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Zusammenfassung 
In	unserer	Projektarbeit	haben	wir	versucht	auf	anderen	an	der	ZHAW	entwickelten	
Systemen	der	Speaker	Diarization	aufzubauen	und	zu	verbessern.	Die	Speaker	Diarization	
beantwortet	die	Frage:	«Wer	sprach	wann?».	Man	sollte	in	der	Lage	sein	einem	Speaker	
Diarization	System	eine	annotationsfreie	Audiospur	zu	geben	und	das	System	gibt	einem	
zurück;	wie	viele	Personen	auf	der	Aufnahme	sprechen,	wann	eine	Person	spricht	und	wie	
lange	sie	das	tat.	Man	könnte	z.B.	eines	Tages	in	der	Lage	sein,	während	eine	Besprechung	
mit	dem	Smartphone	aufzunehmen,	um	anschliessend	ein	vollautomatisch	generiertes	und	
mit	korrekten	Sprechern	annotiertes	Protokoll	zu	erhalten.	Solche	Systeme	wurden	früher	
meistens	mit	klassischen	statistischen	Methoden,	wie	z.B.	«Hidden	Markov	Models»	
gemacht.	In	jüngster	Zeit	haben	auf	Deep	Learning	basierende	Systeme	an	grosser	
Popularität	gewonnen	und	auch	in	diesem	Bereich	bereits	Ergebnisse	erzielen	können.	In	
dieser	Projektarbeit	haben	wir	uns	mit	solchen	Deep	Learning	basierten	Systemen	
auseinandergesetzt.	Wir	waren	nicht	in	der	Lage	mit	der	Loss	Funktion	des	existierenden	
Systems	aussagekräftige	Resultate	zu	erzielen	und	somit	auch	nicht	in	der	Lage	die	Resultate	
der	vorhergehenden	Arbeit	zu	reproduzieren.	Stattdessen	haben	wir	mehrere	Möglichkeiten	
erforscht	wie	man	das	bestehende	System	verbessern	könnte	und	davon	zwei	konkrete	
Verbesserungen	implementiert.	Ausserdem	haben	wir	die	Charakteristiken	von	drei	anderen	
Systemen	angeschaut,	welche	mit	dem	VoxCeleb	Dataset	arbeiten.	Dies	hat	uns	ermöglicht,	
zusätzliche	Vorschläge	zur	Verbesserung	des	bestehenden	Systems	vorzuschlagen.	Des	
Weiteren	schlagen	wir	eine	neuartige	Art	und	Weise	vor	wie	man	das	VoxCeleb	Dataset	
aufteilen	kann.	 	
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Abstract 
In	this	Thesis,	we	tried	to	build	upon	and	improve	the	results	of	previous	speaker	diarization	
systems	developed	at	ZHAW.	Speaker	diarization	deals	with	the	task	of	automatically	
determining	when	which	person	has	spoken	and	for	how	long,	without	prior	knowledge	of	
the	characteristics	of	individual	subjects	with	respect	to	their	voices.	[1]	Speaker	diarization	
technology	could	serve	a	wide	range	of	applications,	for	example,	recordings	could	be	made	
during	a	conference	using	a	smartphone,	and	the	speaker	diarization	system	would	then	
automatically	label	the	data	to	support	the	creation	of	transcripts.	Traditionally,	speaker	
diarization	systems	were	built	using	statistical	methods	such	as	Hidden	Markov	Models.	
More	recently	[1],	deep	learning	methods	such	as	Convolutional	and	Recurrent	Neural	
Network	have	also	found	application	in	this	field.	In	this	Thesis,	we	examined	a	system	based	
on	a	recurrent	neural	network.	The	VoxCeleb	dataset	was	used	to	train	the	model	to	improve	
its	ability	to	deal	more	accurately	with	real-world	applications.	However,	we	were	not	able	
to	achieve	meaningful	results	with	the	loss	function	of	the	existing	codebase	and	therefore	
were	not	able	to	replicate	the	results	of	the	previous	clustering	experiments.	Instead,	we	
researched	multiple	new	approaches	and	improved	upon	the	existing	codebase.	We	looked	
at	the	characteristics	of	the	existing	system	and	were	able	to	implement	two	concrete	
approaches	to	optimization.	Additionally,	we	examined	three	existing	systems	dealing	with	
speaker	identification	and	verification	on	the	VoxCeleb	dataset,	which	allowed	us	to	define	a	
set	of	further	enhancements	to	the	original	system.	We	also	propose	a	novel	procedure	for	
splitting	the	VoxCeleb	dataset,	to	better	adapt	it	to	the	requirements	of	the	Clustering	
Experiment.	 	
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1 Aim 

