
	

Zurich University 
of Applied Sciences www.zhaw.ch/engineering Study 

	

	
	

 
 
 

Project Work Computer Science 
Audio Processing for the Radiosands Art 
Project 
 
Author 
 
 
 

 Tobias Schlatter 
Daniel Wassmer 
 

Main supervisor 
 
 
 

 Prof. Dr. Thilo Stadelmann 

Sub supervisor 
 
 
 

 Prof. Dr. Sven Hirsch 
 

Date 
 
 

 21.12.2018 

 



 

 

 
 
 
 
DECLARATION OF ORIGINALITY 

 

Project Work at the School of Engineering 
 
 
 
 

By submitting this project work, the undersigned student confirm that this work is his/her own 
work and was written without the help of a third party. (Group works: the performance of the 
other group members are not considered as third party). 

 
The student declares that all sources in the text (including Internet pages) and appendices 
have been correctly disclosed. This means that there has been no plagiarism, i.e. no 
sections of the project work have been partially or wholly taken from other texts and 
represented as the student’s own work or included without being correctly referenced. 

 
Any misconduct will be dealt with according to paragraphs 39 and 40 of the General 
Academic Regulations for Bachelor’s and Master’s Degree courses at the Zurich University of 
Applied Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for 
disciplinary action stipulated in the University regulations. 

 

 
 
 
 
 
 
 
 

City, Date: Signature: 
 

 
  ……………………………………………………………………..  …………………………..…………………………………………………... 
 
 
    …………………………..…………………………………………………... 
 
 
    …………………………..…………………………………………………... 
 
 
   
 

The original signed and dated document (no copies) must be included after the title sheet 
in the ZHAW version of all project works submitted. 

 
 
 
 
 
 

Zurich University 
of Applied Sciences 

 



Zusammenfassung

Radiosands ist eine Installation mehrerer ferngesteuerter Radiogeräte. Mit einer Vielzahl von
Audiomerkmalen und dem Transkript vieler Live-Radiosignale möchte der Künstler den Eindruck
einer sich selbst entwickelnden, manipulativen Intelligenz im Radiosignal erzeugen, indem er den
Sender oder die Lautstärke des einzelnen Radios ändert. Dafür ist es natürlich unerlässlich, mit
einer Reihe interessanter Funktionen arbeiten zu können. In diesem Projekt untersuchen wir,
welche Merkmale das Radiomedium ausmachen und wie diese dem Projektteam zur Verfügung
gestellt werden können.

Es gibt einige Audioverarbeitungslösungen, die bereits Möglichkeiten bieten, diese Merkmale zu
extrahieren. Aber keine davon basiert auf dem gleichen Medientyp. Daher wird das Testen und
Validieren der vielversprechendsten Lösungen anhand der tatsächlichen Radiodaten zu einem
entscheidenden Bestandteil unserer Arbeit.

Die Segmentierung in Sprache und Musik ist eine Aufgabe, die wir mit „inaSpeechSegmen-
ter“ gelöst haben. Dieses wurde auf den Inhalten von französischen TV-Sendern trainiert und
hat eine Genauigkeit von 97% erreicht. Die gleiche Lösung wenden wir für die Geschlechte-
rerkennung in der Sprache an, bei der wir eine Genauigkeit von 92% auf unserem Testsatz
erreichen.

In Sachen Musik interessiert sich der Künstler vor allem für die Genreerkennung. Wir haben
keine passende Lösung gefunden, die Genres klassifiziert. Daher schlagen wir eine Alternative
vor, die keine diskreten Klassen verwendet, sondern eine Skala, um die spektrale Gleichförmigkeit
und den Perkussionsanteil eines Audiosignals zu beschreiben.

Obwohl unsere annotierten Daten zeigen, dass die Emotionen der Sprecher nur wenig variieren,
wäre es interessant, Muster bezüglich Emotionen und Prosodie zu finden. Wir stellen eine
Basis für die teilweise Extraktion dieser Merkmale in Form von Valenz- und Erregungsskalen
bereit. Die Ergebnisse zeigen, dass sich an den Extremen der Skala einige Unterschiede in der
Emotion finden lassen. Den Rest des Bewertungsprozesses geben wir jedoch an das Künstler-
team weiter. Es ist ein Thema, das sich für eine weitere Forschung in einer anderen Arbeit
eignet.

Wir schliessen unsere Projektarbeit ab, indem wir aus allen bewerteten Lösungen eine einzige,
gut dokumentierte Toolbox zusammenstellen. Die Python-Bibliothek kann problemlos in die
vorhandene Pipeline des Projekts implementiert werden. Die Gesamtleistung wird höchst-
wahrscheinlich verbessert, sobald die Toolbox mit einer Sprach-zu-Text-Lösung gekoppelt
wird.



Abstract

The Radiosands exhibition piece is an installation of multiple, remotely controlled radio sets.
Using a multitude of audio features and the transcript of many live radio signals, the artist
aims to create the impression of a self-developing, manipulative intelligence within the radio
signal, by changing the tune or the volume of individual radios. Having a set of interesting
features to work with is, of course, vital for the artist and his team. In this project thesis, we
investigate what features the media radio has and how to make them readily available to the
project team.

There are numerous solutions in audio processing that already provide the means to extract
these features, but none of them are based on this exact type of media according to our research.
Therefore testing and validating the most promising ones of them against the actual radio data
becomes a crucial part of our work.

Segmentation into speech and music is a task that we solved using ‘inaSpeechSegmenter’ – which
was trained on French TV broadcast content – arriving at an accuracy of 97%. Using the same
library, we tackle gender recognition in speech where we achieve an accuracy of 92% on our test
set.

Regarding music, the artist is mainly interested in genre recognition. We did not find a
suitable solution that classifies into genres. So we propose an alternative that does not
use discrete classes, but a scale to describe the flatness and percussiveness of a piece of
audio.

Even though our annotated data shows that there is only little variation in the emotion of the
speakers, it would be interesting to find patterns regarding emotion and prosody. We provide a
basis to partially extract these features in the form of valence and arousal scales. The results
show that on the extremes of the scale some emotional differences can be found. We cede the
rest of the evaluation process to the artist’s team. This task is a separate topic that could be
investigated further in another research project.

We then conclude our project work by compiling one single, well-documented toolbox from all
evaluated solutions. The resulting Python library can be easily implemented in the existing
pipeline of the project. Overall performance will most likely improve further once the toolbox is
coupled with a speech-to-text solution.
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1 Introduction

High technology has become an essential part of many aspects of everyday life, no matter if
we watch movies online, listen to music, read the news or browse our social media. Most of
the time, what we see or hear has been tailored to our own preferences. Today, the art and
quality of profiling users, and providing them their preferred content, is a critical factor of
success.

The term ‘filter bubble’ has only recently been coined by Eli Pariser [10] and discussed in the
media. The term describes a state of intellectual isolation resulting from algorithms selectively
assuming the information a user would want to see and then showing them only this content
without the their awareness. Accordingly, users find themselves in a bubble of potential ignorance
– missing the exposure to different and contrasting views. People not knowing about the fact
that this is happening may fall victim to targeted manipulation.

The filter bubble is a concept that can be hard to comprehend for non-professionals. Especially
now with the boom of technologies such as big data and artificial intelligence that are redefining
the way we interact with the aforementioned platforms.

Furthermore, our fast-paced, multimedia-based culture leads to the consumption of only small
chunks of content, be it the switching back and forth between apps on our mobile devices,
watching a movie and being on social media, or answering emails and talking to someone in
person at the same time.

Within the Radiosands exhibition piece, you can experience these phenomena with old-fashioned,
trusted, analogue radio in place of high-tech devices. In the following sections, we go into more
detail about what Radiosands is and put our thesis into context.

