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Abstract 
Every musician knows how hard it can be to play or accompany an unknown song for the first time. It 

is even more difficult to predict which chords should be played based only on a sung melody. 

Therefore, we propose a prototype that helps novice musicians to acquire the arduous skill of chord 

prediction during their learning process. In addition, we present an end-to-end solution, offering a 

real-time chord prediction. To create this solution, we assembled different architectures, with which 

we performed experiments that showed our model is still imperfect. Moreover, our model proved to 

be impractical for real-time chord predictions. Nevertheless, an alternative application to our model 

could be in the composition of new songs where ideas do not demand strictly correct predictions. 

Finally, we see potential for further development and overall improvement of our model to reach its 

main purpose. 
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1 Introduction 

Aspiring musicians often develop a form of musical intuition to guess which notes or chords follow 

next in the sequence based on what they have heard previously [1]. However, this skill must be 

learned, and it requires several years to develop [2]. The difficulty to play a song by guessing alone, 

without having sheet music available, is quite high, especially for novice players [2]. An example 

situation where the skill of guessing chords can be utilized is a musician at the campfire. The musician 

plays a song where he/she knows the melody and lyrics but might not know the correct chord 

sequence by heart. In these situations, musicians usually apply their musical intuition they had 

acquired over the years to guess which chord should be played next. This ability to play songs 

without knowing the chords is what we aim to ease for novice musicians by developing a universal 

songbook. 

The chord prediction task can be solved by a composition of solutions to established problems in the 

domain of Music Information Retrieval (MIR) [3]. Although, there are multiple established solutions 

for the different tasks of MIR, there are no substantial solutions that target the learning of musical 

intuition of beginner musicians by predicting chord sequences in real-time. For this reason, we tried 

to build the universal songbook, by answering the question: How can we create a general chord 

predictor with artificial intelligence that will ease the learning process of novice musicians? 

In this thesis, we propose two specific architectures, one of which with two variants, that combine 

several approaches from recent research to solve the problem of real-time chord prediction based on 

melody input. Our solution can process music and predict the future chord in a real-time and 

continuous manner, requiring no manual interaction of the musician while the song is performed. 

In the following chapters we first present a summary of the state-of-the-art solutions for the MIR 

domain that are relevant for this thesis such as music transcription, music source separation, melody 

harmonization and others. Next, we compile our selection of existing solutions and libraries to build 

our proposed architectures based on various aspects, for instance the simplicity of the integration of 

those solutions. Afterwards we introduce each architecture and its benefits for our problem and 

explain, why some of the proposed architectures are currently not qualified. Subsequently, we 

present a series of results from experiments and our evaluation regarding the main goal. Finally, we 

take a step back and analyse the entire implementation with our conclusions and propose further 

improvements to achieve better results. 

We would like to mention that the prototype was conceptualized and built over a single semester as 

part of a research project assignment at ZHAW School of Engineering. Therefore, to limit the amount 

of data and time needed, we focus on the genre of popular contemporary western music. Moreover, 

some of the music theory will be mentioned in this thesis but not explained, as we assume that the 

reader is familiarised with musical terms and conventions. Clendinning and Marvin [4] provide a 

comprehensive introduction to the music theory used in this project. 
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2 State-of-the-art Music Information Retrieval 

MIR deals with the task of retrieving information from music. The goal is to enable several down-

stream tasks in the field of musicology, like source separation, genre classification, melody 

harmonization or automatic music transcription [5]. 

For the task of this thesis, several MIR sub-tasks can be utilized to achieve the goal. The following 

chapters go into more detail on individual parts of MIR and what state-of-the-art solutions exist that 

are relevant for this thesis. 

2.1 Automatic Music Transcription 

The goal of automatic music transcription (AMT) is to produce a sheet music equivalent of a 

recording. It is considered one of the most challenging problems within MIR [6]. 

AMT can be further divided into two distinct sub-tasks, monophonic and polyphonic transcription. 

While monophonic transcription is considered resolved, there is no general solution to polyphonic 

transcription [6]. 

 

Figure 1: Visualisation of an AMT system with possible outputs of symbolic representation (not a complete list). 

2.1.1 Monophonic Music Transcription 

Extracting a monophonic note sequence from audio can be used to extract the melody of a song. This 

melody typically represents what a listener could hum or whistle when asked to do so, as it is 

representative of the song and often closely follows the singing voice or other important melodic 

motives. 

 

Figure 2: Visualisation of monophonic music in form of a music score. Example song: ATC - All Around The World from 
https://github.com/wayne391/lead-sheet-dataset [7] 

Most instruments when playing a note do not produce a single perfect pitch but a collection of 

pitches at different frequencies [8]. The frequencies higher than the frequency of the actual note 

played are what is known as overtones. The differences in the overtones, along with the presence of 

https://github.com/wayne391/lead-sheet-dataset
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noise, are what makes instruments recognisable and is denoted as the timbre of an instrument [9]. 

Overtones, while being quieter than the foundational pitch, can become a problem when trying to 

retrieve the frequency of the note, especially when multiple notes are present and overtones 

overlap. Monophonic pitch trackers are often less affected by overtones present in the source audio, 

as they follow a single pitch, at the frequency highest in volume [10]. 

Convolutional Representation for Pitch Estimation (CREPE) is a state-of-the-art pitch tracker [11], 

based on a deep convolutional neural network (CNN) [12]. It outperforms other pitch tracking 

algorithms, which use heuristic approaches like PYIN [13] or SWIPE [14]. On their compiled dataset 

with a small error margin, CREPE has an accuracy of 90.9% and is 8 percentage points higher than 

PYIN with 82.6%. To measure its performance, Kim et al. [11] used the 'raw pitch accuracy' [15] [16]. 

Raw pitch accuracy is the proportion of correctly estimated pitches to the ground truth pitches 

within some error margin. The error margin is measured in cents, which represents musical intervals 

relative to a defined reference pitch (in Hz) [11]. A common value is 50 cents (quarter tone). 

2.1.2 Polyphonic Music Transcription 

Polyphonic music transcription is a more challenging problem than monophonic music transcription 

[17] [6] since a transcriber must be able to differentiate between multiple sources (instruments or 

vocals) that are combined in one audio signal. Even for a trained musician, this is no easy task [18]. In 

addition, algorithms working well for monophonic transcription, do not work as good for polyphonic 

transcriptions [6]. 