In	this	thesis,	we	will	discuss	possible	measures	to	improve	the	quality	of	speaker	
embeddings	using	the	system	previously	developed	by	Lukic,	Vogt,	Dürr	and	Stadelmann	[2],	
which	builds	upon	the	research	conducted	by	Stadelmann,	Glinski-Haefeli,	Gerber	and	Dürr	
in	[3].	As	Lukic	et	al.	[2]	suggest,	further	research	is	necessary	to	enable	the	current	system	
to	accurately	cluster	speakers	from	a	larger	dataset	than	the	40-speaker	subset	from	TIMIT.	
To	conduct	our	experiments,	we	used	the	VoxCeleb	dataset	developed	by	Nagrani,	Chung	
and	Zisserman	in	[4].	Our	Goal	was	to	improve	the	current	system	in	such	a	way	that	it	is	
possible	to	firstly	work	with	the	new,	much	larger	dataset	which	is	partly	concerned	with	
reducing	training	time	while	secondly	improving	its	ability	to	detect	the	necessary	features	
responsible	for	extracting	speaker	discriminative	embeddings	which	could	be	used	during	
the	clustering	stage.	

2 Introduction 

2.1 Siamese Networks 
Siamese	networks	were	first	introduced	by	Bromley,	Guyon,	and	LeCun	[5]	in	the	context	of	
signature	verification.	In	their	paper	they	explain	the	basic	concept	of	the	Siamese	network	
as	follows:	“The	Siamese	network	has	two	input	fields	to	compare	two	patterns	and	one	
output	whose	state	value	corresponds	to	the	similarity	between	the	two	patterns”	[5].	The	
two	inputs,	in	turn,	lead	into	a	so-called	sub-network,	which	is	identical	for	both	inputs.	In	
the	original	paper,	a	convolutional	network	was	used,	but	this	pattern	can	also	be	
transferred	to	other	architectures.		
	
	

	
Figure	1-Basic	architecture	of	a	Siamese	network	

	
Another	fundamental	feature	of	the	Siamese	network	architecture	is	that	the	output	of	both	
subnetworks	is	used	as	a	feature	vector,	and	a	distance	metric	is	calculated	between	them.	
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The	task	of	the	loss	function	is	to	minimize	this	distance	as	much	as	possible	if	the	two	
inputs	correspond	to	the	same	class,	respectively	to	maximize	it	if	they	correspond	to	
different	classes.	
In	[6]	Chopra	Hadsell	and	LeCun	present	a	procedure	which	should	enable	a	Siamese	
network	to	learn	a	similarity	metric	discriminately.	Their	report	refers	to	the	application	in	
the	domain	of	facial	recognition.	However,	Nagrani	et	al.		[4]	refer	to	the	contrastive	loss	
function	presented	in	this	report	when	using	the	Siamese	network,	which	indicates	that	it	is	
also	suited	for	the	task	of	speaker	verification.	Chopra	et	al.	[6]	describe	the	general	loss	
function	as	follows:	

ℒ(𝑊) = 	 ' 𝐿(𝑊, 𝑌, 𝑋,, 𝑋-)
.

{01,}

	
	
(1)	

And:	
	

𝐿(𝑊, 𝑌, 𝑋,, 𝑋-) = 	 (1 − 𝑌)𝐿5(67);+	; 	𝑌	𝐿,(67)	 (2)	
	
Where	L(Y, X,, X-)	is	a	single	training	example,	consisting	of	label	Y,	the	first	input	X,,	and	
the	second	input	X-.		E>	denotes	the	energy	between	X,	and	X-,	i.e.	a	metric	computed	
between		X,	and	X-,	Y	is	a	binary	prediction,	and	P	denotes	the	total	number	of	training	
examples.	
If	the	two	input	fields	belong	to	the	same	class,	then	Y	equals	0,	if	they	belong	to	a	different	
class	Y	equals	1.	
In	[7]	Hadsell,	Sumit	and	LeCun	define	the	actual	loss	function	differently	than	in	[6],	which	
we	found	easier	to	comprehend	and	sufficient	to	explain	the	general	principle.	The	exact	loss	
function	then	is:	

𝐿(𝑊, 𝑌, 𝑋
→
,, 𝑋
→
-) = (1 − 𝑌) ,

-
(𝐷A)- + (𝑌)

,
-
{𝑚𝑎𝑥(0,𝑚 − 𝐷A)}-									(3)	

	
In	this	case,	DG	plays	a	similar	role	to	that	of	EG	in	the	loss	function	of	equation	(2)	i.e.,	a	
distance	metric,	but	in	equation	(3)		DG	is	simply	the	Euclidean	distance	between	the	
outputs	of	the	sub-networks,	given	feature	vectors		X,	and	X-	respectively.	In	[7]	Hadsell	et	
al.	explain	that	m	>	0	is	a	margin	that	defines	a	radius	around	the	vector	computed	from		X,	
and	X-.	Intuitively	one	could	think	of	this	m	setting	as	a	minimum	distance,	which	should	not	
be	undercut	by	the	network.	