1.1 Background

Radiosands is an exhibition piece by Swiss-German artist Thom Kubli. It is an art installation
that features more than a dozen radio sets distributed in the exhibition space (see figure 1.1). The
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1 Introduction

volume, tuning and other audio characteristics of each radio can be remotely controlled to manip-
ulate the signal. The visitor should be able to feel a manipulative intelligence within the radio
that changes the signal based on the context of what is playing.

Imagine one radio set playing news on some disaster. As a reaction, all the other radios could
tune to a station playing classical music. In another scenario, the bad news could be drowned
out by playing positively framed music at a high volume.

Figure 1.1: Montage of the Radiosands exhibition piece [30]

On a more technical basis, the Radiosands team has already established a working proto-
type where they focus on speech recognition. Apart from the remotely controlled radio
devices, there is a master node responsible for the analysis of the streams and the orches-
tration.

1.2 Problem Statement

Radio offers different types of content with equally different features. We differentiate between the
two main content types music and speech, which may, however, overlap.

As for speech, this thesis focuses on paralinguistic analysis [13]. It comprises non-textual
features like gender, emotional state or the identity of a speaker. Regarding music, we find
non-textual features as well, which for example describe the atmosphere, tempo and genre.
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1 Introduction

Evidently, both feature enumerations are not exhaustive. Indeed, finding such features is
precisely one of the tasks at hand. As a simplification, we allow ourselves to use the term
‘paralinguistic’ not only for the aforementioned properties on speech but also for the ones on
music.

Once the artist can conveniently extract these features from the radio streams, it will open up
additional possibilities to achieve the appropriate experience .

Therefore, this thesis revolves around the central question: Is it possible to provide an interface
to the paralinguistic information on radio broadcast using easily implementable solutions in
audio processing.

This leads to the three sub-topics we want to investigate in this thesis.

Features on Radio Media We investigate what kind of features can be extracted from radio
media using readily available solutions.

Eligibility for Radiosands We further condense this list of features considering and compar-
ing their eligibility for the Radiosands project. We then rate individual performance to
ascertain it can be deemed good enough for Radiosands.

Consolidated Solution We combine the selected solutions so that the Radiosands project
team can quickly implement them into the existing and yet growing setup.

The scope of this thesis focuses on the non-textual features. Therefore, speech recognition –
which is handled by another team of the Radiosands project – will not be considered. The project
should be as independent from online connectivity as possible. Online solutions were, therefore,
only considered as a last resort. This thesis does not aim to beat the state-of-the-art, but
transfer existing solutions with an acceptable loss in accuracy.

1.3 Contribution

The main contribution of our work is a Python toolbox to extract paralinguistic information on
radio broadcast, enabling easy gathering of semantic meaning from it. To achieve this, a multitude
of libraries and machine learning models are evaluated. If no suitable implementation exists we
suggest alternatives based on low-level feature extraction.
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1 Introduction

1.4 Further structure

In chapter 2 we show the current state of research on the topics discussed in this thesis. We also
explain some of the key principles and libraries we use. Our methodical approach is delineated in
chapter 3, while the implementation of the evaluation pipeline is described in chapter 4. Next, we
come to the results in chapter 5 which includes the analysis of radio media, our test set and the
evaluations we ran on different modules. Alternatives are presented in the same chapter. Lastly,
we summarise our work and give a brief outlook in chapter 6.
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2 Foundations

In section 2.1 we first give an overview on the current state of research on the overall
topic but on the sub-challenges as well. We then describe some of the key principles in
audio processing in section 2.2 and also explain the different methods of measurement in
2.3. Lastly, in section 2.4, we describe a choice of suitable software packages in our thesis’
context.

2.1 Related Works

An overview of computational paralinguistics is provided by [13]. An overview of the state-of-
the-art approaches and challenges are examined in [14]. To the best of our knowledge, there is
no work concerning paralinguistic feature extraction on radio broadcast as a whole. Nonetheless,
there are works related to the sub-challenges of it. The following enumeration is therefore
grouped by segmentation, gender recognition on speech, emotion recognition on speech, genre
recognition on music and content recognition.

Segmentation into speech and music is required to solve the identified subsequent challenges.
In literature segmentation of music is prominent. Content-based segmentation with a support
vector machine (SVM)1 is addressed by [3]. An open source solution is provided by [26], it uses
a convolutional neural network (CNN)2 to tackle segmentation on TV broadcast. It does also
address gender recognition on speech. The INTERSPEECH 2010 paralinguistic challenge [7]
released a training corpus which made gender recognition gain momentum in this field of research.
For example [12] – a Gaussian mixture model (GMM)3 based model. Experiments and evaluations
on multiple machine learning models are conducted by [20].

1 Further reading on SVMs:
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72

2 Further reading on CNNs: http://cs231n.github.io/convolutional-networks/
3 Further reading on GMMs: https://brilliant.org/wiki/gaussian-mixture-model/
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2 Foundations

An overview about the state of emotion recognition on speech is given by [9]. It examines
available test sets and compares the state-of-the-art. [15] shows a holistic approach on emotion
in speech and music. A prominent dataset for genre recognition on music is GTZAN
[2]. CNNs are a prominent approach to solve genre recognition as seen in [17], [6] and [8].
Literature about content recognition on radio broadcast are scarce. Some approaches on TV
broadcast can be found in [21]. Ultimately, most of the solutions are based on fingerprinting
approaches.

2.2 Audio Processing

This section explains some of the audio processing methods and features used in the course of
our thesis.

An audio signal can be observed in either time or frequency domain. From the time do-
main, features like amplitude and tempo can be extracted. A conversion to the frequency
domain – where features like pitch are found – can be achieved by using a Fourier transforma-
tion.

2.2.1 Short Time Fourier Transformation

The short-time Fourier transform (STFT) is a variation of a Fourier analysis. The Fourier
transform itself does not keep any temporal information. However, a STFT does and is, therefore,
also applicable for non-stationary signals. To compute an STFT a signal is divided into shorter
segments of equal length. Each segment is then transformed to the frequency domain. A STFT
is often represented by a spectrogram. A more in-depth look at how the STFT works can be
found on the web4.

2.2.2 Spectral flatness

The spectral flatness does quantify how much noise-like a sound is, as opposed to being tone-like
[4]. It measures how equally the frequency is distributed over the whole spectrum. A signal
where frequencies are all present at equal strength (white noise see figure 2.1) would approach
one. A pure tone (see 2.2) on the other hand approaches zero. We used this measure in
5.3.3.

4 https://ccrma.stanford.edu/~jos/sasp/Short_Time_Fourier_Transform.html
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2 Foundations

Figure 2.1: Spectrogram of white noise

Figure 2.2: Spectrogram of a pure tone

2.2.3 Percussive and Harmonic components

An audio signal can be split into percussive and harmonic components. We used this in 5.3.3.
First, a signal is converted to frequency space. Figure 2.3 shows the spectrogram representation
of an audio source before the split.

Figure 2.3: Spectrogram of an audio source

In a spectrogram representation, percussive sounds can be identified by their vertical structure
(see 2.4). Harmonic sounds, on the other hand, have a horizontal structure (see 2.5).

13



2 Foundations

Figure 2.4: Percussive component of an audio source

Figure 2.5: Harmonic component of source

The algorithm of [16] is used to conduct the split. In contrast to other algorithms, it can handle
a certain amount of noise. After the split, the components can be transformed back to time
domain using the inverse STFT .

2.3 Method of Measurement

To score the results of our experiments, we will use the same method of measurement whenever
applicable. As we will do classification tasks, we need to use confusion matrices 2.3.1 to visualise
the performance of the selected solutions. Based on it, we calculate a final score as described in
section 2.3.2.

