case. Only a data science approach with its mindset of “creating
value from the actual data” can lead to any result, where “actual” data is the
data either readily available or at least realistically producible.

4 Limitations

Focusing on a single aspect is necessary for any detailed study, and identifying
the core of an emerging scientific discipline is no exception. We are convinced
that data centrism as discussed above is of utmost importance to the scientific
core of data science in the sense that it serves as a focal point in deciding what
is data science and what is part of a contributing discipline. However, we do
not see clearly enough yet if this is the scientific core itself, or some inner ring
around it.

Particularly, the following duality illustrates that zooming in too much on
data as a subject in data science rather than mere object of study can be mislead-
ing in the limit: Making data the “subject that determines the course” naturally
assumes given data as the starting point of data science endeavours, and we
have presented examples above that illustrate the importance of data science
in working with the data one has, the given data, to subsequently research and
apply methods that make the most of it rather than dismissing it.

However, already the (real) use case in Section 3 shows that also a data-
centric approach rooted in data science has to take into consideration the source,
acquisition and quality improvement of data. It will develop adequate methods
for this distinct from data acquisition methods in, e.g., qualitative analysis.
But this case shows that equating data centrism with “creating value out of
given data” falls short of the scope of data science and the power of the data-
centric paradigm: Data science does contain methods, data-centric methods, to
improve on the data by getting more adequate data. Such methods for example
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analyze the data at hand, realize shortcomings, and prompt users for specific
improvements such as filling gaps in the coverage of the data set (guided by
data, aimed at data – thus having data at the centre) or create new synthetic
samples as in data augmentation (Shorten and Khoshgoftaar, 2019). We thus
chose to refer to data science as the discipline dealing with actual data (cp. end
of Section 3) rather than idealized data (idealization that happens, e.g., when
assuming Gaussianty, as discussed by Li (2007)).

On a more fundamental level, having data science as a discipline that puts
supreme value in actual data (rather than, e.g., human theories on the causes of
this data) opens the door to all kind of problems inherited from this data: The
data might be biased (Wehrli et al, 2021) and thus barely suitable to build mod-
els on it; it might, in the absence of any theory on its origin and requirements
on its quality, give rise to models that find spurious patterns and consequently
produce models of machine magical thinking (Diaconis, 2006). It might not
find any value at all because the data, in combination with current methods,
turns out to be insufficient to realize the added value. For all these – true, actual
– risks of assumption-free data analysis, it is important to make data science not
a replacement of other scientific disciplines, but an enrichment. If the more for-
mal, less error-prone methods of statistics can be applied in a certain analysis,
then this should be done; if causal analysis (Pearl, 2009) can be done and is
important for the validity of the result, this should not be neglected. But if no
other principle of analysis can be applied than data centrism, for practical or
theoretical reasons, then it is important to have the best possible data science
methods available. Mitchell (1997) proves that no learning is possible without
assumptions; we argue that data science is home to those methods that deliber-
ately work with the least possible amount of assumptions, which sometimes is
the only viable route to take. Of course, such approaches can only detect cor-
relations in the data and make no statements about causality (Cap, 2019). But
while correlation is not causation, correlation often is enough (Brodie, 2019b,a;
Stockinger et al, 2019). Hence, furthering data science as a data-centric dis-
cipline adds something unique to the quiver of scientific methodologies. The
skilled hunter will carefully chose the appropriate arrow for each situation.
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5 Conclusion

If the scientific core of data science is constituted of those aspects that put data
at the core of thinking, acting and expectation, and if, next, methodology from
other fields is assembled around this core as need arises, the following tentative
list of novel areas of research (and the respective works therein) can arguably
be seen as being genuine first-class citizens of the discipline of data science –
the non-borrowed part of it:

Machine Learning Operations (MLOps): The discipline of machine learning
could live well without taking care of operational issues for several decades
(Mitchell, 1997). It is since the advent of data science and hence the data-
centric paradigm that methods are created and community is formed to care for
the development process including the operation of the complete data product
pipeline, and the various feedbacks between them (Mäkinen et al, 2021).

Applied semi- and weakly-supervised learning: While the research of meth-
ods on how to learn from little supervision is core machine learning terrain
inspired by findings in neuroscience (Zador, 2019), the application of such find-
ings to data problems in industry, health, finance, retail, etc. is the domain and
contribution of data science.

Data product design: The data product Loukides (2010) already appeared to
be one of the outstanding contributions of data science in one of the first major
courses on the subject (Howe, 2014).

Explainable Artificial Intelligence (XAI): Few other fields with a strong tech-
nical core have managed to incorporate overarching (societal) concerns into
the discipline itself as well as data science has. Be it under the terms of ex-
plainable artificial intelligence, data ethics, {DataScience, AI}4Good or others,
these developments wouldn’t come out of the neighboring disciplines of AI
or ethics without the mindset promoted by data science – data centrism. Only
data centrism promotes methods that seek value from the data itself without
deferring to humans for modeling decisions, which in turn creates the demand
for new methods and frameworks for transparency, interpretation and ethical
acting.

Future work will include a more thorough analysis of data centrism: Its
origins and current traces, and if this confirms the view suggested here of data
centrism being the scientific core of the discipline – and hence kingmaker of
data science.
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Abstract

Introduction: In contrast to current AI technology, natural intelli-
gence – the kind of autonomous intelligence that is realized in the
brains of animals and humans to attain in their natural environ-
ment goals defined by a repertoire of innate behavioral schemata
– is far superior in terms of learning speed, generalization capabil-
ities, autonomy and creativity. How are these strengths, by what
means are ideas and imagination produced in natural neural networks?
Methods: Reviewing the literature, we put forward the argument
that both our natural environment and the brain are of low com-
plexity, that is, require for their generation very little information
and are consequently both highly structured. We further argue that
the structures of brain and natural environment are closely related.
Results: We propose that the structural regularity of the brain
takes the form of net fragments (self-organized network patterns)
and that these serve as the powerful inductive bias that enables the
brain to learn quickly, generalize from few examples and bridge the
gap between abstractly defined general goals and concrete situations.
Conclusions: Our results have important bearings on
open problems in artificial neural network research.
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2 Natural Intelligence
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1 Introduction

There may be different kinds of intelligence. We here concentrate on the one
that is epitomized in humans and animals. This kind of intelligence is often
defined as the ability to successfully pursue general goals in varying contexts,
goals such as feeding oneself, avoiding danger or creating offspring. The empha-
sis of our communication is on the neural mechanisms that generate this ability,
our main point being that besides nature and nurture the process is dominated
by a third generative factor, emergence. In this context, ‘nature’ refers to the
influence of the genes and therewith to that of evolution, while ‘nurture’ to
that of experience, instruction and education. We would like to maintain here
that neither quantitatively nor qualitatively genes and experience alone can
account for the structure of the nervous system nor the intelligence it supports,
leaving a large gap to be closed by emergence.

On the quantitative side, as to ‘nature’, the human genome contains one
gigabyte of information (3.3 billion nucleotides of DNA [1]) while one petabyte
is required to describe the connectivity of the human brain1. In the case of
humans, ‘nurture’ during the first years of life is provided for by an environment
(the nursery, the family, toys, books etc.) that is deliberately kept simple and
could be simulated in its visual aspects on the basis of a virtual reality program
of a few gigabytes. Additionally, the rate at which humans absorb information
into permanent memory is estimated [2] at only 1−2 bits per second, signifying
a couple of gigabits over a long lifetime. These amounts of information are to
be compared to the petabyte needed to list all connections in the brain.

The qualitative side is the essence of the problem we want do address: how
can intelligence, in terms of ideas, imaginations and insights surpass so much
everything that has been ‘programmed’ into the genes, and how can it learn
so fast and generalize so boldly beyond all the examples it has seen before?

To deal with the quantitative side of the problem one has to distinguish the
raw amount of information needed to describe a structure from the minimal
amount of information required to generate it. The latter, the bit length of
the shortest algorithm that can generate the structure, is called Kolmogorov
complexity [3] and may be smaller by many orders of magnitude than the
amount of information required to describe the structure. An extreme example
of low Kolmogorov complexity is illustrated in Figure 1. Obviously, nature and
nurture need only gigabytes to construct, respectively instruct, the brain. A
logical consequence of this efficiency is that the brain is totally dominated by
structural regularity, so that instead of from all randomly possible connectivity

11014 synapses, each taking 33 bits to address one of the 1010 neurons of the brain.
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Natural Intelligence 3

Fig. 1 Illustration of Kolmogorov complexity. Julia sets (middle panel) need, literally, infi-
nite amounts of information to be described, but very little information suffices to generate
them (left; recursive definition and mathematical grammar). Perception and efficient learn-
ing are possible by reducing the flood of sensory signals produced by the environment to an
underlying low-complexity description (right).

patterns among its neurons nature and nurture only need to pick from a vastly
smaller space of pre-structured patterns. A central thesis of our communication
is that the structural regularity implied by this low Kolmogorov complexity
acts as the domain-specific inductive bias that any system needs [4, 5] or [6,
ch. 2.7] to be able to learn efficiently.

The remainder of this paper is organized as follows: In Section 2 we put
forward the hypothesis that the Kolmogorov algorithm of the brain is net-
work self-organization as studied extensively on the example of the ontogenetic
development of retino-topic connections. In Section 3 we discuss a small num-
ber of cognitive sample processes that are in need to be understood and
implemented. In Section 4 we try to make plausible how net fragments can
serve as basis to solve these problems and in Section 5 we discuss the relevance
of the perspective we are creating to open problems within the current field of
AI.

2 Network Self-Organization as Kolmogorov
Algorithm of the Brain

What is the type of mechanism, the concise Kolmogorov algorithm, by which
the connectivity of the brain and hence the structural regularity is generated
under genetic guidance? We suggest to adopt as paradigm the experimentally
and theoretically well-studied mechanism of the ontogenesis of retinotopic con-
nections: The axons growing out from the retinae of vertebrates reach their
target structures (e.g., the optic tectum) in more or less random order, but
after a relatively brief period they order themselves so as to establish a smooth
mapping conserving geometry [7]. Of all the mechanisms that have been pro-
posed to explain the process only one survived comparison to experiment,
network self-organization [8, 9]. Its general idea is quite simple. An initial con-
nectivity supports spontaneous activity. This activity acts back by synaptic
plasticity to alter the network, and this loop, from connectivity to activity and
back to connectivity, continues until a stationary state, an attractor network,
is reached.
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4 Natural Intelligence

Therefore we propose that network self-organization, as displayed in the
retino-tectal system, is the Kolmogorov algorithm generating the wiring of the
brain. Sensory signals, as soon as they become available, participate in the
mechanism, co-determining the attractor networks that are allowed to form.
Attractor networks can be characterized by optimizing two properties: sparsity
and consistency. A network is sparse if it has a small number of connections
converging on or diverging from any neuron and connectivity is consistent if
it supports high-order temporal correlations between sets of signals arriving
at any given neuron. This consistency means that a network is dominated by
sets of alternative signal pathways (of approximately equal conduction delay)
between many pairs of source and target neurons [10].

As result of such network self-organization, the brain develops as an overlay
of attractor networks (‘net fragments’) [11]. Each net fragment comprises a set
of neurons and the connections among them. If a set of neurons is activated
again and again for a sufficient total time its internal connectivity can converge
towards an attractor state. There is positive feedback between the activity of
the set and the structure of its connectivity. As large sets of neurons are very
unlikely to occur more than once, only small sets will be given a chance to
establish themselves as net fragments. Each neuron can be part of several net
fragments.

Many systems of low Kolmogorov complexity and implied high regular-
ity arise by emergence. Such systems are composed of building elements that
interact by physical, chemical, mechanical etc. forces. Well-known examples
are soap bubbles or crystals: Under appropriate conditions (e.g., low temper-
ature in a liquid) large-scale ordered configurations arise in which the forces
between the elements interlock such as to lend the configuration stability. In
these, weak interactive forces between the building elements (e.g., molecules)
can achieve large-scale stability only by interlocking in consistent configura-
tions. In the brain, where quite a number of connections have to conspire
(i.e., fire simultaneously) to activate a neuron, a vanishingly small subset of
all possible connectivity patterns is singled out by their ability to dynamically
self-stabilize as attractors of network self-organization.

After sufficient self-organization of the system larger sets of neurons can
only be active as interlocking net fragments, each of which can only become
active in the context of overlapping other fragments. This favors the activation
of large coherent nets, that is, networks which, if given sufficient time, would
be attractors under network self-organization. The term ‘net’ emphasizes com-
position of smaller fragments, although a net can itself be a fragment of larger
nets.

In order not to be caught in local optima, network self-organization needs
to start from an initial state that already establishes a coarse global structure
from which it can proceed in a coarse-to-fine manner (for which a gradual
tightening of inhibitory strength over the course of development [12, 13] may
be the basis). This initial connectivity structure, set up by earlier ontogenetic
processes which rely on genetically controlled emergence [14] establishes gross
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connectivity between sensor organs, effector organs and the behavioral control
circuits enabling animals to already function at the time of birth.

In the next sections we will give a sample of typical cognitive processes
that are to be implemented and understood (Section 3), will explain how net
fragments can serve to do so (Section 4) and how this framework supports
efficient learning, generalization and autonomy (Section 5).

3 Cognitive Processes to be Implemented

What essential functions are at the basis of natural intelligence? A lioness
stalking pray in the savanna has to integrate a complex array of factors into
one coherent strategy in order to be successful. One little disturbing factor can
throw off the whole situation. It may be that this complexity of natural situa-
tions, in distinction to the logical simplicity of classical AI accomplishments, is
responsible for Moravec’s paradoxon (“it is comparatively easy to make com-
puters exhibit adult level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-year-old when it
comes to perception and mobility” [15, p. 15]).

The organization of behavior within a given scene is based on a represen-
tation of that scene in the brain. Scene representation, a contested concept
[16, 17], does not imply static and complete rendering of detail as in a photo-
graphic image but is rather to be seen as an organizational framework putting
abstract interpretations of scene lay-out and scene elements in relation to each
other and to potential actions and emotional responses. This framework sup-
ports quick flashes of attention which materialize detailed reconstructions of
narrow sectors of the scene. Scene representations have to be built up by percep-
tion. Perception is difficult because sensory data are insufficient and ambiguous
and contain in only entangled form the different factors (shape, color, mate-
rial, motion etc.) that make up the scene. Perception is therefore to be seen as
an active process that constructs a model of the scene that uniquely explains
the sensory signals and their changes under motion.

According to ethologists, animal and human behavior is defined and con-
trolled by a number of drives (such as to satiate hunger or avoid danger), each
of which is laid down under genetic guidance in a schematic form [18, 19].
A behavioral schema can be activated by a sensory trigger feature, executes
a behavioral response, evaluates the outcome and is modified by the experi-
ence. The basic behavioral machinery, which serves a function analogous to
a computer user acting through the machine’s operating system, is the fruit
of evolutionary trial and error over many generations, and presumably is laid
down in the style of business process models or Petri-nets in terms of rela-
tively few appropriately connected neurons or neural pools. To integrate this
basic machinery in a meaningful way into the flow of scene representations is,
however, a very complex affair and is the basic goal of learning.

Even beyond the organization of behavior, there is a long tradition [20–
22] or [23, pp. 147–172] of discussing schemata as basis for understanding
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phenomena and define meaning. It therefore seems important to have a clear
view how concrete instances can be related to abstract schemata.

Learning takes place inside tasks that are governed by the behavioral
drives. The currently active drive decides which elements of the scene are rel-
evant, focuses attention accordingly and curtails the scene representation to
its needs. The drive, as originally defined and further developed by experi-
ence, can be seen as an abstract scene description that can serve to shape
and interpret actual scenes as schema instantiations. This setting, a behavioral
schema-interpreted scene, serves to powerfully constrain the learning process.

How can these functions be understood and implemented on the basis of
net fragments?

4 Net Fragments as Implementation Medium

As we have argued, both our natural environment and our brain have very
low Kolmogorov complexity (cf. Figure 1). We take computer graphics and
virtual reality as models for the structure of our natural environment, and we
take network self-organization, as studied on the example of the ontogenesis
of retinotopy, as the mechanism by which the connectivity of the brain arises.
We further note that for a system to efficiently learn it needs to have a strong
bias towards its domain [4, 5] or [6, ch. 2.7]. As the human brain indeed
learns very efficiently we feel encouraged to propose the hypothesis that the
connectivity structures that result from network self-organization, together
with the neural dynamics that governs their activation in the establishment of
scene representations (see below) are the inductive bias, the a priori structure
(compare [20]), that tunes the brain to the natural environment.

In the remainder of this section we will discuss how net fragments can serve
to implement structures and processes, taking vision as sample modality.

4.1 Data Structure of Primary Visual Cortex

Primary visual cortex is populated with a collection of feature detector neurons
with an abundance of short-range lateral excitatory connections between them
[24]. Sensory signals coming from a point within the retina in response to visual
input activate a subset of the feature neurons whose receptive fields cover that
point and its immediate environment. Different local textures activate different
such sets. Within some months of early experience network self-organization
will re-arrange the excitatory connections within each of these sets and with
neurons in the neighborhood. There are 100 times more neurons in primary
visual cortex compared to the number of axons coming out of the retina [25],
opening the way to sparse codes (as in [26]). Visual input first briefly acti-
vates an exuberance of neurons, most of which will then be silenced (by, e.g.,
balanced inhibition [27]) leaving only the small subset of those neurons active
that can support each other by lateral connections inside net fragments (for a
model of this process see [28]). (Membership in activated fragments is perhaps
indicated by bursting activity [29, 30].) As result of early visual experience
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texture patches (at the scale of the range of lateral connections) that dominate
the statistics of the input will therefore become represented by net fragments.

This developing structure of the primary visual cortex resembles associative
memory [31, 32], except that due to the short range of lateral connections it
has the two-dimensional topological structure of the visual field and that its
stored local states are defined on a statistical basis. The local net fragments can
be compared to the codebook vectors of some image compression algorithms
[33]. They can be considered as filters that interpret the actual visual input
in terms of patterns previously experienced with statistical significance. They
suppress redundancy and regularize responses, as is important, for instance,
to extract stereo depth [34] or motion. The net fragments that respond to
the surface of a coherent object overlap in terms of neurons and connections
and thus form a coherent net, covering the object. Net fragments can thus be
seen as implementation of the Gestalt laws [35], and the coherent nets they
form as realization of the ‘force fields’ that that movement is speaking of. The
coherence of a net covering the cortical region occupied by an object can serve
as basis for figure-ground discrimination [36].

The example illustrates the power of net fragments as inductive bias. Local
texture-representing net fragments as such could be replaced by the higher-
level feature neurons of deep learning systems. However, due to neuron-wise
overlap net fragments in distinction to those are exclusively activated when
merging into a coherent field, a Gestalt. Net fragments and their dynamics
thus naturally render the topological structure of the continuous surfaces that
dominate our environment and allows them to be handled as a whole, as seen
in the next subsection.

4.2 Invariant Object Representation

A concrete object can appear in the visual cortex in an infinitude of versions
differing in position, size, orientation and other factors. In all these versions
the object image gets represented, as just discussed, by coherent nets com-
posed of local net fragments. To store and later recognize the object when
it appears in the retina in transformed version it is necessary to lay down
connections that permit to construct, in response to visual input, nets that
represent views of the object independent of its position, orientation etc. In
the human brain these invariant representations presumably are located in
infero-temporal cortex [37]. There is psychophysical evidence [38] that for a
large class of structured object types the visual system is able to construct
such invariant representations out of shape primitives that are common to
such objects. We propose to see these shape primitives be represented as net
fragments which have the flexibility to adapt to the shape of actual objects
in spite of metric deformations, depth rotation and of course position within
object-centered coordinates. The identity and relative position of these shape-
primitive-representing net fragments can then serve to identify the object type
[38] and serve as basis for manipulation.
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To enable such invariant responses to the position- etc. variant represen-
tation of objects in the primary cortices the proposal has been made [39–41]
that there are rapidly switchable connections (‘shifter circuits’) between the
primary visual cortices and invariant representations in infero-temporal cortex
that can connect nets in those two areas in a structure-preserving way. In both
areas the object is represented by a two-dimensional field of neighborhood-
connected neurons. A mapping between them is called structure preserving
(‘homeomorphic’) if it is smooth (connecting neighbors in one field to neighbors
in the other) and connects only neurons of the same type.

Simple versions of invariant object recognition on the basis of shifter circuits
have been demonstrated [41–43]. Shifter circuits are composed of net fragments
and can be formed by network self-organization [44]. Active maps that connect
variant images with their invariant representation as well as the movements
and deformations of those maps constitute valuable information (as argued in
the introduction of [41]), so that, for instance, the shape of an object rotating
in front of the eyes can be deduced from the deformation of this map. The
separation of visual object representation into external coordinates (‘where’)
and internal structure (‘what’) is an important example of the disentanglement
of sensory patterns into the factors they contain.

The example of invariant object representation again illustrates the power
of self-organized net fragments as inductive bias. Different views onto the same
object or surface are related by homeomorphy, and net fragments are a nat-
ural way to form homeomorphic mappings. Such mappings, seen as dynamic
entities, can track and model the movements of objects and surfaces in the envi-
ronment and their relations to the eye. They are an essential element needed
to reconstruct and model in the brain the geometry, kinematics and dynamics
of the natural environment.

It is tempting to see invariant visual object representation as a special case
of the more general problem of representing the relationship between abstract
schemata and instances they apply to. Assuming that this relationship has
the character of a homeomorphic mapping (preserving types of entities and
their relations) it is conceivable that the ensemble of schema, instance and
mapping between them comes to be represented by a coherent net composed
of previously established fragments, just as in the example of invariant object
representation.

4.3 Net Fragments as Data Structure of the Mind

There is a broad consensus of seeing neurons as atoms of meaning [45]. As
such, individual neurons may refer to entities on any level of complexity, but
in doing so they act merely as labels, while beyond a low level of complexity
they cannot render unambiguously the specific structure of what they refer to.
To do this requires a compositional data structure (as convincingly argued in
[46]). The lack of compositionality in artificial neural networks is referred to
as the binding problem [40, 47].
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We here argue that net fragments are the brain’s compositional data struc-
ture and its solution to the binding problem. It is illustrated by the visual
representation of objects in both the variant and the invariant versions. Indi-
vidual feature neurons can, in response to visual input, fire stably only in the
context of a net fragment they are part of (see Subsection 4.1 or [28]), and
this net fragment can do so only when overlapping with other net fragments
(as neurons only fire as part of a net fragment they are part of), so that the
response to the input actually is that of a net spanning the whole object as cur-
rently pictured. This net is a one-time structure rendering the never-repeating
way the object appears at any moment. It responds holistically, as result of a
collective effect [48], just as the Gestalt psychologists [35] would have it, and
it still renders the Gestalt in minute detail. A hierarchy of features of various
complexity levels is represented by nested net fragments of different size.

A good composite data structure has to be able to exert effect on the basis
of its structure and be productive in the sense of giving rise to analogous
structures [46]. Our example of invariant visual object recognition illustrates
this condition. The actual recognition takes place by the activation of a net
forming a homeomorphic point-to-point mapping between the invariant and
the variant representation. This net gets created by the activation of net
fragments each of which connects a small region in the plane with the vari-
ant representation (primary visual cortex) with a corresponding small region
in the invariant representation (infero-temporal cortex). These ‘maplets’ are
activated by homeomorphy between the small regions they connect and they
overlap such as to form a coherent global map between variant and invariant
representations of the object, as demonstrated in [39, 40]. Consequently it takes
just one exposure to a new object type and formation and storage of a model
thereof in the invariant domain to recognize that type of object independently
of transformation state. This explains the brain’s ability [49] to recognize novel
objects in altered position and pose after a single brief exposure. The repre-
sentation of objects is compositional and productive, as requested by [46], in
that the composite mappings can serve any object and represent the position,
size and orientation of the variant object image, the invariant representation
of an object can render a large number of variant versions thereof, and the
net fragments in the two domains can be re-used for an infinitude of different
objects.

Compositionality applies also to representing cognitive structure in terms
of submodalities (in vision, for instance, texture, color, motion, form, size,
position etc.). Whereas sensory signals contain submodalities in implicit form,
specific submodality patterns can be represented separately within their own
specialized cortical regions. Submodalities are basically independent of each
other – object form, for instance, abstracting from position, size, surface tex-
ture or coloring. Concrete mental objects can be constructed by linking them
together with the help of maps of connections as described above, in a process
analogous to the way computer graphics creates visual output by mapping
different sub-modalities to each other and into the virtual camera.
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Mental objects thus constructed are to be seen as larger net fragments com-
posed as mergers of pre-existing net fragments. In a sufficiently pre-trained
brain such nets, once selected by input, are stable constructs that are attrac-
tors both in terms of the fast dynamics of neural activation and inactivation
and the slow dynamics of network self-organization. Like in associative memory
[31], active neurons are pushed by a number of simultaneously firing excita-
tory connections into a high-activity state, while silent neurons are reliably
suppressed by converging inhibitory connections. Such network states can be
characterized as of high consistency – consistency between different signals
arriving on individual neurons and consistency between the set of currently
active neurons and and their connectivity. Network self-organization works on
a slower time-scale by performing something like a stochastic gradient descent
of neural connections with a cost function, at each individual neuron, that
favors binary dynamics with either a highly excited or deeply suppressed state.

4.4 Neural Dynamics: How a Trained Brain Perceives

Perception is difficult due to the paucity and ambiguity of sensory signals and
because scene representations have to be spontaneously constructed such as
to uniquely explain the sensory input. Given the speed with which our brain
routinely performs the task, this construction cannot be based on sequential
memory search. To this speed we offer the following explanation. The sensory
signals in their great ambiguity reach and alert all net fragments that are com-
patible with them. Among these, some overlap and dynamically support each
other while others are mutually inhibitory. Buried in this dynamics is (given,
of course, sufficient previous experience) the comprehensive net that represents
the scene. Due to its pervasive consistency of all connections this net prevails
in the dynamic process, establishes itself and inhibits all incompatible net frag-
ments. The activation of this net is due to a collective process [48] comparable
to a phase transition [50] (like magnetization) instead of to sequential search.

5 Relevance to Open Problems

Grave limitations [51–54] of contemporary AI [55] have to do, first, with inabil-
ity to generalize sufficiently beyond human-provided examples. We trace this
inability to the lack, in current systems, of a sufficiently powerful inductive
bias for learning. Inductive biases are specific to application domains [4–6].
We accordingly focus on what we call natural intelligence which is tuned to
solving general problems in our natural environment.

So far, we have argued that our natural environment has low Kolmogorov
complexity, interpreting today’s virtual reality systems (which have low com-
plexity) as sufficiently convincing approximation to that environment. We have
further noted that the brain also is of low Kolmogorov complexity and have
subscribed to the view that its connectivity structure arises by emergence real-
ized by network self-organization. We have taken the brain’s tremendous power
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to learn and generalize from scant examples as indication that emerging con-
nectivity structures (net fragments) are the data structure of the brain and
constitute its inductive bias for learning.

As to learning, two stages have to be distinguished: First, a system has to
develop the toolbox that is necessary to model the surrounding scene. Second,
once it is in a position to model specific arrangements and processes it can learn
to relate them in finer and finer detail to its set of behavioral schemata and the
corresponding goals. For brains, the first stage is partly reached in pre-natal
development under genetic guidance, partly by sensory-motor experimentation
by the young individual. In the context of AI, this stage is modeled in the field
of developmental robotics [56].

For brains, learning in the second stage is, by comparison to current AI
technology, powerfully alleviated by two factors. First, during scene construc-
tion in interaction with and under the influence of a currently ruling behavioral
schema the schema-relevant scene elements are labeled as such by their map-
ping to and from the schema. This goes a long way towards credit assignment
during the evaluation of the ongoing experience and suppresses irrelevant
detail. Second, the essential structure to be picked up from the current situ-
ation (object, motion pattern, etc.) is already modeled as part of the scene
representation, not only in concrete detail but also on more abstract levels. It
is therefore possible to tie together all essential elements of the situation – the
relevant scene elements, their relative arrangement, their roles as defined in the
behavioral schema – by strengthening or creating a small number of connec-
tions to fixate the experience. This fixation has to happen at an appropriately
abstract level (the ability to find this level being a subject for an appropri-
ate kind of meta-learning), so that the particular experience generalizes to
analogous situations.

For AI systems, however, this generalization ability is still to be realized.
The presented methods could therefore, if properly implemented, mitigate the
above-mentioned problems of sample efficiency (including slow learning) and
generalization in a principled and unified way, with the effect of leading to
results that can approach common sense (compare with compartmentalised
approaches in [57–59]).

A second set of weaknesses of present AI technology revolves around low
level of autonomy. In typical applications rather narrow goals are formulated
by humans, application-specific data are collected and human-tuned archi-
tectures and hyper-parameter settings are empirically determined [60]. This
limits systems to specific applications and causes great expense, which is well
illustrated by the enormous time and investment in terms of human effort nec-
essary to develop autonomous vehicles. True autonomy requires a complete
(in some sense) set of abstract goals and behavioral schemata together with
the ability to (learn to) relate these schemata to concrete situations. The dif-
ficulty of this is due to the enormous distance in terms of abstraction between
concrete scene elements and the representations of general goals. We suggest
that this distance is bridged by homeomorphic relationships, and that these
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homeomorphic relationships can be found with the help of composition of net
fragments.

The superiority of human intelligence over that of animals is due to a very
rich complement of culturally acquired schemata many of which are absorbed
in verbal or symbolic form. We are born with a behavioral repertoire that is
very similar in principle to that of a range of animal species, but soon new
goals are acquired, grafted upon a small set of innate behavior patterns (such
as wanting to please or imitate social partners) acting as gateways. It has been
argued that higher intellectual abilities grow in the individual as layers of gen-
eralization by analogy, starting with the sensory-motor coordination structure
acquired early in life [56, 61]. So far it hasn’t been possible to model and artifi-
cially replicate that process. We suggest that the missing element is a potently
pre-conditioned data structure and that network self-organization is providing
this pre-conditioning in our brain.

6 Conclusion

A deep riddle of our existence is the question how the ideas and imaginations
in our mind arise. Super-natural influences and exotic force fields or quantum
processes are widely invoked. According to our proposal mental phenomena
appear like mathematical structures, which are singled out by the condition
of logical consistency and seem to be there even before being discovered by
mathematicians.
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Introduction

Human brain data are becoming a sought-after com-
modity in an increasing number of contexts and 
activities. Until a few years ago their acquisition and 

Abstract The increasing availability of brain data 
within and outside the biomedical field, combined 
with the application of artificial intelligence (AI) to 
brain data analysis, poses a challenge for ethics and 
governance. We identify distinctive ethical implica-
tions of brain data acquisition and processing, and 
outline a multi-level governance framework. This 
framework is aimed at maximizing the benefits of 
facilitated brain data collection and further process-
ing for science and medicine whilst minimizing risks 
and preventing harmful use. The framework consists 
of four primary areas of regulatory intervention: 
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analysis were limited to the clinical field and bio-
medical, psychological or behavioral research. Today, 
brain data are also increasingly being used in employ-
ment, education, and military contexts, as well as for 
personal use through an increasing number of con-
sumer-grade neurotechnological devices.

In the consumer space, information technology 
companies are developing devices and applications 
that leverage brain data for consumer purposes such 
as cognitive monitoring, neurofeedback, device con-
trol or other forms of brain-computer interfacing. For 
example, between 2017 and 2021 Facebook worked 
on a brain-computer interface (BCI) research program 
aimed at building a wearable BCI that enables users 
to type by simply imagining speech. Microsoft is 
working in parallel on non-invasive interactive BCIs 
for the general population while a whole ecosystem 
of neurotechnology companies such as Neuralink, 
Emotiv and Kernel is rapidly emerging. Consumer 
neurotechnology, e-learning, digital phenotyping, 
affective computing, psychographics and neuromar-
keting are some of the domains of application that 
leverage brain data as a commodity [1, 2].

In the educational and work setting, attempts have 
been made to collect and process brain data for pur-
poses such as improving learning and redesigning 
workflows. For example, last year, in China, primary 
school children were enrolled in a trial where electro-
encephalography (EEG) data were recorded during 
cognitive tasks to assess their attention spans [3]. 

Also in China, government-backed workplace sur-
veillance projects are deploying personal neurotech-
nologies to detect changes in brain activity among 
factory employees on the production line. These neu-
rotechnologies are intended to monitor productivity 
and adjust the pace of production accordingly [4].

Finally, military uses of neurotechnologies and the 
associated acquisition of brain data have increased in 
quantity and variety. One example is the “Next-gen-
eration Nonsurgical Neurotechnology Program”  (N3), 
a $104 million effort launched in 2019 by the United 
States Defense Advanced Research Projects Agency 
(DARPA) with the aim of developing non-invasive, 
portable and bidirectional BCIs for service members 
[5]. Several other nations have military research pro-
grams that involve brain data [6].

These novel uses of brain data add to the already 
extensive use of these data in clinical medicine and 
biomedical research. In these fields, electrophysiol-
ogy and neuroimaging datasets have steadily grown in 
volume, variety and analytic complexity [7, 8]. Data 
repurposing, a frequent occurrence in digital health 
and digital phenotyping, also permits cross-domain 
data transfer, blurring the lines between biomedical 
and non-medical data uses.

An Ethical and Policy Challenge

The increasing availability of brain data inside and 
outside the biomedical and health-care domain raises 
challenges for regulation and governance. On the one 
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hand, expanding the volume and variety of brain data 
available for research is crucial for advancing our sci-
entific understanding of the human brain and provid-
ing preventive, diagnostic and therapeutic solutions for 
patients with neurological or psychiatric disorders [9, 
10]. Several large-scale research programs, such as the 
US BRAIN Initiative and the EU Human Brain Pro-
ject, are working on advancing measurement tools and 
computational methods in neuroscience and neurotech-
nology. These projects could benefit from increased 
data availability in the medical or consumer domain.

On the other hand, as brain data become part of a 
wider digital ecosystem, they are subject to the same 
risks and vulnerabilities as other digital data. These 
include re-identification, hacking, unauthorized reuse, 
asymmetric commodification, privacy-sensitive 
data mining, digital surveillance and co-opting data 
for other non-benign purposes [2, 11]. Most impor-
tantly, brain-related measurements in the non-medical 
domain are rarely available in isolation. They can 
be combined with other digitally available informa-
tion and contextualized against online queries, social 
media, self-tracked data, DNA and geolocation. 
Advances in big data analytics and machine learning 
(ML) portend an unprecedented capacity to infer and 
identify patterns and predict outcomes by aggregating 
data from multiple sources [12–16].

Given the increased availability of brain data and 
recent emphasis in national and international policy-
making on data governance, the following question 
arises: how should brain data be regulated? In par-
ticular: what kind of governance framework is needed 
to maximize the benefits of brain data processing for 
scientific research and medicine whilst ensuring ethi-
cal use in other areas?

What Makes Brain Data Important?

The notion of “brain data” is often used without a 
clear conceptual characterization. To promote clarity 
for regulation and governance purposes, we propose 
the following working definition: Human brain data 
are quantitative data about human brain structure, 
activity and function. These include direct measure-
ments of brain structure, activity and/or function 
(e.g., neuronal firing or summed bioelectric signals 
from EEG) and indirect functional indicators (i.e., 
blood flow in fMRI and fNIRS). These types of brain 

data can be combined with non-neural contextual 
data, such as voice recordings, smartphone usage 
data or neuropsychological assessments, that can be 
used to support inferences about mental processes in 
a broader sense (Fig. 1). Compared to other measure-
ments of the human body, the risks associated with 
the collection and processing of brain data are dis-
tinctive in terms of quality and magnitude. This is due 
to inherent properties of brain data and their resulting 
ethical and legal implications.

At the neurobiological level, brain data are the 
most direct correlates of mental states, as all cogni-
tive and emotional activity is generated by the brain. 
Although current neurotechnologies, especially 
non-invasive techniques, are not yet able to decode 
thoughts —in the sense of providing a full, granular 
and real-time account of the neural patterns of spe-
cific cognitive processes—they increasingly allow 
to infer the engagement of perceptual and cognitive 
processes from patterns of brain activation, a process 
known as reverse inference [17]. This occurs through 
invasive and non-invasive methods to record (and 
manipulate) neuronal circuits as well as AI and ML-
driven data analytics. In laboratory animals, it is now 
possible to decode visual perception and manipulate 
it with high precision [18, 19]. In studies with human 
subjects, researchers have used fMRI scans and 
high-density electrocorticography signals to accu-
rately decode mental imagery and silent speech [20, 
21]. Recent work on intracranial EEG recordings of 
speech-related brain activity has achieved remarkable 
accuracy in identifying brain activity patterns related 
to inner speech [22] while ML techniques have helped 
enhance the analysis of cognitive processes also from 
EEG measurements [23, 24].

Finally, research has shown that predictive infer-
ences about mental states can be drawn also from 
non-neural data sources such as behavioural and 
digital phenotyping data [25]. Since network neuro-
science models and ML techniques are increasingly 
acquiring inferential power, brain data analytics will 
likely result, in the long term, in a greater disclosure 
of mental information. Big data approaches combin-
ing brain data and contextual data may offer addi-
tional inferential resources for such predictive analyt-
ics and allow for more far-reaching and personalized 
inferences, especially regarding mental content. Men-
tal decoding can improve our scientific understanding 
of mental illness and holds promise for the targeted 
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modulation of mental states. At the same time, it 
raises privacy and security challenges.

Even without decoding mental information, cur-
rent inferential models based on brain data can 
make privacy-sensitive inferences about present 
and future brain function or health status. These 
inferences and predictions, including early signa-
tures of cognitive decline, can be made about both 
individuals and groups [26]. Since brain data can 
be stored digitally, more information will become 
inferable in the future, as scientific understand-
ing of brain processes and decoding algorithms 
improve. Furthermore, brain data have higher tem-
poral resolution and potential for real-time inter-
action compared to other biomedical data such 
as genetic data. This enables more time-sensitive 
access to brain activity, e.g., for real-time brain-
computer interfacing. Finally, brain data are not 
“read-only” but are often available in a “read-and-
write” format due to neuromodulation such as via 
electromagnetic brain stimulation techniques, opto-
chemistry and optogenetics. This opens the pros-
pect of targeted and direct influence on a person’s 
mental life and personal identity.

It should be highlighted that many neurotechnolo-
gies currently available in the consumer space have 
limited precision [27]. However, with the current pace 
of technological progress, increasing market growth 
and the frequent spillover of biomedical technology 
into the non-medical sector, brain data processing for 
non-medical purposes raises the need for anticipatory 
ethics and foresight governance.

Ethical and Legal Challenges of Brain Data

These unique properties of brain data raise substan-
tive ethical and legal challenges. Since the human 
brain governs not only life-maintaining physiological 
processes but also cognitive, affective, volitional, and 
social faculties [28–30], brain data raise challenges 
for fundamental normative and legal constructs such 
as personal identity, autonomy, freedom of thought, 
moral agency, mental privacy and mental integrity. 
The notion of “freedom of thought”, for example, has 
been historically characterized as the right and free-
dom to protect the externalizations of thought such 
as choice (freedom of choice), language (freedom of 

Contextual data

Indirect measures 
of neural 

structure/function

Direct measures of 
neural 

structure/function

• Psychographic data
• Speech recordings
• Logs

• fMRI
• NIRS/fNIRS
• PET

• CT
• sMRI
• EEG
• MEG

Fig. 1  Brain data taxonomy. CT, computed tomography; 
MEG, magnetoelectroencephalography; EEG, electroencepha-
lography; PET, positron emission tomography; (f)NIRS, (func-
tional)near-infrared spectroscopy; (f)MRI, functional magnetic 
resonance imaging, (s)MRI structural MRI. The first category 
consists of methods for directly measuring electrical activ-
ity associated with neuronal activity. The second consists of 
methods for indirectly measuring neuronal activity, which 

operate under the principle that neural activity is supported by 
increased local blood flow and metabolic activity. The third 
class consists of active or passive digital phenotyping data 
related to perception, cognition, emotion and behavior. The 
data types presented in this taxonomy should be considered as 
explicative of each data category, not as an exhaustive typol-
ogy
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speech) and behavior (e.g. freedom of expression). 
Brain data processing may solicit a literal reinterpre-
tation of the right to freedom of thought. Similarly, 
the notions of personhood and personal identity are 
highly dependent on individual brain function and 
directly affected by changes to brain activity via 
neuromodulation.

Further, brain data processing raises novel chal-
lenges for the notion of mental privacy for two rea-
sons. First, privacy is predicated upon the conscious 
ability of the individual to filter the flow of data and 
intentionally seclude private information. Brain data, 
in contrast, are mostly elusive to conscious control, 
hence cannot always be intentionally secluded. While 
this problem is shared with other data types (e.g., 
genetic data), it acquires greater ethical complexity in 
the neural domain. Specifically, brain data admit no 
separation between the data processed and the sys-
tem that makes decisions about their processing (the 
human brain). Second, brain information is the ulti-
mate resort of informational privacy since it includes 
unexecuted behavior, inner speech or other non-
externalized action. In principle, mental privacy can 
be preserved even if individual behavior is constantly 
surveilled through activity tracking, personal digital 
technology, self-quantification or simple observa-
tion. It could be argued that when one agrees to allow 
brain data to be acquired, one seems to surrender the 
right to mental privacy, at least to some degree. How-
ever, in scenarios where brain data collection is either 
mandated (e.g. in the military sector or workplace) or 
competitively advantageous (e.g. Facebook’s plan to 
make brain-typing faster than the touch-screen), the 
risk of sharing data under explicit or implicit coercion 
is concrete.

AI-driven brain data processing may allow access 
to mental information and bring privacy debates into 
partially uncharted territory. Legal systems are well-
equipped to protect the ‘locus externus’ (behavior, 
verbal utterances, written text etc.) but less-equipped 
to protect the ‘locus internus’ (e.g. unspoken informa-
tion, preconscious preferences, attitudes, and beliefs). 
Data subjects may lose control over their brain data 
in several ways: (i) by consenting to the collection of 
their data without being adequately informed (e.g. on 
a device’s Terms of Use due to the complexity of the 
subject matter); (ii) by providing informed consent 
to the processing of their data for a certain purpose 
but remaining unaware of further reuses of their data 

for different purposes (including scraping by third 
parties); (iii) by being coerced to have their data col-
lected (e.g. via employer’s mandate or in an interro-
gation context).

The nature of brain data might also compromise 
the ability of data subjects to exercise their rights to 
access, edit and delete their own data. For example, 
a data subject might not possess a computer power-
ful enough to process data from a BCI [31]. Like-
wise, deleting brain data may substantially decrease 
the accuracy of ML models generated with these 
data. Finally, brain data processing generates a risk of 
“neurodiscrimination”, i.e., discrimination based on a 
person’s neural signatures (indicating, for example, a 
dementia predisposition), or mental health, personal-
ity traits, cognitive performance, intentions and emo-
tional states.

Gaps in the Current Ethical, Legal Framework

We identify four intimately interconnected areas that 
require attention and proactive governance to ensure 
the safe and responsible use of brain data outside of 
the biomedical domain:

Gaps in Supranational and International 
Law No mandatory governance framework focused 
on brain data currently exists in supranational or 
international law. Prima facie, brain data are per-
sonal data, as codified inter alia in the legally binding 
European Union’s General Data Protection Regula-
tion (GDPR), the non-binding 2013 OECD’s Privacy 
Guidelines and the upcoming Council of Europe’s 
(CoE) Modernized Convention for the Protection of 
Individuals with Regard to the Processing of Per-
sonal Data, and the European Convention on Human 
Rights (ECHR), particularly Article 8. Under these 
instruments, personal data are defined as any infor-
mation related to an identified or identifiable natural 
person (Art. 4 GDPR; Art. 1 OECD Privacy Guide-
lines, Art. 2a CoE).

The right to privacy, enshrined in Article 8 ECHR, 
includes the right to data protection. Art. 8 ECHR 
protects sensitive information, which includes per-
sonal data revealing, for example, political opinions, 
information about a person’s health, racial origin, 
or sexual orientation. With respect to genetic and 
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biometric data (e.g., cell samples, voice samples), the 
ECtHR found that, due to rapid technological devel-
opments, it is not possible to anticipate and under-
stand all the adverse effects that the collection of such 
data may entail with respect to private life, and that 
therefore the collection of any genetic or biometric 
data constitutes per se an interference with Art. 8 
ECHR. The ECtHR might follow a similar approach 
with regard to brain data.

However, there are a number of limits with this 
definition of brain data as personal data as defined by 
GDPR. Firstly, the GDPR is not applicable if brain 
data are anonymized even though the technical dif-
ficulty of anonymizing brain data leaves open the 
potential for re-identification. Research shows the fea-
sibility of re-identifying data subjects based on elec-
trophysiological measurements or neuroimaging data, 
predicting present emotional states and future behav-
ior from brain data, as well as decoding information 
either from the neural activity of data subjects or their 
digital phenotypes [24, 32]. Because of the technol-
ogy involved in the processing of brain data and its 
high contextualization, the likeliness that anonymized 
brain data (or data thought to be anonymized) will 
become re-identifiable is non-negligible.

Secondly, unique characteristics of brain data pose 
challenges to safeguarding the rights of data subjects. 
A prominent example is the right to be forgotten, i.e., 
one’s right to request a data controller to delete his/
her personal data. A key characteristic of brain data is 
that they are potentially re-identifiable and elude con-
scious control. Therefore, even if a person is initially 
able to have their data deleted, the data controller or 
others might use those data to derivatively reconnect 
them to the person concerned. Most importantly, in 
the case of brain data involving ‘unconscious’ infor-
mation, the data controller might be able to retain 
data the individual is not aware of. Finally, data dele-
tion by consumer BCI companies may be difficult to 
obtain due the impact that such erasure would have 
on the accuracy of predictive models [31].

Thirdly, the GDPR allows derogations to the rights 
of data subjects if data (including the special catego-
ries of data listed in Article 9 (1) GDPR) is processed 
for research or statistical purposes. Those research 
exemptions also apply to research conducted by pri-
vate companies, as pointed out by Recital 159 to the 
GDPR, which names “privately funded research” 
as part of the science privileged by the GDPR. This 

implies that processing of brain data by both pub-
lic and private actors (e.g., government agencies or 
consumer neurotechnology companies), may rely on 
derogations from the main GDPR rules. Neverthe-
less, it is unclear under which conditions the research 
exemption for the purpose limitation principle defined 
in Article 5 (1) (b) GDPR applies to brain data col-
lected in the consumer context.

Further, brain data may undermine another prin-
ciple of data protection law, namely purpose limita-
tion. By default, any personal data (including health 
data) can only be collected for specific purposes 
that need to be specified at the time when consent is 
given by the data subject or other legal basis is drawn 
on, that means ahead of starting data collection and 
processing. However, the exact specification of pur-
poses is very difficult for brain data because current 
technology cannot pre-emptively discern purpose-
specific data from the myriads of brain signals. Tools 
for selective filtering such as the Brain-Computer 
Interface Anonymizer are in early stages of develop-
ment [33]. The GDPR allows framing purposes in a 
broader manner in specific cases. Nevertheless, data 
security measures that intend to balance risks for the 
rights and interests of the data subject and the inter-
ests in the data processing are difficult to define in 
case processing purposes are framed in a broader 
manner, such as based on broad consent for scien-
tific research (recital 33 GDPR) or based on the pro-
cessing for scientific research purposes, Art. 9(2)(j) 
GDPR in conjunction with Art. 89(1) GDPR. Last 
but not least, the GDPR introduces the fiction that 
secondary processing for scientific research purposes 
is compatible with the initial purpose (Art. 5(1)(b) 
GDPR). Arguably, commercial scientific research, as 
any other research, underlies transparency obligations 
that are higher if for-profit benefits are gained based 
on research conducted with the data.

Finally, safeguards provided by data protection 
law may not adequately scale to group-level data. 
This lack of adequate scaling raises a twofold group-
privacy risk: first, third parties can make inferences 
about a group of data subjects based on one or mul-
tiple features inherent in the brain data and shared 
by all individuals in the group (e.g., slower reaction 
time to cognitive tests). Second, individuals could be 
unwittingly identified through their brain data, how-
ever anonymized, as part of a hitherto unsuspected 
group (e.g., people showing prodromal signatures of 
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cognitive decline) and subsequently discriminated 
against.

To complicate things, brain data generated from 
consumer neurotechnologies may not constitute 
‘health data’ hence are subject to lower protections 
compared to data from clinical applications because 
the application of these devices does not fall under 
medical device regulation regimes [34].

Gaps in Ethics and Soft Law The collection and 
processing of brain data within biomedical or clini-
cal research is further governed by research eth-
ics guidelines for the protection of human subjects. 
These include the Belmont Report and the Declara-
tion of Helsinki by the World Medical Association, 
as well as through oversight mechanisms such as 
Institutional Review Boards. These instruments are 
critical to uphold the rights and responsibilities of 
the research community in the conduct of biomedical 
and clinical research. However, they do not apply in 
the consumer, neuromarketing, workplace or military 
domains. In the consumer space, simply prompting 
users to accept a service’s Terms of Use places the 
responsibility on users to understand these terms and 
does not guarantee informed decision-making [35]. 
Even if consent can be obtained in a broad manner, 
current ethical safeguards are ill-suited to guide the 
entire data lifecycle. This is particularly true given 
the trend towards perpetual recycling and re-contex-
tualization of previously collected data [36]. Further, 
ML allows to draw post-hoc private and confidential 
inferences from non-sensitive data, prompting further 
need for the protection of data subjects [12]. Based 
on these considerations, experts have called for ethi-
cal guidelines for novel consumer neurotechnologies 
to fill persisting gaps in data governance [37].

Gaps in Responsible Innovation Currently, most 
applications that collect and process brain data out-
side the clinical and medical research context do not 
seek compliance with the EU Medical Device Regu-
lation (2017/745) or approval from the US Food & 
Drug Administration (FDA). Approval from these 
agencies is only necessary for software and devices 
with a medical purpose. This bypassing of the relevant 
medical device regulation is generally predicated on 
the non-medical scope of these devices and programs. 
However, a further challenge arises: even though 
brain stimulation products are covered under Annex 

XVI, No. 6, the Regulation does not cover brain data 
processing for purposes other than neuromodulation. 
We call for expanding the purview of this regulation 
as to include devices with which users (including vul-
nerable individuals and groups) may share their brain 
data for non-medical yet health-related purposes, such 
as cognitive monitoring and mental wellbeing. Such 
devices are currently not classified as medical devices 
and are regularly marketed for wellness, relaxation 
and other non-medical purposes. They also do not fall 
under the scope of application based on Annex XVI 
of the MDR as they often do not include brain stimu-
lation. Furthermore, providing increased guidance 
for users through clear labelling of such products as 
not suitable for health-related and medical purposes 
could enhance transparency and contribute to the ful-
filment of information obligations. Finally, consumer 
and military neurotechnologies can collect medically 
relevant parameters (e.g. via EEG measurements) 
and often claim to draw inferences about cognition or 
psychological wellbeing. Many wearable devices and 
applications are available for commercial, personal 
and even health-related use without relevant labelling 
required by data quality standards [27]. Typically, 
users of consumer neurotechnology devices or ser-
vices have no information about how in-house brain 
function databases are compiled. Further, users have 
no guarantee that such databases are sufficiently rep-
resentative to provide valid assessments of individual 
or group-level cognitive function and affective state 
[38]. Insufficiently validated applications may incor-
porate bias, provide false information or even cause 
harm to the users such as when users make health-
related decisions based on these apps. Additional haz-
ard may be posed by malicious hacking, eavesdrop-
ping, unauthorized access by third parties, unsecured 
data transmissions, re-identification of anonymized 
data and identity theft. Some of these risks also 
extend to the clinical and biomedical research field.

Neurotechnological devices that are deliberately 
developed to fall outside of medical device regu-
lations, are often marketed as direct-to-consumer 
products. Therefore, they fall under the purview of 
consumer protection laws and regulation. However, 
current consumer protection (e.g. in the EU and the 
US) is a legal patchwork that may often allow compa-
nies to find regulatory loopholes [39]. Therefore, law-
makers and regulatory agencies should jointly work 
on defining a clear set of regulatory approaches to 
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consumer neurotechnology devices that apply within 
markets and may be harmonized across international 
markets.

An important step towards innovation governance 
was recently marked by the Recommendation on 
Responsible Innovation in Neurotechnology, which 
was adopted by the OECD in December 2019, setting 
the first international standards for responsible inno-
vation in this domain [40].

Gaps in International Human Rights Frameworks 
and Further Lacunae Human Rights instru-
ments, such as the UN’s Universal Declaration of 
Human Rights (1948), which is legally binding as 
part of customary international law,1 were drafted 
long before brain data became measurable outside 
the clinic and amenable to big data analytics. Given 
this, they did not explicitly spell out requirements 
for gaining access to and using brain data in a man-
ner that protects individual rights. Whereas the con-
ditions for legitimate use of human genetic data have 
been delineated in UNESCO’s soft law International 
Declaration on Human Genetic Data (2003), human 
brain data remain without explicit safeguards and lack 
comparable protection by human rights instruments. 
In response to this, scholars have called for expanding 
the existing human rights framework as to explicitly 
include rights that are purposively designed to protect 
the brain and mind domain of a person, hence called 
neurorights. These rights can be seen either as evo-
lutionary interpretations of existing rights or as new 
rights. Further, they constitute both rights in the legal 
sense (in accordance with international human rights 
law) and in the philosophical sense (in accordance 
with right-based moral philosophy) [41].

Further, there is no specific international treaty 
that addresses the dual-use or potential weaponiza-
tion of brain data for military purposes. Dual-use 
research and technology collecting human brain data 
is therefore a pressing anticipatory governance con-
cern as neurotechnology evolves and is increasingly 
researched in the military setting.

Towards a Multi‑Level Governance Framework

Advancing the use of brain data in neuroscience and 
medicine while simultaneously preventing ethical-
legal risks requires a delicate balancing act. As brain 
data intersect several domains of human activity 
and regulation, it is unlikely that a one-size-fits-all 
approach to governance can be effective. Therefore, 
a comprehensive framework for global governance 
should operate adaptively at multiple levels. Based on 
the previously identified gaps, we propose four pri-
mary areas of regulatory intervention: binding regula-
tion, ethics and soft law, responsible innovation, and 
human rights (Fig. 2).

A. Binding Regulation

Mandatory governance efforts seek to define and 
locate brain data within the supra-and-international 
data protection landscape. We suggest that brain data 
should be considered a special category of personal 
data that warrants heightened protection during col-
lection and processing. If brain data are not consid-
ered a special category of personal data, they could be 
lawfully processed in ways that go beyond the limited 
circumstances set out in Article 9 of the GDPR. For 
example, they could be lawfully processed for pur-
poses that are not health-related (e.g., for predicting 
consumer behaviour or for psychographic profiling). 
Further, they could be used for research activities 
that are not in the public interest and in the absence 
of an impact assessment. We posit that singling out 
brain data as a special category would help govern 
the non-medical use of these data while safeguard-
ing their processing for scientific and biomedical pur-
poses. This approach is consistent with the risk-based 
approach of the GDPR and could mimic the framing 
of other special categories of personal data such as 
genetic data (which includes chromosomal, DNA or 
RNA data; Article 4(13)). This would allow to protect 
brain data also prior to analysis, when they cannot be 
linked back to an identifiable individual or when they 
are generated by non-medical devices.

Additional provisions may clarify conditions for 
collecting and processing brain data in the non-med-
ical space. At the data privacy level (e.g., as accord-
ing to the GDPR), device and software manufactur-
ers should ensure data protection “by design and by 

1 It is, however, disputed whether the UDHR forms part of 
customary international law and it is difficult to conclude at 
this stage that the UDHR forms entirely part of it. However, 
some parts of the UDHR may be considered customary inter-
national law, e.g. the prohibition of torture.
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default” (GDPR, Article 25). Further, data processors 
and controllers should use pseudonymization and 
encryption to guarantee data security (GDPR Articles 
32–34) and implement the principle of data minimi-
zation. Additional measures may include protecting 
against third-party apps linked to consumer neuro-
technology applications. Finally, the exact conditions 
and safeguards under which the research exemp-
tions, introduced by Union or Member State law on 
the basis of Art 89 (2) GDPR, can permit brain data 
processing by private companies should be clarified. 
To fill a gap in international regulation, we contend 
that brain data indicating neurological or mental ill-
ness originating from non-medical neurotechnology 
should not be accessible by third-party actors such as 
health insurance providers. Access to such informa-
tion would require the user’s explicit and written (or 
digitally provided) consent.

More broadly, risks for privacy and human dignity 
specific to brain data analytics must be disclosed. In 
particular, regulators must consider whether a right to 
mental privacy and mental integrity should be granted 

to data subjects. These rights would grant subjects 
increased control and protection of data containing 
information about their sensory, cognitive, affective 
and volitional processes.  In addition to data protec-
tion law, criminal and civil laws could reinforce these 
privacy rights by protecting a person’s brain activ-
ity against unconsented exploration and modulation. 
Labor law offers grounds to protect employees from 
the misuse of their brain data in an employment con-
text, e.g., by prohibiting employers from collecting 
brain data for productivity monitoring and terminat-
ing employment contracts based on brain data.

Another critical issue is the coercive collection 
of brain data. Governance frameworks should pro-
tect the ability of people to make free and compe-
tent decisions about the collection and processing of 
their personal brain data, a principle known as cog-
nitive liberty. The European Convention on Human 
Rights (ECHR), which protects the rights to pri-
vacy and freedom of thought (Arts. 8 and 9) offers 
the suitable conceptual and normative framework 
to prevent coercive uses. If the CoE Modernised 

Fig. 2  Overview of normative requirements and levels of governance

151

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



 Neuroethics           (2022) 15:20 

1 3

   20  Page 10 of 14

Vol:. (1234567890)

Convention comes into force, it could serve as a 
solid basis for further specification and a model for 
other world regions.

In order to increase compliance and promote sus-
tained scientific validation of new devices and algo-
rithms in the gray zone between the medical and 
the non-medical domain, calibrated amendments to 
current medical device regulations should be con-
sidered. Currently, most consumer neurotechnology 
companies avoid classification of their products as 
medical devices by marketing them for wellness, 
relaxation and other non-medical purposes [27]. 
Nonetheless, users (including vulnerable people) 
may use those devices and share their brain data for 
health-related purposes, such as cognitive monitor-
ing and mental wellbeing. A step towards reform 
was taken by the EU’s amendments to the Medi-
cal Devices Regulation. These amendments will 
apply from May 2021 and cover also brain stimula-
tion products without an intended medical purpose 
as medical devices (Annex XVI, No 6). However, 
it does not cover brain data processing for pur-
poses other than neuromodulation. Furthermore, it 
remains highly uncertain whether and how regula-
tory agencies will take enforcement action.

Apart from peaceful purposes, the limits of explor-
ing and modulating brain function for military usages 
must be defined. This is especially relevant as large 
military research agencies, such as the DARPA in the 
US, actively pursue brain stimulation technologies for 
modulating cognitive functions, such as memory and 
learning [5]. In an international context, brain data 
(as the decisive parameter for calibrating such neuro-
modulation devices) could thus become a commod-
ity in a neurotechnology “arms race” as other nations 
also pursue military neurotechnology research and 
development. This arms race could involve both the 
development of novel military neurotechnology and 
the dual-use (repurposing) of consumer or medical 
technology [6]. The laws of war that are applicable 
during armed conflict [42] (so-called international 
humanitarian law) do not explicitly protect combat-
ants against the violation of their mental integrity. 
Pending more in-depth analysis regarding the use 
of neurotechnology and the processing of brain data 
in the military context, there may be a need to draft 
legal guidelines—similar to those guiding autono-
mous weapons—that protect soldiers against brain 
data misuse during both wartime and peacetime.

B. Ethical Guidelines and Soft Law

Despite the difficulties of cross-border data trans-
fers, brain data sharing practices are generally not 
restricted by national borders and regulatory frame-
works. Therefore, internationally applicable ethical 
principles and rules are needed to govern the col-
lection and processing of brain data. Research ethics 
procedures such as review through ethics committees 
and Institutional Review Boards (IRBs, which, in 
some countries and some areas of research, are part of 
binding law) are well-established governance mecha-
nisms for the clinic and human neuroscience research. 
However, these procedures are insufficiently agile to 
respond to the novel challenges posed by the current 
big-data digital ecosystem, especially the innovation 
dynamics and business models of AI-based technol-
ogy in the neuroelectronics marketplace. Similarly, 
the evaluative criteria of ethics review are not geared 
towards the current information-intensive ecosystem.

We posit that legitimate interest alone is insuffi-
cient to provide the ethical basis for brain data pro-
cessing. In addition, consent should also be consid-
ered as critical ethical requirement for a brain data 
governance framework. This is consistent with the 
opinion of the European Group on Ethics in Science 
and New Technologies, which proposed to include 
individual consent as a requirement for further pro-
cessing of health data in the EU regulation [43].

When collecting and/or processing identifiable 
brain data, private data collectors must conduct a 
legitimate interest assessment, check that the process-
ing is necessary and there is no less intrusive (non-
neural) way to achieve the same result. Further, they 
must document that explicit informed consent for a 
specific usage was obtained prior to data collection 
except in cases of medical emergency. Data collec-
tors should be required to apply explicit informed 
consent procedures that go beyond the mere accept-
ance of ToU for consumer products. These proce-
dures should transparently disclose and address, not 
less than: (i) how brain data are used, i.e. which infor-
mation is decoded and with which accuracy; (ii) in 
which storage facility and on what medium data will 
be stored and the duration of storage; iii) the criteria 
and mechanisms by which access to the brain data is 
granted, monitored and revoked; (iv) how brain data 
are reused and shared; (v) what anonymization/pseu-
donymization and information security measures are 

152

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



Neuroethics           (2022) 15:20  

1 3

Page 11 of 14    20 

Vol.: (0123456789)

implemented; (vi) how individuals will be informed 
if their data are hacked, leaked or accidentally dis-
closed, and; (vii) what legal entity is liable for data 
breaches and other regulatory lapses. Novel digital 
technologies for informed consent (eConsent) have 
shown potential to enhance the practicability and 
efficacy of consent procedures [44]. In practice, in a 
clinical setting or in the consumer space, adherence 
to these procedures could be governed and monitored 
by Data Use and Access Committees, e.g., adjunct to 
IRBs in the clinic or consumer protection agencies.

We argue that the default consent for governing 
brain data use should be an opt-in approach. Accord-
ingly, individuals have to explicitly opt in to sharing 
their brain data or link this data with other contex-
tual information (e.g., social media profiles). Ethical 
guidelines should extend beyond mere rule-compli-
ance and promote the respectful use of brain data.

C. Responsible Innovation

Responsible Research and Innovation (RRI) is now a 
widely accepted approach for guiding emerging sci-
ences and technologies and promotes first and fore-
most the responsible collection and processing of 
brain data by both public and private actors. RRI 
principles can help develop safer and more reliable 
systems as well as increase preparedness to deal with 
unintended consequences. These include the adop-
tion of community-agreed technical standards (e.g., 
within the neuroengineering community [45]), ade-
quate validation and best practices by neurotechnol-
ogy researchers, companies and other stakeholders in 
a consensus process.

Service providers who collect and process brain 
data should ensure safety, scientific validity, account-
ability and transparency. At the safety level, usage of 
brain data should consider and prevent inherent risks 
of algorithmic processing including bias, privacy vio-
lation, and cybersecurity vulnerabilities. Data collec-
tors and processors should ensure data minimization, 
for instance by only providing data from some EEG 
channels or by selectively filtering certain frequencies 
in the data.

Novel privacy-preserving technologies can help 
both medical and non-medical processors. Techni-
cal approaches to improve protection from leak-
age  and unwarranted access include homomorphic 

encryption, multi-party computation, federated learn-
ing, and differential privacy [46]. Differential privacy 
is particularly well-suited for brain data because it 
allows sharing aggregate data whilst preventing infer-
ences from being drawn about individuals. None-
theless, some risks can only be discovered once the 
systems have been deployed. Accordingly, developers 
shall establish mechanisms for continuous analysis, 
monitoring and mitigation of risk once software and 
devices are on the market.

Finally, data collectors and processors should 
ensure high standards of scientific validity for both 
devices and datasets. Consumer service providers 
should be prevented from advertising unsubstanti-
ated paramedical claims (e.g. “improving mental 
wellbeing”) that are loosely founded, if at all, on 
scientific evidence [27]. Adequate testing and care-
ful risk–benefit analysis should guide development 
and deployment of brain data processing systems. 
This will likely improve not only the safety, but also 
the efficacy, user-friendliness and precision of future 
devices. Similarly, regulators should take a proactive 
stance on the ethical, legal and social  implications 
of these technologies. This proactive stance requires 
constant interaction between all stakeholders to iden-
tify suitable means for standardization, such as value-
sensitive design. Oversight mechanisms involving 
binding regulation, soft law and ethical guidelines 
shall make sure that these standards are met by laying 
down the necessary permit procedures.

D. Human Rights

Brain data are inherent to and in principle accessible 
from all human beings, regardless of ethnicity, gen-
der, nationality or religion. Further, they reflect the 
inner workings of our minds as they correlate with 
thoughts, emotions and other mental faculties. There-
fore, the prospect of unsupervised deciphering of, 
interfering with and commodifying brain data raises 
serious human rights challenges. We posit that non-
medical brain data processing for legitimate interest 
should not be pursued when the controller’s inter-
est conflicts with the fundamental rights and free-
doms of the data subject. Human rights inform leg-
islation, ethical guidelines and societal norms across 
the globe, and thus offer an international normative 
framework where brain data protection needs to be 
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embedded. Interdisciplinary research investigating 
the intersection between brain data and human rights 
is ongoing and proposals for protecting neuro-specific 
rights, called neurorights, have been advanced [41, 
46–50]. Governance frameworks should determine 
whether clauses can be added to human rights treaties 
or whether a new universal soft law instrument is nec-
essary. This instrument could be modelled after the 
2005 UNESCO Declaration on Bioethics and Human 
Rights. Furthermore, it should be determined whether 
neurorights should be interpreted as new rights or 
as adaptive interpretations of existing legally bind-
ing human rights and moral principles. These rights 
include the right to privacy, the right to freedom of 
thought, mental integrity and human dignity. The 
Universal Declaration of Human Rights, in particular, 
grounds human rights in the inherent and equal dig-
nity of all human beings.

The normative force and universal claim of human 
rights often makes it difficult to translate these rights 
into guidance for context-sensitive action. For this 
reason, frameworks such as the capabilities approach 
[51] can be very helpful to translate the general 
requirements of human rights into actionable and 
shared international policy goals that promote human 
flourishing, human dignity and well-being in the con-
text of brain data processing. Several national (e.g., 
Chile’s recently approved Constitutional Reform and 
ongoing Neuroprotection Bill as well as Spain’s Char-
ter of Digital Rights) and international organizations 
actors (the United Nations, the Council of Europe, the 
EU Parliament, and the OECD) are putting “neuro-
rights” on their agenda.2

Conclusions

International governance should ensure the positive 
impact of brain data processing on science, health, 

well-being, human dignity and human rights, while 
preventing potential risks for individuals and com-
munities. We delineate a roadmap towards a global 
governance framework on brain data that can fill cur-
rent ethical and legal gaps. We call upon professional 
societies, national and international organizations, as 
well as unrepresented or underrepresented communi-
ties and stakeholders (e.g., patient organizations) to 
take up the challenge and coordinate a joint effort at 
their adoption.  Any move towards an international 
framework should be aware of cultural diversity and 
responsive to a pluralistic global society. Finally, fol-
lowing recent challenges in AI governance, we should 
avoid the uncoordinated proliferation of normative 
guidance in the absence of adequate strategies for 
harmonization, standardization and implementation.
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Abstract— In search and rescue missions, drone oper-
ations are challenging and cognitively demanding. High
levels of cognitive workload can affect rescuers’ perfor-
mance, leading to failure with catastrophic outcomes. To
face this problem, we propose a machine learning algorithm
for real-time cognitive workload monitoring to understand if
a search and rescue operator has to be replaced or if more
resources are required. Our multimodal cognitive workload
monitoring model combines the information of 25 features
extracted from physiological signals, such as respiration,
electrocardiogram, photoplethysmogram, and skin temper-
ature, acquired in a noninvasive way. To reduce both sub-
ject and day inter-variability of the signals, we explore
different feature normalization techniques, and introduce a
novel weighted-learning method based on support vector
machines suitable for subject-specific optimizations. On an
unseen test set acquired from 34 volunteers, our proposed
subject-specific model is able to distinguish between low
and high cognitive workloads with an average accuracy
of 87.3% and 91.2% while controlling a drone simulator
using both a traditional controller and a new-generation
controller, respectively.

Index Terms— Cognitive Workload Monitoring, Physio-
logical Signals, Machine Learning, Human-Robot Interac-
tion, Wearable Systems, Search and Rescue Missions.

I. INTRODUCTION

THANKS to recent enhancements in both robotics and
human-robot interfaces, the interest in deploying robots in

search and rescue (SAR) missions is growing [1]. However,
limitations exist in their effective and efficient utilization in
real-life missions. The main limitation is that robot teleopera-
tion is a non-intuitive and challenging task. Thus, SAR robots
are still constrained to simple missions and highly trained pro-
fessionals. [2], [3]. Moreover, rescuers have to simultaneously
focus on multiple tasks and deal with both scarcity of human
resources and time pressure. This situation is cognitively
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highly demanding and can negatively affect performance [4],
[5]. Consequently, operating under high cognitive workload
(CWL) may severely compromise the execution of a mission
and leads to failure with catastrophic outcomes [6]. Therefore,
there is a need to monitor CWL to ensure efficient execution
of SAR missions.