2.2 ResNet 
Recent	trends	in	deep	learning	show	a	tendency	to	increase	the	number	of	layers	in	neural	
networks,	with	new	problems	arising	which	negatively	affect	accuracy.	Right	at	the	
beginning	of	their	paper	He,	Zhang,	Ren	and	Sun	[8]	make	it	clear	that	normalization	
procedures	mostly	addressed	the	problem	of	exploding	and	vanishing	gradients.	They	
further	state	that	with	very	deep	neural	networks	another	problem	comes	to	the	fore,	
namely	that	of	degradation.	They	explain	that	accuracy	enters	saturation	and	then	drops	
rapidly.	He	et	al.	claim	that	this	effect	is	not	due	to	overfitting,	and	that	merely	stacking	
additional	layers	on	an	existing	model	tends	to	deteriorate	rather	than	improve	results.		
They	start	their	argumentation	by	defining	the	function	ℋ(𝑥)	as	a	mapping,	which	should	be	
approximated	by	the	stacked	layers	in	a	neural	net.	They	then	state	that	if	ℋ(𝑥)	can	be	
approximated,	it	is	also	possible	to	approximate	the	residual	function	ℋ(𝑥) − 𝑥.	
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The	solution	they	propose:	instead	of	making	layers	approximate	ℋ(𝑥),	they	let	them	
approximate	the	residual	function	ℱ(𝑥) = 	ℋ(𝑥) − 𝑥,	thereby	defining	the	original	function	
as	ℱ(𝑥) + 𝑥.	
By	doing	this,	He	et	al.	[8]	point	out,	that	the	error	should	be	no	greater	in	a	deeper	network	
than	in	a	shallower	one.	They	state	that	it	is	difficult	for	a	neural	network	to	approximate	the	
identity	function	if	multiple	non-linear	activations	are	present	between	the	layers.	For	a	
residual	network	to	approximate	the	identity	function,	it	merely	has	to	set	all	the	weights	of	
the	respective	layers	to	zero.	They	explain	that	while	it	is	rare	in	practice	for	the	identity	
function	to	deliver	an	optimal	result	if	the	optimal	solution	is	close	to	the	identity	function,	it	
is	easier	for	the	network	to	learn	this	mapping.		
In	their	paper	He	et	al.	[8]	define	a	building	block	of	a	residual	network	as	follows:	

						
𝑦 = ℱ(𝑥, {𝑊0}) + 𝑥	 (1)	

	
	
	
With	𝑥	being	the	input	and	𝑦	the	output	of	the	
respective	layers.	ℱ	represents	the	residual	
function	to	be	learned	and	𝑊0 	the	weight	
matrices,	where	𝑖	denotes	the	number	of	
layers,	i.e.	the	number	of	weight	matrices	
which	the	residual	block	comprises.	They	give	
a	concrete	example	of	a	residual	block	with	
two	layers;	the	equation	and	corresponding	
image	are	shown	on	the	right	and	below	
respectively:	
	

ℱ𝑤-𝜎(𝑊,𝑥)																(2)	
	

	
Where	 	stands	for	the	ReLU	activation	function.	
In	case	the	dimensions	of	the	layers	change	within	the	residual	block,	and	thus	the	output	of	
the	last	layer	no	longer	matches	that	of	the	skip	connection,	He	et	al.	[8]	suggest	adjusting	
the	dimensionality	of	the	skip	connection	by	a	linear	transformation.	In	concrete	terms,	this	
means	that	the	skip	connection	is	multiplied	by	a	matrix,	which	pads	it	with	zeros	to	
correspond	to	the	dimensionality	of	the	output	of	the	residual	block.	Another	thing	to	add	is	
that	those	skip	connections	can	easily	be	implemented,	by	adding	the	value	from	before	the	
residual	block	with	the	output	of	the	last	layer	within	such	a	residual	block.	
The	concrete	equation	for	this	case	is	given	by	He	et	al.	[8]	as	follows:	
	

𝑦 = ℱ(𝑥, {𝑊0}) +𝑊N𝑥	 (3)	
	
Where	𝑊N	is	the	matrix	that	performs	the	aforementioned	linear	transformation	(i.e.,	
padding	with	zeros).	