2.3.1 Confusion Matrix

A confusion matrix is a table that shows correct and incorrect classifications of a classifier.
It makes it easy to see if the system is ‘confusing’ a particular class with another. Each row
corresponds to an actual class and a column to the predicted class. True positives (TPs), false
negatives (FNs), false positives (FPs) and true negatives (TNs) can easily be read from it (see
figure 2.6).

14
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Figure 2.6: Confusion Matrix

In this thesis, the number represents the amount of data points that were classified as the corres-
ponding class. Each data point is a 0.1-second chunk of an audio source.

2.3.2 Accuracy, Precision, Recall and F1-Score

The overall accuracy of a classifier is defined by the formula in 2.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

If a data set is unbalanced, the overall accuracy will yield misleading results. Thus it is not
always a reliable metric. For further judgement of a classifiers performance, precision (see 2.2),
recall (see 2.3) and F1-score (see 2.4) are calculated.

Precision =
TP

(TP + FP )
(2.2)

Recall =
TP

(TP + FN)
(2.3)

F1-score = 2 ∗ Precision ∗Recall

(Precision+Recall)
(2.4)
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2 Foundations

Precision indicates that proportion of positive identification that was actually correct. Recall
indicates what proportion of actual positives was identified correctly. The F1-score is a weighted
harmonic mean of precision and recall.

2.4 Existing Software

During our work, we focused on existing solutions in the field of audio processing. There are
a lot tools available. Some of them are very specific to a certain problem, and others offer a
variety of features for different applications. In this section, we would like to go into detail on
three of them.

2.4.1 Librosa

Librosa [19] is a popular and actively maintained collection of audio processing tools writ-
ten in Python. It provides not only a great number of feature extraction methods, but
also many helpers and converters that enabled us to do quick prototyping throughout our
work.

We used Librosa to perform most of the low-level feature extractions like STFT, root mean
square (RMS)5 energy or spectral flatness (see 2.2.2). It is also used to calculate the separation of
harmonic and percussive elements of a track, which is what we used directly for our alternatives
for perceived intensity on music and speech.

2.4.2 PyAudioAnalysis

‘PyAudioAnalysis’ [18] is a Python library developed to support researchers on a variety of
audio analysis tasks. It provides tools for feature extraction, classification, regression, training
and segmentation tasks. It also includes a set of pre-trained models to be used as a starting
point.

A list of extracted features to use with the provided models is shown in table 2.1.
This library is promising due to its wide range of functionality. We used its speech emotion model
to classify audio on the valence and arousal scale (see 5.3.4).

5 Further reading on RMS: http://mathworld.wolfram.com/Root-Mean-Square.html

16

 http://mathworld.wolfram.com/Root-Mean-Square.html
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Feature Name Description

Zero Crossing Rate The rate of sign-changes of the signal
during the duration of a particular frame.

Energy The sum of squares of the signal values,
normalized by the respective frame length.

Entropy of Energy The entropy of sub-frames’ normalized energies.
It can be interpreted as a measure of abrupt changes.

Spectral Centroid The center of gravity of the spectrum.
Spectral Spread The second central moment of the spectrum.

Spectral Entropy Entropy of the normalized spectral energies
for a set of sub-frames.

Spectral Flux
The squared difference between the normalized
magnitudes of the spectra of the two successive
frames.

Spectral Rolloff The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

MFCC
Mel frequency cepstral coefficient (MFCC)
representation where the frequency bands are not
linear but distributed according to the mel-scale.

Chroma Vector
A 12-element representation of the spectral energy
where the bins represent the 12 equal-tempered pitch
classes of western-type music (semitone spacing).

Chroma Deviation The standard deviation of the 12 chroma coefficients.

Table 2.1: PyAudioAnalysis features, taken from [18]

17



2 Foundations

2.4.3 InaSpeechSegmenter

The ‘InaSpeechSegmenter’ [26] is capable of performing a segmentation into speech, music and
silence. Furthermore, it recognises the speakers gender [27] and classifies speech segments with
either male or female.

The original aim of this library is to segment french TV broadcast based on audio. To do
so, the training set consists of recordings from French speakers. It is optimised for French
language. The segmentation is based on a CNN model and reaches an overall accuracy of 97.42%
on the original test set. This library is promising since it was trained on a similar domain.
After evaluation, it was chosen for segmentation as well as gender recognition (see 5.3.1 and
5.3.2).

18



3 Methodical Approach

At first, we explore the possibilities on the radio media. It is vital that we know what project-
beneficial features we can obtain from it.

Ideally, we can identify libraries that offer straight-forward means to extract information from
the audio signal. Whenever they do not, we think of an alternative approach using the available
data. We aim towards fast and easy to implement solutions, in order to cover a wide range of
features throughout our project work.

We move on to the prioritisation which is described in the following section 3.1. Next, we
find available modules which we can use for Radiosands. The selection will happen with the
constraints set by 3.2. Based on this we continue to test the performance of each selection in
3.3.

3.1 Efforts and Priorities

We evaluate implementation efforts for each potential module. The estimate is based on the
yield of our research into the respective topic. In communication with the Radiosands team, we
establish a priority ranking of the selected features. Using it as a foundation, we start working
on the implementation and evaluation of possible solutions.

3.2 Integration

The project team is working on other parts of Radiosands in parallel. Therefore we choose
solutions that build on their code base. This narrows down our choices to code written purely
in Python or behind a Python wrapper. The code base is using a Python 2.6 environment.
We do not restrict our choices to this version and look at Python 3 implementations as
well. If reasonable we adapt the code of the chosen library to be in accordance with Python
2.6.

19



3 Methodical Approach

3.3 Performance

We test each implementation against the annotated data described in 5.2. Calculating the
performance of each with the metrics described in 2.3. If there is more than one module
candidate, we choose the one with better performance. We also note that within this project
there is no need to optimise for top accuracy. Reaching an accuracy that is no more than 5%
worse than the original is sufficient for the needs of the project.

20



4 Implementation

In section 4.1 we present how the evaluation pipeline was set up, that we used to assess the per-
formance of a piece of audio processing software against our test set.

4.1 Evaluation Pipeline

For every evaluation, one pipeline was set up. While they differ depending on the module under
evaluation, the basic structure was kept the same. A pipeline reads one audio file after another
from a specified array of folders. A comma-separated values (CSV) table was created with the
name of the audio file containing the same columns used for the annotation in the test set (see
5.2). Each audio file was split into chunks of usually three seconds and saved as a temporary
.wav file. Depending on the module, a set of transformations (see 5.3) was applied to extract
the desired classes or continuous values. The extracted classes or values were written into the
corresponding column of the CSV file.

The newly created CSV files were then combined into an overview. The overview provides
confusion matrices 2.3.1 and a set of key figures (precision, recall, accuracy and F1-score – see
2.3.2) per audio file, and overall. Additionally, a ‘D3.js’-application1 was built to visualise the
performance of the analysed modules.

1 D3.js is a Javascript library to visualise data. Further information on D3.js: https://d3js.org/
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4 Implementation

Figure 4.1: Screenshot of D3.js data visualisation. Here an evaluation on gender
recognition is performed. Red data points = predicted class, Blue data points = actual
class, Green data points = predicted and actual class match
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All of our results are presented in this chapter. In the beginning, we describe how the features
to pursue were chosen. We go on to describe the structure and analysis of our test set in
section 5.2. Next, we discuss the results for each individual module in the section Module
Evaluation. Finally, in section 5.4, we summarise which modules were consolidated into one
toolkit.

5.1 Features and Priorities

We defined a collection of possibilities based on our own observations while listening to
radio. Our choices were also influenced by some of the discussions we had with the pro-
ject team. Initial research into all the topics revealed that they have high differences in
yield.

