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Zusammenfassung

Reinforcement Learning ist ein Teilgebiet der Künstlichen Intelligenz, welches seit Kurzem
ermöglicht, einige komplexe Probleme zu lösen. Bei Reinforcement Learning beobachtet
ein Agent den Zustand seiner Umgebung und führt darin eine Handlung aus. Die Umge-
bung wird daraufhin ihren Zustand ändern. Weiter erhält der Agent von der Umge-
bung eine Rückmeldung über sein Handeln in Form einer Belohnung oder Bestrafung.
Dieser Ablauf wird ständig wiederholt und der Agent versucht seine Handlungen so zu
verbessern, dass sich die Belohnung maximiert. Dies ist der grundlegende Ansatz von Re-
inforcement Learning. Diese Arbeit verfolgt das Ziel, einem Agenten mit diesem Ansatz
das Spiel Bomberman beizubringen. In diesem Spiel treten vier Spieler gegeneinander
an und versuchen sich durch geschicktes Platzieren von Bomben zu eliminieren. Durch
eine Implementation des Proximal Policy Optimization (PPO) Algorithmus zusammen
mit einem Convolutional Neural Network (CNN) versucht diese Arbeit dieses Ziel durch
immer komplexer werdende Experimente zu erreichen. PPO ist ein vielversprechender,
neuer Algorithmus, welcher in der Vergangenheit schon erfolgreich für Multiplayer-Spiele
angewendet wurde. Die Resultate der Experimente zeigen, dass dieser Ansatz Potential
hat das Spiel zu lernen. Es sind aber weitere Untersuchungen nötig, um dies abschliessend
zeigen zu können.





Abstract

Reinforcement learning is a research field in artificial intelligence (AI), which was able to
solve a number of complex tasks recently. In reinforcement learning, an agent observes
the state of his environment and takes actions in this environment. The environment is
going to change its state because of the action taken and will give feedback to the agent
about his action. It does this either as a positive or negative reward. This sequence
of observing, taking action an receiving feedback is repeated continuously and the agent
tries to optimize his behaviour to gain the maximum reward. This is the fundamental
idea behind reinforcement learning. The goal of this work is, to teach an agent to play
Bomberman with this approach. Bomberman is a game played by four players, trying to
eliminate each other by cleverly placing bombs on the board. With an implementation of
the Proximal Policy Optimization (PPO) algorithm together with a Convolutional Neural
Network (CNN), this work tries to reach the goal by conducting more and more complex
experiments. PPO is a promising, new algorithm that was successfully used for other multi-
player games. The results of the experiments show that this approach could potentially
be able to learn Bomberman. However, further research is needed to definitely answer this
question.
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1. Introduction

1.1. Motivation

Artificial Intelligence (AI) is one of the most discussed research fields at the moment.
DeepMinds publication [Rie13] in 2013, where they introduced an algorithm that was able
to play a number of Atari games better than a human player, has drawn the attention to
reinforcement learning as well. Their algorithm learned to play the Atari games by seeing
raw pixel images of the game as input and receiving a reward for its performance. The
algorithm did not require any previous knowledge about the rules of the games.

In 2015, DeepMind [SHM+16] published an article on an AI called AlphaGo that was
able to beat the reigning European Go champion. Figure 1.1a shows a game of Go played
between AlphaGo and human professional Lee Sedol. Go is a strategy board game where
two players try to surround more area of the board than their opponent. Solving this
problem was thought to be a milestone for AI because of the high number of possible
game states and difficulty of evaluating board positions and moves. It was believed that
reaching this milestone would take another decade.

OpenAI has launched the Project OpenAIFive which uses a reinforcement learning al-
gorithm called PPO to master the esport game Dota2. Dota2 is a strategy game where
two teams of five players compete against each other. OpenAIFive has beaten amateur
teams in the past and also competed against professional teams at The International 20181.
Figure (1.1b) shows a screenshot taken from a game against professional human players
at this event.

(a) Screenshot from the livestream of the
Google Deepmind challenge match 5
against professional player Lee Sedol.
[Dee16]

(b) Screenshots from the match Humans
vs OpenAI at The International 2018.
[Dot18]

Figure 1.1.: Description of the games Go and Dota2.

1The International 2018 was a Dota2 championship held in Vancouver in August 2018.
(https://www.dota2.com/international/overview/?l=english)
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1.2. Problem Formulation CHAPTER 1. INTRODUCTION

The remarkable achievements mentioned above, show that a few complex problems were
solved by using reinforcement learning. This motivates to apply such a reinforcement
learning approach to a complex problem like a multiplayer game.

1.2. Problem Formulation

In their bachelor thesis Liebeskind and Wehner [Weh18] have used the Deep-Q-Network
(DQN) algorithm to play Bomberman. Bomberman is a computer game for four players,
released by Nintendo in 1985. The goal is to destroy the other players by dropping bombs
on the board, the last man standing is the winner of the game.
As stated in their thesis, they were not able to proof that the task is solvable with DQN,
and they suggested exploring other algorithms. In this thesis, we want to answer the fol-
lowing question: Can Bomberman be solved by a policy gradient method like the Proximal
Policy Optimization (PPO) algorithm?

To answer this question, the PPO algorithm will be evaluated in the same Bomberman
environment. For the evaluation, several parameters must be altered systematically by
running different experiments.

The above stated question is successfully answered if the parameter values and a Neural
Network can be found that are able to learn and defeat simple computer controlled players
consistently.
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2. Fundamentals

This chapter summarizes the foundational theory required to understand the paper. It
does not cover the topics in all detail, for further information we suggest to read the
provided sources.

2.1. Mathematical Notation

The following mathematical notations are a summarization of the most important symbols
that are used in the equations. Every symbol is explained in the corresponding chapter.

Reinforcement Learning Basics

s ∈ S States
a ∈ A Actions
r ∈ R Rewards
π Policy
v State-Value function
q Action-Value function
γ Discount factor
G Expected future rewards func-

tion
R Reward function
P State transition probability

Probability Theory

Ê Expectation

P̂ Probability

Policy Gradient

α Step-size
θ Policy parameter
ω Value function parameter
∇ Gradient Symbol
J Reward function
A Advantage function

Convolutional Neural Network

w weight
b bias
σ Activation Function

General

min() Minimum function∑
Summation

2.2. Reinforcement Learning

The most similar approach to how humans learn is called reinforcement learning. We
explore our world and learn what is good or bad behaviour. Reinforcement learning works
quite similar. This chapter covers the basics of reinforcement learning.

3



2.2. Reinforcement Learning CHAPTER 2. FUNDAMENTALS

Figure 2.1.: The Reinforcement learning feedback loop. The agent gets the current state
from the environment and determines what action to do. The environment
gets that action and sends the new state. If the action led to a reward the
environment sends it at the same time as the current state. Adapted from
[Sil15, Lecture 1 S.23].