σ
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2.3 LSTM Networks 

2.3.1 General Structure 
LSTM-networks	(long	short-term	memory)	as	first	proposed	by	Hochreiter	and	
Schmidhuber	[9]	are	an	extension	to	the	general	recurrent	neural	network	architecture.	
They	can	“…	learn	to	bridge	time	intervals	in	excess	of	1000	steps	even	in	case	of	noisy,	
incompressible	input	sequences,	without	loss	of	short	time	lag	capabilities	…”.	[9]	
Those	properties	are	realized	by	the	extension	of	the	traditional	recurrent	network	
architecture	with	an	update	gate	𝛤u;	a	forget	gate	𝛤f	and	an	output	gate	𝛤o.	Each	of	which	
judges	whether	or	not	the	internal	memory	c	should	be	updated,	calculating	the	respective	
values	is	only	dependent	on	the	activation	from	the	last	step	and	the	current	input	x<t>	the	
corresponding	equations	are	shown	below:		
	

	 (1)	
	

	 (2)	

	

	 (3)	
	
At	each	time	step	a	new	potential	value	for	the	memory	c̃<t>	is	computed	taking	into	
consideration	both	the	activation	of	the	previous	layer	a<t-1>	as	well	as	the	new	input	x<t>:	
	

	 (4)	
	
To	calculate	the	new	value	for	the	memory	cell	c<t>,	𝛤f	is	applied	to	the	memory	cell	from	the	
last	time-step	c<t-1>	by	computing	the	element-wise	product.	In	the	same	manner	𝛤u	is	
applied	to	the	new	potential	value	for	the	memory	cell	c̃<t>,	and	thereby	determines	how	
significant	its	influence	should	be	as	can	be	seen	in	equation	(5):	
	

	 (5)	

	
Lastly,	a	nonlinear	activation	function	is	applied	to	the	resulting	memory	cell	c<t>,	and	the	
output	gate	𝛤o	is	applied	to	the	result	to	get	the	activation	a<t>.		
	

	 (6)	

	

To	compute	the	prediction	value	y,	a<t>	is	passed	through	a	Softmax	layer.	A	visual	
representation	of	the	workings	of	an	LSTM	cell	can	be	seen	in	figure	3.		
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Figure	2-	illustration	of	why	the	dimensions	
are	the	equal	

	
Figure	3	-	LSTM	Visualization	

The	dimensions	of	the	matrices	of	gates	𝛤	as	well	as	the	memory	cell	c	are	all	the	same,	and	
in	the	Keras	implementation,	only	a	single	LSTM-cell	is	created.	Therefore,	the	weights	of	all	
time-steps	are	shared.	Figure	2	shows	this	connection.	

2.3.2 Many-to-One 
LSTM-networks,	as	well	as	other	recurrent	neural	networks,	are	used	in	different	
configurations.	Since	our	goal	is	to	obtain	a	single	vector	representation	of	each	utterance	
fed	into	the	LSTM,	we	would	use	a	many-to-one	configuration,	where	the	resulting	activation	
of	each	time	step	would	be	fed	to	the	next	time	step,	and	only	the	resulting	activation	of	the	
last	time-step	would	be	fed	to	the	following	dense	layer,	as	shown	in	figure	4	below.		

	
	

Figure	4	-	Many	to	one	
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2.4 Combined Kullback Leibler and Hinge Loss 
Lukic	et	al.	[2]	proposed	a	combined	objective	function	consisting	of	Kullback-Leibler	
divergence	and	Hinge	loss.	It	is	used	in	a	contrastive	manner,	which	means	to	evaluate	the	
resulting	loss,	a	pair	of	embeddings	would	be	compared.	Depending	on	the	label	a	different	
loss	would	be	calculated.	When	a	pair	is	from	the	same	speakers,	the	Kullback-Leibler	
divergence	would	directly	be	used	as	the	resulting	loss,	when	a	pair	is	from	different	
speakers,	the	Kullback-Leibler	divergence	would	be	used	as	a	measure	for	distance,	within	
the	Hinge	loss	with	the	goal	of	maximizing	their	distance,	by	setting	a	margin	in	the	Hinge	
loss.	Lukic	et	al.	[2]	used	a	value	of	3	for	the	margin	which	they	found	to	work	better	than	a	
value	of	2	which	was	proposed	by	Hsu	and	Zsolt	[10].	
Lukic	et	al.	[2]	defined	the	loss	function	as	follows:	
	