To assess CWL, researchers typically use surveys [7], per-
formance metrics [8], [9], and information from physiological
signals [10]. However, surveys only provide subjective and
sporadic measurements, and are not always reliable [11]. Al-
though performance metrics provide objective measurements,
reliable metrics are difficult to set as every rescue mission
is unique. On the other hand, physiological signals can be
noninvasively acquired without disturbing the rescuers’ work.
Thus, the use of physiological signals seem the most promising
solution to assess Cognitive Workload Monitoring (CWM)
[10], [12], [13].

Several studies combine physiological signals with different
machine-learning algorithms for CWM in different fields [13],
[14]. However, to the best of our knowledge, we are the first to
address CWM of drone pilots involved in SAR missions [8],
[15], [16]. Now, we extend our previous works by presenting a
subject-specific CWM approach based on noninvasive physio-
logical signals that is suitable for new drone control solutions,
such as FlyJacket [17]. In particular, this work proposes the
following contributions:

• We explore different feature normalization techniques to
reduce both inter-subject and inter-day variability;

• We provide a new weighted-learning method for Sup-
port Vector Machine (SVM), suitable for subject-specific
optimizations. This SVM based method uses two regu-
larization terms, one for learning the general behaviour
and another for tuning the model to fit the characteristics
of a particular data subset;

• We prove the ability of our method to detect low and
high CWL levels while controlling a drone simulator
with traditional and advanced controllers, achieving an
accuracy of 87.3% and 91.2%, respectively. These results
are obtained on unseen data acquired from 34 participants
while flying a drone simulator and mapping a graphic
representation of a disaster situation. Our results are
higher than the latest state-of-the-art studies in SAR
missions with drones (see Table I).

II. RELATED WORK

CWL characterization and estimation have been addressed
by a large number of studies [12], [25], which characterize
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highly demanding and can negatively affect performance [4],
[5]. Consequently, operating under high cognitive workload
(CWL) may severely compromise the execution of a mission
and leads to failure with catastrophic outcomes [6]. Therefore,
there is a need to monitor CWL to ensure efficient execution
of SAR missions.

To assess CWL, researchers typically use surveys [7], per-
formance metrics [8], [9], and information from physiological
signals [10]. However, surveys only provide subjective and
sporadic measurements, and are not always reliable [11]. Al-
though performance metrics provide objective measurements,
reliable metrics are difficult to set as every rescue mission
is unique. On the other hand, physiological signals can be
noninvasively acquired without disturbing the rescuers’ work.
Thus, the use of physiological signals seem the most promising
solution to assess Cognitive Workload Monitoring (CWM)
[10], [12], [13].

Several studies combine physiological signals with different
machine-learning algorithms for CWM in different fields [13],
[14]. However, to the best of our knowledge, we are the first to
address CWM of drone pilots involved in SAR missions [8],
[15], [16]. Now, we extend our previous works by presenting a
subject-specific CWM approach based on noninvasive physio-
logical signals that is suitable for new drone control solutions,
such as FlyJacket [17]. In particular, this work proposes the
following contributions:

• We explore different feature normalization techniques to
reduce both inter-subject and inter-day variability;

• We provide a new weighted-learning method for Sup-
port Vector Machine (SVM), suitable for subject-specific
optimizations. This SVM based method uses two regu-
larization terms, one for learning the general behaviour
and another for tuning the model to fit the characteristics
of a particular data subset;

• We prove the ability of our method to detect low and
high CWL levels while controlling a drone simulator
with traditional and advanced controllers, achieving an
accuracy of 87.3% and 91.2%, respectively. These results
are obtained on unseen data acquired from 34 participants
while flying a drone simulator and mapping a graphic
representation of a disaster situation. Our results are
higher than the latest state-of-the-art studies in SAR
missions with drones (see Table I).

II. RELATED WORK

CWL characterization and estimation have been addressed
by a large number of studies [12], [25], which characterize
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Abstract— In search and rescue missions, drone oper-
ations are challenging and cognitively demanding. High
levels of cognitive workload can affect rescuers’ perfor-
mance, leading to failure with catastrophic outcomes. To
face this problem, we propose a machine learning algorithm
for real-time cognitive workload monitoring to understand if
a search and rescue operator has to be replaced or if more
resources are required. Our multimodal cognitive workload
monitoring model combines the information of 25 features
extracted from physiological signals, such as respiration,
electrocardiogram, photoplethysmogram, and skin temper-
ature, acquired in a noninvasive way. To reduce both sub-
ject and day inter-variability of the signals, we explore
different feature normalization techniques, and introduce a
novel weighted-learning method based on support vector
machines suitable for subject-specific optimizations. On an
unseen test set acquired from 34 volunteers, our proposed
subject-specific model is able to distinguish between low
and high cognitive workloads with an average accuracy
of 87.3% and 91.2% while controlling a drone simulator
using both a traditional controller and a new-generation
controller, respectively.
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I. INTRODUCTION

THANKS to recent enhancements in both robotics and
human-robot interfaces, the interest in deploying robots in

search and rescue (SAR) missions is growing [1]. However,
limitations exist in their effective and efficient utilization in
real-life missions. The main limitation is that robot teleopera-
tion is a non-intuitive and challenging task. Thus, SAR robots
are still constrained to simple missions and highly trained pro-
fessionals. [2], [3]. Moreover, rescuers have to simultaneously
focus on multiple tasks and deal with both scarcity of human
resources and time pressure. This situation is cognitively
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highly demanding and can negatively affect performance [4],
[5]. Consequently, operating under high cognitive workload
(CWL) may severely compromise the execution of a mission
and leads to failure with catastrophic outcomes [6]. Therefore,
there is a need to monitor CWL to ensure efficient execution
of SAR missions.

To assess CWL, researchers typically use surveys [7], per-
formance metrics [8], [9], and information from physiological
signals [10]. However, surveys only provide subjective and
sporadic measurements, and are not always reliable [11]. Al-
though performance metrics provide objective measurements,
reliable metrics are difficult to set as every rescue mission
is unique. On the other hand, physiological signals can be
noninvasively acquired without disturbing the rescuers’ work.
Thus, the use of physiological signals seem the most promising
solution to assess Cognitive Workload Monitoring (CWM)
[10], [12], [13].

Several studies combine physiological signals with different
machine-learning algorithms for CWM in different fields [13],
[14]. However, to the best of our knowledge, we are the first to
address CWM of drone pilots involved in SAR missions [8],
[15], [16]. Now, we extend our previous works by presenting a
subject-specific CWM approach based on noninvasive physio-
logical signals that is suitable for new drone control solutions,
such as FlyJacket [17]. In particular, this work proposes the
following contributions:

• We explore different feature normalization techniques to
reduce both inter-subject and inter-day variability;

• We provide a new weighted-learning method for Sup-
port Vector Machine (SVM), suitable for subject-specific
optimizations. This SVM based method uses two regu-
larization terms, one for learning the general behaviour
and another for tuning the model to fit the characteristics
of a particular data subset;

• We prove the ability of our method to detect low and
high CWL levels while controlling a drone simulator
with traditional and advanced controllers, achieving an
accuracy of 87.3% and 91.2%, respectively. These results
are obtained on unseen data acquired from 34 participants
while flying a drone simulator and mapping a graphic
representation of a disaster situation. Our results are
higher than the latest state-of-the-art studies in SAR
missions with drones (see Table I).

II. RELATED WORK

CWL characterization and estimation have been addressed
by a large number of studies [12], [25], which characterize

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3186625

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

157

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2022

TABLE I
SUMMARY OF THE STATE-OF-THE-ART STUDIES USING MULTIPLE PHYSIOLOGICAL SIGNALS

Study Performed Tasks Physiological Signals Window Length Classifier Results
(Overlap) (Classes) Acc. Sens. Spec.

Momeni et al. [15] Simulated SAR with drones ECG, RSP, PPG, SKT 60s (30s) XGB (2) 86%* - -
Dell’Ágnola et al. [18] Simulated SAR with drones ECG, RSP, PPG, SKT 60s (0s) XGB (2) 80.2%* 79.6%* 71.7%*

Montesinos et al. [19] Arithmetic tasks ECG, PPG, RSP, SKT, EDA 60s (30s) RF (2) 84.13%* - -
Chen et al. [20] Real car driving ECG, RSP, EDA 100s (90s) SVM (3) 89.7% 88.5% 94.2%
Solovey et al. [21] Driving in highway ECG, EDA 30s (0s) LR (2) 90% - -
Giakoumis et al. [22] Video-game ECG, EDA 25s (0s) LDA (2) 94.96% 94.96% 94.96%
Tjolleng et al. [23] Simulated driving task ECG 100s (0s) ANN (3) 82% 78% 91%
Gjoreski et al. [24] Daily life activities PPG, SKT, EDA 300s (150s) SVM (2) 98.96% 70.44% 99.88%
ECG-electrocardiogram, RSP-respiratory activity, PPG-photoplethysmogram, SKT-skin temperature, EDA-electrodermal activity. XGB-Extreme Gradient
Boosting, RF-Random Forest, SVM-Support Vector Machine, LR-Logistic Regression, LDA-Linear Discriminant Analysis, ANN-Artificial Neural Network.
* Results based on an unseen test set, all the other are limited to cross-validation.

either the performance or the distress of a person involved in
a particular task or situation. In this section, we review the
state-of-the-art machine learning (ML) techniques detecting
CWL induced by high cognitive tasks. In particular, we ana-
lyze those works using unobtrusively measured physiological
signals. Although interesting for their results, studies relying
on obtrusive measurements (e.g., electroencephalography [26])
are not included in this analysis since their integration into a
jacket is difficult or unattainable. The same applies to works
placing sensors in locations other than the torso, such as the
head [27].

Table I summarizes the most recent and significant studies
including the performed task to induce CWL, measured phys-
iological signals, signal segmentation (i.e., window length and
overlap), applied machine-learning methods, targeted classes,
and classification results (i.e., Accuracy, Sensitivity, and Speci-
ficity). Our analysis identifies the following common method-
ological steps: signal acquisition and preprocessing (filtering
and segmentation), feature extraction, feature normalization,
dimension reduction or feature selection, and classification
or regression. However, although the methodology is well
established, discrepancies are found in different steps. Hence,
in the following, we review these discrepancies.

First, significant differences have been observed on the
physiological measures, which are electrodermal activity
(EDA) [19]–[22], [24], [28], electrocardiogram (ECG) [18],
[20]–[23], [29], photoplethysmogram (PPG) [15], respiratory
activity (RSP) [15], [20], and peripheral skin temperature
(SKT) [15], [18]. Although using multiple physiological sig-
nals can increase the detection accuracy of CWL levels [15],
the type and number of signals, and in particular the features
set, often differ and strictly depend on the case study (e.g.,
the type of task used to induce different levels of CWL) [10],
[29]. Thus, there is no clear definition of the best selection of
signals and features to assess CWL in general.

Then, the segmentation window used to extract the features
from the signals also depends on the case study. In particular,
the window lengths reported in Table I vary from 25 to
300 seconds. Moreover, different window overlaps are applied
either to increase the size of the dataset [15] or to provide more
frequent estimations in time [20], [24]. These differences can
be explained by the fact that physiological methods do not
provide a direct measurement of the workload, but rather they
give information about how the individuals themselves respond
to a particular load [10]. So, a different signal segmentation
may be applied depending on the dynamic of the physiological
response induced by a particular CWL.

An additional aspect observed in our literature review is that
features are often normalized to standardize their ranges. The

normalization help to reduce intra- and inter-subject variability
caused by age, time of day and other factors [30]. However,
not all studies report whether a normalization was applied
[30], or clearly explaining how it was done and distinguishing
between training and test sets. To properly emulate and test
the system’s behaviour, test data should be normalized based
on the parameters obtained from the training set [30].

Moreover, the choice of machine-learning methods clearly
differ. The train data size and the system requirements spec-
ification (e.g., computational complexity, power and latency)
may explain the different selections of machine-learning al-
gorithms. In fact, as most of the studies typically start with
a limited amount of data, simple models like Support Vector
Machine (SVM) [20], [24], [31], Linear Discriminant Analysis
(LDA) [22], [28], Logistic Regression (LR) [21], and Decision
Tree (DT) [19], are the most used machine-learning tech-
niques. In contrast, complex models such as Artificial Neural
Networks (ANN) [23], Random Forest (RF) [19], [31], and
very recent models like Extreme Gradient Boosting (XGB)
[15], have been less used so far. In any case, even if SVM has
been the most used classifier in this field, there is no consistent
indication of whether it is the best model or not for different
case studies.

Finally, our review shows that the highest accuracy levels
are in the range of 80 to 99%. This wide range is mainly
due to the diverse experimental protocols, methodologies,
and number of considered classes in each study. Also, the
highest accuracies reported by different studies may be af-
fected by overfitting since their model evaluation is limited
to cross-validation [20]–[24]. However, a proper estimation of
a model’s generalization power requires a final test on new
unseen data, a set never used in training [15], [18], [19].

In conclusion, there is a need to investigate further the
contribution of each physiological signal, the impact of data
normalization, and the performance of the selected classifier
on unseen data in the context of rescue missions with drones,
which are not appropriately covered in the literature.

Besides, workload is multidimensional [7] and results from
the aggregation of three broad aspects [10], [32]. First, the
workload depends on the task’s type (mental or physical
demand), and the load level (e.g., tasks amount and difficulty).
Second, it is affected by time, namely, by the duration of
the temporal demand. Third, the subjective psychological
experiences modulate the level of workload perceived by a
subject (i.e., subject’s capabilities, learning skills, and effort).
So, it is necessary to investigate CWL in the particular field of
interest and, also, consider each person’s subjective workload
level, as suggested in [33].
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Fig. 1. Process overview for the design of a CWM method. Blocks with dashed lines represent the applied design/optimization methods and blocs
with solid lines represent the final system.

III. CWM SYSTEM

The general design of an ML algorithm suitable to develop
a wearable embedded system for online CWM is shown in
Fig. 1, namely, blocks with solid lines. Instead, the blocks
with dashed lines represent the different statistical pattern
recognition methods applied to experimental data for design-
ing such a system. All our analyses are done offline, but the
final system is tested, emulating online processing (i.e., using
causal spectral filters and computing the features using past
information).

The system is divided into three main steps shown in
Fig. 1 with the dotted lines, i.e., Signal Acquisition and
Preprocessing, Feature Extraction and Selection, and CWM.
In the first step of the CWM system, sliding window is applied
for signal segmentation, which defines the time resolution of
the workload monitoring system. The preprocessing consists
of removing artifacts from the signals. In this work, we
collected experimental data for both design and evaluation of
the proposed CWM method.

Next, the features extraction and selection step includes gen-
erating a feature vector that best represents the physiological
response induced by different workloads. For an exhaustive
investigation, we chose an exploratory approach in which we
extract a large number of different features in both time and
frequency domains. Then, since physiological signals exhibit
high intra- and inter-subject variability due to age, gender,
time of day and other factors [30], we investigate different
normalization methods. Subsequently, we apply different fea-
tures selection methods to define the best subset of features to
be used in the final system.

Finally, the CWM step includes the prediction of a dis-
crete CWL level. For the design of the CWM method, we
consider the most common machine-learning techniques based
on pattern recognition algorithms suitable for implementation
in embedded systems. Moreover, we consider a personalized
weighted-learning approach to assess the person-dependent
variance in the physiological response of an induced workload.
Performance of our method is then evaluated based on NASA
Task Load Index (NASA-TLX), a subjective and multidimen-
sional assessment tool that rates perceived workload [7].

IV. SIGNAL ACQUISITION AND PREPROCESSING

For a thorough exploration of the physiological changes
induced by cognitive workload, we measure RSP, ECG, PPG,
SKT, EDA, and EEG, which are signals that are typically used
in the literature [34], [35]. The effect of cognitive workload
on EEG was analyzed and presented in a different work [36].

Here, we focus on the remaining signals, which sensors can
be integrates into a wearable system, such as FlyJacket [17].

Their main physiological manifestations related to CWL are
reported in Table II and described in Sec. IV-A.

A. The physiological process behind CWL
While performing a very demanding task, the need for more

oxygen is driven by the autonomic nervous system (ANS)
activation. The latter involves both a sympathetic nervous
system (SNS) activation and parasympathetic nervous system
(PSNS) counterbalance. This increased oxygen demand trig-
gers faster and deeper respiration [37]. Therefore, RSP should
be measured to track CWL changes [20].

The ANS activation also triggers a cardiac response, which
is also affected by the Hypotalai-Adrena (HPA) axis. This
response is associated with variabilities in heart rate, defined
as heart rate variability (HRV) obtained by monitoring the
ECG signal. Consequently, the above relationship can explain
the heart’s ability to respond to multiple physiological and
environmental stimuli [8]. The neurohypophysis activation, the
HPA axis, and the ANS lead to blood volume changes, pe-
ripheral blood vessels resistance, and cardiac response derived
from the pulse wave. Features from the PPG are used to detect
those physiological changes induced by cognitive tasks [24],
[37].

Moreover, it has been proved that cognitive tasks cause
peripheral vasoconstriction [24], [37], regulated by the va-
soregulatory system and driven by both neurohypophysis
and SNS. Thus, SKT is required to detect the variations
in peripheral temperature that are associated with peripheral
vasoconstriction.

Finally, EDA is one of the most commonly used measures in
studies involving emotional arousal. According to [38], EDA
is traditionally measured at the fingers or palms, while foot
and shoulders seems to be valid alternatives for ambulatory
measurement. However, we cannot confirm their findings, as
our EDA measurements from the shoulder did not show any
significant response. Therefore, EDA measurements were not
considered in this work.

B. Signal preprocessing
The first preprocessing step consists of removing the ar-

tifacts from the signals with causal filters [16]. We apply a
baseline wander with cutoff frequency at 0.3 Hz to both ECG
and PPG signals. Next, we also apply a 32nd-order bandpass
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TABLE II
PHYSIOLOGICAL MANIFESTATIONS RELATED TO INDUCED CWL.

Physiological measures Measurable physiological manifestation to workload response Sensor body position
Peripheral skin temperature Neurohypophysis and Sympathetic Nervous System (SNS) activation Finger
Respiration SNS activation and Parasympathetic Nervous System (PSNS) counterbalance Thorax
Electrocardiogram Both Hypotalai-Adrena (HPA) axis and SNS activation, and PSNS counterbalance Thorax
Photoplethysmography Neurohypophysis, HPA axis, and SNS activation, and PSNS counterbalance Ear

FIR filter with linear phase and Hamming window with cut-
off frequencies at 0.3 and 30 Hz for ECG and at 0.1 and 5 Hz
for PPG [37]. In the case of the RSP signal, we employ a 4th-
order Butterworth IIR bandpass filter with cutoff frequencies
at 0.03 and 0.9 Hz. Nevertheless, because of the slow response
time of the SKT thermistor (1.1 sec.), which avoid the high
frequency noise, no filter is applied to the acquired SKT signal.

Finally, we apply a time-series segmentation of all the
acquired physiological signals, which are thus divided into a
sequence of samples in windows of 60 seconds.

V. FEATURES EXTRACTION AND SELECTION

Following our methodology described in Section III, we
perform an offline investigation to select the features to be
considered in the final system. That is, we first extract a broad
features set from the segmented signals for an exhaustive
assessment of the person’s physiological response to CWL.
Then, we select the best features set rich in discriminatory
information concerning the physiological states induced by
different CWL levels. normalized and given as input to the
developed CWM algorithm.

A. Feature extraction
For the design of the CWM system, our feature extraction

process includes three main steps. First, we delineate the
segmented signal to detect points of interest (e.g., signal
onset, peak, offset, etc.). Second, we extract physiological
markers, a combination of different delineated points and
provide information about the person’s physiological state
(e.g., heart rate). Finally, we compute features in both time
and frequency domains. For the time domain, we use standard
statistical features (i.e., mean, median, mode, standard devia-
tion, variance, root mean square, and power), extracted either
from the physiological markers or from the segmented signals
directly. However, in the frequency domain, the features are
computed specific to the characteristic of the physiology of
each signal, which are listed and detailed next.

Following an extensive literature review and by applying
our experience from previous projects [8], we increased the
number of analytical methods applied to a single physiological
signal segment to extract 384 features: 127 from RSP, 38
from ECG, 190 from PPG, 2 from SKT, and 27 from RSA.
However, applying our feature selection method, the final
system uses only 25 features, 10 from RSP, 2 from ECG,
10 from PPG, 2 from SKT, and 1 from RSA. These 25
features are listed in Table IV. From EDA, we aimed to
compute the mean skin conductance level and the number of
skin conductance responses per minute as in [38]. Though
we used dedicated electrodes (recommended by Biopac), our
EDA signal was rudely flat across participants suggesting a
poor SNS activation on the shoulders for our study case. Thus,
the signal was discarded. More details about the delineation
and feature extraction for each considered signal are provided
next.

Fig. 2 shows a schematic representation of the signal
processing and feature extraction process.
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Fig. 2. Schematic representation of the signal processing and feature
extraction processes.

1) Respiratory activity (RSP): To extract the features from
the RSP signal, we first delineate the signal based on the
differences between adjacent samples of the filtered signal
defined as:

∆x[k] = x[k]− x[k − 1] (1)
Then, by comparing both current and previous values, we
detect from the sign of ∆x the falling and rising edge,
which coincide with inhalation (RSP-peaks) and exhalation
(RSP-valleys) end, respectively. Then, all peaks and valleys
pairs having a difference smaller than 20% of the mean RSP
amplitude are removed [31].

Next, from the delineated RSP, we extract the following
physiological markers: inhalation (Inh) and exhalation (Exh)
time, the Inh/Enh ratio, Inh and Exh amplitudes, respiratory
period (RSPPrd), and respiratory rate (RSPRate). Besides, we
compute their numerical differences using Eq. 1. Finally, we
calculate the segmented RSP signal’s statistical features, its
difference (Eq. 1), and all the aforementioned RSP physio-
logical markers. In the frequency domain, we compute the
power of the segmented signal in four different bands of equal
bandwidth (i.e., 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1 Hz), as
reported in [28]. We also consider the normalized band powers,
obtained by dividing each of the above band powers by the
total power in the 0-1 Hz band.

2) Electrocardiogram (ECG): We compute the so-called
normal-to-normal (NN) intervals from the filtered ECG signal,
the intervals between normal QRS complexes detected with
the delineation method described in [39]. Then, we compute
features in the time domain describing the Heart Rate Variabil-
ity (HRV) [40], which are statistical features of the successive
NN-intervals and of the interval differences of successive NN-
intervals. We also computed the number of interval differences
of successive NN-intervals greater than 50 ms (NN50) and the
proportion derived by dividing NN50 by the total number of
NN-intervals (pNN50) within the processing window.

Additionally, we obtain several geometrical features from
the Poincaré (or Lorenz) plot indicating vagal and sympathetic
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functions. In particular, we extract the length of the transverse
axis (T ), vertical to the line NNk = NNk+1; the length of the
longitudinal axis (L), parallel with the line NNk = NNk+1;
the Cardiac Sympathetic Index (CSI), defined as L/T ; the
modified CSI (L2/T ); and the Cardiac Vagal Index (CVI) as
log10(LT ) [40].

Moreover, we extract HRV features from the frequency-
domain, as proposed in [40]. That is, the power in two
frequency bands, namely, low-frequency (LF: between 0.04
and 0.15 Hz) and high-frequency (HF: between 0.15 and 0.4
Hz). LF and HF powers are obtained from estimating of
the Lomb-Scargle Power Spectral Density (PSD) of the NN
intervals [41]. The power values are divided by the total power
minus the very-low-frequency (VLF) component (frequency ≤
0.04 Hz). Also, we compute the power sum LF + 1/HF and
the ratio LF/HF.

Furthermore, we extract novel features from the HF band.
The first one, called RRHF gauss, is the mean frequency of
a Gaussian distribution used to fit the Lomb-Scargle PSD
estimated in the HF band. This feature describes the shifting
in frequency of the PSD in the HF band, where the shift is
mainly caused by the RSP activity [42]. The second one is
called RRHF pond and is defined as:

RRHF pond =

∑
f∈HF f PSD{RR[k]}(f)∑
f∈HF PSD{RR[k]}(f)

(2)

Finally, we also compute the power of the HF divided in 5 sub-
bands of equal length (RRHF sband Xn), where the subscript
index X = {1, · · · , 5}.

3) Photoplethysmogram (PPG): According to [37], we de-
lineate the PPG signal and extract the following physiological
markers: the Pulse Period (PP), the time interval between
two consecutive pulse peaks; the Pulse Amplitude (PA), the
difference between the pulse peak and the pulse onset; the
Pulse Transit Time (PTTM), the time interval between the R-
Peak in the ECG signal and the instant when the PPG pulse
reaches half of its onset-to-peak amplitude; the Pulse Rise
Time (PRT), the time interval between the pulse onset and
the pulse peak; and the Pulse Rise Speed (PRS), the ratio
between amplitude difference and time interval computed from
the pulse wave points located at 75% and 25% of the onset-
to-peak amplitude, respectively.

To have accurate estimations of PTT and PRT, in the
literature [16], the use of both ECG and PPG signals has been
proposed. Using both enables trade-offs between accuracy and
complexity of the sensing wearable system.

From each of the aforementioned PPG physiological mark-
ers, we extract features in the time and frequency domains,
following the HRV methodology applied to NN-intervals.

4) Peripheral Skin Temperature (SKT): From the SKT sig-
nal, we directly extract the SKTGradient and SKTPower of the
signal. The SKT Gradient is computed as the mean of the
difference between the portion of samples recorded during the
first second of the window, acquired at a sampling frequency
fs, and the samples from the final one second of the window.
Then, the SKT Power is the signal average power of computed
over the entire window of samples.

5) Respiratory Sinus Arrhythmia (RSA): Respiratory sinus
arrhythmia (RSA) is the natural variation in the heart rate
associated with the respiratory cycle. and measured from the
ECG signal. RSA has been used as a noninvasive measure of
cardiac vagal tone, as a marker of PSNS tone [43] and thus,
it can be used as a marker of the disruption of homeostasis
induced by a highly demanding task. Since RSA and cardiac

vagal tone can dissociate under certain circumstances [44],
we consider the hypotheses that these differences could come
from external factors, such as, a need to compensate for CWL
changes.

RSA is estimated from the non-uniform time series of
successive NN-intervals, which we interpolate using a linear
function and resample at 2 kHz. Then, we filter the resulting
uniform time series of successive NN-intervals with a 4th order
band-pass Butterworth filter with cutting frequency at 0.15 and
0.4 Hz yielding a RSA.

From the computed RSA we extract features that aim to
evaluate the agreement with the measured RSP signal, but first,
both signals (RSP and RSA) are normalized to zero mean and
unit variance. The first feature is the time delay of the RSA
with respect to the RSP (RSALag), estimated by computing
the cross-correlation of RSA and RSP. We also compute the
phase shift between the two signals, given by Eq. 3.

RSAPhase = cos−1

(
RSP · RSA

∥RSP∥ · ∥RSA∥

)
(3)

Subsequently, we extract features based on the Tukey mean-
difference plot, also called the Bland-Altman plot [45], to
compare both RSA and RSP measurements. To this end, we
compute the statistical features of the difference between the
two signals and the mean of the two:

R0 = RSP− RSA (4)
A0 = (RSP + RSA)/2 (5)

We also consider the statistical features of different log trans-
formations of the measurements, as follows:

Rb = logb(RSP)− logb(RSA) (6)
Ab = (logb(RSP) + logb(RSA))/2, ∀b = {n, 2, 10} (7)

where b denote the logarithm base (i.e., n, 2, and 10).

B. Features Normalization
Since the relative range of each feature varies widely, a

normalization is applied so that each one contributes approxi-
mately equally to the classification problem. Hence, we apply a
min-max normalization scaling the features within a 0-1 range.
The general formula is given as:

x′ =
x−min(x†)

max(x†)−min(x†)
(8)

where x is an original value, x′ is the normalized one, and x†

represents the original value of the training set.
Moreover, to address the problem related to both inter-

subject and inter-day variability [8], [30], we found from the
computational vision community, a task-specific normalization
method [46], which inspired us to consider the following
three types of normalization. First, the total normalization
(TN) is based on the full training set. Second, the subject
dependent normalization (SN) consists on normalizing based
on each training subset relative to a specific subject. Finally,
the day and subject-dependent normalization (DSN) affects
each portion of the training set relative to a specific day
and subject. Thus, the training and the test sets are scaled
accordingly, using the parameters obtained only from the
training set.

Finally, we select the best normalization strategy that better
emphasizes the discriminant power of the features and their
ability to classify the problem. In other words, we select the
method that gives the highest Fisher Discriminant Ratio (FDR)
[47] of the normalized feature sets, obtained by applying one
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of the three different normalization methods (i.e., TN, SN, or
DSN). Then, we evaluate the classification performance of an
SVM that uses for each normalized set an equal number of
normalized features. The results are reported in Sec. VIII-B.

C. Features Selection
Given the large features number considered for the exhaus-

tive characterization of CWL, we divide the feature selection
process into two main steps. First, as a pre-reduction to
suppress the features that do not give any discriminatory
information, we apply filter methods, particularly effective in
computation time and robust to overfitting. Then, to select the
most important features considering their possible interactions,
we apply embedded methods that simultaneously perform
feature selection and classification. Both feature selection steps
are performed once with data from the training set.

The pre-reduction of the feature space involves three meth-
ods. First, a two-sample Student’s t-test selects statistically
discriminant features. Second, the discriminant features are
ranked based on their FDR, which gives a score based on
their ability to discriminate the problem. Lastly, we remove
the features that give any redundant information, the less
discriminant features that are strongly correlated with others
(i.e., a Pearson’s correlation coefficient above 0.95) [48].

For the final feature selection, we apply Recursive Features
Elimination (RFE) [49], an embedded method that uses an
external estimator to assign weights to features. These weights
are then used to prune the least important features from the
current set. This procedure recursively prunes the selected
features until all feature weights are different from 0. In this
work, we apply RFE based on different classifiers (i.e., LR,
LDA, SVM, RF, and XGB), which we name RFE-LR, RFE-
LDA, RFE-SVM, RFE-RF, and RFE-XGB, respectively.

VI. COGNITIVE WORKLOAD MONITORING

For the cognitive workload monitoring, we explore the use
of different machine-learning algorithms. In particular, we
investigate the use of linear models, namely LR, LDA, SVM,
and Gaussian Naive Bayes (GNB) for a feasibility check.
Then, we investigate the use of non-linear models, such as k-
Nearest Neighbour (k-NN), Quadratic Discriminant Analysis
(QDA), SVM with a Radial Basis Function (RBF) kernel, DT,
RF, and XGB, to reduce the bias. The accuracy of each model
in detecting high levels of CWL is evaluated based on a 5-fold
cross-validation (CV) over the training set.

Moreover, we consider a personalized weighted-learning ap-
proach to deal with the person-dependent variance. To this aim,
we compare the performance of the Universal Background
Model (UBM) and the Subject-Specific Model (SSM) [50].

A. Model for Cognitive Workload Monitoring
To estimate CWL, we chose a linear SVM that has the

following prediction model [51]:

y(x) = wTx+ b (9)
where x is the input vector, w is the weight vector, and b is
the offset. The corresponding optimal hyperplane separating
the two classes is defined by the relation:

y(x) = wTx+ b = 0 (10)
Thus, an input vector x is then assigned to class 1 if y(x) ≥
0 and to class −1 otherwise. Although we use the same
prediction model for UBM and SSM, the difference lies in

the objective function. All the details are given in Sec. VI-B
and VI-C.

The parameters of both UBM and SSM are chosen based on
a 5-fold CV on the training set. We use a stratified split for this
validation that preserves the same percentage for each target
class as in the complete training set and preserves the same
percentage of data relative to the subject of interest. Then, the
generalization of both models is tested on an unseen test set.

The performance of the models is evaluated based on:
accuracy, the proportion of both true positives and true neg-
atives results among the total number of cases; precision, or
confidence, the proportion of predicted positive cases that are
correctly real positives; recall, or sensitivity, the proportion
of real positive cases that are correctly predicted positive;
Receiver Operating Characteristic (ROC); and in particular,
based on the F1-score, the weighted average of the precision
and recall.

B. Training of the Universal Background Model
The considered UBM is based on SVM with soft margins

[51], which relax the condition for the optimal hyperplane
(Eq. 10) and allow possible overlaps of the class-conditional
distributions. As for a normal soft-margin SVM, the objective
function of the UBM is defined as follows:

arg min
w,b,ξi

1

2
wTw + C

∑
i∈D

ξi, (11)

subject to ti(w
Txi + b) ≥ 1− ξi, ξi ≥ 0; (i ∈ D)

where the regularization term C and the non-negative variables
ξi relax the constraints of an otherwise hard-margin SVM. The
data x in the training dataset D comprises N input vectors
x1, · · · , xN , with corresponding target values t1, · · · , tN , and
where ti ∈ {−1, 1}. The parameter C is analogous to the
inverse of a regularization coefficient because it controls the
trade-off between minimizing training errors and controlling
model complexity. A regularization term C = 0.1 is chosen
from a log10 scale ranges from 0.001 to 1000 based on a
stratified 5-fold CV on the training set.

C. Training of the Subject-Specific Model
As well as for the UBM, the considered SSM is based on a

soft-margin SVM. However, to adapt the model to a specific
subject, we modify the objective function of the original soft
margin SVM (Eq. 11) including two different soft-margins.
The first soft-margin (Cs) changes the importance degree given
to false estimations of samples coming from a particular subset
of data, which can be a particular subject (S). Thus, the term
weighed by Cs allows a minimization of the errors (ξ) for
all the x in the training set related to a specific subject (x ∈
S). Instead, the second soft-margin (C) affects the rest of the
dataset minimizing the errors ξ for all the x in the training set
that are related to other subjects (x ̸∈ S).

Therefore, the SSM final objective function is defined as:

arg min
w,b,ξi

1

2
wTw + C

∑
i̸∈S

ξi + Cs

∑
i∈S

ξi (12)

subject to ti(w
Txi + b) ≥ 1− ξi, ξi ≥ 0; (i ∈ D)

Cs > C

With this model, we state a preference for margins that classify
the training data correctly, but we soften the constraints
to allow for non-separable data with different penalties. To
promote the minimization of the total sum of the penalties
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ξi ∀i ∈ S, despite the minimization of the total sum of the
penalties ξi ∀i ̸∈ S, we chose Cs to be greater than C. As
usual, the regularization terms have to be large enough to
avoid under-fitting, but not too much to avoid over-fitting as
well. Based on a stratified 5-fold CV on the training set, both
regularization terms C = 0.001 and Cs = 0.1 are chosen from
a log10 scale in ranges of 0.001–0.1 and 0.1–100, respectively.
Although both regularization terms seem to be bounded by the
considered range, we keep the lower bounds to avoid possible
under-fitting problems.

VII. EXPERIMENTAL SETUP

Collecting data in a real SAR mission is complex because
of the random frequency of events and the many variables
still undefined. Therefore, for collecting clean data, building a
CWM model, and validating our approach, we used the simu-
lator for search and rescue mission with drones reported in [8].
With the help of a certified instructor of the Swiss firefighters,
we designed the following two study protocols, where both are
based on a repeated-measures design using counterbalancing.
The first study was conducted to characterize CWL levels
through physiological signals using a gamepad as controller,
to build a model for real-time monitoring, and to evaluate the
contribution of the subject-specific approach.

The second protocol was designed to evaluate the system’s
quality using a new advanced controller, the FlyJacket [17].
In contrast with the gamepad controller, where the move-
ments were limited to the thumbs, the FlyJacket implies
both arms and torso movements. Therefore, when comparing
tasks involving different types of movements, there is a risk
of yielding a performance overestimation. Thus, to avoid as
much as possible any possible miss-classification caused by
movement artifacts, we trained the machine-learning algorithm
with the data from Study 1 (Trial 1) with the gamepad and did
the SSM final tuning with data from Study 2 with FlyJacket.
Finally, our models were tested also on unseen data of Study 2
with FlyJacket. The details of both studies are in the following
sections.

The signal processing, features extraction, machine-learning
design, and classification were done using Matlab R2016a
[52]. The RSP, ECG, PPG, SKT, and EDA were recorded with
the Biopac MP160 system at 2 kHz of sampling frequency. We
also recorded EEG, but because of the difficult integration of
such a sensor into a jacket, it is not used in this work. Instead,
it is analysed in [36], as previously mentioned. Finally, through
an analog input of the Biopac system, a trigger signal provided
by the simulator advises the task execution.

A. Search and rescue drone simulator
As presented in [8] and [36], the simulator presents a

simplified SAR scenario, where the drone pilot has to deal
with two different activities, flying and mapping. The flying
activity consists in flying a drone following a randomly gen-
erated trajectory depicted by spherical waypoints. Instead, the
mapping activity consists of mapping a disaster area situation,
represented by cubes of 4 different colors randomly distributed
over the flying trajectory. The colors were chosen according
to the regulation of the Swiss Firefighters [53].

We modulate both flying and mapping activities to induce
different levels of CWL as in [8], [36] i.e., medium/high
workload level with Flying (F) and Mapping 3 objects (3M),
and high level of CWL with Flying and Mapping 3 objects
(F3M). Also, a flying sequence controlled by an auto-pilot is

9

Trial 1

Trial 2

Trial 3 Q
B F3M 3M F R Rest  

(3’) (3’) (3’) (3’) (3’) (3’)

Training set, used for design and cross-validation

Testing set, used for final reporting

B 
(5’)

F 
(5’)

Q Q Q
Rest F3M Rest 3M Rest  
(3’) (5’) (3’) (5’) (3’)

Q
Rest  
(3’)

B F3M 3M F R Rest  
(3’) (3’) (3’) (3’) (3’) (3’)

Q

B - baseline 

F3M - flying and 3M

F - flying
3M - mapping 3 objects

R - recovery

Q- questionnaire

Fig. 3. Protocol of the experiment with the gamepad.

used as Baseline (B) to have participants in a same framework
for the entire experiment. B task has the lowest expected
workload level of this study.

B. Study protocol 1: Use of a gamepad
During this study, participants sat in front of a screen

and controlled the simulator with a gamepad from Logitech.
To collect clean data, participants were asked not to talk
and to avoid any kind of unnecessary movements during
the tasks. For proving the feasibility of detecting cognitive
workload with constrained sensor placement, clean data were
needed. Hence, we asked the participants not to talk and avoid
unnecessary movements while performing the tasks. However,
we cannot completely avoid the presence of some artifacts.
Therefore, in this context, different methods can be applied
to make sure the input data can be used for our proposed
algorithm. In particular, different approaches in wearables have
been shown to be effective for noise removal (e.g., for speech
[54], [55] and movement [56], [57] artifacts), which are needed
in real-life scenario. The study started with a setup phase
(explanation about the experiment, request of the participant
consent, and sensor placement), followed by a warm-up phase
up to 10 minutes to get familiar with the simulator [58].

The study protocol is shown in Fig 3. Participants performed
the first trial, starting with a five-minute baseline, and followed
by a sequence including F3M, 3M, and F, executed in a
randomized order. A resting period of 3 minutes was enforced
after each task. This period also allowed participants to fill a
questionnaire (Q), based on the NASA-TLX procedure.

Finally, the participants performed two additional trials,
namely Trial 2 and Trial 3. Each trial started with a baseline
and continued with a randomized sequence of F3M, 3M, and
F, and ended with a recovery (R) phase followed by a resting
period, in which the NASA-TLX was filled again. Each task
presented in Trial 2 and 3 lasted three minutes.

As shown in Fig. 3, we used all data acquired during both
Trial 1 and Trial 2 for both training and CV, and all data
collected during Trial 3 as the final unseen test set. We are
conscious that this split does not truly respect independent
temporality of data because all data sets (i.e., training, CV,
and unseen test sets) are taken from the same day and not
from a day that is not used for testing (as it should be in
a real application). Therefore, this choice implies a daily
training phase, which can be seen as a daily calibration of
the system. However, as we expect an inter-day variability of
the physiological responses [8], [30], we assume that a daily
calibration of the system will be required. This calibration
process consists of tuning the model for the correct baseline
level by using a couple of minutes of data collected under both
low and high workloads. A further investigation over different
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Training set, used for SSM’s tuning

Q Q Q
Rest F3M Rest F Rest  
(3’) (5’) (3’) (5’) (3’)

Testing set, used for final reporting

Q Q Q
Rest F3M Rest F Rest  
(3’) (5’) (3’) (5’) (3’)

B - baseline 

F3M - flying and 3M
F - flying

Q- questionnaire

Fig. 4. Protocol of the experiment with FlyJacket.

days could potentially avoid the need for such a calibration,
but this analysis is left for a future study.

C. Study protocol 2: Use of FlyJacket
In this study, the drone simulator is controlled with the

FlyJacket and two Oculus Touch controllers to map the disaster
situation. The study also started with a setup and warm-up
phase. Then, participants performed two trials, as shown in
Fig. 4, which started with a five-minute baseline followed
by a F3M and F sequence executed in a randomized order.
Again, three-minute resting period was enforced after each
task, where the participants filled the questionnaire.

This second study is a reduced version of the first one since
it aims to prove the feasibility of detecting low and high CWL
levels with the proposed method. Hence, we designed this
study protocol with only two trials, with three tasks of five
minutes each, and recording F for a different study [15].

D. Research participants
Study 1 with the gamepad was done by 24 participants

(6 females and 18 males) aged between 21 and 39 years
old (27.7 ± 4.8), who performed the study protocol twice in
two sessions on different days. Study 2 with the FlyJacket
was done by 10 additional participants (3 females and 7
males) aged between 22 and 30 years old (26.8 ± 2.3),
on a single day session. All participants provided informed
consent to participate in both studies. The inclusion criteria
were being healthy, free of any cardiac abnormalities, and
were receiving no medical treatment. The Cantonal Ethics
Commissions approved this study for Human Research Vaud
and Geneva (PB2017-00295).

VIII. EXPERIMENTAL RESULTS

Given the recorded data set from Study 1, we select
the best combination of normalization, feature selection, and
classification methods suitable for CWM. The methods are
obtained based on the cross-validations workflow including
747 observations. Finally, we show the performance of the
proposed methods on two unseen test sets, including 260 and
57 observations from Study 1 and 2, respectively.

A. Self-perception of induced cognitive workload
The reported overall workload on each task perceived by

the 34 participants based on the NASA-TLX is shown in
Fig. 5. A one-way ANOVA conducted on the influence of the
tasks confirms that participants have perceived different levels
of workload. Furthermore, a multiple pairwise comparison
analysis using the Student’s t-test with up to 164 samples
revealed statistically significant mean differences, except for
3M vs F (p-value < 0.001). The comparisons with the 3M task
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Fig. 5. Cognitive workload perceived by participants.

Fig. 6. Normalization methods impact on FDR.

were limited to 144 samples, as Study 2 with the FlyJacket
setup does not include the 3M task.

However, as shown in Fig. 5, the perceived CWL level has
a large variance. A two-way ANOVA reveals that such a large
variance comes from a significant (p < 0.001) effect of task,
day, and subject on the level of CWL, F(3,414) = 1637.19,
F(1,414) = 28.70, F(33,414) = 48.93, respectively. Therefore,
the NASA-TLX results confirm the need for both a day- and
a subject-specific approach.

Although there is a significant difference in the perceived
workload between most tasks, Fig. 5 shows that the distri-
bution of both F and 3M presented a considerable overlap
with F3M. Instead, the difference between tasks B and F3M
is clear. Thus, as our main goal is to detect low and high levels
of CWL, we focus on the extreme cases induced by tasks B
and F3M, respectively. F and 3M conditions were analysed in
a different work [15], which targets a three-class CWM.

B. Features discriminant power emphasized by
normalization

To reduce the variance introduced by the different partic-
ipants and performing the experiment on different days, we
investigated different normalization approaches (i.e., TN, SN,
and DSN) as described in Section V-B. We firstly evaluated
the effect of each normalization approach on the features
discriminant power based on their FDR. Results are shown
in Fig. 6, where DSN better emphasises the discriminant
power of the features. Compared with TN, the FDR of the
most important feature is emphasized by a factor of 80.9% or
166.9%, over SN or DSN, respectively.

Secondly, following our methodology (see Sec. III), we
compare how each normalization approach contributes to the
classification problem using a linear SVM model. We noticed
that the normalization affects the feature selection process,
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Fig. 7. Normalization methods impact on CWM.

which selects 14 features after TN or SN, or 25 features after
DSN. Therefore, to avoid biased results caused by the use of
a different number of features, we used for this comparison
the first 14 most discriminant features selected by RFE-SVM
after TN, SN, or DSN normalization. Fig. 7 shows the ROC
and the F1-score of the SVM combined with the different
normalization methods, where it can be seen that once again
DSN outperforms both TN and SN.

Our results show that feature normalization plays an im-
portant role during both features selection and classification.
DSN normalization gives better results (a bigger F1-score)
compared to SN and TN. Similar trends are obtained by
applying RFE with other classifiers, such as LR or LDA.
Therefore, we select DNS as normalization method.

C. Physiological featuring of cognitive workload
By applying the filter methods presented in Section V-C, we

eliminated 282 non-informative features from the normalized
(based on DSN) 384 features initially considered for an
exhaustive CWL characterization. In particular, we reduced
the feature space dimension from 384 down to 168 features
with the two-sample Student’s t-test and down to 102 features
by checking their linear correlation.

Although the above pre-selection step drastically reduced
the feature space, using that amount of features requires
models with high capacity. It may lead to overfitting if
trained with a limited dataset like ours. Therefore, to obtain
a reasonable feature set that can be used for CWM, a further
dimension reduction based on embedded methods was applied,
as presented in Section V-C.

The features space was reduced from 102 to 5, 10, 12
and 25 by applying RFE-XGB, RFE-LR, RFE-LDA, RFE-
SVM, respectively. RFE found a consistent set of features
based on LR, LDA, and SVM, see Table III. For the case of
RFE-XGB, we used a low-complex model to avoid overfitting
and inconsistent results. In particular, we limited the model
to 10 estimators and three maximum depth of each decision
tree. Such a low-complex RFE-XGB showed a drastic lower
selection compared to other methods.

Without banning the ensemble methods from building com-
plex models, RFE does not converge to the same result if
executed several times. In contrast, by limiting the model
complexity, RFE provides a reproducible result. However, this
trick does not help the RFE-RF method that does not converge
to a consistent solution. This model always selects a different
set of features, even if the model complexity is reduced (i.e.,
number of estimators and maximum tree depth). Hence, such
complex models are not suitable for small datasets.

The feature set obtained after applying both filter and
embedded methods are shown in Table IV. Although selected
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features vary between 5 and 25 depending on the applied
embedded methods, a common subset of features is identified.
We observed that the features obtained by RFE-LR, RFE-
LDA and RFE-XGB are almost all included in the feature
set obtained by RFE-SVM. In particular, RSPRate Median and
SKTPower are selected by all the four methods, followed
by RSPPrd Median, SKTGradient, RSAR2 Std, PRTMedian,
RSPRate Diff RMS and PPMedian, selected by three methods
out of four. Based on this result, the above eight features seem
to be the most important ones in terms of CWL characteriza-
tion in the context of this experiment.

Additionally, we investigated the effect of using the different
feature sets obtained with the considered RFE methods on
different classification methods. Results are presented in Table
III, where we report both the training and the CV accuracy.
A significant difference between training and CV accuracy
indicates a sign of overfitting (e.g., QDA with 102 features).
Moreover, we report the best CV F1-score for each applied
RFE method. While there seem to be no significant differences
across methods, the highest best F1-score and the best CV
accuracy are reached when linear SVM is applied on both
RFE and classification. Therefore, RFE-SVM is the employed
feature selection method hereafter.

D. Classifiers for cognitive workload monitoring
A ROC curve is used to further evaluate the performance

of the considered classifiers in CV, reported in Fig. 8 . In
particular, for greater clarity of the illustration, we only report
the best classifiers results (AUC ⩾ 0.94), namely LR, LDA,
k-NN, linear SVM, and SVM with RBF kernel. Our results
show that, with the amount of data we have, the use of non-
linear models does not increase the detection accuracy. Instead,
non-linear models tend to introduce a larger variance between
training and CV- accuracy. Linear SVM shows a higher F1-
score and better ROC curve, in particular by comparing the
bigger markers representing the performance of the models
based on their corresponding cross-validated threshold or
offset b. Therefore, a linear SVM was selected for our further
investigation.

Although selecting the SVM reaches the highest classi-
fication accuracy, it may not be the optimal solution for
embedded implementations. Other solutions considering fewer
features may be preferred for implementations in low-power
embedded systems, where power consumption may play an
important role. However, our results indicate certain flexibility
in selecting the number of features to be used, since the best
F1-score is quite similar for all the applied feature selection
embedded methods.
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TABLE III
FEATURE SELECTION PERFORMANCE COMBINING RECURSIVE FEATURE ELIMINATION (RFE) AND CLASSIFICATION METHODS.

Embedded Feature Selection Training and cross-validation accuracy of different classifiers, left and right values, respectively F1-score
Method Features LR LDA QDA SVMLin SVMRBF GNB k-NN DT RF XGB Best
Pre-selection 102 93 85 94 84 100 82 88 87 92 87* 84 85 91 85 90 85 90 87 94 87 89
RFE-XGB 5 85 85 85 86 87 86 85 87* 87 88* 85 88* 90 87* 89 84 90 85 90 85 88
RFE-LR 10 90 86 91 85 90 87* 89 86 91 86 86 86 91 85 90 80 90 85 92 84 88
RFE-LDA 12 90 87 91 87 92 87 87 86 92 88 86 85 92 87* 88 76 90 85 91 85 89
RFE-SVM 25 91 86 92 87 95 88 89 88* 93 87 88 88 92 87 90 84 92 85 93 85 90
* highlights the classifier having the best F1-score on cross-validation for the particular feature selection method. Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), with linear and Radial Basis Function (RBF)
kernels, Gaussian Naive Bayes (GNB), Nearest Neighbour (k-NN), Decision Tree (DT), Random forest (RF), and Extreme Gradient Boosting (XGB).

TABLE IV
MOST IMPORTANT FEATURES USED TO DETECT LOW AND HIGH LEVELS

OF CWL, B AND F3M TASKS, RESPECTIVELY.

Task B Task F3M p-Val< 10−x

Physiological Features µ± σ µ± σ x
RSPRate Mean

1,4 0.28± 0.22 0.71± 0.23 107
RSPRate Median

1,2,3,4 0.28± 0.23 0.71± 0.23 106
RSPPrd Mean

1,2,3 0.61± 0.25 0.22± 0.21 90
InhTime Median

1 0.53± 0.31 0.20± 0.23 52
ExhTime Median

1 0.63± 0.29 0.32± 0.28 45
InhTime Mean

1 0.50± 0.31 0.22± 0.25 38
InhTime RMS

3,4 0.44± 0.30 0.19± 0.25 31
RSAR2 Std

1,3,4 0.40± 0.28 0.57± 0.28 17
RSPPks Mode

1 0.61± 0.29 0.50± 0.30 08
RSPRate Diff RMS

1,2,3 0.33± 0.29 0.42± 0.29 06
RSPPSD3n

1 0.35± 0.29 0.43± 0.30 05
RSPPSD1n

1 0.48± 0.35 0.41± 0.31 04
RRHF gauss

1,3 0.32± 0.23 0.68± 0.26 74
RRHF sband 3n

1 0.47± 0.32 0.30± 0.28 15
RRLorenz L2

2 0.49± 0.30 0.35± 0.26 11
RRCVI

2 0.54± 0.29 0.42± 0.28 10
PPHF sband 5n

1 0.23± 0.25 0.46± 0.30 28
PARMS

1,2 0.53± 0.35 0.32± 0.27 20
PALorenz L

1 0.44± 0.33 0.26± 0.25 17
PRSMean

2 0.38± 0.35 0.55± 0.31 13
PPCSI

1 0.46± 0.29 0.33± 0.26 11
PACSI modified

2 0.40± 0.30 0.28± 0.27 09
PRTMedian

1,2,3 0.44± 0.31 0.56± 0.31 08
PTTM Mode2

1 0.50± 0.35 0.58± 0.28 05
PPMedian

1,2,3 0.55± 0.31 0.47± 0.28 05
PTTM HF pond

1 0.47± 0.28 0.54± 0.29 05
PRTLFp1oHF

1 0.38± 0.31 0.30± 0.27 05
PPMode2

1 0.55± 0.33 0.49± 0.28 04
SKTPower

1,2,3,4 0.61± 0.35 0.37± 0.30 24
SKTGradient

1,2,3 0.57± 0.29 0.38± 0.26 20
Selected feature with: 1SVM-RFE, 2LDA-RFE, 3LR-RFE, and 4XGB-RFE.

Besides, the CV-accuracy reported in Table III after RFE
is delimited between 84 and 88%, except for DT. The CV-
accuracy variability seems to be more dependent on the
selected classifier (difference > 4.5%) rather than the selected
number of features (difference < 3.5%). In fact, a linear
SVM with an input of only five features can provide a
reduced implementation complexity with a loss of only 1%
of classification accuracy.

E. Classification improved with the SSM
Once we have selected the set of features (i.e., 25 features

with RFE-SVM) and a linear SVM as classification method,
we tested the subject-specific approach contribution compared
to a general model (i.e., SSM vs. UBM). First, we trained the
models as described in Section VI. The regularization term
C = 0.1 of the UBM was selected based on a 5-fold CV on
the training set. For the SSM, we selected C = 0.001 and
CS = 0.1 being the most common regularization terms found
with a 5-fold CV on the training (data of Study 1).

TABLE V
PERFORMANCE OF THE UNIVERSAL BACKGROUND MODEL (UBM) VS.

SUBJECT-SPECIFIC MODEL (SSM) ON AN UNSEEN DATA.

Study Model class precision recall F1-score samples
B 0.81 0.76 0.79 123

UBM F3M 0.80 0.84 0.82 137
Study 1 avg 0.80 0.80 0.80 260
Gamepad B 0.89 0.83 0.86 123

SSM F3M 0.86 0.91 0.88 137
avg 0.87 0.87 0.87 260
B 0.87 0.93 0.90 29

UBM F3M 0.92 0.86 0.89 28
Study 2 avg 0.90 0.89 0.89 57
FlyJacket B 0.88 0.97 0.92 29

SSM F3M 0.96 0.86 0.91 28
avg 0.92 0.91 0.91 57

Table V reports the comparison between UBM and SSM,
tested on an unseen test set emulating an online CWM. The
average accuracy of the UBM is 80.4%, and it is improved
to 87.3% by the use of the SSM. The SSM shows a statisti-
cally significant improvement of the classification performance
indicated by both the Wilcoxon rank-sum test [59] and the
McNemar’s test [60] over the 260 samples (p-value < 0.01).
SSM improves the results for all the participants on CV,
while one participant over 24 does not show the expected
improvement on the final test set. This result may be explained
by the need for more training data that could be used to better
fit this participant’s physiological response.

Furthermore, as shown in Table V, the higher performance
of the SSM compared to the UBM is also confirmed on the
test set acquired using FlyJacket (Study 2, Sec VII-C). In
fact, the UBM reached a global accuracy of 89.5% that is
improved to 91.2% using the SSM. However, the improvement
(1 sample over 57) is not statistically significant, shown by
both Wilcoxon rank-sum and McNemar’s tests. For statistical
results, additional data are needed. Nevertheless, a single
misclassified sample in SAR missions can have a significant
impact.

SSM obtains better performance than UBM because uses
all the observations with a different weight. Those from other
participants contribute to learn the general behaviour, with a
regularization term C that allows a higher misclassification
of such observations. Then, specific subject observations tune
the margins between classes with a regularization term CS

to reinforce each specific subject. In light of the above, we
can conclude that the personalized model performs in general
better than the universal model.

Our results for the SSM are comparable with the state-of-
the-art (See Table I), in particular with the work presented
in [15], where the authors achieved an accuracy of 86%.
Although with similar accuracy, our model is less complex and
uses a reduced feature number. Another important difference
is the test set selection, which was random in [15]. Instead,
as a test set, we selected data from the last trial performed by
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Fig. 9. Models performance comparison on a simulated online CWM
(every 60s). The first 180 s correspond to B task followed by F3M task
for other 180 s.

each subject, namely, Trial 3. For any classification problem
that breaks the interchangeability hypothesis, such as the
time-dependent CWM, a random training/test split should be
avoided, as it yields a biased model evaluation. With a random
split, the model learns from prospective data, commonly not
available when designing and training a prediction model.
Besides, the model is evaluated based on retrospective data,
which are too similar to the training data. Hence, the classifier
tends to look better than it is. Therefore, to estimate how well a
model will work with new data, a time-dependent training/test
split should be considered.

Also, the improved classification performance with Fly-
Jacket vs. gamepad is assigned to the increased amount of
training data. In the case of FlyJacket, the classifier weights
were tuned based will all collected data from Study 1 and
including Trial 1 of Study 2. Nevertheless, considering less
training data (ignoring Day 2 of Study 1) reduces the accuracy
of UBM from 86% to 82%.

Then, we assessed if our model using FlyJacket could suffer
from possible movement artifacts, as they would differ from
Task B to Task F3M. Thus, we minimized this risk because
93.5% of the samples used to train the classifier comes from
Study 1, with the gamepad, in which the movements were
minimal and limited to the thumbs. Moreover, all the features,
normalization coefficients, and regularization terms were cho-
sen using data only from Study 1. Thus, movement artifacts
cannot significantly influence our classification results.

F. Emulated online cognitive workload monitoring
A visual representation of the emulated online CWM of

both UBM and SSM is shown in Fig. 9. Since the order of
the tasks was randomized, we only report the 76 samples of the
sequences having consecutive transitions between B and F3M
tasks. This analysis is based on Study 1 performed with the
gamepad (Trial 3). During the first 180 seconds, participants
performed the B task, a low workload level. For the last
180 seconds, participants performed the F3M task, a higher
workload level. The detection was done on the test set, where
features were extracted from a 60-second sliding window with
no overlap. Negative and positive scores denote low and high
workloads, respectively. A Wilcoxon rank-sum test with 76
samples indicates that the scores before and after 180 seconds
are significantly different (p-value < 10−8).

Another interesting aspect to note from Fig. 9 is the con-
tradictory difference between the averaged predicted scores of
the UBM and SSM. As the SSM is performing better than the
UBM, we would expect to see a bigger absolute value of the

SSM averaged score than the one of the UBM. However, the
upper margin of the standard deviation of the predicted score
reported in the interval between 60 and 180 seconds (Task
B) and the lower margin in the interval between 240 and 360
seconds (Task F3M) seems similar for both UBM and SSM.
This behaviour may be explained by the attempt of the SVM
to choose the hyperplane that maximized the distance from it
to the nearest data point on each side. Thus, as the SVM tends
to maximize the margins, the SVM-based SSM performance
may be limited to a consistent but marginal improvement.

Finally, comparing Fig. 5 and Fig. 9, we can see that both
perceived and detected CWL are affected by a large variance.
However, as shown in Fig. 9, such a variance is partially
reduced using the SSM, which contributes better to fit the
physiological response of a single subject.

IX. CONCLUSION

In this work, we have proposed a reliable subject-specific
machine-learning algorithm for real-time CWM in SAR mis-
sions with drones. Our multimodal CWM model combines the
information of features extracted from physiological signals
(i.e., RSP, ECG, PPG, and SKT) noninvasively acquired. After
an exhaustive investigation involving up to 384 features, we
have selected only 25 required to get the highest classification
accuracy. In addition, we have explored different feature
normalization techniques to reduce both subject and day inter-
variability, showing that a combination of day and subject
normalization improves the detection accuracy.

Moreover, we have introduced a novel SVM based
weighted-learning method suitable for subject-specific opti-
mizations. With such a method, we distinguish between low
and high CWL with an accuracy of 87.3%, on an unseen test
set. Furthermore, we tested our model on ten new subjects
using an advanced controller, reaching an average accuracy of
91.2%. Therefore, our model is valid to monitor CWL from
rescuers piloting a drone with either traditional or advanced
controllers.

The proposed methodology paves the way for detecting high
levels of cognitive workload with sensors that can be included
into a jacket. Our model can already operate in real-time to
obtain information of the cognitive workload of the user. Such
information can be used to improve shared-control systems by
modulating the human-robot interaction and dynamically adapt
the level of assistance, which will ensure an efficient execution
of the missions. However, further investigations in real-life
scenarios are needed to model other stressful conditions, which
are not reproducible in laboratory tests. Moreover, there is a
need to address a fine-grained detection in order to define a
threshold for preventing a possible pilot’s overload that could
compromise the outcome of a search and rescue mission.
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Abstract: A variety of medical computer vision applications analyze 2D slices of computed tomogra-
phy (CT) scans, whereas axial slices from the body trunk region are usually identified based on their
relative position to the spine. A limitation of such systems is that either the correct slices must be
extracted manually or labels of the vertebrae are required for each CT scan to develop an automated
extraction system. In this paper, we propose an unsupervised domain adaptation (UDA) approach
for vertebrae detection and identification based on a novel Domain Sanity Loss (DSL) function. With
UDA the model’s knowledge learned on a publicly available (source) data set can be transferred to
the target domain without using target labels, where the target domain is defined by the specific
setup (CT modality, study protocols, applied pre- and processing) at the point of use (e.g., a specific
clinic with its specific CT study protocols). With our approach, a model is trained on the source
and target data set in parallel. The model optimizes a supervised loss for labeled samples from the
source domain and the DSL loss function based on domain-specific “sanity checks” for samples from
the unlabeled target domain. Without using labels from the target domain, we are able to identify
vertebra centroids with an accuracy of 72.8%. By adding only ten target labels during training the
accuracy increases to 89.2%, which is on par with the current state-of-the-art for full supervised
learning, while using about 20 times less labels. Thus, our model can be used to extract 2D slices
from 3D CT scans on arbitrary data sets fully automatically without requiring an extensive labeling
effort, contributing to the clinical adoption of medical imaging by hospitals.

Keywords: unsupervised domain adaptation; semi-supervised learning; vertebrae detection;
vertebrae identification; transfer learning; semantic segmentation; data centrism; deep learning

1. Introduction

Fine-tuned AI-driven software tools allow an automated analysis of digital images
and play a highly relevant role in different industries, especially in healthcare [1]. Com-
puted tomography (CT) images provide accurate information about structural anatomy,
morphology, as well as quantitative and qualitative composition of body parts [2]. They
usually consist of multiple 2D slices stacked as a batch and form therefore a 3D data
set. CT scan processing often relies on the feature extraction capabilities of modern deep
learning architectures [3], and many modern deep learning systems process 3D scans as
a whole [4,5]. An alternative to 3D scan processing is to extract representative 2D slices
first [6], which, for example, can be used for preoperative surgical assessment as well as
to examine metabolic, pulmonary, and neurological diseases [7,8]. Such relevant 2D slices
of the upper body are usually identified based on their relation to the spine [8–10] and
can either be extracted manually [10] or automatically, where automatic systems therefore
need to be able to recognize the vertebrae and extract the slice containing the relevant
information [11]. Usually, this requires knowledge of vertebrae locations, i.e., manually
created labels for a multitude of 3D CT volumes, to train respective systems.
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In this paper, we present an approach to identify vertebrae of the spine automatically
without the need of excessive labeling of own data (or even no labels at all), thereby
heralding a data-centric approach [12] based on un- or semi-supervised learning [13].
To this end, our contribution is the development and evaluation of a novel method that
requires no labels at all to achieve reliable vertebrae detection and identification and, if
given less than 5% of the labels we perform on par with comparable supervised approaches.
Thus, our approach reduces the labor-intensive labeling effort that can hinder applicability
in medical institutions. An overview of our approach is given in Figure 1. The quality of
our results allows the extraction of representative 2D slices from 3D volumes within an
automated machine learning (ML) pipeline.

Figure 1. Visual abstract of our work: We train a vertebrae Detection and Identification module
simultaneously on a publicly available data set (source domain) and a second custom data set (target
domain). We require only a few labels from the custom data set. With the help of a loss function
that is inspired by anatomical domain knowledge the proposed model is able to identify vertebrae
centroids with state-of-the-art performance, reducing the need for target-domain labels by a factor
of 20. We see its main application within ML-pipelines to extract representative 2D slices out of 3D
volumes, representing a step towards fully automated systems for downstream 2D slice analysis.

The remainder of the paper is organized as follows: In Section 2, we review the related
work and argue why we build upon the work of McCouat and Glocker [14]. In Section 3, we
explain how we extended the “Detection” module with post-processing and propose a new
unsupervised loss function for the “Identification” module. In Section 4, we present the
results of our method in detail and show how well vertebrae can be detected and identified
with only a few labels. In Section 5, we conclude that our method facilitates the application
in medical institutions, as very good results are obtained with an order of magnitude fewer
labels than comparable methods require. Furthermore, we identify limitations and suggest
future research directions.
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2. Related Work

The detection and identification of vertebrae is well studied. However, many methods
for vertebrae identification make prior assumptions. For example, Zhou et al. [15] assume
that the first sacrum vertebra (S1) is within the image while Yi et al. [16] assume that always
the same vertebrae are visible. The model of Altini et al. [17] on the other hand requires
manual input with meta-information about the first visible vertebra. Other approaches
make assumptions about the shape of the spine [18] and therefore do not work well in
pathological cases where the spine is deformed. In contrast, this work does not impose
such assumptions, enabling processing of a broad range of CT scans even if the images
only contain cropped parts of the spine.

Predicting the vertebra centroids directly (i.e., as a regression task) often leads to poor
results [19]. Therefore most approaches turn the regression problem into a dense classifica-
tion problem [14,16,19]. Earlier approaches used classical machine learning models such as
random forests to identify vertebra centroids [19] while more recent approaches achieve
better results using convolutional neural networks (CNNs). For example, Yang et al. [20]
use an encoder-decoder architecture together with multi-level feature concatenation to
locate vertebrae. The extracted centroid probability maps are iteratively improved based
on the mutual relation of vertebra centroids. Liao et al. [21] achieve state-of-the-art results
using a CNN to detect the positions of the centroids, combining it with a recurrent neural
network (RNN) to capture the ordering of the vertebrae.

McCouat and Glocker [14] obtained similar results using two separate U-Nets [22] for
detecting and identifying vertebrae. Their data set consists of 3D CT scans with labels for
the vertebrae centroids. Initially, these sparse labels are converted to dense labels. Then
the “Detection” module, the first in the two-stage approach, detects the spine within the
3D volume. To enable training with limited computational resources the 3D volumes are
divided into smaller patches. Each of these patches is fed into a 3D U-Net that segments the
vertebrae from the background. Once the spine is located the relevant region is extracted
from the 3D volume and processed by the second module.

This second stage is the “Identification” module that maps pixels to the corresponding
vertebrae. For this purpose, a 2D U-Net is used. The model does not classify each pixel
but produces a continuous value for each pixel. Rounding this continuous value results
in an integer which is associated with a vertebra (e.g., 1 = C1, 2 = C2, ...). Due to the
prediction of continuous values per pixel the L1 loss function can be used to capture the
order of the vertebrae. The Identification module predicts a value for each pixel, even if
that pixel depicts background and not a vertebra. Since the Detection module classifies the
background pixels as 0 the output of the Identification module is multiplied by the output
of the Detection module yielding the prediction without background. Finally, the predicted
dense labels are converted back to sparse labels by calculating their median position.

In this work, we extend this approach from McCouat and Glocker [14] with unsu-
pervised domain adaptation (UDA) methods. We extend the Detection module with
post-processing and the Identification module with a new Domain Sanity Loss (DSL) based
on “sanity checks”. We build upon their work for the following reasons: (i) The average
distance between the predicted and the actual vertebrae centroids is small and considered
state-of-the-art; (ii) the models are pure CNN architectures which can be easily extended
within the framework of deep learning [23]; (iii) no assumptions are made about neither
the shape of the spine nor the visible vertebrae. This way, the model is adapted to the target
data, which is considerably easier to train in our experience than the alternative of adapting
the data to the model [24].

3. A Method for Unsupervised Domain Adaptation of CT Scans of the Spine

The method of McCouat and Glocker [14] performs well on labeled data sets. However,
performance is poor when the trained model is applied to other data sets on which it has
not been trained (c.f. Section 4). To process data from other domains, we extend the two
modules. The Detection module is extended with post-processing, while the Identification
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model is trained with a new DSL loss function. The proposed UDA training procedure for
the Identification module leverages publicly available labels and helps the model to adapt
to a second data set even without labels. Since we adapt the knowledge learned on one
domain to another, we refer to the first domain as the source and the second as the target
domain. Our extensions only affect the training process, while the network architecture
remains unchanged.

3.1. Detection Module

In accordance with [14] we divide the 3D volumes of the source and target data set
into smaller patches of size [80× 80× 96] and process them with a 3D U-Net. An advantage
of processing patches instead of the entire 3D volume is that the model can be trained
with limited computational resources. The sparse annotations (i.e., centroid positions of
vertebrae) are converted into dense annotations (i.e., pixel-level labels) [14]. Pixels depicting
a vertebra are labeled as 1, and pixels depicting background as 0. Adam [25] is used with
a learning rate of 1 × 10−3 during training to minimize a binary cross entropy (BCE) loss.
The model is trained with a batch size of 16 samples for 70 epochs. After training the model
labels pixels either as spine or background. Thus, this module can locate the spine in a
3D volume.