The priorities for the Radiosands project were determined by the artist and his team. Their
primary focus was on speech and not on music. Accordingly, the priorities in table 5.1 have
been established. We structured our approach respectively.

5.2 Test Set

In this section, we exemplify the created test set which was used for the evaluation. Initially,
multiple radio streams were captured on the actual Radiosands infrastructure. The recordings
were annotated by hand in the categories type, content, gender, emotion, genre. In total, the
final test set consists of five hours of radio broadcast recordings. Thereof, three hours were
captured from four different Spanish radio stations. The remaining two hours were taken from
eight different German radio stations. Each recording was annotated with an accuracy of a
tenth of a second.

The categories split up as described in the following sub-sections.
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Feature Effort Estimation Priority
Speech/music Segmentation Medium High
Genre on music Medium High
Emotion on speech High High
Energy on speech Low Medium
Gender on speech Medium Medium
Emotion on music High Medium
Pitch on speech Low Low
Content on speech Very high Low
Tempo on speech Medium Low
BPM on music Low Low
Pitch on music Low Low
Scale/key of music Medium Low
Instrument on music Very high Low

Table 5.1: Radiosands project priorities (sorted by priority)

Type

In table 5.2, classes used for the category type are listed with corresponding duration and
distribution over the whole test set. The classes music and sound are distinguished by the
following characteristics: music describes segments containing parts of a song or instrumental
(with a genre, title and artist). Segments classified as sound contain all sorts of sounds, noise,
or audio clips (such as in radio jingles or background music). The amount of ‘speech over
sound’ is surprisingly high. This is because on some stations news were entirely broadcast over
background music.

Class Duration [min] Ratio
Speech 94.01 31.34%
Speech over music 8.42 2.81%
Speech over sound 43.51 14.50%
Music 145.03 48.34%
Sound 8.18 2.73%
Silence 0.87 0.29%

Table 5.2: Type classes with distribution

Gender

Table 5.3 shows how the parts containing speech are divided according to gender. These classes
were only annotated if the audio segment was of type speech, ‘speech over music’ or ‘speech
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over sound’. These three types add up to a total length of 141.99 minutes, which is 47.33% of
the whole test set.

Class Duration [min] Ratio
Male 83.84 59.05%
Female 58.15 40.95%

Table 5.3: Gender classes with distribution

Emotion

The annotated emotions of the parts containing speech are listed in table 5.4. These classes
were as well only annotated if the audio segment was of type speech, ‘speech over music’ or
‘speech over sound’. Neutral and happy emotions are abundantly present in on our test set,
while the other emotions are almost non-existent.

Class Duration [min] Ratio
Happy 28.90 20.36%
Sad 0.00 0%
Angry 0.03 0.02%
Neutral 112.78 79.43%
Fear 0.22 0.16%
Disgust 0.06 0.04%

Table 5.4: Emotion classes with distribution

Content

A listing of all content types and its distribution can be found in table 5.5. Only segments
of type speech, ‘speech over music’, ‘speech over sound’ or sound were annotated. These
four types add up to a total length of 154.12 minutes which is 51.37% of the whole test
set.

Class Duration [min] Ratio
Moderation 39.53 34.93%
News 34.46 30.44%
Commercial 1.34 1.18%
Jingle 5.83 5.15%
Report 32.01 28.29%

Table 5.5: Content classes with distribution
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Genre

The genres are annotated by the same ten classes as in the GTZAN test set [41]. It is a
challenge to select an appropriate set of genres and analyse music correspondingly. In the
process of annotation compromises had to be made to fit music into one of the genres. For
example, electronica, which is played quite frequently nowadays, is not one of the genres.
Additionally, a genre can comprise a high number of sub-genres. Moreover, these sub-genres
sometimes differ a lot in how they ‘feel’ towards a listener. For example, rock ranges from rock
ballads and classic rock to hard rock which sound fairly different. We address this issue in
5.3.3.

Listing 5.6 shows how the classes are distributed within the test set. To annotate the genre, only
the types music and ‘speech over music’ were considered. These two types add up to a total
length of 153.45 minutes which is 51.15% of the whole test set. The test set does not contain any
‘hip hop’ nor reggae and only very little disco – this is not representative for the music played
on radio, but rather an artefact of the recorded radio stations.

Class Duration [min] Ratio
Blues 2.63 1.72%
Classical 37.14 24.20%
Country 24.7 16.10%
Disco 0.84 0.55%
Hip Hop 0 0%
Jazz 3.74 2.44%
Metal 7.58 4.94%
Pop 47.80 31.15%
Reggae 0 0%
Rock 29.02 18.91%

Table 5.6: Genre classes with distribution

In addition, beats per minute (BPM), artist and song title were annotated for every music se-
quence. The BPM values were collected from songbpm.com, bpmdatabase.com and tunebat.com.
It ranges from 70 to 175 BPM. The artist and song title were gathered with the help of the
Shazam App.

5.2.1 Conclusion on Test Set

The data set is not big enough to train a machine learning model and is only used for evaluation
purposes. Additionally, we note that our test set has quite some unbalanced data. Still, by
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running existing models against our test set, we are able to extract valuable information about
the model’s performance for our specific case.
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5.3 Module Evaluation

This section details our findings during the evaluation of the different modules according to the
Radiosands project priorities. We start with the segmentation into speech and music in 5.3.1,
which builds the foundation for the rest of the modules. We move on to the gender, genre and
emotion recognition in sections 5.3.2, 5.3.3 and 5.3.4 respectively. We close with the attempt of
recognising content on radio broadcast in 5.3.5.

5.3.1 Segmentation

An accurate segmentation into speech, music and silence segments is critical for an accurate
system as a whole. Being at the root of other modules, errors have a big impact (sub-
sequent errors) and, therefore, have to be minimised. In the context of the Radiosands art
project, it is desirable to classify segments with someone talking, as speech. All segmentation-
modules were therefore instructed to classify ‘speech over music’ and ‘speech over sound’ as
speech.

Segmentation with a SVM

A first approach to tackle the segmentation was a pre-trained SVM provided by pyAudioAnalysis
[18]. The model is not supposed to be state-of-the-art but with pyAudioAnalysis it is straightfor-
ward to implement. It can segment audio into speech and music. It is not apparent what data it
was trained on. To train it, however, the feature set of pyAudioAnalysis (see 2.1) was used. There-
fore, these features also had to be extracted for segmentation.

To evaluate its performance, we ran the segmentation against our test set. Figure 5.1 and table
5.7 respectively show how it performed. Speech was misclassified as music quite often and had a
precision of only 86.09%. A closer look at the affected data revealed that misclassification most
often took place on ‘speech over music’ or ‘speech over sound’. Silence was not recognised at all
and classified as either speech or music. It is left in the chart for reasons of comparison. The
majority of silence classified as speech were pauses between speech and, therefore, considered as
part of a speech segment.
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Figure 5.1: SVM segmentation confusion matrix

precision recall F1-score
Speech 86.09% 91.09% 88.52%
Music 90.97% 86.45% 88.65%
Silence 0% 0% 0%

Table 5.7: SVM segmentation scores per class

The overall accuracy of the SVM is 88.46%. To further improve these results we were looking for a
model that is trained on known material and preferably on a similar domain.

Segmentation with a CNN

The InaSpeechSegmenter is trained on TV broadcast audio. We, therefore, expected a better
performance due to the similarity of the domain. Moreover, the InaSpeechSegmenter originally
aims to classify ‘speech over music’ and ‘speech over sound’ as speech —which is what we want
as well. In addition, it also recognises silence. Mel 1 scaled filter banks 2 are directly fed to
the CNN-model. Therefore the audio signal was split into 25 ms sliding windows with 10 ms
overlap.