2.2.1. Difference Between Supervised and Reinforcement Learning

In supervised learning the agent gets a set of input data and the corresponding output.
The agent now has to learn to produce the correct output from the input data. We can tell
the agent if he predicted something right or wrong because we already know the correct
output. At the end the agent has learned a function which can be applied to a input set to
get a predicted output. If we would apply supervised learning to a game like Bomberman
we would let a good human player play the game over a long period of time and would
record each frame. A frame would be the input and the corresponding action that the
players decides to make the output. There are a few problems with this approach. First
the agent would never be better than the human player because the agent only learns to
imitate the actions that the human player does. Also creating an input-output set would
be complicated because the actions which are normally executed with an input device have
to be recorded in sync with the frames on the screen.

Another type of learning is reinforcement learning. The agent explores the environment
by itself and gets a positive or negative reward depending on how the agent interacts with
the environment. Figure (2.1) shows this interaction between agent an environment in
detail. The goal of the agent is to maximize the total number of rewards. In a game like
Bomberman the agent would get a positive reward if it accidentally killes an enemy and
would learn over time by playing multiple games that killing an enemy is a good thing.
This method solves the two problems of learning to play a game with supervised learning.
We do not have to create an input data set because we only define the rewards and not an
output for an input frame. The agent does not imitate a human player and can therefore
be better than a human and develop new strategies by himself. [RN10, Chapter 18.1]

2.2.2. Basic Concepts and Terms

To fully understand reinforcement learning the associated concepts and terms are explained
in the following [Sil15, Lecture 1, 2]:

Agent An agent picks an action and executes it. Which action to pick is defined by the
algorithm. In video games the playable character is the agent.

4



CHAPTER 2. FUNDAMENTALS 2.2. Reinforcement Learning

Environment The environment is the world that the agent explores. It takes actions from
the agent and applies them to its current state. The new state is then sent back
to the agent. If the player did something good or bad we also return a positive or
negative reward respectively.

Action An action is something an agent can do in the environment. There are multiple
actions to choose from and the agent has to decide which action to take in which
state. In video games the actions are normally tied to a button press. Deciding to
perform a specific action by pressing a specific button as a human player is the same
as an agent that decides which action to take.

State The state is a description of the current situation in the environment. In video
games the state may contain the position of the player, the position of obstacles and
the position of enemies.

Reward The reward is either a positive or negative number that the agent gets from the
environment. The number defines if the agent did something good or bad in the
environment and how good or bad it was. The reward is not necessarily tied to the
latest action the agent did but rather is a result from the actions that the agent
has done. So the agent also has to decide which actions led to getting the reward.
In a game like Bomberman the bomb is placed some seconds before it explodes. If
the bomb kills an enemy when it explodes the agent may walk to the left. But the
reason that the agent walked to the left is not the reason that he got a reward.

Policy The policy defines how the agent picks its actions. A deterministic policy is just a
function a = π(s) that defines which action a to take in state s. The policy can also
be stochastic. π(a|s) is the probability to take a specific action in a specific state.

State-Value function The state-value function defines how good it is to be in a particular
state. Basically it is an expectation of the rewards the agent gets in the future based
only on the current state.

vπ(s) = Êπ[Gt|St = s] (2.1)

Gt is the expected sum of future rewards that are discounted the more they are in
the future.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.2)

γ ∈ [0, 1] is the discount factor that disvalues rewards the more they are in the
future. A discount can have different reasons. It may be because future rewards
have a higher uncertainty or because the agent should prefer short-term rewards
over long-term rewards. The lower the discount factor is the more the agent prefers
short-term rewards.

Action-Value Function The action-value function is the expectation of future rewards
when taking action a in state s and then following policy π.

qπ(s, a) = Êπ[Gt|St = s,At = a] (2.3)

2.2.3. Markov Decision Process (MDP)

To solve a problem with reinforcement learning it has to be a Markov Decision Process
(hereinafter referred to as MDP). A MDP is defined as follows [Sil15, Lecture 2]:

5



2.3. Policy Gradient CHAPTER 2. FUNDAMENTALS

Figure 2.2.: A MDP with two states, two actions and four rewards.

Definition 1. A MDP is a tuple that contains five elements < S,A, P,R, γ >.

• S is a finite set of states.

• A is a finite set of actions.

• P is a state transition probability matrix where every entry defines how high the
probability is to change from state s to a future state s′ when taking action a:
P ass′ = P̂[St+1 = s′|St = s,At = a].

• R is a reward function that returns the expected reward when taking action a and
going to state s: Ras = Ê[Rt+1|St = s,At = a].

• γ is the discount factor.

Additionally every state in the environment should have the Markov property.

Definition 2. A state St is Markov if the next state is independent from past states and
only depends on the present state.

P̂[St+1|St] = P̂[St+1|S1, ..., St] (2.4)

A basic example of a MDP is shown in figure (2.2). In every state we can pick between
two actions. Depending on the action we take there are different probabilities in which
state we go after taking that action. We also get a reward if we reach a specific state
through a specific action.

2.3. Policy Gradient

There are many different approaches for solving reinforcement learning problems. One
popular approach is to learn the state or action value function. The DQN algorithm which
was used by Liebeskind and Wehner falls into this category. [Weh18] Policy gradient is

6



CHAPTER 2. FUNDAMENTALS 2.3. Policy Gradient

Figure 2.3.: A function with two local and one global maximum. The green point ascends
to the local maximum and will never know about the global maximum.

another approach that optimizes the policy directly to get the best reward. A policy
function πθ(a|s) is used where the parameter θ is updated with the gradient ∇θJ(θ):

θ′ = θ + α∇θJ(θ) (2.5)

The gradient is calculated using the Policy Gradient Theorem which is the foundation
for many policy gradient algorithms. The proof of this theorem can be found in [SB17,
Chapter 13.2].

∇θJ(θ) = Êπθ [∇ lnπθ(a|s)qπ(s, a)] (2.6)

Additionally α is used as the step size.

By ascending the policy like this the algorithm can find the local maximum but is not
guaranteed to find the global maximum. It depends on where θ starts. If the policy update
is too big the maximum can be missed. Figure (2.3) shows an example of local and global
maximum in a function. [Res15] [Wen18]

2.3.1. Actor-Critic

While policy gradient algorithms learn the policy they can additionally learn the value
function. Such algorithms are called action-critic algorithms. They consist of two models
[Wen18]:

Critic Updates the value function parameter ω. The value function can either be a state-
value function vω(s) or an action-value function qω(s, a).

Actor Updates the policy parameter θ in the direction the critic suggests.