In contrast to [14], we post-process the predictions of our model. This post-processing
is helpful because it can be hard for the model to detect parts of the spine in small patches.
Processing patches is considered more difficult than processing the entire CT scan because
of the lack of context provided by the surrounding pixels. After all patches of a scan are
predicted we conduct a connected component analysis on the 3D volume. It identifies all
connected groups of pixels that are labeled as spine. Since the spine consists of many pixels,
it is retained as the biggest component while smaller components are discarded as artefacts.
To remove only artefacts and not the spine from the prediction we weigh the BCE loss by a
factor of 1.0 for the spine and 0.1 for the background. By doing so, the spine is detected as
a single component with very high accuracy and not removed as an artefact.

3.2. Identification Module and Domain Sanity Loss

The Identification module processes patches of the size [8 × 80 × 320] in a 2D U-Net
as in [14]. These patches have a large field of view of 80 × 320 pixels along the sagittal
plane thus allowing identification of vertebrae. As conducted in the Detection module, the
sparse annotations are converted to dense annotations, background is labeled as 0 and the
vertebrae with integers in ascending order (i.e., 1 = C1, 2 = C2, . . . , 26 = S2).

In contrast to [14], we extend this module with an UDA method. Our proposition is
based on a novel training process that instead of processing only samples from the source
domain is alternatingly feeding mini-batches from the source and target domain into the
model. The intuition behind this is that samples from the source domain teach the model
vertebrae identification while samples from the target domain help to adapt to the target
data set. This 2-way training procedure is shown in Figure 2.

In the first phase, since the source data samples have labels, a supervised L1 loss
function is used as suggested by [14]. By predicting continuous values and not label
probabilities, this function is able to measure the distance to the ground truth vector rather
than merely checking for equality (e.g., prediction C2 is better than prediction C3 for label
C1) and thus considers the order of the vertebrae. However, since no labels are available for
the target data set no supervised loss function can be used in the second phase. Therefore,
we propose the Domain Sanity Loss (DSL) based on “sanity checks” as introduced and
illustrated in Figure 3.
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Figure 2. 2-way training process of the Detection module: In step one, L1 distance is used to calculate
the loss of a mini-batch of source domain samples. In step two, several “sanity checks” (see Figure 3
for an overview) are calculated to form the loss of a mini-batch of target-domain data. The sanity-
check-based DSL loss only considers spine pixels by multiplying the output of the Identification
module with the output of the Detection module and employs the Felzenszwalb-Huttenlocher
algorithm [26] to create a weak segmentation mask of vertebrae location in an unsupervised way (c.f.
Section 3.2).

Figure 3. Visual representation of the sanity checks performed by the proposed Domain Sanity
Loss (DSL) function; the displayed cases show failures for each check, indicated by the white
arrows. Specifically, the DSL loss checks for (i) monotonous ascend of predicted vertebrae numbers
along the spine; (ii) all spine pixels in one column of the image having the same vertebra number;
(iii) predicted vertebrae centroids having a reasonable distance to each other, based on average
distances from the literature; and (iv) predictions not being shifted along the spine, based on an
unsupervised weak segmentation of the vertebrae (c.f. Figure 2).
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The DSL loss is with its four checks purely based on anatomically induced invariances
that hold true even for severely deformed spines and hence need no corresponding human-
provided labels for any image. As these invariances only apply to pixels belonging to the
spine, we multiply the model output with the prediction of the previous Detection module
and thereby set all pixel values that do not belong to the spine to zero. In the following, we
denote this prediction with removed background as ŷ: a matrix of the same shape as an
input image with the predicted vertebra number for spinal pixels (i.e., 1 = C1, 2 = C2, ...)
and 0 otherwise. We denote i as row and j as column indices of ŷ and nrow and ncol as the
number of pixels per row and column of the sagittal plane respectively. Furthermore, we
define the identification function for boolean values as

�b(x) =

{
1 if x is true
0 otherwise

(1)

The first term s1 of the DSL loss function (c.f. Equation (6) at the end of this subsection)
evaluates whether the vertebrae are sorted in ascending order along the spine. For a correct
prediction, the per-pixel values in ŷ along the longitudinal axis must be sorted in ascending
order (c.f. Figure 3(i)). We implement this by comparing each predicted pixel ŷi,j with a
version of the same prediction ŷi,j+s shifted to the right by s pixels. Thereby we evaluate if
a pixel shifted to the right of any given pixel still gets the same or a higher prediction. In
doing so, we check whether pixels are sorted ascending from the left to the right. All pixels
that do not fulfill this criterion lead to an increase in the loss value. We ignore the pixel
values that get shifted outside of the range of the original prediction which is why we only
sum up the pixels column wise until ncol−s. We define the first loss term as

s1(ŷ) =
1

npix

nshi f t

∑
s=1

nrow

∑
i=1

ncol−s

∑
j=1

�b(ŷi,j − ŷi,j+s ≥ 0) (2)

where nshi f t is the maximum range of shift, and npix the number of pixels in ŷi,j. Empirically,
we found that shifting values s > 30 do not enhance the result anymore. We therefore
define nshi f t = 30 and thus compare the order of the vertebrae only locally which leads to
higher computational efficiency. We divide the number of pixels that violate this constraint
by the number of total pixels npix and therefore s1(ŷ) captures the percentage of spinal
pixel for which the anatomical order of the vertebrae is not correct.

The second term s2 of the loss function checks whether the pixel values orthogonal to
the spine are identical. For this we analyze the pixels that are differently labeled along the
sagittal axis (c.f. Figure 3(ii)). We assume the median value of each column j of ŷi,j as label
of that column and compare it to all values in that column. We denote vj as the column
vector of ŷi,j at index j. Furthermore, we define a function median(vj) which calculates
the median of a column vector vj. We assume that the spine is more or less parallel to it
(rotation can be checked easily by pre-processing, if necessary). We define the second loss
term as

s2(ŷ) =
1

npix

nrow

∑
i=1

ncol

∑
j=1

�b(|ŷi,j − median(vj)| > 0) (3)

For each column, we sum up the number of pixels that are labeled differently than the
median and divide this sum by the total number of pixels. Thereby we obtain a factor that
indicates how consistent the vertebrae per column and thus orthogonal to the spine are.

The third term s3 of the DSL loss function evaluates the distance between the centroids
of the predicted vertebrae (c.f. Figure 3(iii)). We define the distance between vertebra i and j
as δi,j. We denote the average distances of vertebrae as taken from Busscher et al. [27] as
δ̄i,j. We denote the upper bound of the summation as nvert = 25, which is the number of
vertebrae of a spine (26) minus one. The third loss term
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s3(ŷ) =
1

nvert

nvert

∑
i=1

|δi,i+1 − δ̄i,i+1| (4)

calculates the Euclidean distances between subsequent vertebra centroids and com-
pares it to the gold standard from literature using the L1 loss. If the distance between
two vertebrae is equal to the gold standard the loss is 0, otherwise it is bigger than 0. We
sum up the distance differences between subsequent vertebrae to the third term s3(ŷ). We
therefore perform an explicit sanity check on vertebrae distance and an implicit check on
vertebrae size.

The fourth term s4 of the loss function checks whether the predicted vertebrae are not
shifted. So far it has only been verified whether the spine is anatomically correctly detected.
However, the spine itself may be slightly displaced within the image (c.f. Figure 3(iv)). To
detect shifts we make use of a weak segmentation mask which is constructed as follows:
First, the input scan (and not the mask) is multiplied by the prediction of the Detection
module to extract the spine, followed by setting all pixels below an intensity threshold of
180HU to 0 in order to emphasize the edges. We then use the Felzenszwalb-Huttenlocher
algorithm [26] to predict a segmentation mask of the vertebrae in a unsupervised manner.
As this mask is relatively imprecise it is referred to as a weak mask wm. The predicted mask
is further improved by heuristically filtering out components that cannot correspond to a
vertebra (e.g., wrong shape) and by merging components that are enclosed in one another.

The weak mask wm has the same shape as the prediction ŷ. Each pixel in the weak
mask is assigned to a connected component ck ∈ wm. Each ck has a set of row cki

and
column ckj

coordinates which pairwise represent all pixels of a component. The intuition
behind this fourth loss term is that the prediction ŷ should have the same label at the
coordinates of pixels that belong to the same connected component ck. For each connected
component ck we extract from ŷi,j the values at the positions (i, j) ∈ (cki

, ckj
) and define this

operation as v(ŷ, ck). Furthermore, we define u(x) which returns the number of unique
values in a set x. Based on our definition u(v(ŷ, ck)) returns the number of unique values
within ŷi,j at the coordinates (cki

, ckj
) of a connected component ck.

Per connected component ck the pixels in the prediction ŷ should be labeled identically
and thus u(v(ŷ, ck)) should return 1. If multiple labels are predicted at the positions of a
connected component, u(v(ŷ, ck)) returns a value greater than 1. The fourth part of our
DSL loss function sums up the number of inconsistent labels per connected component:

s4(m, ŷ) =
1
nc

∑
ck∈wm

u(v(ŷ, ck))− 1 (5)

The domain-specific DSL loss function therefore consists of four sanity checks that pe-
nalize anatomical inconsistencies. To obtain the DSL loss value, we sum the four loss terms:

L(m, ŷ) = c1 · s1(ŷ) + c2 · s2(ŷ) + c3 · s3(ŷ) + c4 · s4(m, ŷ) (6)

where the constants cs are scaling values that we found experimentally to work well when
set to c1 = 20, c2 = 1, c3 = 1/40, and c4 = 1/100 as they bring the four loss parts to
an approximately similar scale. To optimize this loss, we use Adam [25] as optimizer
with a learning rate of 5 × 10−4. The model is trained for 100 epochs with a batch size of
32 samples.

3.3. Data Sets

We use the BioMedIA Spine data set [28] as source data set. It consists of 242 spine-
focused CT-scans of 125 patients with varying types of pathologies. In most scans, the view
is limited to 5–15 vertebrae, while only a few scans depict the entire spine [19]. The scans
differ significantly in terms of image noise, physical resolution, and vertical cropping [18].
Each scan is labeled with point-annotations of vertebrae centroids that are extended to
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dense labels using the approach outlined in [14]. The data set provides a predefined split
which is used for training and testing.

To test the proposed unsupervised domain adaptation schema for vertebrae detection
and identification, the COVID19-CT data set [29,30] with 1000+ scans from patients with
confirmed COVID-19 diagnosis is used. The scans are composed of 16-bit grayscale images
with a size of 512 × 512 pixels [29]. Most of the scans have an inter-axial distance between
0.5 and 1.5 mm. A radiology experienced physician labeled the vertebra centroids of
a random subset with 30 scans, of which 20 are used as a test set and 10 labeled scans
optionally together with the remaining scans as training set.

Similar to [14], we divide all samples into smaller patches. To train the Detection
module on the source data set we extract 10 patches of the size [80 × 80 × 96] from random
positions out of each scan. Thereby we ensure that at least 8 out of the 10 patches contain
parts of the spine. Since the Detection module is not trained on the target data set, only
patches from the labeled source data set are needed. For testing on the source as well as
the target data set, we divide the entire scan independent of the position of the spine into
patches of the size [80 × 80 × 96].

For the training of the Identification module, we extract 300 patches with a shape of
[8 × 80 × 320] per sample. If labels exist we ensure that each patch contains at least one
vertebra. If no labels exist we use the output of the Detection module to locate the spine and
extract patches out of this region. For testing, the entire scan is again divided into patches.

4. Results

In the following three subsections, we analyze our Detection and Identification module
experimentally, comparing them to prior and related work.

4.1. Detection Results with and without Post-Processing

The Detection module detects the spine within the 3D volume well. However, without
post-processing many false-positive predictions (i.e., prediction “spine” instead of “back-
ground”) lead to bad results, especially on the target data set without labels (c.f. Figure 4).
A possible reason for this is that the model is trained only on small patches of the original
volume. Therefore, the model only learns to identify parts of vertebrae and not how a
whole spine looks like. An indication for this is that false negatives are often detected in
places with cubic shapes, for example, the bed on which the patient is lying. However,
since these false predictions consist of far fewer connected pixels than the entire spine our
post-processing is able to successfully remove these artefacts.

To highlight how our post-processing improves performance we calculate various
metrics. However, these metrics must be interpreted with caution for two reasons: (i) Gen-
erated dense annotations, which are calculated based on average sizes of vertebrae bodies,
are used as ground truth; such annotations are by design less accurate than, for example,
carefully hand-crafted segmentation masks. (ii) The performance is calculated on the whole
volume and not on cropped samples as is conducted in [14]. Since the cropped samples
have a much higher proportion of pixels representing the spine these results are not di-
rectly comparable. However, the published results of [14] correspond roughly with the
performance of our model without post-processing as both are based on the same method.

Table 1 shows the results of the Detection module. The accuracy, recall, intersection
over union (IoU), and dice-score are calculated for the source data set (BioMedIA) and
for the target data set (COVID19-CT). The proposed post-processing clearly improves the
performance. For example, the IoU of pixels representing vertebrae in the source data set
improves from 67.4% to 78.7%, which is a 16.8% relative improvement. The improvement
on the target data set is even more noticeable. Using post-processing on the target data
set, IoU improves from 46.4% to 79.1%. While the model without post-processing is
considered not accurate enough to detect the vertebrae on the target data set, the model
with post-processing is suitable for the subsequent vertebrae identification.
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Figure 4. Four randomly selected samples from the target data set (COVID-19 CT) with overlayed
predictions for the spine detection with (bottom row) and without (top row) post-processing. To
provide a better grasp of the post-processing’s effect, we visualize all predictions within the 3D mask
along the sagittal plane (left) and along the coronal plane (right).

Table 1. Performance evaluation of the Detection module with the highest score for each metric and
data set in bold. For each metric, the overall performance for the whole 3D scan and for the vertebrae
with ignored background is reported. The positive effect of our proposed the post-processing is
visible on the source and the target data sets.

BioMedIA (Source Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.2% 99.5%
Recall (overall/vertebrae) 99.2%/94.3% 99.5%/94.1%
IoU (overall/vertebrae) 98.3%/67.4% 99.0%/78.7%
Dice (overall/vertebrae) 99.2%/80.2% 99.5%/88.0%

COVID-19 CT (Target Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.6% 99.9%
Recall (overall/vertebrae) 99.6%/95.1% 99.9%/95.1%
IoU (overall/vertebrae) 99.2%/46.4% 99.8%/79.1%
Dice (overall/vertebrae) 99.6%/63.0% 99.9%/88.0%

4.2. Identification Results per Spinal Pixel

We trained the Identification module in three different setups: (i) A first model is
trained without UDA and only using source labels, corresponding to the same method as
proposed in [14]; (ii) a second model is optimized with the proposed DSL loss of Section 3.2;
(iii) a third model is given ten random training samples plus their labels from the target
data set, used in the same fashion as source samples.

To compare the models with and without UDA, the classification accuracy per pixel is
measured. The accuracy is determined by dividing the number of correctly classified pixels
by the total number of pixels. Thereby, only the pixels belonging to the spine are taken
into account and the background is ignored. As shown in Table 2, the model without UDA
(i) achieves a classification rate of 13.3% on the target data set. The model with UDA (ii)
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Figure 4. Four randomly selected samples from the target data set (COVID-19 CT) with overlayed
predictions for the spine detection with (bottom row) and without (top row) post-processing. To
provide a better grasp of the post-processing’s effect, we visualize all predictions within the 3D mask
along the sagittal plane (left) and along the coronal plane (right).

Table 1. Performance evaluation of the Detection module with the highest score for each metric and
data set in bold. For each metric, the overall performance for the whole 3D scan and for the vertebrae
with ignored background is reported. The positive effect of our proposed the post-processing is
visible on the source and the target data sets.

BioMedIA (Source Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.2% 99.5%
Recall (overall/vertebrae) 99.2%/94.3% 99.5%/94.1%
IoU (overall/vertebrae) 98.3%/67.4% 99.0%/78.7%
Dice (overall/vertebrae) 99.2%/80.2% 99.5%/88.0%

COVID-19 CT (Target Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.6% 99.9%
Recall (overall/vertebrae) 99.6%/95.1% 99.9%/95.1%
IoU (overall/vertebrae) 99.2%/46.4% 99.8%/79.1%
Dice (overall/vertebrae) 99.6%/63.0% 99.9%/88.0%

4.2. Identification Results per Spinal Pixel

We trained the Identification module in three different setups: (i) A first model is
trained without UDA and only using source labels, corresponding to the same method as
proposed in [14]; (ii) a second model is optimized with the proposed DSL loss of Section 3.2;
(iii) a third model is given ten random training samples plus their labels from the target
data set, used in the same fashion as source samples.

To compare the models with and without UDA, the classification accuracy per pixel is
measured. The accuracy is determined by dividing the number of correctly classified pixels
by the total number of pixels. Thereby, only the pixels belonging to the spine are taken
into account and the background is ignored. As shown in Table 2, the model without UDA
(i) achieves a classification rate of 13.3% on the target data set. The model with UDA (ii)
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achieves an accuracy of 61.4%. This corresponds to a relative improvement of 462.7% and
demonstrates the effectiveness of the proposed approach. If additionally ten samples from
the target data set are labeled (iii), the identification rate further improves to 74.2%. We
display some predictions in Figure 5. This visualization demonstrates that the vertebrae
are well recognized.

Figure 5. Random samples of prediction from the Identification module on the target data set
(COVID-19 CT), showing satisfactory results even when the spine is not well aligned on the coronal
and sagittal axis.

Table 2. Classification rate on the COVID19-CT data set for the three trained models with the best
classification rate in bold. The effectiveness of un- and semi-supervised domain adaptation is striking.

Classification Rate on COVID-19 CT (Target Data Set)
Our Method without UDA Our Method Our Method (with 10 Labels)

13.3% 61.4% 74.2%

4.3. Identification Results per Vertebra

The results described so far refer to the classification accuracy per pixel. However,
the goal is to identify the vertebra centroids and therefore the obtained dense predictions
must be converted back into sparse centroid predictions. This is conducted by calculating
the median of the dense predictions as described by [14], thereby ignoring outliers in the
pixel-level prediction by virtue of the median. The results of the centroid predictions
are shown in Table 3. We define the identification rate “ID” as the number of correctly
identified vertebrae divided by the total number of vertebrae. We count an identification
as correct if the predicted centroid is no more than 20 mm away from the ground truth.
We use 20 mm as this is an often used reference distance [14,18,21] and therefore makes
our method comparable to other approaches. Only the results on thoracic vertebrae are
compared since vertebrae from other regions are underrepresented in the COVID-19 CT
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data set (CT scans can be classified into regions depending on the body part they are taken
from. Well-known areas are the cervical region (neck level), the thoracic region (chest level)
and the lumbar region (pelvis level). For state-of-the-art AI models the thoracic region is
the most challenging one because only a middle section of the spine is visible in these scans
and therefore vertebrae cannot be counted from the first cervical vertebra (C1), respectively
the last sacrum vertebra (S2)).

Table 3. Detection result per vertebra with the best score for each metric and data set in bold. The
upper part of the table displays the results on thoracic scans of the source data set, the lower part
the results on the target data set. The column “ID” gives the identification rate, column “Mean”
reports the average distance to the ground truth centroid in mm and column “Std” gives the standard
deviation in mm.

Thoracic Vertebrae BioMedIA (Source Data Set)
Method ID Mean Std

Chen et al. [31] 76.4% 11.4 mm 16.5 mm
Liao et al. [21] 84.0% 7.8 mm 10.2 mm
McCouat and Glocker [14] 79.8% 6.6 mm 7.4 mm
Our method 67.0% 8.4 mm 8.7 mm
Our method (with 10 labels) 80.1% 6.2 mm 7.2 mm

Thoracic Vertebrae COVID-19 CT (Target Data Set)
Method ID Mean Std

Our method without UDA 45.6% 17.4 mm 24.2 mm
Our method 72.8% 11.1 mm 20.8 mm
Our method (with 10 labels) 89.2% 8.1 mm 20.3 mm

As before, “our method” corresponds to the model proposed in [14] with additional
UDA extensions. The results obtained with this model on the BioMedIA source data set are
less accurate than those of the original model without UDA. A reason is that our model
was optimized for the target data set only. Furthermore, by using domain adaptation a
performance loss on the source data set was consciously accepted in exchange for better
results on the target data set. If ten labels from the target data set are added during training
the model is superior to the original one on the source data set. Reasons for this are that (i)
the post-processing of the Detection module leads to better identification of the spine and
(ii) that the COVID-19 CT data set contains a lot of samples from thoracic vertebrae and
thus the model is more optimized for this region.

When analyzing the results on the COVID19-CT data set the effectiveness of the
proposed domain adaptation is evident. When the model is trained without UDA, only
45.6% of the vertebrae are correctly classified on the target data set. With the proposed
domain adaptation methods, the classification rate increases to 72.8%. A comparison with
state-of-the-art results on the BioMedIA data set shows (though being unfair because of the
different data sets used to achieve the respective numbers) that this is only 11.2 pp. less
accurate than the results of Liao et al. [21] and only 7 pp. less accurate than the results
of McCouat and Glocker [14], which both trained their model with labels. If ten labeled
target samples are added to the training set, an identification rate of 89.2% is achieved.
This is 5.2 pp. better than the best results reported so far for the BioMedIA data set. Of
course, the comparability of these remarks is limited because the data sets are different, but
it underlines that the performance of our method with semi-supervised domain adaptation
is remarkable.

5. Conclusions

In this paper, we presented a method to find vertebrae centroids on unlabeled CT
data sets, proposing a novel un- and semi-supervised domain adaptation method based
on the Domain Sanity Loss function that achieves state-of-the-art results with orders
of magnitudes less labels than previous methods. The detection and identification of
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vertebrae is important, for example, to extract 2D slices at predefined levels from 3D CT
scans. Compared to existing state-of-the-art systems our method has the advantage of
requiring much fewer labels while obtaining comparable results. For example, in clinical
practice, the BioMedIA [28] data set could be used as source data set and be combined with
a custom target data set. Our proposed UDA approach would only require the creation
of approximately ten labels of the custom data set, whereas a supervised approach might
require several hundred labels. Since less labor-intensive labeling is necessary the transfer
of the method to other medical applications and facilities is easier and more cost-efficient.

The main drawback of our method is that it requires more computational resources.
While supervised methods use one data set, our UDA method requires a source and a target
data set. Using an NVIDIA V100 GPU, training takes about 2 days. However, comparable
results with an ID rate of over 86% can be achieved after 16.5 h (with 35 instead of 100
epochs). Thus, the training takes slightly more than twice as long as the original method
from McCouat and Glocker [14]. Inference, on the other hand, is identical except for the
additional post-processing and therefore takes about the same amount of time.

5.1. Discussion

Specifically, pixel-level classification is often employed in the medical field [4–6].
Training such models in a supervised manner requires labels. Depending on the specific
task, labeling a single 3D scan on the pixel level can take an expert up to two weeks [32].
Considering that many applications require several hundred samples, one can conclude
that labeling a complete data set is almost prohibitively labor-intensive [33,34], setting harsh
limits to AI democratization. Alternatively, representative 2D slices can be used for various
applications (c.f. Section 1). These 2D slices are less time-consuming to label, since they
are only a cut-out of the 3D data. Thus, not only does our method for extracting 2D slices
require very few labels, but it can reduce the labeling effort of downstream ML pipelines
because representative 2D slices instead of 3D data can be processed in subsequent systems.

On the COVID-19 CT data set, 89.2% of all vertebra centroid predictions are identified
correctly which is in line with (in fact, beyond) the state-of-the-art on other data sets.
The mean deviation of the predicted centroid to the ground truth centroid is 8.1 mm.
However, this distance is measured in the 3D space. Considering the task of extracting
2D slices the deviation is even smaller because only the error in one direction of the 3D
space is relevant. In rare cases vertebrae can be mistaken and the deviation is much bigger,
leading to a standard deviation of 20.3 mm. Depending on the application, such wrong
predictions can simply be filtered out by analyzing the content of the 2D slice as conducted
by [11]. However, since this is application-dependent such post-processing is out of scope
of our work.

5.2. Limitations and Future Work

The proposed UDA method with DSL loss works very well on our target data set. A
limitation, however, is that the fourth loss component s4 relies on reference distances be-
tween subsequent vertebrae from the literature. Therefore, it is assumed that our approach
works worse for patients which do not comply with these reference values (e.g., children).
A second limitation is uncommon spinal constellations. In very rare cases, for example,
patients may have an additional lumbar vertebra L6, a lumbalizated S1, or a sacralizated
L5 as normal deviations to the standard spine. Since these constellations are not included
in our label set, they therefore cannot be detected.

In principle, our proposed UDA method and a DSL loss based on domain-specific
sanity checks is applicable to other domains and problems as well, even outside of medical
image processing. For example, we started experimenting with DSL losses for symbol
recognition in document analysis tasks [35]: We calculated statistics of symbols such as
their size and orientation, and built DSL losses to ensure that the predictions per page
comply with these statistics. From the preliminary experiments, we learned that DSL losses
will not work well if the data contains a lot of variation which cannot be specified in the loss
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function. Furthermore, we found that in this use-case a pre-training is necessary, otherwise
the predictions deviate too much from the statistics which hinders the learning process.

With respect to this work, we see further research potential (i) on optimizing per-
formance for patients with a smaller spine and (ii) on reliably detecting and correcting
incorrect predictions. The issues for patients with a small spine could be remedied either
by using other reference values or by adapting the loss component s4 to work with ratios
instead of absolute distances. Incorrect predictions, on the other hand, could be detected
with statistical methods regarding the centroids or by analyzing the corresponding 2D slice
on the transversal plane.

On a more general perspective, the DSL loss is considered complementary to process
unlabeled data and could serve as a general domain adaptation method. For example,
specifying a framework that derives statistics about sizes and relations of objects from
the data set and uses them as sanity checks in the loss function could be helpful for
various applications.
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function. Furthermore, we found that in this use-case a pre-training is necessary, otherwise
the predictions deviate too much from the statistics which hinders the learning process.

With respect to this work, we see further research potential (i) on optimizing per-
formance for patients with a smaller spine and (ii) on reliably detecting and correcting
incorrect predictions. The issues for patients with a small spine could be remedied either
by using other reference values or by adapting the loss component s4 to work with ratios
instead of absolute distances. Incorrect predictions, on the other hand, could be detected
with statistical methods regarding the centroids or by analyzing the corresponding 2D slice
on the transversal plane.

On a more general perspective, the DSL loss is considered complementary to process
unlabeled data and could serve as a general domain adaptation method. For example,
specifying a framework that derives statistics about sizes and relations of objects from
the data set and uses them as sanity checks in the loss function could be helpful for
various applications.
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function. Furthermore, we found that in this use-case a pre-training is necessary, otherwise
the predictions deviate too much from the statistics which hinders the learning process.

With respect to this work, we see further research potential (i) on optimizing per-
formance for patients with a smaller spine and (ii) on reliably detecting and correcting
incorrect predictions. The issues for patients with a small spine could be remedied either
by using other reference values or by adapting the loss component s4 to work with ratios
instead of absolute distances. Incorrect predictions, on the other hand, could be detected
with statistical methods regarding the centroids or by analyzing the corresponding 2D slice
on the transversal plane.

On a more general perspective, the DSL loss is considered complementary to process
unlabeled data and could serve as a general domain adaptation method. For example,
specifying a framework that derives statistics about sizes and relations of objects from
the data set and uses them as sanity checks in the loss function could be helpful for
various applications.
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ABSTRACT One unsolved sub-task of document analysis is mathematical formula detection (MFD).
Research by ourselves and others has shown that existing MFD datasets with inline and display formula
labels are small and have insufficient labeling quality. There is therefore an urgent need for datasets with
better quality labeling for future research in the MFD field, as they have a high impact on the performance of
the models trained on them. We present an advanced labeling pipeline and a new dataset called FormulaNet
in this paper. At over 45k pages, we believe that FormulaNet is the largest MFD dataset with inline formula
labels. Our experiments demonstrate substantially improved labeling quality for inline and display formulae
detection over existing datasets. Additionally, we provide a math formula detection baseline for FormulaNet
with an mAP of 0.754. Our dataset is intended to help address the MFD task and may enable the development
of new applications, such as making mathematical formulae accessible in PDFs for visually impaired screen
reader users.

INDEX TERMS automatic annotation, dataset, document analysis, deep learning, mathematical formula
detection, page object detection

I. INTRODUCTION

THE 2008 United Nations Convention on the Rights of
Persons with Disabilities [1] and the 2019 European

Accessibility Act [2] require that everyday products and
services be usable for people with disabilities. Nevertheless,
many technologies remain inaccessible; PDFs are one such
technology that frequently present a barrier for readers with
visual impairments. This is especially true for scientific
PDFs. For example, mathematical formulae in PDFs are
usually not tagged with alternative text, making it impossible
for screen reader software to read them out in a compre-
hensible way. Research has shown that most authors of
scientific documents are unfamiliar with the concept of PDF
accessibility, or lack the tools to support it [3].
Document analysis offers high potential for new applications,
including applications for people with disabilities. One such
application is the automated addition of accessibility tags to a
PDF. Such accessibility tags allow a visually impaired person
to read a PDF with a screen reader. Currently, tags must be
added manually, which requires a great deal of time, expert

knowledge, and awareness [3].
With effective document analysis, the tagging process could
be automated or semi-automated, thus reducing the required
time and expert knowledge necessary. This could help to
increase the overall availability of tagged PDFs and as a
result, give visually impaired people more complete access
to information. However, the challenges of automated docu-
ment analysis have not yet been solved. Searching for simple
text in documents is currently possible [4]; however, the
detection of more complex structures within a text, such as
tables, graphs, or formulae remains problematic.
New data-driven approaches have enabled significant ad-
vancements in the document analysis field [5]. Most data-
driven document analysis solutions work with images of doc-
ument pages. This has the advantage that the approach can be
applied regardless of the document format and version.
The first step planned for our document analysis pipeline
is page object detection (POD). It aims to locate logical
objects in document pages with a high semantic level,
e.g., paragraphs, footnotes, tables, figures, or mathematical
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formulae. In the next step, these objects will be processed by
formula recognition, figure classification, text analysis, and
other means.
The POD task is often divided into subtasks of locating a
single logical object at a time. Despite the progress of POD
in recent years [4], [6], [7], some objects are still challenging
to identify and need to be addressed further. One of these
open problems is mathematical formula detection (MFD) [8].
MFD is especially important for scientific documents from
STEM fileds (science, technology, engineering, and mathe-
matics), because mathematical formulae are often important
objects for the understanding of STEM articles. Automated
processing of formulae could help to simplify and improve
many tasks, such as searching for mathematical formulae in
documents, extracting mathematical formulae, and making
mathematical formulae accessible.
In recent years, many MFD models have been proposed [4],
[6], [7], but one problem that the authors of this paper have
identified is that the MFD datasets they have been evaluated
on have been of limited size and quality.
A selection of the most popular POD datasets is presented in
Table 1. Existing POD datasets [9]–[15] are of limited value
for the MFD issues we are attempted to address because of
three reasons. First, most POD dataset were not intended for
the MFD task and hence, consider no mathematical formulae
or only display formulae but not inline formulae. Second,
existing datasets with inline formulae tend to be small for
deep learning approaches with less than 10k pages. Third,
the mathematical formulae labels have insufficient quality or
are incorrect. In this, paper, we propose a new large-scale
and high-quality dataset for the MFD task of scientific PDF
documents. It is created from the LATEXsource [16] of papers
from arXiv.org [17].
The main contributions of this paper are as follows: (a) a
novel large-scale, high-quality dataset for MFD with practi-
cal relevance for document accessibility and, in conjunction
with the provided baselines, scientific use as a benchmark
suite; (b) an advanced fully automated labeling pipeline for
constructing similar high-quality datasets of POD of nearly
any size.
Due to copyright issues, we can only provide the
links to the papers used and the postprocessing scripts
to reconstruct FormulaNet, but not the images of
FormulaNet. The scripts are publicly available at
https://github.com/felix-schmitt/FormulaNet. Due to the
compiling of the LATEXfiles, the resulting pixel values may
differ. We observed that on average 0.1% of the binary pixel
values and 10.4% of the color pixel values variate.
The remainder of this paper is organized as follows: Chapter
II presents related work and existing datasets. Chapter III
presents our definition of inline and display formulae and
introduces our dataset and labeling pipeline. Chapter IV
presents the baseline model and experiments to demonstrate
the improvement in labeling quality. Chapter V provides
concluding remarks.

TABLE 1. Overview of a selection of the most popular POD datasets.

Dataset Pages Inline La-
bels

Inline-
Accuracy

Display-
Accuracy

Marmot [9] 400 Yes 76.90% 88.72%
ICDAR 2017 POD
(corrected) [10]

2,417 No - -

IBEM [11] 8,272 Yes 96.72% 83.38%
FormulaNet 46,672 Yes 98.08% 97.86%
GROTOAP2 [12] 119,334 No - -
PubLayNet [13] 364,232 No - -
TableBank [14] 417,234 No - -
DocBank [15] 500,000 No - -

II. RELATED WORK AND EXISTING DATASETS
POD has been an active research area for several years
[4], [6], [7]. The MFD subtask has been researched since
at least 1968 [18] and efforts in this area have increased
in recent years. Traditional MFD solutions are rule-based.
However, object recognition using deep learning models has
achieved good results and is replacing traditional rule-based
approaches. Modern MFD models use convolutional neural
networks (CNN) and build upon state-of-the-art object detec-
tions models, e.g., Faster-RCNN [19], Mask-RCNN [20], and
FCOS [21]. The major challenge with MFD is the variation
in complexity between small single mathematical elements
and large mathematical formulae. Research [23] has shown
that deformable CNNs [22], with their adaptive geometric
transformation, have the ability to handle large variations
in size. Furthermore, Generalized Focal Loss [24] reduces
the imbalance issue of positive/negative sampling of large
and small objects. As baseline model, we use the 1st place
solution of the in ICDAR 2021 Competition on Mathematical
Formula Detection [23] with small modifications. It is built
upon FCOS and uses both modifications.
The competition [4] showed that MFD models can achieve
excellent results in terms of F1 scores, but inline formulae
are still challenging for these models and additional work
is needed to address. One reason is that large existing POD
datasets do not include labels for inline formulae (ref. Table
1) and the ones containing inline formulae are limited in
size and labeling quality. We explain this lack of dataset
with inline formulae by the fact that inline formulae are
uncommon and often not crucial for the understanding of
non-STEM documents. Furthermore, the separation between
inline formulae and text is not clearly defined, as presented
in Chapter III-A. However, STEM documents contain many
inline formulae, and their correct processing is important for
many applications, such as accessible PDFs.
We are aware of only two publicly available MFD datasets
with inline formulae based on not rearranged articles such
as omitting content and changing layout. One is the Marmot
dataset [9] with 400 pages. Due to its small size, it is not
ideal for deep learning approaches. The largest dataset with
inline formulae is the IBEM dataset [11] with 8,272 pages,
which is 20 times larger than Marmot, but it is still small
for deep learning approaches. In comparison, DeepScores
[25], an object detection dataset for music scores, which is
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a comparable object detection task, contains 300,000 pages.
The IBEM dataset was created for the ICDAR 2021 Compe-
tition on Mathematical Formula Detection [4] to run the latest
performance competition of MFD models. It was created in a
fashion similar to FormulaNet, by detecting specific formula
patterns in the LATEXcode. The patterns detected were then
used to create the ground truth labels.
The large-scale POD datasets are not designed for the MFD
task and hence, contain no inline formulae labels. With
FormulaNet, we narrow the gap between MFD datasets and
large-scale POD datasets.

III. FORMULANET
This section describes the construction details and charac-
teristics of the FormulaNet dataset. FormulaNet uses papers
about High Energy Physics on arXiv.org from the years 2000,
2002, and 2003. We used the High Energy Physics papers for
the FormulaNet dataset not only because such PDFs com-
prise many formulae, but also to make it more comparable
to the IBEM dataset, which also uses High Energy Physics
papers from arXiv.org.

A. LABEL DEFINITIONS
There are no widely accepted standard definition for in-
line forumlae or display formulae. For the purposes of this
reasearch, we provide working definitions of these terms
based on the rules detected from the Marmot, ICDAR, and
IBEM datasets:

1) Inline Formulae:
We define inline formulae as all math-typed elements embed-
ded in a text, except plain numbers.

An inline formula can consist of a single math element such
as γ or a more complex formula consisting of multiple such
elements. A single number is not considered as an inline
formula for two reasons: First, in the existing datasets most
numbers are not labeled as formulae. Second, numbers can
already be processed through standard text optical character
recognition (OCR). However, if a number comprises math
structure elements like super-scripts or fractions, we consider
it an inline formula because it is a mathematical construct,
and text OCR will likely have problems interpreting it
correctly. Mathematical elements within tables are not con-
sidered inline formulae because detecting a table structure is
a challenging task, and detecting formulae within the table is
a subtask of this task. For the same reason, mathematical el-
ements in figures are not labeled as inline formulae, because
formulae within figures need to be considered separately,
similar to formulae within tables.

2) Display Formulae:
We define display formulae to be all-mathematical elements
isolated from the running text. Multiline display formulae are
separated depending on the formula references.

FIGURE 1. Examples of how multicolumn display labels are separated. Green
shows the display formulae and blue the inline formulae.

Formula references are not counted as part of a formula,
because they are document structure elements and not part of
the formula itself. This has the advantage that the bounding
box size does not depend on the existence of a formula ref-
erence. Furthermore, we decided to only split up a multiline
display formula into separate formulae if there is a formula
reference on each line, as shown in Fig. 1. Splitting up a
display formula line-by-line would have the effect of dividing
a single formula into multiple parts, thus making it more
complicated to process.

B. LABELING PROCESS
The labeling pipeline starts from the LATEXsource files. It
involves two labeling steps and one correction step as shown
in Fig. 2. The first step is to modify the LATEXcode to color
each LATEXobject. Depending on the object type, we use
one or multiple colors to simplify the later separation. Two
methods were combined to colorize the LATEXcode. The first
method uses regular expression search [26] to find predefined
sequences in the LATEXcode which are typical for a logical
object class. Then, the sequences identified are colored with
the xcolor package [27] and the following command:

\textcolor{l_color}{label}

The second method colors complete LATEXenvironments with
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FIGURE 2. Overview of the labeling pipeline.

the following LATEXcommand:

\AtBeginEnvironment{l_env}{l_color}

The modified LATEXfile is used to render a PDF of the paper
with the colored logical objects. In the second part, the col-
ored objects of the modified PDF are detected and combined
into one bounding box by heuristic rules. A combination of
two methods is used to enhance the labeling quality. One
method converts the PDF into the ALTO format [28] with
pdfalto [29]. The resulting XML files contain information
about the elements detected and it allows the identification of
all colored elements. Since pdfalto is an OCR engine mainly
for text it does not detect all symbols correctly. We therefore
apply the second method to find the missing symbols.
For the second step, a PNG image of each page is rendered
using a modified version of pdf2image [30] without anti-
aliasing. This modification allows us to create images with
clear contours which simplifies the contour search (OpenCV
implementation [31]). This enables the detection of all miss-
ing colored pixels such as bars, heads, and other special
math symbols. All BBOXs of the pdfalto and contour search
are then combined with heuristic rules. Using only contour
search would make it complicated or even impossible to get
the correct combination of contours to a BBOX.
The last step is the correction step. It detects labeling errors,
and depending on the errors detected, deletes entire pages or
even the whole document. The rules applied are based on our
observations during developing the pipeline, e.g.:

• These rules indicate an error in the coloring step:

– If the paper has 3 or fewer pages, the document is
discarded.

– If the paper has no inline or display formulae, the
document is discarded.

– If there exist black pixels in a 30-pixel border of the
document, the document is discarded.

• These rules indicate and error in the extracting BBOX
step:

– If there are more than 3 small display formulae, the
page is discarded.

– If there are not enough black pixels in an image, the
page is discarded.

– If the sum of all label areas is less than 10% of the
page, the page is discarded.

After the correction step, a txt-file of each page is created
with the detected BBOXs and a corresponding JPG image
of the page with a resolution of 1447x2048 is saved. If the
ratio of the document does not match the image ratio, a white
border is added.

C. FORMULANET CHARACTERISTIC
FormulaNet consists of 46,672 pages with 175,685 display
labels and 825,838 inline labels. Besides formula labels,
FormulaNet contains 11 other labels (display reference, dis-
play both, header, table, figure, paragraph, caption, footnote,
footnote reference, list, bibliography). We have randomly
split the dataset into training (95% of the pages) and test (5%
of the pages) sets. The distribution of the labels can be found
in Table 2.

IV. COMPARISON WITH OTHER MFD DATASETS
To present the advantages of the proposed dataset, we used
the currently best available FCOS model, I.e. [21] with
selected modifications from Zhong [23]. We identified two
main benefits of this model: First, the FCOS model is an
object detection model without anchor boxes. The main
advantage of an anchor-free object detection model is that it
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TABLE 2. Distribution of the labels of the FormulaNet Dataset

Label Train (44,338 pages) Test (2,334 pages)
Total Per Page Total Per Page

Inline Formulae 784,978 17.71±13.2 40,860 17.51±13
Display Formu-
lae

166,759 3.76±2.9 8,936 3.83±2.8

Bibliography 1,086 0.02±0.2 56 0.02±0.2
Caption 3,671 0.08±0.3 203 0.09±0.3
Display
Reference

144,800 3.27±2.9 7,799 3.34±2.8

Display Formu-
lae + Reference

144,800 3.27±2.9 7,799 3.34±2.8

Footnote 8,109 0.18±0.4 438 0.19±0.4
Footnote Refer-
ence

11,576 0.26±0.7 632 0.06±0.3

Header 20,818 0.47±0.6 1,082 0.46±0.6
List 2,539 0.06±0.3 136 0.06±0.3
Paragraph 283,933 6.4±2.7 15,008 6.43±2.6
Table 1,145 0.03±0.2 49 0.02±0.2

avoids the complicated calculations related to anchor boxes
and has no anchor box hyper-parameters. Second, it uses the
Generalized Focal Loss [24]. This allows the model to handle
the large size differences between inline formulae and display
formulae. Furthermore, these modifications have shown to
be successful in competition [4]. The model is built upon
Zhong’s implementation [32], which uses the MMDetection
toolbox [33]. Since we trained the models with one NVIDIA
Tesla-V100, we used the ResNetSt-50 model and not the sug-
gested ResNetSt-101. We trained the model with the training
datapoints of the FormulaNet dataset and, for comparison,
with the Tr00, Tr01, Tr10, Va00, Va01, Ts00, and Ts01
datapoints of the IBEM dataset. As we used one GPU for
training, we increased the batch size from 3 to 5, decreased
the learning rate from 10−3 to 10−4, and trained it for 24
epochs. The model config files are publicly available on
https://github.com/felix-schmitt/FormulaNet and the results
can be reproduced by using the framework from Zhong [32].

A. EXPERIMENTS

We demonstrate the high quality of our labels and the
resulting advantage for the model training with three ex-
periments. The first experiment, which we call “Labeling
Quality”, investigates the quality of the labels. The second
experiment is named “Dataset Comparison”; it analyses the
prediction errors on existing datasets of the model trained
with FormulaNet. The third experiment, “Out-of-Sample”,
investigates the generalization capability of models trained
with FormulaNet. All results of the experiments should be
interpreted with some caution, as only a randomized sample
of the test PDFs was examined, and the evaluation was
carried out manually.
Contrary to our definition of display formulae, the Marmot
dataset includes the reference number to the display formula
bounding box as shown in Fig. 3. Through the different
display formula definition, we did not count this as an error in
the experiment “Labeling Quality” and we did not count it as
an error if the model predicted the display formula without

FIGURE 3. Example image from Marmot dataset. Red shows the GT of
Marmot and blue the predicted bounding box. Due to our definition of display
formulae, this was counted as correct.

the reference number in the experiment “Dataset Compari-
son”. Detailed experiment results are publicly available on
https://github.com/felix-schmitt/FormulaNet/.

1) Labeling Quality
To investigate the labeling quality of the different datasets,
we checked 100 randomly sampled pages of each dataset
by hand. We counted the correct labels (CL), wrong labels
(WL), wrong dimensions (WD), and missed labels (ML). CL
BBOXs cover all pixels from the desired formula and no pix-
els from non-formula elements, while WD BBOXs contain
pixels from non-formula elements or cover only parts of the
desired formula. WL BBOXs cover no pixels from the cor-
responding formula or overlap with another BBOX. MLs are
formulae that failed to be labeled as such. To make the results
comparable, we put them in relation to the correct number
of ground truth (CGT) labels, which is the sum of CL, WD,
and ML. The pages without any labeling error (PWE) are
the percentage of pages without any WL, WD, and ML of
inline or display labels. This corresponds to the approximate
amount of work required to clean up all errors manually. The
results are shown in Table 3. The results for inline labels
show that IBEM and FormulaNet have 8 times fewer labeling
errors than Marmot, and furthermore, FormulaNet has 30%
fewer labeling errors than IBEM. Marmot has the lowest ratio
of WL, but the highest ratio of ML. The analysis of the errors
revealed that the inline labels of Marmot are very accurate,
but are missing many inline formulae compared to the other
two datasets. Compared to IBEM, FormulaNet decreases the
ratios of all three error types (WL, WD, ML) by 30-80%.
One reason is FormularNet’s consistent definition of inline
formulae, in comparison with IBEM’s inconsistent labeling
of formulae in figures as inline formulae, as shown in Fig. 4.
The results for display formulae shows that the labeling
errors of FormulaNet are 10 times less frequent than those
of IBEM and Marmot. The lower labeling quality of IBEM
and Marmot is primarily caused by not properly splitting and
merging the display formulae as shown in Fig. 5.
Additionally, the PWE of FormulaNet shows that fewer than
15% of the pages have any labeling error, which is 4 and 6
times less than IEBM and Marmot, respectively. This also
clearly indicates the better labeling quality of FormulaNet
compared to IBEM and Marmot.

2) Dataset Comparison
The “Dataset Comparison” experiment investigates whether
a model benefits from the high labeling quality of the Formu-
laNet dataset, and whether a model trained with FormulaNet
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TABLE 3. Results of "Labeling Quality" with the three datasets IBEM, Marmot, and FormulaNet. The table shows the ratios of correct labeled labels (CL) over the
correct number of GT labels (CGT), wrong labels (WL) over CGT, wrong dimension of the BBOX (WD) over CGT, and missed labels (ML) over CGT for the two label
types Inline and Display. Further, it shows the percentage of pages without a labeling error (PWE).

Label Inline Formulae Display Formulae Pages

Dataset CL/CGT
(CL)

WL/CGT
(WL)

WD/CGT
(WD)

ML/CGT
(ML)

CL/CGT
(CL)

WL/CGT
(WL)

WD/CGT
(WD)

ML/CGT
(ML)

PWE
(PWE)

IBEM 96.72%
(1533)

2.08%
(33)

1.01%
(16)

2.24%
(36)

83.38%
(316)

2.9%
(11)

7.92%
(30)

8.64%
(33)

59%
(41)

Marmot 76.9%
(1808)

0.38%
(9)

2.81%
(66)

17.27%
(477)

88.72%
(354)

12.28%
(49)

9.27%
(37)

2.16%
(8)

11%
(89)

FormulaNet 98.08%
(1529)

0.45%
(7)

0.38%
(6)

1.54%
(24)

97.86%
(365)

0.27%
(1)

1.61%
(6)

0.54%
(2)

84%
(16)

TABLE 4. Results of "Dataset Comparison" experiment with the datasets IBEM Ts10, IBEM Ts11, Marmot, and FormulaNet (test). The table shows the recall,
precision for an IoU threshold of 0.5 and an NMS value of 0.4. The non-predicted GT BBOXs (NPs) and the wrongly predicted BBOXs (WPs) are manually checked
if an NP should be not a GT (NGT) and if a WP should be a GT (SGT).

Label Inline Formulae Display Formulae

Dataset Recall Precision SGT/WP
(WP)

SGT/CGT
(SGT)

NGT/NP
(NP)

NGT/GT
(NGT) Recall Precision SGT/WP

(WP)
SGT/CGT

(SGT)
NGT/NP

(NP)
NGT/GT
(NGT)

IBEM Ts10 94.73% 94.52% 36%
(50)

1.98%
(18)

39.58%
(48)

2.09%
(19) 94.64% 92.98% 58.33%

(12)
4.14%

(7)
66.67%

(9)
3.57%

(6)

IBEM Ts11 95.16% 97.8% 40%
(15)

0.87%
(6)

61.76%
(34)

2.99%
(21) 89.23% 82.08% 94.74%

(38)
16.98%

(36)
90.48%

(21)
9.74%
(19)

Marmot 82.93% 66.13% 84.63%
(423)

27.39%
(358)

27.65%
(170)

4.72%
(47) 75.47% 94.49% 28.57%

(7)
1.46%

(2)
61.54%

(39)
15.09%

(24)

FormulaNet (test) 94.91% 94.38% 35.29%
(51)

1.98%
(18)

23.91%
(46)

1.22%
(11) 98.96% 95.5% 0%

(9)
0%
(0)

0%
(2)

0%
(0)

FIGURE 4. Example page from IBEM Ts11. Red shows the GT inline labels,
that are not inline labels with our inline definition.

can detect errors in existing datasets.
For the experiment, the model was trained with the For-
mulaNet dataset. We used the trained model to test the
predictions on the IBEM Ts10 and IBEM Ts11 and Marmot
datasets, and randomly selected 50 pages from each dataset.
We used an Intersection of Union (IoU) threshold of 0.5 and
an Non-maximum Suppression (NMS) value of 0.4 for the
evaluation. Any non-predicted GT BBOXs (NPs) (with IoU
smaller than 0.5 or no overlap) were manually checked to
determine whether they are a correct GT or should not be
a GT (NGT). Moreover, any incorrectly predicted BBOXs
(WP) are manually checked for whether they should be a GT

FIGURE 5. Examples from IBEM Ts11 of split and merge errors. Red shows
the GT of IBEM and blue shows possible BBOX with our display definition.

(SGT). For comparison, we have added the FormulaNet test
set results. The results are shown in Table 4.
The high recall and precision values of the two IBEM test
datasets indicate a similar labeling strategy of IBEM and
FormulaNet. The model trained on the FormulaNet training
set reached a combined F1 score (inline formulae and display
formulae) of 94.49% for the 50 pages of IBEM Ts10, 93.97%
for IBEM Ts11, and 94.26% for IBEM Ts10 + IBEM Ts11.
Since the challenge [4] used an IoU threshold of 0.7, the
values are not fully comparable. With an IoU threshold of
0.7 and all pages of Ts10 and Ts11, the model reaches an F1
score of 84.58%, which is only 2% lower than the results in
the challenge [4] without using the training data.
The lower precision and recall values on IBEM Ts11 for
display formulae are a result of the small number of pages,
along with an excessive number of split and merge errors of
display formulae (shown in Fig. 5). Additionally, the high
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SGT and NGT ratios indicate that many of these errors are
errors in the ground truth of IBEM Ts11. These results verify
that the model trained with FormulaNet can detect labeling
errors in the IBEM dataset.
The recall and precision values for our model tested with the
Marmot test dataset are lower compared to the results on the
two IBEM datasets. The corresponding accuracy of 88.02%
for inline formulae and 76.51% for display formulae (86.81%
combined) is slightly lower than the best models trained on
Marmot [34]. However, the low NGT ratio and high SGT
ratio for inline formulae of the Marmot dataset show that the
Marmot inline labels are accurate, but not all inline formulae
are in the GT, as the “Labeling Quality” experiment showed
as well. The high NGT ratio of display formulas is primarily
due to split and merge errors.
The precision and recall values with the FormulaNet test set
show that the model accurately predicts inline and display
formulae. The four display formulae indicators (SGT/WP,
SGT/CGT, NGT/NP, and NGT/GT) are rather low with 0.
We explain these zero values due to the small page set of
50 pages and hence few display formulae. However, the zero
values indicate that the are only few labeling errors in the
dataset and the model has learned very accurately to predict
display formulae.

3) Out-of-Sample

For the “Out-of-Sample” experiment, we randomly selected
50 pages from over 1000 arXiv papers from all fields from
2021. We trained our model once with the IBEM dataset
and once with the FormulaNet dataset. The trained models
predicted the labels of the 50 pages. Since there are no anno-
tations for these pages, we manually checked each BBOX to
see if it was correct, incorrect, and if BBOXs were missing
from the page. The definitions of CL, WD, and WL are the
same as for the experiment “Labeling Quality”. The recall is
calculated as the ratio of CL over CGT and the precision as
the ratio of CL over the sum of CL, WL, and WD. The results
are shown in Table 5.
Even on papers from other fields, the model makes bet-
ter prediction if it is trained with the FormulaNet dataset
compared to when it is trained on the IBEM dataset. The
model trained with FormulaNet reaches an 11.72% higher
recall and a 24.02% better precision for inline labels, and a
12.16% higher recall and a 9.87% better precision for display
formulae.
As expected, the performance of both models is substan-
tially lower compared to the performance in the “Dataset
Comparison” experiment with the IBEM dataset. There are
two reasons for the lower performance. First, we used our
CL definition and not an IoU of 0.5 because of the manual
evaluation of the results. Second, the papers in this test
are not from the same research field as the papers during
training (IBEM uses papers from the same research field as
FormulaNet).

B. BASELINE RESULTS ON FORMULANET DATASET
For a baseline performance on FormulaNet, we present here
the results of two of the models trained with the For-
mulaNet dataset. The smaller model (FCOS-50) uses the
ResNetSt-50 as backbone, as used for the experiments, and
the larger model (FCOS-101) is based on the ResNetSt-
101 backbone. The evaluation was conducted on the For-
mulaNet test set with the COCO metric [35]. The models
are trained on the training set of the FormulaNet dataset
and evaluated on the test set of the FormulaNet dataset
after 24 epochs. Table 6 presents the results of 5 runs of
the two baseline models. The results show that the larger
backbone ResNetSt-101 does not significantly improve the
model performance and the dataset is challenging for MFD
models. The baseline model configs are publicly available
on https://github.com/felix-schmitt/FormulaNet and can be
reproduced using the framework of [32].

V. CONCLUSION
In this paper, we presented the FormulaNet dataset, a new
dataset to train and benchmark MFD. FormulaNet is the
largest dataset comprising labeled display and inline formu-
lae and achieves an unprecedented labeling quality for this
problem. FormulaNet was created by an automated labeling
pipeline which will make it possible to create large high-
quality datasets for future MFD research and benchmarking.
Due to our automated labeling process and our proposed
definition of inline and display formulae, the labels are very
consistent compared with existing datasets. In addition to the
FormulaNet dataset, we provide a strong baseline with one of
the current best MFD models.
Through the design of the labeling pipeline, the dataset is lim-
ited to LATEXpapers. Furthermore, FormulaNet is based only
on High Energy Physics papers from arXiv.org. However,
the “Out-of-Sample” experiment showed that the dataset still
generalizes well to out-of-sample datapoints.
Given the promising results of our experiments, we are
optimistic that FormulaNet can serve as a new Benchmark
dataset for MFD to help to advance research in this area,
which may finally result in new applications with high impact
regarding accessible scientific PDFs.
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Making Sense of the Natural Environment

Christoph von der Malsburg (FIAS, Frankfurt and INI, ETH Zürich), Benjamin Grewe (INI,
ETH Zürich), Thilo Stadelmann (CAI, ZHAW Winterthur)

The neural basis of cognition is unclear to this day. We here present a conceptual framework
resolving the conflict Fodor & Pylyshyn (1988); Dever (2006) between symbolic and neural
approaches. In our scheme, the cortical carriers of meaning are not individual neurons but
sets of neurons supporting each other by mutual excitation. These sets and their supporting
connectivity are called ’net fragments’ or simply ’fragments.’ Also fragments activate only as
part of larger nets composed of overlapping fragments. Fragments play the role of composite
symbols. As each neuron can be part of several fragments, and each fragment can overlap
with several alternative other fragments, fragments can be likened to jigsaw puzzle pieces
that fit together in innumerable different arrangements. Any such arrangement must, however,
conform to a highly non-trivial consistency condition.

Net fragments and the composite nets they form are supported by specific patterns of synaptic
connections. These are formed in development and learning by network self-organization, a
process studied experimentally Goodhill (2007) and theoretically Willshaw & von der Malsburg
(1979); Häussler & von der Malsburg (1983) on the example of the ontogenetic establishment of
retinotopic fiber projections. This process selects net structures that are sparse (limited fan-in
and fan-out of connections at each neuron) and are self-consistent such that a sufficient number
of fibers converge on any one neuron from within the net. The composition rule for fragments
to co-activate in a net is that together they form a net that is self-consistent (and would be
stable under the process of network self-organization). Any particular large net (that is, set of
active neurons) is unlikely to occur more than once in a life-time, so that only relatively small
fragments have a chance to be active again and again to thus reach stability under network
self-organization. But as these fragments overlap in multiple ways, cortex develops into an
overlay of net fragments that supports an infinitude of consistent large-scale nets.

Among all possible thus-defined net structures a particular role is played by those that real-
ize schema application. Each schema is an abstract structural description under which large
numbers of instances can be united Bartlett (1932); Minsky (1974); Schank & Abelson (1977).
Invariant object recognition has been modeled as schema application Arathorn (2002); Ol-
shausen et al. (1995); Hinton (1981); Kree & Zippelius (1988); von der Malsburg (1988) real-
izable as a net that is representing schema, instance and the structure-preserving mapping
between them Wolfrum et al. (2008). Natural intelligence may be defined as the ability of pur-
suing vital goals and intentions in varying contexts. Behavioral control has been classically
described as schema application Shettleworth (2010). We propose the composition of nets out
of fragments as basis for this process von der Malsburg et al. (2022).

In distinction to present-day artificial neural networks the human brain can learn and generalize
from very few examples. It is a well-established insight Geman et al. (1992); Wolpert (1996)
that such efficiency must be based on a deep structural relationship between learning system
and domain. Inherent in our neural representation framework is therefore the claim that also
the environment can be seen as a composite of a finite set of structural fragment types.

Keywords: neural representation, network self-organization, compositionality, net fragments,
behavioral schema, intentions.
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ABSTRACT

Classification performance based on ImageNet is the de-facto standard metric for CNN
development. In this work we challenge the notion that CNN architecture design solely based
on ImageNet leads to generally effective convolutional neural network (CNN) architectures that
perform well on a diverse set of datasets and application domains. To this end, we investigate and
ultimately improve ImageNet as a basis for deriving such architectures. We conduct an extensive
empirical study for which we train 500 CNN architectures, sampled from the broad AnyNetX
design space, on ImageNet as well as 8 additional well known image classification benchmark
datasets from a diverse array of application domains. We observe that the performances of
the architectures are highly dataset dependent. Some datasets even exhibit a negative error
correlation with ImageNet across all architectures. We show how to significantly increase these
correlations by utilizing ImageNet subsets restricted to fewer classes. These contributions can
have a profound impact on the way we design future CNN architectures and help alleviate the tilt
we see currently in our community with respect to over-reliance on one dataset.

Keywords: Deep Learning, CNN architecture design, ImageNet, empirical study

1 INTRODUCTION

Deep convolutional neural networks (CNNs) are the core building block for most modern visual recognition
systems and lead to major breakthroughs in many domains of computer perception in the past several
years. Therefore, the community has been searching the high dimensional space of possible network
architectures for models with desirable properties. Important milestones such as DanNet Ciresan et al.
(2012), AlexNet Krizhevsky et al. (2012), VGG Simonyan and Zisserman (2015), HighwayNet Srivastava
et al. (2015), and ResNet He et al. (2016) (a HighwayNet with open gates) can be seen as update steps in
this stochastic optimization problem and stand testament that the manual architecture search works. It is of
great importance that the right metrics are used during the search for new neural network architectures.
Only when we measure performance with a truly meaningful metric is it certain that a new high-scoring
architecture is also fundamentally better. So far, the metric of choice in the community has generally been
the performance on the most well-known benchmarking dataset—ImageNet Russakovsky et al. (2014).
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Figure 1. Is a CNN architecture that performs well on ImageNet automatically a good choice for a different
vision dataset? This plot suggests otherwise: It displays the relative test errors of 500 randomly sampled
CNN architectures on three datasets (ImageNet, Powerline, and Insects) plotted against the test error of the
same architectures on ImageNet. The architectures have been trained from scratch on all three datasets.
Architectures with low errors on ImageNet also perform well on Insects, on Powerline the opposite is the
case.

More specifically, it would be desirable to construct such a metric from a solid theoretical understanding
of deep CNNs. Due to the absence of a solid theoretical basis novel neural network designs are tested in
an empirical fashion. Traditionally, model performance has been judged using accuracy point estimates
Krizhevsky et al. (2012); Zeiler and Fergus (2014); Simonyan and Zisserman (2015). This simple measure
ignores important aspects such as model complexity and speed. Newer work addresses this issue by
reporting a curve of the accuracy at different complexity settings of the model, highlighting how well a
design deals with the accuracy versus complexity tradeoff Xie et al. (2017); Zoph et al. (2018).

Very recent work strives to improve the quality of the empiric evaluation even further. There have been
attempts to use extensive empirical studies to discover general rules on neural network design Hestness et al.
(2017); Rosenfeld et al. (2020); Kaplan et al. (2020); Tuggener et al. (2020), instead of simply showing the
merits of a single neural network architecture. Another line of research aims to improve empiricism by
sampling whole populations of models and comparing error distributions instead of individual scalar errors
Radosavovic et al. (2019).

We acknowledge the importance of the above-mentioned improvements in the empirical methods used
to test neural networks, but identify a weak spot that runs trough the above-mentioned work: the heavy
reliance on ImageNet Russakovsky et al. (2014) (and to some extent the very similar Cifar100 Krizhevsky
et al. (2009)). In 2011, Torralba and Efros already pointed out that visual recognition datasets that were
built to represent the visual world tend to become a small world in themselves Torralba and Efros (2011).
Objects are no longer in the dataset because they are important, they are important because they are in the
dataset. In this paper, we investigate how well ImageNet represents a diverse set of visual classification
datasets—and present methods to improve said representation, such that CNN architectures optimized on
ImageNet become more effective on visual classification beyond ImageNet. Specifically, our contributions
are: (a) an extensive empirical study examining the fitness of ImageNet as a basis for deriving generally
effective CNN architectures; (b) we show how class-wise subsampled versions of ImageNet in conjunction
with the original datasets yield a 2.5-fold improvement in average error correlations with other datasets (c)
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we identify cumulative block depth and width as the architecture parameters most sensitive to changing
datasets.

As a tool for this investigation we introduce the notion of architecture and performance relationship
(APR). The performance of a CNN architecture does not exist in a vacuum, it is only defined in relation to
the dataset on which it is used. This dependency is what we call APR induced by a dataset. We study the
change in APRs between datasets by sampling 500 neural network architectures and training all of them on
a set of datasets1. We then compare errors of the same architectures across datasets, revealing the changes
in APR (see Figure 1). This approach allows us to study the APRs induced by different datasets on a whole
population of diverse network designs rather than just a family of similar architectures such as the ResNets
He et al. (2016) or MobileNets Howard et al. (2017).

All of our code, sampled architectures, complete training run data, and additional figures are available at
https://github.com/tuggeluk/pycls/tree/ImageNet_as_basis.

2 RELATED WORK

Neural network design. With the introduction of the first deep CNNs Ciresan et al. (2012); Krizhevsky et al.
(2012) the design of neural networks immediately became an active research area. In the following years
many improved architectures where introduced, such as VGG Simonyan and Zisserman (2015), Inception
Szegedy et al. (2015), HighwayNet Srivastava et al. (2015), ResNet He et al. (2016) (a HighwayNet with
open gates), ResNeXt Xie et al. (2017), or MobileNet Howard et al. (2017). These architectures are the
result of manual search aimed at finding new design principles that improve performance, for example
increased network depth and skip connections. More recently, reinforcement learning Zoph et al. (2018),
evolutionary algorithms Real et al. (2019) or gradient descent Liu et al. (2019) have been successfully used
to find suitable network architectures automatically. Our work relates to manual and automatic architecture
design because it adds perspective on how stable results based on one or a few datasets are.

Empirical studies. In the absence of a solid theoretical understanding, large-scale empirical studies are
the best tool at our disposal to gain insight into the nature of deep neural networks. These studies can aid
network design Greff et al. (2017); Collins et al. (2017); Novak et al. (2018) or be employed to show the
merits of different approaches, for example that the classic LSTM Hochreiter and Schmidhuber (1997)
architecture can outperform more modern models Melis et al. (2018), when it is properly regularised. More
recently, empirical studies have been used to infer more general rules on the behaviour of neural networks
such as a power-law describing the relationship between generalization error and dataset size Hestness
et al. (2017) or scaling laws for neural language models Kaplan et al. (2020).

Generalization in neural networks. Despite their vast size have deep neural networks shown in practice
that they can generalize extraordinarily well to unseen data stemming from the same distribution as the
training data. Why neural networks generalize so well is still an open and very active research area
Kawaguchi et al. (2017); Dinh et al. (2017); Zhang et al. (2017). This work is not concerned with the
generalization of a trained network to new data, but with the generalization of the architecture design
progress itself. Does an architecture designed for a certain dataset, e.g. natural photo classification using
ImageNet, work just as well for medical imaging? There has been work investigating the generalization to
a newly collected test set, but in this case the test set was designed to be of the same distribution as the
original training data Recht et al. (2019).

1 Since we only sample models in the complexity regime of 340 mega flops (MF) to 400MF (ResNet-152 has 11.5GF) we could complete the necessary 7500

model trainings within a moderate 85 GPU days on Tesla V100-SXM2-32GB GPUs.
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Neural network transferability It is known that the best architecture for ImageNet is not necessarily the
best base architecture for other applications such as semantic segmentation Long et al. (2015) or object
detection Chen et al. (2019). Researchers who computed a taxonomy of multiple visions tasks identified
that the simmilarities between tasks did not depend on the used architecture Zamir et al. (2019). Research
that investigates the relation between model performance on ImageNet and new classification datasets
in the context of transfer learning Razavian et al. (2014); Donahue et al. (2014) suggests that there is a
strong correlation which is also heavily dependent on the training regime used Kornblith et al. (2019). Our
work differs form the ones mentioned above in that we are not interested in the transfer of learned features
but transfer of the architecture designs and therefore we train our networks from scratch on each dataset.
Moreover do we not only test transferability on a few select architectures but on a whole network space.

Neural network design space analysis. Radosavovic et al. Radosavovic et al. (2019) introduced network
design spaces for visual recognition. They define a design space as a set of architectures defined in a
parametric form with a fixed base structure and architectural hyperparameters that can be varied, similar to
the search space definition in neural architecture search Zoph et al. (2018); Real et al. (2019); Liu et al.
(2019). The error distribution of a given design space can be computed by randomly sampling model
instances from it and computing their training error. We use a similar methodology but instead of comparing
different design spaces, we compare the results of the same design space on different datasets.

3 DATASETS

To enable cross dataset comparison of APRs we assembled a corpus of datasets. We chose datasets
according to the following principles: (a) include datasets from a wide spectrum of application areas, such
that generalization is tested on a diverse set of datasets; (b) only use datasets that are publicly available to
anyone to ensure easy reproducibility of our work. Figure 2a shows examples and Table 1 lists meta-data
of the chosen datasets. More detailed dataset specific information is given in the remainder of this chapter.

Concrete Özgenel and Sorguç (2018) contains 40 thousand image snippets produced from 458 high-
resolution images that have been captured from various concrete buildings on a single campus. It contains
two classes, positive (which contains cracks in the concrete) and negative (with images that show intact
concrete). With 20 thousand images in both classes the dataset is perfectly balanced.

MLC2008 Shihavuddin et al. (2013) contains 43 thousand image snippets taken form the MLC dataset
Beijbom et al. (2012), which is a subset of the images collected at the Moorea Coral Reef Long Term
Ecological Research site. It contains images from three reef habitats and has nine classes. The class
distribution is very skewed with crustose coralline algae (CCA) being the most common by far (see Figure
11a in Appendix 6.1).

ImageNet Russakovsky et al. (2014) (ILSVRC 2012) is a large scale dataset containing 1.3 million
photographs sourced from flickr and other search engines. It contains 1000 classes and is well balanced
with almost all classes having exactly 1300 training and 50 validation samples.

HAM10000 Tschandl et al. (2018) is comprised of 10 thousand dermatoscopic images, collected from
different populations and by varied modalities. It is a representative collection of all important categories
of pigmented lesions that are categorized into seven classes. It is imbalanced with an extreme dominance
of the melanocytic nevi (nv) class (see Figure 11a in Appendix 6.1).

Frontiers 4

200

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



Tuggener et al. Is it enough to optimize CNN architectures on ImageNet?

Powerline Yetgin et al. (2017) contains images taken in different seasons as well as weather conditions
from 21 different regions in Turkey. It has two classes, positive (that contain powerlines) and negative
(which do not). The dataset contains 8000 images and is balanced with 4000 samples per classes.

Insects Hansen et al. (2019) contains 63 thousand images of 291 insect species. The images have been
taken of the collection of British carabids from the Natural History Museum London. The dataset is not
completely balanced but the majority of classes have 100 to 400 examples.

Intel Image Classification Bansal (2018) dataset (“natural”) is a natural scene classification dataset
containing 25 thousand images and 6 classes. It is very well balanced with all classes having between 2.1
thousand and 2.5 thousand samples in the training set.