1 Mel is an experimentally determined [1] psychoacoustic measure of how differences between sounds are
perceived by listeners. With Mel scale applied to a signal lower frequencies are elevated, and only frequencies
perceived by listeners are taken into account.

2 A filter bank is an array of separate frequency sub-bands of the original signal.

29



5 Results

To evaluate the performance of this model we ran it against our test set. Figure 5.2 shows
that speech and music are classified with a significantly better accuracy. Speech is misclassified
as music more than ten times less (compare 5.1). We observed an increase in accuracy for
all classes. Table 5.8 shows an increase in F1-Score to about 97% for the classes music and
speech.

Figure 5.2: InaSpeechSegmenter segmentation confusion matrix

precision recall F1-score
Speech 98.39% 96.07% 97.21%
Music 96.58% 98.49% 97.53%
Silence 29.28% 43.08% 34.86%

Table 5.8: InaSpeechSegmenter segmentation scores per class

Still, some classification errors were made on segments containing ‘speech over music’. Also, the
classification of silence does not perform well and results in a low F1-score. It turns out that the
library classifies short segments of silence, where on the other hand our annotation considered it
as part of speech. Another downside of this library is its use of more computational power than
the SVM approach. It is left to the project team to decide whether they accept this in favour of
a better segmentation. However, not only segmentation is handled by this model but gender
discrimination as well (see 5.3.2).

An evaluation of the original performance is not available as it is only given in combination with
gender recognition. After consultation with the project team, we considered this library as suit-
able for this purpose. Therefore it was added to the final toolkit.
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Further improvement could be reached with a system currently developed at the ZHAW
[29]. It is trained on radio broadcast and specifically aiming for very high precision on
speech.

5.3.2 Gender recognition on speech

The ability to differentiate between genders was a high priority to the project team. It opens up
a great number of possibilities for the Radiosands installation.

Gender recognition with a GMM

First, the GMM approach from [36] was implemented. It is trained on a subset (only audio
clips with male or female speech) of the AudioSet [23]. It contains 558 female-only and 546
male-only speech utterances. Each clip is ten seconds long. The training set is a diverse mixture
of interviews, moderation, speeches and other audio clips. We assumed that this diversity
represents the multitude of radio contents.

To use this model, the fundamental frequency3 and the MFCCs4 (see 2.1) were extracted from
the audio source. The original experiment [36] reported an overall accuracy of 94%. On our test
set, however, this model failed and is not suitable for our purpose. Actually, figure 5.3 and table
5.9 show it performed only slightly better than a random classifier. We suspect that the GMM
for one had a substantial overfit on the data used for training and secondly the data seems to
be less comparable to radio broadcast than we thought.

3 defined as the lowest frequency of a periodic waveform
4 MFCCs are a compact representation of mel scaled frequency bands. Further reading: http://ismir2000.

ismir.net/papers/logan_paper.pdf
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Figure 5.3: GMM gender recognition confusion matrix

precision recall F1-score
Male 86.12% 38.48% 53.20%
Female 52.13% 91.52% 66.42%

Table 5.9: GMM gender recognition scores per class

Gender recognition with a CNN

The InaSpeechSegmenter that is used for segmentation (see 5.3.1) is also used for gender recog-
nition. On the original test set, gender recognition reached an overall accuracy of 97.42%.
Table 5.10 also shows the male and female recall of the original test. The original test
set consisted of more male than female speakers. F1-scores for each class however are not
provided.

male recall female recall overall accuracy
98.04% 95.05% 97.42%

Table 5.10: InaSpeechSegmenter original scores [26]

To evaluate gender recognition of the InaSpeechSegmenter we ran it against our test set. The
overall accuracy reached 92.18%. On a per class basis an F1-score of 93.34% and 90.54%
respectively was reached. (see figure 5.4 and table 5.11)
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Figure 5.4: InaSpeechSegmenter gender recognition confusion matrix

precision recall F1-score
Male 91.84% 94.89% 93.34%
Female 92.69% 88.48% 90.54%

Table 5.11: InaSpeechSegmenter gender recognition scores per class

Most often, a misclassification occurs for one of the two reasons: Either a male speaking
over audio is predicted as female or a relatively low female voice is predicted as male. The
documentation of the InaSpeechSegmenter states that acoustic correlations of speaker gender
are language dependent. Our test set consists of German and Spanish speakers, the library
however, is trained on French speakers. Keeping that in mind, a drop of about 5% compared to
the original result is within the expected deviation.

As a further improvement, a model could be trained to take multiple languages into account.
Other interesting models are provided by Kory Becker [20]. Though to use it in Python a
porting from R is needed.

5.3.3 Genre Recognition in Music

In this section, we investigate the possibilities to recognise the genre in music. To evaluate
genre recognition models we were only looking at pure music segments. Because if it were
‘speech over music’ our system would consider it as speech, and therefore a genre would not be
needed.
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Genre Recognition with a CNN

Two different CNN models were evaluated against our test set. None of them were selected for
the final toolkit due to poor accuracy. Both models were trained on the GTZAN [2] data set and
a mel scaled spectrogram representation is used as input. The ‘Deep Music Genre Classification’-
model [40] is based on [17], [42] and [37]. Figure 5.5 shows the confusion matrix of this model.
It reached an overall accuracy of 21.69% on our test set.

Figure 5.5: Confusion matrix of the ‘Deep Music Genre Classification’-model

Using CNNs for genre recognition seems to be the state-of-the-art technology [22]. We wanted
to make sure the first approach did not fail due to a defective model and evaluated another
similar CNN-model from a different source [41]. Figure 5.6 indicates that its performance is
comparable to the first approach. It reached an overall accuracy of 24.64%. This suggests that it
was not because of a defective model, but rather because the GTZAN training set is not similar
enough to our data. Additionally, genre usually applies for the whole song while the atmosphere
can change fundamentally within a song (also see 5.6).
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Figure 5.6: CNN genre recognition confusion matrix

Perceived intensity on music

The team’s interest in genre recognition originates from the fact that music carries a certain
atmosphere and emotion which is often associated with genre. But ultimately it is the information
within the genre that they are interested in. Classifying music into discrete genres does not
benefit this goal. This insight and the insufficient performance of the classifiers led us to the
conclusion to not follow this approach any further. We were looking for a solution focusing on
how the music is perceived by a listener.

To find a better representation of how the intensity of music is perceived, we analysed the
radio streams by plotting them against several low-level features. The best correlation was
identified with spectral flatness (see 2.2.2). To extract the flatness, multiple steps were executed.
First, a three-second audio chunk was transformed into frequency space using an STFT. The
amplitude range over all frequencies within the audio chunk was then normalised so that it lies
between zero and one. The flatness of a frame containing silence is approaching one because the
frequency distribution is flat. Intensity of such audio, however, is of course low. To avoid peaks
on silent audio, frames with energy below a certain threshold were ignored. Furthermore, the
spectral flatness was calculated on a frame level basis. Finally, a running average was applied to
suppress high impact of outliers.

For verification, we cut together a set of songs from multiple genres with different ‘intensities’.
We sorted the songs based on their spectral flatness. As a result, a new piece of audio ranging
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from low to high spectral flatness was generated. The order of the new piece of audio was then
verified to be according to our expectations. The focus was set to both ends of the scale, i.e.
the extremes. Gentle songs are indeed found at the beginning (low flatness) while fast-paced,
intensive songs are found at the end (high flatness).

Still, the position of some songs seemed wrong. For example, slow electronica and classical
music were not distinguishable by their spectral flatness. To address this issue, a second value
was introduced to the scale. In [17] a percussion/harmonics separation (see 2.2.3) was suggested.
We figured that a great number of percussive elements are perceived as more intensive. We,
therefore, measured how much RMS energy is present at a specific frame on the percussive
component.