 

Figure 3: Visualisation of polyphonic music in form of a music score. Example song: ATC - All Around The World from 
https://github.com/wayne391/lead-sheet-dataset [7] 

Research published a variety of different solutions for polyphonic music transcription. There are 

models that transcribe one type of instrument. Various models were developed for polyphonic piano 

transcription [19] [20] [21] [22], or for other instruments, for example guitars [23]. 

Other types of models transcribe multi-instrument audio [24] [25] [26] [27]. However, their output 

can be different. For example, ReconVAT [25] only outputs a single pianoroll, without assigning 

instrument labels for a note. MT3 [24] on the other hand, outputs a Midi-like format with separate 

tracks per instrument. 

Besides the complexity and solution variety of polyphonic transcription, papers use different metrics, 

or use different names for the same metrics. This makes comparisons between papers difficult [24]. 

The following list, summarised from [24], gives a short introduction to commonly used metrics (we 

recommend Cheuk et al. [28] for a detailed analysis of these scores). 

- Frame-wise F1 score: Audio data is split into frames. A matrix [nr of frames, nr of notes] 

defines, which notes are played at which frame. A column at frame x would be a true 

positive, if all the active notes correlate to the ground truth at frame x. 

https://github.com/wayne391/lead-sheet-dataset
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- Onset F1 score (note-wise F1): The predicted pitch needs to be within some time limit. The 

value most used is 50ms. 

- Onset-offset F1 score (note-with-offset-wise F1): Notes must match the onset metric, as 

well as having matching offsets. The offset must also be within some time limit. A usual value 

for this is 20% of the note-duration or 50ms. Onset-offset F1 score can be considered the 

strictest metric of this list. 

Multi-Task Multitrack Music Transcription (MT3) [24] uses a T5 model [29] and is capable of multi-

instrument polyphonic transcription. The output of MT3 is a symbolic representation, which they call 

MIDI-like. For training and evaluation, Gardner et al. [24] combined multiple existing datasets and 

compiled a larger dataset from them. On all six datasets it was evaluated on, MT3 compares to, or 

exceeds previous state-of-the-art models (sometimes up to 260% relative gain) in frame-wise F1, 

onset F1 and onset-offset F1 metrics (for more info, see paper [24]). The paper for MT3 was 

submitted in November 2021, during our project. Therefore, we did not consider its implementation 

for this project. 

According to Benetos et al. [17] non-negative matrix factorization (NMF) [30] [31] can also be 

considered state-of-the-art for polyphonic transcription. NMF remain relevant, where Neural 

Networks are facing challenges: 

Lack of annotated datasets: Only relatively small, annotated datasets exist for polyphonic music 

transcription, consisting of several hours of audio. Because of this, Neural Networks tend to overfit 

the datasets. Since the paper released however, larger datasets have become available. Gardner et 

al. [24] compiled and proposed a dataset for polyphonic music transcription consisting of 6 existing 

datasets, resulting in over 1000 hours of audio. Compared to other audio tasks like automatic speech 

recognition with datasets of over 2500 hours [32], datasets for polyphonic music transcription 

remain small. 

Adaptability to other acoustic conditions: NMF has the capability to improve performance for new 

instruments by iterating on only a few examples. Neural Networks have no equally effective 

mechanism to adapt as fast as NMF [17]. 

2.2 Music source separation 

The goal of music source separation is to split musical information into separate parts, for example 

isolating vocals from a song or separating instruments. Separating music into its parts can greatly 

improve the performance of down-stream tasks, like automatic transcription, as information that is 

not needed for the task, for example drums, can be filtered out [33]. 

 

Figure 4: Visualisation of music source separation task. Image from https://source-
separation.github.io/tutorial/landing.html [34] 

https://source-separation.github.io/tutorial/landing.html
https://source-separation.github.io/tutorial/landing.html
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Recent music source separation papers operate on different domains to solve the task (waveform, 

spectrogram, or both). Therefore, papers use different Neural Network architectures for their models 

[35]. Popular architectures for music source separation are CNN [35] [33], bidirectional long short-

term memory (biLSTM) [36] or a combination of them [37]. 

The current state-of-the-art model for the MUSDB18 dataset [38] is Hybrid Demucs [37], which is an 

improved form of the Demucs architecture [36]. It outperforms other models and achieves an 

average signal to distortion ratio (SDR) of 7.68 decibels (dB). This is an improvement of around 1.4 

dB.  

Like MT3 in chapter 2.1.2, the paper for Hybrid Demucs was released during our thesis and was not 

considered for implementation. 

Signal to distortion ratio (SDR): According to Défossez et al. [36], SDR is the log ratio between 

volume of the estimated source projection onto the ground truth, and the volume of what is left out 

of this projection (e.g., contamination by other sources or artifacts). 

𝑆𝐷𝑅 ≔ 10 𝑙𝑜𝑔10 (
‖𝑠𝑡𝑎𝑟𝑔𝑒𝑡‖

2

‖ⅇ𝑖𝑛𝑡𝑒𝑟𝑓+ⅇ𝑛𝑜𝑖𝑠𝑒+ⅇ𝑎𝑟𝑡𝑖𝑓‖
2), original paper from Vincent et al. [39] 

2.3 Melody harmonization 

The goal of melody harmonization is to generate harmonic context to a monophonic melody. In 

musicology, melody harmonization is highly subjective and there are often several fitting chord 

sequences [40] for a given melody. 

 

Figure 5: Visualisation of melody harmonization task in form of a music score. Example song: ATC - All Around The World 
from https://github.com/wayne391/lead-sheet-dataset [7] 

When building a melody harmonizer, studies often use the original chords of a given song as the 

ground truth of what the chord progression should be, but also collect qualitative opinions of how 

well the chords are perceived to fit the melody by musicians and non-musicians [40]. 

When comparing different algorithms to harmonize melodies, for instance deep-learning based and 

non-deep-learning based algorithms, the deep-learning based models, such as biLSTM [41] and deep 

Multitask models, proved to be better than non-deep-learning based algorithms, in particular Hidden 

Markov Models (HMM) [42] and Genetic Algorithms (GA) [43], in a variety of features, especially in 

harmonicity and interestingness [7]. 