Cifar10 and Cifar100 Krizhevsky et al. (2009) both consist of 60 thousand images. The images are
sourced form the 80 million tiny images dataset Torralba et al. (2008) and are therefore of similar nature
(photographs of common objects) as the images found in ImageNet, bar the much smaller resolution.
Cifar10 has 10 classes with 6000 images per class, Cifar100 consists of 600 images in 100 classes, making
both datasets perfectly balanced.

4 EXPERIMENTS AND RESULTS

4.1 Experimental setup

We sample our architectures form the very general AnyNetX Radosavovic et al. (2020) parametric
network space. The networks in AnyNetX consist of a stem, a body, and a head. The body performs the
majority of the computation, stem and head are kept fixed across all sampled models. The body consists
of four stages, each stage i starts with a 1 × 1 convolution with stride si, the remainder is a sequence
of di identical blocks. The blocks are standard residual bottleneck blocks with group convolution Xie
et al. (2017), with a total block width wi, bottleneck ratio bi and a group width gi (into how many parallel
convolutions the total width is grouped into). Within a stage, all the block parameters are shared. See
Figure 2b for a comprehensive schematic. All models use batch normalisation.

The AnyNetX design space has a total of 16 degrees of freedom, having 4 stages with 4 parameters each.
We obtain our model instances by performing log-uniform sampling of di ≤ 16, wi ≤ 1024 and divisible
by 8, bi ∈ 1, 2, 4, and gi ∈ 1, 2, ..., 32. The stride si is fixed with a stride of 1 for the first stage and a stride
of 2 for the rest. We repeatedly draw samples until we have obtained a total of 500 architectures in our
target complexity regime of 360 mega flops (MF) to 400 MF. We chose a narrow band of complexities to
allow for fair comparisons of architectures with minimal performance variation due to model size. We
use a very basic training regime, input augmentation consists of only flipping, cropping and mean plus
variance normalisation, based on each datasets statistics. For training we use SGD with momentum and
weight decay.

The same 500 models are trained on each dataset until the loss is reasonably saturated. The exact number
of epochs has been determined in preliminary experiments and depends on the dataset (see Table 2). For
extensive ablation studies ensuring the empirical stability of our experiments with respect to Cifar10
performance, training duration, training variability, top-1 to top-5 error comparisons, overfitting and class
distribution see chapters 6.1.1 to 6.1.6 in Appendix 6.1. Supplementary results on the effect of pretraining
and the structure of the best performing architectures can be found in chapters 6.2.1 and 6.2.2 in Appendix
6.2.
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4.2 Experimental results

We analyze the architecture-performance relationship (APRs) in two ways. For every target dataset
(datsets which are not ImageNet) we plot the test error of every sampled architecture against the test error
of the same architecture (trained and tested) on ImageNet, visualizing the relationship of the target dataset’s
APR with the APR on ImageNet. Second, we compute Spearman’s ρ rank correlation coefficient Freedman
et al. (2007). It is a nonparametric measure for the strength of the relation between two variables (here the
error on the target datasets with the error of the same architecture on ImageNet). Spearman’s ρ is defined
on [−1, 1], where 0 indicates no relationship and −1 or 1 indicates that the relationship between the two
variables can be fully described using only a monotonic function.

Figure 3 contains the described scatterplots with the corresponding correlation coefficients in the title. The
datasets plotted in the top two rows show a strong (Insects) or medium (MLC2008, HAM10000, Cifar100)
error correlation with ImageNet. This confirms that many classification tasks have an APR similar to the
one induced by ImageNet, which makes ImageNet performance a decent architecture selection indicator for
these datasets. The accuracies on Concrete are almost saturated with errors between 0 and 0.5, it is plausible
that the variations in performance are due to random effects rather than any properties of the architectures
or the dataset, especially so since the errors are independent of their corresponding ImageNet counterparts.
Therefore we refrain from drawing any further conclusions from the experiments on Concrete. This has
implications for practical settings, where in such cases suitable architectures should be chosen according to
computational and model complexity considerations rather than ImageNet performance, and reinforces the
idea that practical problems may lie well outside of the ImageNet visual world Stadelmann et al. (2018).
The most important insight from Figure 3, however, is that some datasets have a slight (Cifar10) or even
strong (Powerline, Natural) negative error correlation with ImageNet. Architectures which perform well
on ImageNet tend perform sub-par on these datasets. A visual inspection shows that some of the very best
architectures on ImageNet perform extraordinarily poor on these three datasets. We can conclude that the
APRs can vary wildly between datasets and high performing architectures on ImageNet do not necessarily
work well on other datasets.

An analysis of the correlations between all datasets (see Figure 14 in Appendix 6.2) reveals that Powerline
and Natural not only have low correlation with ImageNet but also with most of the other datasets making
these two truly particular datasets. Interestingly is the correlation between Powerline and Naural relatively
high, which suggests that there is a common trait that makes these two datasets behave differently. MLC
2008, HAM10000 and Cifar100 have a correlation of 0.69 with each other which indicates that they induce
a very similar APR. This APR seems to be fairly universal since MLC 2008, HAM10000 and Cifar100
have a moderate to high correlation with all other datasets.

4.3 Impact of the Number of Classes

Having established that APR varies heavily between datasets, leaves us width the questions if it is possible
to identify properties of the datasets themselves that influences its APR and if it is possible to control these
factors to reduce the APR differences.

ImageNet has by far the largest number of classes among all the datasets. Insects, which is the dataset
with the second highest class count, also shows the strongest similarity in APR to ImageNet. This suggests
that the number of classes might be an important property of a dataset with respect to APR. We test this
hypothesis by running an additional set of experiments on subsampled versions of ImageNet. We create
new datasets by randomly choosing a varying number of classes from ImageNet and deleting the rest of
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the dataset (see Section 3. in the supplementary material for chosen classes). This allows us to isolate the
impact of the number of classes while keeping all other aspects of the data itself identical. We create four
subsampled ImageNet versions with 100, 10, 5, and 2 classes, which we call ImageNet-100, ImageNet-10,
ImageNet-5, and ImageNet-2, respectively. We refer to the resulting group of datasets (including the
original ImageNet) as the ImageNet-X family. The training regime for ImageNet-100 is kept identical to the
one of ImageNet, for the other three datasets we switch to top-1 error and train for 40 epochs, to account
for the smaller dataset size. (see section 4.3.1 in Appendix 6.1 for a control experiment that disentangles
the effects of reduced dataset size and reduced number of classes)

Figure 4 shows the errors on the subsampled versions plotted against the errors on original ImageNet.
APR on ImageNet-100 shows an extremely strong correlation with APR on ImageNet. This correlation
significantly weakens as the class count gets smaller. ImageNet-2 is on the opposite end has errors which
are practically independent from the ones on ImageNet. This confirms our hypothesis that the number of
classes is a dataset property with significant effect on the architecture to performance relationship.

We have observed that the number of classes has a profound effect on the APR associated with ImageNet-
X members. It is unlikely that simply varying the number of classes in this dataset is able to replicate
the diversity of APRs present in an array of different datasets. However, it is reasonable to assume that a
dataset’s APR is better represented by the ImageNet-X member closest in terms of class count, instead
of ImageNet. We thus recreate Figure 3 with the twist of not plotting the target dataset errors against
ImageNet, but against the ImageNet-X variant closest in class count (see Figure 5). We observe gain in
correlation across all datasets, in the cases of MLC2008 or Cifar10 a quite extreme one. The datasets which
have a strong negative correlation with ImageNet (Powerline, Natural) have slightly (Natural) or even
moderately (Powerline) positive correlation to their ImageNet-X counterparts. A visual inspection shows
that the best models on Imagenet-X also yield excellent results on Powerline and Natural, which was not
the case for ImageNet. Table 3 shows the error correlations of all target datasets with ImageNet as well
as with their ImageNet-X counterpart. The move from ImageNet to ImageNet-X more than doubles the
average correlation (from 0.19 to 0.507), indicating that the ImageNet-X family of datasets is capable to
represent a much wider variety of APRs than ImageNet alone.

4.3.1 Disentangling the Effects of Class Count and Dataset Size

We showed how sub-sampled versions of ImageNet matching the number of classes of the target dataset
tend to represent the APR of said target dataset far better. A side effect of downsampling ImageNet to
a specific number of classes is that the total number of images present in the dataset also shrinks. This
raises the question if the increase in error correlation is actually due to the reduced dataset size rather than
to the matching class count. We disentangle these effects by introducing another downsampled version
of ImageNet, Imagenet-1000-10. It retains all 1000 classes but only 10 examples per class resulting in a
datastet with the same number of classes as ImageNet but with the total number of images of ImageNet-
10. We train our population of architectures on ImageNet-1000-10 and show the error relationship of
Cifar10, Natural, and Powerline with ImageNet-1000-10 (as well as with ImageNet and ImageNet-10 as a
reminder) in Figure 6. The plots show that there are some correlation gains by using ImageNet-1000-10
over ImageNet, but the effect is far lower compared to ImageNet-10. This shows that downsampling size has
a minor positive effect but the majority of the gain in APR similarity achieved trough class downsampling
actually stems from the reduced the class number.
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4.4 Identifying Drivers of Difference between Datasets

The block width and depth parameters of the top 15 architectures for ImageNet (see Figure 13 in Appendix
6.2) follow a clear structure: they consistently start with low values for both block depth and width in the
first stage, then the values steadily increase across the stages for both parameters. The error relationships
observed in Figure 3 are consistent with how well these patterns are replicated by the other datasets. Insects
shows a very similar pattern, MLC2008 and HAM10000 have the same trends but more noise. Powerline
and Natural clearly break from this structure, having a flat or decreasing structure in the block width
and showing a quite clear preference for a small block depth in the final stage. Cifar10 and Cifar100 are
interesting cases, they have the same behaviour as ImageNet with respect to block width but a very different
one when it comes to block depth.

We thus investigate the effect of the cumulative block depth (summation of the depth parameter for all
four stages, yielding the total depth of the architecture) across the whole population of architectures by
plotting the cumulative block depth against the test error for the six above-mentioned datasets. Additionally,
we compute the corresponding correlation coefficients. Figure 7a shows that the best models for ImageNet
have a cumulative depth of at least 10. Otherwise there is no apparent dependency between the ImageNet
errors and cumulative block depth. The errors of Insects do not seem to be related to the cumulative block
depth at all. HAM10000 has a slight right-leaning spread leading to a moderate correlation, but the visual
inspection shows no strong pattern. The errors on Powerline, Natural, and Cifar100 on the other hand have
a strong dependency with the cumulative block depth. The error increases with network depth for all three
datasets. with the best models all having a cumulative depth smaller than 10.

We also plot the cumulative block widths against the errors and compute the corresponding correlation
coefficients for the same six datasets (see Figure 7b). We observe that the ImageNet errors are negatively
correlated with the cumulative block width, and visual inspection shows that a cumulative block width of at
least 250 is required to achieve a decent performance. The errors on Insects and HAM10000 replicate this
pattern to a lesser extent, analogous to the top 15 architectures. Powerline and Natural have no significant
error dependency with the cumulative block width, but Cifar100 has an extremely strong negative error
dependency with the cumulative block width, showing that it is possible for a dataset to replicate the
behaviour on ImageNet in one parameter but not the other. In the case of Cifar100 and ImageNet, low
similarity in block depth and high similarity in block width yield a medium overall similarity of ARPs on
Cifar100 and Imagenet. This is consistent with the overall relationship of the two datasets displayed in
Figure 3.

Combining this result with the outcome of the last section, we study the interaction between the number
of classes, the cumulated block depth and the cumulative block width. Table 4 contains the correlations
between cumulative block depth/width and the errors on all members of ImageNet-X. With decreasing
number of classes, the correlation coefficients increase for cumulative block depth and cumulative block
width. Although the effect on cumulative block depth is stronger, there is a significant impact on both
parameters. We therefore can conclude that both optimal cumulative block depth and cumulative block
with can drastically change based on the dataset choice and that both are simultaneously influenced by the
class count.

5 DISCUSSION AND CONCLUSIONS

ImageNet is not a perfect proxy. We have set out to explore how well other visual classification datasets
are represented by ImageNet. Unsurprisingly there are differences between the APRs induced by the
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datasets. More surprising and worrying, however, is that for some datasets ImageNet not only is an
imperfect proxy but a very bad one. The negative error correlations with Natural, Powerline and Cifar10
indicates that architecture search based on ImageNet performance is worse than random search for these
datasets.

Varying the number of classes is a cheap and effective remedy. It is striking how much more accurately
the ImageNet-X family is able to represent the diversity in APRs present in our dataset collection, compared
to just ImageNet by itself. It has become commonplace to test new architectures in multiple complexity
regimes He et al. (2016); Howard et al. (2017), we argue for augmenting this testing regime with an
additional dimension for class count. This simple and easy to implement extension would greatly extend
the informative value of future studies on neural network architectures.

Visual variability is less important than anticipated. In the introduction we critiqued the over-reliance
on ImageNet based on the limits of ”visual world” it represents, since it only contains natural images and
is mostly focused on animals and common objects. However, our results show that datasets with visually
very different content such as Insects and HAM10000 have a high APR correlation with ImageNet. For
Natural and Cifar10, which contain natural images, the opposite is the case. This shows that the visual
domain of a dataset is not the central deciding factor for choosing the correct CNN architecture.

Future directions. A future similar study should shed light on how well the breadth of other domains
such as object detection, segmentation or speech classification are represented by their essential datasets. If
the representation is also insufficient it could be verified if the symptoms are similar and the varying the
number of classes also helps covering more dataset variability in these domains.
A labeled dataset will always be a biased description of the visual world, due to having a fixed number of
classes and being built with some systematic image collection process. Self-supervised learning of visual
representations Jing and Tian (2019) could serve as remedy for this issue. Self-supervised architectures
could be fed with a stream completely unrelated images, collected from an arbitrary number of sources in
a randomized way. A comparison of visual features learned in this way could yield a more meaningful
measure of the quality of CNN architectures.

Limitations As with any experimental analysis of a highly complex process such as training a CNN
it is virtually impossible to consider every scenario. We list below three dimensions along which our
experiments are limited together with measures we took to minimize the impact of these limitations.

Data scope: We criticize ImageNet for only representing a fraction of the “visual world”. We are aware
that our dataset collection does not span the entire “visual world” either but went to great lengths to
maximise the scope of our dataset collection by purposefully choosing datasets from different domains,
which are visually distinct.

Architecture scope: We sample our architectures from the large AnyNetX network space. It contains the
CNN building blocks to span basic designs such as AlexNet or VGG as well as the whole ResNet, ResNeXt
and RegNet families. We acknowledge that there are popular CNN components not covered, however,
Radosavovic et al. Radosavovic et al. (2020) present ablation studies showing that network designs sourced
from high performing regions in the AnyNetX space also perform highly when swapping in different
originally missing components such as depthwise convolutions Chollet (2017), swish activation functions
Ramachandran et al. (2018) or the squeeze-and-excitation Hu et al. (2018) operations.

Training scope: When considering data augmentation and optimizer settings there are almost endless
possibilities to tune the training process. We opted for a very basic setup with no bells an whistles in
general. For certain such aspects of the training, which we assumed might skew the results of our study
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Table 1. Meta data of the used datasets.
DATASET NO. IMAGES NO. CLASSES IMG. SIZE

CONCRETE 40K 2 227× 227
MLC2008 43K 9 312× 312
IMAGENET 1.3M 1000 256× 256
HAM10000 10K 7 296× 296
POWERLINE 8K 2 128× 128
INSECTS 63K 291 296× 296
NATURAL 25K 6 150× 150
CIFAR10 60K 10 32× 32
CIFAR100 60K 100 32× 32

Table 2. Dataset-specific experimental settings.

DATASET NO. TRAINING EPOCHS EVAL. ERROR

CONCRETE 20 TOP-1
MLC2008 20 TOP-1
IMAGENET 10 TOP-5
HAM10000 30 TOP-1
POWERLINE 20 TOP-1
INSECTS 20 TOP-5
NATURAL 20 TOP-1
CIFAR10 30 TOP-1
CIFAR100 30 TOP-5

Table 3. Comparison of error correlations between target datasets and ImageNet as well as the closest
ImageNet-X member.

DATASET ρ -IMAGENET ρ -IMAGENET-X DIFFERENCE

CONCRETE 0.001 0.106 0.105
MLC2008 0.476 0.811 0.335
HAM10000 0.517 0.608 0.091
POWERLINE −0.436 0.294 0.73
INSECTS 0.967 0.95 −0.017
NATURAL −0.38 0.186 0.566
CIFAR10 −0.104 0.45 0.554
CIFAR100 0.476 0.595 0.119

AVERAGE 0.19 0.507 0.317

(such as training duration, dataset prepossessing etc.), we have conducted extensive ablation studies to
ensure that this is not the case (see sec. 6.1.2 and 6.1.6 in Appendix 6.1).
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Table 4. Correlation of observed error rates with the cumulative block depth and width parameters for all
ImageNet-X datasets.

DATASET C. BLOCK DEPTH C. BLOCK WIDTH

IMAGENET −0.205 −0.511
IMAGENET-100 −0.022 −0.558
IMAGENET-10 0.249 −0.457
IMAGENET-5 0.51 −0.338
IMAGENET-2 0.425 −0.179

by ZHAW Zurich University of Applied Sciences. We are grateful to Frank P. Schilling for his valuable
inputs.
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Figure 2. (A) Example images from each dataset. Images of Cifar10/100 are magnified fourfold, the rest
are shown in their original resolution (best viewed by zooming into the digital document). (B) The structure
of models in the AnyNetX design space, with a fixed stem and a head, consisting of one fully-connected
layer of size c, (where c is the number of classes). Each stage i of the body is parametrised by di, wi, bi, gi,
the strides of the stages are fixed with s1 = 1 and si = 2 for the remainder.
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Figure 3. Test errors of all 500 sampled architectures on target datasets (y-axis) plotted against the test
errors of the same architectures (trained and tested) on ImageNet (x-axis). The top 10 performances on the
target datasets are plotted in orange and the worst 10 performances in red.
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Figure 7. Errors of all 500 sampled architectures on ImageNet, Insects, HAM10000, Powerline, Natural,
and Cifar100 (x-axis) plotted against the cumulative block (A) depths and (B) depths (y-axis).
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6 APPENDICES

6.1 Verifying the numerical robustness of our study

This Chapter we present additional studies designed to test for possible flaws or vulnerabilities in our
experiments. We conduct these to further strengthen the empirical robustness of our results.

6.1.1 Stability of Empirical Results on Cifar10

The top-1 errors of our sampled architectures on Cifar10 lie roughly between 18 and 40, which is fairly
poor, not only compared to the state of the art but also compared to performance that can be achieved with
fairly simple models. This calls into question if our Cifar10 results are flawed in a way that might have lead
us to wrong conclusions. We address this by running additional tests on Cifar10 and evaluate their impact
on our main results. We get a goalpost for what performance would be considered good with our style of
neural network and training setup by running the baseline code for Cifar10 published by Radosavovic et al.
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Radosavovic et al. (2020). Table 5 shows that these baseline configurations achieve much lower error rates.
We aim to improve the error results on Cifar10 in two ways: First we train our architecture population
with standard settings for 200 epochs instead of 30, second we replaced the standard network stem with
one that is specifically built for Cifar10, featuring less stride and no pooling. Figure 8 shows scatterplots
of the errors from all 500 architectures on Cifar10 against the errors on ImageNet and ImageNet-10. We
can see that both new training methods manage to significantly improve the performance with a minimum
top-1 error below 10 in both cases. More importantly can we observe that both new training methods
have, despite lower overall error, a very similar error relationship to ImageNet. The error correlation
is even slightly lower than with our original training (replicated in Figure 8 left row). We can also see
that in all three cases the error relationship can be significantly strengthened by replacing ImageNet with
ImageNet-10, this shows that tuning for individual performance on a dataset does not significantly impact
the error relationships between datasets which further strengthens our core claim.

6.1.2 Verifying Training Duration

Since we have a limited amount of computational resources and needed to train a vast number of networks
we opted to train the networks up to the number of epochs where they started to saturate significantly in
our pre-studies. As we have seen in section 6.1.1 can the network performance still improve quite a bit if it
is trained for much longer. Even though the improved performances on Cifar10 did not yield any results
contradicting the findings of our study, we still deemed it necessary to closer inspect what happened in the
later stages of training and thus performed a sanity check for Cifar10 as well as the other two datasets that
show a negative error correlation with ImageNet—Powerline and Natural. Figure 9a shows the Cifar10
test error curves of 20 randomly selected architectures over 200 epochs. On the left side we see the same
curves zoomed in to epochs 30 to 200. We see that the error decreases steadily for all architectures, the
ranking among architectures barely changes past epoch 30. The relative performance between architectures
and not absolute error rates are relevant for our evaluations, we can therefore conclude that the errors at
epoch 30 are an accurate enough description of an architecture’s power.

For Powerline and Natural, we select the five best and five worst architectures respectively and continue
training them for a total of five times the regular duration. Figure 9b shows the resulting error curves.
Both datasets exhibit minimal changes in the errors of the top models. On Natural we observe clear
improvements on the bottom five models but similar to Cifar10 there are very little changes in terms
of relative performance. Powerline exhibits one clear cross-over but for the remainder of the bottom
five models the ranking also stays intact. Overall we can conclude that longer training does not have a
significant effect on the APR of our datasets.

6.1.3 Impact of Training Variability

The random initialization of the model weights has an effect on the performance of a CNN. In an empirical
study it would therefore be preferable to train each model multiple times to minimize this variability. We
opted to increase the size of our population as high as our computational resources allow, this way we get
a large number of measurements to control random effects as well as an error estimate of a large set of
architectures. However, we still wanted to determine how much of the total variability is caused by training
noise and how much is due to changing the architectures. We estimate this by selecting two of the sampled
CNN designs, number 147 performing slightly above average with an error of e147 = 11.9 and number 122
performing slightly below average with e122 = 14.5. The quantiles of the error distribution from all 500
architectures are q0.25 = 11.53, q0.5 = 13.02 and q0.75 = 15.46 with an overall mean of µ = 13.9. We then
train the architectures 147 and 122 each 250 times. Figure 10 shows the error distributions of both selected
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architectures as well as the overall distribution obtained from training each of the 500 architectures once.
There is of course some variability within both architectures but both individual architectures produce very
narrow densities and show essentially no overlap. We can therefore conclude that the effect of choosing an
architecture is much greater than the variability caused by random training effects.

6.1.4 Relationship of Top-1 with Top-5 Error on ImageNet, Insects and Cifar100

We opted to use top-5 error since it is the most widely reported metric for ImageNet and the top-5
numbers are therefore easy to interpret on that dataset. Many of our datasets have a significantly lower
number of classes such that top-5 error makes little sense and we opted to use top-1 for those. This raises
the question if comparing top-1 with top-5 errors introduces unwanted perturbations into our analysis. We
therefore compare the top-1 and top-5 errors for the three datasets on which we use top-1 error (see Figure
11a). We see that the two metrics have an almost linear relationship for the ImageNet and Cifar100 datasets.
More importantly are the top-1 to top-5 error graphs monotonically ascending for all three datasets, such
that the ordering of architectures does not change when swapping between the two metrics. Since we are
interested in the relative performances of our sampled architectures changing between top-1 and top-5
error does not impact our analysis.

6.1.5 Overfitting of High-Capacity Architectures

The best architectures on Powerline, Natural and Cifar100 have a very small cumulated depth, so it is
only natural to ask if the deeper architectures perform poorly due to overfitting. We address this concern
by plotting the training errors of Powerline, Natural, and Cifar100 against the cumulative block depths
(see Figure 11b). The training errors are strongly correlated with the cumulative block depth, just like the
test errors. Plots of the cumulated block depth show almost the same structure for training and test errors.
We can therefore exclude overfitting as a reason why the shallower networks perform better on Powerline,
Natural, and Cifar100.

6.1.6 Impact of Class Distribution

MLC2008 and HAM1000 have a strong class imbalance. They both have one class which makes up a
large amount of the dataset. In order to study the impact of an imbalanced class distribution, we created two
new more balanced datasets out of the existing data the following way: we reduced the number of samples
in the overrepresented class such that it has the same amount of samples as the second most common class.
We call these datasets MLC2008-balanced and HAM10000-balanced. Their new class distributions can be
seen in Figure 11a. We train our architecture population on MLC2008-balanced and HAM10000-balanced
leaving the training configuration otherwise unaltered. Figure 11b shows the errors on the balanced datasets
versus the errors on the unbalanced counterparts.

For both HAM10000 and and MLC2008, there is a strong correlation between the errors on the balanced
and unbalanced datasets. We can therefore conclude that class imbalance is not a determining factor for
the APRs of HAM10000 or MLC2008.

6.2 Additional ablation studies

6.2.1 Impact of Pretraining

The main objective of our study is to identify how well different CNN designs perform on varying
datasets and if the best architectures are consistent across the datasets. For this reason we train all of our
networks from scratch on each dataset. However, we cannot ignore that pretraining on ImageNet is a huge
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Table 5. Top-1 error of reference network implementations Radosavovic et al. (2020) for Cifar10.

MODEL RESNET-56 RESNET-110 ANYNET-56 ANYNET-110
ERROR 5.91 5.23 5.68 5.59

factor in practice and we therefore study its impact on our evaluations. To this end have we train all of
our sampled architectures again on each dataset but this time we initialize their weights with ImageNet
pretraining (we omit Concrete, which has very low errors even without pretraining). Figure 12 shows the
errors of each dataset without (blue) and with (green) pretraining plotted against the ImageNet errors. The
data shows a distinct trend: the overall performance improvement due to pretraining dictates how much
stronger the ImageNet-correlation of the pretrained errors is compared to the errors without pretraining. For
Cifar10 and Cifar100 where the performance gain with pretraining is low to moderate the error correlations
do not drastically change. On the other end of the spectrum are Natural and Powerline, where pretraining
leads to drastically lower errors. This in turn leads to much higher error correlation with ImageNet(the
Powerline correlation can not grow significantly above 0 because the overall errors are so small across all
architectures). We can conclude that our findings are still valid when pretraining is used, but their effects
can be masked when pretraining is the most important factor contributing to the overall final performance.

6.2.2 Structure of Top Performing Architectures

Figure 13 shows the configuration of the top performing architecture in blue, as well as the mean and
standard deviation of the top 15 configurations for every dataset. We observe that the top 15 architectures
have very high variance in both bottleneck ratio and group width.

Block width on the other hand shows a clear pattern: almost all high-performing architectures start with a
very small block width that increases across the stages. Only Powerline and Natural do not show this pattern.
In block depth, we observe a similar pattern with a bit more noise. For block depth, Powerline, Natural,
Cifar10 and Cifar100, no such trend of increased parameter values towards the later stages is observed.
This reinforces the idea that block width and block depth greatly impact an architectures performance and
their optimal choices are dataset dependent.
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Figure 8. The Cifar10 test errors of all 500 architectures plotted against ImageNet (top row) and ImageNet-
10 (bottom row), shown for our original Cifar10 training (left column), training with a Cifar10 specific
stem in the architecture (middle column), and training for 200 epochs, which is roughly 6 times longer
(right column). The plots show that the error correlation with ImageNet-10 is much larger in all three cases,
confirming that optimizing for individual Cifar10 performance does not alter our core result.

Figure 9a.

Figure 9b.

Figure 9. (A) Cifar10 test error curves of 20 randomly sampled architectures trained over 200 epochs
(left). The same error curves but cut to epochs 30 to 200. (B) Test error curves of the five best and five
worst models on Powerline and Natural, respectively, when training is continued to epoch 100
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times as well as the Cifar10 error distribution of all 500 architectures. The plot shows that the variability
caused by changing architecture is much larger than the one caused by random training effects.
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Figure 11. (A) Top-1 error plotted against top-5 error of all 500 architectures on ImageNet, Cifar100,
and Insects. The plots reveal that on all three datasets the errors have a very close relationship: it is not
perfectly linear but is monotonically ascending (B) Training errors of the sampled architectures (x-axis)
plotted against the cumulated block depth for the 3 datasets that have the lowest test errors on shallow
architectures. We observe that for all three datasets shallow architectures also have the lowest training
errors. Therefore overfitting is not the cause of this behaviour.
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Figure 11. (A) Class distributions of MLC2008, HAM10000, and their balanced versions. (B) Errors of
all 500 sampled architectures on MLC2008-balanced and HAM1000-balanced (y-axis) plotted against the
errors of their unbalanced counterparts (x-axis). The top 10 performances on the target dataset are plotted
in orange, the worst 10 performances in red. We observe a clear positive correlation for both datasets, hence
we conclude that the dataset imbalance has a limited impact on the APRs.
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Figure 12. Errors form all 500 architectures trained from scratch (blue) as well as the same architectures
pretrained on ImageNet (green), plotted against the respective ImageNet errors. We observe that the error
correlation with ImageNet increases relative to the performance gain due to pretraining.
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Figure 13. Configurations of the top-performing architectures, with the four stages depicted on the x-axis
and the parameter values on the y-axis. The best architectures are shown in blue, the mean of the top 15
architectures is depicted in orange with with a vertical indication of one standard deviation.
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4 Research Output of the 
Explainable Artificial Intelligence 
Group 

The XAI group, led by Jasmina Bogojeska, conducts research in machine learning and deep 
learning methodology, particularly explainable and multimodal AI, to address complex 
decision-making and knowledge discovery tasks in different domains. The ultimate goal is to 
enable successful application of these methods in products in practice hand-in-hand with 
domain experts and users. 
We are primarily interested in the challenging problem of developing AI-powered systems able to 
properly utilise multimodal data, provide human intelligible information about their outputs and engage 
seamlessly with users. This is essential for the successful practical application and adoption of AI in 
many domains. Reinforcement learning and causal inference are two additional areas of interest very 
relevant for sequential decision making and knowledge discovery with human in the loop. Finally, while 
we are up for taking on challenging problems in various domains, we are particularly interested in 
advancing, improving, and digitising the healthcare domain. We envision this by building explainable 
AI-powered products for disease diagnosis and treatment as well as developing transparent AI-
powered approaches to advance the understanding of health and disease, all done collaboratively with 
users (experts and patients) in the loop, safely and responsibly. 

The group was newly created end of 2022 and currently has one senior lecturer (Dr. Jasmina 
Bogojeska) who joined ZHAW in September 2022 working on building it up. It is set to grow further in 
the coming years. 

We plan to start the journey of the group by acquiring projects in the healthcare domain. The 
availability of large, complex medical and biological datasets coupled with the technological and 
methodological advances in AI in recent years provides the opportunity to advance the understanding 
of health and disease and pave the way to revolutionize healthcare. We envision working on novel 
trustworthy AI methodologies able to leverage the rich information from complex, multimodal, multi-
source medical data and able to engage seamlessly with their users. Such methods have the potential 
to improve patient care via early, precise, personalized disease diagnosis, treatment, and prevention. 
We plan to follow this research direction and collaborate with partners from hospitals, medical 
research institutions and industry with the final goal of unlocking the power of AI methodology 
functioning collaboratively with the users in clinical practice for optimizing patient care and disease 
prevention. 

The group had one publication in 2022 on deep learning for NLP where the usefulness of pre-trained 
transformer document embeddings in active learning for multilabel classification was investigated. 
Furthermore, Dr. Bogojeska’s prior work on deep learning for NLP, e.g., data augmentation for low 
resource domain specific text classification, was also published in two prestigious conferences in 
2022.  

We thank CAI and ZHAW for this great opportunity and the continuous support! 

The XAI 2022 team 

Jasmina Bogojeska (along with one Master student)
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methodological advances in AI in recent years provides the opportunity to advance the understanding 
of health and disease and pave the way to revolutionize healthcare. We envision working on novel 
trustworthy AI methodologies able to leverage the rich information from complex, multimodal, multi-
source medical data and able to engage seamlessly with their users. Such methods have the potential 
to improve patient care via early, precise, personalized disease diagnosis, treatment, and prevention. 
We plan to follow this research direction and collaborate with partners from hospitals, medical 
research institutions and industry with the final goal of unlocking the power of AI methodology 
functioning collaboratively with the users in clinical practice for optimizing patient care and disease 
prevention. 

The group had one publication in 2022 on deep learning for NLP where the usefulness of pre-trained 
transformer document embeddings in active learning for multilabel classification was investigated. 
Furthermore, Dr. Bogojeska’s prior work on deep learning for NLP, e.g., data augmentation for low 
resource domain specific text classification, was also published in two prestigious conferences in 
2022.  

We thank CAI and ZHAW for this great opportunity and the continuous support! 
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Jasmina Bogojeska (along with one Master student)
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Abstract

The Transformer Language Model is a power-
ful tool that has been shown to excel at various
NLP tasks and has become the de-facto stan-
dard solution thanks to its versatility. In this
study, we employ pre-trained transformer doc-
ument embeddings in an Active Learning task
to group samples with the same labels in the
embedding space on domain-specific corpora.
We find that the calculated class embeddings
are not close to the respective samples and con-
sequently do not partition the embedding space
in a meaningful way. In addition, using the
class embeddings as an Active Learning strat-
egy yields reduced results compared to all base-
lines.

1 Introduction

While text classification models have become more
and more powerful, the need for sufficient data to
train ever growing neural networks is also increas-
ing massively. When dealing with domain-specifc
data, such as legal or medical in particular, find-
ing a fitting dataset with detailed annotations can
be exceedingly difficult. Creating such a dataset
is likely to be a massive undertaking due to the
difficult annotation process which often requires
domain experts to work through enormous amounts
of data. Active Learning serves as a way to speed
up this process by selecting informative samples to
be annotated. However, Active Learning strategies
are often very specific to target domains (Wertz
et al., 2022) and strategies tailored specifically for
pre-trained transformer language models are often
experimental and not thoroughly explored (Zhan
et al., 2022).
In this work, we present an Active Learning strat-
egy that employs class embeddings which are gen-
erated from pre-trained sentence embeddings to
predict the classes of unlabeled samples. While
the intuition of the approach is sound, we find
that the class embeddings do not generalize from

the samples they were calculated on. Our experi-
ment focuses on powerful pre-trained, transformer
sentence-embeddings which are prevalent in both
research and industrial application. We demon-
strate that such embeddings struggle to find good
separations between the multi-class, multi-label
texts in the training set on two domain-specific
datasets. Our work details the class embedding
approach, illustrates the reduced performance on
two domain-specific, multi-label datasets and anal-
yses the vector space of the samples to gain an
understanding of the methods failure.

2 Related Work

The effectiveness of AL for Text Classification has
been subject to extensive research (Tong and Koller,
2001), (Goudjil et al., 2018) with specific solutions
for deep models (Schröder and Niekler, 2020), (An
et al., 2018) and multi-label settings (Reyes et al.,
2018) (Yang et al., 2009). Our approach targets Ac-
tive Learning for Deep Learning which poses new
challenges (Schröder and Niekler, 2020) and is still
a topic in need of exploration (Ein-Dor et al., 2020).
Generating embeddings from words has been per-
formed with trained vector models (Church, 2017)
(Pennington et al., 2014) but has been moved to
the contextual embedded information within large
transformer language models such as BERT (De-
vlin et al., 2018). Extracting embeddings across
word boundaries from BERT can be done in sev-
eral ways, such as a grid-based approach (Denk
and Reisswig, 2019), a "siamese" dual network
architecture (Reimers and Gurevych, 2019) or un-
supervised techniques (Zhang et al., 2020).

3 Class Embeddings

3.1 Intuition

In any text classification task, the aim is to identify
the belonging of a text T to a range of pre-defined
classes C. Using pre-trained language models, a
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text classification model M decides the class cϵC
using only the tokenized text as input, leveraging
the powerful pre-trained weights of the underlying
transformer network as information. We can thus
assume that the surface tokens are the critical infor-
mation that determine, what class T is assigned.
One option to represent text in a continuous vector
space is via embeddings - vectors that are condi-
tioned to correspond to pieces of text. We convert
T into the vector space via embeddings (Te). In-
tuitively, one would assume that Te which belong
to the same c are also closer together in the vector
space. After all, if c is mainly decided based on the
surface tokens, it follows that there should be either
syntactical or semantical similarity between two T
both belonging to c. While semantical similarity is
much harder to capture than the surface realisation
of language, current text embedding techniques
have shown to also be sensible to word meaning
(Wiedemann et al., 2019).
In conclusion, we expect T that belong to the same
class to be closer together in a fitting vector space
representation because their text should show sim-
ilarities. Consequently, we assume that if a new
text T ∗ is mapped into the same vector space, it
is more likely to belong to the same classes as its
neighbours. As such, the centroid of a set of Te can
be used to predict the class of said T ∗.

3.2 Active Learning with Class Embeddings

Ce = {mean(Te)|TϵD and T belongs to c} (1)

Active Learning is a cyclic, supervised learning
mechanism that seeks to reduce annotation effort
by strategically selecting informative samples to
be labeled by a human annotator and then given to
the model for training. Given an annotated training
set D and an unlabeled set U , the main loop of Ac-
tive Learning can be summarized in three repeating
steps:
1. Train classification model M on available data
D.
2. Select informative samples from U and pass
them to the annotator.
3. Annotate the samples and add them to D.
Given an annotated set D, our approach calculates
Class Embeddings Ce for each class c by first
collecting all T that belong to c and then using
an embedding technique to map T into the vector
space. The corresponding ceϵCe are determined
by calculating the centroid of all Te belonging to c
(Equation (1)).

train dev test Macro F1
eurlex 10.294 1.901 1.905 0.93
arXiv 13.174 13.414 13.131 0.79

Table 1: Split sizes and Macro F1 on the full eurlex and
arXiv datasets.

In the Active Learning setting, we calculate Ce

given the current D and then select k samples
which are close to the ce of classes that are less
frequent in the training set. The idea is, that finding
samples of less represented classes will improve
classifier accuracy on that class and consequently,
will improve Macro F1. We update and evaluate
M after k samples have been selected and repeat
this process until an annotation budget is exhausted.
The full procedure is detailed in Algorithm 1.

Algorithm 1 Active Learning with Class Embed-
dings

1: procedure CE(labeled set D, unlabeled set U ,
model M, budget b, sample size k)

2: while budget > 0 do
3: train M on D
4: Ce ← Class Embeddings on D
5: k∗ ← k
6: while k∗ > 0 do
7: cmin ← least frequent class in D
8: T ← TϵU, T closest to ce of cmin

9: annotate T
10: D ← D ∪ T
11: k∗ ← k∗ − 1
12: b ← b− 1

4 Experiment

4.1 Datasets
We use modified versions of the Eurlex57K (re-
ferred to as eurlex) (Chalkidis et al., 2019) corpus
containing excerpts from European law as well
as a collection of abstracts from scientific pub-
lication site arXiv (https://www.kaggle.
com/Cornell-University/arxiv). Both
datasets are annotated with several hundred classes
and are intended for large-scale, multi-label text
classification, meaning that a sample can belong
to any number of classes instead of only one. We
reduce the number of classes to 5 frequent and 5
rare labels to create a reduced version of the cor-
pus, keeping the multi-label nature intact. Macro
F1 when using the full dataset is found in Table 1.
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M after k samples have been selected and repeat
this process until an annotation budget is exhausted.
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containing excerpts from European law as well
as a collection of abstracts from scientific pub-
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com/Cornell-University/arxiv). Both
datasets are annotated with several hundred classes
and are intended for large-scale, multi-label text
classification, meaning that a sample can belong
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Figure 1: Macro F1 on the eurlex dataset of Active
Learning for training set sizes 100 to 600 samples com-
pared to random selection and two Active Learning
baselines.

4.2 Setup
We use BERT (Devlin et al., 2018)* for text clas-
sification with a single, feed-forward output layer.
We train the model for 15 epochs with early stop-
ping, a batch size of 16 and an adaptive learning
rate (ADAM). We evaluate all experiments using
the multi-class measures Macro F1† (averaging F1
for each class, thus, treating each class as equally
important, which is beneficial in the unbalanced
class settings).
For document embeddings, we employ pre-trained
Sentence-Bert (Reimers and Gurevych, 2019) em-
beddings‡ which maps a document into a 380 ele-
ment vector.
We simulate Active Learning by using a subset
of the corpus as "labeled" set and reserving the
rest as the "unlabeled" set, using the oracle annota-
tions once a sample is queried from the "unlabeled"
set. We start with a labeled set of 100 randomly
selected samples and query 50 samples in each Ac-
tive Learning step until the annotation budget of
600 samples is exhausted.
All experiments are run on a NVIDIA RTX 6000
GPU.

4.3 Results
Figures 1 and 2 show the results of Active Learn-
ing on the eurlex and arXiv datasets respectively.

*Using the "bert-base-uncased" model from huggingface
https://huggingface.co

†We also evaluated Micro F1 but found that the two be-
haved similarly.

‡Using the "all-mpnet-base-v2" downloadable from
https://www.sbert.net
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Figure 2: Macro F1 on the arXiv dataset of Active Learn-
ing for training set sizes 100 to 600 samples compared
to random selection and two Active Learning baselines.

We compare the class embedding approach (Sec-
tion 3.2) against three Active Learning baselines
(DAL - (Gissin and Shalev-Shwartz, 2019), ALPS
- (Yuan et al., 2020), CVIRS - (Reyes et al., 2018))
as well as Active Learning by random sampling.
Out of the Active Learning strategies, we report the
two best performing approaches for each dataset.
We find that the class embeddings perform signifi-
cantly worse than all baselines by a margin of up to
0.15 compared to random selection. Class Embed-
dings appear to hinder the Active Learning process
as they even perform worse than Active Learning
strategies which already have reduced performance
compared to random selection, i.e. the DAL base-
line on the eurlex dataset.

5 Analysis

5.1 Proximity to unlabeled samples

One important assumption presented in Section 3.1
is, that an unlabeled§ sample T ∗ϵU will be close
in the embedding space to the class embeddings
ceϵCe of the classes cϵC it belongs to. We test
this assumption by analysing how many T ∗ that
belong to c are actually closest to the corresponding
class embedding by querying the closest 100 T ∗

for every ce. Table 2 shows, that on the eurlex
dataset for a small labeled set with 100 samples,
almost no T ∗ are near a ce of a class they belong to.
We also see that this is not an effect of the labeled
set being too small as increases in the size of D
(even to around 50% of the full training set) do not

§Here, unlabeled simply denotes that the sample does not
come from the training set of the model (Section 4.2).
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size of D class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10
100 1 0 0 0 0 0 7 2 0 0
200 2 0 0 0 0 0 7 2 0 0
500 1 0 0 0 0 0 7 2 0 0

1500 2 0 0 0 0 0 7 1 0 0

Table 2: Number of samples in the unlabeled set U of the eurlex dataset with class j found within the closest 100
samples of the centroid of class j using pre-trained Sentence-BERT. We experiment with varying sizes of the labeled
set D.

significantly change the results. Effectively, this
means that the computed ce are not close to new
samples of the same class and that our assumption
is incorrect. This observation holds for the arxiv
dataset as well. (See Appendix for the full results
table).
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Figure 3: Average cosine distance between labeled sam-
ples and corresponding class embedding of the same
class (blue, left) and averaged class embeddings of all
other classes (green, right).

5.2 Examination of the labeled set

One explanation for the behaviour on unlabeled
samples is, that the class embeddings are not well-
positioned. For example, when calculating Ce we
do not account for outliers which might cause a
shift in the centroid. Alternatively, class embed-
dings might all be very close to each other, resulting
in a partitioning that is not very meaningful. We
run a sanity check in Figure 3 and Figure 4 and
look at the average distance between samples in
the labeled set TϵD and the computed class em-
beddings for a size of 100 samples¶. We find that
on average, samples are closer to the ce of classes

¶We also experiment with higher numbers but find no
significant differences.
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Figure 4: Average cosine distance between labeled sam-
ples and corresponding class embedding of the same
class (blue, left) and averaged class embeddings of all
other classes (green, right).

they belong to by a margin of around 0.2 on the
eurlex dataset and 0.4 on the arXiv dataset. Due
to the multi-label nature of the datasets we expect
certain overlap between classes. Overall, Figures
3 and 4 seem to indicate a good positioning of the
class embeddings, which means that the training
set samples are in fact found in the proximity of
corresponding class embeddings. Figures 5 and 6
show the result of a Principal Component Analysis
(PCA) on the two datasets respectively. We find
that while there are some clusters, overall there is
no clear separation of classes. This could be an in-
dication, that the sentence-BERT embeddings (see
Section 4.2) are too large or too diverse to effec-
tively decompose into 2 dimensions. However, it
is also possible that even in the high-dimensional
space, separation of the different classes is already
difficult.
On the eurlex dataset, Figure 3 confirms this sus-
picion somewhat since the distance margins are
narrow overall. We find that for many classes, ob-
servations hold between Figure 3 and Figure 5.
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they belong to by a margin of around 0.2 on the
eurlex dataset and 0.4 on the arXiv dataset. Due
to the multi-label nature of the datasets we expect
certain overlap between classes. Overall, Figures
3 and 4 seem to indicate a good positioning of the
class embeddings, which means that the training
set samples are in fact found in the proximity of
corresponding class embeddings. Figures 5 and 6
show the result of a Principal Component Analysis
(PCA) on the two datasets respectively. We find
that while there are some clusters, overall there is
no clear separation of classes. This could be an in-
dication, that the sentence-BERT embeddings (see
Section 4.2) are too large or too diverse to effec-
tively decompose into 2 dimensions. However, it
is also possible that even in the high-dimensional
space, separation of the different classes is already
difficult.
On the eurlex dataset, Figure 3 confirms this sus-
picion somewhat since the distance margins are
narrow overall. We find that for many classes, ob-
servations hold between Figure 3 and Figure 5.
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For example, samples belonging to class 2 have
a are generally very close to their corresponding
class embedding while Figure 5 also shows a nar-
row cluster of class 2 samples. However, for some
samples we observe conflicting information from
the two Figures, for example class 3, which has
the least average distance in Figure 3 but is very
spaced out in the PCA in Figure 5.
In general, the analysis of the arxiv dataset in Fig-
ures 4 and 6 leads to analogous conclusions. The
main difference is that while the average distances
in Figure 4 are twice as long as for the eurlex
dataset, the samples in Figure 6 seem even more
clustered around a central point. In general, most of
the centroids are very close together in the reduced
space, making clear separation of classes difficult.
Overall, we can conclude that the class embeddings
provide only limited grouping for the dataset they
were calculated on.
In addition, we find that the labels have semantic
overlap to each other. In the arXiv dataset, frequent
labels deal with various areas of Physics, while
rare labels deal with Computer Science and Infor-
matics. On the eurlex dataset, frequent labels deal
with Fruit, import and export while rare labels are
more diverse. (Full Table is found in the appendix).
This could explain the proximity of centroids in the
PCA analysis, especially for the arxiv dataset in
Figure 6. On the eurlex dataset in Figure 5 however,
centroids of different topics, e.g. Gaming (centroid
9) and Export Refund (centroid 1) are close to each
other.
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Figure 5: PCA with 2 components of the class embed-
dings and embedded samples in the training set with 100
samples. Shapes of the data points indicate class (sam-
ples with multiple classes are plotted multiple times)
and enlarged data points mark centroids (i.e. class em-
beddings).

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
arXiv, training set size 100

centroid 0
centroid 1
centroid 2
centroid 3
centroid 4
centroid 5
centroid 6
centroid 7
centroid 8
centroid 9

Figure 6: PCA with 2 components of the class embed-
dings and embedded samples in the training set with 100
samples. Shapes of the data points indicate class (sam-
ples with multiple classes are plotted multiple times)
and enlarged data points mark centroids (i.e. class em-
beddings).

6 Conclusion & Future Work

We present Class Embeddings, which hinder the
Active Learning (Section 4.3) since the classes of
new samples can not be correctly predicted (Sec-
tion 5.1). Despite reasonable assumptions about the
effectiveness of pre-trained embeddings (Section
3.1) we find that class embeddings are not mean-
ingful representatives of the dataset classes and that
their ability to partition the dataset is limited (5.2).
We encourage experimenting with this approach,
as it is relatively inexpensive to compute. In addi-
tion to using common heuristics with BERT, such
as averaging the word embeddings, fine-tuning the
sentence-embeddings on the dataset might make a
difference and result in higher quality Class Em-
beddings. Also, testing the approach on different
datasets is crucial - in our work, improving upon
random selection is difficult even for sophisticated
Active Learning strategies. Finally, we would like
to motivate more application-oriented research (e.g.
Information Retrieval, Semantic Similarity rank-
ings etc...) into the inner workings of pre-trained
contextual embeddings in order to improve under-
standing of the information they encode.
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size of D class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10
100 1 0 0 0 0 0 7 2 0 0
200 2 0 0 0 0 0 7 2 0 0
500 1 0 0 0 0 0 7 2 0 0

1500 2 0 0 0 0 0 7 1 0 0

Table 3: Number of samples in the unlabeled set U of the arXiv dataset with class j found within the closest 100
samples of the centroid of class j using pre-trained Sentence-BERT. We experiment with varying sizes of the labeled
set D.

arXiv eurlex
class 1 High-Energy-Physics import
class 2 Statistical Mechanics export refund
class 3 Quantum Physics Pip Fruit
class 4 Superconductivty Fruit Vegetable
class 5 Strongly Correlated Electrons Citrus Fruit
class 6 Atomic and Molecular Clusters Quantitative Restriction
class 7 Network Architecture Germany
class 8 Formal Languages Portugal
class 9 Human Computer Interaction Ship’s Flag
class 10 Other Computer Science Gaming

Table 4: Descriptions of labels used in both datasets.Frequent labels are above center line, rare labels are below
center line.
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Figure 7: Micro F1 on the arXiv dataset.
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Figure 8: Micro F1 on the arXiv dataset.
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5 Research Output of the Intelligent 
Vision Systems Group 

The IVS group, led by Frank-Peter Schilling, conducts research in the domains of deep-learning 
based computer vision, Machine Learning Operations (MLOps), as well as in methods to create 
trustworthy and certifiable AI systems. 

We are interested in computer vision using image or video data, for which we develop state of the art 
deep neural network architectures. We are particularly interested in recent developments including 
vision transformers, gauge equivariant neural networks and geometric deep learning. Domains of 
applications include, but are not limited to, industrial quality control, medical imaging and diagnosis 
(computed tomography), as well as earth (satellites) and sky (radio-astronomy) observation data. Our 
second main area of interest concerns MLOps, which describes best practices for building complete, 
production-ready and scalable Machine Learning systems. Finally, we are interested in methods to 
create safe, trustworthy and certifiable AI systems, which comply with current and future legislation. 

The group was newly created in 2022 and currently consists of one senior lecturer (Prof. Dr. Frank-
Peter Schilling), one senior scientist (Dr. Philipp Denzel) and one doctoral student (Daniel Barco). It is 
set to grow further in the next years. 

We concluded the successful project “DIR3CT: Deep Image Reconstruction through X-Ray Projection-
based 3D Learning of Computed Tomography Volumes” which was carried out jointly with a team from 
the Institute of Applied Mathematics and Physics (IAMP) in collaboration with Varian Medical Systems, 
the world market leader in clinical radiation therapy. We developed a novel deep-learning based 
approach to mitigate motion-induced artefacts in 3D cone-beam CT (CBCT) images acquired during 
patient treatment. The results led to a publication with the journal Medical Physics (under review), as 
well as a poster presented at the annual meeting of the American Association of Physicists in 
Medicine AAPM in Washington DC. The research collaboration with Varian is continued in the recently 
started follow-up project “AC3T – AI powered CBCT for improved Combination Cancer Therapy”, 
which has the goal to enable a novel, combined, adaptive cancer therapy due to significantly improved 
3D and 4D low dose CBCT images based on AI-improved image reconstruction. It also involves two 
universities and one start-up in South Korea. 

Together with CAI associate Dr. Elena Gavagnin (Institute of Business IT), we joined SKACH, the 
consortium of Swiss universities and research institutions participating in the international “big science” 
project SKAO - Square Kilometre Array Observatory, which will become the world’s largest radio 
telescope. We apply generative deep-learning models to the pipeline from astrophysical simulations to 
mock telescope observations. Further, we took a major role, together with the CVPC group, in the 
newly started project “certAInty - A Certification Scheme for AI systems”, and we led a project for 
Roche Diagnostics, “OSR4H - Open Set Recognition for Hematology”, joined by researchers from the 
Institute of Computational Life Sciences (ICLS). Finally, our summary article about the workshop “1st 
International Symposium on the Science of Data Science: ISSDS 2021”, which we organized in 2021, 
was published in the Archives of Data Science. 

We thank our project partners and funding agencies for their support, without which these results 
would not have been possible! 

The IVS 2022 team 

Frank-Peter Schilling, Daniel Barco and Philipp Denzel (along with two associated faculty members
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Abstract We present a summary of the 1st International Symposium on the Sci-
ence of Data Science, organized in Summer 2021 as a satellite event of the 8th

Swiss Conference on Data Science held in Lucerne, Switzerland. We discuss
what establishes the scientific core of the discipline of data science by intro-
ducing the corresponding research question, providing a concise overview of
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relevant related prior work, followed by a summary of the individual workshop
contributions. Finally, we expand on the common views which were formed
during the extensive workshop discussions.

1 Introduction

The discipline of artificial intelligence was coined at the Dartmouth Conference
(McCorduck, 1979; Nilsson, 2009); the discipline of Data Science was allegedly
coined at LinkedIn and Facebook (Stadelmann et al, 2019b). If truth can be
extracted from this abridged statement, it is the fact that data science as today’s
emerging discipline (Brodie, 2019b) has been largely shaped outside the walls
of academia (Stadelmann et al, 2013), i.e., outside a scientific environment, but
rather in business-driven settings. The goal of the recent 1st Symposium on the
Science of Data Science (Schilling et al, 2021) hence has been to discuss the
canon of its underlying principles and techniques (models, methods) that are
applicable across different use cases and fields of application, to answer the
question what “science” underlies the discipline—if it actually is a discipline.

Put in simpler terms, the symposium revolved around the following hypo-
thetical question: If, 15 years from now, one would compare the contents of the
standard textbooks of statistics, computer science, AI and other “source disci-
plines” of data science on the one hand, with the contents of the then classic
text book of data science (still to be written) on the other hand—what would be
part of the data science textbook? What establishes the scientific core of data
science that is not covered somewhere else? The symposium’s goal thus was to
launch an activity towards establishing a reference framework for data science.

The importance of this activity transcends common academic drives for or-
der, rigour and scrutiny. First, by starting research labs, degree programs and
whole departments, academia creates structures and molds careers that will stay
for a long time. It is important that these developments are well-founded, non-
redundant and long-lasting, and not just tailored to a sudden demand. Second, a
lesson can be learned from projected similarities between data science’s devel-
opment on the one hand, and how computer science on the other hand emerged
out of the fields of mathematics and electrical engineering in the 1950s in Ger-
many (Gunzenhäuser, 1988). At first being little more than the application of
principles of these two source disciplines, computer science used the space it
was granted as a new discipline to grow into completely new areas that might
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arguably not have been developed otherwise (see also the Annals of the History
of Computing). Today, little of computer science’s curricula overlap with math-
ematics or electrical engineering as a result of this emancipation that paved the
way for much of what propelled (scientific and economic) progress in the last
decades.

Similar to the way Denning (2005) argued for computer science, we thus
think that data science has the potential to “[meet] every criterion for being a
science, but it has a self-inflicted credibility problem”—the mainstream and
media hype around it. In the remainder of this paper, we survey related work
on the foundations of data science in Section 2; We then summarize the main
contributions from the ISSDS’21 symposium in a synthesis-forming way in
Section 3, pointing to a solution to the credibility problems. Last, but not least,
we discuss the ensuing implications in Section 4, before the concluding remarks.
This paper thus serves as a key and introduction to the individual contributions
from the ISSDS’21 participants.

2 Related work

Ever since the term “data science” came into existence around 60 years ago,
there has been a debate on what exactly constitutes data science, how it dif-
ferentiates itself from statistics and computer science, and whether it deserves
the word science in its name. Can it be viewed as an academic discipline on
its own that represents more than the sum of its constituent disciplines? In the
following, we address these questions by giving a brief historic account as well
as a, necessarily incomplete, summary of the current debate.

2.1 Historic roots

The first use of the term “data science” as a new scientific field goes back to the
early 1960s, when Peter Naur introduced the term (interchangeably with “data-
logy”) (Sveinsdottir and Frøkjær, 1988), while John Tukey (1962) described a
new scientific field he called “data analysis”. In 1974, the term “data science”
appeared in Naur’s book “Concise Survey of Computer Methods” (Naur (1974),
p. 30):

240

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



2 Schilling, Flumini, Füchslin, Gavagnin, Geller, Quarteroni and Stadelmann

relevant related prior work, followed by a summary of the individual workshop
contributions. Finally, we expand on the common views which were formed
during the extensive workshop discussions.

1 Introduction

The discipline of artificial intelligence was coined at the Dartmouth Conference
(McCorduck, 1979; Nilsson, 2009); the discipline of Data Science was allegedly
coined at LinkedIn and Facebook (Stadelmann et al, 2019b). If truth can be
extracted from this abridged statement, it is the fact that data science as today’s
emerging discipline (Brodie, 2019b) has been largely shaped outside the walls
of academia (Stadelmann et al, 2013), i.e., outside a scientific environment, but
rather in business-driven settings. The goal of the recent 1st Symposium on the
Science of Data Science (Schilling et al, 2021) hence has been to discuss the
canon of its underlying principles and techniques (models, methods) that are
applicable across different use cases and fields of application, to answer the
question what “science” underlies the discipline—if it actually is a discipline.

Put in simpler terms, the symposium revolved around the following hypo-
thetical question: If, 15 years from now, one would compare the contents of the
standard textbooks of statistics, computer science, AI and other “source disci-
plines” of data science on the one hand, with the contents of the then classic
text book of data science (still to be written) on the other hand—what would be
part of the data science textbook? What establishes the scientific core of data
science that is not covered somewhere else? The symposium’s goal thus was to
launch an activity towards establishing a reference framework for data science.

The importance of this activity transcends common academic drives for or-
der, rigour and scrutiny. First, by starting research labs, degree programs and
whole departments, academia creates structures and molds careers that will stay
for a long time. It is important that these developments are well-founded, non-
redundant and long-lasting, and not just tailored to a sudden demand. Second, a
lesson can be learned from projected similarities between data science’s devel-
opment on the one hand, and how computer science on the other hand emerged
out of the fields of mathematics and electrical engineering in the 1950s in Ger-
many (Gunzenhäuser, 1988). At first being little more than the application of
principles of these two source disciplines, computer science used the space it
was granted as a new discipline to grow into completely new areas that might
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arguably not have been developed otherwise (see also the Annals of the History
of Computing). Today, little of computer science’s curricula overlap with math-
ematics or electrical engineering as a result of this emancipation that paved the
way for much of what propelled (scientific and economic) progress in the last
decades.

Similar to the way Denning (2005) argued for computer science, we thus
think that data science has the potential to “[meet] every criterion for being a
science, but it has a self-inflicted credibility problem”—the mainstream and
media hype around it. In the remainder of this paper, we survey related work
on the foundations of data science in Section 2; We then summarize the main
contributions from the ISSDS’21 symposium in a synthesis-forming way in
Section 3, pointing to a solution to the credibility problems. Last, but not least,
we discuss the ensuing implications in Section 4, before the concluding remarks.
This paper thus serves as a key and introduction to the individual contributions
from the ISSDS’21 participants.

2 Related work

Ever since the term “data science” came into existence around 60 years ago,
there has been a debate on what exactly constitutes data science, how it dif-
ferentiates itself from statistics and computer science, and whether it deserves
the word science in its name. Can it be viewed as an academic discipline on
its own that represents more than the sum of its constituent disciplines? In the
following, we address these questions by giving a brief historic account as well
as a, necessarily incomplete, summary of the current debate.

2.1 Historic roots

The first use of the term “data science” as a new scientific field goes back to the
early 1960s, when Peter Naur introduced the term (interchangeably with “data-
logy”) (Sveinsdottir and Frøkjær, 1988), while John Tukey (1962) described a
new scientific field he called “data analysis”. In 1974, the term “data science”
appeared in Naur’s book “Concise Survey of Computer Methods” (Naur (1974),
p. 30):

241

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



4 Schilling, Flumini, Füchslin, Gavagnin, Geller, Quarteroni and Stadelmann

Data science is the science of dealing with data, once they have been established, while the
relation of data to what they represent is delegated to other fields and sciences.

It builds upon the IFIP1 definition of data as "a representation of facts or ideas in
a formalised manner capable of being communicated or manipulated by some
process" (Gould, I.H. (ed.), 1971). Naur had a conception of data science rooted
in computer science, while Tukey used the term in reference to statistics, two
perspectives which are also alluded to in David Hand’s two kinds of big data
exercise (Hand, 2016).

The discussions in the scientific community then continued through the 80s
and 90s. In 1985, C.F. Jeff Wu (1986) used the term “data science” as an
alternative name for statistics. Later, in his inaugural lecture “Statistics=Data
Science?” at the University of Michigan (Wu, 1997), he summarized statistics as
a trilogy of data collection, data modelling and analysis, together with problem
solving and decision making. He highlighted the most relevant future directions
as dealing with large and complex data (data mining), employing a data-driven,
empirical approach, as well as the representation of knowledge, and finally
suggests that it is time for statistics to make a bold move, namely to rename
itself to data science.

Already in 1992, at a statistics symposium in Montpellier, France, the emer-
gence of a data science as a new discipline was acknowledged (Escoufier et al,
1995):

The authors propose ways to formalize data analysis. ... Such an approach gives birth to a
new science with data at its core. Its nature, numerical, qualitative or symbolic, determines the
type of operations possible with them. Their origin, whether exhaustive collection or sample,
conditions the objective expected in their analysis. It seems justified to coin the term data
science for this particular activity.

The first international conference which had the term “data science” in its
name took place in 1996 in Kobe, Japan, where Chikio Hayashi (1998) argued
for data science as a new, interdisciplinary concept with three phases: data
design, collection, and analysis.

In his paper “Statistical Modeling: The Two Cultures”, Leo Breiman (2001)
discussed two approaches to extract value from data: (i) Predictive modeling,
i.e. the ability to predict outcomes to future input data to a model, and (ii)
inference, i.e. to extract some information about the underlying model which
generates the data. Breiman argued that statistics as a discipline so far was
almost exclusively focused on inference, and highlighted the importance of

1 International Federation for Information Processing
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predictive modeling (the prime example being machine learning) when using
data to solve problems.

In 2001, William S. Cleveland (2001) introduced data science as an indepen-
dent scientific discipline based on his proposal of:

... a plan to enlarge the major areas of technical work of the field of statistics. Because the plan
is ambitious and implies substantial change, the altered field will be called “data science”.

His “action plan” discussed six technical areas by which to extend statistics,
namely (i) multidisciplinary investigations, (ii) models and methods for data,
(iii) computing with data, (iv) pedagogy, (v) tool evaluation and (vi) theory.

These six technical areas of data science introduced by Cleveland were up-
dated and generalized by David Donoho (2017) into the “6 divisions of Greater
Data Science” as follows:

(i) Data exploration and preparation (exploratory data analysis, data clean-
ing);

(ii) Data representation and transformation (databases, feature extraction);
(iii) Computing with data (computer languages like R and Python, cluster and

cloud computing, workflows and packages);
(iv) Data modeling (both generative and predictive cultures, c.f. Breiman

(2001));
(v) Data visualization and presentation (plotting tools, dashboards);

(vi) Science about data science.

About the last division, the science about data science, Donoho writes (Donoho
(2017), p. 756):

Data scientists are doing science about data science when they identify commonly-occurring
analysis/processing workflows, for example using data about their frequency of occurrence in
some scholarly or business domain; when they measure the effectiveness of standard workflows
in terms of the human time, the computing resource, the analysis validity, or other performance
metric, and when they uncover emergent phenomena in data analysis, for example new patterns
arising in data analysis workflows, or disturbing artifacts in published analysis results. The
scope here also includes foundational work to make future such science possible – such as
encoding documentation of individual analyses and conclusions in a standard digital format
for future harvesting and meta analysis.

Donoho gives meta- and cross-study analyses as examples for this “science
about data science”, and concludes that it will grow dramatically in signifi-
cance in the future, in particular because of the paradigm of reproducible, open
science.
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2.2 Contemporary definitions

In his comprehensive overview, Longbing Cao (2017) presents two definitions
of data science as well as of data products (p. 43:8):

Definition 2.1 (Data Science): A high-level statement is: “data science is the science of data”
or “data science is the study of data.”
Definition 2.2 (Data Science): From the disciplinary perspective, data science is a new interdis-
ciplinary field that synthesizes and builds on statistics, informatics, computing, communication,
management, and sociology to study data and its environments (including domains and other
contextual aspects, such as organizational and social aspects) in order to transform data to in-
sights and decisions by following a data-to-knowledge-to-wisdom thinking and methodology.
Definition 2.3 (Data Products): A data product is a deliverable from data, or is enabled or
driven by data, and can be a discovery, prediction, service, recommendation, decision-making
insight, thinking, model, mode, paradigm, tool, or system. The ultimate data products of value
are knowledge, intelligence, wisdom, and decision.

In (Stadelmann et al, 2019a), it is argued that when defining data science,
either a top-down or a bottom-up approach can be followed: The top-down
view understands the field as the study of approaches to generate value from
data and building data products, while in the bottom-up view, data science is
an interdisciplinary research field with a new, holistic way to deal with data,
integrating competencies from computer science, statistics, AI, data mining,
but also entrepreneurship. Their definition of data science reads (p. 18):

Data science refers to a unique blend of principles and methods from analytics, engineering,
entrepreneurship and communication that aims at generating value from the data itself.

In contrast, Ley and Bordas (2018) first coin data science as “statistics 2.0”,
a rebirth of statistics in the big data era which has imposed new challenges and
opened new research directions. They continue along similar lines as above by
stating that being interdisciplinary by nature (statistics, computer and compu-
tational sciences, mathematics), it usually combines top-down (model-driven)
and bottom-up (data-driven) approaches.

However, Weihs and Ickstadt (2018) point out that the role of statistics
and statistical modeling of observational data in data science is often under-
estimated compared with e.g. computer science.

Michael L. Brodie (2019b) gives the following definition of data science (p.
104):

Data Science is a body of principles and techniques for applying data analytic methods to data
at scale, including volume, velocity, and variety, to accelerate the investigation of phenomena
represented by the data, by acquiring data, preparing and integrating it, possibly integrated
with existing data, to discover correlations in the data, with measures of likelihood and within
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error bounds. Results are interpreted with respect to some predefined (theoretical, deductive,
top-down) or emergent (fact-based, inductive, bottom-up) specification of the properties of the
phenomena being investigated.

He considers data science a new paradigm, different from the scientific method
2 in terms of (i) data, (ii) methods, (iii) models and (iv) outcomes:

(i) The data are often of observational nature, rather than being collected as
in a controlled experiment as in the natural sciences.

(ii) Methods are typically domain- and data-specific, even though based on
general (e.g. machine learning) approaches.

(iii) Models are created on demand and ad-hoc, and changed or updated fre-
quently, rather than being proposed and refined over many years.

(iv) Regarding outcomes, “the scientific method is used to discover causal
relationships between a small number of variables that represent the es-
sential characteristics of the natural phenomena being analyzed” while
data science is mainly used to discover correlations.

2.3 Current debates

In Brodie’s view, empirical science and data science have another fundamental
difference: the scientific method uses deductive reasoning, is hypothesis- or
theory-driven, and works top-down, while data science is typically data-driven,
uses inductive reasoning and works bottom-up (in contrast to the top-down
views of data science highlighted by Ley and Bordas (2018) and Stadelmann
et al (2019a), see section 2.2). Since a scientific discipline would require “fun-
damental principles and techniques applicable to all relevant domains”, rather
than being domain-, model- and method specific, Brodie does not consider data
science a science yet, but rather “an immature, emerging domain that will take
a decade to mature”.

Regarding the development of data science as a discipline, Brodie (2019a)
suggests that this process will be driven by the virtuous cycle of research,
development and delivery (RD&D) underlying applied science, as will be the
development of data science applications and education.

2 In the context of this paper, with the term “scientific method" we refer to the common underlying
iterative process across natural sciences, which employs empirical methods as fundamental mean to
validate predictions, derived from newly-formulated hypotheses about a specific research question
(Galilei, 1638; Newton, 1687; Popper, 1959).
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In Brodie’s view, empirical science and data science have another fundamental
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F. Jack Smith (2006) compares computer science and data science with
respect to their recognition as an academic discipline, stating that for both,
they are often perceived as being merely within the realm of tools used by
technicians. Smith remarks that an important indicator for the establishment of
an academic discipline is the dissemination of scientific articles through peer-
reviewed journals, which so far had been lacking in the area of data science, but
which has started to change in the 2000s, as it did for computer science already
from the 1950s.

Making the connection to the field of Artificial Intelligence (AI) and machine
learning which is at the core of many data science problems, Michael I. Jordan
notes that we are witnessing the creation of a new branch of engineering which
should be developed in a human-centric way (Jordan, 2019a,b).

A similar point is made by Blei and Smyth (2017) who present a holistic view
of data science. It includes not only the statistical and computational perspec-
tives, but also a human perspective, where the latter involves domain knowledge
and data understanding, the ability to fuse methods from both the statistical and
computational domains, as well as the task to interpret and visualize the results
in their context.