A simple actor-critic algorithm can look like this [Wen18]:

7



2.4. Proximal Policy Optimization (PPO) CHAPTER 2. FUNDAMENTALS

Algorithm 1 Simple Actor-Critic Algorithm

Initialize s, θ, ω at random; sample a ∼ πθ(a|s)
for t = 1 . . . T do

Sample reward rt ∼ R(s, a) and next state s′ ∼ P̂(s′|s, a)
Sample next action a′ ∼ πθ(a′|s′)
Update the policy parameters: θ ← θ + αθqω(s, a)∇θ lnπθ(a|s)
Compute the correction for action-value at time t:
δt = rt + γqw(s′, a′)− qω(s, a)
and use it to update the parameters of the action-value function:
ω ← ω + αωδt∇ωqω(s, a)
Update a← a′ and s← s′

end for

2.4. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (hereinafter referred to as PPO) is a policy gradient al-
gorithm designed for reinforcement learning. The algorithm was published in 2017 by
Schulman et al. [JS17] and used in well-known projects such as OpenAI Five. [Ope18]
OpenAI1 has stated that PPO is much simpler to implement and tune than state-of-the-
art approaches, while performing comparably or better. [Ope17b] Whereas other policy
gradient algorithms do updates after every step taken with a policy, PPO does updates
after collecting minibatches of samples. Furthermore, PPO does not allow excessively
large policy updates. The algorithm uses a surrogate objective to prevent and penalize
large policy steps. [JS17, Chapter 3]

2.4.1. Clipped Objective Function

As discussed in chapter 2.4, a global or local maximum can be missed due to large policy
changes. PPO avoids large policy steps by using a clipped objective function. To determine
how much the policy should be updated, PPO uses an advantage estimator. [JS17, Chapter
2]

The advantage function is defined by [MBM+16] as follows:

Ât = q(at, st)− v(st) (2.7)

As discussed in chapter 2.2 the action-value function q is defined as:

q(at, st) = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnrt+nv(st+n) (2.8)

With q(at, st) plugged into (2.7), the advantage Ât is defined as:

Ât = −v(st) + rt + (γλ)rt+1 + · · ·+ (γλ)n−1rt+n−1 + (γλ)nrt+nv(st+n) (2.9)

The advantage Ât is used in the objective proposed by [JS17]:

LCLIP (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.10)

1OpenAI is a non-profit organization, that conducts research in AI. https://openai.com/about/
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CHAPTER 2. FUNDAMENTALS 2.4. Proximal Policy Optimization (PPO)

In equation (2.10), ε is a hyperparameter. rt(θ) denotes the probability ratio rt(θ) =
πθ(at,st)
πθold (at,st)

. The term clip(rt(θ), 1− ε, 1 + ε) clips the probability ratio which removes the

incentive for moving rt outside of the interval [1− ε, 1 + ε]. By taking the minimum of the
unclipped and clipped objective rt(θ)Ât, the cliping only has an impact on positive policy
changes and not for negative changes. [JS17] Figure (2.4) visualizes this explanations.

Figure 2.4.: This figure shows a plot of the surrogate function LCLIP for one single term.
The plot on the left shows the function for a positive value of rt(θ), the plot
on the right for a negative value. [JS17]

2.4.2. KL Penalty Coefficient

An alternative to the clipped objective function is using a penalty on KL divergence. The
KL divergence KL(a, b)is a measure for the distance between two statistical populations
a and b.2 [KL51] Using the KL penalty, the objective function becomes:

LKLPEN (θ) = Ê[rt(θ)Ât − βKL(πθold(.|st), πθ(.|st)) (2.11)

Equation 2.11 shows that the divergence between the old policy πold and current policy
π are calculated. This is possible since the policies are stochastic. The parameter β is a
coefficient that can be adapted. As in the previous chapter, rt(θ) denotes the probability

ratio rt(θ) =
πθ(at,st)
πθold (at,st)

.

Schulman et al. show in their experiments, that the KL penalty performed worse compared
to the clipped surrogate objective. [JS17]

2In the PPO paper, there is no statement regarding the exact implementation of the KL-Divergence. We
suggest following the provided source for the detailed mathematics.
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2.5. Convolutional Neural Network (CNN) CHAPTER 2. FUNDAMENTALS

2.4.3. The Algorithm

The PPO algorithm is described as follows: [JS17]

Algorithm 2 PPO

for iteration = 1, 2, . . . do
for actor = 1, 2, . . . , N do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, ..., ÂT

end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

As the algorithm (2) above indicates, PPO uses the same policy πθ for multiple timesteps
T and calculates the advantage Â for every step before evaluating the performance. This
is called a minibatch of sample points. PPO uses these sample points to calculate the
surrogate L that has been discussed in the previous chapter to calculate the policy update
θold ← θ.

For the usage of PPO with a neural network that shares parameters between the policy πθ
and the value function v(st), [JS17] suggest that an error term LV Ft (θ) = (vθ(st)−V target

t )2

should be added to the objective L. Furthermore, [MBM+16] suggested to add an entropy
bonus S to the objective to ensure sufficient exploration. With these terms combined with
LCLIP discussed in equation (2.10), we obtain the following objective:

LCLIP+V F+S
t (θ) = Ê[LCLIPt − c1LV Ft (θ)− c2S[πθ](st)] (2.12)

where c1 and c2 are coefficients.[JS17] These coefficients and the cliprange are values that
can be modified to tune the learning progress.

2.5. Convolutional Neural Network (CNN)

Convolutional Neural Networks (hereinafter referred to as CNN) are biologically inspired
models often used for pattern recognition. [Kan03, Chapter 1] CNNs consist of multiple
neurons organized in a number of layers. In this chapter, we discuss neurons and the
different layers that were used in this work.

2.5.1. Neurons

Neurons are single nodes in a Neural Network consisting of a high number of these neurons.
Each neuron can take multiple input values which are applied to an activation function
to produce one output value. Since some input values might be of more significance than
others, every input value is multiplied by a weight wi. Furthermore, every neuron has a
bias bi. This value can be interpreted as a negative threshold value and indicates how fast
a neuron will fire. [Nie15, Chapter 1]
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Figure 2.5.: A simple model of a neuron with the sigmoid function σ as activation function.
(Adapted from [RN10, Chapter 18.7, p. 728].)

z = (

n∑
i=1

wixi + b) (2.13)

σ(z) ≡ 1

1 + e−z
(2.14)

σ(z) =

{
z, if z ≥ 0

0, otherwise
(2.15)

Equation (2.13) shows, how the weight w and bias b are used to transform the input x. The
result of this equation is used as an input in an activation function σ(z) to compute the
value of the neuron. Both functions (2.14) and (2.15) are non-linear activation functions.
Function (2.14) is called the sigmoid function, function (2.15) is called ReLu. [Nie15,
Chapter 1]

2.5.2. Convolutional Layers

These neurons are organized in different layers. A CNN can consist of multiple layers that
are connected to their previous and following layer. The exact number of layers depends
on the chosen architecture.
Convolutional layers take images as inputs. The core idea behind convolutional layers are
local receptive fields. [Ben95] With these receptive fields, the local correlation between
pixels are taken into account: The receptive fields are slid through the input image and
create the input value of a neuron in the following layer as illustrated in figure (2.6). One
receptive field might find horizontal edges in the image, while a second field discovers
vertical edges or other features.[Nie15]

11
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Figure 2.6.: A 3x3 receptive field applied to a 10x10 input image. (Adapted from [Nie15].)