𝐾𝐿(𝑝	||	𝑞) = 	'𝑝0	𝑙𝑜𝑔
𝑝0
𝑞0

rs

0

	

	
Where	p	and	q	denote	the	resulting	output	vector	from	the	last	Softmax	layer	and	pi	and	qi	
are	the	values	in	a	single	cell	of	the	vector.	cs	denotes	the	total	number	of	speakers.	
The	Hinge	loss	would	then	take	the	calculated	Kullback-Leibler	divergence	and	subtract	it	
from	the	margin,	which	above	was	mentioned	as	having	a	value	of	3:	
	

𝐻𝐿(𝑝	||	𝑞) 	= 	𝑚𝑎𝑥(0,𝑚𝑎𝑟𝑔𝑖𝑛	 − 	𝐾𝐿(𝑝	||	𝑞))	
	
Finally,	the	loss	function	is	combined	to	return	a	different	value	depending	on	the	
same/different	speaker	criteria	as	already	explained.	Finally	the	loss	would	be	symmetrized.	
Is:	is	1	for	same	speakers	and	0	for	different	speakers,	and	conversely	for	Ids.	
	

loss(p	||	q) = Iy 	 ⋅ KL(p	||	q) + I{y 	 ⋅ HL(p	||	q)	
	

L(p, q) 	= 	loss(p	||	q) + loss(q	||	p)	
	

2.5 VoxCeleb and TIMIT 
VoxCeleb	and	TIMIT	are	two	different	datasets	used	in	the	building	of	speech	systems.	

2.5.1 TIMIT Acoustic-Phonetic Continuous Speech Corpus 
The	TIMIT	(Texas	Instruments/Massachusetts	Institute	of	Technology)	corpus	was	created	
by	its	eponymous	organizations	to	provide	a	consistent	dataset	for	development	of	speech	
recognition	systems.	Every	recording	was	done	in	the	same	room,	with	the	speaker	placed	in	
the	same	position	and	always	using	identical	audio	equipment.	The	sentences	which	the	
speakers	pronounce	are	designed	to	expose	as	many	distinct	linguistic	features	of	their	
respective	dialect	(shibboleth	sentences).	It	contains	much	more	male	than	female	speakers	
and	is	limited	to	a	few	American	dialect	regions.	[11]	TIMIT	is	an	old	dataset,	and	much	
research	has	been	carried	out	on	it.	
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2.5.2 VoxCeleb - a large-scale speaker identification dataset 
The	VoxCeleb	corpus	is	extracted	from	YouTube.	The	gender	ratio	is	balanced.	VoxCeleb	
contains	a	great	number	of	non-American	speakers	but	is	still	biased	towards	Americans	and	
other	anglophones.	[4]	VoxCeleb	is	a	more	recent	dataset	than	TIMIT	and	relatively	few	
papers	dealing	with	it	have	been	published.	In	contrast	to	TIMIT,	VoxCeleb	provides	a	more	
heterogeneous	and	realistic	body	of	speakers	and	audio	configurations.	Therefore,	VoxCeleb	
is	a	dataset	which	is	not	biased	towards	a	certain	microphone	or,	a	certain	microphone	and	
speaker	positioning.	
	

	
Figure	5	-	Breakdown	of	samples	per	Nationality	in	VoxCeleb	

2.5.2.1 Arrangement of the Data-Splits 
The	VoxCeleb	data	set	includes	just	over	153,000	utterances	from	1251	different	speakers.	
Nagrani	et	al.	[4]	suggest	a	different	type	of	subdivision	for	the	task	of	identification	and	
verification.	
In	the	identification	split	the	dev-set	contains	145'256	utterances	and	in	the	test	set	8'251	
utterances.	In	both	cases,	the	total	number	of	speakers	is	1251.	
In	the	verification	split,	the	dev-set	contains	148,642	utterances	from	a	total	of	1,211	
speakers,	and	the	test	set	contains	4,874	utterances	from	40	speakers.	
It	is	important	to	note	that	the	folder	structure	of	the	data	set	corresponds	to	the	Verification	
split.	
In	order	to	determine	the	affiliation	of	the	Utterances	in	the	case	of	identification,	one	needs	
the	corresponding	lists	provided	by	Nagrani	et	al.	[4]	on	their	website.	
The	list	"List	of	trial	pairs	for	verification"	is	a	pairing	of	the	utterances	of	the	test-set	from	
the	verification	split	proposed	by	Nagrani	et	al.	in	[4]	to	allow	a	better	comparison	of	the	
results	between	different	works.	It	comprises	37'720	different	pairings.	
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2.5.2.2 Properties of Audio Files: 
Nagrani	et	al.	report	in	[4]	to	have	first	merged	the	audio	to	a	single	channel	(mono)	and	
then	converted	it	to	a	sampling	frequency	of	16’000	Hz.	They	report	having	extracted	the	
audio	from	videos	taken	from	YouTube.	There	is	little	information	on	the	quality	YouTube	
provides,	and	users	of	the	service	have	different	options	for	uploading	audio	(with	a	
minimum	quality	of	128	kbps),	but	as	a	Google	employee	stated:	“Right	now	YouTube	Music	
streams	and	downloads	at	128kbps	HE-AAC”	[12].	With	HE-AAC	being	a	lossy	data	
compression	format	[13],	the	conversion	to	16’000	Hz	is	adequate	to	have	a	common	basis	
on	which	to	operate,	but	any	further	resampling	should	be	avoided	since	it	would	possibly	
only	worsen	the	quality	of	the	respective	files.		