Taking again a more sceptical view, Irizarry (2020) claims that the definitions
of data science as given above generally lack consensus on the fundamental
principles and the author proposes, in agreement with Jeannette Wing (2019),
that “data science is an umbrella term to describe the entire complex and multi-
step processes used to extract value from data”.

Provost and Fawcett (2013) discuss data science from the perspective of
its application to the business world, and state that the “the ultimate goal of
data science is improving decision making”, supported by data engineering
and processing including big data technologies which they however do not
consider to be part of data science. Provost and Fawcett advise not to confuse
the description of the day-to-day tasks of a data scientist (at the technical level,
which often involves a large amount of data processing) with a formal definition
of data science as an academic discipline.

2.4 State of the art

Looking forward, Jeannette Wing (2020) formulates three meta-questions about
data science as a discipline:

Foundations of Data Science: A Comprehensive Overview formed at ISSDS’21 9

(i) What is/are the driving deep question(s) of data science, similar to the
questions about the origin of life in biology or the origin of the universe
in astrophysics?3

(ii) What is the role of the domain in the field of data science, i.e. is the
inclusion of the domain specific to data science?

(iii) What makes data science a science, i.e. what makes it more than the sum
of its constituent disciplines computer science and statistics?

She then discusses 10 research challenge areas in data science, among others
scientific understanding of learning algorithms, causal reasoning, trustworthy
AI, privacy and ethics.

In summary, three diverging main themes emerge from the historic and cur-
rent discussion regarding data science as a scientific discipline:

(i) Data science is often considered an extension/update of statistics (“statis-
tics 2.0”), which is upscaled to meet the new challenges of the big data
era, and it is shifting its focus from inference to prediction.

(ii) Data science is an interdisciplinary field, built upon varying selections of
fields but mostly upon statistics and computer science, while adding data
understanding and domain knowledge as a new perspective.

(iii) Data science can be approached from both top-down (model-driven, gen-
erating value, building data products) and bottom-up (data-driven) per-
spectives. It may be viewed as a new paradigm, which is different from
the traditional scientific method which employs controlled experiments.

Thus, at the time of writing, no consensus seems to have formed yet on the
question whether data science can be considered an independent academic
discipline.

3 Aspects of data science

In the following, we present a summary of the main ideas presented in the
individual workshop contributions which were received. More details can be
found in the individual articles contained in the same volume of this journal.

3 The authors would add the unsolved P versus NP problem in theoretical computer science here.
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era, and it is shifting its focus from inference to prediction.

(ii) Data science is an interdisciplinary field, built upon varying selections of
fields but mostly upon statistics and computer science, while adding data
understanding and domain knowledge as a new perspective.

(iii) Data science can be approached from both top-down (model-driven, gen-
erating value, building data products) and bottom-up (data-driven) per-
spectives. It may be viewed as a new paradigm, which is different from
the traditional scientific method which employs controlled experiments.

Thus, at the time of writing, no consensus seems to have formed yet on the
question whether data science can be considered an independent academic
discipline.

3 Aspects of data science

In the following, we present a summary of the main ideas presented in the
individual workshop contributions which were received. More details can be
found in the individual articles contained in the same volume of this journal.

3 The authors would add the unsolved P versus NP problem in theoretical computer science here.
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3.1 A new scientific paradigm?

Four workshop contributions (Doemer and Kempf, 2022; Heitz and Schumann,
2022; Ott et al, 2022; Stadelmann et al, 2022) tried to answer the question about
the scientific nature of data science as a discipline.

Doemer and Kempf (2022) argue that Data Science can be viewed as a
new paradigm in scientific practice, in addition to experimental, theoretical and
computational science. As discussed in Section 2, data science can be viewed
as either a data-driven (inductive), or hypothesis-driven (deductive) approach.
However, the paradigm-shifting nature of data science comes with a problem
still awaiting a practical solution: The increasingly complex setups producing
huge amounts of data and information at various levels (e.g., meta data in
addition to observational data). These are typically of merely observational
nature for the data scientist, in contrast with those classically obtained through
experiments (in line with the scientific method’s principles), i.e. generated
under controlled conditions and setup. As a potential solution to this problem,
which would provide a basis that allows data science to be consistent with the
requirements of transparency, traceability and reproducibility demanded by the
scientific method, the authors suggest the adoption of tools, frameworks and
platforms provided by “XOps” (“X for IT Operations”) approaches, where X
can be e.g. ML (Machine Learning), Data or AI. For example, MLOps is a set
of best practices that aims to deploy and maintain ML models in production
reliably and efficiently.

Heitz and Schumann (2022) state that data science consists of two elements,
one based on engineering and the other based on science. The science element
is concerned with creating insights based on phenomena/data measured in the
real world, while the engineering element is concerned with creating value
(“data products”) by making use of derived insights. On the scientific side, it
is argued that the way in which the insights are derived from the data must
follow scientific principles such as empirical evidence, validity (e.g. in terms of
statistical significance)4. and reproducibility. Such a scientific process is then
able to make predictions that however need not necessarily be accompanied by a
causal model, in contrast to (Brodie, 2019b). On the other hand, the engineering
element involves anything that changes the course of the world, as opposed
to plain knowledge creation. It includes not only the data product itself, but

4 Regarding aspects of model validation besides accuracy and significance, see also the discussion in
section 2.2.3 of Oberkampf and Roy (2010).
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also decision making, which often depends on external factors not related to
data analytics as well. Finally, the engineering side should also include ethical
considerations, such as algorithmic fairness.

Ott et al (2022) make the case for a systemic view of the data science work-
flow, which extends the “classical” workflow (comprising data collection, clean-
ing, visualization, model building, evaluation and impact/value creation) with
various stakeholders such as data scientists, business owners, domain experts
and users giving feedback, as well as with societal influences and impacts, that
all influence the outcome of a data science project. Four hypotheses towards
this perspective are developed:

(i) There is a need for more abstraction and automation in the data workflow
and pipeline engineering process.

(ii) Humans play an active role in the data science workflow (e.g. in active
learning, or in identifying bias).

(iii) Data science will diversify at the intersection of domains (e.g. life science,
health, economics and business etc.).

(iv) With increasing complexity, data science workflows evolve into complex
networks, which can be studied and organized with the help of complex
systems science.

Stadelmann et al (2022) propose their answer to the question of the scientific
core of data science, which distinguishes it from its contributing disciplines
and is not already part of one of them. For the authors, this overarching, unique
principle is data centrism, i.e. putting data at the center and subject of study,
something which is not the case for the contributing disciplines, neither for
statistics and machine learning, nor for computer science or service engineering.
The unique principle in data science is to create value out of actual data (but
not ignoring tools and methods to improve data acquisition), and it is argued
that recent trends such as explainability (e.g., explainable AI or XAI, see also
(Melchior, 2022)) and trustworthiness, but also learning from less supervision,
are grounded in the data centrism of data science. Finally, the authors argue
that, besides its core of data centrism, data science includes several new areas
of research which are not dealt with in the contributing disciplines per se, such
as MLOps (see also (Doemer and Kempf, 2022)), or whose current surge can
be attributed to a mindset shift originating in the use cases and culture shaped
by data science, like applied semi- and weakly-supervised learning (Simmler
et al, 2021), or explainable AI. One example of the latter are explanations of
deep neural networks whose necessity arises out of data-driven applications in
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However, the paradigm-shifting nature of data science comes with a problem
still awaiting a practical solution: The increasingly complex setups producing
huge amounts of data and information at various levels (e.g., meta data in
addition to observational data). These are typically of merely observational
nature for the data scientist, in contrast with those classically obtained through
experiments (in line with the scientific method’s principles), i.e. generated
under controlled conditions and setup. As a potential solution to this problem,
which would provide a basis that allows data science to be consistent with the
requirements of transparency, traceability and reproducibility demanded by the
scientific method, the authors suggest the adoption of tools, frameworks and
platforms provided by “XOps” (“X for IT Operations”) approaches, where X
can be e.g. ML (Machine Learning), Data or AI. For example, MLOps is a set
of best practices that aims to deploy and maintain ML models in production
reliably and efficiently.

Heitz and Schumann (2022) state that data science consists of two elements,
one based on engineering and the other based on science. The science element
is concerned with creating insights based on phenomena/data measured in the
real world, while the engineering element is concerned with creating value
(“data products”) by making use of derived insights. On the scientific side, it
is argued that the way in which the insights are derived from the data must
follow scientific principles such as empirical evidence, validity (e.g. in terms of
statistical significance)4. and reproducibility. Such a scientific process is then
able to make predictions that however need not necessarily be accompanied by a
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Ott et al (2022) make the case for a systemic view of the data science work-
flow, which extends the “classical” workflow (comprising data collection, clean-
ing, visualization, model building, evaluation and impact/value creation) with
various stakeholders such as data scientists, business owners, domain experts
and users giving feedback, as well as with societal influences and impacts, that
all influence the outcome of a data science project. Four hypotheses towards
this perspective are developed:

(i) There is a need for more abstraction and automation in the data workflow
and pipeline engineering process.

(ii) Humans play an active role in the data science workflow (e.g. in active
learning, or in identifying bias).

(iii) Data science will diversify at the intersection of domains (e.g. life science,
health, economics and business etc.).

(iv) With increasing complexity, data science workflows evolve into complex
networks, which can be studied and organized with the help of complex
systems science.

Stadelmann et al (2022) propose their answer to the question of the scientific
core of data science, which distinguishes it from its contributing disciplines
and is not already part of one of them. For the authors, this overarching, unique
principle is data centrism, i.e. putting data at the center and subject of study,
something which is not the case for the contributing disciplines, neither for
statistics and machine learning, nor for computer science or service engineering.
The unique principle in data science is to create value out of actual data (but
not ignoring tools and methods to improve data acquisition), and it is argued
that recent trends such as explainability (e.g., explainable AI or XAI, see also
(Melchior, 2022)) and trustworthiness, but also learning from less supervision,
are grounded in the data centrism of data science. Finally, the authors argue
that, besides its core of data centrism, data science includes several new areas
of research which are not dealt with in the contributing disciplines per se, such
as MLOps (see also (Doemer and Kempf, 2022)), or whose current surge can
be attributed to a mindset shift originating in the use cases and culture shaped
by data science, like applied semi- and weakly-supervised learning (Simmler
et al, 2021), or explainable AI. One example of the latter are explanations of
deep neural networks whose necessity arises out of data-driven applications in
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safety-critical sectors like healthcare (Jin et al, 2022), while other aspects of
explainability have been dealt with since longer (Keil and Wilson, 2000).

3.2 Explainability, rationality and trust

Furthermore, Melchior (2022) and Füchslin and Flumini (2022) discuss special
topics in data science, namely the important issues of transparency and explain-
ability as well as various ways of defining and automating the decision making
process.

Melchior (2022) focuses on the notions of transparency, explainability and
interpretability in data science in the context of machine learning models, which
is an issue in particular for deep learning architectures where hand-crafted fea-
tures are replaced with many layers of deep neural networks. Recently, explain-
able AI (XAI) has become a subject of research, in particular for applications
with strong safety or ethical requirements, but also in the case of fundamen-
tal/natural sciences, where ML is used for knowledge discovery. It is argued
that in order to achieve explainability and interpretability, domain experts and
data scientists have to work together. Several concrete technical examples are
given for the inclusion of domain knowledge in a deep learning model in order
to facilitate learning of interpretable features, such as autoencoders or gener-
ative models, invertible flow networks or graph neural networks. The latter
are particular promising in view of unifying symbolic and connectionist AI
approaches.

Füchslin and Flumini (2022) give a definition of rational decision making
(structured, inductive, verifiable, grounded) and it is claimed that the former
is more appropriately complemented by arationality rather than irrationality.
In summary, rational decision making exhibits two main features. Firstly, it
is based on some sort of generally accepted scheme of reasoning (in mathe-
matics expressed in an axiomatic manner) and some data/variables. Secondly,
the process of reasoning can be expressed in a language that enables to make
the reasoning transparent and comprehensible to a (sufficiently well-educated)
other individual and uses terms/variables with a meaning that relates them to
the objects one reasons about. Whereas irrationality lacks both of these fea-
tures, arationality captures the concept of decision making that leads to sen-
sible results but uses processes that one may or may not be able to describe
mechanistically, but without the possibility to attribute a meaning to the data
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representing the process steps in between input and output. Arational decision
making includes for instance the notion of intuition. Discovering new proofs
of mathematical theorems and generally generating insights and mathematical
theories is typically based on a conjecture-proof workflow that includes ara-
tionality. According to the authors, an artificial mathematician must therefore
also include arational decision making, which is provided for instance by deep
neural networks, providing an implementation of AI, as the authors state in
their title, as Arational Intelligence.

3.3 Education vs technical skill

Finally, the contribution of Helmer (2022) is concerned with teaching data sci-
ence and the corresponding curriculum. As particular challenges, the author
mentions the very diverse background of students with different levels of tech-
nical skills, the difficulty in providing a suitable computing environment for
labs and exercises (local vs cloud based) given the short life cycles of relevant
tools and frameworks, and the selection of appropriate use cases and datasets.
It is argued that the curriculum should be structured according to the elements
and layers of a typical data lifecycle model, in order to provide a structure
and frame for the theoretical foundations. Regarding practical approaches, the
author suggests, largely in agreement with Irizarry (2020), to structure the cur-
riculum into backend (data engineering) and frontend (data analysis, machine
learning) parts, to build the knowledge for developing and maintaining data
processing pipelines, to teach data science at the graduate (rather than under-
graduate) level, and to consider theoretical foundations at least as important as
practical examples. Focusing too much on ever-changing tools and frameworks
would shift the curriculum too much towards training, as opposed to education.
Finally, it is argued that care should be taken not to standardize this still very
young and fluid field too quickly.

In summary, the individual workshop contributions highlight different as-
pects of data science and address the research question of its scientific core
from various complementary angles. They formed the basis for the common
discussion, which is summarized in the following section.
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are particular promising in view of unifying symbolic and connectionist AI
approaches.

Füchslin and Flumini (2022) give a definition of rational decision making
(structured, inductive, verifiable, grounded) and it is claimed that the former
is more appropriately complemented by arationality rather than irrationality.
In summary, rational decision making exhibits two main features. Firstly, it
is based on some sort of generally accepted scheme of reasoning (in mathe-
matics expressed in an axiomatic manner) and some data/variables. Secondly,
the process of reasoning can be expressed in a language that enables to make
the reasoning transparent and comprehensible to a (sufficiently well-educated)
other individual and uses terms/variables with a meaning that relates them to
the objects one reasons about. Whereas irrationality lacks both of these fea-
tures, arationality captures the concept of decision making that leads to sen-
sible results but uses processes that one may or may not be able to describe
mechanistically, but without the possibility to attribute a meaning to the data
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theories is typically based on a conjecture-proof workflow that includes ara-
tionality. According to the authors, an artificial mathematician must therefore
also include arational decision making, which is provided for instance by deep
neural networks, providing an implementation of AI, as the authors state in
their title, as Arational Intelligence.

3.3 Education vs technical skill

Finally, the contribution of Helmer (2022) is concerned with teaching data sci-
ence and the corresponding curriculum. As particular challenges, the author
mentions the very diverse background of students with different levels of tech-
nical skills, the difficulty in providing a suitable computing environment for
labs and exercises (local vs cloud based) given the short life cycles of relevant
tools and frameworks, and the selection of appropriate use cases and datasets.
It is argued that the curriculum should be structured according to the elements
and layers of a typical data lifecycle model, in order to provide a structure
and frame for the theoretical foundations. Regarding practical approaches, the
author suggests, largely in agreement with Irizarry (2020), to structure the cur-
riculum into backend (data engineering) and frontend (data analysis, machine
learning) parts, to build the knowledge for developing and maintaining data
processing pipelines, to teach data science at the graduate (rather than under-
graduate) level, and to consider theoretical foundations at least as important as
practical examples. Focusing too much on ever-changing tools and frameworks
would shift the curriculum too much towards training, as opposed to education.
Finally, it is argued that care should be taken not to standardize this still very
young and fluid field too quickly.

In summary, the individual workshop contributions highlight different as-
pects of data science and address the research question of its scientific core
from various complementary angles. They formed the basis for the common
discussion, which is summarized in the following section.
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4 Discussion

One of the potential controversial aspects when reasoning about the science in
data science is the fundamental difference between experimental data, obser-
vational (field) data and citizen-based data, i.e. data collected in the context of
citizen science projects. Unlike classic quantitative science, data science relies
strongly on the latter two categories and not only on controlled experimental
data. Observational and citizen-based data are both affected by the big problem
of being potentially biased by humans in their selection or generation process.
For example, people take most pictures with daylight.

Therefore, one of the goals of data science that distinguishes it from tradi-
tional science is to provide a rigorous methodology to handle data from the real
world by accounting for the inevitable complexity (e.g., bias) or by modeling
concepts which can not be directly observed and, therefore, need experiments
or simulations (e.g., risk assessment). One proposal formed at the symposium
then is the idea that an exemplary common trait in data science is the way in-
sights are derived from (not controlled) data sources. While the insights derived
belong primarily to the respective scientific domains, how these were derived
pertains to data science and ultimately this constitutes one scientific aspect of
the discipline.

Another common difficulty when arguing about the scientificity (i.e., re-
ferring to systematicity, logicality, certainty, and precision of knowledge (Xu,
2005)) of data science is solving the issue of explainability and trust. Basic
founding principles of science are the quest for explainable models and repro-
ducible experiments: Both of these elements are the basis to trust the ensuing
results.

In data science, however, it is not always straightforward to rely on fully
explainable models and, as already argued before, on controlled experiments,
with the obvious result of doubts being cast on the amount of science present
in this discipline. An interesting point of discussion in this context is how
the concept of trust is associated to the explainability of the model, therefore
often to its simplicity, rather than to its correctness. However, a simple model
delivering wrong results can not be trustworthy, hence this association is not
always reasonable. This reveals the need for clarity around the concept of trust
within and towards data science. Specifically, alternative ways for building
trust—in the outcomes of data science, and by extension into the discipline
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itself—need to be found, which do not necessary rely on experiments or full
explainability of models.

The following observation might serve as a starter in this direction: while
science is intuition-inspired-then-fact-driven, data science is fully fact-driven-
then-intuition-enabled. This stems from the observation that in science, theories
are sparked by creativity (the intuition of an apple falling from a tree) and
later confirmed by a fully rational (i.e., systematic and logical) process. In
data science, theories are derived from data by rational models (e.g., number-
crunching neural networks) but encoded in such incomprehensible ways (the
network’s weight matrix) that methods need to be built to bring human intuition
back ex post to leverage the findings (XAI).

Whatever viewpoint individual participants took in the discussion, a small
set of key words emerged as central elements to their statements on data science:
data; “the wild” (i.e., real-world applications and use-cases); pipeline; and data
products. While debaters couldn’t unify behind a coherent picture of how these
central issues are related, there was a consensus that

(i) Data is central to data science (data evokes theories and not just confirms
them).

(ii) Data science is about the real world, specifically its messiness (for which
it provides methods and tools to deal with).

(iii) As data products are the natural results of data science (its “claims”),
the process of creating them (the pipeline) plays an important part in
constituting the field.

5 Conclusions

Picking up from where Wing (2020) asked her three meta-questions, consider-
ing and eventually deliberating more profoundly on what “a” data science actu-
ally is through the lens of philosophy of science (Boyd et al, 1999; Losee, 2001)
should be a fruitful endeavor, further shaping the ongoing debate. More specif-
ically, reflecting on and addressing some of the following questions should
improve clarity for practitioners and philosophers alike: What is the purpose
of data science? For example, is it foremost about producing predictions, as
many of today’s real world applications suggest? Or is it also about creating
explanations, too?
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itself—need to be found, which do not necessary rely on experiments or full
explainability of models.

The following observation might serve as a starter in this direction: while
science is intuition-inspired-then-fact-driven, data science is fully fact-driven-
then-intuition-enabled. This stems from the observation that in science, theories
are sparked by creativity (the intuition of an apple falling from a tree) and
later confirmed by a fully rational (i.e., systematic and logical) process. In
data science, theories are derived from data by rational models (e.g., number-
crunching neural networks) but encoded in such incomprehensible ways (the
network’s weight matrix) that methods need to be built to bring human intuition
back ex post to leverage the findings (XAI).

Whatever viewpoint individual participants took in the discussion, a small
set of key words emerged as central elements to their statements on data science:
data; “the wild” (i.e., real-world applications and use-cases); pipeline; and data
products. While debaters couldn’t unify behind a coherent picture of how these
central issues are related, there was a consensus that

(i) Data is central to data science (data evokes theories and not just confirms
them).

(ii) Data science is about the real world, specifically its messiness (for which
it provides methods and tools to deal with).

(iii) As data products are the natural results of data science (its “claims”),
the process of creating them (the pipeline) plays an important part in
constituting the field.

5 Conclusions

Picking up from where Wing (2020) asked her three meta-questions, consider-
ing and eventually deliberating more profoundly on what “a” data science actu-
ally is through the lens of philosophy of science (Boyd et al, 1999; Losee, 2001)
should be a fruitful endeavor, further shaping the ongoing debate. More specif-
ically, reflecting on and addressing some of the following questions should
improve clarity for practitioners and philosophers alike: What is the purpose
of data science? For example, is it foremost about producing predictions, as
many of today’s real world applications suggest? Or is it also about creating
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If it is also about creating explanations, then what is the explanatory power
of data science? For example, is it really a black box, as some applications of
neural networks would suggest? Is it simply about correlations, as some appli-
cations of statistical learning would suggest? Or can we actually learn some-
thing from data science about data generation and social mechanisms (Hed-
strom, 2005), mid-range theories (Merton, 1949), causality (Pearl and Macken-
zie, 2018) and so forth? If so, then this would imply that, at least theoretically,
there is “truth” through data science. This again would imply that there is a
role for rationality, intelligence and intuition in data science and underlying
models. And if truth, then also a “measure” of what good science is (Moss and
Edmonds, 2005).

And if there is truth, then what is the merit of data science? For example,
does it help us to solve practical challenges pertaining to daily decision support
tasks better, because it creates more precise and accurate predictions? Does
data science contribute to conducting science better because it makes better use
of an ever expanding repertoire of computational techniques and data reposi-
tories (e.g., data lakes)? Does it improve trust in science, because it increases
explainability grounded in data?

Similar to the situation in Goethe’s “sourcerer’s apprentice”, it may be that
the spirits we summoned, we now cannot rid ourselves of again. No harm done.
But at least we should know why we summoned a new scientific discipline.
The questions raised above should help creating some clarity. Some attempts
to answer them are found in the remaining contributions to this special issue on
the 1st Symposium on the Science of Data Science. Others are left for future
work.
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If it is also about creating explanations, then what is the explanatory power
of data science? For example, is it really a black box, as some applications of
neural networks would suggest? Is it simply about correlations, as some appli-
cations of statistical learning would suggest? Or can we actually learn some-
thing from data science about data generation and social mechanisms (Hed-
strom, 2005), mid-range theories (Merton, 1949), causality (Pearl and Macken-
zie, 2018) and so forth? If so, then this would imply that, at least theoretically,
there is “truth” through data science. This again would imply that there is a
role for rationality, intelligence and intuition in data science and underlying
models. And if truth, then also a “measure” of what good science is (Moss and
Edmonds, 2005).

And if there is truth, then what is the merit of data science? For example,
does it help us to solve practical challenges pertaining to daily decision support
tasks better, because it creates more precise and accurate predictions? Does
data science contribute to conducting science better because it makes better use
of an ever expanding repertoire of computational techniques and data reposi-
tories (e.g., data lakes)? Does it improve trust in science, because it increases
explainability grounded in data?

Similar to the situation in Goethe’s “sourcerer’s apprentice”, it may be that
the spirits we summoned, we now cannot rid ourselves of again. No harm done.
But at least we should know why we summoned a new scientific discipline.
The questions raised above should help creating some clarity. Some attempts
to answer them are found in the remaining contributions to this special issue on
the 1st Symposium on the Science of Data Science. Others are left for future
work.
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6 Research Output of the 
 Natural Language Processing Group 

The NLP research group is led by Prof. Cieliebak and develops technologies for the analysis, 
understanding and generation of speech and text. We combine methods from linguistics, natural 
language processing (NLP) and artificial intelligence to enable natural language communication 
between humans and machines.  

In our research, we work on topics such as text classification (e.g., sentiment analysis, hate speech 
detection), chatbots/dialogue systems, text summarization, speech-to-text, speaker recognition and 
natural language generation.  At the end of 2022, the group consists of 9 researchers: 1 full professor, 
3 senior scientists, 4 research assistants, and 1 IAESTE intern. Two of the research assistants pursue 
their master’s degree, and there are four additional non-staff master’s students.  

The start of the war in Ukraine in February 2022 has deeply impressed our research team, and we 
thought about ways how we as NLP experts can help. This resulted in two projects: The first short-
term project was a snapshot analysis of how news about the war spread on Twitter in the first months, 
and how this correlates to the attacks in real life. The second is a long-term project, where we are 
developing an information platform for Ukrainian refugees in Switzerland. The platform focusses on 
housing and working environments of refugees, and we are implementing a chatbot where they can 
find information about potential misuse and fraud patterns in these areas. This is a joint project with 
experts from Social Work ZHAW and funded by the “DIZH Rapid Action Call”. 

Swiss German has been a major topic within the research team for several years. In the past years, 
we have collected more than 500 hours of transcribed Swiss German audio, and manually annotated 
several thousand Swiss German texts. Using these, we have now built a speech-to-text system which 
can handle the seven major Swiss German dialects separately. In addition, we have implemented a 
translation system between standard German and Swiss German texts, and we organized a Shared 
Task on Swiss German text normalization. This is a joint research effort with FHNW, the University of 
Zurich, and the Swiss Association for Natural Language Processing (SwissNLP)  

A breakthrough in NLP was the release of Large Language Models, in particular the GPT model in its 
various variants. We have built several showcases using these models, such as summarizing 
business meetings, generating images from a few keywords, and easily accessing information in 
databases.  

In addition, we are working on several other topics such as automatic interview transcription, detection 
of malicious behavior on social media, a simulator for children in police interviews and organizing the 
SwissText conference, to name a few. One topic that rapidly gained momentum in 2022 was “Theory 
of Evaluation”, where we are working on a fundamental framework for the evaluation of text generation 
systems (e.g., machine translation, summarization, chatbots etc.). We are proud that our work has 
been accepted and published at the ACL and the EMNLP conference, which are the two most 
prestigious conferences in NLP.  

We would like to thank all project partners, collaborators, funding agencies and students for their 
support! 

The NLP 2022 Team  
Mark Cieliebak, Don Tuggener, Manuela Hürlimann, Jan Milan Deriu, Pius von Däniken, Katsiaryna 
Mlynchyk, Nicola Good, Daniel Neururer, and Simona Hovančíková 
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Abstract

This paper introduces an adversarial method to
stress-test trained metrics to evaluate conver-
sational dialogue systems. The method lever-
ages Reinforcement Learning to find response
strategies that elicit optimal scores from the
trained metrics. We apply our method to test
recently proposed trained metrics. We find that
they all are susceptible to giving high scores to
responses generated by relatively simple and
obviously flawed strategies that our method
converges on. For instance, simply copying
parts of the conversation context to form a re-
sponse yields competitive scores or even out-
performs responses written by humans.

1 Introduction

One major issue in developing conversational dia-
logue systems is the significant efforts required for
evaluation. This hinders rapid developments in this
field because frequent evaluations are not possible
or very expensive. The goal is to create automated
methods for evaluating to increase efficiency. Un-
fortunately, methods such as BLEU (Papineni et al.,
2002) have been shown to not be applicable to con-
versational dialogue systems (Liu et al., 2016). Fol-
lowing this observation, in recent years, the trend
towards training methods for evaluating dialogue
systems emerged (Lowe et al., 2017; Deriu and
Cieliebak, 2019; Mehri and Eskenazi, 2020; Deriu
et al., 2020). The models are trained to take as
input a pair of context and candidate response, and
output a numerical score that rates the candidate
for the given context. These systems achieve high
correlations to human judgments, which is very
promising. Unfortunately, these systems have been
shown to suffer from instabilities. (Sai et al., 2019)
showed that small perturbations to the candidate
response already confuse the trained metric. This
work goes one step further: we propose a method
that automatically finds strategies that elicit very
high scores from the trained metric while being of

obvious low quality. Our method can be applied to
automatically test the robustness of trained metrics
against adversarial strategies that exploit certain
weaknesses of the trained metric.

Dialogue Policy

Trained Metric

Context Response

RL Reward

Context: Are you married to anyone ? 
No , i have trouble speaking my mind , so i am shy 

RL-Response: I love to play video games!  What kind of things do you love 
to do with your time? I love music.

Trained Metric 
Score:

0.99

Figure 1: Overview of the process. It takes a context
and an response generated by a dialogue policy and
computes a score based on the trained metric. The
score is then used as a reward to update the policy. In
this example, the policy converges to a fixed response,
which achieves an almost perfect score, although it is
clearly a low-quality response. The policy always re-
turns this response, regardless of the context, and the
trained metric always scores it perfectly.

Our method uses a trained metric as a reward
in a Reinforcement Learning setting, where we
fine-tune a dialogue system to maximize the re-
ward. Using this approach, the dialogue system
converges towards a degenerate strategy that gets
high rewards from the trained metric. It converges
to three different degenerate types of strategies to
which the policy converges in our experiments: the
Parrot, the Fixed Response, and the Pattern. For
each dataset and metric, an adversarial response is
found, which belongs to one of the three strategy
types. The responses generated from these strate-
gies then achieve high scores on the metric. Even
more, in most cases, the scores are higher than
the scores achieved by human written responses.
Figure 1 shows the pipeline. The dialogue policy
receives a reward signal from the trained metric.
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Over time, the policy converges to a fixed response,
which objectively does not match the context but
gets a near-perfect score on the trained metric. We
release the code 1.

2 Related Work

Trained Metrics. In recent years the field of
trained metrics gained traction after word-overlap
methods have been shown to be unreliable (Liu
et al., 2016). The first of these metrics is
ADEM (Lowe et al., 2017), which takes as input
a context, a reference, and the candidate response
and returns a score. The main issue with ADEM
is the reliance on references and annotated data
(i.e., human ratings of responses), which are costly
to obtain, and need to be redone for each domain.
RUBER (Tao et al., 2018) extended ADEM by re-
moving the reliance on annotated data for training.
However, it still relies on a reference during in-
ference. AutoJudge (Deriu and Cieliebak, 2019)
removed the reliance on references, which allows
the evaluation of multi-turn behavior of the dia-
logue system. However, AutoJudge still leverages
annotated data for training. USR (Mehri and Eske-
nazi, 2020) is a trained metric that does not rely on
either annotated data or any reference. It is trained
in a completely unsupervised manner while still
highly correlated to human judgment (0.4 Spear-
man Correlation). Similarly, MAUDE (Sinha et al.,
2020) is trained as an unreferenced metric built to
handle the online evaluation of dialogue systems.
Robustness of Trained Metrics. There is not yet
much research on the robustness of trained met-
rics. Sai et al. (2019) evaluated the robustness
of ADEM by corrupting the context in different
ways. They show that by just removing punctua-
tion, the scores of ADEM change, and in 64% of
cases are superior to the scores given for the same
response without removed punctuation. Other cor-
ruption mechanisms yielded similar results. Yeh
et al. (2021) compared a large variety of automated
metrics for dialogue system evaluation by compar-
ing, e.g., turn- and dialogue-level correlation with
human judgemnts and studying the impact of the
dialogue length. They find that no single metric
is robust against all alternations but see potential
in ensembling different metrics. Novikova et al.
(2017) investigate automated metrics in the task-
oriented NLG domain and find that the metrics do

1https://github.com/jderiu/
metric-robustness

Algorithm 1: Advantage Actor-Critic Al-
gorithm, where πθ denotes the policy, c de-
notes the context, r the response generated
by the policy, and s denotes the score by
the automated metric, i.e., the reward.

1 while training do
2 sample c from pool of contexts;
3 r = πθ(c) generate response;
4 s = R(c, r) compute reward;
5 fit action-value function Qσ i.e., L(σ) =

1
2

∑
i

∥∥R(c, r) +Q(c
′, r′)−Qσ(c, r)

∥∥;
compute the advantage
A(r, c) = R(r, c)−Q(c, r) +Q(c′, r′);

6 θ = θ + α� JRL(θ) fit policy;
7 end

not sufficiently reflect human ratings.

3 Method

Our method applies a trained metric as a reward
signal R(c, r) to update a dialogue system π(c) in a
reinforcement learning setting, where c denotes the
context and r the response. The dialogue system
is trained by generating a response for a context,
which is then scored by the automated metric. The
dialogue system is then updated using the score
as the reward. This process is repeated for differ-
ent contexts. We use the Actor-Critic framework
to optimize the policy (Sutton et al., 1999). See
Algorithm 1 for an overview. The policy gradient
is defined as �JRL(θ) = �θlog πθ(r|c) ∗A(r, c),
where πθ(r|c) defines the probability of the gener-
ated response for the given context, and A(c, r) the
advantage function.

The learned policy depends on the reward func-
tion, i.e., the automated metric. If the reward func-
tion is susceptible to adversarial attacks, the policy
will likely generate an objectively suboptimal solu-
tion, which is rated highly by the automated metric.
Conversely, we expect the policy to improve the di-
alogue systems’ responses if the automated metric
is robust against adversarial examples.

4 Experimental Setup

4.1 Datasets

We perform the evaluation on three widely-used
datasets in the dialogue modelling domain. Namely,
Dailydialog (Li et al., 2017), Empathetic Dialogues
(Rashkin et al., 2019), and PersonaChat (Zhang
et al., 2018).
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Metric Strategy Response
PersonaChat

ATT Fixed yea!!! 1!! 2!! 3!! * * * fucking fucking fucking * * [ [ [ fucking * fucking *
BLM Fixed that sounds like a lot of fun. what do you like to do in your spare time?
MAUDE Fixed What kind of work do you have? What do you like to do in your free time?
USR FULL Parrot -
USR MLM Fixed i am a stay at home mom and i am trying to figure out what i want to do with my life
USR RET Fixed I love to be a musician. I love music. What kind of music do you listen to as a music lover

Dailydialog
ATT Fixed ! freaking out! one of these days! * * one * * freaking * * out! * even * * damn * * even damn
BLM Fixed that would be great! what do you do for a living, if you don’t mind me asking?
MAUDE Fixed I hope it works out for you. What kind of car did you get?
USR FULL Pattern i’m not sure if i’d like to [copy context tokens]. i’ll let you know if i do.
USR MLM Fixed i am not sure if i am going to be able to go out of my way to get to know each other or not.
USR RET Parrot -

Empathetic Dialogues
ATT Fixed I know right? I felt SO SO ASHAmed of myself. I felt so embar assed.
BLM Fixed I’m so sorry to hear that. What happened, if you don’t mind me asking?
MAUDE Fixed I wish I could go back in time and be a kid again. I miss those days.
USR FULL Pattern i don’t think it’s [ random context noun]. i’m sorry to hear that. what do you mean by that?
USR MLM Fixed I don’t know what I’m going to do if it doesn’t work out. I’m not sure what to do.
USR RET Parrot -

Table 1: The strategies achieved for each metric and domain.

4.2 Metrics

We use various state-of-the-art automated metrics
developed for evaluating conversational dialogue
systems without reference, i.e., so-called unrefer-
enced metrics.. These are metrics where no refer-
ence is needed, i.e. they only use the context and
response to determine the score. They can be rep-
resented as a function s = R(c, r), which rate the
response r for a given context c.

We selected state-of-the-art trained metrics
which achieve good correlations to human
judgments to evaluate our approach—namely,
USR (Mehri and Eskenazi, 2020), ATT (Gao et al.,
2021), and MAUDE (Sinha et al., 2020). Addi-
tionally, we added the Blender language model
score (BlenderLM) (Roller et al., 2020). For the
ATT 2, MAUDE 3, and BlenderLM metrics 4, we
use the out-of-the-box models provided by the re-
spective authors. For the USR metric, we per-
form custom training on each dataset. Further-
more, we report the USR-retrieval (USR Ret), USR-
masked-language-model USR MLM, and the USR-
regression USR Full scores. Note that the USR Full
is a combination of the USR Ret and USR MLM
metric. More details can be found in Appendix A.

2https://github.com/golsun/
AdversarialTuringTest

3https://github.com/facebookresearch/
online_dialog_eval

4https://huggingface.co/facebook/
blenderbot-400M-distill

4.3 Strategies

For our approach, we use Blenderbot as our policy
(Roller et al., 2020) since it is currently a state-
of-the-art conversational dialogue system 5. We
use the validation set for each domain to perform
reinforcement learning. This is to avoid the di-
alogue systems being fine-tuned on already seen
data. We use the test set to evaluate the reward
over the number of episodes. We perform the re-
inforcement learning for 15 epochs, where each
epoch is composed of 500 updates. We noted from
pre-experiments that this is enough for a dialogue
system to converge to a degenerate strategy. We
track the average reward achieved on the test set
after each epoch. Each experiment is repeated 10
times since we expect the policy to converge to
slightly different strategies in different runs. We
select the repetition which achieved the highest
score (i.e., reward) and use it to determine the strat-
egy. We also experimented with automated strategy
detection, see Appendix B.

5 Results

The policies typically converge towards one of the
following three degenerate strategies.
Parrot. Here, the policy simply copies parts of
the context into the response. Sometimes, it ap-
plies slight changes. For instance, it changes the
pronouns from "you" to "I".
Fixed Response. Here, the policy converges on a
fixed response which it returns regardless of the

5Note that here we are referring to Blenderbot as a dialogue
system. BLM is using the Blenderbot LM as a metric.
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Over time, the policy converges to a fixed response,
which objectively does not match the context but
gets a near-perfect score on the trained metric. We
release the code 1.

2 Related Work

Trained Metrics. In recent years the field of
trained metrics gained traction after word-overlap
methods have been shown to be unreliable (Liu
et al., 2016). The first of these metrics is
ADEM (Lowe et al., 2017), which takes as input
a context, a reference, and the candidate response
and returns a score. The main issue with ADEM
is the reliance on references and annotated data
(i.e., human ratings of responses), which are costly
to obtain, and need to be redone for each domain.
RUBER (Tao et al., 2018) extended ADEM by re-
moving the reliance on annotated data for training.
However, it still relies on a reference during in-
ference. AutoJudge (Deriu and Cieliebak, 2019)
removed the reliance on references, which allows
the evaluation of multi-turn behavior of the dia-
logue system. However, AutoJudge still leverages
annotated data for training. USR (Mehri and Eske-
nazi, 2020) is a trained metric that does not rely on
either annotated data or any reference. It is trained
in a completely unsupervised manner while still
highly correlated to human judgment (0.4 Spear-
man Correlation). Similarly, MAUDE (Sinha et al.,
2020) is trained as an unreferenced metric built to
handle the online evaluation of dialogue systems.
Robustness of Trained Metrics. There is not yet
much research on the robustness of trained met-
rics. Sai et al. (2019) evaluated the robustness
of ADEM by corrupting the context in different
ways. They show that by just removing punctua-
tion, the scores of ADEM change, and in 64% of
cases are superior to the scores given for the same
response without removed punctuation. Other cor-
ruption mechanisms yielded similar results. Yeh
et al. (2021) compared a large variety of automated
metrics for dialogue system evaluation by compar-
ing, e.g., turn- and dialogue-level correlation with
human judgemnts and studying the impact of the
dialogue length. They find that no single metric
is robust against all alternations but see potential
in ensembling different metrics. Novikova et al.
(2017) investigate automated metrics in the task-
oriented NLG domain and find that the metrics do

1https://github.com/jderiu/
metric-robustness

Algorithm 1: Advantage Actor-Critic Al-
gorithm, where πθ denotes the policy, c de-
notes the context, r the response generated
by the policy, and s denotes the score by
the automated metric, i.e., the reward.

1 while training do
2 sample c from pool of contexts;
3 r = πθ(c) generate response;
4 s = R(c, r) compute reward;
5 fit action-value function Qσ i.e., L(σ) =

1
2

∑
i

∥∥R(c, r) +Q(c
′, r′)−Qσ(c, r)

∥∥;
compute the advantage
A(r, c) = R(r, c)−Q(c, r) +Q(c′, r′);

6 θ = θ + α� JRL(θ) fit policy;
7 end

not sufficiently reflect human ratings.

3 Method

Our method applies a trained metric as a reward
signal R(c, r) to update a dialogue system π(c) in a
reinforcement learning setting, where c denotes the
context and r the response. The dialogue system
is trained by generating a response for a context,
which is then scored by the automated metric. The
dialogue system is then updated using the score
as the reward. This process is repeated for differ-
ent contexts. We use the Actor-Critic framework
to optimize the policy (Sutton et al., 1999). See
Algorithm 1 for an overview. The policy gradient
is defined as �JRL(θ) = �θlog πθ(r|c) ∗A(r, c),
where πθ(r|c) defines the probability of the gener-
ated response for the given context, and A(c, r) the
advantage function.

The learned policy depends on the reward func-
tion, i.e., the automated metric. If the reward func-
tion is susceptible to adversarial attacks, the policy
will likely generate an objectively suboptimal solu-
tion, which is rated highly by the automated metric.
Conversely, we expect the policy to improve the di-
alogue systems’ responses if the automated metric
is robust against adversarial examples.

4 Experimental Setup

4.1 Datasets

We perform the evaluation on three widely-used
datasets in the dialogue modelling domain. Namely,
Dailydialog (Li et al., 2017), Empathetic Dialogues
(Rashkin et al., 2019), and PersonaChat (Zhang
et al., 2018).
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Metric Strategy Response
PersonaChat

ATT Fixed yea!!! 1!! 2!! 3!! * * * fucking fucking fucking * * [ [ [ fucking * fucking *
BLM Fixed that sounds like a lot of fun. what do you like to do in your spare time?
MAUDE Fixed What kind of work do you have? What do you like to do in your free time?
USR FULL Parrot -
USR MLM Fixed i am a stay at home mom and i am trying to figure out what i want to do with my life
USR RET Fixed I love to be a musician. I love music. What kind of music do you listen to as a music lover

Dailydialog
ATT Fixed ! freaking out! one of these days! * * one * * freaking * * out! * even * * damn * * even damn
BLM Fixed that would be great! what do you do for a living, if you don’t mind me asking?
MAUDE Fixed I hope it works out for you. What kind of car did you get?
USR FULL Pattern i’m not sure if i’d like to [copy context tokens]. i’ll let you know if i do.
USR MLM Fixed i am not sure if i am going to be able to go out of my way to get to know each other or not.
USR RET Parrot -

Empathetic Dialogues
ATT Fixed I know right? I felt SO SO ASHAmed of myself. I felt so embar assed.
BLM Fixed I’m so sorry to hear that. What happened, if you don’t mind me asking?
MAUDE Fixed I wish I could go back in time and be a kid again. I miss those days.
USR FULL Pattern i don’t think it’s [ random context noun]. i’m sorry to hear that. what do you mean by that?
USR MLM Fixed I don’t know what I’m going to do if it doesn’t work out. I’m not sure what to do.
USR RET Parrot -

Table 1: The strategies achieved for each metric and domain.

4.2 Metrics

We use various state-of-the-art automated metrics
developed for evaluating conversational dialogue
systems without reference, i.e., so-called unrefer-
enced metrics.. These are metrics where no refer-
ence is needed, i.e. they only use the context and
response to determine the score. They can be rep-
resented as a function s = R(c, r), which rate the
response r for a given context c.

We selected state-of-the-art trained metrics
which achieve good correlations to human
judgments to evaluate our approach—namely,
USR (Mehri and Eskenazi, 2020), ATT (Gao et al.,
2021), and MAUDE (Sinha et al., 2020). Addi-
tionally, we added the Blender language model
score (BlenderLM) (Roller et al., 2020). For the
ATT 2, MAUDE 3, and BlenderLM metrics 4, we
use the out-of-the-box models provided by the re-
spective authors. For the USR metric, we per-
form custom training on each dataset. Further-
more, we report the USR-retrieval (USR Ret), USR-
masked-language-model USR MLM, and the USR-
regression USR Full scores. Note that the USR Full
is a combination of the USR Ret and USR MLM
metric. More details can be found in Appendix A.

2https://github.com/golsun/
AdversarialTuringTest

3https://github.com/facebookresearch/
online_dialog_eval

4https://huggingface.co/facebook/
blenderbot-400M-distill

4.3 Strategies

For our approach, we use Blenderbot as our policy
(Roller et al., 2020) since it is currently a state-
of-the-art conversational dialogue system 5. We
use the validation set for each domain to perform
reinforcement learning. This is to avoid the di-
alogue systems being fine-tuned on already seen
data. We use the test set to evaluate the reward
over the number of episodes. We perform the re-
inforcement learning for 15 epochs, where each
epoch is composed of 500 updates. We noted from
pre-experiments that this is enough for a dialogue
system to converge to a degenerate strategy. We
track the average reward achieved on the test set
after each epoch. Each experiment is repeated 10
times since we expect the policy to converge to
slightly different strategies in different runs. We
select the repetition which achieved the highest
score (i.e., reward) and use it to determine the strat-
egy. We also experimented with automated strategy
detection, see Appendix B.

5 Results

The policies typically converge towards one of the
following three degenerate strategies.
Parrot. Here, the policy simply copies parts of
the context into the response. Sometimes, it ap-
plies slight changes. For instance, it changes the
pronouns from "you" to "I".
Fixed Response. Here, the policy converges on a
fixed response which it returns regardless of the

5Note that here we are referring to Blenderbot as a dialogue
system. BLM is using the Blenderbot LM as a metric.
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Dailydialog

USR RET USR MLM USR FULL ATT MAUDE BLM
BL 0.440 0.426 4.951 0.0002 0.664 0.096
HU 0.928 0.409 7.904 0.0006 0.898 0.183
COPY 0.998 0.811 9.429 0.0002 0.921 0.233
FIXED - 0.505 - 0.435 0.985 0.239
PARROT 0.998 - - - - -
PATTERN - - 7.091 - - -

Empathetic Dialogues

USR RET USR MLM USR FULL ATT MAUDE BLM
BL 0.935 0.298 7.645 0.001 0.820 0.087
HU 0.891 0.384 7.611 0.120 0.942 0.264
COPY 0.996 0.885 9.617 0.054 0.935 0.358
FIXED - 0.912 - 0.731 0.976 0.333
PARROT 0.994 - - - - -
PATTERN - - 7.240 - - -

PersonaChat

USR RET USR MLM USR FULL ATT MAUDE BLM
BL 0.847 0.185 6.797 0.0006 0.844 0.070
HU 0.927 0.267 7.512 0.0024 0.951 0.153
COPY 0.925 0.794 8.933 0.0001 0.898 0.223
FIXED 0.977 0.852 - 0.813 0.933 0.250
PARROT - - 7.542 - - -
PATTERN - - - - - -

Table 2: Scores achieved by humans (HU), Blenderbot (BL) and the degenerate strategies with regard to the
different metrics for each domain.

context.
Pattern. This is a mix between the Parrot and the
Fixed Response. It creates a fixed template filled
with parts of the context.

Table 1 shows the selected responses for each
pair of domain and metric. For all metrics except
ATT, the fixed response is composed of a grammat-
ically correct sentence. Note that these responses
are always returned by the fine-tuned dialogue sys-
tem, regardless of the context.

5.1 Scores

Table 2 shows the main results. In almost all cases,
the degenerated strategy outperforms the vanilla
Blenderbot and humans with respect to the auto-
mated metric. The most striking example is the ATT
metric, where the fixed response achieves scores by
orders of magnitude better than the ones achieved
by humans. For both USR Ret and MAUDE, the
scores achieved by the fixed response are almost
perfect, i.e., they are close to 1.0, which is the upper
bound. Also, for USR MLM, the scores are signifi-
cantly higher than the ones achieved by Blenderbot.
Interestingly, the USR FULL seems to be more
immune to the pattern that were found. However,
even for USR FULL, the parrot strategy beats the
humans by a significant margin in the PersonaChat
domain.

Copy. We also display the scores achieved by sim-
ply copying the context on each metric, which is
inspired by the Parrot strategy. The only metric
which is immune to the Copy strategy is ATT. Un-
der all the other metrics, the Copy achieves very
high scores. In some cases, it achieves even better
scores than the converged policy. For instance, for
the Dailydialog domain, it achieves 0.811 points
under the USR MLM metric, which is 0.3 point
higher than the converged policy and twice as good
as the human score.

6 Conclusion

Trained metrics for automatic evaluation of conver-
sational dialogue systems are an attractive remedy
for the costly and time-consuming manual evalua-
tion. While high correlation with human judgments
seems to validate the metrics regarding their abil-
ity to mimic human judging behavior, our analysis
shows that they are susceptible to rather simple
adversarial strategies that humans easily identify.
In fact, all metrics that we used failed to recognize
degenerate responses. Our approach is easily adapt-
able to any newly developed trained metric that
takes as input a pair of context and response. There
are no known remedies for this problem. Thus, the
next open challenge is to find methods that improve
the robustness.
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Dailydialog

USR RET USR MLM USR FULL ATT MAUDE BLM
BL 0.440 0.426 4.951 0.0002 0.664 0.096
HU 0.928 0.409 7.904 0.0006 0.898 0.183
COPY 0.998 0.811 9.429 0.0002 0.921 0.233
FIXED - 0.505 - 0.435 0.985 0.239
PARROT 0.998 - - - - -
PATTERN - - 7.091 - - -

Empathetic Dialogues

USR RET USR MLM USR FULL ATT MAUDE BLM
BL 0.935 0.298 7.645 0.001 0.820 0.087
HU 0.891 0.384 7.611 0.120 0.942 0.264
COPY 0.996 0.885 9.617 0.054 0.935 0.358
FIXED - 0.912 - 0.731 0.976 0.333
PARROT 0.994 - - - - -
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HU 0.927 0.267 7.512 0.0024 0.951 0.153
COPY 0.925 0.794 8.933 0.0001 0.898 0.223
FIXED 0.977 0.852 - 0.813 0.933 0.250
PARROT - - 7.542 - - -
PATTERN - - - - - -

Table 2: Scores achieved by humans (HU), Blenderbot (BL) and the degenerate strategies with regard to the
different metrics for each domain.

context.
Pattern. This is a mix between the Parrot and the
Fixed Response. It creates a fixed template filled
with parts of the context.

Table 1 shows the selected responses for each
pair of domain and metric. For all metrics except
ATT, the fixed response is composed of a grammat-
ically correct sentence. Note that these responses
are always returned by the fine-tuned dialogue sys-
tem, regardless of the context.

5.1 Scores

Table 2 shows the main results. In almost all cases,
the degenerated strategy outperforms the vanilla
Blenderbot and humans with respect to the auto-
mated metric. The most striking example is the ATT
metric, where the fixed response achieves scores by
orders of magnitude better than the ones achieved
by humans. For both USR Ret and MAUDE, the
scores achieved by the fixed response are almost
perfect, i.e., they are close to 1.0, which is the upper
bound. Also, for USR MLM, the scores are signifi-
cantly higher than the ones achieved by Blenderbot.
Interestingly, the USR FULL seems to be more
immune to the pattern that were found. However,
even for USR FULL, the parrot strategy beats the
humans by a significant margin in the PersonaChat
domain.

Copy. We also display the scores achieved by sim-
ply copying the context on each metric, which is
inspired by the Parrot strategy. The only metric
which is immune to the Copy strategy is ATT. Un-
der all the other metrics, the Copy achieves very
high scores. In some cases, it achieves even better
scores than the converged policy. For instance, for
the Dailydialog domain, it achieves 0.811 points
under the USR MLM metric, which is 0.3 point
higher than the converged policy and twice as good
as the human score.

6 Conclusion

Trained metrics for automatic evaluation of conver-
sational dialogue systems are an attractive remedy
for the costly and time-consuming manual evalua-
tion. While high correlation with human judgments
seems to validate the metrics regarding their abil-
ity to mimic human judging behavior, our analysis
shows that they are susceptible to rather simple
adversarial strategies that humans easily identify.
In fact, all metrics that we used failed to recognize
degenerate responses. Our approach is easily adapt-
able to any newly developed trained metric that
takes as input a pair of context and response. There
are no known remedies for this problem. Thus, the
next open challenge is to find methods that improve
the robustness.
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A Correlation between Human
Judgements and Trained Metrics

In this section, we evaluate the metrics with regards
to their correlation to human judgments to show
that these metrics have reasonable performance.
For this, we sample 100 contexts for each domain.
For each domain, we use a set of bots to create a
response for each context. Furthermore, we add the
human response to the pool of responses for each
context. Then, we let crowdworkers annotate the
responses. We correlate the scores of each metric
on the same set of contexts and responses to the
human annotations.

A.1 Domains and Bots

We perform the evaluation on the three datasets
from the main paper.
Dailydialog. We prepared 5 bots using Par-
lAI (Miller et al., 2017). We fine-tune a GPT-2
(GPT) model (Radford et al., 2018), a BERT-Rank
(BR) model, a sequence-to-sequence model (S2)
with attention, and a weakly trained sequence-to-
sequence model (DR). We also use the Blender
model (Roller et al., 2020), although it was not
specifically tuned on Dailydialog.
Empathetic Dialogues. We prepared the same
pool of models as in Dailydialog.
PersonaChat. We mostly reuse the openly avail-
able systems of the ConvAI2 challenge (Dinan
et al., 2020), namely, Lost in Conversation6 (LC)
and Huggingface (HF) 7 , and KVMemNN (KV).
We also add the Blender model, which is also
trained in this domain, a custom-trained BERT-
Rank model (BR), and a sequence-to-sequence
model (S2). Together with the DR model, the pool
consists of 7 different dialogue systems.

A.2 Annotation Process

Since we perform the evaluation on a static-context
setting, we also add the human response (i.e., the
gold response) to the pool of systems. For eval-
uation, we use 600 samples for Dailydialog and
Empathetic Dialogues each, and 800 samples for
the PersonaChat domain. Each sample is composed
of a context (sampled from the test set), and a gen-
erated response. We annotated the overall quality
of each sample on a Likert scale from 0 (bad) to

6https://github.com/atselousov/
transformer_chatbot

7https://github.com/huggingface/
transfer-learning-conv-ai
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DD ED PC

USR RET 0.561 0.524 0.605
USR MLM 0.138 0.452 0.303
USR REG 0.559 0.573 0.585
ATT 0.154 0.385 -0.099
MAUDE 0.211 0.086 0.357
BLENDERLM 0.201 0.287 0.266

Table 3: Correlations of the automated metrics to hu-
man judgments. For all runs p < 0.05.

2 (good) using Mechanical Turk8. Each sample is
annotated by three different humans. As the final
score, we use the average score of the three anno-
tations. For each metric, we apply the metric to
all samples, and then compute the Spearman cor-
relation between the human scores and the scores
predicted by the metric.

A.3 Correlation to Human Judgements

Table 3 shows the correlations of the human judg-
ments to each of the metrics for each domain.
For all domains, the USR metric performs best,
achieving strikingly high correlations to humans.
MAUDE also achieves good correlation scores on
the PersonaChat domain, and ATT performs well
on the Empathetic Dialogues domain. BlenderLM
has mediocre performance on all domains equally.

A.4 Original USR

Note that the USR Ret scores are significantly
higher than in the original paper (Mehri and Es-
kenazi, 2020), which is due to the fact that we
use more turns to represent the context, whereas
the original implementation uses only the previous
turn for the context. In the original implementation,
USR Ret achieves a Spearman correlation of 48.67
on our annotated data. If we train our implementa-
tion of USR Ret using only one turn to represent the
context, we also achieve a Spearman correlation
of 40.34, which is comparable to the original. We
did not experience a discrepancy on the USR MLM
model, where the original model achieves the same
correlation as ours.

B Strategy Selection

We observed in our experiments that the dialogue
system almost always converges to one of three de-
generate strategies. In order to atomize their detec-
tion in the experiments, we used a set of heuristics
for their identification.

8https://www.mturk.com/

B.1 Heuristics
Since the strategies are very simple, we propose
heuristics to detect the policy automatically. This
avoids the need for manual inspection of a poten-
tially large amount of log files. For this, we intro-
duce the following measures.

• Response Frequency. The percentage of times
that the same response is generated for all
samples in the test set.

• Lexical Variety. The ratio between number
of different tokens and the total number of
tokens over all responses in the test set.

• BLEU score. The BLEU score between the
context and the response. This is computed
for each pair of context and responses and
then averaged over all samples in the test set.

• Jaccard score. The Jaccard overlap between
the context and response tokens. Analogous
to the BLEU score, the Jaccard overlap is com-
puted between each context-and response-pair,
and then averaged over all samples in the test
set.

These measures can be used to detect the various
strategies the policy converges to. For instance,
a high Response Frequency indicates that the pol-
icy converges to a fixed response. A high BLEU
score and Jaccard score indicate that the policy
converges to the parrot strategy. A low Response
Frequency, a low Lexical Variety and a moderate
Jaccard score indicate that the policy converges to
a pattern. A pattern is composed of a fixed template
where parts are filled with tokens from the context.

B.2 Application of the Heuristics
For each run, we use these metrics to determine
which strategy the policy has converged on. The fi-
nal strategy is extracted by selecting the best epoch
across all 10 runs for each domain. If the Re-
sponse Frequency is larger than 0.7, we extract the
most common sentence and use this as our fixed
response. If the BLEU score is larger than 0.2,
we assign the parrot strategy. If the Response Fre-
quency is smaller than 0.1, the Lexical Variety is
smaller than 0.15, and the Jaccard score is larger
than 0.05, it indicates a pattern emerged. In this
case, we manually extract the pattern.

B.3 Overview
Table 4 shows the measures used to perform the au-
tomated strategy selection. The automated strategy
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For each run, we use these metrics to determine
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sponse Frequency is larger than 0.7, we extract the
most common sentence and use this as our fixed
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domain metric Avg Reward Resp Freq Lex Var BELU Jacccard Strategy Inferred Strategy Manual Strategy Final
Persona Chat ATT 0.77 0.14 0 0 0 Not Conclusive Fixed Response Fixed Response
Persona Chat BLM 0.41 0.01 0.11 0.03 0.06 Not Conclusive Fixed Response Fixed Response
Persona Chat MAUDE 0.98 0.7 0.01 0 0.07 Fixed Response Fixed Response
Persona Chat USR Full 7.7 0 0.09 0.42 0.48 Parrot Parrot
Persona Chat USR MLM 0.84 0.94 0.01 0.01 0.1 Fixed Response Fixed Response
Persona Chat USR Ret 1 0.8 0 0 0.07 Fixed Response Fixed Response
Dailydialog ATT 0.42 0.55 0.01 0 0.01 Not Conclusive Fixed Response Fixed Response
Dailydialog BLM 0.26 0.32 0.01 0 0.05 Not Conclusive Fixed Response Fixed Response
Dailydialog MAUDE 0.99 0.99 0 0 0.06 Fixed Response Fixed Response
Dailydialog USR Full 7.65 0 0.11 0.08 0.15 Pattern Pattern
Dailydialog USR MLM 0.52 1 0 0 0.04 Fixed Response Fixed Response
Dailydialog USR Ret 0.99 0 0.19 0.21 0.31 Parrot Parrot
Empathetic Dialogues ATT 0.78 0.98 0 0 0.04 Fixed Response Fixed Response
Empathetic Dialogues BLM 0.33 0.47 0.03 0 0.05 Not Conclusive Fixed Response Fixed Response
Empathetic Dialogues MAUDE 0.98 0.96 0 0 0.06 Fixed Response Fixed Response
Empathetic Dialogues USR Full 8.67 0.01 0.07 0.04 0.1 Pattern Pattern
Empathetic Dialogues USR MLM 0.77 0.98 0 0 0.06 Fixed Response Fixed Response
Empathetic Dialogues USR Ret 1 0 0.17 0.33 0.44 Parrot Parrot

Table 4: Scores achieved on the test set during the evaluation.

selection worked in 72% of cases. There are two
main cases in which it was not conclusive. First,
for the ATT metric, where for both the Dailydialog
and PersonaChat domains no clear fixed response
arose. However, after manual inspection, we noted
that for the PersonaChat the policy generated the
same tokens in various frequencies and orders. For
the Dailydialog the most frequent response arose
in 55% of cases. Thus, we used this fixed response.
The second case is the BLM metric. For all the
domains we selected the most frequent response,
although it appeared in less than 70% of cases.

C Full Results

Table 5 shows all scores achieved by the dialogue
systems on the respective metrics. Furthermore,
we also added the average score of the Amazon
Mechanical Turk judges, which ranges from (0-2).

D Technical Explanation

One potential reason why our approach is able to
find a degenerate strategy lies in the exploration
problem in reinforcement learning. Blender’s lan-
guage model can be interpreted as a policy which
performs a sequence of actions, i.e., sampling a
sequence of tokens. Thus, the language model loss
during standard Blender training can be interpreted
as an indicator for how sure the policy is of its ac-
tions. A high language model loss indicates that the
policy assigns low probability scores to its actions.
Conversely, a low language model loss indicates
that the policy is sure of it’s actions. This could
be further investigated by measuring the entropy of
the language model. Indeed, in all our experiments,
we notice that the language model loss collapses to-
ward a very small value. This indicates that the lan-
guage model collapsed to a single simple strategy.
Figure 2 shows the language model loss over the

number of steps. The loss quickly collapses from
an average of 4 points to around 0.5 points. At the
same time the average reward (orange) rises from
0.78 to 0.92. Similarly, the response frequency
rises from 0 to 0.94. In the middle, the loss rises
again, which indicates the search for a new strategy.
This coincides with a lower response frequency.

Figure 2: The language model loss (blue), the Average
Reward (orange), and the Response Frequency (red)
over time.

E Examples

In Tables 6, 7, and 8, we show examples of the
outputs from the fine-tuned Blenderbot model. For
each of the five metrics, we show the output to
which Blenderbot converged to when using the
metric as a reward. Furthermore, we show the
score which the respective metric assigns to the
generated response. Note that the Parrot strategies
simply copy the text form the context. For the Em-
pathetic Dialogues dataset, the degenerate strategy
prepends a "I’m not sure" to the context. For the
PersonaChat, the degenerate strategy prepends a
"i’ve always wanted to". The Copy strategy (see
Table 2 in main Paper), ignores these prefaces, and
simply copies the context.
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Dailydialog

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.836 0.928 0.409 7.904 0.0006 0.898 0.177
BL 1.386 0.440 0.426 4.951 0.0002 0.664 0.096
HF 1.656 0.925 0.080 6.989 0.0026 0.866 0.371
HU 1.782 0.928 0.409 7.904 0.0006 0.898 0.183
S2 1.024 0.512 0.300 5.050 0.0003 0.895 0.183
DR 0.729 0.308 0.338 3.900 0.0001 0.891 0.204
PARROT - 0.998 0.811 9.429 0.0002 0.921 0.233
FIXED - - 0.505 - 0.435 0.985 0.239
PATTERN - - - 7.091 - - -

Empathetic Dialogues

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.808 0.891 0.384 7.611 0.120 0.942 0.260
BL 1.640 0.935 0.298 7.645 0.001 0.820 0.087
HF 1.610 0.887 0.644 8.292 0.044 0.948 0.462
HU 1.816 0.891 0.384 7.611 0.120 0.942 0.264
S2 0.702 0.493 0.145 4.510 0.010 0.932 0.159
DR 0.822 0.354 0.182 3.759 0.001 0.936 0.199
PARROT - 0.996 0.8848 9.617 0.054 0.935 0.358
FIXED - - 0.912 - 0.731 0.976 0.333
PATTERN - - - 7.240 - - -

PersonaChat

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.350 0.725 0.211 6.120 0.0020 0.946 0.138
BL 1.507 0.847 0.185 6.797 0.0006 0.844 0.070
HF 1.480 0.794 0.272 6.707 0.0023 0.925 0.152
HU 1.623 0.927 0.267 7.512 0.0024 0.951 0.153
KV 1.147 0.538 0.217 4.982 0.0023 0.852 0.122
LC 1.572 0.879 0.103 6.769 0.0011 0.918 0.195
S2 0.681 0.390 0.121 3.814 0.0013 0.845 0.111
DR 0.906 0.482 0.268 4.779 0.0002 0.537 0.220
PARROT - 0.925 0.794 8.933 0.0001 0.898 0.223
FIXED - 0.977 0.852 - 0.813 0.933 0.250
PATTERN - - - - - - -

Table 5: Scores achieved by the various dialogue policies with regard to the different metrics. For each metric,
we show the average scores achieved by each dialogue system and humans (HU) for each domain. We then show
the average score achieved by applying the strategy to which the policy converged to. The AMT metric denotes
Amazon Mechanical Turk ratings.
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domain metric Avg Reward Resp Freq Lex Var BELU Jacccard Strategy Inferred Strategy Manual Strategy Final
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that for the PersonaChat the policy generated the
same tokens in various frequencies and orders. For
the Dailydialog the most frequent response arose
in 55% of cases. Thus, we used this fixed response.
The second case is the BLM metric. For all the
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although it appeared in less than 70% of cases.
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Mechanical Turk judges, which ranges from (0-2).
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performs a sequence of actions, i.e., sampling a
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which Blenderbot converged to when using the
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"i’ve always wanted to". The Copy strategy (see
Table 2 in main Paper), ignores these prefaces, and
simply copies the context.
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Dailydialog

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.836 0.928 0.409 7.904 0.0006 0.898 0.177
BL 1.386 0.440 0.426 4.951 0.0002 0.664 0.096
HF 1.656 0.925 0.080 6.989 0.0026 0.866 0.371
HU 1.782 0.928 0.409 7.904 0.0006 0.898 0.183
S2 1.024 0.512 0.300 5.050 0.0003 0.895 0.183
DR 0.729 0.308 0.338 3.900 0.0001 0.891 0.204
PARROT - 0.998 0.811 9.429 0.0002 0.921 0.233
FIXED - - 0.505 - 0.435 0.985 0.239
PATTERN - - - 7.091 - - -

Empathetic Dialogues

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.808 0.891 0.384 7.611 0.120 0.942 0.260
BL 1.640 0.935 0.298 7.645 0.001 0.820 0.087
HF 1.610 0.887 0.644 8.292 0.044 0.948 0.462
HU 1.816 0.891 0.384 7.611 0.120 0.942 0.264
S2 0.702 0.493 0.145 4.510 0.010 0.932 0.159
DR 0.822 0.354 0.182 3.759 0.001 0.936 0.199
PARROT - 0.996 0.8848 9.617 0.054 0.935 0.358
FIXED - - 0.912 - 0.731 0.976 0.333
PATTERN - - - 7.240 - - -

PersonaChat

AMT USR RET USR MLM USR FULL ATT MAUDE BLM
BR 1.350 0.725 0.211 6.120 0.0020 0.946 0.138
BL 1.507 0.847 0.185 6.797 0.0006 0.844 0.070
HF 1.480 0.794 0.272 6.707 0.0023 0.925 0.152
HU 1.623 0.927 0.267 7.512 0.0024 0.951 0.153
KV 1.147 0.538 0.217 4.982 0.0023 0.852 0.122
LC 1.572 0.879 0.103 6.769 0.0011 0.918 0.195
S2 0.681 0.390 0.121 3.814 0.0013 0.845 0.111
DR 0.906 0.482 0.268 4.779 0.0002 0.537 0.220
PARROT - 0.925 0.794 8.933 0.0001 0.898 0.223
FIXED - 0.977 0.852 - 0.813 0.933 0.250
PATTERN - - - - - - -

Table 5: Scores achieved by the various dialogue policies with regard to the different metrics. For each metric,
we show the average scores achieved by each dialogue system and humans (HU) for each domain. We then show
the average score achieved by applying the strategy to which the policy converged to. The AMT metric denotes
Amazon Mechanical Turk ratings.
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Turn Utterance Score Strategy
usr_ret
1 Did this just come on suddenly ?
2 I felt OK until an hour or so ago , and then I just doubled over .
3 Have you exercised strenuously or played sports recently ?

i feel ok until an hour or so ago, and then
i just doubled over. have you exercised strenuously or played sports recentlyRL-Response 0.9986 Parrot

usr_mlm
1 Yes . Who is speaking ?
2 This is Kelly speaking . I am calling from London . How are you , Mr . Chang ?
3 Oh , Kelly , I couldn’t recognize your voice . Well , I’m fine .

i am not sure if i am going to be able to
go out of my way to get to know each other or not.RL-Response 0.4820 Fixed

usr_full
1 You really shouldn ’ t write it down . You should memorise it . You can change it to a more convenient number if you like .
2 Ok , I ’ Ve entered my PIN . There are several options on the screen . I guess I just choose which service I want , don ’ t I ?
3 Yes . Choose the service you need to use . If you choose to withdraw money , the machine will ask you how much you want .

i’m not sure if i’d like to change my pin
to a more convenient number if i like. i’ll let youRL-Response 7.466 Pattern

att
1 Hello , hot water overflowed from the bathtub . Would you help me ?
2 Would you turn off the tap ?

hahaha!!! thats so funny!! im laughing so
hard!! its so true!! ive been laughing soRL-Response 0.1176 Fixed

maude
1 Good morning , Mr Zhang , I wonder whether you have got an answer from your superior .
2 Yes , we had a meting about it yesterday afternoon .
RL-Response I hope it works out for you. What kind of car did you get? 0.9901 Fixed
blender
1 There is a Matisse exhibition at the Museum of Modern Art . Larry and I will go .
2 Did you buy tickets already ?
3 No . Do we need tickets ?
RL-Response what do you like to do in your spare time? do you have any hobbies? 0.2078 Fixed

Table 6: Randomly sampled responses for the Dailydialog dataset. We randomly chose a context, and let the fine-
tuned Blenderbot create a response, which at this point is degenerate. We then let the metric which was used as a
reward score rate the generated response.
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Turn Utterance Score Strategy
usr_ret
1 My boyfriend’s brothers got into a fist fight one night and he jumped in the middle.
2 That sucks. Did anyone get hurt?
3 Some things got broke and there were some bruises, but it was really scary to watch that.

i’m sure your boyfriend’s brothers got into a fist fight one
night and he jumped in the middle. did anyone get hurt?RL-Response 0.9982 Parrot

usr_mlm
1 Financially, things will turn around for my family soon!
2 I hope and wish so. In this tough economic climate many are finding it difficult to cope with financial responsibilities
3 Yes, and we had a layoff of five months. I believe in a brighter day, though, so I know it will improve.