Figure (2.6) indicates that the receptive field is moved by one pixel at a time. In practice,
this means the filter has a stride length of one. However, a receptive filter can be moved
by more than one pixel, hence the stride length can be greater than one.[Nie15]
Furthermore, figure (2.6) shows that after applying a filter to a nXn dimension layer, the
result has a smaller dimension. This might not always be desired, therefore padding can
be used. Zero values will be appended to the input image increasing the dimension and
therefore also increasing the dimension of the result.

2.5.3. Fully-Connected Layers

In contrast to a convolutional layer, the neurons of a fully connected layer are connected to
all the neurons of the previous layer. Usually, the last layer in a CNN is a fully-connected
layer, with as many neurons as the CNN has possible outputs. All the neurons of the last
convolutional layers are therefore connected to the fully-connected layer and determine
the value of the output of the CNN. [Nie15, Chapter 6]
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3. Existing Work

[Gra18] presents an architecture that is used in a 3D environment with multiple agents.
The agents were able to outperform human players but also learned human like behaviour
in the environment. Similar to Pommerman the environment also changes each time a
game is over. While they also used a policy gradient method the algorithm is not yet
published to the OpenAI baselines. If we wanted to use this algorithm we would have to
rebuild it with the information provided by the paper. Also the algorithm is optimized
for partially observable environments. Because of this two reasons we decided against
using it but it showed us that policy gradients methods can be successful in a multiagent
environment.

[Weh18] is a bachelor thesis which was also written at the ZHAW in the semester before
this work. Liebeskind and Wehner could not solve Pommerman with their double DQN
approach. While they did not succeed they provided helpful information about what
methods did and did not work and which methods might work in the future. They also had
the same goal as this work, solving Pommerman using a reinforcement learning approach.
Because they used an algorithm where they learned the value function we wanted to differ
from that and used a policy gradient method. They stated that the CNN architecture is
recommended for future work which is why it is also used in this work.

[Rie13] showed that it is possible for an algorithm to learn playing 2D environments with
a better performance than humans can. They used a CNN that received the raw pixel
as an input and used an reinforcement learning approach to solve this task. While the
approach was successful further publications had a higher focus on learning the policy
directly. They released [MBM+16] were they showed that an actor-critic algorithm could
outperform the original approach.
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4. Methods

This chapter introduces the technologies and configurations that are used in the experi-
ments. It summarizes the environment and its properties and features. Additionally the
processing of the observations and the used implementations for the PPO algorithm and
the CNN are described.

4.1. Pommerman Environment

For this work we used Pommerman as the environment for our experiments. In this
chapter we want to introduce the environment. Additionally we want to compare it with
Bomberman, the game its based on.

4.1.1. The Original Bomberman Game

The game Bomberman was first released in 1985 on the Nintendo Entertainment System.
The goal of the game is to destroy every enemy on the board which in turn unlocks the
door to proceed to the next stage. There are unbreakable and randomly placed breakable
walls on the board. Additionally the enemies and the door are also randomly placed on
the board. The player is able to place bombs on the board to destroy the enemies or the
breakable walls. Behind these walls is either nothing, a power-up or the door to the next
stage. The player starts with one bomb at a time. The amount of bombs that can be
placed at the same time can be increased by a power-up. The blast strength of a bomb is
also one in the beginning which means that it will damage every wall or enemy that is in
a adjacent field to the bomb. The strength can also be increased with a power-up. With
each stage the game gets more and more difficult as new enemy types spawn. The player
has a total of three lives and if he loses all of them he has to start all over from stage
one without any power-ups. There are many new official Bomberman titles and many
clones today but the focus is much more on the versus-mode which was first released in
Bomberman II. [Sof85] [Sof92]

4.1.2. The Pommerman Environment

In Pommerman each player starts in a corner of a squared board with 11x11 fields. The
board contains destructible blocks and indestructible blocks which are randomly placed
on the board. The players goal is to kill each other. To do so the player can place bombs
on the board to destroy the destructible blocks and also to kill the other players. If a block
is destroyed it may contain a power-up which gives the player that picks it up additional
powers. Similar to the original Bomberman the player starts with one bomb with a blast
strength of one. The amount of bombs and the blast strength can be increased with a
power-up.
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CHAPTER 4. METHODS 4.1. Pommerman Environment

Pommerman was developed specifically as an environment for multi-agent learning. The
team behind it is called Playgrounds and hosts regular competitions. This year they held
a FFA competition on June 3rd where each agent in a game fought against each other.
On November 21st they held a Team competition where the agents would play in a team
of two against another team in a partially observable environment. [Eld]

(a) Screenshot of the original Bomberman
game.

(b) Screenshots of 4 agents playing Pom-
merman.

Figure 4.1.: Comparison between the original Bomberman game and the Pommerman en-
vironment.

4.1.3. State

Every agent gets the following information as the state from the environment [Pla]:

Board The board is represented as a 2D array which has the same size as the board. The
representation of every field of the board has a corresponding value that is saved
in the array. Every possible representation and the corresponding value is listed in
table (4.1).

Bomb Blast Strength A 2D array that is the same size as the board. It is representing
the bombs blast strength in the agents view. Everything outside of its view is
represented as fog.

Bomb Life A 2D array that is the same size as the board. It is representing the bombs
life in the agents view. Everything outside of its view is represented as fog.

Additional Information The following additional information are stored in another array:

Position The current position of the agent as x and y coordinates.

Ammo The amount of bombs the player can place.

Blast Strength The number of fields that are covered in flames horizontally
and vertically when the bomb explodes.

Can Kick Predicates if the agent can kick a bomb or not.

Teammate A number between 9 and 13 to inform the agent about its
teammate. The corresponding agent to the value can be
found in table (4.1).

Enemies Three numbers in a list that represent the agents enemies.
Every value in the list is also between 9 and 13.
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The following table contains every representation that can appear on a field, the corre-
sponding value and a short description about the representation [Pla]:

Representation Value Description

Passage 0 A block which agents can pass. It is displayed as a
gray concrete block.

Rigid Wall 1 A block which can not be destroyed by a bomb and is
not passable. It is displayed as a red brick block.

Wooden Wall 2 A block which a player can not pass. It is destroyed
by a bomb if the block is in the blast length of the
bomb. It is displayed as a brown wooden block.

Bomb 3 Can be placed on a passage by a player. Makes the
passage impassable for 10 timesteps and will explode
afterwards.

Flames 4 Is displayed for 3 timesteps after a bomb explodes. If
a player touches it the player will die.

Fog 5 Makes the environment partially observable by cover-
ing an area around the player with fog.