3 Speaker Embeddings on VoxCeleb 

3.1 Related Work 
In	this	section,	we	consider	three	reference	systems	that	deal	with	the	VoxCeleb	data	set	in	
the	context	of	speaker	embeddings.	They	are	all	concerned	with	speaker	identification	and	
verification.	

3.1.1 VoxCeleb - a large-scale speaker identification dataset  
In	the	work	of	Nagrani	et	al.	[4],	the	creation	of	the	actual	data	set	is	described	as	well	as	the	
implementation	of	a	CNN	based	system.	

3.1.1.1 Network architecture: 
Nagrani	et	al.		[4]	base	the	architecture	of	their	network	on	the	VGG-M	network	as	proposed	
by	Chatfield,	Simonyan,	Vedaldi	and	Zisserman	in	[14].	Nagrani	et	al	[4]	replace	the	last	fully	
connected	layer	with	two	layers,	for	the	first	they	use	a	fully	connected	layer	with	
dimensions	9	x	1	and	for	the	second	one	a	pooling-layer	of	dimensions	1	x	n,	where	n	is	
dependent	on	the	length	of	the	segment	fed	to	the	network.	
To	train	the	network	on	the	task	of	speaker	verification,	they	use	a	two-step	approach,	
where	they	first	train	a	single	network	on	the	task	of	speaker	identification	and	only	then	
continue	to	train	a	Siamese	network	on	the	task	of	speaker-verification.	

3.1.1.2 Training 
3.1.1.2.1 Identification 
For	the	task	of	identification,	they	report	using	an	additional	Softmax-layer	with	the	
dimensionality	equal	to	the	number	of	speakers	(1251).	The	network	is	trained	with	
categorical	cross	entropy.	
3.1.1.2.2 Verification 
For	the	verification	task,	they	state	the	use	of	a	Siamese	network	trained	with	the	contrastive	
loss	as	suggested	by	Chopra	et	al.	[6].	By	maintaining	the	basic	network,	they	can	employ	
transfer	learning	by	using	the	weights	learned	during	identification.	For	this	task,	all	layers	
are	frozen	except	for	the	last	layer	which	is	the	only	one	updated	during	verification.		

3.1.1.3 Embedding Extraction 
During	embedding	extraction,	the	architecture	is	kept	identical	to	the	one	used	during	
training,	except	for	the	last	Softmax	layer,	which	is	adjusted	to	a	dimensionality	of	1024,	and	
whose	output	is	then	used	to	generate	the	embeddings	directly.	
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3.1.1.4 Sampling 
They	report	sampling	3-second	crops,	where	the	starting	point	is	determined	randomly.	
Additionally,	to	identify	pairs,	they	choose	half	of	the	negative	pairs	randomly.	The	other	half	
is	determined	by	applying	hard	negative	mining,	from	which	only	the	10	topmost	percent	of	
the	most	difficult	negatives	are	sampled.	

3.1.1.5 Spectrogram 
Nagrani	et	al.	[4]	report	to	have	used	a	sliding	window	process,	with	a	Hamming	window	of	
25	ms,	10	ms	steps	and	1024-point	FFT.	They	specify	to	have	spectrograms	of	
dimensionality	512	x	300	for	3	seconds	of	speech.	Additionally,	they	perform	mean	and	
variance	normalization	on	every	frequency	bin	of	the	spectrum.	They	point	out	that	the	
normalization	step	is	crucial	for	the	success	of	their	system	and	state	that	this	leads	to	an	
increase	of	10%	in	classification	accuracy.	