Sun et al. [40] proposed a melody harmonizer based on biLSTM and applies orderless NADE [44], 

chord balancing (i.e., class weighting) and blocked Gibbs sampling [40]. It outperforms the previous 

state-of-the-art model in a subjective study with more than 100 participants in the metrics of 

“coherence”, “chord progression” and “interestingness”. The model has close results to human 

https://github.com/wayne391/lead-sheet-dataset
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composers and even gains a higher score in chord progression compared to human composers (3.53 

for the model, 3.47 for human composers). 

2.4 Chord sequence prediction 

Chord sequence prediction is the task of guessing the next chord based on a sequence of previous 

chords. [45]. This task is similar to predicting the next word of a sentence in the domain of Natural 

Language Processing (NLP). The concept of words and sentences can be adapted to music by 

interpreting a chord token as a word and a sequence of chord tokens as a sentence [46]. 

 

 

Figure 6: Visualisation of chord sequence prediction task in form of a music score. Example song: ATC - All Around The World 
from https://github.com/wayne391/lead-sheet-dataset [7] 

To process chord tokens, the tokens must first be converted into a numerical representation. Based 

on the NLP concept of word embeddings, Madjiheurem et al. [46] show that meaningful vector 

representations of chords can be obtained for chords as well. In [47], the authors obtain chord 

embeddings from a corpus of classical music by using the skip-gram methodology. Using these chord 

embeddings, they implement a LSTM-based neural network, which is trained to predict the next 

chord token in the sequence.  

2.5 Music Generation 

Music generation has very different set of goals than most other tasks within MIR [48]. Instead of 

purely predicting melodies or chords by their statistical likelihood, music generation aims to replicate 

the creativity of a musician writing a completely new piece of music. Therefore, in the domain of 

music generation, the quality metrics are much different. For example, when generating a new piece 

of music, qualitative attributes like “interestingness” or “pleasantness” are important, alongside a 

measure of how "creative" it is, indicating to what level the piece was surprising or bland [49]. 

 

Figure 7: Visualisation of music generation task, specifically melody generation, in form of a music score. Example song: ATC 
- All Around The World from https://github.com/wayne391/lead-sheet-dataset [7] 

Generative models can also be used to complete unfinished melodies or create complete songs from 

only melody. This is comparable with what the task of melody harmonization is trying to achieve, the 

ingredient that differentiates music generation from other subtasks is the element of creativity. The 

creative element makes music generation non-deterministic [49]. 

Musicautobot [50] is a multitask model based on Transformer-XL [51] that is also suited to do music 

generation. It uses a feature named temperatures, to determine how much randomness in the pitch 

https://github.com/wayne391/lead-sheet-dataset
https://github.com/wayne391/lead-sheet-dataset
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and rhythm should be added in the generation of melody or harmony. A further step would be to 

combine Transformers with Generative adversarial networks (GAN) [52] to improve the music 

creation performance [53] 

2.6 Normalisation 

While not technically being a task specific to MIR, music normalisation is an important step to 

western musical analysis [54]. Especially normalizing the keys of the piece is useful for further 

processing, as downstream systems only ever have to know a single key. This is achieved by detecting 

the tonal centre of the piece and transposing it to a default key of C Major. This helps to counteract 

the fact that in modern music, certain keys are much more common than others [55]. Normalizing to 

C Major makes the key of the song a non-factor, given the right key was detected. 

 

 

Figure 8: Visualisation of normalisation task in form of a music score. (a) melody in F major Key. (b) transposed melody in C 
major key.d 

Key detection can be implemented using different strategies ranging from simple algorithms like 

matching the notes in the melody to scales, to highly complex systems able to take handle diatonic 

modes (where a scale is used with a tonal centre different to its root) and shifting keys in 

modulations [55]. 

3 Proposed System Architectures 

We propose two system architectures, capable of solving the chord prediction problem as stated in 

chapter 1 by combining a selection of available solutions from the MIR domain. We emphasize that 

the architectures are based on our ideas but use publicly available components. We integrate and 

connect these components together to solve the task. 

The system architectures are designed with modularity of components in mind. If research proposes 

a new solution to any subtask, we can substitute that component or we can observe how the 

performance of the system overall develops when using different implementations. 

The following section first describes which tools and libraries are used for which subtask. Then, we 

explain the general idea behind the system architectures and what components they use. The system 

architectures are described to work on single audio files, so we could evaluate and test them in this 

non-real-time setting, because our dataset [7] consisted of MIDI files with split melody and chord 
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tracks. This ensured us repeatable and verifiable experiments. The last section in this chapter then 

focuses on transferring the system architectures to work in a real-time setting. 

3.1 Tools and libraries used 

This section provides an overview of the tools and libraries we chose and explains why we chose 

them. Each system architectures then uses and combines a selection of them. 

Symbolic representation: We decided to use music21, because it simplified development, if most of 

the components work with music21 objects. In addition, music21 provides a variety of tools for 

analysing, searching, and transforming music in symbolic form [56].  

Normalisation: Because the symbolic representation is encapsulated in music21 objects, we can also 

use the music21 transpose function to normalise the music score. A concrete implementation of key 

detection is included in music21 in the form of the Krumhansl-Schmuckler algorithm [55]. 

Polyphonic music transcription: For polyphonic transcription, we decided to use ReconVAT. 

ReconVAT is a semi-supervised deep learning model and aims to generalize better to musical genres, 

that are not present in the training data [25]. While ReconVAT is not state-of-the-art, we chose it as 

the source code is publicly available and because it can deal with a multitude of instruments, not just 

piano. 

Monophonic music transcription: We decided to use music21 monophonic transcription for this, 

because it was easy to implement, as we already use music21 for other tasks and its return value can 

directly be used for further processing. Another option would have been a pitch tracker that achieves 

high scores in pitch tracking but requires post-processing steps. The frequency per timestep would 

need to be converted to symbolic representation (music21 stream) by creating notes from the 

frequencies and define their duration. With music21 monophonic transcription, we could skip these 

steps. However, music21 does not present performance measures for this feature. 

Music source separation: Spleeter is a tool released by Deezer, an online music streaming service, 

containing pretrained models to split audio into different stems [33]. While newer models with 

better performance have been published [37], we found Spleeter to be easy to use and, as it can use 

GPUs, performs well. 

The pretrained models are U-Nets [57] which is an encoder/decoder CNN architecture with skip-

connections which estimate a filter mask for each source it separates. This is different from the 

approach previously taken by previous authors, where the model directly generates waveforms 

corresponding to the different sources [33]. 