We illustrated the behaviour of selected genre classes on the two scales in figure 5.7 and 5.8.
There is not a one-to-one correlation of how music is perceived on the chosen scales and what
genre it is. Nonetheless, differences are clearly visible.

Figure 5.7: Classical songs from our test set plotted on our flatness-percussiveness
scale

36



5 Results

Figure 5.8: Rock songs from our test set plotted on our flatness-percussiveness scale

Alternatives

An alternative approach to the problem of genre recognition is the use of third-party services
to identify a piece of music and gather data on it. It may yield more precise results than the
aforementioned solutions.

One would first create a fingerprint of the song that is playing. For this step, a library
called Chromaprint [39] could be used. Next, the fingerprint data could be sent to an audio
identification service like ‘Acoustid’ [38] which would map the fingerprint to a description of the
song (artist, album, track name etc.).

Using the information retrieved from the audio identification service, finding more information
on a song becomes a task of querying yet another web service that provides such data. We
would like to mention one example in particular, namely the ‘Spotify’ API [34]. Besides ways to
fetch artist-based genre information [32] it also provides its own track features like danceability,
instrumentalness, valence and others [33].

However, this solution requires an internet connection and might necessitate a paid subscription
for using the service.

5.3.4 Emotion recognition in speech

We found that the process of classifying emotions in speech is not straight forward. This was
mostly due to the one-sided emotions on the radio data. Most of the solutions on hand needed
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training on the actual data [18] [25], which was impossible as our whole set did not contain all
the possible classes and was very small.

More straight forward approaches were chosen. One describes the emotion in speech in the form
of scalar values instead of definite classes [11]. Another tries to detect the perceived intensity
on speech using scales for spectral flatness and percussiveness. We go into more detail in the
following two sections.

Valence and Arousal

We used two of the pretrained SVM-regression-models of pyAudioAnalysis [18] [28] to find the
valence and arousal values of our data. It comes with the training data that represents a subset of
EmoDB [5] as well as ground truth data for valence and arousal.

We do not have annotated values for valence and arousal in our test set. An actual test result is,
therefore, not provided. We did conduct some secondary tests, however.

Firstly, as we have access to the complete set of the EmoDB corpus, it made sense to run the
regression with regard to its whole. It also offers data of a human perception test against all the
recordings. We selected only the ones where 90% of the testers recognised the same emotion,
and 70% rated the acted emotion as being natural.

By creating an arousal and valence scatter plot for each emotion class in EmoDB we were able
to identify promising and problematic cases. Joy and sadness seemingly split up well into two
groups as depicted in figure 5.9. Anger partially coincides with the bounds of the joy class but
also separates itself from the centre.

Figure 5.9: Test of the pyAudioAnalysis speechEmotion model against the EmoDB
joy, anger and sadness classes
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Figure 5.10: Test of the pyAudioAnalysis speechEmotion model against the EmoDB
boredom, disgust, fear and neutral classes

Whereas the rest of the classes more or less fall into the same area in the plot (see figure
5.10), there is only little chance of being able to identify them reliably. This also impacts the
promising cases negatively, as they share much space on the scale with the indifferentiable
ones.

The same test was performed on the radio test set, where we extracted individual audio files for
each emotion class. We observed no split over the two relevant5 emotions. In fact, the neutral
class covers a significant area with its wide spread. This means either that our labelled emotions
are incorrect or that the training data is not a good fit for our set.

5 We only use emotions with more than 1% overall share. See 5.4.
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Figure 5.11: Test of the pyAudioAnalysis speechEmotion model against the radio test
set happy and neutral classes

We conducted a human perception test on upper and lower bound values for valence. A total of
10 high and low valence clips were evaluated. Judging the mere sound of the recordings, leaving
the content unheard, we determined that the high valence ones sound indeed more pleasant.
The clips from the lower bound sound more calm but definitely not unpleasant. We also note
that they mostly consist of male, German language, while the high valence audio is only in
Spanish.

We conclude that the speech emotion model does not perform satisfactory on our data and
even not on the EmoDB data, which was used for model training. Some use might be
found in the extreme values. We see most of its potential in a strong combination with
speech-to-text technologies. This topic lends itself for further research and experimenta-
tion.

Perceived intensity on Speech

The intensity scale approach we proposed for music (see 5.3.3) can also be applied to speech.
We used the same technique to cut together two mixes of speech clips sorted by spectral flatness
and percussiveness.

The differences on both ends of the scale were not as strong as on music. Nonetheless, on the
low percussion end, we found slow and calm examples. On the opposite side, fast and strong
speech – as it can be found in commercials – was playing.
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5.3.5 Content recognition on Speech

No readily available solutions to differentiate between a multitude of content types have been
identified. The project team emphasised that recognising commercials would be of special
value. We, therefore, investigated if it is possible to use an ad blocking solution for this
purpose.

Adblock Radio

Adblock Radio [35] is an ad blocker for online radio streams. The creators combine a machine
learning approach and acoustic fingerprinting to detect commercials and other unwanted content.
While the way of how it works is promising, the solution itself was not usable for Radiosands.
One limitation was the fact that the models do not work on FM radio according to [31]. Each
radio channel uses a different model, and a different fingerprint database – only a small number
of German and Spanish channel are supported out-of-the-box [24]. They plan opening up the
flagging of ads to the community, but this feature remained a work-in-progress at the time of
writing [24]. We argue that training the models on our limited amount of data will not be of
any use for the Radiosands project.

Alternatives

Often commercials are intentionally noisy to catch the listeners attention. To have a clue,
whether one is playing, the spectral flatness used in 5.3.3 can also be applied to speech
segments. A high value would indicate a potential commercial. 5.3.4 confirmed this approach as
well.

Another possibility is to use a fingerprinting solution similar to the one discussed in 5.3.3. Most
likely only particular ads are of interest. A database of acoustic fingerprints of all wanted com-
mercials could be created, and their occurrence be checked continuously. An advantage certainly
is that individual ads can be detected and not just ads in general.

5.4 Creation of the Toolbox

We progressively added the most promising findings from the previous section to the toolbox,
which we called ‘Rabio’. It is a simple Python 2.6 module, which contains the segmentation of
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speech and music as well as gender recognition, highlighted in 5.3.1 and 5.3.2. Additionally, it
includes the alternative approaches of flatness and percussiveness on music and speech discussed
in 5.3.3 and 5.3.4. Last but not least the toolbox features the model for arousal and valence
extraction from 5.3.4.
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Our aim with this thesis has been to provide an interface to paralinguistic information on radio
broadcast. In chapter 5 we evaluated if existing machine learning solutions can be used for the
extraction. If no suitable solution existed, alternatives based on low-level audio features are
suggested. We use the library InaSpeechSegmenter to solve the challenge of segmentation and
gender recognition. For emotion and genre, we propose alternative approaches that do not use
fixed classes, but scalar values to express the mood and perceived intensity within the audio
signal. Both of them rely solely on low-level features.

Returning to our initial question in 1.2 we conclude that it is indeed possible to create an
interface to paralinguistics of radio media using solutions within reach. We combined the most
useful modules in a toolbox1. It enables the artists to extract semantic meaning from these
paralinguistic features on a higher abstraction level.

A reason why the selected approaches for genre and emotion recognition are of use for the Radi-
osands project is because the extremes are of special value. A discrimination of small changes was
not of great interest considering the relatively uniform radio media.

6.1 Future Work

We see much potential in combining our paralinguistic information with the information gathered
from speech-to-text technologies. The Radiosands project team already has a working prototype
featuring speech-to-text, and we recommend harvesting this potential.

The same applies to content recognition on radio which may profit greatly from speech-to-text,
but following up on the approach used by AdblockRadio [35] would be an interesting next step
as well. Most likely the approach could be reused for other classes like news, weather reports
etc.