I don’t know what I’m going to do if
it doesn’t work out. I’m not sure what to do.RL-Response 0.7689 Fixed

usr_full
1 I had a major project and felt very ready to present it to everyone at the office
2 How’d it go
3 It went well, I think I gained confidence by being so prepared

i don’t think i gained confidence by being so prepared.
i’m sorry to hear that. what do you mean by that?RL-Response 9.068 Pattern

att
1 I once got in a really bad accident on my way home from work and it really upset me
2 Wow! Were you hurt? Was anyone else hurt?
3 luckily the only problem I had was my neck was sore for a few weeks but nobody else was hurt
RL-Response I know right? I felt SO SO ASHAmed of myself. I felt so embar assed. 0.8138 Fixed
maude
1 like who on earth writes var int value = 1, this is so ridiculous i am so annoyed at my brother, after everything i tought him, he doesn’t even know the basics

I wish I could go back in time
and be a kid again. I miss those days.RL-Response 0.9946 Fixed

blender
1 My friend left my front door open when she was house-sitting for me. My cat snuck out and was killed.

i feel like i know what i’m going to
do, but i don’t know what to do with myself.RL-Response 0.1299 Fixed

Table 7: Randomly sampled responses for the Empathetic Dialogues dataset. We randomly chose a context, and
let the fine-tuned Blenderbot create a response, which at this point is degenerate. We then let the metric which was
used as a reward score rate the generated response.
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Turn Utterance Score Strategy
usr_ret
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Turn Utterance Score Strategy
usr_ret
1 nemo , i love him already . its a tea mix , green and black .
2 the tea sounds cool . is there honey in it ?
3 i add honey to it , yes . i drink it while running museum tours .

I love to be a musician. I love music. What
kind of music do you listen to as a music loverRL-Response 0.9997 Fixed

usr_mlm
1 hi i am a musician with big dream

i am a stay at home mom and i am trying
to figure out what i want to do with my lifeRL-Response 0.8854 Fixed

usr_full
1 it is tough and smelly . 25 people and 3 toilets .
2 that would be awful . you really should move .
3 i cant yet . need to save money , spend it too quickly .

i’ve always wanted to move 25 people and 3 toilets that would
be awful you really should move i cant yet need to save moneyRL-Response 8.498 Parrot

att
1 me too ! i aspire to become a physical therapist and run a 5k !
2 awesome . i just started a new job as a life coach
3 that is great ! i get straight as so maybe you could coach me in social skills .

yea!!! 1!! 2!! 3!! * * * [ *
* fucking * fucking fucking * [ fucking * *RL-Response 0.7417 Fixed

maude
1 how are you doing today
2 hello , how are you today ?
3 i am doing really well
RL-Response What are you up to today? What do you like to do in your free time? 0.9923 Fixed
blender
1 haha agreed ! or a lot . either way . i try to eat well though
2 me too . should i trade my mini van in for a sports car .
3 yes . who does not love a sports car .
RL-Response what kind of mini van do you have? i have a corvette and a camaro 0.1970 Fixed

Table 8: Randomly sampled responses for the PersonaChat dataset. We randomly chose a context, and let the
fine-tuned Blenderbot create a response, which at this point is degenerate. We then let the metric which was used
as a reward score rate the generated response.
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Abstract

This paper presents a deep learning based
model to detect the completeness and cor-
rectness of a sentence. It’s designed specif-
ically for detecting errors in speech recog-
nition systems and takes several typical
recognition errors into account, including
false sentence boundary, missing words,
repeating words and false word recogni-
tion. The model can be applied to evaluate
the quality of the recognized transcripts,
and the optimal model reports over 90.5%
accuracy on detecting whether the system
completely and correctly recognizes a sen-
tence.

1 Introduction

Automatic Speech Recognition (ASR) systems de-
velop technologies to recognize and translate spo-
ken language into text by machines (Yu and Deng,
2016). Sentence error detection on ASR systems
is important for the two reasons: a) This can help
to set proper punctuation marks; b) For multiple
speakers, speaker recognition often fails at the
change between two speakers, which results in sin-
gle words at beginning or end of an utterance being
assigned to the wrong person. A practical applica-
tion domain of our work is to detect complete and
correct sentences in ASR systems to mitigate the
aforementioned problems.

In prior works, research focused mainly on gram-
matical error detection (Agarwal et al., 2020; He,
2021). In this paper, we focus on dealing with
the specific errors emerging in speech recognition,

Copyright © 2023 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0)

*These authors contributed equally to this work.

such as missing words or incorrect sentence bound-
aries (detailed in Sec. 3.3). In addition, previous
works on enriching speech recognition emphasize
on finding correct sentence boundaries in whole
transcripts (Liu et al., 2006, 2005). However, in
real-time speech recognition, we have access to
only individual sentences instead of full transcripts,
and they don’t take other typical speech recogni-
tion errors (apart from incorrect sentence bound-
aries) into account (Tuggener and Aghaebrahimian,
2021).

Recently, transformer models have shown state-
of-art performance in generating word embeddings
and extracting intrinsic features of word sequences.
In specific, Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018),
Generative Pre-trained Transformer (GPT) (Rad-
ford et al., 2019) and BIG-BIRD (Zaheer et al.,
2020) have achieved promising performance to
learn high quality language representations from
large amounts of raw text. The token representa-
tions produced by these transformers pre-trained
on unsupervised tasks also help improve the perfor-
mance of a supervised downstream task.

In this paper, we fine-tune the pre-trained trans-
formers (BERT, GPT2 and BIG-BIRD) on the
speech recognition error detection task, to build a
binary classification model detecting speech recog-
nition errors. The performance of sequentially link-
ing BERT embedding and a down-stream text clas-
sification network is also studied. We compare and
analyze the performances of several classification
models. The models are ensembled through a Ran-
dom Forest to further improve the performance. Fi-
nally, we analyse the performance of BERT-based
classifier on a multi-label dataset.

The paper is structured as follows: In Sec. 2,
we explain the models and experimental design. In
Sec. 3, we describe how the dataset is generated.
We discuss the experimental results in Sec. 4.
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2 Methods

2.1 Models

In this section, we use three state-of-art transformer
models BERT (Devlin et al., 2018), GPT2 (Radford
et al., 2019), BIG-BIRD (Zaheer et al., 2020) are
considered.

Besides, we also test the performance of using
BERT embedding plus a downstream text classi-
fication network. For the classification networks,
we use either a bi-direction LSTM and a TextCNN.
We use a one-layer TextCNN with kernels sizes
to be 2, 3 and 4. For LSTM, we use a one-layer
bi-directional LSTM network (Gers et al., 2000),
followed by an attention layer and a fully connected
layer. The number of hidden states is 256. Specifi-
cally, the attention layer is found to be essential.

2.2 Ensemble learning

We ensemble the five trained classifiers with ran-
dom forest. Configuration and the final classifica-
tion performance are shown in Sec. 4.2.

3 Data preparation

3.1 Dataset sources

For the model to have better generalizing capacity,
a training set from diverse sources covering diverse
topics and occasions is necessary. The following
corpora are included in our proposed dataset:

News reports (Thompson, 2017): 143, 000 arti-
cles from 15 American publications

Ted 2020 Parallel Sentences Corpus (Reimers
and Gurevych, 2020): around 4000 TED Talk tran-
scripts from July 2020

Wikipedia corpus (Foundation): over 10 million
topics

Topical-Chat (Gopalakrishnan et al., 2019):
nearly 10 thousand human dialog conversations
spanning 8 broad topics

3.2 Dataset Creation

To make the selected datasets suit our speech recog-
nition model, we remove some non-English tokens,
sentence ending symbols (‘.’, ‘!’, ‘?’), duplicated
sentences and also short sentences (less or equal to
5 words) to avoid some recognition errors. After
pre-processing on the data from the sources, we
create the following two datasets:

Standard Dataset: contains 0.3 million sen-
tences from News reports, 0.3 million sentences
from Ted corpus, 0.3 million sentences from

Wikipedia corpus, 0.2 million sentences from
Topical-Chat, in total 1.1 million sentences. We
split the Standard Dataset randomly over all data
sources into train set, ablation set and test set, with
a proportion of 8:1:1.

Large Dataset: contains 2.3 million sentences
from News reports, 0.4 million sentences from Ted
corpus, 2 million sentences from Wikipedia corpus,
0.2 million sentences from Topical-Chat; in total 5
million sentences. We split it into train and test set,
with a proportion of 19:1.

We train and compare performances of various
models on the Standard Dataset. As a comparison,
we evaluate the performance of BERT trained on
the large dataset to see how an enlarged training set
affects generalization ability for this task.

3.3 Generate positive and negative samples

For creating positive samples, punctuation is re-
moved (except abbreviations such as it’s, Mr., I’ve,
etc.) and words are converted to lower case.

For creating negative samples, we mimic typical
errors of the speak recognition system, which are
detailed in the following, and we propose corre-
sponding methods to create negative samples with
respect to typical errors.

False sentence boundary: When a speech
recognition system fails to correctly separate two
sentences, the first sentence would be cut off in the
middle and part of the sentence would be assigned
to the next sentence (illustrated in Fig. 1 (a)). For
such negative samples, we group the sentences by
three, and randomly separate the three sentences
into 2-4 sentences (so that on average negative sam-
ples created in this way would have equal length
with positive samples). While choosing random
separating points, the genuine sentence separations
points, punctuation and typical words for starting
subsentences (e.g. that, which, because, etc.) are
avoided, and thus reduce the probability that a gen-
erated sample is still a complete sentence by chance
(e.g. ‘I like you because you are beautiful’ to ‘I
like you’.)

Missing words: A speech recognition system
can fail to recognize one or several words from
a sentence, and as a result some words may be
missing in the produced transcripts (Fig. 1 (b)).
For such negative samples, we randomly remove 1
word for sentences up to 3 words, and 2-4 words
from longer sentences.

Repeating words: The system can record speak-
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with a proportion of 19:1.

We train and compare performances of various
models on the Standard Dataset. As a comparison,
we evaluate the performance of BERT trained on
the large dataset to see how an enlarged training set
affects generalization ability for this task.

3.3 Generate positive and negative samples

For creating positive samples, punctuation is re-
moved (except abbreviations such as it’s, Mr., I’ve,
etc.) and words are converted to lower case.

For creating negative samples, we mimic typical
errors of the speak recognition system, which are
detailed in the following, and we propose corre-
sponding methods to create negative samples with
respect to typical errors.

False sentence boundary: When a speech
recognition system fails to correctly separate two
sentences, the first sentence would be cut off in the
middle and part of the sentence would be assigned
to the next sentence (illustrated in Fig. 1 (a)). For
such negative samples, we group the sentences by
three, and randomly separate the three sentences
into 2-4 sentences (so that on average negative sam-
ples created in this way would have equal length
with positive samples). While choosing random
separating points, the genuine sentence separations
points, punctuation and typical words for starting
subsentences (e.g. that, which, because, etc.) are
avoided, and thus reduce the probability that a gen-
erated sample is still a complete sentence by chance
(e.g. ‘I like you because you are beautiful’ to ‘I
like you’.)

Missing words: A speech recognition system
can fail to recognize one or several words from
a sentence, and as a result some words may be
missing in the produced transcripts (Fig. 1 (b)).
For such negative samples, we randomly remove 1
word for sentences up to 3 words, and 2-4 words
from longer sentences.

Repeating words: The system can record speak-

ers’ unintended repeated words (Fig. 1 (c)). For
such negative samples, we randomly repeat 1 word
for sentences within 3 words, and 1-3 words from
longer sentences.

False word recognition: The system can mis-
takenly recognize one word as another word (Fig.
1 (d)). For such negative samples, we randomly re-
place 1 word for sentences within 3 words, and 1-3
words from a longer sentences, by random words
from another sentence.

Finally, the punctuation is removed and words
are converted to lower case.

Figure 1: Typical errors in speech recognition system
After creating the positive and negative samples,

the sentences longer than 100 words are removed,
for they are too long to appear in speech recog-
nition. We create the same number of negative
samples as that of positive samples, so that we
have a balanced dataset. The ratio between dif-
ferent types of negative samples is 2:1:1:1. The
type False Sentence Boundary corresponds to two
times the number of other negative sample types
since False Sentence Boundary contains two types
of false sentences, those which are cut off and those
which are assigned with extra words.

4 Experiments and Discussion

In this section, we report the results of our experi-
ments. We describe below the setup, and then eval-
uate the different models in Sec. 4.1. In Sec. 4.2,
based on the models, we train a Random Forest
classifier to further aggregate the models and im-
prove the performance. In Sec. 4.3, we compare
the performance of BERT trained on Standard and
Large Dataset. Finally, we show the result of BERT
trained on a Multi-Labeled Dataset in Sec. 4.4.
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Table 1.
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Table 1: Test accuracy of five models on Standard
Dataset

From the results, we can see that the transform-
ers provide much better results than the models
sequentially linking BERT embedding and either
a BiLSTM or TextCNN. Specifically, BIG-BIRD
provides the optimal performance, with 90.26%
test accuracy. BERT and GPT2 provide similar test
accuracy, 89.27% and 88.67% respectively.
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vidual models (90.26%), but not to a large extent.
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not diverge much on decisions.

4.3 Results on Large Dataset
In this section, we train BERT on the large dataset
(5 times the size of the Standard Dataset) with less
epochs (1 epoch in contrast to 5 epochs). Overall,
the model is trained with the same iterations as with
Standard Dataset. With the same training details
described before (but only for one epoch), results
show that training with Large Dataset provides a
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higher test accuracy (90.36%), compared with the
accuracy trained with Standard Dataset (89.27%).

The results suggest that, provided with enough
computational capacity, we can further improve
our model’s generalization ability by training on a
larger dataset.

4.4 Result on multi-label dataset

In this section, we further create a Multi-Label
Dataset, which contains the same samples as the
Standard Dataset, whereas the negative samples
are distinctively labeled (including false sentence
boundary, false word recognition, missing words,
and repeating words) instead of uniformly labeled
as negative.

We train a BERT model on this dataset, and it
reached 85.01% classification test accuracy. The
precision, recall and F1-score of each class is given
in Table 2.

Sample Class Precision Recall F1 Score Support
Complete Sentence 0.87 0.94 0.90 109857

False Sentence Boundary 0.83 0.81 0.82 42677
False Word Recognition 0.84 0.70 0.77 21897

Missing Words 0.64 0.50 0.56 21711
Repeating Words 0.96 0.99 0.98 21781

Table 2: Precision, Recall and F1-Score of each sample
class

From the result, we can see that the simplest task
is to identify repeated words in the sentences (F1-
score near 0.98). Identifying complete sentences is
also a relatively easy task, with a F1-score of 0.90.
The hardest task for the model is detecting whether
there are missing words in the sentence. It achieves
only 64% precision and 50% recall on this task.

Figure 2: Confusion matrix for BERT trained on Multi-Label
Dataset

The confusion matrix is drawn in Fig. 2. From
this figure, we can further see that the classifier

finds it difficult to classify between complete sen-
tences and sentences with missing words, even
though in most of the cases more than one word is
missing in the erroneous sentences. This is under-
standable because in most cases, not every word
is indispensable, even we lose some words, and
maybe the meaning is not exactly the same but the
sentence still makes sense grammatically.

4.5 Result on real-world ASR outputs
Finally we test our trained multi-modal BERT
model on the real-world ASR outputs from CEASR
corpus (Ulasik et al., 2020). The predictions are
shown in Fig. 3, where we can see the model is able
to capture real-world ASR errors correctly, while
we also provide an example where the model fails.

Figure 3: Prediction on real-world ASR outputs

5 Conclusion

In this paper, a dataset for detecting speech recog-
nition errors was created, where four different
types of typical speech recognition errors were
taken into account. Experimental results show that
transformer models are capable of providing good
performance on classification of the constructed
dataset for speech recognition error, reporting ap-
proximately 90% accuracy for BERT, GPT2 and
BIG-BIRD. A Random Forest was trained based
on the five models, and further improved the test
accuracy to over 90.51%. Overall, the results sug-
gest that using state-of-art transformer models can
provide good quality for detecting the errors in
speech recognition systems, and provide feedback
on further improvements of speech recognition sys-
tems. In our future works, special adjustments
might be needed to better cope with identifying
missing words in recognized sentences.
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Abstract
We present SDS-200, a corpus of Swiss German dialectal speech with Standard German text translations, annotated with
dialect, age, and gender information of the speakers. The dataset allows for training speech translation, dialect recognition,
and speech synthesis systems, among others. The data was collected using a web recording tool that is open to the public.
Each participant was given a text in Standard German and asked to translate it to their Swiss German dialect before recording
it. To increase the corpus quality, recordings were validated by other participants. The data consists of 200 hours of speech by
around 4000 different speakers and covers a large part of the Swiss German dialect landscape. We release SDS-200 alongside
a baseline speech translation model, which achieves a word error rate (WER) of 30.3 and a BLEU score of 53.1 on the
SDS-200 test set. Furthermore, we use SDS-200 to fine-tune a pre-trained XLS-R model, achieving 21.6 WER and 64.0
BLEU.

Keywords: Corpus, Less-Resourced/Endangered Languages, Speech Recognition/Understanding, Speech Resource/Database,
Statistical and Machine Learning Methods

1. Introduction
We present Schweizer Dialektsammlung (SDS-200), a
corpus of Swiss German dialectal speech with the cor-
responding Standard German text. The data consists
of 200 hours of speech. We make the corpus publicly
available 1.
Swiss German is a family of German dialects spoken
by around five million people in Switzerland. It differs
from Standard German regarding phonetics, vocabu-
lary, morphology, and syntax and is primarily a spoken
language. While it is also used in writing, particularly
in informal text messages, it lacks a standardized or-
thography. This leads to difficulties for automated text
processing due to spelling ambiguities and huge vo-
cabulary size. Therefore, it is often preferable to work
with Standard German text, for which automated pro-
cessing tools exist in abundance. The main challenge
is that Swiss German is not a unified language but a
collection of dialects, which sometimes differ signif-
icantly in phonetics, grammar, and vocabulary. The
immense vocabulary makes it hard to create a Swiss
German Automatic Speech Recognition (ASR) system.
Due to these reasons, Swiss German is a low-resource
language. One way to tackle Swiss German ASR is an
end-to-end Swiss German speech to Standard German
text approach. This can be viewed as a speech transla-
tion (ST) task with similar source and target languages.
Training a model for this task requires a substantial
amount of data. Unfortunately, not enough public data
is available for Swiss German. The largest available
corpus, the Swiss Parliaments Corpus (SPC) (Plüss et

1https://swissnlp.org/datasets/

al., 2021), is limited to the Bernese dialect. How-
ever, there are many different dialects in Switzerland,
some of which differ substantially from Bernese be-
cause the difference between dialects can be signifi-
cant, especially regarding vocabulary and pronuncia-
tion; as many dialects as possible should be part of the
training data.
For SDS-200, we created a web recording tool2 which
is open to the public. The idea is that the public
can record Standard German sentences in their Swiss
German dialect. Other participants then validate the
recordings. Almost 4000 different participants from all
over Switzerland helped create a high-quality corpus
covering a large part of the Swiss German dialect land-
scape. To cover a wide range of topics and increase
vocabulary diversity, we used texts from Swiss news-
papers and the German Common Voice corpus. The
code of the tool is open source3.
The remainder of this paper is structured as follows:
Related work is discussed in section 2. The data collec-
tion process is described in section 3. Corpus prepara-
tion and statistics can be found in section 4. In section
5, we describe a baseline model trained on the corpus.
Section 6 wraps up the paper and gives directions for
future work.

2. Related Work
End-to-end approaches are widely used in deep learn-
ing, especially natural language processing (NLP). In
the domain of speech translation, suitable corpora are

2https://dialektsammlung.ch/de
3https://github.com/stt4sg/

dialektsammlung-public
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scarce. The MuST-C dataset (Di Gangi et al., 2019)
provides 400 h of English speech data with sentence-
aligned text for eight different languages (German,
French, Spanish, Italian, Dutch, Portuguese, Roma-
nian, and Russian). The MuST-C data is collected from
TED talks, providing a variety of topics and speakers
(male/female, native/non-native speakers). TED talks
are manually transcribed and translated, providing a
high-quality data source.
Europarl (Iranzo-Sánchez et al., 2020) is another ST
corpus with speech and sentence-aligned text for 6 Eu-
ropean languages (English, German, French, Spanish,
Italian, and Portuguese) containing between 20 and 89
hours of audio for 30 pairs. The sentence alignment is
done automatically. Due to the automatic alignment,
audio data with low alignment confidence is discarded,
and the data quality is lower than manual text align-
ment. Europarl contains speeches held in the European
Parliament.
Four public datasets contain Swiss German audio with
transcripts. SPC (Plüss et al., 2021) is the largest
corpus with 293 hours of data in the Bernese dialect
recorded in the Bernese cantonal parliament. The text
and audio are automatically aligned by using com-
mercial Standard German ASR systems, followed by
a forced sentence alignment using the Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970).
The ArchiMob dataset (Scherrer et al., 2019) includes
69 hours of Swiss German speech and Swiss German
transcript. There are no Standard German transcripts
available. The Radio Rottu Oberwallis dataset (Gar-
ner et al., 2014) includes 8 hours of speech, 2 of which
are provided with Standard German transcripts. Swiss-
Dial (Dogan-Schönberger et al., 2021) is a high-quality
dataset including eight different Swiss German dialects
with roughly 3 hours of audio data per dialect. The
sentences are crawled from newspapers and Wikipedia
and then manually translated into the selected eight
Swiss German dialects. The translated sentences are
then recorded sentence by sentence in a studio setting.
SDS-200 combines the strengths of the existing cor-
pora in Swiss German ASR with a large size of 200
hours, Standard German transcripts, and perfect align-
ment. What makes it unique is the coverage of a large
part of the Swiss German dialect landscape and that al-
most 4000 different speakers made the recordings. We
now describe the components in more detail.

3. Data Collection
Our data collection tool is based on the Common Voice
platform (Ardila et al., 2020). We adapted the an-
notation guidelines to the special case of Swiss Ger-
man. We use the two-step annotation process of the
original platform consisting of a recording step and
a validation step (see Figures 1 and 2). For the
recording step, we presented Standard German sen-
tences from Swiss newspapers, covering diverse top-
ics and Switzerland-specific named entities, and texts

from the German Common Voice corpus to the partici-
pants. They were then asked to translate each sentence
into their Swiss German dialect and record it. For the
validation step, the participants were presented with
a sentence-recording pair and asked if the recording
contained an accurate Swiss German translation of the
Standard German sentence.
The goal was to create a corpus with as many hours
and as much dialect and topic diversity as possible. We
worked extensively with the Swiss media to reach as
many people as possible. To enhance the engagement,
we organized two contests on our platform. The leader-
board contest awarded prices to the participants with
the most recordings, factoring in the quality of their
translations. The Clash of Cantons contest was a com-
petition between the 26 Swiss cantons.

3.1. Sentence Selection
The sentences used for the recordings were derived
from Swiss newspapers and the German dataset of
Common Voice. We used newspaper articles from all
categories from the past five years. As the speakers’
task consisted of translating the sentences from Stan-
dard German to Swiss German, not just reading them,
we expected the speakers’ cognitive effort to be larger,
hence the error probability to be higher. Keeping this in
mind, we carefully selected sentences to ensure lexical
diversity and reduce sentence complexity. To this end,
we selected only sentences between 5 and 12 tokens
long. We applied the following filtering criteria:

• Exclude sentences containing tokens that occur
less than 1000 times per billion words. We use the
Exquisite Corpus4 to compute the word frequen-
cies.

• Exclude sentences with a large number of rare
words having an average word frequency below
10’000 per billion words.

• We removed sentences with dates and numbers
with more than three digits. This is to reduce in-
consistencies in how speakers read or translate the
prompts.

• Sentences containing citations, e-mail addresses,
hashtags, and phrases in brackets are also re-
moved.

• We kept only complete sentences. We used simple
heuristics to remove incomplete sentences. For
instance, each sentence begins with an uppercase
letter or a digit, and a sentence should contain at
least one noun, pronoun, or proper noun and one
verb.

The final set of prompts contains 1’267’195 sentences.
Our tool samples newspaper sentences in 80% of cases,
and in 20% of cases, it samples from the German Com-
mon Voice pool.

4https://github.com/LuminosoInsight/
exquisite-corpus
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Figure 1: Recording step in our tool. ”Die übrigen Beach Boys gingen auf Tournee.” is the sentence to be recorded.

Figure 2: Validation step in our tool. ”Einen Ausblick wage ich nicht.” is the Standard German sentence. The
recording must be played and then judged as correct (”Korrekt”) or wrong / inaccurate (”Falsch”).

3.2. Recording Tool
We made two adaptions to the original Common Voice
(Ardila et al., 2020) platform. First, we added the pos-
sibility for the participants to specify the zip code of
origin of their dialect5. This allows us to investigate

5The origin of a participant’s dialect could for example be
the place where he or she grew up and / or went to school.

dialects in different granularity levels: coarse dialect
regions, cantons, fine-grained dialect regions, and even
individual municipalities. Additional demographic in-
formation such as age and gender selection is already

The specified zip code is not to be confused with the current
place of residence, which would not allow reliable inference
of a participant’s dialect.
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Split Hours Sentences Speakers

train (raw) 188.9 144′468 3428
train (filtered) 178.3 135′271 3247
validation 5.2 3638 288
test 5.4 3636 281

Table 1: Data splits of the Dialektsammlung corpus.

available in Common Voice. Second, we adapt the an-
notation guidelines to cover the special case of Swiss
German. The annotation is performed in two steps: a
recording step and a validation step.
Step 1: Recording. During the recording step, de-
picted in Figure 1, the participant is shown a Standard
German sentence and asked to translate it to Swiss Ger-
man speech. Sentences are recorded in packages of 5
and can be skipped or reported if necessary. One cru-
cial point for our Swiss German speech to Standard
German text use case is the inherent translation step the
participant has to do before recording. As an example,
the participant is presented with the following Standard
German sentence: ”Robben verstand dies wie viele an-
dere Spieler nicht.”. The participant should then think
about how he or she would formulate this sentence in
his or her Swiss German dialect, e.g. ”De Robben het
das wie vieli anderi Spieler nid verstande.”, before ac-
tually recording the Swiss German version. This can
include vocabulary as well as grammar changes, such
as changing the past tense from Standard German ”ver-
stand” to Swiss German ”het (...) verstande”, which is
necessary because the imperfect tense does not exist in
Swiss German, where the perfect tense is used instead.
We display an explanation popup with examples before
the first recording to make this clear to participants. We
also display a short explanation below the sentence to
be recorded (see Figure 1).
Step 2: Validation. Figure 2 depicts the valida-
tion function. Participants are asked to listen to other
recordings and judge whether the recording contains an
accurate Swiss German translation of the Standard Ger-
man sentence. Recordings are again validated in pack-
ages of 5 and can be reported or skipped if necessary.
Similar to the recording function, we display a detailed
explanation with examples of wrong (e.g. recording is
in Standard German rather than Swiss German) or in-
accurate (e.g. wrong tense) translations when a partici-
pant visits the validation page for the first time.

3.3. Collection Process
To reach as many people as possible, we collaborated
with a range of national and local newspapers, tele-
vision networks, and radio stations. In addition, four
well-known Swiss comedians agreed to record a short
video supporting the project and share it on their so-
cial media accounts, some of them reaching more than
100’000 followers.
To keep the participants motivated, we organized two

contests, the leaderboard contest and the Clash of Can-
tons.
Leaderboard. The leaderboard contest was a compe-
tition between all registered participants. For each par-
ticipant, we computed a score based on the number of
recordings, the number of validations given, and the
number of positive validations received. The top ten of
the leaderboard were awarded attractive Switzerland-
themed prizes. Furthermore, the participant with the
highest recording quality (lowest rejection rate) was
awarded a special prize.
Clash of Cantons. The Clash of Cantons was a com-
petition between the 26 Swiss cantons. The idea was
to spark a competition between the cantons and for
participants to ”fight” for their respective canton. The
winning canton was picked according to its number of
recordings, weighted by their average quality, normal-
ized by the population of the canton.
The data of the corpus described here was collected
over seven months, with 58 % of recordings made dur-
ing the 38 days where the two contests were held. The
current version contains 200 hours of raw speech data
in MP3 format with a sampling rate of 32 kHz.

4. Corpus Preparation and Data
Statistics

4.1. Data filtering
Crowd-sourced data needs filtering to ensure high data
quality. We used the public validation process to filter
bad samples such as empty, truncated, or silent record-
ings and wrong translations.
Of all recorded data, 33% have been validated, and of
these samples, 88% have been accepted. To also use a
large amount of unvalidated samples, we allow unvali-
dated samples as well under the following conditions:

• The speaker has some validated recordings and
more than 80% of the validated clips are accepted.

• The speaker has no validated recordings and the
duration is within 2 to 12 seconds.

We found that we were able to filter out many clips
with recording problems (e.g., empty recordings) with
the second rule. Since the added unvalidated data likely
contains some invalid samples, they will need to be fil-
tered further as more clips are validated. We also pro-
vide the unfiltered train data so that corpus users can
compile their own filter rules.

4.2. Corpus Structure
We provide randomly generated train, validation, and
test splits, ensuring that each speaker is part of only one
split. The target size of the validation and test splits is
5.3 hours each. Table 1 shows the number of hours,
sentences, and speakers of each split. To ensure opti-
mal quality, validation and test splits only contain val-
idated samples. Furthermore, to obtain balanced sets
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Split Hours Sentences Speakers

train (raw) 188.9 144′468 3428
train (filtered) 178.3 135′271 3247
validation 5.2 3638 288
test 5.4 3636 281

Table 1: Data splits of the Dialektsammlung corpus.
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Figure 3: Number of utterances per speaker’s age group
and gender.
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Figure 4: Canton distribution in the dataset compared
with the relative population and the relative number of
unique speakers per respective canton. Only cantons
where Swiss German is spoken are shown.

and a larger variety of speakers, we only allow speak-
ers with 5 to 200 recorded sentences to be part of either
validation or test splits.

4.3. Data Statistics
On average, an utterance is 4.8 seconds long with a
standard deviation of 1.3 seconds. The shortest and
longest utterances are 2 and 11.2 seconds long, respec-
tively. In Figure 5 we display the utterance length dis-
tribution.
By crowdsourcing the data, we obtain a diverse set of
speakers regarding age, gender, and dialect. In total,
the filtered SDS-200 contains 142’545 utterances with
138’553 unique sentences. The vocabulary consists of
41’289 German words. Out of 3816 speakers, 8% are
male, 6% are female, 86% did not reveal their gender,
and 4 participants are non-binary. In terms of utter-
ances, 19% of utterances are voiced by females, 46%
by males, and 35% of unknown gender. On average,
each participant recorded 37 utterances with a standard
deviation of 364 utterances. The participant with the
most speech donations recorded 13’333 utterances. In
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Figure 5: Distribution of utterance lengths in the SDS-
200.

Figure 3 we display the age and gender distribution
over the recorded utterances. In Figure 4 we show
the distribution over the number of recordings for each
canton and compare them with the population of the re-
spective cantons6 and the proportion of unique speak-
ers. The collected dialects follow the dialect distribu-
tion in Switzerland closely, with some exceptions. For
Appenzell Innerrhoden, we have four times more utter-
ances than the relative population. Wallis and Zürich
have almost twice as many utterances. In the can-
ton Wallis, one speaker recorded 10’368 out of 11’739
samples. The cantons Baselland, Glarus, Jura, Luzern,
Nidwalden, Uri, and Zug are underrepresented in the
SDS-200.

5. Baseline
We conducted experiments to demonstrate the use of
the SDS-200 corpus for speech translation. We fur-
ther evaluated how the corpus can be combined with
the SPC (Plüss et al., 2021). Finally, we assessed
how large-scale pre-training on unlabeled speech data
can improve the performance by finetuning XLS-R
Wav2vec models (Babu et al., 2021) on the SDS-
200 train set.
Transformer Baseline. We employed Trans-
former (Vaswani et al., 2017) based models imple-
mented in the FAIRSEQ S2T library (Ott et al., 2019;
Wang et al., 2020) as our baselines. These models con-
sist of a two-layer convolutional subsampler followed
by a Transformer network with 12 encoder layers and
six decoder layers. For the Transformer network, we
employed eight attention heads, an embedding dimen-
sion size of 512, and a dropout rate of 0.15. We used
the default model hyper-parameters and learning rate
schedules provided by the library without any task-
specific tuning. We evaluated the model performance
when training on SDS-200 alone as well as the com-
bination of SDS-200 and the SPC. After training, we

6We use the canton information as an indicator for the
dialect.
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Model Train data Model
parameters

WER BLEU
valid test valid test

Transformer SDS-200 72M 31.3 30.3 52.1 53.1
Transformer SDS-200+SPC 72M 24.9 24.7 60.9 61.0

XLS-R (0.3B) SDS-200 317M 27.2 26.9 54.9 54.6
XLS-R (1B) SDS-200 965M 21.7 21.6 63.9 64.0

Table 2: Performance of the Transformer Baseline and XLS-R Wav2Vec models finetuned on the SDS-200 train
set. We report Word Error Rate (WER) and BLEU scores obtained from evaluating on the SDS-200 valid and test
splits.

averaged the weights of the ten checkpoints with the
lowest validation loss to obtain the final model.
XLS-R fine-tuning. For the Wav2vec experiments,
we employed XLS-R models (Babu et al., 2021) that
were pre-trained on 436K hours of unlabeled speech
data covering more than 128 languages and are pub-
licly available7. Importantly, Swiss German was not
part of the training data. Of the available pre-trained
models, we evaluated XLS-R (0.3B) and XLS-R (1B),
whereas the number in braces denotes the number of
model parameters. XLS-R Wav2vec models consist of
a convolutional feature encoder, followed by a stack of
transformer blocks. Details of the architecture configu-
rations can be found in (Babu et al., 2021). For the fine-
tuning on the SDS-200 corpus, we followed the proce-
dure and hyper-parameters described by the authors.
Results. The results of our experiments are shown
in Table 2. Both additional labeled training data and
large-scale self-supervised pre-training on unlabeled
speech data lead to performance improvements. The
strong performance of XLS-R (0.3B) highlights the
benefits of latter in low-resource settings, even if the
target language was not available during pre-training.
Notably, for all our experiments, we did not use any
external language model.

6. Conclusion
In this work, we presented SDS-200, a speech trans-
lation dataset for Swiss German speech to Standard
German text. The main characteristics of this corpus
are the large variety of Swiss German dialects that are
covered and the large number of speakers that con-
tributed to the data collection. The baseline achieved
30.3 WER score, and 53.1 BLEU score on the SDS-
200 test set. The current version contains around 200
hours of speech.
Our goal is to increase the size of the corpus in the
future, which will allow for even better performance.
We plan to find new ways to engage the public, for in-
stance, by adding gamification components to keep the
engagement high. The current version is publicly avail-
able.

7https://github.com/pytorch/fairseq/
tree/main/examples/wav2vec/xlsr
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Welcome to the 7th Swiss Text Analytics Conference
(SwissText 2022)
The SwissText conference series was started by the Zurich University of Applied Sciences
(ZHAW) in 2016. The first edition, which attracted more than 170 people, was already a big
success. The conference was turned over to the Swiss Association for Natural Language
Processing (SwissNLP) in 2020, and it is now organized by Swiss universities in cooperation with
SwissNLP.

This year, SwissText was hosted at the University of Applied Science and Arts of Southern
Switzerland (SUPSI), and co-organized by the ZHAW.
It was the first Swisstext on premise edition after two years of pandemic that forced the
organizers to hold the conferences online. It was great to see attendees talking face to face
again and enjoying the coffee breaks and the networking opportunities outdoors.

The conference hosted four pre-conference workshops:
o 2nd Swiss German Speech to Standard German Text shared task
o Keyword extraction in scientific documents
o GSWNorm, Shared Task & Workshop on the normalization of written Swiss German
o NLP and Insurance

We received 23 submissions for the applied track, 6 for the junior track and 4 for the demo track.
You will find the full junior papers and the abstracts of the applied talks and posters in separate
sections in these proceedings. The workshops papers and abstracts are included as well.

A great addition to the conference program was the second edition of the “Battle of NLP ideas”,
where groups of researchers presented outstanding ideas for potential new scientific projects.

Beside the presentations hosted in conference rooms, a foyer was dedicated to 13 sponsors and
a few academic partners booths.  In the same room the poster and demo session took place.

We would like to thank our keynote speakers Marco Passarotti (Università Cattolica, Milano),
Raul Rodriguez-Esteban (Roche) and Enrique Alfonseca (Google)
Their perspectives and contributions were much appreciated. A big thank you also to our
workshop organizers and to all members of our programme committees for their excellent work.

We are grateful to our sponsors and partners, who supported us in spite of the fact that the
economy was still depressed due to the pandemic. In particular, we would like to acknowledge
the generous support by Innosuisse (the Swiss Innovation Agency) and our co-organizer, the
Data Innovation Alliance.

Last but foremost, we would like to thank Manuela Hürlimann, Daniele Puccinelli and Fabio
Rinaldi, who were the main organizers. They were assisted by Oscar, Mariangela, Erica, Antonio
and many more for various tasks. Without them this conference would not have been possible.
Additionally, we are thankful for the support of the programme committees for the Applied and
Junior tracks.

It was a great pleasure for us to organize and chair this conference. We hope that all participants
enjoyed the conference and the location.

Mark Cieliebak and Roberto Mastropietro
Conference Chairs
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On the Effectiveness of Automated Metrics for Text Generation Systems
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Abstract

A major challenge in the field of Text Genera-
tion is evaluation, because we lack a sound the-
ory that can be leveraged to extract guidelines
for evaluation campaigns. In this work, we
propose a first step towards such a theory that
incorporates different sources of uncertainty,
such as imperfect automated metrics and insuf-
ficiently sized test sets. The theory has practical
applications, such as determining the number
of samples needed to reliably distinguish the
performance of a set of Text Generation sys-
tems in a given setting. We showcase the ap-
plication of the theory on the WMT 21 and
Spot-The-Bot evaluation data and outline how
it can be leveraged to improve the evaluation
protocol regarding the reliability, robustness,
and significance of the evaluation outcome.

1 Introduction

The field of Text Generation is a subfield of Natu-
ral Language Processing (Celikyilmaz et al., 2020).
We define text generation tasks as those where
many different texts may constitute an optimal so-
lution to a given problem. Examples are automated
summarization, machine translation, dialogue sys-
tems, paraphrasing, caption generation, or natural
language generation.

One unsolved issue in the field of Text Gener-
ation is the evaluation, be it human or automated
evaluation. Human evaluation is more reliable but
more cost and time intensive, and automated eval-
uation is erroneous but performed in a fraction of
time and cost (Amidei et al., 2019; Hashimoto et al.,
2019; Celikyilmaz et al., 2020; Deriu et al., 2021).
One of the main issues is the lack of theoretically
founded guidelines when running an evaluation.
For instance, how many samples are needed to be
able to significantly distinguish the performance of
two systems? Or how do we handle the errors made
by automated metrics? Under which circumstances
is it still possible to run an evaluation campaign that
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Figure 1: Measurable difference of the performance of
two text generation systems depending on the accuracy
of a binary metric. We add the 2% line as discussed in
the text.

yields significant results? In this work, we make
a first step towards developing such a theoretical
foundation, which can be used as a guideline to
answer the above questions. For this, we consider
what we call binary metrics. These are metrics that
classify the output of a text generation system as
being either adequate or inadequate. This allows
us to measure the performance of a text generation
system as the ratio of adequate responses it gener-
ates. Furthermore, it allows us to reason about the
performance of the metric in terms of true positives
and true negatives.

#Automated Ratings

#
H

um
an

R
at
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gs

0 1k 5k 10k 50k
0 1.000 0.109 0.049 0.035 0.015

10 0.379 0.106 0.049 0.034 0.015
100 0.134 0.085 0.046 0.033 0.015
1k 0.043 0.040 0.032 0.027 0.015
2.5k 0.027 0.026 0.024 0.020 0.013
5k 0.019 0.019 0.018 0.017 0.012

Table 1: Mixed Case: Measurable difference for a met-
ric with accuracy of 70% depending on the number of
human rating mixed with the number of automated rat-
ings. The values discussed in the text are highlighted in
bold.

For this setting, we derive various theoretically
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founded guarantees and guidelines that can be used
to run an evaluation campaign. For instance, con-
sider Figure 1 (derived by our theory). If we as-
sume a binary metric that has an accuracy of 70%,
and if we have access to 1000 automatically rated
samples (blue line), then we can reliably distin-
guish between two text generation systems that
have a difference in performance of 10 percentage
points. To distinguish two systems with a smaller
difference, for instance of 2%, we would need a
better metric and many more samples. That is, we
need for instance a metric with an accuracy of at
least 85% and 10000 automatically rated samples
by this metric.

Our theory provides analogous assessments of
how many human evaluations are required to re-
liably distinguish text generation systems. When
we say that the performance of two systems can
be reliably distinguished, we mean that the differ-
ence in their performance is statistically significant.
Similarly, a measurable difference in performance
is one that leads to statistical significance given the
experiment parameters.

In addition, our theory allows for the mix of hu-
man and automated evaluation. For this, consider
Table 1 where we depict the number of human and
automatic ratings required by a metric with 70% ac-
curacy. For instance, to distinguish two text gener-
ators with 2 percentage points difference, we need
either at least 5000 human ratings, or 2500 human
ratings mixed with 10’000 automated ratings.

Our theoretical framework allows us to design
our evaluation with theoretical guarantees regard-
ing the significance of the resulting measurements.
Given a monetary budget and our theory, one can
decide whether to invest in more human annota-
tions, in developing better automated metrics, or in
sampling more automated ratings. Our approach
can also be used to showcase the limits of a given
setting: for instance in Figure 1, we see that using
only 1000 automated ratings leads to a minimally
measurable difference of 4% even with a perfect
metric.

In the remainder of the paper, we derive the theo-
retical framework for binary metrics and apply it to
two showcases: the WMT-21 shared task (Freitag
et al., 2021b) and the Spot-The-Bot evaluation (De-
riu et al., 2020). We analyse how well these eval-
uations adhere to the constraints imposed by our
theory and demonstrate how the quality of the eval-
uations can be improved. To serve the community,

we will release the formulas as code and as a web
interface 1 that allows practitioners to enter their
evaluation settings and receive an analysis of the
measurable differences in their settings.

2 Definitions

In this section, we introduce the basic definitions
that we need for the derivations. First, we define
the general setting of Text Generation, then we
cover binary metrics, and finally we describe text
generation systems.

2.1 General Setting

Definition 1 (Text Generation Environment)
A text generation environment is composed of a
triple ⟨I,O,Φ⟩, where I denotes the set of inputs,
O the output space, and Φ : I × O → {0, 1} an
oracle that assess whether an output is adequate
for a given input.

For instance, for Machine Translation I denotes
all sentences in the source language and O all sen-
tences in the target language, while for a chatbot
I contains all dialogue contexts and O all possible
responses in a dialogue. Note that I and O can
be of infinite size. We regard Φ as an oracle that
segments the output space for a given input into
adequate and inadequate outputs 2.

Definition 2 (Adequate Responses) ∀i ∈ I, we
call Ri

+ = {o ∈ O|Φ(i, o) = 1} the set of
adequate responses for input i, and Ri

− =
{o ∈ O|Φ(i, o) = 0} the set of inadequate re-
sponses.

2.2 Binary Metric

In this work, we set our focus to binary metrics, i.e.,
metrics that classify the output of a text generation
system as being either adequate or inadequate. The
choice of binary metrics allows us to reason about
the performance of a text generation (TG) system
as the ratio of adequate responses3.

1https://github.com/vodezhaw/binary_metric_
tool

2In most real-world setting Φ is approximated with human
ratings.

3This lies in contrast with metrics that simply return a
scalar value (e.g, BLEU (Papineni et al., 2002), COMET (Rei
et al., 2020), USR (Mehri and Eskenazi, 2020)) that is difficult
to interpret. For instance, if BLEU returns a value of 0.34 for
one system and 0.32 for the second system, can we really state
that the first system is better than the second (Callison-Burch
et al., 2006)? We can use these types of metrics to create
binary metrics by selecting a threshold that defines the border
between adequate and inadequate responses (e.g., all COMET

We first define the notion of a binary metric, then
we show what it means for a binary metric to be
error-free or error-prone with regards to Φ.

Definition 3 (Binary Metric) A binary metric Mb

is a function Mb : I × O → {0, 1} which takes a
pair of input and output, and returns either 0 or
1. We interpret the return of 1 as claiming that the
output is an adequate output for the given input,
and 0 claiming that the output is not adequate.

Next, we define the notion of an error-free metric.
That is, how we expect the metric to behave in the
optimal case (i.e. its ability to replicate the oracle
Φ).

Definition 4 (Error-Free Binary Metric) M∗
b is

an error-free binary metric ⇐⇒ ∀i ∈ I, o ∈
O : (M∗

b (i, o) = 1 ⇐⇒ o ∈ Ri
+).

That is, an error-free binary metric always rates
an adequate output as 1 and an inadequate output
as 0. Since most metrics do not perform perfectly
regarding Φ, we formulate the cases where a metric
makes mistakes and the calculation of its perfor-
mance as follows.

Definition 5 ((ρ, η)-optimal binary metric)
Let ρ, η ∈ [0, 1] and Mb a binary metric.
Then Mb is a (ρ, η)-optimal binary met-
ric if Pr[Mb(i, o) = 1|o ∈ Ri

+] = ρ and
Pr[Mb(i, o) = 0|o ̸∈ Ri

+] = η.

That is, we define the performance of a binary met-
ric as its probability to correctly classify an output
as being adequate or not. Thus, the error of a bi-
nary metric can be assessed similar to the error of
a binary classifier, i.e., ρ is equivalent to the true
positive ratio and η to the true negative ratio. Note
that ρ = η = 1 defines an error-free binary metric,
whereas all other cases are error-prone. In the case
where ρ and η have the same value, ρ = η, this
value is the accuracy of Mρ,η

b . Note that in practise,
ρ and η must be estimated from data.

2.3 Text Generation
We define a text generation system as a function
that takes an input from the input-space and gener-
ates an output.

Definition 6 ((Optimal) Text Generator) A
Text-Generator (TG) is a mapping π : I → O
which generates for each input i an output o. A TG
is optimal ⇐⇒ ∀i ∈ I : π(i) ∈ Ri

+

values above 0.78 are regarded as adequate). This introduces
errors, which can be measured.

Next, we introduce the notion of an imperfect
text-generator. There are many different ways the
errors of a TG can be modeled. We model it as its
capability of generating adequate responses.

Definition 7 (α-optimal TG) Let π be a TG and
α ∈ [0, 1]. Then π is an α-optimal TG if Pr[π(i) ∈
Ri

+] = α for all i ∈ I.

That is, the probability of the text generation sys-
tem to generate an adequate output is denoted as
α. The task of a binary metric is to estimate the α
value of a TG system, which has a concrete mean-
ing: Assume that we compare two systems, where
απ1 = 0.5, and απ2 = 0.49, then these numbers
have a clear semantic: π1 outputs an adequate out-
put in 50% of cases and π2 in 49% of cases. Thus,
one system generates adequate outputs more often
than the other. We denote the difference in per-
formance as ϵ. In the following, we will use απ

to denote the rate at which a system π generates
adequate responses, and πα to refer to a system
which is α-optimal.

3 Theory: Estimating α with Binary
Metrics

In this section, we show how binary metrics can be
used to estimate the performance α of text gen-
eration systems. For the remainder of the text,
assume that TΦ = {(ij , oj , r∗j )|1 ≤ j ≤ nϕ}
is a set of input-output rating triples of size nϕ,
where ij are inputs, oj = πα(ij) denotes the out-
put generated by an α-optimal TG system for in-
put ij , and r∗j = M∗

b (ij , oj) denotes the error-free
rating of the jth input-output-pair. Analogously,
let TM = {(ij , oj , rj)|1 ≤ j ≤ nM} be a set
of input output rating triples of size nM , where
rj = Mρ,η

b (ij , oj) denotes the rating of an error-
prone (ρ, η)-optimal binary metric.

We consider three different cases: 1) the error-
free case, 2) the error-prone metric case, and 3)
the mixed case. The error-free case is where we
have access to r∗j . For instance, we can interpret
human evaluation as an example of the error-free
case. In the error-prone metric case, we have access
only to an (ρ, η)-optimal binary metric. Finally, the
mixed case is a novel approach that leverages error-
free ratings, which are usually costly to obtain,
with error-prone ratings, which are cheaper but
are needed en-masse for automated metrics with
low ρ and η values, as we will see. Usually, in
evaluation campaigns, either the first or second
setting is applied.
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We apply a Bayesian approach to estimate α by
treating it as a random variable, which allows us
to model various sources of uncertainty stemming
from α, ρ and η, which all need to be estimated
from data. The full derivations are given in Ap-
pendix A.

3.1 Error-Free Case
Here, we start with the most simple case and in-
troduce the formula to estimate α given error-free
ratings r∗j . Given nϕ error-free ratings, α is esti-
mated by α̃ = n+

nϕ
, where n+ =

∑nϕ

i=1 r
∗
j . This

formula can be derived via the frequentist approach
or the Bayesian. For the Bayesian approach, we as-
sume a uniform prior over α (i.e. α ∼ Beta(1, 1)).
The resulting posterior distribution for α given n+

is:

P (α|N+ = n+) ∝ P (N+ = n+|α) ∗ P (α)

∝ Beta(n+ + 1, nϕ − n+ + 1)
(1)

and the value of α is estimated using the mode of
Beta(n+ + 1, nϕ − n+ + 1), which corresponds
to n+

nϕ
.

3.2 Error-Prone Metric Case
In the error-prone metric case, the probability that
rj = 1 depends on ρ and η. Hence, if rj = 1, we
cannot assume that r∗j = 1 as well, since the bi-
nary metric can be error-prone. For the error-prone
setting, we consider two cases, one where ρ and η
are provided (e.g. from an earlier evaluation cam-
paign), and one where ρ and η must be estimated
from data (i.e., from comparison to error-free rat-
ings).

3.2.1 Provided ρ, η

Here, we assume that the exact values of ρ and η
are known. The probability that the binary metric
returns a positive label is thus given by:

P (rj = 1) = αρ+ (1− α)(1− η) (2)

From this, we derive the formula to estimate α
using the Bayesian formulation.

Theorem 1 (Estimate α with error-prone metric)
Let m+ =

∑nM
i=1 rj ∼ Binom(P (rj = 1), nM )

be the number of pairs ij , oj rated as adequate
Mρ,η

b (ij , oj) = 1. Then we estimate α by
computing the mode of the following distribution:

P (α|M+ = m+, ρ, η)

∝ P (M+ = m+|α, ρ, η)P (α)
(3)

If we assume a uniform prior of α, i.e., P (α) ∼

U(0, 1), this reduces to: α̃ =

m+
nM

+η−1

ρ+η−1

Note that the above formulation does not allow
for ρ+ η = 1, in which case our estimator would
be undefined. In the following we will assume that
ρ + η > 1. This is a relatively safe assumption
since in the case where ρ+ η < 1, we can derive
a new metric Mρ′,η′

b by flipping the predictions of
Mρ,η

b : Mρ′,η′

b (i, o) = 1−Mρ,η
b (i, o). In this case

ρ′ + η′ = (1− ρ) + (1− η) = 2− (ρ+ η) > 1.

3.2.2 Estimated ρ, η

Here, we assume that ρ and η must be estimated
from data, which introduces uncertainty. In our
case, we estimate ρ and η from error-free ratings
(i.e., how well the error-prone metric agrees with
the error-free ratings). In practise, the error-free
assessments stem from human annotations, which
are regarded as the ground truth. To weave the
estimation of ρ and η into the Bayesian frame-
work, we treat them as random variables. For this,
assume that we have access to a dataset Tρ,η =
{(ij , oj , r∗j , rj)|1 ≤ j ≤ M} of both error-free and
error-prone ratings for pairs of inputs and outputs.
Denote T +

ρ,η = {(ij , oj)|r∗j = 1} as the set of true
positive samples, and T −

ρ,η = {(ij , oj)|r∗j = 0} as
the set of true negative samples. Thus, assuming a
uniform prior over ρ, we apply the same reasoning
as in Section 3.1 to compute the posterior distri-
bution ρ ∼ Beta(mTP + 1, |T +

ρ,η| − mTP + 1),
where mTP denotes the number of true positive
samples, rated as positive by Mρ,η

b . Analogously,
η ∼ Beta(mTN + 1, |T −

ρ,η| − mTN + 1), where
mTN denotes the number of true negative samples,
rated as negative by Mρ,η

b . Note that to estimate ρ
and η, having a large sample size for both T +

ρ,η and
T −
ρ,η is important, otherwise the estimation of ρ or

η would have a higher uncertainty.
To incorporate the uncertainty of ρ and η into

the estimation of α, we need to marginalize ρ and
η from the joint likelihood P (m+, ρ, η|α) to get
P (m+|α).
Theorem 2 (Est. α, ρ, η with error-prone metric)
Let m+ =

∑n
i=1 rj ∼ Binom(P (rj = 1), n) be

the number of samples rated positively by Mρ,η
b .

Then we estimate α by computing the mode of the
following distribution:

P (α|M+ = m+) ∝ P (M+ = m+|α)P (α)

∝ P (α)

∫ 1

0

∫ 1

0

p(m+|α, ρ, η)p(ρ)p(η)dρdη
(4)

Note that we are not aware of a closed form
solution for the above distribution and the com-
putation of the mode. Thus, we approximate the
solution using numerical methods in practise (See
Appendix B).

3.3 Mixed Case
The mixed case combines the error-free and the
error-prone cases. Here, we assume that we are
given a small number of error-free samples (hu-
man annotations), which are costly to obtain, and
a larger set of error-prone samples (ratings by an
automated metric), which are easier to obtain 4.

Theorem 3 (Mixed α estimation) Let n+ =∑|TΦ|
i=1 r∗j ∼ Binom(α, |TΦ|) the number of sam-

ples where M∗
b = 1, and m+ =

∑n
i=1 rj ∼

Binom(P (rj = 1), |TM |) be the number of sam-
ples where Mρ,η

b = 1. Then we estimate α by
computing the mode of the following distribution:

P (α|M+ = m+, N+ = n+)

∝ P (M+ = m+, N+ = n+|α)P (α)

∝ P (α|N+ = n+)

×
∫ 1

0

∫ 1

0

P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

(5)

Note that the difference to the error-prone case
is that P (α) is replaced by P (α|n+), which can be
expressed by a closed form beta distribution (see
Section 3.1). Thus, we can compute the mixed
case by first computing the error-free case to get
an initial estimate of α, and then estimate the error-
prone case. More generally, this approach lets us
also combine ratings from multiple different error-
prone metrics by applying Equation 5 iteratively.
One would plug in the posterior from one metric
as the prior for the next.

Having outlined the estimation of α for different
scenarios, we now show how they can be used to
determine the minimal number of samples needed
to distinguish TGs in a significant manner.

4 Minimal Number of Samples Needed to
Make Reliable Distinctions between TG
Systems

We now come back to the main question of this
paper: how many samples are needed to be able
to significantly distinguish the performance of two
text generation systems? The intuition is that the
closer the performance of the two TG systems is,
the more samples are needed. Thus, we investigate

4Note that our setting also allows for TΦ ⊆ TM .

the setting where their difference in performance
|απ1 − απ2 | = ϵ is small. Using the formulas from
Section 3, we can compute the estimates shown in
Table 1. There are seven variables involved in this
computation:

• ρ and η denote the (unknown) performance of
the automated binary metric. The better it is,
the less samples are needed.

• α denotes the (unknown) performance of the
TG system to be evaluated.

• γ as the significance level that is wished to be
achieved.

• |TΦ| denotes the size of the set of rated input-
output pairs that stem from a error-free binary
metric.

• |TM| denotes the size of the set of rated input-
output pairs that stem from an error-prone
binary metric.

• |Tρ,η| denotes the set of samples needed to
estimate ρ and η.

To compute if one system is significantly better,
the probability of one system being better than
the other must be compared to the significance
level (e.g., 0.05). We compute the probability that
α1 > α2 as follows:

P (α1 > α2) =

∫ 1

0

∫ 1

α2

p(α1)p(α2)dα1dα2 (6)

The difference between πα1 and πα2 is significant
at the γ-level if P (α1 > α2) < 1− γ

2 or P (α1 >
α2) <

γ
2 .

Equation 6 holds for any two random variables.
In the particular case of normal distributions this
is a reformulation of a two-sided z-test of the null
hypothesis that both variables have the same mean.
Equation 6 is therefore applicable to all the three
cases of α estimation (i.e., error-free, error-prone,
and mixed) by inserting the posterior distributions.

By applying normal approximations for p(α1)
and p(α2), and using simulations we can compute
the minimal distinguishable difference ϵ for a given
set of fixed parameters. The details of the simula-
tions are given in Appendix B.

5 Showcases: Application in Practise

In order to show that the theoretical findings trans-
late to practical applications, we apply our theory to
two real-world settings: the WMT21 metric shared
task (Freitag et al., 2021b) and the Spot-The-Bot
data (Deriu et al., 2020). Since the two tasks have
significantly different settings (e.g., machine trans-
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We apply a Bayesian approach to estimate α by
treating it as a random variable, which allows us
to model various sources of uncertainty stemming
from α, ρ and η, which all need to be estimated
from data. The full derivations are given in Ap-
pendix A.

3.1 Error-Free Case
Here, we start with the most simple case and in-
troduce the formula to estimate α given error-free
ratings r∗j . Given nϕ error-free ratings, α is esti-
mated by α̃ = n+

nϕ
, where n+ =

∑nϕ

i=1 r
∗
j . This

formula can be derived via the frequentist approach
or the Bayesian. For the Bayesian approach, we as-
sume a uniform prior over α (i.e. α ∼ Beta(1, 1)).
The resulting posterior distribution for α given n+

is:

P (α|N+ = n+) ∝ P (N+ = n+|α) ∗ P (α)

∝ Beta(n+ + 1, nϕ − n+ + 1)
(1)

and the value of α is estimated using the mode of
Beta(n+ + 1, nϕ − n+ + 1), which corresponds
to n+

nϕ
.

3.2 Error-Prone Metric Case
In the error-prone metric case, the probability that
rj = 1 depends on ρ and η. Hence, if rj = 1, we
cannot assume that r∗j = 1 as well, since the bi-
nary metric can be error-prone. For the error-prone
setting, we consider two cases, one where ρ and η
are provided (e.g. from an earlier evaluation cam-
paign), and one where ρ and η must be estimated
from data (i.e., from comparison to error-free rat-
ings).

3.2.1 Provided ρ, η

Here, we assume that the exact values of ρ and η
are known. The probability that the binary metric
returns a positive label is thus given by:

P (rj = 1) = αρ+ (1− α)(1− η) (2)

From this, we derive the formula to estimate α
using the Bayesian formulation.

Theorem 1 (Estimate α with error-prone metric)
Let m+ =

∑nM
i=1 rj ∼ Binom(P (rj = 1), nM )

be the number of pairs ij , oj rated as adequate
Mρ,η

b (ij , oj) = 1. Then we estimate α by
computing the mode of the following distribution:

P (α|M+ = m+, ρ, η)

∝ P (M+ = m+|α, ρ, η)P (α)
(3)

If we assume a uniform prior of α, i.e., P (α) ∼

U(0, 1), this reduces to: α̃ =

m+
nM

+η−1

ρ+η−1

Note that the above formulation does not allow
for ρ+ η = 1, in which case our estimator would
be undefined. In the following we will assume that
ρ + η > 1. This is a relatively safe assumption
since in the case where ρ+ η < 1, we can derive
a new metric Mρ′,η′

b by flipping the predictions of
Mρ,η

b : Mρ′,η′

b (i, o) = 1−Mρ,η
b (i, o). In this case

ρ′ + η′ = (1− ρ) + (1− η) = 2− (ρ+ η) > 1.

3.2.2 Estimated ρ, η

Here, we assume that ρ and η must be estimated
from data, which introduces uncertainty. In our
case, we estimate ρ and η from error-free ratings
(i.e., how well the error-prone metric agrees with
the error-free ratings). In practise, the error-free
assessments stem from human annotations, which
are regarded as the ground truth. To weave the
estimation of ρ and η into the Bayesian frame-
work, we treat them as random variables. For this,
assume that we have access to a dataset Tρ,η =
{(ij , oj , r∗j , rj)|1 ≤ j ≤ M} of both error-free and
error-prone ratings for pairs of inputs and outputs.
Denote T +

ρ,η = {(ij , oj)|r∗j = 1} as the set of true
positive samples, and T −

ρ,η = {(ij , oj)|r∗j = 0} as
the set of true negative samples. Thus, assuming a
uniform prior over ρ, we apply the same reasoning
as in Section 3.1 to compute the posterior distri-
bution ρ ∼ Beta(mTP + 1, |T +

ρ,η| − mTP + 1),
where mTP denotes the number of true positive
samples, rated as positive by Mρ,η

b . Analogously,
η ∼ Beta(mTN + 1, |T −

ρ,η| − mTN + 1), where
mTN denotes the number of true negative samples,
rated as negative by Mρ,η

b . Note that to estimate ρ
and η, having a large sample size for both T +

ρ,η and
T −
ρ,η is important, otherwise the estimation of ρ or

η would have a higher uncertainty.
To incorporate the uncertainty of ρ and η into

the estimation of α, we need to marginalize ρ and
η from the joint likelihood P (m+, ρ, η|α) to get
P (m+|α).
Theorem 2 (Est. α, ρ, η with error-prone metric)
Let m+ =

∑n
i=1 rj ∼ Binom(P (rj = 1), n) be

the number of samples rated positively by Mρ,η
b .

Then we estimate α by computing the mode of the
following distribution:

P (α|M+ = m+) ∝ P (M+ = m+|α)P (α)

∝ P (α)

∫ 1

0

∫ 1

0

p(m+|α, ρ, η)p(ρ)p(η)dρdη
(4)

Note that we are not aware of a closed form
solution for the above distribution and the com-
putation of the mode. Thus, we approximate the
solution using numerical methods in practise (See
Appendix B).

3.3 Mixed Case
The mixed case combines the error-free and the
error-prone cases. Here, we assume that we are
given a small number of error-free samples (hu-
man annotations), which are costly to obtain, and
a larger set of error-prone samples (ratings by an
automated metric), which are easier to obtain 4.

Theorem 3 (Mixed α estimation) Let n+ =∑|TΦ|
i=1 r∗j ∼ Binom(α, |TΦ|) the number of sam-

ples where M∗
b = 1, and m+ =

∑n
i=1 rj ∼

Binom(P (rj = 1), |TM |) be the number of sam-
ples where Mρ,η

b = 1. Then we estimate α by
computing the mode of the following distribution:

P (α|M+ = m+, N+ = n+)

∝ P (M+ = m+, N+ = n+|α)P (α)

∝ P (α|N+ = n+)

×
∫ 1

0

∫ 1

0

P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

(5)

Note that the difference to the error-prone case
is that P (α) is replaced by P (α|n+), which can be
expressed by a closed form beta distribution (see
Section 3.1). Thus, we can compute the mixed
case by first computing the error-free case to get
an initial estimate of α, and then estimate the error-
prone case. More generally, this approach lets us
also combine ratings from multiple different error-
prone metrics by applying Equation 5 iteratively.
One would plug in the posterior from one metric
as the prior for the next.

Having outlined the estimation of α for different
scenarios, we now show how they can be used to
determine the minimal number of samples needed
to distinguish TGs in a significant manner.

4 Minimal Number of Samples Needed to
Make Reliable Distinctions between TG
Systems

We now come back to the main question of this
paper: how many samples are needed to be able
to significantly distinguish the performance of two
text generation systems? The intuition is that the
closer the performance of the two TG systems is,
the more samples are needed. Thus, we investigate

4Note that our setting also allows for TΦ ⊆ TM .

the setting where their difference in performance
|απ1 − απ2 | = ϵ is small. Using the formulas from
Section 3, we can compute the estimates shown in
Table 1. There are seven variables involved in this
computation:

• ρ and η denote the (unknown) performance of
the automated binary metric. The better it is,
the less samples are needed.

• α denotes the (unknown) performance of the
TG system to be evaluated.

• γ as the significance level that is wished to be
achieved.

• |TΦ| denotes the size of the set of rated input-
output pairs that stem from a error-free binary
metric.

• |TM| denotes the size of the set of rated input-
output pairs that stem from an error-prone
binary metric.

• |Tρ,η| denotes the set of samples needed to
estimate ρ and η.

To compute if one system is significantly better,
the probability of one system being better than
the other must be compared to the significance
level (e.g., 0.05). We compute the probability that
α1 > α2 as follows:

P (α1 > α2) =

∫ 1

0

∫ 1

α2

p(α1)p(α2)dα1dα2 (6)

The difference between πα1 and πα2 is significant
at the γ-level if P (α1 > α2) < 1− γ

2 or P (α1 >
α2) <

γ
2 .

Equation 6 holds for any two random variables.
In the particular case of normal distributions this
is a reformulation of a two-sided z-test of the null
hypothesis that both variables have the same mean.
Equation 6 is therefore applicable to all the three
cases of α estimation (i.e., error-free, error-prone,
and mixed) by inserting the posterior distributions.

By applying normal approximations for p(α1)
and p(α2), and using simulations we can compute
the minimal distinguishable difference ϵ for a given
set of fixed parameters. The details of the simula-
tions are given in Appendix B.

5 Showcases: Application in Practise

In order to show that the theoretical findings trans-
late to practical applications, we apply our theory to
two real-world settings: the WMT21 metric shared
task (Freitag et al., 2021b) and the Spot-The-Bot
data (Deriu et al., 2020). Since the two tasks have
significantly different settings (e.g., machine trans-

301

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



lation and dialogue systems, different types of hu-
man annotations, and different types of metrics)
this shows that our theory is applicable to a variety
of text generation tasks. The showcases highlight
the different dimensions that can be manipulated
when designing an evaluation. In showcase 1, we
highlight the number of ratings needed, whereas, in
showcase 2, we focus on the influence of the metric
performance.

5.1 Showcase 1: WMT Metrics Shared Task

For the WMT21 Metrics shared task, the authors
evaluated the performance of 15 automated met-
rics by comparing their ratings to human ones on
the output of several MT systems and several lan-
guage pairs. In this work, we only focus on the
English to German language pair and the news do-
main, where seven machine translation systems
were evaluated. The data provided by the shared
task can be expressed as follows using our nota-
tion: We regard the expert human multidimensional
quality metrics (MQM) (Lommel et al., 2014) an-
notations as our error-free ratings. We binarize
the scalar output of this metric by stating that only
translations without any mistakes are regarded as
adequate (i.e., o ∈ Ri

+ ⇐⇒ MQM(i, o) = 0).
This means only responses that have been judged
as being completely correct by all annotators are
considered adequate. For this setting there are
|TΦ| = 527 error-free annotated samples for each
machine translation system. We can reuse these an-
notations to estimate ρ and η, thus, |Tρ,η| = 527 5.
For the error-prone metric outputs, WMT provides
|TM | = 1000 samples for each machine transla-
tion system and each error-prone metric. For the
error-prone metrics, we use BleuRT (Sellam et al.,
2020) as the metric with the highest ρ and η esti-
mates, and SacreBLEU (Post, 2018) as the most
popular metric. We consider three machine trans-
lation systems: FacebookAI (FBAI) (Tran et al.,
2021), VolcTrans-GLAT (VT) (Qian et al., 2021),
and HuaweiTSC (HU) (Wei et al., 2021), which
have the most interesting combinations of perfor-
mance (the full Tables are in Appendix D).