Extra Bomb
Power-Up

6 Adds another bomb to the players inventory.

Increase Range
Power-Up

7 Increases the range of every bomb that explodes after
the power-up is picked up.

Can Kick
Power-Up

8 When touching a bomb the player now moves the
bomb in the same direction as the player walks.

AgentDummy 9 In the FFA game mode the AgentDummy is used as
the teammate. In the team mode the AgentDummy
is used as the third enemy.

Agent0 10 The first player.

Agent1 11 The second player.

Agent2 12 The third player.

Agent3 13 The fourth player.

Table 4.1.: Every representation on the board with the corresponding value.

4.1.4. Actions

An agent can do the following actions in the environment [Pla]:

Action Value Description

Stop 0 This action lets the agent stay on its position. If an agents does
not respond in 100ms this action is automatically executed.

Up 1 Moves the agent one field up.

Down 2 Moves the agent one field down.

Left 3 Moves the agent one field to the left.

Right 4 Moves the agent one field to the right.

Bomb 5 Places a bomb on the agents current position.
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4.2. Properties of the Environment

Environments can vastly differ from each other. To categorize them we can use the fol-
lowing properties defined in [RN10, Chapter 2.3.2]:

Fully observable vs. partially observable If the state of the environment is known at any
point in time to the agent it is a fully observable environment. If this is not the
case the environment is partially observable. In a partially observable environment
the agent has to keep track of the environment internally. As current reinforcement
learning algorithms are tested in video games the visual input is often the key criteria
to determine if the environment is fully observable or not. If the game displays the
whole board without hiding any information the game is fully observable. In the
original Bomberman game the player can not see the full board because the board
scrolls depending on the players position. If the player is on the left side of the board
he does not know about the enemies who are on the right side. On the other hand
the Pommerman board is fully visible to the player and is therefore fully observable.
The Pommerman environment can also be configured so its only partially observable
to the agent but because this is never the case in our experiments we will consider
the Pommerman environment as fully observable.

Single agent vs. multiagent If only one agent interacts with the environment we consider
it as a single agent environment. If multiple agents interact with the environment it
is a multiagent environment. Therefore a video game that only offers a singleplayer
mode is a single agent environment. In the case of Bomberman only one player
can move a character on the board. Enemies are not controlled by another person.
Pommerman was specifically designed for multi agent learning as it can be played
by 4 agents at the same time.

Deterministic vs. stochastic If the next state of the environment is only determined by
the current state and the action of the agent, it is a deterministic environment.
Otherwise it is stochastic. In multi-agent environments we ignore the uncertainty
of other agents actions even though they are unknown to us. In Bomberman the
enemies walk in a certain path that is defined at the start of the game and only
changes if a player or a bomb is nearby. Also the board only changes by actions
of the player. Therefore it is a deterministic environment. So is also Pommerman
because even though we do not know about the actions of the other agents, we
defined that this fact is ignored.

Episodic vs. sequential In an episodic environment only the current perception is relevant
for the agent to pick an action. In a sequential environment the agent requires
a memory of past actions to determine the next action. In Bomberman and in
Pommerman an agent gets the current state of the environment and determines the
next action. It is not influenced by other actions done before.

Static vs. dynamic If the environment changes while the player is thinking about an ac-
tion, then the environment is dynamic. Otherwise it is static. In a static environment
the player does not have to worry about the passage of time. In Bomberman and in
Pommerman the player has to take an action in time because the game will not wait
for the player to pick an action. If the player waits too long, the controlled character
will just stand still which means that the player decided to do nothing. Therefore
both environments are dynamic.
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Bomberman Pommerman

Partially observable Fully observable

Single-agent Multi-agent

Deterministic Deterministic

Episodic Episodic

Dynamic Dynamic

Continuous Discrete

Table 4.2.: The properties of the Bomberman and Pommerman environment summarized.

Discrete vs. continuous A discrete environment is given when there are clearly separated
states, time intervalls and a finite set of actions. Otherwise the environment is
continuous. In Bomberman the location of the player is defined by its x and y
coordinate. Also the time moves as fast as the real time. Therefore the environment
is continuous. In Pommerman however there are defined time steps and there is a
finite number of states. Therefore Pommerman is discrete.

As summarized in table (4.2) the Pommerman environment is easier to learn for agents
because the agent does not have to keep track of the environment state as it is fully
observable. Also a finite number of time intervalls, states and actions is much easier. The
only thing that is harder for the agent is that Pommerman is an multiagent environment.
Because of that, we decided to perform the experiments with only one agent. For more
advanced experiments the Pommerman environment can also be turned into a partially
observable environment.

4.3. Experiment Setup

At this point, we would like to discuss the concrete implementations and concepts we used
for this work.

4.3.1. Observation Processing

The Pommerman environment provides observations as an array of numbers. This array
contains three different encodings of the board for obstacles, bombs and explosions with
additional values such as the agents positions, agents that are alive, etc. Our approach
is to transform the information to imitate image information. Therefore, we transform
the 1D array into a 3D array with dimension (boardheightXboardwithX4). The original
boardsize is 11x11 while we used a 8x8 for our experiments to make it less complex. The
result after the transformation can be interpreted as an image with 4 channels, one for
colors (RGB1) and an alpha channel. Because it can be interpreted as an image, we can
then use CNNs to analyze the observations.

1RGB stands for Red, Green and Blue. These are the values used to encode any given other color.

18



CHAPTER 4. METHODS 4.3. Experiment Setup

Figure 4.2.: Visualization of the observation transformation. The 1D-array should be con-
sidered excessively longer compared to the 3D-Array, since it contains almost
the same amount of data. For aesthetic reasons, it is displayed shorter here.

4.3.2. Implementations

For the experiments we used the OpenAI baselines [Ope17a] implementation of the PPO
algorithm, since PPO is relatively easy to configure as stated by OpenAI. [Ope17b] The
OpenAI baseline provides implementations of several machine learning algorithms. How-
ever the repository is still subject to changes as the commit history 2 shows. The baseline
is not stable and there still might be minor bugs in the code. There are a number of
predefined Neural Networks inside the baseline and it also provides methods that can be
used to configure convolutional and fully connected layers for own NNs as desired. The
baseline uses Tensorflow 3 as a framework to build the networks.