3.1.1.6 Parameter Count 
Nagrani	et	al.	[4]	report	that	by	replacing	the	last	two	layers	of	the	original	VGG-M	network	
architecture,	they	can	reduce	the	number	of	parameters	from	319	million	to	67	million,	
which	they	explain	helps	reduce	overfitting.		

3.1.2 Unified Hypersphere Embedding for Speaker Recognition 

3.1.2.1 Network architecture:  
Hajibabaei	and	Dai	[15]	report	that	they	use	the	ResNet-20	architecture	introduced	by	He,	
Zhang,	Ren,	and	Sun	in	[8]	which,	similar	to	that	of	Nagrani	et	al.	[4],	belongs	to	the	category	
of	convolutional	neural	networks.		

3.1.2.2 Identification 
For	the	task	of	identification,	they	use	an	additional	Softmax	layer	on	top	of	the	last	layer	of	
their	basic	network,	whose	dimensionality	is	equal	to	the	number	of	speakers	in	the	dataset	
(1251).	For	identification,	they	use	categorical	cross-entropy	among	various	other	loss	
functions.	They	report	to	get	the	best	results	by	using	two	specific	losses,	namely	AM-
Softmax	and	logistic	margin.	
Like	Nagrani	[4]	in	a	first	step,	the	network	of	Hajibabaei	and	Dai	is	trained	with	categorical	
cross	entropy.	When	continuing	to	train	with	more	contrastive	loss	functions,	such	as	AM-
Softmax	or	logistic	margin,	the	weights	from	the	training	with	cross-entropy	are	adopted,	
and	only	the	last	layer	is	reinitialized	with	Xavier.	

3.1.2.3 Verification 
Although	the	accuracy	for	the	verification	process	has	been	stated,	no	specific	training	
process	is	mentioned	in	this	regard.	

3.1.2.4 Embedding Extraction 
For	the	extraction	of	embeddings,	50	randomly	selected	3-second	pieces	are	taken	from	the	
identification	and	the	verification	split	and	fed	to	the	network.	The	resulting	embeddings	are	
then	averaged.	

3.1.2.5 Sampling 
Particularly	noteworthy	is	the	use	of	data	augmentation	in	their	system.	They	report	that	a	
better	result	can	be	achieved	by	repeating	an	utterance	and	then	randomly	setting	the	
starting	point	for	sampling	with	the	additional	inclusion	of	reversed	utterances.	They	
emphasize	the	improved	quality	of	embeddings	obtained	in	this	way.	
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3.1.2.6 Spectrogram 
Hajibabaei	and	Dai's	[15]	approach	to	the	extraction	of	spectrograms	is	very	similar	to	that	
used	by	Nagrani.	However,	they	report	that	instead	of	1024	points	FFT	they	used	a	lower	
resolution	of	512	points.	Furthermore,	they	add	the	amplitude	and	the	DC	component	of	the	
signal	to	generate	a	short-time	Fourier	transform.	They	use	audio	fragments	with	a	length	of	
3,015	seconds	and	thus	obtain	a	spectrogram	with	dimensions	of	300	x	257	

3.1.3 Attentive Statistics Pooling for Deep Speaker Embedding 

3.1.3.1 Network Architecture 
Okabe	Koshinaka	and	Shinoda	[16]	mention	their	use	of	the	network	architecture	as	
described	by	Snyder,	Garcia	Romero,	Povey	and	Khudanpur	[17],	which	consists	of	a	deep	
neural	network	which	is	divided	into	two	parts,	one	of	which	operates	on	the	frame	level	and	
one	which	operates	on	the	segment	level.	
The	frame	level	part	is	composed	of	5	layers,	wherein	each	successive	layer	frames	from	
different	time	steps	are	spliced	together.	
The	first	layer	of	the	segment	level	is	referred	to	as	the	statistics	pooling	layer,	Snyder	et	al.	
[17]	explain	that	it	receives	the	output	of	the	final	frame	level	layer,	aggregates	over	it	and	
computes	the	mean	and	standard	deviation.	They	further	state	that	these	statistics	are	then	
concatenated	and	passed	to	two	additional	hidden	layers	with	dimensions	512	and	300,	of	
which	both	they	are	then	able	to	extract	embeddings.	
In	addition	to	the	architecture	proposed	by	Snyder	et	al.	in	[17]	to	implement	an	additional	
attention	model,	Okabe	et	al.	[16]	would	extend	the	network	in	such	a	way,	that	for	each	
frame	level	feature	an	additional	attention	score	would	be	calculated	and	then	normalized	
over	all	frames.	They	continue	to	explain	that	this	normalized	score	would	be	used	as	a	
weight	to	calculate	a	mean	vector.	By	following	this	approach,	they	point	out	that	an	
utterance	level	feature	focuses	on	important	frames	and	should,	therefore,	be	more	speaker	
discriminative.		
The	last	layer	of	the	network	consists	of	a	Softmax	layer	with	categorical	cross-entropy	as	
loss	function.	An	overview	of	the	architecture	is	shown	in	the	image	below:	
	