Chord sequence prediction: To predict which chord follows in the sequence of previously observed 

chords, we use a model developed by Azuoni et al. [47] in the context their work measuring the 

prediction accuracy across different composers and eras. We decided to use this model as it 

represents recent research, and the code was publicly available. 

Melody harmonization & Melody generation: We decided to use musicautobot, because it provides 

a multitask model capable of melody harmonization, melody generation and some more functions. 

Instead of using multiple models with different results, one model working with music21 objects as 

input and output made it simple to integrate in our system. 
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3.2 Polyphonic Listener (Architecture A) 

The System Architecture A works under the assumption that both melody and harmony information 

are available, hence its name “Polyphonic Listener”. In case of the guitar player at the campfire, 

Architecture A would listen to both the guitar and the vocals, processing both parts separately. If the 

guitar player remembers some of the chords and plays them, the played chords will be considered. If 

the musician does not remember any chord at all, he/she can sing the melody and start to play the 

chords as they are predicted. In that sense, previous predictions are considered, allowing 

Architecture A to build connected chord sequences. Which chord the musician plays however is 

his/her own decision, allowing to correct wrongly predicted chords and improving overall accuracy. 

Combined with the processing of the melody, we hope to improve accuracy further as we can detect, 

when the song might be about to move to a different chord pattern than previously observed. 

 

Figure 9: Structure of Architecture A with polyphonic transcription 

A distinct feature of Architecture A is the parallel evaluation of two separate prediction systems, 

yielding separate results, on which a voting algorithm then selects a result based on the confidence 

of both predictions. 
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This architecture depends on being able to split audio into harmony and melody parts and the 

accurate transcription thereof. While splitting audio works [33], it still creates audible artefacts 

which, in combination with the shortcomings of state-of-the-art polyphonic audio transcription (see 

chapter 2.1.2) renders the resulting transcription unsuitable for further processing. 

 

Figure 10: Polyphonic transcription with ReconVAT on an accompaniment separated by Spleeter 

Figure 10 shows an excerpt of a transcription with ReconVAT on an accompaniment that was 

separated by Spleeter. Often, single Notes are detected instead of chords and the notes span a large 

frequency range. 

Due to these shortcomings, Architecture A was not pursued further and was not considered for 

further testing and evaluation. 

3.3 Monophonic Listener (Architecture B) 

Architecture B extracts only melody information from audio data via monophonic transcription.   

Because monophonic transcription is less complex than polyphonic transcription (see chapter 2.1) 

this approach could yield better symbolic representations, when used on audio data. 

With this solution, a guitar player can sing the melody and / or play the chords. In contrast to 

Architecture A, played chords from the musician are not considered, as only the melody serves as 

input. 

We decided to implement and evaluate two variants of the monophonic listener architecture, using 

results from previous work with publicly available pretrained models. We discuss other possible 

solutions in chapter 5. 
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Figure 11: Chosen variants for Architecture B 

The Chord Sequence Extension model (referred to as “B.1”) uses a melody harmonizer and chord 

prediction system sequentially. From the symbolic representation of the monophonic transcription, 

the melody harmonizer generates a chord sequence. The harmonized chord sequence is used to 

predict the next chord. It is implemented as a combination of both the multitask model from 

musicautobot for harmonization and a LSTM based prediction model. 

 

Figure 12: Visualisation of the core idea behind the Chord Sequence Extension Architecture in form of a music score. 

The Melody Extension model (referred to as “B.2”) differs in approach by removing the explicit use of 

chord prediction. Instead, it works by leveraging different features from the multitask model of 
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musicautobot. Melody generation completes the yet unobserved melody. Then the melody 

harmonizer harmonizes both the real and the generated part to get a chord sequence. The first chord 

of the last bar of the harmonization is interpreted as the predicted next chord. 

 

Figure 13: Visualisation of the core idea behind the Melody Extension Architecture in form of a music score. 

3.4 Real-time implementation 

To adapt our architectures to real-time prediction, we changed our input interface to continuously 

record audio data. The new interface transcribes the recorded audio every second to a music21 

stream and appends this transcription to a list. Meanwhile, if the list is filled with at least eight notes 

the monophonic listener retrieves the last eight notes from it and outputs the predicted chord until 

the process is stopped. 

 

 

Figure 14: Chord prediction transferred in a real-time context 
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4 Experiments and Results 

In this section, we present a series of experiments that were performed to measure different aspects 

of our solution. First, we interviewed seven musicians to assess the overall acceptance of our 

implementation. Second, we performed a ceiling analysis over our architectures to establish, which 

components could be enhanced to raise the overall performance. Finally, we measured the 

processing time of components in our proposed architectures to estimate the feasibility of real-time 

prediction. 

4.1 Interview with musicians 

A survey with six music students and one music professor was made to measure the acceptance, 

interest, and the best use case for our model. We asked them to rate the transcription from audio to 

symbolic representation and what they thought was the best use case for our tool, for instance, 

helping with the creation of new songs or helping during the process of learning a new song. We also 

presented them a sequence of chords and asked them to guess what the next chord should be. First, 

they were asked to guess without any help, and then they were presented with the chord predicted 

by our solution to help them in their own decision. With that, we could assess how musicians feel 

about being assisted by our tool. 

To be able to make a qualitative statement about the monophonic transcription, we showed the 

participants the same melody played in four different ways, such as whistle, sung, played with an 

acoustic guitar and played on the piano, as these are possible instrument sources for our 

transcription. We choose to play a melody from Elton John - Can You Feel the Love Tonight. Below 

are 3 bars of the melody retrieved from our dataset followed by our model’s transcription of the 

original melody played on the piano. 

 

Figure 15: Original melody (ground truth) of Elton John - Can You Feel the Love Tonight from 
https://github.com/bearpelican/musicautobot [50] 

 

 

Figure 16: Monophonic transcription (music21) of Elton John - Can You Feel the Love Tonight, when played on a piano. 

Just from comparing the pictures, we can see that both melodies are not the same. This was also the 

opinion of all interviewed participants. The majority found the transcribed melody not similar at all 

with the original melody, regardless of how the audio was recorded. 

https://github.com/bearpelican/musicautobot
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Figure 17: Interview results - evaluation of the similarity of the transcribed melody 

When asked if the tool helped them to predict the next chord of a given chord sequence, the results 

were divided, three of them found it somewhat helpful, three neither helpful nor unhelpful. The 

professor found it to be somewhat unhelpful.  