The PPO impelentation With OpenAIs PPO implementation, we built an agent that
learns to solve tasks that slowly increase in complexity. The implementations follows
the description of the algorithm in chapter 2.4.3. To calculate a policy update, it
uses a clipped surrogate objective. The alternative KL penalty is only used as a
measure for the calculated policy update.
The implementation can be tuned by the hyperparameters described in table (4.3)

The CNN implementation As described before, we found that the image can be inter-
preted as an image. Since CNN are frequently used for image processing, it is
predestined for this task.
In their bachelor thesis, Liebesking and Wehner have also used a CNN architecture.
Since the network architecture has already been used in this environment, we de-
cided to follow their specification.
The network consist of two convolutional layers followed by a fully connected layer

2See the history at https://github.com/openai/baselines/commits/master
3Tensorflow is an open source machine learning framework for high performance numerical computation.

https://www.tensorflow.org/
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Name (in OpenAIs code) Description

totaltimesteps The total number of steps an agent takes
during the experiment.

nsteps Number of steps taken by each actor for
a single update (Represented by T in the
algorithm description in ch 2.5.2).

ent coef The policy entropy coefficient, described
as c2 in equation (2.12).

lr The learning rate of the algorithm, which
determines how much the agent learns per
update.

vf coef Value function loss coefficient, described
as c1 in equation (2.12).

max grad norm The gradient norm clipping coefficient.

gamma The discounting factor γ for the rewards
as shown in equation (2.9).

lam The advantage estimator discounting fac-
tor λ as shown in equation (2.9).

cliprange The clipping parameter ε as described in
equation (2.10).

nminibatches Number of training minibatches per
update(2.10).

Table 4.3.: The hyperparameters as named in OpenAIs PPO implementation.

as shown in figure (4.3). The receptive fields are all 3x3 sized. As described above,
the input image in our case is 8x8 in size. Because of the small input dimension, we
use padding, so our image keeps the 8x8 dimension while applying the 3x3 receptive
fields.
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Figure 4.3.: A 3D visualization of our CNN. The first convolutional layer uses eight dif-
ferent receptive fields transforming the 8x8x3 input to a 8x8x8 layer. Accord-
ingly, the second layer uses 16 receptive fields transforming the 8x8x8 input
to a 8x8x16 layer.
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5. Experiments

In this work, we conducted two types of experiments to proof that our setup is able to solve
the Pommerman environment. Our approach is to start with a basic type of experiment
with only our agent and zero obstacles while gradually increasing complexity towards
the complexity of a Bomberman game with multiple agents and obstacles. For this, we
have conducted a number of experiments of which we discuss the five most important
experiments.

5.1. Measurement Criteria

In the following section, the experiments will be interpreted using plots and these crite-
ria:

mean reward: This plot displays the mean reward the
agent has collected per timestep.

average length of episode: In this plot, the average number of
timesteps per episode is displayed.

clipping: indicates how much the clipped objective
function influenced the policy.

KL-divergence penalty: This plot shows the approximate KL-
divergence as an indication of how big the
policy updates were.1

Not all plots are equally meaningful for all the experiments. For the sake of completeness
we decided to display all the plots for all the experiments discussed. All the plots can be
found in original size in the appendix.

5.2. Experiment 1: Find the Box

With the first experiment we want to show that the setup is working and can be tuned to
reach better results. This should lay the foundation for more complex experiments.

1As explained in chapter 2.4.2 and 3.3.2.
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5.2.1. Experiment 1a: Proof of Concept

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found

Allowed moves up,down,left,right,stop

Hyperparameters nsteps=512 nminibatches=4 ent coef=0.0
lr=3e-4 vf coef=0.5 max grad norm=0.5
gamma=0.99 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

Objective With this experiment, we want to proof
that our experiment setup is working. The
hyperparameters are all left on default val-
ues set by OpenAIs baseline. We only
ajusted the total timesteps to and the
nsteps so that our experiment will termi-
nate a bit sooner.

(a) Plot of the mean reward per policy up-
date

(b) Plot of the average episode length per
policy update.

(c) Plot of clipping per policy update. (d) Plot of the KL divergence (penalty) per
policy update.

Figure 5.1.: Plots of the first run of experiment 1. (Full sized plots can be found in
appendix.)

Result: The mean reward function in figure (5.1a) shows that the agent is able to improve
his behaviour. On the other hand, it is obvious that the agent is not steadily improving.
The performance drops as the agent makes bigger adjustments to its policy as figure 5.1c
suggests. Visual analysis also showed that when multiple boxes appeared in one region of
the board, the agent faces problems when the box finally appears in a different region.
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Discussion: From the result of the experiment, we draw the following conclusions: Firstly,
the performance drops significantly when the policy updates are exceptionally high. There-
fore, we suggest that by reducing the policy update, the performance will stabilize. We
tried to proof this hypothesis by dropping the cliprange-parameter to 0.1 in the next ex-
periment. Since, in contrast to our expectations, this did have a negative effect on the
performance, we will not discuss this experiment in detail here.2

Secondly, with parameter gamma=0.99 and lambda=0.95 PPO would estimate the advan-
tage of an action taken 70 steps before finding the box with 100 ∗ (0.99 ∗ 0.95)70 ≈ 1.36495
3. Ideally, in a board with size 8x8 the box should be found in less steps. Therefore, these
parameter values lead to overestimating actions in long episodes.

5.2.2. Experiment 1b: Increasing Entropy and Decreasing γ to 0.8

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found

Allowed moves up,down,left,right,stop

Hyperparameters nsteps=512 nminibatches=4 ent coef=0.1
lr=3e-4 vf coef=0.5 max grad norm=0.5
gamma=0.8 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

Objective As discussed in the previous experiment,
we want to decrease the parameter value
of γ to a more sensible value. We esti-
mate that the agent should not take longer
than 15 steps to reach the goal. There-
fore we decrease gamma to 0.8 because
100 ∗ (0.8 ∗ 0.95)15 ≈ 1.6. The purpose
of this experiment is to proof, that this
increases the performance.

2The experiment can be found in appendix F.
3See chapter 2.5.2 equation (2.7)
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(a) Plot of the mean reward per policy up-
date compared to the previous experi-
ment (red).

(b) Plot of the average episode length per
policy update compared to the previ-
ous experiment (red).

(c) Plot of clipping per policy update. (d) Plot of the KL divergence (penalty) per
policy update.

Figure 5.2.: Plots of experiment 2 with decreased γ. (Full sized plots can be found in
appendix.)

Result: The mean reward (fig 5.2a) has surpassed the value of the previous experiment
by far. More than expected before the experiment. However, there is no steady improve-
ment visible. For a more meaningful conclusion, we evaluated the trained policy. While
figure (5.3b) seems to to confirm the result from the training session with a mean reward
of approximately 0.8 points per timestep, the evaluation in figure (5.3a) clearly indicates
otherwise with a mean reward below 0.5 points per timestep.

(a) Mean reward plot of the first evaluation
run of experiment 1b.

(b) Mean reward plot of the second evalu-
ation run of experiment 1b.

Figure 5.3.: Comparison of two evaluation runs of experiment 1b.

Discussion: While the result after training seemed promising in figure (5.2a), the eval-
uation has shown that the performance is not stable. When observing the agent during
evaluation, it seemed as if he had problems finding boxes on the left hand side. The results
clearly suggest that the performance must be further stabilized. One hypothesis was, that
when a number of boxes appear in one region of the board in a short period of time, the
agent learns to favour walking to this corner before learning to go where the box really
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is. We have conducted experiments with a lower learning rate to overcome this effect.
Unfortunately, these experiments were not successful.
In retrospect, after conducting experiment 5.3.3 running the experiments for more timesteps
seemed to be an interesting possibility as well. The experiment has not been conducted
by the end of this work due to lack of time.