1 To be found at https://github.com/tobiasschlatter/rabio (private repository)
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We also remark that a limitation of our work was the small and unbalanced test set. A
prerequisite for any future work is certainly the extension and revision of the annotations.

44



Bibliography

[1] Stanley Smith Stevens, John Volkmann and Edwin B Newman. ‘A scale for the measure-
ment of the psychological magnitude pitch’. In: The Journal of the Acoustical Society of
America 8.3 (1937), pp. 185–190.

[2] George Tzanetakis and Perry Cook. ‘Musical genre classification of audio signals’. In:
IEEE Transactions on speech and audio processing 10.5 (2002), pp. 293–302.

[3] Lie Lu, Hong-Jiang Zhang and Stan Z Li. ‘Content-based audio classification and seg-
mentation by using support vector machines’. In: Multimedia systems 8.6 (2003), pp. 482–
492.

[4] Shlomo Dubnov. ‘Generalization of spectral flatness measure for non-gaussian linear
processes’. In: IEEE Signal Processing Letters 11.8 (2004), pp. 698–701.

[5] Felix Burkhardt et al. ‘A database of German emotional speech’. In: 9th European
Conference on Speech Communication and Technology. Vol. 5. Jan. 2005, pp. 1517–1520.

[6] Tom LH Li, Antoni B Chan and A Chun. ‘Automatic musical pattern feature extraction
using convolutional neural network’. In: Proc. Int. Conf. Data Mining and Applications.
sn. 2010.

[7] Björn Schuller et al. ‘The INTERSPEECH 2010 paralinguistic challenge’. In: Proc. IN-
TERSPEECH 2010, Makuhari, Japan. 2010, pp. 2794–2797.

[8] Sander Dieleman, Philémon Brakel and Benjamin Schrauwen. ‘Audio-based music classi-
fication with a pretrained convolutional network’. In: 12th International Society for Music
Information Retrieval Conference (ISMIR-2011). University of Miami. 2011, pp. 669–674.

[9] Moataz El Ayadi, Mohamed S Kamel and Fakhri Karray. ‘Survey on speech emotion
recognition: Features, classification schemes, and databases’. In: Pattern Recognition 44.3
(2011), pp. 572–587.

[10] Eli Pariser. The filter bubble: what the Internet is hiding from you. London: Viking/Penguin
Press, 2011.

45



Bibliography

[11] Marcello Mortillaro, Ben Meuleman and Klaus R. Scherer. ‘Advocating a Componential
Appraisal Model to Guide Emotion Recognition’. In: International Journal of Synthetic
Emotions (IJSE) 3.1 (2012), pp. 18–32. (Visited on 20/12/2018).

[12] Ming Li, Kyu J Han and Shrikanth Narayanan. ‘Automatic speaker age and gender
recognition using acoustic and prosodic level information fusion’. In: Computer Speech &
Language 27.1 (2013), pp. 151–167.

[13] Björn Schuller and Anton Batliner. Computational paralinguistics: emotion, affect and
personality in speech and language processing. John Wiley & Sons, 2013.

[14] Björn Schuller et al. ‘Paralinguistics in speech and language—State-of-the-art and the
challenge’. In: Computer Speech & Language 27.1 (2013). Special issue on Paralinguistics in
Naturalistic Speech and Language, pp. 4–39. issn: 0885-2308. doi: https://doi.org/10.
1016/j.csl.2012.02.005. url: http://www.sciencedirect.com/science/article/
pii/S0885230812000162.

[15] Felix Weninger et al. ‘On the Acoustics of Emotion in Audio: What Speech, Music, and
Sound have in Common’. In: Frontiers in Psychology 4 (2013), p. 292. issn: 1664-1078.
doi: 10.3389/fpsyg.2013.00292. url: https://www.frontiersin.org/article/10.
3389/fpsyg.2013.00292.

[16] Jonathan Driedger, Meinard Müller and Sascha Disch. ‘Extending Harmonic-Percussive
Separation of Audio Signals.’ In: ISMIR. 2014, pp. 611–616.

[17] Daniel Grzywczak and Grzegorz Gwardys. ‘Deep Image Features in Music Information
Retrieval’. In: vol. 60. Aug. 2014, pp. 187–199. doi: 10.1007/978-3-319-09912-5_16.

[18] Theodoros Giannakopoulos. ‘pyAudioAnalysis: An Open-Source Python Library for Audio
Signal Analysis’. In: PloS one 10.12 (2015).

[19] Brian McFee et al. ‘librosa: Audio and Music Signal Analysis in Python’. In: Proceedings
of the 14th Python in Science Conference, 2015 (2015).

[20] Kory Becker. Identifying the Gender of a Voice using Machine Learning. June 2016. url:
http://www.primaryobjects.com/2016/06/22/identifying- the- gender-of-a-

voice-using-machine-learning/ (visited on 24/09/2018).

[21] Sergiy Bilobrov and Andres Hernandez Schafhauser. Continuous content identification of
broadcast content. US Patent 9,703,932. July 2017.

[22] Yandre MG Costa, Luiz S Oliveira and Carlos N Silla Jr. ‘An evaluation of convolutional
neural networks for music classification using spectrograms’. In: Applied soft computing
52 (2017), pp. 28–38.

46

https://doi.org/https://doi.org/10.1016/j.csl.2012.02.005
https://doi.org/https://doi.org/10.1016/j.csl.2012.02.005
http://www.sciencedirect.com/science/article/pii/S0885230812000162
http://www.sciencedirect.com/science/article/pii/S0885230812000162
https://doi.org/10.3389/fpsyg.2013.00292
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00292
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00292
https://doi.org/10.1007/978-3-319-09912-5_16
http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/
http://www.primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/


Bibliography

[23] Jort F. Gemmeke et al. ‘Audio Set: An ontology and human-labeled dataset for audio
events’. In: Proc. IEEE ICASSP 2017. New Orleans, LA, 2017.

[24] Adblockradio. adblockradio/available-models. Nov. 2018. url: https://github.com/
adblockradio/available-models (visited on 18/12/2018).

[25] M. Chen et al. ‘3-D Convolutional Recurrent Neural Networks With Attention Model
for Speech Emotion Recognition’. In: IEEE Signal Processing Letters 25.10 (Oct. 2018),
pp. 1440–1444. issn: 1070-9908. doi: 10.1109/LSP.2018.2860246.

[26] David Doukhan et al. ‘An Open-Source Speaker Gender Detection Framework for Monit-
oring Gender Equality’. In: Acoustics Speech and Signal Processing (ICASSP), 2018 IEEE
International Conference on. IEEE. 2018.

[27] David Doukhan et al. ‘INA’S MIREX 2018 MUSIC AND SPEECH DETECTION SYS-
TEM’. In: Music Information Retrieval Evaluation eXchange (MIREX 2018). 2018.

[28] Theodoros Giannakopoulos. 4. Classification and Regression. Sept. 2018. url: https://
github.com/tyiannak/pyAudioAnalysis/wiki/4.-Classification-and-Regression

(visited on 19/12/2018).

[29] Zaniyar Jahany Hans-Peter Hutter Matthias Büchi. ‘KWS Key-Word-Spider: System
zur Unterstützung der Segmentierung, Inhaltsanalyse und Codierung von audiovisuellen
Medienbeiträgen’. In: 2018. url: https://www.zhaw.ch/no_cache/de/forschung/
forschungsdatenbank/projektdetail/projektid/1988/ (visited on 22/11/2018).

[30] Thom Kubli. Montage of the Radiosands exhibition piece. received by email from the
author on 11.12.2018. 2018.

[31] Alexandre Storelli. Designing an audio adblocker for radio and podcasts. Nov. 2018. url:
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-

radio-podcast/ (visited on 18/12/2018).