 

Figure 18: Interview results - participants opinion about chord predictor 

Four out of seven participants would use the tool rather for the music creation process than for the 

learning process. The professor would not use the tool at all. The reason was that the tool was not 

able to correctly transcribe the played melody, implying that this would lead to wrong predictions. 

 

Figure 19: Interview results - chord predictor use case evaluation 

Discussion interview with musicians 

As a result of this interview, we see that the acceptance of our model as a chord predictor was low, 

and that the monophonic transcription has almost no similarity to the played melody. 

This shows us, that the usability could be improved greatly by the implementation of a better 

monophonic transcriber. A state-of-the-art pitch tracker could be used, even though we would have 

needed to implement post-processing steps to get a symbolic representation from the frequencies 

the pitch-tracker detects. 

During the creation process of a new song, creativity and different ideas, even “wrong” chords can be 

useful [49]. This reflects in our results, where participants showed interest in our model as a support 

tool for the creation of new songs. 
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4.2 Quantitative Evaluation 

In this experiment, we evaluate the performance of both architectures on a dataset of MIDI song 

snippets. In order to test the pipeline starting from audio files, a dataset is required that contains 

audio as well as which chord is being played at what time. Such dataset, to the best of our 

knowledge, is not readily available. To simplify our requirements towards the dataset, we test both 

architectures without the audio transcription step, allowing us to only deal with symbolic 

information. Furthermore, we have already tested the quality of the pitch tracking in the preceding 

chapter and found it to be unreliable. 

4.2.1 Dataset 

We use the Hooktheory dataset compiled by Yeh et al. [7] by scraping Hooktheory.com, a website 

containing snippets of songs aiming to teach harmonic theory to songwriters. The snippets contain 

separate parts for melodies and chords, as well as the key signature and tempo information. 

 

Figure 20: Example snipped of a music score. The piece is Clocks from Coldplay https://github.com/wayne391/lead-sheet-
dataset [7] 

 

From these song snippets, we consider the first four bars of the melody part to be our input. The cut-

off at four bars was chosen arbitrarily. Choosing this length of input results in approximately 8 

seconds of music, when calculating with an average tempo of 120 bpm and time signature of 4/4. 

Therefore, there should be a representative amount of musical information available to the 

predictor. The expected next chord of a snippet is then defined as the first chord in the fifth bar of 

the chord part. For this experiment, we evaluate a subset of 800 snippets from 537 distinct songs.  

As can be seen on Figure 20: Example snipped of a music score. The piece is Clocks from Coldplay 

https://github.com/wayne391/lead-sheet-dataset , the dataset contains key signatures for each song 

snippet. However, we came to find that the key signature included in the data is not usable for our 

purpose, as it does not include information on the mode the piece is in. For example, the key 

signature of the example snippet shown in Figure 20 indicates a key signature of Eb. If we normalise 

to C using this information, the resulting notes would be part of the C mixolydian scale instead of the 

standard major scale, as the piece is not in Eb major but in Eb mixolydian. 

http://hooktheory.com/
https://github.com/wayne391/lead-sheet-dataset
https://github.com/wayne391/lead-sheet-dataset
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To normalise to C major, we therefore cannot only read the key signature, but have to run a key 

detection algorithm to find the corresponding major key. For this purpose, we run the Krumhansl-

Schmuckler algorithm included in music21 on the full snipped to get an accurate key we can use as a 

ground truth. The resulting mode of this analysis is always either major or minor. In case the 

returned key is minor, we treat the related major scale as the key resulting in all snippets to be 

normalised to the C major scale. Using this method, we can retrieve the correct key of Bb Major for 

the example in  Figure 20. 

The distribution of keys detected by this method resembles the distribution of keys found across the 

Spotify catalogue [58], with the top 3 keys being D-, G- and C major respectively.  

 

 

Figure 21: Distribution of keys across dataset 

Overall, G major and D major are also the chords most often expected as a next chord. Not every 

chord in every key is part of the sample, but since the snippets will be normalised to the key of C 

major, all keys will be treated the same. 

 

Figure 22: Distribution of expected next chords across dataset 
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Taking into account the key of the snippet, we can identify the role of the chord in relation to the 

key. This information is expressed as the number of steps the root of the chord is away from the key 

centre and notated in roman numeral form. Most chord progressions after four bars expect a I, IV, vi, 

ii or V as next chord. This is to be expected, as many songs revolve around chord changes around 

these chords [59].  

 

Figure 23: Distribution of chords across dataset, expressed in roman numeral form relative to the respective key 

 

4.2.2 Chord distance functions 

To measure the performance of both architectures, we use three heuristics measuring the distance 

between the predicted and the expected chord. 

Note overlap 

The first one is a simple measurement on how many notes both chords share. Since we simplify 

chords to triads, the expected and the actual result can at most have three notes in common. The 

expected range of this metric therefore is between 0 and 3, with higher scores implying higher 

similarity. 

Using overlapping notes as a measurement of prediction precision has both benefits and drawbacks. 

The benefits are that it is simple to implement and understand, and that allows enough granularity to 

measure improvements. The drawbacks are, that this method has no notion of the importance of the 

individual notes. 

Considering for example two pairs of chords, both having a note overlap of 2: 

• A minor (A, C, E) and C major (C, E, G) 

• C major (C, E, G) and C minor (C, Eb, G) 

A minor and C major are closely related (C major being the major relative scale to A minor) while C 

major and C minor are less common to be featured in the same chord progression, as C minor 

features a note that is not present in the C major scale (Eb), yet both pairs score equally well on the 

Note overlap metric. 

Circle of fifths distance (Co5 distance) 
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A more nuanced way to measure the distance between chords would be to measure distance on the 

circle, as described in [60] and [61]. 

Distance on the circle of fifths as defined by De Haas et al. in [60] is measured with the number of 

hops required to go from the predicted chord to the expected chord. Hops are valid in both 

directions. Going from the inner ring of minor parallels to the outer ring also counts as one hop. If 

both chords are minor, it is possible to stay on the inner ring of minor chords [60].  

 

Figure 24: Distance between C minor and C major (in blue) and between A minor and C major (in red) on the circle of fifths 

  

As shown on the visualisation, the two example chord pairs (A minor and C major and C major and C 

minor) result in distance scores of 1 and 4 when calculated by the Co5 distance function.  