5.3. Experiment 2: Destroying Wooden Boxes

With this experiment, we give the agent the ability to lay down bombs. The goal for
the agent is now to find the wooden box and destroy it by planting a bomb next to it.
This additional action only, provides an increase in complexity to the task. With bombs
the agent can kill himself and end an episode without success, which was impossible in
the previous example. Furthermore, using a bomb is essential for successfully completing
the task, but can also kill the agent. This requires the agent to learn to use the bombs
properly which is a complex task.

5.3.1. Experiment 2a: Applying Previous Findings

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found

Allowed moves up,down,left,right,stop,bomb

Hyperparameters nsteps=256 nminibatches=4 ent coef=0.1
lr=3e-4 vf coef=0.5 max grad norm=0.5
gamma=0.8 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

Objective In this experiment, we want to apply the
findings from our previous experiment.
Since we have seen that this configuration
worked with the previous experiment, we
expect to get a good foundation for future
experiment with this attempt. Since an
episode might end without any reward in
this experiment, the mean reward will be
significantly lower compared to the previ-
ous experiment.
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(a) Plot of the mean reward per policy up-
date.

(b) Plot of the average episode length per
policy update.

(c) Plot of clipping per policy update. (d) Plot of the KL divergence (penalty) per
policy update.

Figure 5.4.: Plots of the first run of experiment 2. (Full sized plots can be found in
appendix.)

Result: The mean reward function in figure (5.4a) indicates that the agent is still steadily
improving. As expected the mean reward is lower than in the previous example. This is
due to the high number in deaths caused by bombs.
By comparing the agents behaviour in the beginning, middle and end of training, we found
that the agent does destroy the boxes more often over time. The number of deaths caused
by using bombs excessively is still to high for a satisfying performance.

Discussion: The results indicate, that the agent is improving over time. However, there
is huge potential in learning to avoid deaths. By not dying early, the agent would be more
likely to find boxes and therefore have more valuable episodes for training. An obvious
solution to achieve this would be, to give the agent negative rewards when he dies. By
adding this punishment, we expect that the agent might learn to not use bombs at all since
deaths are more likely to happen than destroying boxes. We proofed our expectation by
running an experiment with negative reward and found that our theory was correct.4 By
decreasing the policy updates with a smaller learning rate, learning to not use bombs could
be prevented.
Furthermore, we think that due to the deaths, the agent does not get enough successful
episodes. Especially in episodes where the box is far away, the agent is very likely to die
before reaching the box. Increasing the total timesteps parameter should lead to more
successful episodes and therefore better performance.

4This experiment can be found in appendix G.
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5.3.2. Experiment 2b: Negative Reward with lr=1e-5

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found, -1 if
agent dies

Allowed moves up,down,left,right,stop,bomb

Hyperparameters nsteps=256 nminibatches=4 ent coef=0.1
lr=1e-5 vf coef=0.5 max grad norm=0.5
gamma=0.8 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

Objective In previous experiments, we proofed that
negative reward can lead to not using
bombs. Our hypothesis is, that a lower
learning rate can prevent this effect by
gradually changing the policy to use less
bombs.

(a) Plot of the mean reward per policy up-
date.

(b) Plot of the average episode length per
policy update.

(c) Plot of clipping per policy update. (d) Plot of the KL divergence (penalty) per
policy update.

Figure 5.5.: Plots of the negative reward experiment with smaller learning rate. (Full sized
plots can be found in appendix.)

Result: The mean reward function (figure 5.5a) does increase towards the end of the
training, while in previous experiments with negative rewards the mean reward moved
steadily towards zero. This is proof that the agent did not stop to use bombs despite the
negative result.
Due to the negative reward for deaths in this experiment, the two mean reward plots are
not comparable. Therefore, the two trained policies resulting from experiment 2a and
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2b have been evaluated under equal conditions. This means although in experiment 2a
the policy was trained without negative reward, there was a negative reward for deaths
during evaluation to make the rewards comparable. Furthermore, the number of deaths
have been counted as well.

(a) Comparison of the total reward per
timestep. Experiment 2a in blue and
2b in orange.

(b) Comparison of the number of deaths
per timestep. Experiment 2a in blue
and 2b in orange.

Figure 5.6.: Result of the evaluation of experiments 2a & 2b.

Discussion: We have done multiple experiments to find a good value for the learning rate.
This experiment clearly proofs our theory, that negative reward can work with a smaller
learning rate. The mean reward tends to improve steadily after half of the experiment.
The evaluation has shown that this change did not have a positive impact on the reward.
Figure (5.6a) clearly shows that experiment 2a was performing better in terms of reward.
However, figure (5.6b) also shows that the agent did die less. Since an episode can only
end with a huge positive reward or a small negative reward, the difference in rewards has
to be because of longer episodes in experiment 2b. Therefore, the agent has learned to
dodge bombs and survive longer which should enable him to reach wooden boxes in more
remote locations. In conclusion this means that the negative reward does lead to longer
episodes as desired. Unfortunately, the longer episodes do not automatically lead to better
behaviour.
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5.3.3. Experiment 2c: Negative reward with lr=1e-5 for 500’000 steps

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found, -1 if
agent dies

Allowed moves up,down,left,right,stop,bomb

Hyperparameters nsteps=256 nminibatches=4 ent coef=0.1
lr=1e-5 vf coef=0.5 max grad norm=0.5
gamma=0.8 lam=0.95 cliprange=0.2 to-
tal timesteps=500000

Objective The past experiment has shown that that
the reward was increasing towards the
end of the experiment. With the evalu-
ation, we can draw the conclusion, that
the agent is able to survive longer. We
believe that the longer lives will have a
positive effect over time. As soon as the
agent has learned to dodge bombs, he has
more time to learn how to find and de-
stroy the wooden box. To proof this the-
ory, this experiment does not change any
parameter except for the total timesteps.
We increase this parameter to 500’000
timesteps.

(a) Plot of the mean reward per policy up-
date.

(b) Plot of the average episode length per
policy update.

(c) Plot of clipping per policy update. (d) Plot of the KL divergence (penalty) per
policy update.
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Result: As in the previous experiments, the mean reward (figure 5.7a) is increasing
steadily and surpasses the last experiment. This is a strong indication that the longer
episodes do improve the performance. This experiment was evaluated as well to compare
to the previous experiment 2b. The comparison of rewards in figure (5.8a) clearly indicated
that longer training episodes truly have a positive effect on the performance. Experiment
2c has reached almost the same amount of total reward as experiment 2a (compare figures
(5.6a) and (5.8a)) while dying less than in experiment 2b as figure (5.8b) shows.

(a) Comparison of the total reward per
timestep. Experiment 2b in orange and
2c in yellow.