[32] Spotify AB. Get an Artist. url: https://developer.spotify.com/documentation/web-
api/reference/artists/get-artist/ (visited on 08/12/2018).

[33] Spotify AB. Get Audio Features for a Track. url: https : / / developer . spotify .

com/documentation/web- api/reference/tracks/get- audio- features/ (visited
on 08/12/2018).

[34] Spotify AB. Spotify Web API. url: https://developer.spotify.com/documentation/
web-api/ (visited on 08/12/2018).

[35] Adblock Radio. url: https://www.adblockradio.com/en/ (visited on 18/12/2018).

47

https://github.com/adblockradio/available-models
https://github.com/adblockradio/available-models
https://doi.org/10.1109/LSP.2018.2860246
https://github.com/tyiannak/pyAudioAnalysis/wiki/4.-Classification-and-Regression
https://github.com/tyiannak/pyAudioAnalysis/wiki/4.-Classification-and-Regression
https://www.zhaw.ch/no_cache/de/forschung/forschungsdatenbank/projektdetail/projektid/1988/
https://www.zhaw.ch/no_cache/de/forschung/forschungsdatenbank/projektdetail/projektid/1988/
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/
https://developer.spotify.com/documentation/web-api/reference/artists/get-artist/
https://developer.spotify.com/documentation/web-api/reference/artists/get-artist/
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://www.adblockradio.com/en/


Bibliography

[36] ML bot1. Voice Gender Detection using GMMs: A Python Primer – Machine Learning
in Action. url: https://appliedmachinelearning.blog/2017/06/14/voice-gender-
detection-using-gmms-a-python-primer/ (visited on 25/09/2018).

[37] Sander Dieleman. Recommending music on Spotify with deep learning. url: http://
benanne.github.io/2014/08/05/spotify-cnns.html (visited on 10/10/2018).

[38] Lukáš Lalinský. AcoustID. url: https://acoustid.biz/ (visited on 08/12/2018).

[39] Lukáš Lalinský. Chromaprint. url: https://acoustid.org/chromaprint (visited on
08/12/2018).

[40] Evan Otero. Deep Music Genre Classification. url: https://github.com/evanotero/
deep-music-genre-classification (visited on 10/10/2018).

[41] Evan Otero. gtzan.keras. url: https://github.com/Hguimaraes/gtzan.keras (visited
on 20/10/2018).

[42] Bartosz Michalak Piotr Kozakowski. Music Genre Recognition. url: http://deepsound.
io/music_genre_recognition.html (visited on 12/10/2018).

48

https://appliedmachinelearning.blog/2017/06/14/voice-gender-detection-using-gmms-a-python-primer/
https://appliedmachinelearning.blog/2017/06/14/voice-gender-detection-using-gmms-a-python-primer/
http://benanne.github.io/2014/08/05/spotify-cnns.html
http://benanne.github.io/2014/08/05/spotify-cnns.html
https://acoustid.biz/
https://acoustid.org/chromaprint
https://github.com/evanotero/deep-music-genre-classification
https://github.com/evanotero/deep-music-genre-classification
https://github.com/Hguimaraes/gtzan.keras
http://deepsound.io/music_genre_recognition.html
http://deepsound.io/music_genre_recognition.html


List of Figures

1.1 Montage of the Radiosands exhibition piece [30] . . . . . . . . . . . . . . . . . . 8

2.1 Spectrogram of white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Spectrogram of a pure tone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Spectrogram of an audio source . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Percussive component of an audio source . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Harmonic component of source . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Screenshot of D3.js data visualisation. Here an evaluation on gender recognition
is performed. Red data points = predicted class, Blue data points = actual class,
Green data points = predicted and actual class match . . . . . . . . . . . . . . 22

5.1 SVM segmentation confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 InaSpeechSegmenter segmentation confusion matrix . . . . . . . . . . . . . . . . 30
5.3 GMM gender recognition confusion matrix . . . . . . . . . . . . . . . . . . . . . 32
5.4 InaSpeechSegmenter gender recognition confusion matrix . . . . . . . . . . . . . 33
5.5 Confusion matrix of the ‘Deep Music Genre Classification’-model . . . . . . . . 34
5.6 CNN genre recognition confusion matrix . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Classical songs from our test set plotted on our flatness-percussiveness scale . . 36
5.8 Rock songs from our test set plotted on our flatness-percussiveness scale . . . . 37
5.9 Test of the pyAudioAnalysis speechEmotion model against the EmoDB joy, anger

and sadness classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.10 Test of the pyAudioAnalysis speechEmotion model against the EmoDB boredom,

disgust, fear and neutral classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.11 Test of the pyAudioAnalysis speechEmotion model against the radio test set

happy and neutral classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

49



List of Tables

2.1 PyAudioAnalysis features, taken from [18] . . . . . . . . . . . . . . . . . . . . . 17

5.1 Radiosands project priorities (sorted by priority) . . . . . . . . . . . . . . . . . 24
5.2 Type classes with distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Gender classes with distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Emotion classes with distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Content classes with distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Genre classes with distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7 SVM segmentation scores per class . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.8 InaSpeechSegmenter segmentation scores per class . . . . . . . . . . . . . . . . 30
5.9 GMM gender recognition scores per class . . . . . . . . . . . . . . . . . . . . . . 32
5.10 InaSpeechSegmenter original scores [26] . . . . . . . . . . . . . . . . . . . . . . 32
5.11 InaSpeechSegmenter gender recognition scores per class . . . . . . . . . . . . . 33

50



Glossary

BPM beats per minute. 26

CNN convolutional neural network. 11, 12, 18, 29, 34, 35, 49
CSV comma-separated values. 21

FN false negative. 14
FP false positive. 14

GMM Gaussian mixture model. 11, 31, 32, 49, 50

MFCC mel frequency cepstral coefficient. 17, 31

RMS root mean square. 16, 36

STFT short-time Fourier transform. 12, 14, 16, 35
SVM support vector machine. 11, 28–30, 38, 49, 50

TN true negative. 14
TP true positive. 14

51



A Appendix

A.1 Installation Instructions

If applicable, the installation instructions can be found in the complementary data in the form
of a README file.

A.2 Complementary Data on USB Drive

document The LATEX sources of this document and the PDF

emotion-evaluation All the files and the results of the evaluation of the emotion module

minutes-etc The meeting minutes, other documents

rabio The Rabio toolkit – the final product of this thesis

radiosands-development The evaluation pipeline and all its source files, the annotated
ground truth data and all the WAV files
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A Appendix

A.3 Task Definition
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HauptbetreuerIn: Thilo Stadelmann, stdm
 

Diese Arbeit ist zugeteilt an:
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Interne Partner :     Industriepartner:  

DeptN Departement N   Es wurden keine Industriepartner definiert!

 
Beschreibung:  

This thesis project is about supporting the exhibition piece "Radiosands" to observe dozens of live radio streams of radios placced in one room:
detect keywords, analyze any (societally relevant) patterns in them (like multiple streams e.g. focusing on a specific tragic topic at the same time).
Then, as a feedback, control the radios in a way to reinforce certain important aspects (loudness and channel of each radio can be controlled). For
example, if one station reports on a tragic accident, all other radios could suddenly turn silent or stop playing happy pop music.

 
Informations­Link:  

Unter folgendem Link finden sie weitere Informationen zum Thema:
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(we will likely use Python, TensorFlow, and Docker to run experiments on a GPU cluster), and your eagerness to experiment systematically.

This thesis lends itself very well for a continuation in a subsequent Bachelor thesis. It offers a first glance into research and scientific as well as
artistic work, and is also a great predeccessor for potentially pursuing Master studies with our team.
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