Compared to the simple note overlap heuristic, Co5 distance is harder to implement, because it must 

consider the different enharmonic spellings of chords. For example, a F# major chord in the context 

of G major might be called Gb major in the context of B major. These differences are carried over to 

the normalised key of C. For this purpose, we use the music21 library, which provides a function to 

normalise chord spellings into a specific key. 

Two chords can at most be 7 steps apart (in the case of a major chord and its opposite minor chord), 

giving this measure an expected range of 0 to 7, with lower scores implying higher similarity. 

Cosine similarity of chord embeddings 

As a third way to measure the distance between the expected and the observed chord, we use the 

pretrained chord embeddings we already leverage in the context of chord prediction with the LSTM 

model as described in chapter 3.1. The embeddings have been trained on chord sequences 

represented by roman numerals and therefore depend on accurate key detection when converting 

chords to embeddings. 

The two embedding vectors are then compared using the cosine similarity [62], as previous authors 

have done in the context of chord embeddings. [63] 

Comparison 
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Using all three measurements allows us to cross-validate the results of each distance function.  

 Note overlap Co5 distance Chord Embeddings 

Note overlap 1.000000 -0.567374 -0.457582 

Co5 distance -0.567374 1.000000 0.806265 

Chord Embeddings -0.457582 0.806265 1.000000 

Table 1: Correlation matrix between metrics 

The correlation matrix between all distance functions shows a strong correlation between the cosine 

distance of the chord embeddings and the distance of the chords on the circle of fifths. Our 

interpretation is that the chord2vec model was therefore able to learn a meaningful representation 

of the musical concept we used in the Co5 distance function. The Note overlap function does not 

correlate as well with neither the Co5 distance nor the Chord Embedding distance. This is expected 

due to the shortcomings described above and therefore, we believe the other two metrics to be 

more relevant in our case. 

To be able to compare the different metrics more easily, we normalise the results to a scale between 

0 and 1, with 1 indicating strong similarities between two chords, and 0 implying no similarity. 
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4.2.3 Baseline performance 

We measure the performance of both architectures on the dataset described in chapter 4.2.1 with 

the input data prepared in the described way. All three of the distance functions are applied to the 

result. 

 

Figure 25: Baseline performance per model, comparing co5 (circle of fifths distance), ol (overlapping notes) and emb (cosine 
similarity of chord embeddings), all metrics normalised to scale of 0 to 1 

  

As shown in Figure 25, architecture B.2 outperforms B.1 when looking at the circle of fifths distance 

only, whereas, when comparing the chord embeddings, B.1’s score is higher. We hypothesize that 

this might be due to the LSTM leveraging the same chord embeddings to predict the next chord. 

The metric counting the number of overlapping chords shows an especially large difference between 

the two approaches.  
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4.2.4 Ceiling Analysis 

To guide future improvements, we aim to find out which part of the Architecture has the biggest 

contribution to the overall error. For this purpose, we conduct a ceiling analysis looking at a selection 

of steps from each architecture. 

B.1 

We divide Architecture B.1 into three different segments. 

 

Figure 26: Results of the ceiling analysis of architecture B.1 

Segment 1: The first segment is our baseline we established in the previous chapter. The melody will 

run through the normalization where it gets transposed, then it will be harmonized and, on the chord 

sequence produced, a prediction will be made. 

Segment 2: The second segment removes the normalization step and starts directly with the 

harmonization. Therefore, we need to normalise the melody up front to the detected key of the 

complete song snippet.  

Any improvement of Segment 2 over the baseline is a result of the errors in the key detection. As the 

architecture itself only has access to 4 bars of the melody, it is not always able to correctly detect the 

key and since later steps work with key – agnostic scale degrees instead of normal chords, errors will 

be produced. For the Co5 distance, this translates into an improvement from 68.8% to 72.8%. When 

looking at the chord embeddings, the difference is even greater, from 67.6% to 75.0%. When looking 

at note overlap, the result is surprisingly a decrease from 25.5% to 22.3, further indicating that note 

overlap might be unreliable as a metric. 
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Segment 3: Instead of harmonizing a melody, Segment 3 directly takes the real chord sequence as an 

input. The chord sequence, just like the melody before, has to be transposed to correct key upfront 

for the architecture to make a meaningful prediction. The increase in performance measured by the 

Co5 distance is 72.8% to 78.1%, indicating a potential performance improvement of 5.3% if a better 

harmonization tool were used. The difference measured by the embedding distance function is 

surprising in that there is almost none. Only 0.14% can be improved by using the real chords instead 

of the harmonized chord sequence. For the note overlap distance, performance almost doubled from 

22.3% to 42.8%.  

B.2 

 

Figure 27: Results of the ceiling analysis for architecture B.2 

Architecture B.2, just as B.1, was also split up into three different segments: 

Segment 1 and Segment 2 work the same way as with Architecture B.1. The baseline is a 

unnormalized midi melody, while the second segment uses key detection over the full song snippet. 

For Segment 2, there is a clear improvement over the baseline across all metrics (4.7%, 11.5% and 

11.7%). This is to be expected, as all subsequent steps can run on pretrained models using a single 

key and therefore rely on the input to be normalised correctly.  

Segment 3 works by instead of having the musicautobot library complete the fifth bar of the melody, 

we pass the correct 5 bars of the melody to harmonize. Whichever chord is harmonized for the 

melody in the fifth bar is interpreted as the next chord. Whether the real 5 bars of melody or an 

autocompleted version of the melody are harmonized seems to play a minor role with less than 0.5% 

change in either metric. 
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Approach Metric Segment 1 Segment 2 Δ to previous Segment 3 Δ to previous 

B.1 Circle of Fifths Distance 68.79% 72.80% 4.01% 78.15% 5.35% 

B.1 Overlapping Notes 25.54% 22.33% -3.20% 42.82% 20.48% 

B.1 Embedding Distance 67.58% 75.04% 7.46% 75.18% 0.14% 

B.2 Circle of Fifths Distance 76.47% 81.20% 4.73% 81.60% 0.40% 

B.2 Overlapping Notes 44.80% 56.30% 11.50% 55.88% -0.42% 

B.2 Embedding Distance 64.21% 75.95% 11.73% 76.20% 0.25% 
Table 2: Full results of ceiling analysis across both architectures 

The ceiling analysis has shown that for both architectures, the quality of the key detection is a large 

contributor to the overall performance of the chord prediction.  