5.1.1 WMT: Theoretical Bounds of ϵ
Here, we showcase the theoretical bounds of the
ϵ values that can be distinguished significantly de-

5Note that we estimate ρ and η for each machine transla-
tion system separately since we noted that most trained metrics
have different performances depending on the various machine
translation systems. See Appendix C.
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Figure 2: The measurable ϵ depending on |TM | (x-
Axis) for the BleuRT scenario (ρ = η = 0.6) and
the SacreBLEU scenario (ρ = η = 0.52) and for
|TΦ| = 100 or 527. The vertical line shows the WMT
setting with |TM | = 1000.

pending on the number of ratings and the perfor-
mance of the metrics. We consider BleuRT with
an estimated ρ = η ≈ 0.6 (see Section 3.2.2 on
how to compute these estimates), SacreBLEU with
ρ = η ≈ 0.52 and the performances of the ma-
chine translation systems are around α ≈ 0.65 (see
section 3.3 on how to compute the estimate). Fig-
ure 2 shows the theoretical ϵ values that can be
distinguished for various values of |TM | and |TΦ|.
For instance, with 527 error-free (|TΦ|) and 1000
error-prone samples (|TM |), we can distinguish an
ϵ of 5.6% for both BleuRT and SacreBLEU. Thus,
the impact of the automated metrics is low for
higher number of human ratings. However, for
T0 = 100 the impact of the metric performance
is larger: ϵ = 0.112 vs. ϵ = 0.13. The effect is
even larger with access to more automated ratings.
Thus, using 10000 BleuRT ratings with 100 human
ratings allows to distinguish the same ϵ as with 527
human ratings and 1000 SacreBLEU ratings, which
is much costlier.

5.1.2 WMT: Practical Results

Here we analyse the results obtained when applying
the theoretical framework to real data to estimate
α, and assess whether the pairwise differences are
significant or not. Table 2 shows the results for four
scenarios: using all 527 error-free ratings, using
only 100 error-free ratings (low-cost scenario), us-
ing 100 error-free ratings with an additional 1000
error-prone ratings from SacreBLEU, and using
100 error-free ratings with an additional 1000 error-
prone ratings from BleuRT. The results include for
each pair of systems the estimated ϵ values, and the
probability that the first TG system is better than

|TΦ| = 527, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.64) 0.02 0.798
FBAI(0.67) - HU (0.58) 0.09 0.998
VT(0.64) - HU (0.58) 0.06 0.978

|TΦ| = 100, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.65) 0.02 0.615
FBAI(0.67) - HU (0.58) 0.09 0.904
VT(0.65) - HU (0.58) 0.07 0.843

SacreBLEU: |TΦ| = 100, |TM| = 1000
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.64) 0.02 0.631
FBAI(0.67) - HU (0.57) 0.09 0.918
VT(0.64) - HU (0.57) 0.07 0.854

BleuRT: |TΦ| = 100, |TM| = 1000
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.66) - VT (0.62) 0.04 0.742
FBAI(0.66) - HU (0.56) 0.09 0.933
VT(0.62) - HU (0.56) 0.05 0.801

Table 2: Predicted WMT21 evaluation using BleuRT
and SacreBLEU on three machine translation systems.

the second system. In the first scenario, we see
that FBAI and VT cannot be significantly distin-
guished, which is consistent with the theory that
states only ϵ > 0.057 can be distinguished (see Fig-
ure 2), whereas the other system pairs can be dis-
tinguished. In the second scenario, we reduce the
number of error-free samples to only |TΦ| = 100,
which makes all the TG systems non distinguish-
able from each other. Again, this is consistent with
the theory that states only ϵ > 0.131 can be distin-
guished using 100 consistent samples. When we
add error-prone ratings, the probabilities of the first
TG being better than the second increase, however
not enough to be significantly distinguishable. This
goes for both automated metrics, which is still con-
sistent with the theory. The problem lies in the fact
that the performance of the automated metrics is
too low to have a strong impact on the evaluation.
For instance, the theory predicts that using 10′000
error-prone SacreBLEU samples will only lead to
being able to distinguish ϵ > 0.120. In this setting,
adding even more error-prone samples will not help
(even with |TM | = 109), since the uncertainty of ρ
and η is too high due to |Tρ,η| = 527.

Thus, the practical application shows that the
outcomes using real data is consistent with the the-
ory. Unfortunately, the setting does not allow to
distinguish FBAI and VT. For this more error-free
ratings are needed, or better metrics.

5.2 Showcase 2: Spot The Bot (STB)

For the second show case, we use the Spot The
Bot (STB) data, where dialogues between two dia-
logue systems are sampled and humans classified
each interlocutor to be a human or a bot. STB
contains pairwise ratings for six dialogue systems.
In our setting, we use three of them: Blenderbot
(BL) (Roller et al., 2021), Lost in Conversation 6

(LiC), and KVMemNN (KV) (Dinan et al., 2020).
In this setting the error-free metric is the (aggre-
gated) human judgment, which is already binary.
We consider a response as adequate if all annota-
tors labelled it as coming from a human. For the
error-prone metric, we use the USR (Mehri and Es-
kenazi, 2020) metric, which is also a scalar metric
that we binarize with a threshold7. The STB dataset
yields |TΦ| = |Tρ,η| ≈ 600 error-free ratings per
dialogue system. For creating TM , we sample new
pairwise dialogues and let USR rate each turn of
the dialogue. This yields |TM | = 10′000 samples
per dialogue system.

5.2.1 STB: Theoretical Bounds
Figure 3 shows the theoretical ϵ values that can
be achieved depending on |Tρ,η|. The values are
depicted for three different settings of |TΦ| (i.e,
human ratings). Each setting shows the measurable
ϵ for three different ρ = η combinations. The figure
reveals the impact of |Tρ,η| for |Tρ,η| < 1000. For
instance, for |Tρ,η| = 600, a metric with ρ = η =
0.6 is only able to distinguish an ϵ = 0.11, however,
when increasing |Tρ,η| to 5000 a difference of ϵ =
0.08 can be measured. On the other hand, when
the performance of the metric is too low (e.g., ρ =
η = 0.52) the impact of higher |Tρ,η| is negligible
regardless of |TΦ|.

5.2.2 STB: Practical Results
Table 3 shows the measured values for α and ϵ
for three scenarios. The first two scenarios are
analogous to the WMT setting, where we use
|TΦ| = 600 error-free ratings in the first scenario
and |TΦ| = 100 error-free ratings in the second
scenario (assuming that we labeled only 100 sam-
ples due to cost reasons). For the third scenario we
again use |TΦ| = 100 error-free ratings, combined
with |TM | = 10′000 error-prone ratings from the
USR metric. The results show that for the first sce-
nario all the pairs of systems are distinguishable,

6https://github.com/atselousov/transformer_
chatbot

7See Appendix C.
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lation and dialogue systems, different types of hu-
man annotations, and different types of metrics)
this shows that our theory is applicable to a variety
of text generation tasks. The showcases highlight
the different dimensions that can be manipulated
when designing an evaluation. In showcase 1, we
highlight the number of ratings needed, whereas, in
showcase 2, we focus on the influence of the metric
performance.

5.1 Showcase 1: WMT Metrics Shared Task

For the WMT21 Metrics shared task, the authors
evaluated the performance of 15 automated met-
rics by comparing their ratings to human ones on
the output of several MT systems and several lan-
guage pairs. In this work, we only focus on the
English to German language pair and the news do-
main, where seven machine translation systems
were evaluated. The data provided by the shared
task can be expressed as follows using our nota-
tion: We regard the expert human multidimensional
quality metrics (MQM) (Lommel et al., 2014) an-
notations as our error-free ratings. We binarize
the scalar output of this metric by stating that only
translations without any mistakes are regarded as
adequate (i.e., o ∈ Ri

+ ⇐⇒ MQM(i, o) = 0).
This means only responses that have been judged
as being completely correct by all annotators are
considered adequate. For this setting there are
|TΦ| = 527 error-free annotated samples for each
machine translation system. We can reuse these an-
notations to estimate ρ and η, thus, |Tρ,η| = 527 5.
For the error-prone metric outputs, WMT provides
|TM | = 1000 samples for each machine transla-
tion system and each error-prone metric. For the
error-prone metrics, we use BleuRT (Sellam et al.,
2020) as the metric with the highest ρ and η esti-
mates, and SacreBLEU (Post, 2018) as the most
popular metric. We consider three machine trans-
lation systems: FacebookAI (FBAI) (Tran et al.,
2021), VolcTrans-GLAT (VT) (Qian et al., 2021),
and HuaweiTSC (HU) (Wei et al., 2021), which
have the most interesting combinations of perfor-
mance (the full Tables are in Appendix D).

5.1.1 WMT: Theoretical Bounds of ϵ
Here, we showcase the theoretical bounds of the
ϵ values that can be distinguished significantly de-

5Note that we estimate ρ and η for each machine transla-
tion system separately since we noted that most trained metrics
have different performances depending on the various machine
translation systems. See Appendix C.
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Figure 2: The measurable ϵ depending on |TM | (x-
Axis) for the BleuRT scenario (ρ = η = 0.6) and
the SacreBLEU scenario (ρ = η = 0.52) and for
|TΦ| = 100 or 527. The vertical line shows the WMT
setting with |TM | = 1000.

pending on the number of ratings and the perfor-
mance of the metrics. We consider BleuRT with
an estimated ρ = η ≈ 0.6 (see Section 3.2.2 on
how to compute these estimates), SacreBLEU with
ρ = η ≈ 0.52 and the performances of the ma-
chine translation systems are around α ≈ 0.65 (see
section 3.3 on how to compute the estimate). Fig-
ure 2 shows the theoretical ϵ values that can be
distinguished for various values of |TM | and |TΦ|.
For instance, with 527 error-free (|TΦ|) and 1000
error-prone samples (|TM |), we can distinguish an
ϵ of 5.6% for both BleuRT and SacreBLEU. Thus,
the impact of the automated metrics is low for
higher number of human ratings. However, for
T0 = 100 the impact of the metric performance
is larger: ϵ = 0.112 vs. ϵ = 0.13. The effect is
even larger with access to more automated ratings.
Thus, using 10000 BleuRT ratings with 100 human
ratings allows to distinguish the same ϵ as with 527
human ratings and 1000 SacreBLEU ratings, which
is much costlier.

5.1.2 WMT: Practical Results

Here we analyse the results obtained when applying
the theoretical framework to real data to estimate
α, and assess whether the pairwise differences are
significant or not. Table 2 shows the results for four
scenarios: using all 527 error-free ratings, using
only 100 error-free ratings (low-cost scenario), us-
ing 100 error-free ratings with an additional 1000
error-prone ratings from SacreBLEU, and using
100 error-free ratings with an additional 1000 error-
prone ratings from BleuRT. The results include for
each pair of systems the estimated ϵ values, and the
probability that the first TG system is better than

|TΦ| = 527, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.64) 0.02 0.798
FBAI(0.67) - HU (0.58) 0.09 0.998
VT(0.64) - HU (0.58) 0.06 0.978

|TΦ| = 100, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.65) 0.02 0.615
FBAI(0.67) - HU (0.58) 0.09 0.904
VT(0.65) - HU (0.58) 0.07 0.843

SacreBLEU: |TΦ| = 100, |TM| = 1000
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.67) - VT (0.64) 0.02 0.631
FBAI(0.67) - HU (0.57) 0.09 0.918
VT(0.64) - HU (0.57) 0.07 0.854

BleuRT: |TΦ| = 100, |TM| = 1000
π(α1)− π(α2) ϵ P (α1 > α2)
FBAI(0.66) - VT (0.62) 0.04 0.742
FBAI(0.66) - HU (0.56) 0.09 0.933
VT(0.62) - HU (0.56) 0.05 0.801

Table 2: Predicted WMT21 evaluation using BleuRT
and SacreBLEU on three machine translation systems.

the second system. In the first scenario, we see
that FBAI and VT cannot be significantly distin-
guished, which is consistent with the theory that
states only ϵ > 0.057 can be distinguished (see Fig-
ure 2), whereas the other system pairs can be dis-
tinguished. In the second scenario, we reduce the
number of error-free samples to only |TΦ| = 100,
which makes all the TG systems non distinguish-
able from each other. Again, this is consistent with
the theory that states only ϵ > 0.131 can be distin-
guished using 100 consistent samples. When we
add error-prone ratings, the probabilities of the first
TG being better than the second increase, however
not enough to be significantly distinguishable. This
goes for both automated metrics, which is still con-
sistent with the theory. The problem lies in the fact
that the performance of the automated metrics is
too low to have a strong impact on the evaluation.
For instance, the theory predicts that using 10′000
error-prone SacreBLEU samples will only lead to
being able to distinguish ϵ > 0.120. In this setting,
adding even more error-prone samples will not help
(even with |TM | = 109), since the uncertainty of ρ
and η is too high due to |Tρ,η| = 527.

Thus, the practical application shows that the
outcomes using real data is consistent with the the-
ory. Unfortunately, the setting does not allow to
distinguish FBAI and VT. For this more error-free
ratings are needed, or better metrics.

5.2 Showcase 2: Spot The Bot (STB)

For the second show case, we use the Spot The
Bot (STB) data, where dialogues between two dia-
logue systems are sampled and humans classified
each interlocutor to be a human or a bot. STB
contains pairwise ratings for six dialogue systems.
In our setting, we use three of them: Blenderbot
(BL) (Roller et al., 2021), Lost in Conversation 6

(LiC), and KVMemNN (KV) (Dinan et al., 2020).
In this setting the error-free metric is the (aggre-
gated) human judgment, which is already binary.
We consider a response as adequate if all annota-
tors labelled it as coming from a human. For the
error-prone metric, we use the USR (Mehri and Es-
kenazi, 2020) metric, which is also a scalar metric
that we binarize with a threshold7. The STB dataset
yields |TΦ| = |Tρ,η| ≈ 600 error-free ratings per
dialogue system. For creating TM , we sample new
pairwise dialogues and let USR rate each turn of
the dialogue. This yields |TM | = 10′000 samples
per dialogue system.

5.2.1 STB: Theoretical Bounds
Figure 3 shows the theoretical ϵ values that can
be achieved depending on |Tρ,η|. The values are
depicted for three different settings of |TΦ| (i.e,
human ratings). Each setting shows the measurable
ϵ for three different ρ = η combinations. The figure
reveals the impact of |Tρ,η| for |Tρ,η| < 1000. For
instance, for |Tρ,η| = 600, a metric with ρ = η =
0.6 is only able to distinguish an ϵ = 0.11, however,
when increasing |Tρ,η| to 5000 a difference of ϵ =
0.08 can be measured. On the other hand, when
the performance of the metric is too low (e.g., ρ =
η = 0.52) the impact of higher |Tρ,η| is negligible
regardless of |TΦ|.

5.2.2 STB: Practical Results
Table 3 shows the measured values for α and ϵ
for three scenarios. The first two scenarios are
analogous to the WMT setting, where we use
|TΦ| = 600 error-free ratings in the first scenario
and |TΦ| = 100 error-free ratings in the second
scenario (assuming that we labeled only 100 sam-
ples due to cost reasons). For the third scenario we
again use |TΦ| = 100 error-free ratings, combined
with |TM | = 10′000 error-prone ratings from the
USR metric. The results show that for the first sce-
nario all the pairs of systems are distinguishable,

6https://github.com/atselousov/transformer_
chatbot

7See Appendix C.
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Figure 3: Measurable difference (y-axis) depending on the number of samples available to estimate ρ and η (i.e,
|Tρ,η| on the x-axis). For fixed |TM | = 10′000. The vertical line denotes the STB setting with |Tρ,η| = 600

|TΦ| = 600, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.38) - LiC (0.30) 0.08 0.999
BL (0.30) - KV (0.24) 0.13 1.000
LiC (0.30) - KV (0.24) 0.06 0.989

|TΦ| = 100, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.38) - LiC (0.30) 0.08 0.882
BL (0.38) - KV (0.25) 0.14 0.983
LiC (0.30) - KV (0.25) 0.06 0.827

USR: |TΦ| = 100, |TM| = 10000
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.36) - LiC (0.28) 0.08 0.889
BL (0.36) - KV (0.22) 0.13 0.989
LiC (0.28) - KV (0.22) 0.06 0.851

Table 3: Predicted STB evaluation using USR on three
dialogue systems.

which is consistent with the theory and the original
Spot The Bot results. When reducing the number
of error-free samples to |TΦ| = 100, only the pair
BL-KV is distinguishable. This is consistent with
the theory, which predicts that two systems with
ϵ > 0.126 are significantly distinguishable. How-
ever, adding |TM | = 10′000 error-prone ratings
only increases the probability of the first TG sys-
tem being better than the second by a small amount.
The reason is that the performance of USR is too
low to have a strong impact, which is consistent
with the theory. Thus, to benefit from automated
evaluation one needs a better metric and more sam-
ples to estimate ρ and η.

6 Related Work

Evaluation of Text Generation systems is a long-
standing issue. Considerations about the proper
evaluation of TG systems have been emerging
rapidly in the last years. One line of inquiry is
how to properly conduct human evaluations and
what kind of guidelines and setups lead to consis-
tent results (Novikova et al., 2018; Van Der Lee

et al., 2019; Santhanam and Shaikh, 2019; Freitag
et al., 2021a; Clark et al., 2021; Belz et al., 2021;
Mohankumar and Khapra, 2022). Another line of
research investigates the reliability of automated
metrics for NLG evaluation. Novikova et al. (2017,
inter alia) find that automated metrics poorly reflect
human judgements in general. Sai et al. (2022, Sec.
6) provides an extensive overview of criticism on
automated metrics in NLG.

There are few efforts to underlay (parts of the)
TG evaluation paradigm with a theory-grounded
base: To theoretically solidify human NLG eval-
uation and provide more statistically significant
results in pairwise evaluations, a recent approach
leverages utility theory in economics (Ethayarajh
and Jurafsky, 2022) to showcase issues arising
from the use of Likert scale ratings and averag-
ing them. Chaganty et al. (2018) propose a method
to combine automated metrics with human rank-
ings to debiase a metric under a budget constraint.
They provide a theory-grounded proof that their
calculated mix of human and automated ratings is
optimal and conclude that error-prone evaluation
metrics are a bottleneck for reducing the cost of
evaluations. Related to our Bayesian approach of
modelling uncertainty in the evaluation of systems,
a number of approaches aims to model uncertainty
in the annotation process and the aggregation of
annotations using a Bayesian approach (Paun et al.,
2018, e.g.). Card et al. (2020) analyze the statistical
power of different evaluation scenarios prevalent in
NLP. In particular, they study the number of sam-
ples needed to detect a difference of 1 BLEU as
significant. However, to the best of our knowledge,
no efforts to model the uncertainties ingrained in
TG evaluation in a holistic theory has been pro-
posed so far.

7 Conclusion

We introduced a theoretical framework for binary
metrics that can be used to extract guidelines for
designing an evaluation of text generation systems.
The framework estimates the performance of a text
generation system from a mix of human and auto-
mated ratings giving guarantees of which level of
significance can be achieved. Using the formulas,
one can design the evaluation setup and compute
estimates of how many human and automated sam-
ples are needed for a significant evaluation. We
applied the theory to two very different real-world
cases and exemplified how the theory can be lever-
aged to improve the significance of the results. We
provide a tool that allows the computation of the
formulas so that different settings can be tested.

The current theory is limited to binary metrics,
but in future work, we will extend the theory to
more types, such as comparative or scalar metrics.
Furthermore, we will apply the theory to a wider
range of tasks and domains. In general, we hope
to have set in motion efforts to arrive at a sound
formalization of the evaluation of text generation
systems to increase the robustness, reliability, and
significance of future evaluation campaigns.

Limitations

Human Ratings. We assume that human ratings
are perfect, which is not the case (Clark et al.,
2021). While it might be the case that the MQM
ratings are close to error-free, there is no guarantee.
To handle the fact that human ratings are not error-
free we would need to measure this, which could
be done via agreement scores.

Uniform Input and Outputs. We assume that
each input and each output have the same difficulty
of being evaluated. However, it is more likely that
in practise, each metric has a different ρ and η value
depending on the input. This is however very hard
to include in the theory.

Uniform Text Generation Systems. Similarly
to the above point, we assume that ρ and η are in-
dependent of the text generation system. However,
preliminary experimental results (see Appendix C)
showed that metrics tend to have different perfor-
mances for different TG systems. Thus, ρ and η
need to be estimated separately for each TG sys-
tem.

Domain Dependence. The same argument can
also be made about the domain. Metrics trained on
one domain will perform differently when applied
to another domain. Thus, the ρ and η values must
be measured again for each domain.

Binary Metrics. The current theory is limited to
binary metrics. However, in practise there are many
different types of metrics and evaluation types. For
instance, in a next step the theory should be ex-
tended to cover comparative metrics (i.e., metrics
that state which of the two outputs is better).

Approximations. The estimations of the mixed
case and the estimated ρ, η case must be approxi-
mated numerically since we did not find a closed
form solution. This will inevitably lead to mistakes
in the estimated values. This can be circumvented
by making the numerical approximation more pre-
cise with the downside of needing more computa-
tional power (see Appendix B).
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Figure 3: Measurable difference (y-axis) depending on the number of samples available to estimate ρ and η (i.e,
|Tρ,η| on the x-axis). For fixed |TM | = 10′000. The vertical line denotes the STB setting with |Tρ,η| = 600

|TΦ| = 600, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.38) - LiC (0.30) 0.08 0.999
BL (0.30) - KV (0.24) 0.13 1.000
LiC (0.30) - KV (0.24) 0.06 0.989

|TΦ| = 100, |TM| = 0
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.38) - LiC (0.30) 0.08 0.882
BL (0.38) - KV (0.25) 0.14 0.983
LiC (0.30) - KV (0.25) 0.06 0.827

USR: |TΦ| = 100, |TM| = 10000
π(α1)− π(α2) ϵ P (α1 > α2)
BL (0.36) - LiC (0.28) 0.08 0.889
BL (0.36) - KV (0.22) 0.13 0.989
LiC (0.28) - KV (0.22) 0.06 0.851

Table 3: Predicted STB evaluation using USR on three
dialogue systems.

which is consistent with the theory and the original
Spot The Bot results. When reducing the number
of error-free samples to |TΦ| = 100, only the pair
BL-KV is distinguishable. This is consistent with
the theory, which predicts that two systems with
ϵ > 0.126 are significantly distinguishable. How-
ever, adding |TM | = 10′000 error-prone ratings
only increases the probability of the first TG sys-
tem being better than the second by a small amount.
The reason is that the performance of USR is too
low to have a strong impact, which is consistent
with the theory. Thus, to benefit from automated
evaluation one needs a better metric and more sam-
ples to estimate ρ and η.

6 Related Work

Evaluation of Text Generation systems is a long-
standing issue. Considerations about the proper
evaluation of TG systems have been emerging
rapidly in the last years. One line of inquiry is
how to properly conduct human evaluations and
what kind of guidelines and setups lead to consis-
tent results (Novikova et al., 2018; Van Der Lee

et al., 2019; Santhanam and Shaikh, 2019; Freitag
et al., 2021a; Clark et al., 2021; Belz et al., 2021;
Mohankumar and Khapra, 2022). Another line of
research investigates the reliability of automated
metrics for NLG evaluation. Novikova et al. (2017,
inter alia) find that automated metrics poorly reflect
human judgements in general. Sai et al. (2022, Sec.
6) provides an extensive overview of criticism on
automated metrics in NLG.

There are few efforts to underlay (parts of the)
TG evaluation paradigm with a theory-grounded
base: To theoretically solidify human NLG eval-
uation and provide more statistically significant
results in pairwise evaluations, a recent approach
leverages utility theory in economics (Ethayarajh
and Jurafsky, 2022) to showcase issues arising
from the use of Likert scale ratings and averag-
ing them. Chaganty et al. (2018) propose a method
to combine automated metrics with human rank-
ings to debiase a metric under a budget constraint.
They provide a theory-grounded proof that their
calculated mix of human and automated ratings is
optimal and conclude that error-prone evaluation
metrics are a bottleneck for reducing the cost of
evaluations. Related to our Bayesian approach of
modelling uncertainty in the evaluation of systems,
a number of approaches aims to model uncertainty
in the annotation process and the aggregation of
annotations using a Bayesian approach (Paun et al.,
2018, e.g.). Card et al. (2020) analyze the statistical
power of different evaluation scenarios prevalent in
NLP. In particular, they study the number of sam-
ples needed to detect a difference of 1 BLEU as
significant. However, to the best of our knowledge,
no efforts to model the uncertainties ingrained in
TG evaluation in a holistic theory has been pro-
posed so far.

7 Conclusion

We introduced a theoretical framework for binary
metrics that can be used to extract guidelines for
designing an evaluation of text generation systems.
The framework estimates the performance of a text
generation system from a mix of human and auto-
mated ratings giving guarantees of which level of
significance can be achieved. Using the formulas,
one can design the evaluation setup and compute
estimates of how many human and automated sam-
ples are needed for a significant evaluation. We
applied the theory to two very different real-world
cases and exemplified how the theory can be lever-
aged to improve the significance of the results. We
provide a tool that allows the computation of the
formulas so that different settings can be tested.

The current theory is limited to binary metrics,
but in future work, we will extend the theory to
more types, such as comparative or scalar metrics.
Furthermore, we will apply the theory to a wider
range of tasks and domains. In general, we hope
to have set in motion efforts to arrive at a sound
formalization of the evaluation of text generation
systems to increase the robustness, reliability, and
significance of future evaluation campaigns.

Limitations

Human Ratings. We assume that human ratings
are perfect, which is not the case (Clark et al.,
2021). While it might be the case that the MQM
ratings are close to error-free, there is no guarantee.
To handle the fact that human ratings are not error-
free we would need to measure this, which could
be done via agreement scores.

Uniform Input and Outputs. We assume that
each input and each output have the same difficulty
of being evaluated. However, it is more likely that
in practise, each metric has a different ρ and η value
depending on the input. This is however very hard
to include in the theory.

Uniform Text Generation Systems. Similarly
to the above point, we assume that ρ and η are in-
dependent of the text generation system. However,
preliminary experimental results (see Appendix C)
showed that metrics tend to have different perfor-
mances for different TG systems. Thus, ρ and η
need to be estimated separately for each TG sys-
tem.

Domain Dependence. The same argument can
also be made about the domain. Metrics trained on
one domain will perform differently when applied
to another domain. Thus, the ρ and η values must
be measured again for each domain.

Binary Metrics. The current theory is limited to
binary metrics. However, in practise there are many
different types of metrics and evaluation types. For
instance, in a next step the theory should be ex-
tended to cover comparative metrics (i.e., metrics
that state which of the two outputs is better).

Approximations. The estimations of the mixed
case and the estimated ρ, η case must be approxi-
mated numerically since we did not find a closed
form solution. This will inevitably lead to mistakes
in the estimated values. This can be circumvented
by making the numerical approximation more pre-
cise with the downside of needing more computa-
tional power (see Appendix B).
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2018. Rankme: Reliable human ratings for natural
language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 72–78.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing bayesian models of annotation. Transac-
tions of the Association for Computational Linguis-
tics, 6:571–585.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Lihua Qian, Yi Zhou, Zaixiang Zheng, Yaoming Zhu,
Zehui Lin, Jiangtao Feng, Shanbo Cheng, Lei Li,
Mingxuan Wang, and Hao Zhou. 2021. The volctrans
GLAT system: Non-autoregressive translation meets
WMT21. In Proceedings of the Sixth Conference on
Machine Translation, pages 187–196, Online. Asso-
ciation for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Ananya B Sai, Akash Kumar Mohankumar, and
Mitesh M Khapra. 2022. A survey of evaluation met-
rics used for nlg systems. ACM Computing Surveys
(CSUR), 55(2):1–39.

Sashank Santhanam and Samira Shaikh. 2019. Towards
best experiment design for evaluating dialogue sys-
tem output. In Proceedings of the 12th International
Conference on Natural Language Generation, pages
88–94.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn,
Sergey Edunov, and Angela Fan. 2021. Facebook
AI’s WMT21 news translation task submission. In
Proceedings of the Sixth Conference on Machine
Translation, pages 205–215, Online. Association for
Computational Linguistics.

Chris Van Der Lee, Albert Gatt, Emiel Van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368.

Daimeng Wei, Zongyao Li, Zhanglin Wu, Zhengzhe Yu,
Xiaoyu Chen, Hengchao Shang, Jiaxin Guo, Minghan
Wang, Lizhi Lei, Min Zhang, Hao Yang, and Ying
Qin. 2021. HW-TSC’s participation in the WMT
2021 news translation shared task. In Proceedings of

the Sixth Conference on Machine Translation, pages
225–231, Online. Association for Computational Lin-
guistics.

A Derivations for α-estimation

In Section 3 we have introduced several ways to
estimate the success rate α of a Text-Generator π.
We will now elaborate some of these in more detail.

First, we want to estimate α based on consistent
ratings from M∗

b . For this we need a set of inputs,
the corresponding outputs from π, and the rating
from M∗

b : TΦ = {(ij , oj , r∗j )|1 ≤ j ≤ nϕ}, where
oj = π(ij) and r∗j = M∗

b (ij , oj). We note that, in
this case, the probability that a given pair is rated
adequate is α, since:

P (r∗j = 1) = P (M∗
b (ij , π(ij)) = 1)

= P (π(ij) ∈ Rij
+)

= α

We can therefore treat r∗j as outcomes of Bernoulli
trials with success probability α. The number of
successful trials N+ is therefore a random variable
with binomial distribution: N+ ∼ Binom(α, nϕ).
The concrete outcome for a given experiment is
n+ =

∑nϕ

j=1 r
∗
j . To estimate α we use the propor-

tion of successful trials, meaning the fraction of
adequate responses: α̃ = n+

nϕ
. Due to the Law of

Large Numbers this will converge to the expected
value E[rj ] = α.

Bayesian Formulation We choose to work in a
Bayesian framework as it provides a convenient
way to unify the multiple sources of evidence and
uncertainty we want to tackle. The first source
of information comes from TΦ. In particular we
have seen that the number of input-output pairs
rated as adequate, N+, follows a binomial dis-
tribution. This means that P (N+ = n+|α) =(
nϕ
n+

)
αn+(1− α)nϕ−n+ . We want to derive a pos-

terior distribution for α based on the evidence:
p(α|N+ = n+). For this we can apply Bayes’ The-
orem: p(α|N+ = n+) ∝ P (N+ = n+|α)p(α),
where p(α) expresses our prior belief of the possi-
ble values for α. In this setting p(α) is called the
prior, P (N+ = n+|α) likelihood, and p(α|N+ =
n+) the posterior. Since we in general cannot as-
sume anything about α we choose a uniform prior
α ∼ U(0, 1). This means before seeing any evi-
dence we consider any possible value of α to be
equally likely. Of course there are other reasonable
choices for priors, but in general uniform priors are

306

Readings in AI 2022 Centre for Artificial Intelligence

Zurich University of Applied Sciences www.zhaw.ch/cai/en



natural language evalaution. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
643–653.
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2018. Rankme: Reliable human ratings for natural
language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 72–78.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing bayesian models of annotation. Transac-
tions of the Association for Computational Linguis-
tics, 6:571–585.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Lihua Qian, Yi Zhou, Zaixiang Zheng, Yaoming Zhu,
Zehui Lin, Jiangtao Feng, Shanbo Cheng, Lei Li,
Mingxuan Wang, and Hao Zhou. 2021. The volctrans
GLAT system: Non-autoregressive translation meets
WMT21. In Proceedings of the Sixth Conference on
Machine Translation, pages 187–196, Online. Asso-
ciation for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Ananya B Sai, Akash Kumar Mohankumar, and
Mitesh M Khapra. 2022. A survey of evaluation met-
rics used for nlg systems. ACM Computing Surveys
(CSUR), 55(2):1–39.

Sashank Santhanam and Samira Shaikh. 2019. Towards
best experiment design for evaluating dialogue sys-
tem output. In Proceedings of the 12th International
Conference on Natural Language Generation, pages
88–94.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn,
Sergey Edunov, and Angela Fan. 2021. Facebook
AI’s WMT21 news translation task submission. In
Proceedings of the Sixth Conference on Machine
Translation, pages 205–215, Online. Association for
Computational Linguistics.

Chris Van Der Lee, Albert Gatt, Emiel Van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368.

Daimeng Wei, Zongyao Li, Zhanglin Wu, Zhengzhe Yu,
Xiaoyu Chen, Hengchao Shang, Jiaxin Guo, Minghan
Wang, Lizhi Lei, Min Zhang, Hao Yang, and Ying
Qin. 2021. HW-TSC’s participation in the WMT
2021 news translation shared task. In Proceedings of

the Sixth Conference on Machine Translation, pages
225–231, Online. Association for Computational Lin-
guistics.

A Derivations for α-estimation

In Section 3 we have introduced several ways to
estimate the success rate α of a Text-Generator π.
We will now elaborate some of these in more detail.

First, we want to estimate α based on consistent
ratings from M∗

b . For this we need a set of inputs,
the corresponding outputs from π, and the rating
from M∗

b : TΦ = {(ij , oj , r∗j )|1 ≤ j ≤ nϕ}, where
oj = π(ij) and r∗j = M∗

b (ij , oj). We note that, in
this case, the probability that a given pair is rated
adequate is α, since:

P (r∗j = 1) = P (M∗
b (ij , π(ij)) = 1)

= P (π(ij) ∈ Rij
+)

= α

We can therefore treat r∗j as outcomes of Bernoulli
trials with success probability α. The number of
successful trials N+ is therefore a random variable
with binomial distribution: N+ ∼ Binom(α, nϕ).
The concrete outcome for a given experiment is
n+ =

∑nϕ

j=1 r
∗
j . To estimate α we use the propor-

tion of successful trials, meaning the fraction of
adequate responses: α̃ = n+

nϕ
. Due to the Law of

Large Numbers this will converge to the expected
value E[rj ] = α.

Bayesian Formulation We choose to work in a
Bayesian framework as it provides a convenient
way to unify the multiple sources of evidence and
uncertainty we want to tackle. The first source
of information comes from TΦ. In particular we
have seen that the number of input-output pairs
rated as adequate, N+, follows a binomial dis-
tribution. This means that P (N+ = n+|α) =(
nϕ
n+

)
αn+(1− α)nϕ−n+ . We want to derive a pos-

terior distribution for α based on the evidence:
p(α|N+ = n+). For this we can apply Bayes’ The-
orem: p(α|N+ = n+) ∝ P (N+ = n+|α)p(α),
where p(α) expresses our prior belief of the possi-
ble values for α. In this setting p(α) is called the
prior, P (N+ = n+|α) likelihood, and p(α|N+ =
n+) the posterior. Since we in general cannot as-
sume anything about α we choose a uniform prior
α ∼ U(0, 1). This means before seeing any evi-
dence we consider any possible value of α to be
equally likely. Of course there are other reasonable
choices for priors, but in general uniform priors are
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a good choice since the resulting estimators will
closely match traditional frequentist approaches.

Another approach is to choose a so-called con-
jugate prior based on the type of likelihood we
are confronted with. A conjugate prior for a
given likelihood will result in a posterior from the
same family (but different parameters) as the prior.
In our case, the Beta distribution is a conjugate
prior for a Binomial likelihood. Beta distributions
have two shape parameters a and b and assuming
α ∼ Beta(a, b) then p(α) = αa−1(1−α)b−1

B(a,b) . Here
B(a, b) is the beta function of a and b and serves as
the normalizing constant, ensuring that p(α) inte-
grates to 1. The beta function is defined in terms of
the Gamma function Γ, an extension of factorials.

Luckily, we can show that U(0, 1) and
Beta(1, 1) are the same distribution. We first note
that both distributions are defined on the same do-
main (0, 1). In particular, the uniform distribution
is constant 1 over the domain. By definition of the
Beta distribution we have that if α ∼ Beta(1, 1)

then p(α) = α1−1(1−α)1−1

B(1,1) = 1
B(1,1) = 1.

Next we will show how to compute the posterior
for the general case where α ∼ Beta(a, b):

p(α|N+ = n+)

∝ P (N+ = n+|α)p(α)

∝
(
nϕ

n+

)
αn+(1− α)nϕ−n+

αa−1(1− α)b−1)

B(a, b)

∝ αn++a−1(1− α)nϕ−n++b−1

∼ Beta(n+ + a, nϕ − n+ + b)

We see that the resulting posterior is indeed another
Beta distribution. In particular if we choose a =
b = 1, or a uniform prior, we get that α|N+ =
n+ ∼ Beta(n+ +1, nϕ −n+ +1) as in Section 3.

Error-prone Metric Next, we want to estimate
α given a set of inputs, outputs from π, and ratings
from a error-prone metric Mρ,η

b with known ρ and
η. We define TM = {(ij , oj , rj)|1 ≤ j < nM}
where oj = π(ij) and rj = Mρ,η

b (ij , oj). The

probability that any given rj is 1 is:

P (rj = 1)

= P (Mρ,η
b (ij , π(ij) = 1)

= P (Mρ,η
b (ij , π(ij)) = 1|π(ij) ∈ Rij

+)

P (π(ij) ∈ Rij
+)

+ P (Mρ,η
b (ij , π(ij)) = 1|π(ij) /∈ Rij

+)

P (π(ij) /∈ Rij
+)

= ρα

+ (1− P (Mρ,η
b (ij , π(ij)) = 0|π(ij) /∈ R

ij
+))

(1− P (π(ij) ∈ R
ij
+))

= ρα+ (1− η)(1− α)

= α(ρ+ η − 1) + (1− η)

What we can concretely measure (or count) on
TM is the number of times the error-prone metric
gives an adequate rating. We define this as m+ =∑nM

j=1 rj . Since we sum nM Bernoulli trials with
success rate α(ρ+ η− 1)+ (1− η), the sum has a
Binomial distribution: M+ ∼ Binom(α(ρ+ η −
1) + (1− η), nM ). Therefore our likelihood is:

P (M+ = m+|α, ρ, η)

=

(
nM

m+

)
(α(ρ+ η − 1) + (1− η))m+

(1− (α(ρ+ η − 1) + (1− η)))nM−m+

We notate the likelihood as P (M+ = m+|α, ρ, η)
to indicate the dependence on ρ and η, even though
they are assumed deterministic. Unfortunately, we
are not aware of any conjugate prior for α that
would allow us to derive a closed form posterior
from this likelihood. Nevertheless, we can show
that for α ∼ U(0, 1) the mode of the posterior is at
m+
nM

−(1−η)

ρ+η−1 . For this we will have to find the point
where the derivative of the posterior with respect
to α is 0. To simplify the notation we will write
f(α) = α(ρ + η − 1) + (1 − η) and f ′(α) =
d
dαf(α) = ρ+ η − 1.

We will first compute the derivative of the pos-
terior with respect to α using a uniform prior (i.e.

p(α) = 1):

d

dα
p(α|M+ = m+)

∝ d

dα
P (M+ = M+|α, ρ, η)p(α)

∝ d

dα
P (M+ = M+|α, ρ, η)1

∝ d

dα
(f(α)m+(1− f(α))nM−m+)

∝ (
d

dα
f(α)m+)(1− f(α))nM−m+

+ f(α)m+(
d

dα
(1− f(α))nM−m+))

∝ m+f(α)
m+−1f ′(α)(1− f(α))nM−m+

+ f(α)m+(nM −m+)(1− f(α))nM−m+−1(−f ′(α))

∝ m+f
′(α)f(α)m+−1(1− f(α))nM−m+

− (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

To find the mode we set the derivative to zero
and solve for α. We will use the convenient fact
that f ′(α) is constant independent of α:

m+f
′(α)f(α)m+−1(1− f(α))nM−m+

− (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

= 0 ⇐⇒
m+f

′(α)f(α)m+−1(1− f(α))nM−m+

= (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

m+f(α)
m+−1(1− f(α))nM−m+

= (nM −m+)f(α)
m+(1− f(α))nM−m+−1

m+(1− f(α))nM−m+

= (nM −m+)f(α)(1− f(α))nM−m+−1

m+(1− f(α)) = (nM −m+)f(α)

m+ = (nM −m+)f(α) +m+f(α)

m+ = (nM −m+ +m+)f(α)
m+

nM
= f(α) = α(ρ+ η − 1) + (1− η)

α =

m+

nM
− (1− η)

ρ+ η − 1

Uncertainty in ρ and η If we do not already
know the specific ρ and η for a given error-prone
metric, we will have to estimate them from data.
For this we need ratings from a the error-prone
metric as well as an error-free metric to com-
pare to. Assume we are given the set Tρ,η =
{(ij , oj , rj , r∗j )|1 ≤ j < nρ,η}, where rj =
Mρ,η

b (ij , oj) and r∗j = M∗
b (ij , oj). Note that un-

like TΦ and TM we do not make any assumptions
about how oj was generated.

By definition ρ is the true positive rate of the
error-prone metric and η the true negative rate. We
can therefore estimate them independently from
each other by splitting Tρ,η into two sets based
on whether r∗j is 1 or 0: T +

ρ,η = {(i, o, r, r∗) ∈
Tρ,η|r∗ = 1} and T −

ρ,η = {(i, o, r, r∗) ∈ Tρ,η|r∗ =
0}.

To estimate ρ we have to count the number of
times rj = 1 when r∗j = 1 too, in other words
we have to count the number of true adequate rat-
ings: nTP =

∑
i,o,r,r∗∈T +

ρ,η
r. By definition we

know that ρ = P (r = 1|r∗ = 1) and there-
fore NTP ∼ Binom(ρ, |T +

ρ,η|). We can apply
the same Bayesian reasoning as at the start of this
Appendix to derive a posterior distribution for ρ.
Assuming a uniform prior over ρ, we have that
ρ|nTP ∼ Beta(nTP + 1, |T +

ρ,η| − nTP + 1). The
estimation of η is exactly analogous.

At this point we could just use point estimates
for ρ and η and treat them as deterministic like
above. Unfortunately this has a high chance of
throwing off the point estimate (mode) of α.

We will therefore consider the joint likelihood
P (M+ = m+, ρ, η|α) and marginalize ρ and η.
We will reuse results from above. Recall we were
given the set TM = {(ij , oj , rj)|1 ≤ j < nM}
where oj = π(ij) and rj = Mρ,η

b (ij , oj). We
counted the number of adequate ratings m+ =∑nM

j=1 rj and we saw that P (M+ = M+|α, ρ, η) =
α(ρ + η − 1) + (1 − η). Based on that we can
compute the likelihood as follows:

P (M+ = m+|α)

=

∫ 1

0

∫ 1

0
P (M+ = m+, ρ, η|α)dρdη

=

∫ 1

0

∫ 1

0
P (M+ = m+|ρ, η, α)p(ρ)p(η)dρdη

and the posterior as follows:

p(α|M+ = m+)

∝ p(α)P (M+ = m+|α)

∝ p(α)

∫ 1

0

∫ 1

0
P (M+ = m+|ρ, η, α)p(ρ)p(η)dρdη

We will show how approximate this numerically
in Appendix B.

Combining error-free and error-prone ratings
Finally, we show how we can combine both error-
free and error-prone ratings into a single estimate
for α. Here we assume that we have estimates for
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a good choice since the resulting estimators will
closely match traditional frequentist approaches.

Another approach is to choose a so-called con-
jugate prior based on the type of likelihood we
are confronted with. A conjugate prior for a
given likelihood will result in a posterior from the
same family (but different parameters) as the prior.
In our case, the Beta distribution is a conjugate
prior for a Binomial likelihood. Beta distributions
have two shape parameters a and b and assuming
α ∼ Beta(a, b) then p(α) = αa−1(1−α)b−1

B(a,b) . Here
B(a, b) is the beta function of a and b and serves as
the normalizing constant, ensuring that p(α) inte-
grates to 1. The beta function is defined in terms of
the Gamma function Γ, an extension of factorials.

Luckily, we can show that U(0, 1) and
Beta(1, 1) are the same distribution. We first note
that both distributions are defined on the same do-
main (0, 1). In particular, the uniform distribution
is constant 1 over the domain. By definition of the
Beta distribution we have that if α ∼ Beta(1, 1)

then p(α) = α1−1(1−α)1−1

B(1,1) = 1
B(1,1) = 1.

Next we will show how to compute the posterior
for the general case where α ∼ Beta(a, b):

p(α|N+ = n+)

∝ P (N+ = n+|α)p(α)

∝
(
nϕ

n+

)
αn+(1− α)nϕ−n+

αa−1(1− α)b−1)

B(a, b)

∝ αn++a−1(1− α)nϕ−n++b−1

∼ Beta(n+ + a, nϕ − n+ + b)

We see that the resulting posterior is indeed another
Beta distribution. In particular if we choose a =
b = 1, or a uniform prior, we get that α|N+ =
n+ ∼ Beta(n+ +1, nϕ −n+ +1) as in Section 3.

Error-prone Metric Next, we want to estimate
α given a set of inputs, outputs from π, and ratings
from a error-prone metric Mρ,η

b with known ρ and
η. We define TM = {(ij , oj , rj)|1 ≤ j < nM}
where oj = π(ij) and rj = Mρ,η

b (ij , oj). The

probability that any given rj is 1 is:

P (rj = 1)

= P (Mρ,η
b (ij , π(ij) = 1)

= P (Mρ,η
b (ij , π(ij)) = 1|π(ij) ∈ Rij

+)

P (π(ij) ∈ Rij
+)

+ P (Mρ,η
b (ij , π(ij)) = 1|π(ij) /∈ Rij

+)

P (π(ij) /∈ Rij
+)

= ρα

+ (1− P (Mρ,η
b (ij , π(ij)) = 0|π(ij) /∈ R

ij
+))

(1− P (π(ij) ∈ R
ij
+))

= ρα+ (1− η)(1− α)

= α(ρ+ η − 1) + (1− η)

What we can concretely measure (or count) on
TM is the number of times the error-prone metric
gives an adequate rating. We define this as m+ =∑nM

j=1 rj . Since we sum nM Bernoulli trials with
success rate α(ρ+ η− 1)+ (1− η), the sum has a
Binomial distribution: M+ ∼ Binom(α(ρ+ η −
1) + (1− η), nM ). Therefore our likelihood is:

P (M+ = m+|α, ρ, η)

=

(
nM

m+

)
(α(ρ+ η − 1) + (1− η))m+

(1− (α(ρ+ η − 1) + (1− η)))nM−m+

We notate the likelihood as P (M+ = m+|α, ρ, η)
to indicate the dependence on ρ and η, even though
they are assumed deterministic. Unfortunately, we
are not aware of any conjugate prior for α that
would allow us to derive a closed form posterior
from this likelihood. Nevertheless, we can show
that for α ∼ U(0, 1) the mode of the posterior is at
m+
nM

−(1−η)

ρ+η−1 . For this we will have to find the point
where the derivative of the posterior with respect
to α is 0. To simplify the notation we will write
f(α) = α(ρ + η − 1) + (1 − η) and f ′(α) =
d
dαf(α) = ρ+ η − 1.

We will first compute the derivative of the pos-
terior with respect to α using a uniform prior (i.e.

p(α) = 1):

d

dα
p(α|M+ = m+)

∝ d

dα
P (M+ = M+|α, ρ, η)p(α)

∝ d

dα
P (M+ = M+|α, ρ, η)1

∝ d

dα
(f(α)m+(1− f(α))nM−m+)

∝ (
d

dα
f(α)m+)(1− f(α))nM−m+

+ f(α)m+(
d

dα
(1− f(α))nM−m+))

∝ m+f(α)
m+−1f ′(α)(1− f(α))nM−m+

+ f(α)m+(nM −m+)(1− f(α))nM−m+−1(−f ′(α))

∝ m+f
′(α)f(α)m+−1(1− f(α))nM−m+

− (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

To find the mode we set the derivative to zero
and solve for α. We will use the convenient fact
that f ′(α) is constant independent of α:

m+f
′(α)f(α)m+−1(1− f(α))nM−m+

− (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

= 0 ⇐⇒
m+f

′(α)f(α)m+−1(1− f(α))nM−m+

= (nM −m+)f
′(α)f(α)m+(1− f(α))nM−m+−1

m+f(α)
m+−1(1− f(α))nM−m+

= (nM −m+)f(α)
m+(1− f(α))nM−m+−1

m+(1− f(α))nM−m+

= (nM −m+)f(α)(1− f(α))nM−m+−1

m+(1− f(α)) = (nM −m+)f(α)

m+ = (nM −m+)f(α) +m+f(α)

m+ = (nM −m+ +m+)f(α)
m+

nM
= f(α) = α(ρ+ η − 1) + (1− η)

α =

m+

nM
− (1− η)

ρ+ η − 1

Uncertainty in ρ and η If we do not already
know the specific ρ and η for a given error-prone
metric, we will have to estimate them from data.
For this we need ratings from a the error-prone
metric as well as an error-free metric to com-
pare to. Assume we are given the set Tρ,η =
{(ij , oj , rj , r∗j )|1 ≤ j < nρ,η}, where rj =
Mρ,η

b (ij , oj) and r∗j = M∗
b (ij , oj). Note that un-

like TΦ and TM we do not make any assumptions
about how oj was generated.

By definition ρ is the true positive rate of the
error-prone metric and η the true negative rate. We
can therefore estimate them independently from
each other by splitting Tρ,η into two sets based
on whether r∗j is 1 or 0: T +

ρ,η = {(i, o, r, r∗) ∈
Tρ,η|r∗ = 1} and T −

ρ,η = {(i, o, r, r∗) ∈ Tρ,η|r∗ =
0}.

To estimate ρ we have to count the number of
times rj = 1 when r∗j = 1 too, in other words
we have to count the number of true adequate rat-
ings: nTP =

∑
i,o,r,r∗∈T +

ρ,η
r. By definition we

know that ρ = P (r = 1|r∗ = 1) and there-
fore NTP ∼ Binom(ρ, |T +

ρ,η|). We can apply
the same Bayesian reasoning as at the start of this
Appendix to derive a posterior distribution for ρ.
Assuming a uniform prior over ρ, we have that
ρ|nTP ∼ Beta(nTP + 1, |T +

ρ,η| − nTP + 1). The
estimation of η is exactly analogous.

At this point we could just use point estimates
for ρ and η and treat them as deterministic like
above. Unfortunately this has a high chance of
throwing off the point estimate (mode) of α.

We will therefore consider the joint likelihood
P (M+ = m+, ρ, η|α) and marginalize ρ and η.
We will reuse results from above. Recall we were
given the set TM = {(ij , oj , rj)|1 ≤ j < nM}
where oj = π(ij) and rj = Mρ,η

b (ij , oj). We
counted the number of adequate ratings m+ =∑nM

j=1 rj and we saw that P (M+ = M+|α, ρ, η) =
α(ρ + η − 1) + (1 − η). Based on that we can
compute the likelihood as follows:

P (M+ = m+|α)

=

∫ 1

0

∫ 1

0
P (M+ = m+, ρ, η|α)dρdη

=

∫ 1

0

∫ 1

0
P (M+ = m+|ρ, η, α)p(ρ)p(η)dρdη

and the posterior as follows:

p(α|M+ = m+)

∝ p(α)P (M+ = m+|α)

∝ p(α)

∫ 1

0

∫ 1

0
P (M+ = m+|ρ, η, α)p(ρ)p(η)dρdη

We will show how approximate this numerically
in Appendix B.

Combining error-free and error-prone ratings
Finally, we show how we can combine both error-
free and error-prone ratings into a single estimate
for α. Here we assume that we have estimates for
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ρ and η, for example in the form of Beta-posteriors,
as derived previously: ρ ∼ Beta(aρ, bρ) and
η ∼ Beta(aη, bη). Similarly, we build upon
the previous setting where we counted the num-
ber of adequate ratings from the error-free met-
ric, N+ ∼ Binom(α, nϕ), and the number of ade-
quate ratings from the error-prone metric, M+ ∼
Binom(α(ρ+η−1)+(1−η), nM ). Our observed
n+ and m+ have the joint likelihood:

P (M+ = m+, N+ = n+|α)
= P (M+ = m+|α)P (N+ = n+|α)

We assume here that M+ and N+ are independent
when conditioned on α.

We are now ready to compute the posterior for
α. Using a Beta prior α ∼ Beta(aα, bα) we get:

p(α|M+ = m+, N+ = n+)

∝ p(α)P (M+ = m+, N+ = n+|α)
∝ p(α)P (N+ = n+|α)P (M+ = m+|α)
∝ p(α)P (N+ = n+|α)∫ 1

0

∫ 1

0
P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

∝ p(α|N+ = n+)∫ 1

0

∫ 1

0
P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

Looking at the last step, we see that we can
combine the prior p(α) with the partial likeli-
hood P (N+ = n+|α) to get a partial posterior
p(α|N+ = n+) that gets multiplied with the like-
lihood of M+. We have already seen that since α
has a Beta prior and N+ has a binomial likelihood,
α|N+ is also a Beta distribution. This suggests
a two-step procedure, where in the first step we
derive a posterior from error-free ratings. In the
second step we use that estimate as the new prior
for deriving the posterior from error-prone ratings.

Notes on TΦ, TM , and Tρ,η Note that in practise
there are some considerations to be made. Since
we use human ratings, we can use them both for
estimating ρ and η but also to estimate α. Thus, we
use TΦ = Tρ,η, which is also necessary since ρ and
η are different for each TG system (see example in
Appendix C). Thus, it is often not advisable to use
the ratings for other systems to estimate ρ and η.
However, this phenomenon needs to be explored in
more detail.

For the estimation of ρ and η, we need to make
sure that T+

ρ,η and T−
ρ,η are of large enough size.

Since if we have only a few samples in Tρ,η where
r∗j = 0 then the estimate for η will be uncer-
tain. This can be problematic when evaluating
very strong or very poor systems (e.g., α > 0.9 or
α < 0.1) as there will be only a few samples with
r∗j = 0 or r∗j = 1 respectively.

In many cases we can reuse the samples in TΦ for
TM , i.e., TΦ ⊆ TM since we can use the automated
metric to rate the samples, which were annotated
by humans. However, it is not clear what effect this
will have on the final estimate of ϵ. Exploring this
phenomenon is part of future work.

B Derivations for ϵ-simulation

In this section we will show how we derive the
values for the minimally distinguishable difference
between two systems. We do this by first simu-
lating a concrete experiment based on theoretical
parameters. We substitute the simulated experi-
ment into Equation 5. We will also show how we
numerically approximate Equation 5.

Simulation Until now we have considered the
case where α , and possibly ρ and η, are unknown
and need to be estimated from data. In that case we
use Equation 5 to derive a posterior estimate for α.
The whole estimation is based on counts from three
sources TΦ, TM , and Tρ,η. Assume we know the
following properties: α, ρ, η, nϕ = |TΦ|, nM =
|TM |, nρ,η = |Tρ,η|, as well as the proportion ψ of
truly adequate responses in Tρ,η.

To simulate the number of adequate ratings
from the error-free metric n+ we round its ex-
pected value, E[n+] = αnϕ, to the nearest inte-
ger: nsim

+ = ⌊αnϕ + 1
2⌋. To simulate the num-

ber of adequate ratings from the error-prone met-
ric m+, we round its expected value, E[m+] =
(α(ρ+ η− 1)+ (1− η))nM , to the nearest integer:
msim

+ = ⌊(α(ρ+ η − 1) + (1− η))nM + 1
2⌋. We

have seen that to estimate ρ we need to know the
number of true positive ratings nTP of the error-
prone metric as well as the total number of positive
ratings in Tρ,η which we notated as |T +

ρ,η| = n∗
p.

We can simulate the latter by rounding its ex-
pected value, E[n∗

p] = ψnρ,η, to the nearest integer:
nsim
p = ⌊ψnρ,η + 1

2⌋. To simulate nTP we have
to plug the simulated nsim

p into the expected value:
nsim
TP = ⌊ρnsim

p + 1
2⌋. Finally, we follow the same

process to simulate the data for η. Let n∗
n = |T −

ρ,η|,
which we simulate as nsim

n = nρ,ϕ − nsim
p . The

number of true negatives of the error-prone metric
is simulated as: nsim

TN = ⌊η(nρ,ϕ − nsim
p ) + 1

2⌋.

We can then use these simulated values to cal-
culate the calculate the posterior psim(α) based
on Equation 5. For this we first have to simulate
our belief over ρ and η: ρsim ∼ Beta(nsim

TP +
1, nsim

p − nsim
TP + 1) and ηsim ∼ Beta(nsim

TN +
1, nsim

n − nsim
TN + 1). We again set a uniform prior,

α ∼ Beta(1, 1) and compute the simulated poste-
rior:

psim(α|N+ = nsim
+ ,M+ = nsim

+ )

∝ p(α)P (N+ = nsim
+ |α)

∫ 1

0

∫ 1

0
P (M+ = msim

+ |α, ρ, η)psim(ρ)psim(η)dρdη

For the tables in Appendix E we make the fol-
lowing simplifying assumptions: we assume that
the input-output pairs in TΦ and Tρ,η are the same.
This means that nρ,η = nϕ and ψ = α.

Computing ϵγ We will now show how we use
psim(α) to compute the minimal distinguishable
difference between two systems π1 with success
rate α1 and π2 with success rate α2.

Assume we know the distributions p(α1) and
p(α2), we can then compute their means µi =
E[αi] and variances σ2

i = V[αi]. These can
be used to derive normal approximations for αi:
αN
i ∼ N (µi, σi). In that case the difference

ϵ = αN
1 − αN

2 also follows a normal distribu-
tion: N (µ1 − µ2,

√
σ2
1 + σ2

1). We can now for-
mulate a z-test to see whether there is a signifi-
cant difference between αN

1 and αN
1 . The null

hypothesis H0 is that both systems perform the
same, meaning µ1 = µ2 or ϵ = 0. Under H0 we
have that ϵ√

σ2
1+σ2

1

∼ N (0, 1). To reject H0 at a

certain significance level γ, we have to show that
| ϵ√

σ2
1+σ2

1

| > Φ−1(1− γ
2 ). Here Φ−1 is the inverse

cumulative distribution function of the standard nor-
mal distribution and we notate Zγ = Φ−1(1− γ

2 ).
In that case, all |ϵ| >

√
σ2
1 + σ2

2Zγ will be sig-
nificant under this test. The minimal significant
difference at the γ level is then ϵγ =

√
σ2
1 + σ2

2Zγ .
Given our simulated posterior psim(α) we can

compute its mean, µsim =
∫ 1
0 αpsim(α)dα and

variance σ2
sim =

∫ 1
0 (α − µsim)2psim(α)dα. We

have to make one final assumption: if we esti-
mate α1 and α2 under exactly the same condi-
tions, meaning with the same nϕ, nM , nρ,η and
the same error-prone metric Mρ,η

b , and their dif-
ference ϵ is relatively small, then their variances
should be the same. Using this assumption we

compute: ϵsimγ =
√

2σ2
simZγ .

Caveats At this point we will reflect on the sev-
eral layers of approximations we go through to
arrive at an numerical estimate for ϵγ . We start
out by simulating an experiment where we replace
all key observables by their expected values under
our experiment assumptions (i.e. the chosen fixed
values of α, ρ, η and sample sizes). Of course
in a real world setting those values could deviate
from their expected values due to bad luck. This
will influence both the mean and variance of the
resulting estimate. We then compute the simulated
posterior using numerical approximation (see next
paragraph), which could be imprecise. We then
further approximate the posterior by a normal dis-
tribution. In practice, we work with large enough
sample sizes, that the normal approximation should
be relatively accurate.

The overall implication is that the theoretical
values of ϵγ we use throughout this work provide
a useful guideline but it is unclear how exact they
are.

Numerical Approximation of Posteriors A
problem we face repeatedly is that we are interested
in the expected values of a function of a continuous
random variable, such as

∫ b
a f(x)p(x)dx, which

might not have an easily computable closed form.
This is for example the case for the integrals over ρ
and η in Equation 5, but also when computing the
mean and variance of the posterior.

We will now elaborate how we approximate ex-
pected values of a continuous variable by mid-
dle Riemann sums. Assume we are given a ran-
dom variable x with domain (0, 1), its density
function p(x), and its cumulative density function
CDFx(x

′) = P (x < x′) =
∑x′

0 p(x)dx. The
main idea is to partition the domain into a discrete
number equally sized slices. Every partition gets
identified by its midpoint and the total total den-
sity within that partition. Let Nx be the number of
slices, the larger Nx the preciser our approximation
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ρ and η, for example in the form of Beta-posteriors,
as derived previously: ρ ∼ Beta(aρ, bρ) and
η ∼ Beta(aη, bη). Similarly, we build upon
the previous setting where we counted the num-
ber of adequate ratings from the error-free met-
ric, N+ ∼ Binom(α, nϕ), and the number of ade-
quate ratings from the error-prone metric, M+ ∼
Binom(α(ρ+η−1)+(1−η), nM ). Our observed
n+ and m+ have the joint likelihood:

P (M+ = m+, N+ = n+|α)
= P (M+ = m+|α)P (N+ = n+|α)

We assume here that M+ and N+ are independent
when conditioned on α.

We are now ready to compute the posterior for
α. Using a Beta prior α ∼ Beta(aα, bα) we get:

p(α|M+ = m+, N+ = n+)

∝ p(α)P (M+ = m+, N+ = n+|α)
∝ p(α)P (N+ = n+|α)P (M+ = m+|α)
∝ p(α)P (N+ = n+|α)∫ 1

0

∫ 1

0
P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

∝ p(α|N+ = n+)∫ 1

0

∫ 1

0
P (M+ = m+|α, ρ, η)p(ρ)p(η)dρdη

Looking at the last step, we see that we can
combine the prior p(α) with the partial likeli-
hood P (N+ = n+|α) to get a partial posterior
p(α|N+ = n+) that gets multiplied with the like-
lihood of M+. We have already seen that since α
has a Beta prior and N+ has a binomial likelihood,
α|N+ is also a Beta distribution. This suggests
a two-step procedure, where in the first step we
derive a posterior from error-free ratings. In the
second step we use that estimate as the new prior
for deriving the posterior from error-prone ratings.

Notes on TΦ, TM , and Tρ,η Note that in practise
there are some considerations to be made. Since
we use human ratings, we can use them both for
estimating ρ and η but also to estimate α. Thus, we
use TΦ = Tρ,η, which is also necessary since ρ and
η are different for each TG system (see example in
Appendix C). Thus, it is often not advisable to use
the ratings for other systems to estimate ρ and η.
However, this phenomenon needs to be explored in
more detail.

For the estimation of ρ and η, we need to make
sure that T+

ρ,η and T−
ρ,η are of large enough size.

Since if we have only a few samples in Tρ,η where
r∗j = 0 then the estimate for η will be uncer-
tain. This can be problematic when evaluating
very strong or very poor systems (e.g., α > 0.9 or
α < 0.1) as there will be only a few samples with
r∗j = 0 or r∗j = 1 respectively.

In many cases we can reuse the samples in TΦ for
TM , i.e., TΦ ⊆ TM since we can use the automated
metric to rate the samples, which were annotated
by humans. However, it is not clear what effect this
will have on the final estimate of ϵ. Exploring this
phenomenon is part of future work.

B Derivations for ϵ-simulation

In this section we will show how we derive the
values for the minimally distinguishable difference
between two systems. We do this by first simu-
lating a concrete experiment based on theoretical
parameters. We substitute the simulated experi-
ment into Equation 5. We will also show how we
numerically approximate Equation 5.

Simulation Until now we have considered the
case where α , and possibly ρ and η, are unknown
and need to be estimated from data. In that case we
use Equation 5 to derive a posterior estimate for α.
The whole estimation is based on counts from three
sources TΦ, TM , and Tρ,η. Assume we know the
following properties: α, ρ, η, nϕ = |TΦ|, nM =
|TM |, nρ,η = |Tρ,η|, as well as the proportion ψ of
truly adequate responses in Tρ,η.

To simulate the number of adequate ratings
from the error-free metric n+ we round its ex-
pected value, E[n+] = αnϕ, to the nearest inte-
ger: nsim

+ = ⌊αnϕ + 1
2⌋. To simulate the num-

ber of adequate ratings from the error-prone met-
ric m+, we round its expected value, E[m+] =
(α(ρ+ η− 1)+ (1− η))nM , to the nearest integer:
msim

+ = ⌊(α(ρ+ η − 1) + (1− η))nM + 1
2⌋. We

have seen that to estimate ρ we need to know the
number of true positive ratings nTP of the error-
prone metric as well as the total number of positive
ratings in Tρ,η which we notated as |T +

ρ,η| = n∗
p.

We can simulate the latter by rounding its ex-
pected value, E[n∗

p] = ψnρ,η, to the nearest integer:
nsim
p = ⌊ψnρ,η + 1

2⌋. To simulate nTP we have
to plug the simulated nsim

p into the expected value:
nsim
TP = ⌊ρnsim

p + 1
2⌋. Finally, we follow the same

process to simulate the data for η. Let n∗
n = |T −

ρ,η|,
which we simulate as nsim

n = nρ,ϕ − nsim
p . The

number of true negatives of the error-prone metric
is simulated as: nsim

TN = ⌊η(nρ,ϕ − nsim
p ) + 1

2⌋.

We can then use these simulated values to cal-
culate the calculate the posterior psim(α) based
on Equation 5. For this we first have to simulate
our belief over ρ and η: ρsim ∼ Beta(nsim

TP +
1, nsim

p − nsim
TP + 1) and ηsim ∼ Beta(nsim

TN +
1, nsim

n − nsim
TN + 1). We again set a uniform prior,

α ∼ Beta(1, 1) and compute the simulated poste-
rior:

psim(α|N+ = nsim
+ ,M+ = nsim

+ )

∝ p(α)P (N+ = nsim
+ |α)

∫ 1

0

∫ 1

0
P (M+ = msim

+ |α, ρ, η)psim(ρ)psim(η)dρdη

For the tables in Appendix E we make the fol-
lowing simplifying assumptions: we assume that
the input-output pairs in TΦ and Tρ,η are the same.
This means that nρ,η = nϕ and ψ = α.

Computing ϵγ We will now show how we use
psim(α) to compute the minimal distinguishable
difference between two systems π1 with success
rate α1 and π2 with success rate α2.

Assume we know the distributions p(α1) and
p(α2), we can then compute their means µi =
E[αi] and variances σ2

i = V[αi]. These can
be used to derive normal approximations for αi:
αN
i ∼ N (µi, σi). In that case the difference

ϵ = αN
1 − αN

2 also follows a normal distribu-
tion: N (µ1 − µ2,

√
σ2
1 + σ2

1). We can now for-
mulate a z-test to see whether there is a signifi-
cant difference between αN

1 and αN
1 . The null

hypothesis H0 is that both systems perform the
same, meaning µ1 = µ2 or ϵ = 0. Under H0 we
have that ϵ√

σ2
1+σ2

1

∼ N (0, 1). To reject H0 at a

certain significance level γ, we have to show that
| ϵ√

σ2
1+σ2

1

| > Φ−1(1− γ
2 ). Here Φ−1 is the inverse

cumulative distribution function of the standard nor-
mal distribution and we notate Zγ = Φ−1(1− γ

2 ).
In that case, all |ϵ| >

√
σ2
1 + σ2

2Zγ will be sig-
nificant under this test. The minimal significant
difference at the γ level is then ϵγ =

√
σ2
1 + σ2

2Zγ .
Given our simulated posterior psim(α) we can

compute its mean, µsim =
∫ 1
0 αpsim(α)dα and

variance σ2
sim =

∫ 1
0 (α − µsim)2psim(α)dα. We

have to make one final assumption: if we esti-
mate α1 and α2 under exactly the same condi-
tions, meaning with the same nϕ, nM , nρ,η and
the same error-prone metric Mρ,η

b , and their dif-
ference ϵ is relatively small, then their variances
should be the same. Using this assumption we

compute: ϵsimγ =
√
2σ2

simZγ .

Caveats At this point we will reflect on the sev-
eral layers of approximations we go through to
arrive at an numerical estimate for ϵγ . We start
out by simulating an experiment where we replace
all key observables by their expected values under
our experiment assumptions (i.e. the chosen fixed
values of α, ρ, η and sample sizes). Of course
in a real world setting those values could deviate
from their expected values due to bad luck. This
will influence both the mean and variance of the
resulting estimate. We then compute the simulated
posterior using numerical approximation (see next
paragraph), which could be imprecise. We then
further approximate the posterior by a normal dis-
tribution. In practice, we work with large enough
sample sizes, that the normal approximation should
be relatively accurate.

The overall implication is that the theoretical
values of ϵγ we use throughout this work provide
a useful guideline but it is unclear how exact they
are.

Numerical Approximation of Posteriors A
problem we face repeatedly is that we are interested
in the expected values of a function of a continuous
random variable, such as

∫ b
a f(x)p(x)dx, which

might not have an easily computable closed form.
This is for example the case for the integrals over ρ
and η in Equation 5, but also when computing the
mean and variance of the posterior.

We will now elaborate how we approximate ex-
pected values of a continuous variable by mid-
dle Riemann sums. Assume we are given a ran-
dom variable x with domain (0, 1), its density
function p(x), and its cumulative density function
CDFx(x

′) = P (x < x′) =
∑x′

0 p(x)dx. The
main idea is to partition the domain into a discrete
number equally sized slices. Every partition gets
identified by its midpoint and the total total den-
sity within that partition. Let Nx be the number of
slices, the larger Nx the preciser our approximation
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will be. We define:

∀0 ≤ i < Nx

x[i] =
i+ 1

2

Nx

P x[i] =

∫ i+1
Nx

i
Nx

p(x)d(x)

=

∫ i+1
Nx

0
p(x)d(x)−

∫ i
Nx

0
p(x)d(x)

= CDFx(
i+ 1

Nx
)− CDFx(

i

Nx
)

Here x[i] represents the midpoint of the interval
[ i
Nx

, i+1
Nx

] and P x[i] the total probability mass in
that interval. To approximate expected values we
can now replace integrals by sums: E[f(x)] =∫ 1
0 f(x)p(x)dx ≈

∑Nx−1
i=0 f(x[i])P x[i].

If we want to apply this discretization to α, ρ,
and η, we need access to their cumulative distribu-
tion functions. In our framework, these variables
are either uniformly or more generally Beta dis-
tributed. The cumulative distributions for these are
available in most numerical software libraries and
therefore computing the discretization is relatively
straight-forward.