(b) Comparison of the number of deaths
per timestep. Experiment 2b in orange
and 2c in yellow.

Figure 5.8.: Result of the evaluation of experiments 2b & 2c.

Discussion: This experiment does not change the learning process itself as other experi-
ments before. This experiment was conducted to proof that negative reward does have a
positive impact in the long run. Both figures (5.8a) and (5.8b) indicate that this is the
case. The mean reward function during training in figure (5.7a) shows relatively steady
progress which is promising as well. While there is still room for improvement, this ex-
periment could serve as a promising starting point for further experiments.

31



6. Conclusion

With this work we can not definitely answer the question if PPO is able to solve a game
like Bomberman. The experiments conducted in this work are not complex enough to
draw this conclusion. On the other hand, the experiment have shown, that the set up
has the ability to improve. To claim that PPO is not able to solve Bomberman at all
would also seem unsubstantiated. However, the work leads to a number of conclusions
and pointers that might lead to good results in future works.

Further experimenting with parameter values
Firstly, there are still hyperparameters that have not been explored in detail. In
this work, we have systematically altered a number of parameters and took OpenAIs
default values as a starting point. The experiments suggest that the decrease of the
gamma value and small learning rate in combination with negative rewards were
positive adjustments.

CNN architecture
The architecture of our CNN is also not guaranteed to be optimal for this problem.
We did not experiment with different architectures, filter sizes etc. We are con-
vinced that investigating the possibilities in this area would be beneficial to solve
Bomberman or any other complex problem for that matter.

Rare Rewards
Experiment 2 has shown that learning can be difficult with rarely occurring rewards.
Especially for further experiments with power ups and multiple opponents, we imag-
ine that different rewards should be combined to improve learning.

Experiment log
To systematically experiment with parameters, an experiment log has been ex-
tremely helpful. It is essential to log parameter values and ideas or a hypothesis
that belong to an experiment. As the number of experiments increases, it becomes
more and more likely that important conclusions or ideas would go lost without an
up-to-date experiment log.
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7. Future Work

Since the fundamental question of this work can not be answered definitely, there
are a number of further approaches to find a final answer.

Continuing with current set up
The experiments presented in this work are not conclusive. As stated in chapter
5.3.3 experiment 2c would be a good base for further experimenting with hyper-
parameters. Developing a more complex experiment with i.e. multiple opponents
would be an interesting next step.

Exploring other NN architecture
As discussed in the previous section, the CNN architecture used in this work is not
guaranteed to be optimal. Exploring possibly more suitable network architectures
could be a promising approach to progress with this work. Fortunately, OpenAI
baseline is easily extendable with custom Neural Networks.

Using the newest PPO implementation
Since the PPO algorithm was only published recently and OpenAIs baseline has
been updated frequently during this work, it might be beneficial to use the newest
implementation of PPO. Because of the many updated it is possible that the imple-
mentation used in this work still contains bugs.

Other Algorithms
Reinforcement learning and artificial intelligence in general are both fields that are
actively researched at the moment. Therefore, we believe that it is possible that
other interesting algorithms are discovered. If that is the case it could be interesting
to explore these algorithms as well.
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8. Acronyms

AI Artificial Intelligence
CNN Convolutional Neural Network
DQN Deep-Q-Network
FFA Free For All
KI Künsliche Intelligenz
MDP Markov Decision Process
PPO Proximal Policy Optimization
RGB Red Green Blue
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A. Plots experiment 1a

Figure A.1.: Mean reward plot experiment 1a.

Figure A.2.: Mean length plot experiment 1a.

Figure A.3.: Clipping plot experiment 1a.

38



APPENDIX A. PLOTS EXPERIMENT 1A

Figure A.4.: KL divergence plot experiment 1a.
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B. Plots experiment 1b

Figure B.1.: Mean reward plot experiment 1b.

Figure B.2.: Mean length plot experiment 1b.

Figure B.3.: Clipping plot experiment 1b.
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APPENDIX B. PLOTS EXPERIMENT 1B

Figure B.4.: KL divergence plot experiment 1b.
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C. Plots experiment 2a

Figure C.1.: Mean reward plot experiment 2a.

Figure C.2.: Mean length plot experiment 2a.

Figure C.3.: Clipping plot experiment 2a.
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APPENDIX C. PLOTS EXPERIMENT 2A

Figure C.4.: KL divergence plot experiment 2a.
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D. Plots experiment 2b

Figure D.1.: Mean reward plot experiment 2b.

Figure D.2.: Mean length plot experiment 2b

Figure D.3.: Clipping plot experiment 2b.
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APPENDIX D. PLOTS EXPERIMENT 2B

Figure D.4.: KL divergence plot experiment 2b.
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E. Plots experiment 2c

Figure E.1.: Mean reward plot experiment 2c.

Figure E.2.: Mean length plot experiment 2c.

Figure E.3.: Clipping plot experiment 2c.
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APPENDIX E. PLOTS EXPERIMENT 2C

Figure E.4.: KL divergence plot experiment 2c.
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F. Experiment with smaller clip range

Since this experiment was not successful, we only discuss the most important aspects.
The experiment was conducted after experiment 1a in chapter 5.2.1 and tried to
stabilize the mean reward by narrowing the clip range to 0.1. The other parameters
were left the same as in experiment 1a:

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found

Allowed moves up,down,left,right,stop

Hyperparameters nsteps=512 nminibatches=4 ent coef=0.0
lr=3e-4 vf coef=0.5 max grad norm=0.5
gamma=0.99 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

(a) Plot of the mean reward per policy up-
date.

(b) Plot of clipping per policy update.

(c) Plot of the KL divergence (penalty) per
policy update.

Figure F.1.: Selected plots of the experiment with cliprange 0.1.

As the figures clearly show, the performance did not increase nor stabilize. The
policy update did clip more often, but as the KL divergence penalties show it did
not lead to smaller policy updates.
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G. Negative reward without any
adjustments

Since this experiment was not successful, we only discuss the most important aspects.
The experiment was conducted after experiment 2a in chapter 5.3.1. The goal was to
proof or disproof our hypothesis that the agent might learn to not use bombs with
negative reward. Therefore, we added negative reward to experiment 2a without
changing any parameters:

Environment board-size: 8x8, no boxes except one
wooden box in random locations

Reward +100 reward if the box was found, -1 if
agent dies

Allowed moves up,down,left,right,stop,bomb

Hyperparameters nsteps=256 nminibatches=4 ent coef=0.1
lr=3e-4 vf coef=0.5 max grad norm=0.5
gamma=0.8 lam=0.95 cliprange=0.2 to-
tal timesteps=100000

Figure G.1.: Mean reward of experiment 2a configuration with negative reward

The reward function shows a smooth decrease after a certain time. This is because
the reward is not changing anymore, there would be local peaks or drops otherwise.
The only reasonable explanation for this would be that the agent is not using bombs
and will never reach a state that would give him positive or negative reward.
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