One strategy to use the results observed to increase real world performance of our application would 

be to have a longer listening window for key detection than what would be necessary for the actual 

chord prediction. That way, key detection can be done on a longer stream of information while 

keeping the stream that the actual prediction is based on short to increase performance. 

Another workaround could be to have the user input the key of the piece manually. 

4.3 Real-time Performance Evaluation 

As our goal is a real time prediction, the process time of each component is an important factor for it 

to be useful. Therefore, we measured how long each step of our pipeline takes to be calculated. 

For architecture B.1 the average time needed to harmonize a melody was around 4.3 seconds. 

Transposing a melody to another key and predicting the next chord were the fastest calculations, 

needing on average around 0.04 seconds. Transcribing the audio to symbolic representation, and 

predicting the next chord took around 0.09 seconds on average. The sum of the time spent of each 

component of B.1 was almost 4.6 seconds for one prediction. Architecture B.2 uses the same 

transcription, harmonization, and transpose modules, but it needs to extend the melody, which took 

on average 3.2 seconds. In total B.2 needs around 7.6 seconds for one prediction. We would like to 

mention that these time calculations are influenced by the machine that runs the algorithms. The 

time performance was calculated from a normal computer using a graphics process unit (GPU) for 

the harmonization and melody extension calculations. Therefore, we would like to remind the 

reader, that this evaluation might change depending on the machine used for testing. 
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Figure 28: Performance of individual tasks in seconds 

Discussion Real-time Performance evaluation 

According to our results, the performance of some components is not suitable to use in a real-time 

context. Especially melody extension and harmonization are the most time consuming, both are from 

musicautobot. 

The prediction will always have a time deficit, that the predicted chord should already have been 

played by the time our program shows it to the musician. If we consider a pop song, that typically has 

a tempo of 100 beats per minute (BPM) [64] and a 4/4 time signature, the length of a beat is 0.6 

seconds. Therefore, our prediction would be at least six beats behind the song. Even if we consider 

that each chord has a length of four beats, we would still be one chord prediction behind of the 

correct chord. 

4.4 Summary of results 

In summary, our evaluations showed us that people are more interested in using our model to help 

them to create music instead of real-time predictions during the learning process. Moreover, our 

model validated that real-time prediction demands a fair number of computational resources and 

that each second is an essential aspect of a real-time prediction. As stated in chapter 3, the used 

tools and libraries could be replaced with better performing implementations.  
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5 Conclusion and Areas of improvement 
5.1 Conclusion 

To summarize, we have described and listed the state-of-the-art of MIR tasks relevant for this thesis 

in chapter 2. This could be used as a basis for creating models with state-of-the-art components. 

To solve the task of a Universal Songbook, we presented two approaches for a real-time chord 

prediction system that listens to audio input and outputs the predicted chords. In addition, we also 

implemented both approaches by using publicly available libraries and evaluated them with 

experiments, to measure their performance. A qualitative study with musicians suggests that our 

model has potential as a supporting tool during the music creation process. The results of the 

quantitative analysis overall were inconclusive in regard to whether the architectures are usable for 

real use cases, as we did not have a pre-existing benchmark to compare our scores to. 

In conclusion, both models provide unsatisfactory results. Therefore, we cannot consider the task of 

a Universal Songbook to be solved. 

5.2 Limitations 

In its current state, our model is incapable of recognizing music structures (e.g., verse, refrain etc.). 

This could increase the overall chord prediction performance, as some of these structures have a 

fixed number of chords that repeat themselves for a certain amount of time. This might be suitable 

specially for popular western music, as these songs follow almost strictly some of these structures. 

Consequently, the real-time prediction is not capable of recognizing patterns in the played melody to 

acknowledge repeated sections that would result in equal predictions.  

5.3 Areas of Improvement 

Various improvements and changes can be made to our implementation. In this section we want to 

present and discuss a selection of them, based on our experiences during the project work. 

Improve monophonic music transcription 

As we see in chapter 4.1, monophonic transcription did not reliably work with the chosen music21 

library. Another approach could be to use a pitch tracker, for example CREPE [11]. This could yield 

better transcription, and subsequently better predictions. 

In addition, a better way of handling real-time microphone data should be used. Our approach was 

simplistic and does not produce desirable results, because directly transcribing snippets of audio data 

is not reliable, as notes could be played over multiple snippets for example. 

Improve key detection 

As discussed in chapter 4.2.4, wrong key detection is a large contributor to the overall performance. 

We could improve the performance by changing the way the key is detected, either by running key 

detection over a larger window than the actual prediction or by using better strategies to detect 

keys. 

Use polyphonic music transcription 

Even though we had to abandon our idea of using polyphonic transcription for our model, this 

approach can be successful if the polyphonic transcription would work better. We believe that using 

the real (and correctly transcribed) harmony information would lead to better predictions. 
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Use a self-trained multitask model 

Using available libraries and pretrained models accelerated our development. However, we cannot 

provide a training analysis for musicautobot (melody harmonization and melody generation), as no 

information could be found for the pretrained model. 

Training a multitask model would create more insights about accuracy, loss etc. With that 

information, improvements to the model can be made. Additionally, a self-trained model could 

potentially have a better performance than musicautobot. 

Predict chord from melody directly 

Instead of using multiple NN for prediction, this approach would use one NN with melody 

information as input and then directly outputs the predicted chord. This is related to the task of 

melody harmonization, but instead of predicting the chords for the current melody, it predicts the 

following chord to be played. For training, a dataset with split melody and chords is needed, an 

example could be used from Yeh et al. [7]  
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6.2 List of abbreviations 

(bi)LSTM (Bi-directional) Long Short Term Memory 

AMT Automatic Music Transcription 

BPM Beats Per Minute 

CNN Convolutional Neural Network 

Co5 Circle of fifths 

CREPE Convolutional Representation for Pitch Estimation 

dB Decibels 

GA Genetic Algorithm 

GAN Generative Adversarial Networks 

HMM Hidden Markov Model 

MIDI Musical Instrument Digital Interface 

MIR Music Information Retrieval 

MT3 Multi-Task Multitrack Music Transcription 

NADE Neural Autoregressive Distribution Estimation 

NLP Natural Language Processing 

NMF Non-Negative Matrix factorization 

NN Neural Network 

PYIN Probabilistic YIN 

SDR Source-to-Distortion Ratio or Signal-to-Distortion Ratio 

SWIPE Sawtooth Waveform Inspired Pitch Estimator 

T5 Transformer Text-To-Text Transfer Transformer 

ZHAW Zürcher Hochschule für Angewandte Wissenschaften 
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6.5 Project assignment 
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6.6 Meeting protocols 