Applying this discretization to α, ρ, and η we
can restate Equation 5 in approximate form:

P α|N+=n+,M+=m+
[i] =

P α[i]P (N+ = N+|α[i])

Nρ−1∑
j=0

Nη−1∑
k=0

(
P (M+ = m+|α[i],ρ[j],η[k])

P ρ[j]P η[k]

)

∀0 ≤ i < Nα

(7)

This results in a discretized form of the posterior
with the same granularity Nα as for the prior. We
can then approximate the mean of the posterior as:

E[α|N+ = n+,M+ = m+] ≈
Nα∑
i=0

P α|N+=n+,M+=m+
[i]α[i]

Figure 4: ROC curves for BleuRT predicting MQM
annotations for 3 MT system. The markers show the
threshold we select in our experiments. The blue diago-
nal corresponds to a random baseline. The red diagonal
visualizes points where ρ = η.

and the variance as:

V[α|N+ = n+,M+ = m+]

= E[α2|N+ = n+,M+ = m+]

− (E[α|N+ = n+,M+ = m+])
2

≈
Nα−1∑
i=0

P α|N+=n+,M+=m+
[i]α2[i]

−
(Nα−1∑

i=0

P α|N+=n+,M+=m+
[i]α[i]

)2

We use Nα = 2000 and Nρ = Nη = 1000 in all
our experiments.

C ROC Curves of Metrics

While our theory assumes binary metrics that will
only produce 0 or 1 ratings, most real-world au-
tomated metrics produce scalar ratings ∈ R. In
our case all metrics under consideration produce
scalar ratings. To apply our framework we have
to transform scalar ratings into binary ratings. We
can do this by selecting a threshold τ that partitions
the ratings into binary classes (on either side of the
threshold). We define a scalar metric as a function
of input output pairs to the reals: Ms : I ×O → R.
We interpret the rating as a preference, such that, if
Ms(i, o1) > Ms(i, o2), then we say that according
to Ms, o1 fits i better than o2. Given a scalar met-
ric Ms and a threshold τ ∈ R we can derive the

associated binary metric:

M τ
b (i, o) =

{
1 if Ms(i, o) > τ

0 else
(8)

The question is now, how to select τ . This is a
well known problem in binary classification. In-
tuitively, every possible threshold τ is associated
with a pair of corresponding ρ and η.

Figure 4 shows the Receiver Operator Charac-
teristic (ROC) curves for BleuRT as a predictor of
M∗

b for three machine translation systems. In an
ROC plot, the true positive rate is plotted against
the false positive rate at various thresholds τ . We
note that in our framework the true positive rate is
ρ and the false positive rate is 1− η.

Assume we are given a set of inputs and outputs,
the ratings from Ms and ratings from an error-free
binary metric M∗

b : TS = {(ij , oj , sj , r∗j )|1 ≤ j ≤
nS}, where sj = Ms(ij , oj) and r∗j = M∗

b (ij , oj).
We can consider the values sj as candidate thresh-
olds, as these are exactly the cases where the pre-
dictions would switch in Equation 8. For each can-
didate threshold, we can binarize the predictions
and compute the associated ρ and η. We select the
threshold that minimizes |ρ− η|, to be consistent
with our examples, where we usually assumed for
simplicity that ρ = η. This selection is shown in
Figure 4 by markers and the red diagonal.

One thing to note in Figure 4 is that the curves for
the three MT systems differ from each other. This
means that the specific ρ and η of BleuRT when
used as a binary metric depend on the systems
that produced a given output. In our framework
laid out in Section 3 we assumed that ρ and η are
independent of how a given output o is produced.
This calls for further analysis in future work.

D Full Show Cases Tables

In this Appendix, we show the full tables for the
show cases with all the systems from the WMT and
STB setting.

D.1 WMT21
For the WMT task, we have 4 scenarios (see Sec-
tion 5.1), for all these scenarios we show the pari-
wise comparisons in Tables 4, 5, 6, and 7. Each
table shows for each system the estimated α value
in parentheses, and in each cell the ϵ value with
P (α1 > α2) in parentheses. All the pairs that are
significantly distinguishable are put in bold. The
WMT systems are Facebook-AI (FBAI) (Tran et al.,

2021), VolcTrans-GLAT (VT-G) (Qian et al., 2021),
Online-W (OW) 8 (), Nemo (NE), VolcTrans-AT
(VT-A) (Qian et al., 2021), UEdin (UE) (Chen et al.,
2021), and HuaweiTSC (HU) (Wei et al., 2021). Ta-
ble 4 where all the human ratings are used shows
that FBAI, VT-G, OW, NE, and VT-A are not sig-
nificantly distinguishable from eachother as their
ϵ < 0.06. For the other three scenarios none of
the systems are distinguishable. This is consistent
with the theoretical predictions. From Table 1, we
see that at least 5000 human ratings are needed to
be able to significantly distinguish all the pairs of
systems (i.e., for ϵ < 0.02). Thus, in this case the
problem is that the TG systems are too close to ea-
chother in terms of performance and the automated
metrics are too weak to boost the evaluation with
low cost.

D.2 STB

Tables 8, 9, and 10 show the full evaluation of the
three STB scenarios (see Section 5.2). Each ta-
ble shows for each system the estimated α value
in parentheses, and in each cell the ϵ value with
P (α1 > α2) in parentheses. All the pairs that
are significantly distinguishable are put in bold.
For the STB case, the six systems from the origi-
nal paper are used: Blenderbot (BL) (Roller et al.,
2021), Lost in Conversation (LiC) 9, KVMemNN
(KV) (Dinan et al., 2020), Huggingface (HF) 10,
Bert-Rank (BR) (Deriu et al., 2020), and Seq2Seq-
NN (S2S) (Deriu et al., 2020). Note that BR and
S2S were custom trained baseline by the STB au-
thors. In the STB case almost all pairs of systems
are significantly distinguished, which is in line with
the theory and the original STB paper. Our theory
reveals that this is mostly due to the fact that the
difference in α between the TGs is large and not
many samples are needed for discriminating.

E Full Theory Tables

Tables 11, 12, 13, and 14 show the distinguish-
able ϵ values for different combinations of |TΦ|
and |TM |. Each table has different combinations
of ρ, and η values. For each table, we assume that
|TΦ| = |Tρ,η|. These tables can be used as guide-
lines for deciding on the number of human and

8Anonymous System
9https://github.com/atselousov/transformer_

chatbot
10https://github.com/huggingface/

transfer-learning-conv-ai
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will be. We define:

∀0 ≤ i < Nx

x[i] =
i+ 1

2

Nx

P x[i] =

∫ i+1
Nx

i
Nx

p(x)d(x)

=

∫ i+1
Nx

0
p(x)d(x)−

∫ i
Nx

0
p(x)d(x)

= CDFx(
i+ 1

Nx
)− CDFx(

i

Nx
)

Here x[i] represents the midpoint of the interval
[ i
Nx

, i+1
Nx

] and P x[i] the total probability mass in
that interval. To approximate expected values we
can now replace integrals by sums: E[f(x)] =∫ 1
0 f(x)p(x)dx ≈

∑Nx−1
i=0 f(x[i])P x[i].

If we want to apply this discretization to α, ρ,
and η, we need access to their cumulative distribu-
tion functions. In our framework, these variables
are either uniformly or more generally Beta dis-
tributed. The cumulative distributions for these are
available in most numerical software libraries and
therefore computing the discretization is relatively
straight-forward.

Applying this discretization to α, ρ, and η we
can restate Equation 5 in approximate form:

P α|N+=n+,M+=m+
[i] =

P α[i]P (N+ = N+|α[i])

Nρ−1∑
j=0

Nη−1∑
k=0

(
P (M+ = m+|α[i],ρ[j],η[k])

P ρ[j]P η[k]

)

∀0 ≤ i < Nα

(7)

This results in a discretized form of the posterior
with the same granularity Nα as for the prior. We
can then approximate the mean of the posterior as:

E[α|N+ = n+,M+ = m+] ≈
Nα∑
i=0

P α|N+=n+,M+=m+
[i]α[i]

Figure 4: ROC curves for BleuRT predicting MQM
annotations for 3 MT system. The markers show the
threshold we select in our experiments. The blue diago-
nal corresponds to a random baseline. The red diagonal
visualizes points where ρ = η.

and the variance as:

V[α|N+ = n+,M+ = m+]

= E[α2|N+ = n+,M+ = m+]

− (E[α|N+ = n+,M+ = m+])
2

≈
Nα−1∑
i=0

P α|N+=n+,M+=m+
[i]α2[i]

−
(Nα−1∑

i=0

P α|N+=n+,M+=m+
[i]α[i]

)2

We use Nα = 2000 and Nρ = Nη = 1000 in all
our experiments.

C ROC Curves of Metrics

While our theory assumes binary metrics that will
only produce 0 or 1 ratings, most real-world au-
tomated metrics produce scalar ratings ∈ R. In
our case all metrics under consideration produce
scalar ratings. To apply our framework we have
to transform scalar ratings into binary ratings. We
can do this by selecting a threshold τ that partitions
the ratings into binary classes (on either side of the
threshold). We define a scalar metric as a function
of input output pairs to the reals: Ms : I ×O → R.
We interpret the rating as a preference, such that, if
Ms(i, o1) > Ms(i, o2), then we say that according
to Ms, o1 fits i better than o2. Given a scalar met-
ric Ms and a threshold τ ∈ R we can derive the

associated binary metric:

M τ
b (i, o) =

{
1 if Ms(i, o) > τ

0 else
(8)

The question is now, how to select τ . This is a
well known problem in binary classification. In-
tuitively, every possible threshold τ is associated
with a pair of corresponding ρ and η.

Figure 4 shows the Receiver Operator Charac-
teristic (ROC) curves for BleuRT as a predictor of
M∗

b for three machine translation systems. In an
ROC plot, the true positive rate is plotted against
the false positive rate at various thresholds τ . We
note that in our framework the true positive rate is
ρ and the false positive rate is 1− η.

Assume we are given a set of inputs and outputs,
the ratings from Ms and ratings from an error-free
binary metric M∗

b : TS = {(ij , oj , sj , r∗j )|1 ≤ j ≤
nS}, where sj = Ms(ij , oj) and r∗j = M∗

b (ij , oj).
We can consider the values sj as candidate thresh-
olds, as these are exactly the cases where the pre-
dictions would switch in Equation 8. For each can-
didate threshold, we can binarize the predictions
and compute the associated ρ and η. We select the
threshold that minimizes |ρ− η|, to be consistent
with our examples, where we usually assumed for
simplicity that ρ = η. This selection is shown in
Figure 4 by markers and the red diagonal.

One thing to note in Figure 4 is that the curves for
the three MT systems differ from each other. This
means that the specific ρ and η of BleuRT when
used as a binary metric depend on the systems
that produced a given output. In our framework
laid out in Section 3 we assumed that ρ and η are
independent of how a given output o is produced.
This calls for further analysis in future work.

D Full Show Cases Tables

In this Appendix, we show the full tables for the
show cases with all the systems from the WMT and
STB setting.

D.1 WMT21
For the WMT task, we have 4 scenarios (see Sec-
tion 5.1), for all these scenarios we show the pari-
wise comparisons in Tables 4, 5, 6, and 7. Each
table shows for each system the estimated α value
in parentheses, and in each cell the ϵ value with
P (α1 > α2) in parentheses. All the pairs that are
significantly distinguishable are put in bold. The
WMT systems are Facebook-AI (FBAI) (Tran et al.,

2021), VolcTrans-GLAT (VT-G) (Qian et al., 2021),
Online-W (OW) 8 (), Nemo (NE), VolcTrans-AT
(VT-A) (Qian et al., 2021), UEdin (UE) (Chen et al.,
2021), and HuaweiTSC (HU) (Wei et al., 2021). Ta-
ble 4 where all the human ratings are used shows
that FBAI, VT-G, OW, NE, and VT-A are not sig-
nificantly distinguishable from eachother as their
ϵ < 0.06. For the other three scenarios none of
the systems are distinguishable. This is consistent
with the theoretical predictions. From Table 1, we
see that at least 5000 human ratings are needed to
be able to significantly distinguish all the pairs of
systems (i.e., for ϵ < 0.02). Thus, in this case the
problem is that the TG systems are too close to ea-
chother in terms of performance and the automated
metrics are too weak to boost the evaluation with
low cost.

D.2 STB

Tables 8, 9, and 10 show the full evaluation of the
three STB scenarios (see Section 5.2). Each ta-
ble shows for each system the estimated α value
in parentheses, and in each cell the ϵ value with
P (α1 > α2) in parentheses. All the pairs that
are significantly distinguishable are put in bold.
For the STB case, the six systems from the origi-
nal paper are used: Blenderbot (BL) (Roller et al.,
2021), Lost in Conversation (LiC) 9, KVMemNN
(KV) (Dinan et al., 2020), Huggingface (HF) 10,
Bert-Rank (BR) (Deriu et al., 2020), and Seq2Seq-
NN (S2S) (Deriu et al., 2020). Note that BR and
S2S were custom trained baseline by the STB au-
thors. In the STB case almost all pairs of systems
are significantly distinguished, which is in line with
the theory and the original STB paper. Our theory
reveals that this is mostly due to the fact that the
difference in α between the TGs is large and not
many samples are needed for discriminating.

E Full Theory Tables

Tables 11, 12, 13, and 14 show the distinguish-
able ϵ values for different combinations of |TΦ|
and |TM |. Each table has different combinations
of ρ, and η values. For each table, we assume that
|TΦ| = |Tρ,η|. These tables can be used as guide-
lines for deciding on the number of human and

8Anonymous System
9https://github.com/atselousov/transformer_

chatbot
10https://github.com/huggingface/

transfer-learning-conv-ai
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FBAI ( 0.67 ) VT-G ( 0.64 ) OW ( 0.64 ) NE ( 0.64 ) VT-A ( 0.61 ) UE ( 0.59 ) HU ( 0.58 )
FBAI ( 0.67 ) - 0.02 (0.798) 0.03 (0.848) 0.03 (0.862) 0.05 (0.968) 0.08 (0.997) 0.09 (0.998)
VT-G ( 0.64 ) -0.02 (0.197) - 0.01 (0.573) 0.01 (0.598) 0.03 (0.844) 0.06 (0.971) 0.06 (0.978)
OW ( 0.64 ) -0.03 (0.148) -0.01 (0.420) - 0.00 (0.522) 0.02 (0.794) 0.05 (0.955) 0.05 (0.966)
NE ( 0.64 ) -0.03 (0.134) -0.01 (0.395) -0.00 (0.471) - 0.02 (0.775) 0.05 (0.949) 0.05 (0.961)

VT-A ( 0.61 ) -0.05 (0.031) -0.03 (0.152) -0.02 (0.202) -0.02 (0.220) - 0.03 (0.808) 0.03 (0.840)
UE ( 0.59 ) -0.08 (0.003) -0.06 (0.028) -0.05 (0.043) -0.05 (0.049) -0.03 (0.187) - 0.00 (0.546)
HU ( 0.58 ) -0.09 (0.002) -0.06 (0.021) -0.05 (0.033) -0.05 (0.038) -0.03 (0.156) -0.00 (0.447) -

Table 4: Full WMT scenario with |TΦ| = 527, and |TM | = 0

FBAI ( 0.67 ) VT-G ( 0.65 ) NE ( 0.64 ) OW ( 0.64 ) VT-A ( 0.61 ) UE ( 0.59 ) HU ( 0.58 )
FBAI ( 0.67 ) - 0.02 (0.615) 0.03 (0.670) 0.03 (0.670) 0.06 (0.809) 0.08 (0.877) 0.09 (0.904)
VT-G ( 0.65 ) -0.02 (0.382) - 0.01 (0.557) 0.01 (0.557) 0.04 (0.719) 0.06 (0.807) 0.07 (0.843)
NE ( 0.64 ) -0.03 (0.327) -0.01 (0.440) - 0.00 (0.499) 0.03 (0.667) 0.05 (0.764) 0.06 (0.805)
OW ( 0.64 ) -0.03 (0.327) -0.01 (0.440) 0.00 (0.499) - 0.03 (0.667) 0.05 (0.764) 0.06 (0.805)

VT-A ( 0.61 ) -0.06 (0.189) -0.04 (0.279) -0.03 (0.330) -0.03 (0.330) - 0.02 (0.612) 0.03 (0.665)
UEdin ( 0.59 ) -0.08 (0.121) -0.06 (0.191) -0.05 (0.234) -0.05 (0.234) -0.02 (0.386) - 0.01 (0.555)

HU ( 0.58 ) -0.09 (0.095) -0.07 (0.155) -0.06 (0.193) -0.06 (0.193) -0.03 (0.332) -0.01 (0.442) -

Table 5: Full WMT scenario with |TΦ| = 100, and |TM | = 0

FBAI ( 0.67 ) VT-G ( 0.64 ) NE ( 0.63 ) OW ( 0.63 ) VT-A ( 0.61 ) UE ( 0.58 ) HU ( 0.57 )
FBAI ( 0.67 ) - 0.02 (0.631) 0.03 (0.689) 0.04 (0.713) 0.06 (0.817) 0.08 (0.896) 0.09 (0.918)
VT-G ( 0.64 ) -0.02 (0.366) - 0.01 (0.560) 0.01 (0.588) 0.04 (0.713) 0.06 (0.821) 0.07 (0.854)
NE ( 0.63 ) -0.03 (0.309) -0.01 (0.437) - 0.00 (0.527) 0.03 (0.658) 0.05 (0.779) 0.06 (0.817)
OW ( 0.63 ) -0.04 (0.284) -0.01 (0.409) -0.00 (0.470) - 0.02 (0.631) 0.05 (0.757) 0.06 (0.798)

VT-A ( 0.61 ) -0.06 (0.181) -0.04 (0.284) -0.03 (0.339) -0.02 (0.366) - 0.02 (0.643) 0.03 (0.694)
UE ( 0.58 ) -0.08 (0.103) -0.06 (0.177) -0.05 (0.219) -0.05 (0.240) -0.02 (0.354) - 0.01 (0.555)
HU ( 0.57 ) -0.09 (0.081) -0.07 (0.144) -0.06 (0.181) -0.06 (0.200) -0.03 (0.303) -0.01 (0.442) -

Table 6: Full WMT scenario with |TΦ| = 100, and |TM | = 1000

FBAI ( 0.66 ) VT-G ( 0.62 ) NE ( 0.61 ) OW ( 0.61 ) VT-A ( 0.58 ) UE ( 0.57 ) HU ( 0.56 )
FBAI ( 0.66 ) - 0.04 (0.742) 0.05 (0.787) 0.05 (0.779) 0.07 (0.888) 0.09 (0.916) 0.09 (0.933)
VT-G ( 0.62 ) -0.04 (0.256) - 0.01 (0.538) 0.01 (0.548) 0.03 (0.705) 0.05 (0.768) 0.05 (0.801)
NE ( 0.61 ) -0.05 (0.211) -0.01 (0.458) - 0.00 (0.512) 0.03 (0.684) 0.04 (0.753) 0.05 (0.790)
OW ( 0.61 ) -0.05 (0.219) -0.01 (0.449) -0.00 (0.485) - 0.02 (0.658) 0.04 (0.727) 0.04 (0.762)

VT-A ( 0.58 ) -0.07 (0.111) -0.03 (0.292) -0.03 (0.313) -0.02 (0.339) - 0.01 (0.587) 0.02 (0.629)
UE ( 0.57 ) -0.09 (0.083) -0.05 (0.230) -0.04 (0.244) -0.04 (0.271) -0.01 (0.410) - 0.01 (0.539)
HU ( 0.56 ) -0.09 (0.066) -0.05 (0.197) -0.05 (0.208) -0.04 (0.236) -0.02 (0.368) -0.01 (0.458) -

Table 7: Full WMT scenario with |TΦ| = 100, and |TM | = 1000

BL ( 0.38 ) LiC ( 0.30 ) KV ( 0.24 ) HF ( 0.18 ) BR ( 0.07 ) S2S ( 0.04 )
BL ( 0.38 ) - 0.08 (0.999) 0.13 (1.000) 0.20 (1.000) 0.31 (1.000) 0.34 (1.000)
LiC ( 0.30 ) -0.08 (0.001) - 0.06 (0.989) 0.12 (1.000) 0.23 (1.000) 0.26 (1.000)
KV ( 0.24 ) -0.13 (0.000) -0.06 (0.010) - 0.07 (0.998) 0.18 (1.000) 0.20 (1.000)
HF ( 0.18 ) -0.20 (0.000) -0.12 (0.000) -0.07 (0.002) - 0.11 (1.000) 0.14 (1.000)
BR ( 0.07 ) -0.31 (0.000) -0.23 (0.000) -0.18 (0.000) -0.11 (0.000) - 0.02 (0.974)
S2S ( 0.04 ) -0.34 (0.000) -0.26 (0.000) -0.20 (0.000) -0.14 (0.000) -0.02 (0.024) -

Table 8: Full STB scenario with |TΦ| = 600, and |TM | = 0

BL ( 0.38 ) LiC ( 0.30 ) KV ( 0.25 ) HF ( 0.19 ) BR ( 0.07 ) S2S ( 0.05 )
BL ( 0.38 ) - 0.08 (0.882) 0.14 (0.983) 0.20 (0.999) 0.31 (1.000) 0.33 (1.000)
LiC ( 0.30 ) -0.08 (0.117) - 0.06 (0.827) 0.12 (0.976) 0.24 (1.000) 0.25 (1.000)
KV ( 0.25 ) -0.14 (0.016) -0.06 (0.170) - 0.06 (0.848) 0.18 (1.000) 0.20 (1.000)
HF ( 0.19 ) -0.20 (0.001) -0.12 (0.024) -0.06 (0.150) - 0.12 (0.995) 0.14 (0.999)
BR ( 0.07 ) -0.31 (0.000) -0.24 (0.000) -0.18 (0.000) -0.12 (0.005) - 0.02 (0.729)
S2S ( 0.05 ) -0.33 (0.000) -0.25 (0.000) -0.20 (0.000) -0.14 (0.001) -0.02 (0.266) -

Table 9: Full STB scenario with |TΦ| = 100, and |TM | = 0

BL ( 0.36 ) LiC ( 0.28 ) KV ( 0.22 ) HF ( 0.15 ) BR ( 0.06 ) S2S ( 0.05 )
BL ( 0.36 ) - 0.08 (0.889) 0.13 (0.989) 0.21 (1.000) 0.30 (1.000) 0.31 (1.000)
LiC ( 0.28 ) -0.08 (0.109) - 0.06 (0.851) 0.13 (0.994) 0.22 (1.000) 0.23 (1.000)
KV ( 0.22 ) -0.13 (0.010) -0.06 (0.147) - 0.07 (0.935) 0.16 (1.000) 0.17 (1.000)
HF ( 0.15 ) -0.21 (0.000) -0.13 (0.006) -0.07 (0.064) - 0.09 (0.994) 0.10 (0.997)
BR ( 0.06 ) -0.30 (0.000) -0.22 (0.000) -0.16 (0.000) -0.09 (0.006) - 0.01 (0.628)
S2S ( 0.05 ) -0.31 (0.000) -0.23 (0.000) -0.17 (0.000) -0.10 (0.003) -0.01 (0.365) -

Table 10: Full STB scenario with |TΦ| = 100, and |TM | = 10000

automated ratings needed for different automated
metric performances.
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|TM|

|T
ρ
,η
|=

|T
O
|

0 1000 2500 5000 10000 50000 100000
0 1.000 0.734 0.733 0.733 0.733 0.733 0.733

100 0.134 0.124 0.124 0.123 0.123 0.123 0.123
250 0.085 0.080 0.079 0.079 0.079 0.079 0.079
500 0.061 0.057 0.057 0.056 0.056 0.056 0.056

1000 0.043 0.041 0.040 0.040 0.040 0.040 0.039
2500 0.027 0.027 0.026 0.026 0.025 0.025 0.025
5000 0.019 0.019 0.019 0.018 0.018 0.018 0.018

10000 0.014 0.013 0.013 0.013 0.013 0.013 0.013

Table 11: Estimated ϵγ for α = 0.60, ρ = 0.70, η = 0.70, and γ = 0.05

|TM|

|T
ρ
,η
|=

|T
O
|

0 1000 2500 5000 10000 50000 100000
0 1.000 0.739 0.738 0.738 0.738 0.738 0.738

100 0.134 0.091 0.088 0.087 0.086 0.086 0.086
250 0.085 0.061 0.057 0.055 0.054 0.053 0.053
500 0.061 0.046 0.042 0.040 0.039 0.038 0.037

1000 0.043 0.036 0.032 0.030 0.028 0.027 0.026
2500 0.027 0.025 0.022 0.021 0.019 0.017 0.017
5000 0.019 0.018 0.017 0.016 0.015 0.013 0.012

10000 0.014 0.013 0.013 0.012 0.011 0.009 0.009

Table 12: Estimated ϵγ for α = 0.60, ρ = 0.90, η = 0.90, and γ = 0.05

|TM|

|T
ρ
,η
|=

|T
O
|

0 1000 2500 5000 10000 50000 100000
0 1.000 0.742 0.742 0.742 0.742 0.742 0.742

100 0.134 0.059 0.051 0.048 0.046 0.045 0.045
250 0.085 0.044 0.035 0.030 0.027 0.025 0.024
500 0.061 0.037 0.028 0.023 0.019 0.016 0.015

1000 0.043 0.031 0.024 0.020 0.016 0.011 0.010
2500 0.027 0.023 0.020 0.016 0.013 0.008 0.007
5000 0.019 0.018 0.016 0.014 0.012 0.007 0.006

10000 0.014 0.013 0.012 0.011 0.010 0.006 0.005

Table 13: Estimated ϵγ for α = 0.60, ρ = 0.99, η = 0.99, and γ = 0.05

|TM|

|T
ρ
,η
|=

|T
O
|

0 1000 2500 5000 10000 50000 100000
0 1.000 0.732 0.732 0.732 0.732 0.732 0.732

100 0.134 0.133 0.133 0.133 0.133 0.133 0.133
250 0.085 0.085 0.085 0.085 0.085 0.085 0.085
500 0.061 0.061 0.060 0.060 0.060 0.060 0.060

1000 0.043 0.043 0.043 0.043 0.043 0.043 0.043
2500 0.027 0.027 0.027 0.027 0.027 0.027 0.027
5000 0.019 0.019 0.019 0.019 0.019 0.019 0.019

10000 0.014 0.014 0.014 0.014 0.014 0.014 0.014

Table 14: Estimated ϵγ for α = 0.60, ρ = 0.51, η = 0.51, and γ = 0.05
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Abstract

Natural Language-to-Query systems translate a
natural language question into a formal query
language such as SQL. Typically the transla-
tion results in a set of candidate query state-
ments due to the ambiguity of natural language.
Hence, an important aspect of NL-to-Query sys-
tems is to rank the query statements so that the
most relevant query is ranked on top. We pro-
pose a novel approach to significantly improve
the query ranking and thus the accuracy of such
systems. First, we use existing methods to trans-
late the natural language question (NLin) into
k query statements and rank them. Then we
translate each of the k query statements back
into a natural language question (NLgen) and
use the semantic similarity between the origi-
nal question NLin and each of the k generated
questions NLgen to re-rank the output. Our
experiments on two standard datasets, OTTA
and Spider, show that this technique improves
even strong state-of-the-art NL-to-Query sys-
tems by up to 9 percentage points. A detailed
error analysis shows that our method correctly
down-ranks queries with missing relations and
wrong query types. While this work is focused
on NL-to-Query, our method could be applied
to any other semantic parsing problems as long
as a text generation method is available.

1 Introduction

NL-to-Query describes the task of translating nat-
ural language questions to meaningful representa-
tions, such as logical forms, executable code, or
structured query languages like SQL. The appli-
cation of neural networks and the introduction of
larger datasets (Yin and Neubig, 2017; Yu et al.,
2018; Brunner and Stockinger, 2021) has increased
performance, but the task is far from solved.

Re-ranking of candidate query statements allows
introducing additional information in the process
(Yin and Neubig, 2019). For a given natural lan-
guage question (NLin), neural networks keep a

Figure 1: Example illustrates how semantic similarity
is used to extract the correct hypothesis. NL_In is
the input question, Gold SQL is the gold SQL query,
HypSQL_1 and HypSQL_2 are generated by an NL-to-
Query system (with confidence scores), and NL_Gen1
and NL_Gen2 are back-translated from the HypSQL
statements, with scores by a similarity system. See text
for further details.

beam search and produce k candidate query state-
ments (QS). Our analysis shows that an oracle
selecting the correct query among the top-scoring
15 candidates would improve the performance of
publicly available systems by up to 10 accuracy
points on the Spider benchmark (Yu et al., 2018).

Inspired by the success of back-translation in
machine translation (Sennrich et al., 2016), we pro-
pose to re-rank the candidate queries according to
the semantic similarity between the original ques-
tion NLin and the k synthetic questions NLgen

obtained via back-translating each of the k candi-
date queries into natural language. Figure 2 depicts
the pipeline of our proposed system.

Figure 1 shows an example from the Spider
dataset. For the question "How many different
addresses do the students currently live?". The
highest-ranked query according to the beam search
ranking is HypSQL_1 with a confidence score of
0.999. However, this query returns the perma-
nent addresses, which does not refer to the correct
attribute, which would be the current addresses.
In the example, the second hypothesis (i.e., Hyp-
SQL_2) has a much lower confidence of 0.003
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Figure 2: Pipeline of our system. NLin = original natu-
ral language, QS = query statement, NLgen = generated
natural language.

although it fits the input question perfectly. On
the other hand, the semantic similarity score be-
tween NLin and the generated questions NLgen

shows a different picture: The back-translation of
the correct hypothesis, i.e., NLgen2, has a higher
semantic similarity (0.82) than the back-translation
of the incorrect hypothesis (0.54). Hence, semantic
similarity would help to identify the correct query.
This paper makes the following contributions:

• We present a novel method to improve NL-to-
Query systems using re-ranking according to
Query-to-NL back-translation and semantic
similarity.

• We showcase improvements in two datasets
using three systems, around 5 − 9 points in
OTTA (Deriu et al., 2020) and 2 − 3 points
in Spider (Yu et al., 2018).

• The error analysis shows that our method
down-ranks hypotheses with missing relations
or with incorrect query types.

2 Related Work

NL-to-Query (also referred to as Natural Lan-
guage to Databases NLIDB) describes the task
of translating natural language questions into
structured queries (e.g., SQL). Most current ap-
proaches are based on sequence-to-sequence archi-
tectures (Yin and Neubig, 2017; Dong and Lapata,
2018; Suhr et al., 2018; Deriu et al., 2020), where
the encoder is a recurrent neural network that gener-
ates a hidden representation of the natural language
question, and the decoder is a recurrent neural net-
work that generates the query. Alternatively, some
approaches combine symbolic reasoning with in-
formation retrieval techniques (Sen et al., 2020).
For a more in-depth treatment, we refer the reader
to Affolter et al. (2019) and Odzcan et al. (2020).

In this work, we focus on the translation from
natural language questions to database queries,

where most recent approaches were proposed in
the context of the text-to-SQL Spider dataset (Yu
et al., 2018)1. Instead of working directly on SQL,
some authors propose to use simpler and more gen-
eral abstract syntax trees. For instance, Deriu et al.
(2020) propose to use so-called Operation Trees,
which we also used for this work.
Hypothesis Re-ranking is the task of creating an
alternative ranking of k candidate solutions for a
given task. The k candidates are usually the out-
put of a beam search. In our case, the candidates
are queries for the given natural language question.
However, the problem of hypothesis re-ranking
arises in many different generation tasks, not only
NL-to-Query. For instance, Dušek and Jurcicek
(2016) train a re-ranking network to score the gen-
erated hypotheses of their natural language gener-
ation model. Alternatively, (Deriu and Cieliebak,
2018; Agarwal et al., 2018) trained classifiers to
predict the correctness of the hypotheses produced
by their natural language generation system and
select the hypothesis with the highest correctness
score. Most of these approaches are developed in
the field of natural language generation from struc-
tured data. For code generation, Yin and Neubig
(2019) perform re-ranking by reconstructing the
original utterance for the generated code. They use
the reconstruction error as a measure for re-ranking.
We are not aware of prior research on using tex-
tual semantic similarity to re-rank hypotheses in
the field of NL-to-Query or Semantic Parsing in
general.
Semantic Textual Similarity assesses to what de-
gree two chunks of text are similar, usually on
a 0-5 scale, which ranges from unrelated (0) to
semantically equivalent (5) (Agirre et al., 2013).
The advent of transformer-based models such as
RoBERTa (Liu et al., 2019) has improved automat-
ically assessing semantic textual similarity. Re-
cently (Kane et al., 2020) introduced NUBIA (NeU-
ral Based Interchangeability Assessor for Text Gen-
eration). It extracts features from RoBERTa and
GPT-2 (Radford et al., 2019) and fine-tunes a fully
connected neural network to output a score between
0 and 1, indicating how interchangeable two in-
put sentences are. Throughout this work, we will
use NUBIA to automatically score the similarity
between a natural question (NLin) and a back-
translated question (NLgen).
Query-to-NL has the goal of translating a struc-

1https://yale-lily.github.io/spider
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although it fits the input question perfectly. On
the other hand, the semantic similarity score be-
tween NLin and the generated questions NLgen

shows a different picture: The back-translation of
the correct hypothesis, i.e., NLgen2, has a higher
semantic similarity (0.82) than the back-translation
of the incorrect hypothesis (0.54). Hence, semantic
similarity would help to identify the correct query.
This paper makes the following contributions:

• We present a novel method to improve NL-to-
Query systems using re-ranking according to
Query-to-NL back-translation and semantic
similarity.

• We showcase improvements in two datasets
using three systems, around 5 − 9 points in
OTTA (Deriu et al., 2020) and 2 − 3 points
in Spider (Yu et al., 2018).

• The error analysis shows that our method
down-ranks hypotheses with missing relations
or with incorrect query types.

2 Related Work

NL-to-Query (also referred to as Natural Lan-
guage to Databases NLIDB) describes the task
of translating natural language questions into
structured queries (e.g., SQL). Most current ap-
proaches are based on sequence-to-sequence archi-
tectures (Yin and Neubig, 2017; Dong and Lapata,
2018; Suhr et al., 2018; Deriu et al., 2020), where
the encoder is a recurrent neural network that gener-
ates a hidden representation of the natural language
question, and the decoder is a recurrent neural net-
work that generates the query. Alternatively, some
approaches combine symbolic reasoning with in-
formation retrieval techniques (Sen et al., 2020).
For a more in-depth treatment, we refer the reader
to Affolter et al. (2019) and Odzcan et al. (2020).

In this work, we focus on the translation from
natural language questions to database queries,

where most recent approaches were proposed in
the context of the text-to-SQL Spider dataset (Yu
et al., 2018)1. Instead of working directly on SQL,
some authors propose to use simpler and more gen-
eral abstract syntax trees. For instance, Deriu et al.
(2020) propose to use so-called Operation Trees,
which we also used for this work.
Hypothesis Re-ranking is the task of creating an
alternative ranking of k candidate solutions for a
given task. The k candidates are usually the out-
put of a beam search. In our case, the candidates
are queries for the given natural language question.
However, the problem of hypothesis re-ranking
arises in many different generation tasks, not only
NL-to-Query. For instance, Dušek and Jurcicek
(2016) train a re-ranking network to score the gen-
erated hypotheses of their natural language gener-
ation model. Alternatively, (Deriu and Cieliebak,
2018; Agarwal et al., 2018) trained classifiers to
predict the correctness of the hypotheses produced
by their natural language generation system and
select the hypothesis with the highest correctness
score. Most of these approaches are developed in
the field of natural language generation from struc-
tured data. For code generation, Yin and Neubig
(2019) perform re-ranking by reconstructing the
original utterance for the generated code. They use
the reconstruction error as a measure for re-ranking.
We are not aware of prior research on using tex-
tual semantic similarity to re-rank hypotheses in
the field of NL-to-Query or Semantic Parsing in
general.
Semantic Textual Similarity assesses to what de-
gree two chunks of text are similar, usually on
a 0-5 scale, which ranges from unrelated (0) to
semantically equivalent (5) (Agirre et al., 2013).
The advent of transformer-based models such as
RoBERTa (Liu et al., 2019) has improved automat-
ically assessing semantic textual similarity. Re-
cently (Kane et al., 2020) introduced NUBIA (NeU-
ral Based Interchangeability Assessor for Text Gen-
eration). It extracts features from RoBERTa and
GPT-2 (Radford et al., 2019) and fine-tunes a fully
connected neural network to output a score between
0 and 1, indicating how interchangeable two in-
put sentences are. Throughout this work, we will
use NUBIA to automatically score the similarity
between a natural question (NLin) and a back-
translated question (NLgen).
Query-to-NL has the goal of translating a struc-

1https://yale-lily.github.io/spider

tured query into natural language and to provide a
lay user with an explanation of the meaning of the
query. A simple approach is to define production
rules applied to the nodes of the abstract syntax
tree (AST) of the query. Systems based on this
idea have been developed for SQL (Koutrika et al.,
2010), SPARQL (Ngonga Ngomo et al., 2013), Op-
eration Trees (von Däniken, 2021), and queries
expressed in lambda calculus (Wang et al., 2015).
There are also systems based on neural networks
such as (Xu et al., 2018). In this work, we leverage
one of those systems to post-process the output of
an NL-to-Query system. Others have also used
query explanations to incorporate corrective feed-
back from the user in the NL-to-Query workflow
(Elgohary et al., 2020; Labutov et al., 2018; Yao
et al., 2019, 2020).

3 Method: Similarity for Re-ranking

The proposed method works in three steps (see also
Figure 2): first, the NL-to-Query system translates
the natural language input NLin into a set of k can-
didate query statements QS - called our hypotheses.
This is achieved by applying beam search during
the decoding stage of a recurrent neural network.
In the second step, each of the k hypotheses QS
is translated back into natural language NLgen us-
ing a Query-to-NL system. In the last step, each
of the k back-translations NLgen is compared to
the original input using an off-the-shelf semantic
textual similarity algorithm. We use the semantic
similarity score to rank the hypotheses. For each
NLin, the top-scoring hypothesis is returned as the
answer of the system.

3.1 Ranking Hypotheses based on Semantic
Textual Similarity

Let NLin be the user input (i.e., the natural lan-
guage question ) and H = {QS1, ..., QSk} be the
set of k hypotheses, i.e. candidate query statements
QSi, that are the output of the NL-to-Query system.
In most cases, this set is the result of applying beam
search for decoding. However, other approaches
result in a set of hypotheses, for instance an ensem-
ble of different NL-to-Query systems. In this work,
we focus only on beam search-based hypothesis
sets. Thus, each of the hypotheses has a confidence
score ci, which is used to rank the set of hypotheses,
i.e., the candidate queries. We refer to this ranking
as Confidence.

In a second step, each of the hypotheses QSi

is back-translated into a natural language question
NLi

gen using a Query-to-NL engine. Thus, we
end up with a set of back-translated hypotheses
HQ = {NL1

gen, ..., NLk
gen}.

In a third step, we compute for each back-
translated hypothesis the semantic textual simi-
larity score with the user input NLin, i.e., si =
SemSim(NLin, NLi

gen). The set of hypotheses
can be ranked according to the semantic similarity
scores. We refer to this ranking as Semantic.

3.2 Weighting Strategies

Since the two rankings, Confidence and Semantic
may disagree on the top hypothesis in some cases
(as we have shown in the example in Figure 1), we
combine the two scores ci and si into a new rank-
ing. For this, we propose the following weighting
strategies:
Equal Weighting. The naive strategy is based on
simply multiplying the two scores, that is mequal

i =
ci ∗ si, and we rank the set of hypotheses accord-
ing to mequal

i . We refer to this ranking as Equal
Weighting.
Calibrated Weighting. Since the confidence
scores and the semantic similarity scores have dif-
ferent distributions, the influence of each score in
the Equal Weighting is not equal. For instance, in
some cases, the influence of ci is stronger than si
and vice-versa. To counteract this effect, we de-
cided to calibrate both scores before multiplying.
A calibrated score should reflect the proportion of
correct hypotheses selected, e.g., when a calibrated
system assigns a score of 0.8 to a hypothesis, this
hypothesis will be correct in 80% of the cases.

We use Platt Scaling (Platt, 2000) to calibrate
both scores. This works by training a logistic re-
gression model on the outputs of a model to trans-
form these outputs into probability distributions.
More precisely, for the confidence scores and the
semantic scores respectively, a logistic regression
model is trained. For this, we have to set aside
a few hypotheses (more details later on). For the
confidence calibration, a logistic regression model
is trained on a set of pairs of confidence score
and a label that indicates if the query is correct,
i.e., D = {(ci, Iicorr}. Analogously, we train a
logistic regression model for the semantic simi-
larity score si. Thus, the calibrated scores can
be interpreted as the probability of the query be-
ing correct, i.e., ccalibi = Pr(Iicorr = 1|ci) and
scalibi = Pr(Iicorr = 1|si). We call the score after
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calibration ccalibi and scalibi and the resulting mixed
score mcalib

i = ccalibi ∗scalibi . The resulting ranking
is called Calibrated Weighting.
Learned Weighting. A natural extension of the
calibration idea is to train a logistic regression
on both scores at the same time, instead of inde-
pendently. That is, we train a logistic regression
model on pairs of confidence and semantic-scores2,
i.e., D = {((ci, si), Iicorr}. This way, the model
can learn the mixed proportions directly. Thus,
mlearned

i = Pr(I icorr = 1|ci, si). For this, we
again have to set aside a few hypotheses. We use
the predicted probabilities from the logistic regres-
sion model to rank hypotheses and call the resulting
ranking Learned Weighting.
Threshold Weighting. We observed that the confi-
dence scores ci are high in most cases in which the
Confidence ranking yields a correct query. In many
cases where the Confidence ranking yields wrong
queries, the confidence scores are low. However,
the Semantic scores tend to be higher. Thus, we
propose the following strategy: If the maximum
confidence score of the hypotheses set is above a
threshold, we use the Confidence ranking, other-
wise, we use the Semantic ranking. We refer to this
ranking as Threshold Weighting. The threshold is
calculated by first determining the 90th percentile
over the confidence scores of all training hypothe-
ses and then finding the lowest confidence of a
correct hypothesis that lies above that.
Upper Bounds. To determine the theoretical upper
bounds of our approach, we introduce two oracles.
The first oracle selects the correct hypothesis from
the candidates if there is one. The second oracle
selects the correct hypothesis between the two top-
ranked hypotheses by Confidence or Semantic if
there is one. The first oracle determines the poten-
tial of re-ranking in general (we refer to it as Ora-
cle). The second oracle determines the maximum
contribution that the semantic similarity could do
to Confidence (we refer to it as Oracle-Sem).

4 Experimental Setup

In this section, we describe the experimental setup,
the datasets, the NL-to-Query models, the Query-
to-NL model, and the semantic textual similarity
model.

2Using more features, e.g., the length of the generated
query or mequal

i did not yield any improvements.

4.1 Datasets
We analyzed our approach on two different datasets
used as benchmarks for evaluating NL-to-Query
systems: Spider (Yu et al., 2018) and OTTA (De-
riu et al., 2020). Both datasets contain complex
queries and cover large amounts of attributes of
the databases. Spider contains around 10K queries
against 200 different databases. The dataset is used
to study NL-to-SQL translations. OTTA contains
around 3.8K queries over 5 databases. OTTA is
used to study translations from NL-to-OT (Oper-
ation Trees) which are similar to abstract syntax
trees (AST), i.e., an intermediate query language
can be translated to other query languages such as
SQL or SPARQL. OTTA contains more complex
queries with longer join paths than Spider. From
the OTTA corpus, we used only queries against the
databases Moviedata and Chinook since they con-
tain the largest amounts of queries. Details about
the queries used for each dataset are given below.

4.2 NL-to-Query Models
We applied publicly available machine learning
models trained for the datasets, which produce
queries with filter values in the WHERE-clauses
as otherwise there would be placeholder tokens
in the back-translations. For all models, we use
a beam size3 of k = 15. For the OTTA corpus,
we used the pre-trained GrammarNet by (Deriu
et al., 2020). The output of GrammarNet is a set
of Operation Tree (OT) hypotheses, which repre-
sent the query. OTs can be translated to SQL and
executed on an SQL database. For each of the two
domains in OTTA (i.e., Moviedata and Chinook),
we use a specifically trained GrammarNet. We re-
fer to these models as GrammarNet-Moviedata and
GrammarNet-Chinook. For the Spider dataset, we
apply two strong NL-to-SQL systems that are pub-
licly available. The first system is BridgeV2 (Lin
et al., 2020), which returns a set of hypothesis SQL
queries from a beam search decoder. We refer to
this model as Spider-BridgeV2 4. The second sys-
tem is ValueNet by Brunner and Stockinger (2021),
which also returns a set of SQL hypotheses from
a beam search decoder5. We refer to this model as

3In preliminary experiments, we noted that using a larger
beam size does not impact the scores significantly.

4We chose these systems for their strong performance,
code availability and quality of code.

5The API provided by the authors included confidence
scores based on the sum per-token-confidence instead of aver-
age. We approximated the average by dividing the provided
score by the number of characters in the SQL hypothesis.
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the OTTA corpus, we used only queries against the
databases Moviedata and Chinook since they con-
tain the largest amounts of queries. Details about
the queries used for each dataset are given below.

4.2 NL-to-Query Models
We applied publicly available machine learning
models trained for the datasets, which produce
queries with filter values in the WHERE-clauses
as otherwise there would be placeholder tokens
in the back-translations. For all models, we use
a beam size3 of k = 15. For the OTTA corpus,
we used the pre-trained GrammarNet by (Deriu
et al., 2020). The output of GrammarNet is a set
of Operation Tree (OT) hypotheses, which repre-
sent the query. OTs can be translated to SQL and
executed on an SQL database. For each of the two
domains in OTTA (i.e., Moviedata and Chinook),
we use a specifically trained GrammarNet. We re-
fer to these models as GrammarNet-Moviedata and
GrammarNet-Chinook. For the Spider dataset, we
apply two strong NL-to-SQL systems that are pub-
licly available. The first system is BridgeV2 (Lin
et al., 2020), which returns a set of hypothesis SQL
queries from a beam search decoder. We refer to
this model as Spider-BridgeV2 4. The second sys-
tem is ValueNet by Brunner and Stockinger (2021),
which also returns a set of SQL hypotheses from
a beam search decoder5. We refer to this model as

3In preliminary experiments, we noted that using a larger
beam size does not impact the scores significantly.

4We chose these systems for their strong performance,
code availability and quality of code.

5The API provided by the authors included confidence
scores based on the sum per-token-confidence instead of aver-
age. We approximated the average by dividing the provided
score by the number of characters in the SQL hypothesis.

Spider-ValueNet.

4.3 Query-to-NL Model
For back-translating queries to natural language,
we use the Operation Tree-to-Text (OT3) system
kindly made available by von Däniken (2021). It
translates OTs into natural language questions in a
rule-based manner, which ensures that most OTs
are translated correctly, i.e., no nodes are left out or
added during translation. OT3 is domain-agnostic,
which allows it to be easily adapted to a new do-
main by just defining domain-specific metadata,
i.e., the canonical names of the tables, attributes
and types. The main advantage of OT3 is the ability
to express relationships naturally, which results in
more fluent back-translations. There are currently
some limitations with the state-of-the-art Query-
to-NL models, which do not handle more complex
constructs 6 well. Thus, we perform the evaluation
only on the queries that are handled by OT3. More
details can be found in Appendix A.

4.4 Semantic Textual Similarity Model
In order to compute textual semantic similarity
between two questions, i.e., between NLin and
NLgen, we apply NUBIA (Kane et al., 2020), a
pre-trained model that scores a pair of sentences
based on their interchangeability. We use NUBIA7

out-of-the-box without any fine-tuning.

4.5 Mixed Strategies
For the Calibrated Weighting, the Learned Weight-
ing, and the Threshold Weighting rankings, labeled
data points are needed for setting up the mixed
strategy. The samples are used to train the logis-
tic regression models for the Calibrated Weighting
and the Learned Weighting. We use the implemen-
tation provided by scikit-learn (Pedregosa et al.,
2011) with balanced class weights and all other pa-
rameters as default. For the Threshold Weighting,
these samples are used to determine the threshold
for when to select the Confidence ranking or the
Semantic ranking. We use k-fold cross-validation
with k8 chosen such that there are 20 samples in
each fold9 for training the strategies for each split.
We report accuracies averaged over the k test splits
for all strategies.

6E.g., GroupBy, SetOperations, or Nested Quieries
7https://github.com/wl-research/nubia
8Concretely, k = 22 for Spider, k = 11 for Moviedata,

and k = 12 for Chinook.
9This results in 20 ∗ 15 = 300 data points for training the

logistic regression models.

5 Results

As explained in the previous section, we evaluate
the effectiveness of our approach over two different
datasets consisting of 22 databases using three dif-
ferent systems, as shown in Table 1. We evaluate
the systems using the component equality proposed
by Yu et al. (2018). We can see that for all datasets
one of our re-ranking approaches outperforms the
baseline without re-ranking up to 9%. We will now
analyze our re-ranking approaches in more detail.
Semantic Re-ranking. In all cases, except for
Chinook, the Semantic-based re-ranking performs
worse than the baseline system ranking (Confi-
dence), showing that our method alone has not
enough information to select the correct hypothe-
sis.
Mixed Re-ranking (i.e. Equal, Calibrated,
Learned, Threshold). On the contrary, the com-
bination of the Confidence and Similarity scores
improves over Confidence alone in all mixed strate-
gies (with a minor exception for Threshold for Val-
ueNet in Spider). The improvement ranges from
2−3% on Spider to 5−9% on OTTA. These results
show that our method injects new information and
improves over the base systems. In all cases, the
simple Equal Weighting performs well, making it a
great default mixed strategy. The results or other
mixed strategies are better in some cases, although
the best mixed strategy varies in each column. For
instance, for Spider-Bridge the Threshold Weight-
ing strategy works best, yielding an improvement
of 2.56 points in accuracy.
Oracle. The difference between Confidence and
Oracle, i.e. the optimal re-ranking, lies at around
18% for both OTTA subcorpus and 8 − 10% for
Spider, depending on the system. The differences
in margins between Spider and OTTA can be ex-
plained by the fact that the Spider-based models
achieve higher Confidence accuracies, which de-
creases the margin for improvement.
Oracle-Sem. The difference between the best
mixed strategy and Oracle-Sem is around 3 points.
Thus, there is a potential improvement of around 3
points left for all systems using semantic similarity.
However, the difference between the Oracle-Sem
score and the Oracle score differs between the Spi-
der-based systems and the OTTA-based systems.
While the difference in the Spider-based systems is
between 3 to 4 points, the difference for the OTTA-
based systems is between 6 to 7 points.
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Dataset
System

OTTA-Chin.
GrammarNet

OTTA-Movie
GrammarNet

Spider
Bridge

Spider
ValueNet

Confidence 42.89 52.24 71.46 74.31
Semantic 48.16 (+5.27) 45.25 (−6.99) 62.70 (−8.76) 68.01 (−6.30)
Equal 51.84 (+8.95) 59.23 (+6.99) 73.03 (+1.57) 76.83 (+2.52)
Calibrated 51.44 (+8.55) 59.60 (+7.36) 73.78 (+2.32) 77.22 (+2.91)
Learned 51.48 (+8.59) 59.44 (+7.20) 73.93 (+2.47) 77.09 (+2.78)
Threshold 46.90 (+4.01) 54.71 (+2.47) 74.05 (+2.59) 71.30 (−3.01)
Oracle-Sem 54.94 (+12.05) 62.38 (+10.14) 77.30 (+5.84) 80.35 (+6.04)
Oracle 61.32 (+18.43) 69.98 (+17.74) 81.12 (+9.66) 83.12 (+8.81)

Table 1: Accuracy of our approach for translating NL questions to OTs and SQL, respectively, using three different
systems and two different datasets. The deltas with respect to the Confidence ranking (baseline) are shown in
parentheses. Oracle-Sem and Oracle are theoretical upper bounds.

6 Discussion

Based on the results, we see that including semantic
similarity for re-ranking works better than using the
Confidence scoring only. In this section, we explore
the potential and limitations of this approach in
more detail.

6.1 Confidence Score vs. Semantic Similarity
Score

To better understand the results, we analyze the
relationship between the confidence scores and the
semantic scores. In Figure 3, the confidence scores
are plotted against the semantic similarity scores,
where blue dots denote correct hypotheses, and
red dots denote incorrect ones. We perform the
analysis on the Bridge system over Spider and the
GrammarNet system over Moviedata, as they show
the clearest difference in score distributions.

First, we note that the distributions for the two
systems look different. For Bridge the confidence
scores mostly lie at the edges, either at 0.0 or 1.0.
The Moviedata confidence scores are more evenly
distributed between 0.4 and 1.0. On the other hand,
the semantic similarity scores are evenly distributed
in both cases.

Second, we note that for the Bridge system, con-
fidence scores close to 1.0 are reliable, i.e., a hy-
pothesis with confidence close to 1.0 tends to be
correct. On the other hand, correct hypotheses with
low confidence tend to have higher semantic scores
(see upper left corner). This explains the strong
performance of Threshold Weighting for Bridge.
For Moviedata, the picture is different. The cor-
rect samples tend to have both high confidence and
high semantic scores (upper right corner). Thus,
the other weighing strategies tend to perform well,
while Threshold Weighting under-performs.

(a) Spider-BridgeV2

(b) Moviedata-GrammarNet

Figure 3: Confidence scores and semantic similarity
scores for hypotheses produced by Spider-BridgeV2
and Moviedata-GrammarNet. Every cross corresponds
to a hypothesis. Blue indicates correct hypotheses and
red incorrect ones.

Third, we note that semantic scoring alone is not
sufficient. For Bridge, the semantic score tends to
score correct hypotheses as low as the incorrect
ones (see lower part). However, it works well for
finding incorrect hypotheses. Although the distri-
butions for Bridge and Moviedata have great differ-
ences, our approach works in both cases.
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butions for Bridge and Moviedata have great differ-
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Error Type Missing Join
Original Question List all singer names in concerts in year 2014.
Ranking SQL Back-translated Question ci si

Gold

SELECT T2.name
FROM singer_in_concert AS T1 JOIN singer
AS T2 ON T1.singer_id = T2.singer_id
JOIN concert AS T3 ON T1.concert_id =
T3.concert_id
WHERE T3.year = 2014

What are the names of singers who performed
in concerts whose year is 2014? - -

Baseline

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
WHERE singer.Song_release_year = 2014
(missing table "concert")

What are the names of singers who were
released in 2014 who performed in concerts? 0.020 0.792

Semantic

SELECT singer.Name
FROM singer_in_concert JOIN singer ON
singer_in_concert.Singer_ID = singer.Singer_ID
JOIN concert ON singer_in_concert.concert_ID
= concert.concert_ID
WHERE concert.Year = 2014

What are the names of singers who performed
in concerts whose year is 2014? 0.015 0.823

Error Type Wrongly added Filter
Original Question Find the pixel aspect ratio and nation of the tv channels that do not use English.
Ranking SQL Back-translated Question ci si

Gold
SELECT Pixel_aspect_ratio_PAR , country
FROM tv_channel
WHERE LANGUAGE ̸= ’English’

What are the aspect ratios and countries of tv
channels whose language is not English? - -

Baseline

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"

What are the aspect ratios and countries of tv
channels whose language is not english? 1.000 0.654

Semantic

SELECT TV_Channel.Pixel_aspect_ratio_PAR,
TV_Channel.Country
FROM TV_Channel
WHERE TV_Channel.Language ̸= "English"
AND TV_Channel.Country ̸= "English" (wrong
additional filter)

What are the aspect ratios and countries of tv
channels whose country is not english and
whose language is not english?

0.008 0.673

Table 2: Examples of types of errors due to re-ranking. For each error type, we show the natural language question
and the corresponding SQL gold standard. Next we show the top candidates according to the Confidence ranking
and the Semantic ranking. ci and si refer to confidence score of the NL-to-query translation and the similarity score
between the natural language questions, respectively.

NLin: Whats the average track size of tracks purchased from 120 S Orange Ave?
i NLgen ci si mequal

i OK
1 What is the average size of all tracks on invoice lines which are part of invoices? 0.669 0.49 0.327 F

2 What is the average size of all tracks on invoice lines which are part of invoices
whose billing street is 120 S Orange Ave?

0.668 0.61 0.407 T

9 What is the average size of all tracks on Albums on invoice lines which are part of
invoices whose billing street is 120 S Orange Ave?

0.632 0.3 0.1896 F

NLin: Which companies from Mexico produced their films in Mexico ?
i NLgen ci si mequal

i OK
1 What are the names of companies which produced movies whose status is Mexico? 0.729 0.676 0.492 F

3 What are the names of companies which produced movies which were produced in
countries whose name is Mexico?

0.712 0.751 0.534 T

5 What are the names of companies which produced movies whose name is Mexico? 0.664 0.741 0.492 F

NLin: What are the distinct template type descriptions for the templates ever used by any document?
i NLgen ci si mequal

i OK
1 What are the distinct descriptions of template types for templates? 0.494 0.686 0.338 F

2 What are the distinct descriptions of template types for templates used for docu-
ments?

0.091 0.973 0.166 T

3 Show me everything about template types. 0.031 0.133 0.050 F

Table 3: Illustrative examples of the impact of re-ranking. We show three original questions (NLin) and the
corresponding back-translated examples (NLgen). Value i denotes the rank in the Confidence ranking, ci is the
confidence score of the decoder, si is the similarity score, mequal

i is the combination of ci and si, OK indicates
whether the generated query is correct (T = true, F = false).

6.2 Error Analysis: Confidence vs. Semantic
Ranking

To better understand the differences between the
Semantic and Confidence rankings, we analyze the
cases in which one of the two ranking schemes re-

turns a correct query, and the other one does not.
This analysis is performed on the Bridge output
where in 19.2% of the cases, only one of the two
ranking schemes returns the correct hypothesis. In
25% of the cases in which only the Confidence
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ranking returns a correct query, the Semantic rank-
ing returned a query with a redundant WHERE-
clause, and in 20% of cases, the Semantic ranking
returned a wrong attribute in the projection. This
suggests that the Semantic ranking is not stable
against redundant information in the query and
slight variations in the return attributes.

In the cases where only the Semantic ranking
returns a correct query, the query returned by the
Confidence ranking contains missing or redundant
Join-clauses in 47% of cases and wrong query types
in 21% of cases. This suggests that the Semantic
ranking’s strength lies in detecting missing rela-
tions and detecting wrong query types (i.e., SUM
instead of COUNT).

In Table 2 two examples of errors are shown.
The first example shows a missing join operation
of Confidence. In particular, the table "concert"
is missing in the SQL statement. In this case the
confidence score of the wrong Confidence query,
i.e. ci = 0.02, is higher than the confidence of the
correct Semantic query, i.e. 0.015. On the other
hand, the semantic textual similarity score si of the
correct Semantic query, i.e., 0.823, is higher than
the score of the incorrect Confidence query, i.e.,
0.792. We note that although the confidence score
of the incorrect query is the highest of all hypothe-
ses, it is a low score. Usually, the confidence scores
are around 1.0.

The second example shows the problem of an ad-
ditional filter (TV_Channel.Country ̸= "English"),
which confuses the semantic similarity score. The
Confidence ranking selects the correct query with
high confidence, i.e. 1.0. However, the semantic
score of the incorrect Semantic query, i.e., 0.673, is
higher than the semantic score of the correct query,
i.e., 0.654.

This phenomenon motivates the Threshold
Weighting. The reason is that high confidence
scores from the NL-to-Query system are more trust-
worthy than the semantic scores. However, in cases
where the NL-to-Query system is not confident,
the semantic score performs well. The automati-
cally determined threshold in our experiments lies
at around 0.9.

6.3 Qualitative Analysis

In Table 3, we show examples of the different rank-
ings. We show three representative examples of a
15-best list. In the first example, we note that the
hypothesis with the best confidence score, i.e., c1 =

0.669, is incorrect. The second best hypothesis, ac-
cording to the confidence score, is correct and has
a very similar score to the hypothesis placed first
(0.669 vs. 0.668). The hypothesis that is placed 9th

adds an unnecessary relation. However, the confi-
dence score is still close to the hypothesis placed
first. The semantic score, on the other hand, is
more accurate. The correct hypothesis is placed
1st with a large margin (0.61 vs. 0.49) and an even
larger difference with the score of the 9th place. Fi-
nally, the combined score mequal

2 of 0.407 clearly
identifies result 2 as the correct one.

The second example shows a similar pattern: the
first hypothesis with a confidence score c1 of 0.729
is obviously wrong. The second hypothesis, which
is correct, has a slightly lower confidence score c2
of 0.712. The Semantic score s3 of 0.751 ranks
the set of hypotheses correctly. However, Semantic
re-ranking alone is not enough since the 5th ranked
example has a very high semantic similarity score
while being incorrect. In this case the Equal Weigh-
ing approach mequal

i helps differentiating: While
s3 and s5 are very close, mequal

3 and mequal
5 have a

bigger margin.
The last example shows a case where the Equal

Weighting does not work. Although the semantic
score s2 of 0.933 works to find the correct answer,
the confidence score c2 of 0.091 of the correct hy-
pothesis is much lower than the confidence of the
incorrect hypothesis, c1 of 0.494. In this case, the
Threshold Weighting would work well as it relies
on si for the cases where the maximum confidence
score is too low.

7 Conclusion

We proposed a novel approach to improve semantic
NL-to-Query systems based on back-translating the
generated query into a natural language question,
and re-ranking the top hypothesis of the NL-to-
Query system according to the semantic similarity
of the generated questions with regard to the origi-
nal question. Our approach improves over strong,
publicly available systems by up to 3 percentage
points on the Spider dataset and up to 9 points on
the OTTA dataset.

Our results clearly show the potential of back-
translation for improving NL-to-Query systems,
and it could be applied to more general semantic
parsing problems as long as a generation method is
available.
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ranking returns a correct query, the Semantic rank-
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In the cases where only the Semantic ranking
returns a correct query, the query returned by the
Confidence ranking contains missing or redundant
Join-clauses in 47% of cases and wrong query types
in 21% of cases. This suggests that the Semantic
ranking’s strength lies in detecting missing rela-
tions and detecting wrong query types (i.e., SUM
instead of COUNT).

In Table 2 two examples of errors are shown.
The first example shows a missing join operation
of Confidence. In particular, the table "concert"
is missing in the SQL statement. In this case the
confidence score of the wrong Confidence query,
i.e. ci = 0.02, is higher than the confidence of the
correct Semantic query, i.e. 0.015. On the other
hand, the semantic textual similarity score si of the
correct Semantic query, i.e., 0.823, is higher than
the score of the incorrect Confidence query, i.e.,
0.792. We note that although the confidence score
of the incorrect query is the highest of all hypothe-
ses, it is a low score. Usually, the confidence scores
are around 1.0.

The second example shows the problem of an ad-
ditional filter (TV_Channel.Country ̸= "English"),
which confuses the semantic similarity score. The
Confidence ranking selects the correct query with
high confidence, i.e. 1.0. However, the semantic
score of the incorrect Semantic query, i.e., 0.673, is
higher than the semantic score of the correct query,
i.e., 0.654.

This phenomenon motivates the Threshold
Weighting. The reason is that high confidence
scores from the NL-to-Query system are more trust-
worthy than the semantic scores. However, in cases
where the NL-to-Query system is not confident,
the semantic score performs well. The automati-
cally determined threshold in our experiments lies
at around 0.9.

6.3 Qualitative Analysis

In Table 3, we show examples of the different rank-
ings. We show three representative examples of a
15-best list. In the first example, we note that the
hypothesis with the best confidence score, i.e., c1 =

0.669, is incorrect. The second best hypothesis, ac-
cording to the confidence score, is correct and has
a very similar score to the hypothesis placed first
(0.669 vs. 0.668). The hypothesis that is placed 9th

adds an unnecessary relation. However, the confi-
dence score is still close to the hypothesis placed
first. The semantic score, on the other hand, is
more accurate. The correct hypothesis is placed
1st with a large margin (0.61 vs. 0.49) and an even
larger difference with the score of the 9th place. Fi-
nally, the combined score mequal

2 of 0.407 clearly
identifies result 2 as the correct one.

The second example shows a similar pattern: the
first hypothesis with a confidence score c1 of 0.729
is obviously wrong. The second hypothesis, which
is correct, has a slightly lower confidence score c2
of 0.712. The Semantic score s3 of 0.751 ranks
the set of hypotheses correctly. However, Semantic
re-ranking alone is not enough since the 5th ranked
example has a very high semantic similarity score
while being incorrect. In this case the Equal Weigh-
ing approach mequal

i helps differentiating: While
s3 and s5 are very close, mequal

3 and mequal
5 have a

bigger margin.
The last example shows a case where the Equal

Weighting does not work. Although the semantic
score s2 of 0.933 works to find the correct answer,
the confidence score c2 of 0.091 of the correct hy-
pothesis is much lower than the confidence of the
incorrect hypothesis, c1 of 0.494. In this case, the
Threshold Weighting would work well as it relies
on si for the cases where the maximum confidence
score is too low.

7 Conclusion

We proposed a novel approach to improve semantic
NL-to-Query systems based on back-translating the
generated query into a natural language question,
and re-ranking the top hypothesis of the NL-to-
Query system according to the semantic similarity
of the generated questions with regard to the origi-
nal question. Our approach improves over strong,
publicly available systems by up to 3 percentage
points on the Spider dataset and up to 9 points on
the OTTA dataset.

Our results clearly show the potential of back-
translation for improving NL-to-Query systems,
and it could be applied to more general semantic
parsing problems as long as a generation method is
available.
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A On Query-to-NL

While Query-to-Text is not a contribution of our
work, we discuss and motivate our choice of OT3
as our Query-to-Text engine. We adapted OT3 to
handle all the domains in the Spider development
set, which comprises 20 databases. In order to han-
dle SQL queries, we translate SQL queries into
OTs using a rule-based approach. The main advan-
tage over statistical methods is that we can be sure
that the queries are correctly back-translated to text.
This is due to the rule-based nature of OT3.
Sanity Check. In order to show that OT3 correctly
renders the semantics of a query, we first perform
a sanity check, where we backtranslated the gold-
standard tree for a given question. Thus, we need
to show that the original question and the back-
translation are semantically equivalent. As nega-
tive examples, we also mix in randomly sampled
human questions, thus the original question and
the negative back-translation should never be se-
mantically equivalent. We let humans annotate this
data, that is, we showed humans pairs of original
questions and either a positive or negative back-
translation. In this setting, humans agree in 94%
of cases with the parsing ground-truth. This shows
that the synthetic questions are understandable and

generally maintain the semantics of the underlying
OT. The experiments show that the synthetic ques-
tions are of high quality and can be used as basis
for re-ranking.
Limitations. OT3 does not handle GROUP BY,
sub-queries and set operations, thus, we discard
these samples from the Spider and OTTA develop-
ment sets, keeping 82% of OTTA-Moviedata, 76%
of OTTA-Chinook and 43% of Spider. The reported
results are on these subsets of the datasets. Note
that several studies on natural language query logs
(Bonifati et al., 2017; Affolter et al., 2019) show
that typical queries in real-world applications are
far less complex than the ones contained in the Spi-
der dataset. Hence, not supporting GROUP BYs,
sub queries or set queries is not a significant issue
in a real-world scenario. Note that our method can
still be applied to the full datasets, defaulting to the
Confidence ranking when none of the hypotheses
could be back-translated. The positive results are
consistent, but the improvement is lower, correlated
with the coverage. E.g. an overall improvement of
0.67% for the whole Spider (with the Bridge sys-
tem using equal mixed re-ranking), which roughly
corresponds to the 1.57% improvement obtained
on the 43% subset of Spider which does not contain
complex SQL operations.
Selection. The choice of OT3 is motivated by
the fact that it renders relationships between en-
tities naturally. For instance, the relationship be-
tween persons and movies, which is modelled via
the cast table, is expressed as "Persons that play
in movies". For instance, Logos (Kokkalis et al.,
2012) expresses the same relationship as "Persons
associated with movies", which is not natural and
cannot be handled by our semantic textual simi-
larity tool. We also evaluated statistical models,
which suffer from hallucinations (i.e., adding text
that is not semantically related to the query) and are
generally unreliable. Thus, we are not aware of any
Query-to-Text solution, that handles all types of
queries (Group By, Set Operations, Nested Queries)
such that the generated texts read naturally. Thus,
OT3 has proved to be best suited for our task.

B On Evaluation

We adapted the Component Equality measure for
operation trees (OTs) since we translate the SQL
queries of the Spider-based systems to OTs. For
OTs, this measure checks if the nodes of the pre-
dicted tree correspond to the nodes of the gold stan-

dard tree. This allows measuring query equality in-
dependently of the order of the nodes. Furthermore,
we adapted this analysis also to measure if the
Join attributes are rendered correctly. We decided
against a result-based evaluation since it is impos-
sible to reasonably evaluate queries that return an
empty result set, often leading to over-estimating
the quality of NL-to-Query systems. This happens
often in cases where the result set is empty or for
count questions. For Spider the databases are very
small and do not contain much data, thus, queries
tend to return empty results. For OTTA, which
uses Yes/No questions, this problem is even more
pronounced. Thus, the result-based evaluation is
not reliable, and we opted for the component-based
evaluation, which is now the standard evaluation
for the Spider dataset.
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