September 20, 2021 

• Define research question 

• 2-3 weeks literature-research 

• Possible formats 

o MIDI 

o Chord Sequence 

o Audio 

• Scientific approach: Hypothesis -> Experiment, repeat 

• What are possible metrics 

• Create a timetable 

• Organise meetings 

o Monday, 13:30 

o Send agenda before meeting 

September 27, 2021 

• Research for chord prediction / harmonization exists 

o PA agreement is a guideline, can be flexible 

• Possibilities 

o Chord prediction (original idea) 

o Listen to music and generate chord 

o Generate music 

• Variations 

o Application of current technology 

▪ Predictability for a chart-hit 

▪ Defining trends for prediction 

o Improving current approaches 

▪ What would we like to add here? 

• More complex models (e.g., not omitting chords) 

• Copyrighting, plagiarism detection 

• New technique and compare to existing literature (GAN) 

o Present possible directions next meeting 

o From input, list suitable chords that can be played (audio, midi, etc. possible) 

o New architecture for chord prediction 

▪ More complex models @vicengui 

▪ GAN @Kevin Kläger 

▪ NLP improvements @Urban Lutz 

o Request access for clusters etc. now @vicengui 

o Allow access to git repository for Thilo & Matthias 

o Send protocol as mail to Thilo @Urban Lutz 

October 4, 2021 

• Defined melody harmonization / chord prediction as our task (melody in, which chords 

should be played) 

• Real-time functionality 

• Universal Songbook: Accompany a song 



   
 

PAIT  Page 43/46 
Universal Songbook: Real time chord prediction from live audio 

• Replicate state-of-the-art for these tasks 

o Define criteria to assess replicated papers to see where improvement is 

possible/necessary. 

• Priority on libraries / tools that are publicly available and easy to implement 

October 18, 2021 

• We will follow our implementation idea from power point 

• Input audio -> symbolic representation (music transcription) is not a focus. We will use 

existing libraries 

• If possible and enough time, train models with dataset (to be defined) 

• Inputs from Thilo 

o Possible extension: multitask learning model that can solve multiple tasks (Chord 

Sequence Completion and Melody Harmonisation) instead of having 2 models. 

o Possible extension: Instead of solving everything with ML, one could also use 

Information Retrieval. Example: Has the melody already been harmonised? => If yes - 

take the chord, if no - let the model predict. 

o Both models produce an output. Here we still have to find a solution, which of the 

two is selected, if they are not of the same opinion (keyword 'confidence 

prediction'). 

• The goal is to develop a prototype that can be shown live. even if it doesn't work perfectly. 

• We change the meeting to a 2-week rhythm. The next meeting will take place on 01.11. 

November 1, 2021 

• Quantitative evaluation: minimum expectation of steps, and then evaluate → where to 

evaluate 

• Ensure comparability to state-of-the-art 

• Start with documentation: create table of contents with bullet points 

• Scientific papers are usually structured in a similar way 

o The most difficult thing is how do I summarise thoughts / results etc.? 

o How much do I write per chapter? 

November 15, 2021 

• Our status: polyphonic approach does not work due to missing dataset and bad polyphonic 

transcription. 

o Mail to authors of https://arxiv.org/pdf/2001.02360.pdf for their dataset 

• Audio2Midi could be omitted → test with midi keyboard 

• Thilo: Focus on something that works as a prototype. 

o Qualitative analysis: are chords right? Example with 5 test persons 

o Comparability to other studies is not relevant 

• Future Work idea: Harmonizer could be skipped, own model → melody goes in, calculate 

next chord 

• Write documentation with concrete text 

o Differentiation between "what already exists" and "what we have done" is 

important. It must be explicitly clear which part is ours 

o Motivation: what motivates me personally, but also: why is it a relevant problem. 

References that make clear why it is important (e.g., chord prediction is hard → 

reference that confirms this statement). 

https://arxiv.org/pdf/2001.02360.pdf
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o Method: How do we describe it? 

▪ Our approach is not clear. We had the 2 approaches. Why and why did we 

choose this method? Example title: selected approaches (first followed 

approach 1, didn't work because of xxxx, therefore approach 2) 

o Describe the setup in an understandable way (libraries, content and how it works do 

not need to be described, only why we used it). 

o Future work (choose better names according to Matthias: Possible next steps / Areas 

of improvement): Conclusion → we have achieved this and that. 

o Outlook: Next, we would go in this direction and bring in these improvements 

o No code in the documentation (except in the appendix if necessary) 

November 29, 2021 

• Demo: Full real-time is difficult because of the performance of our tools 

o Performance is too slow for real-time (musicautobot) 

o Describe: What are the steps for real-time, where are pros/cons, which parts should 

be exchanged 

• Try real-time with minimal effort or try midi real-time 

• Train models with own data → if we have time, otherwise add to Future Work 

• Input for structure 

o Method 

▪ No logging of iterative process. This is only relevant if it really changed 

drastically by changing a few parameters 

▪ Describe what worked and describe only the final result 

▪ In the method part, describe Architecture A, but let it be thrown out (also 

give reasons directly) 

o Our Contribution can be read in 2-3 places (abstract, introduction, conclusion) 

▪ 2-4 sentences very precisely our own contribution to the state of the art 

• Submit draft of thesis on 13.12.2021 (first 5 pages maybe) 

December 13, 2021 

• Input for Documentation 

o Chapter 3 naming: Proposed System Architectures 

▪ Architectures can also have individual names 

o Chapter 4 

▪ Structure: what are the results 

▪ Only interpret after showing results 

o Introduction 

▪ Own contribution at the end 

December 20, 2021 

• Github repo: make Thilo and Matthias to admins 

• Defined submission of PA for 24.12.2021, 12:00 

• Insert logo of CAI manually from intranet 

• Feedback meeting of PA: 14.02.2022 
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6.7 Timetables 

Planned Timetable 

 

Effective Timetable 
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7 Further Information 

Github repository: https://github.zhaw.ch/PAIT/chord-predictor 

 

https://github.zhaw.ch/PAIT/chord-predictor