	
Figure	6-	Architecture	of	the	attentive	statistics	pooling	model	
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3.1.3.2 Training 
For	the	training	of	their	network	Okabe	et	al.	[16]	would	use	the	splits	as	proposed	by	
Nagrani	et	al.	[4]	for	training	and	verification.	From	their	statements,	it	can	be	assumed	that	
the	network	was	only	trained	on	identification	and	then	the	resulting	embeddings	were	used	
directly	to	examine	the	particular	performance	measures.		

3.1.3.3 Embedding Extraction 
Okabe	et	al.	[16]	propose	a	new	pooling	mechanism	which	is	distinguished	by	the	fact	that	
the	attention	model	is	integrated	in	the	way	described	above,	which	they	call	attentive	
statistics	pooling.	In	their	work,	in	contrast	to	Snyder	et	al.	[17],	they	state	to	only	use	the	
first	fully	connected	layer	with	a	dimensionality	of	512	to	extract	embeddings.	

3.1.3.4 Sampling 
Okabe	et	al.	[16]	report	the	incorporation	of	data	augmentation	in	their	training	process	in	
two	specific	ways:	Firstly,	they	would	mix	the	utterances	with	noise	samples	from	the	PRISM	
corpus	and	secondly,	they	would	add	reverberation	to	the	utterances,	before	training.	

3.1.3.5 Spectrogram 
In	their	paper,	they	describe	the	usage	of	40-dimensional	MFCCs	for	every	10	ms.	They	
explain	that	similar	to	Nagrani	[4],	they	also	used	normalization,	but	in	their	case	sliding	
mean	normalization	with	a	window	of	3	seconds.	They	were	the	only	ones	among	the	
systems	considered	to	use	preprocessing	in	the	form	of	energy-based	VAD.	

3.1.3.6 Usage of the Dataset 
For	the	training	of	their	system,	they	used	the	identification	split	as	proposed	by	Nagrani	et	
al.	[4],	where	the	number	of	speakers	is	slightly	less	than	in	the	original	dataset,	namely	
1206.	

3.1.3.7 Parameter Count 
Snyder	et	al.	[17]	state	that	their	architecture	leads	to	a	network	with	4.4	million	
parameters,	One	can,	therefore,	assume	that	the	architecture	of	Okabe	et	al.	[16]	has	a	
similar	number	of	parameters	since	they	specify	to	use	the	same	network,	adding	only	the	
attention	mechanism.		

3.1.4 Comparison of the Systems Considered 
	
System	 Accuracy	 Dimensionality	
VGG-M,	Nagrani	 80.5	%	 1024	
ResNet-20,	Hajibabaei	 94.6	%	 128	
DNN,	Okabe	 n/a	 128	
		
The	accuracy	refers	to	the	top	1%	of	the	results,	and	dimensionality	refers	to	the	
embeddings	extracted.	It	can	be	observed	that	Hajibabaei	et	al.	with	128-dimensional	
embeddings,	achieve	higher	accuracy	than	Nagrani	et	al.	with	1024.	The	numbers	were	
taken	from	[15].	
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3.2 Overview of our Approach 

3.2.1 Preparation of the Data-Set 

3.2.1.1 Spectrograms 
To	generate	mel-spectrograms,	we	used	the	settings	proposed	by	Lukic	et	al.	in	[2]	which	are	
listed	below:	
	

• Sampling	rate:	16’000	Hz	
• FFT-window	length:	1024	
• Hop-length:	160	samples	
• Dynamic-range	compression	in	accordance	with	[18]	
• Mel-spectrogram:	128	elements	in	the	frequency	direction		

	
For	the	dimensions	of	the	spectrogram,	we	used	the	settings	which	Lukic	et	al.		[2]	found	to	
deliver	the	best	results,	namely	400	ms	in	the	time-domain	and	128	in	the	frequency	
domain.	To	extract	the	embeddings,	we	used	the	python	library	librosa.	We	then	created	one	
spectrogram	from	each	utterance	contained	in	VoxCeleb,	with	a	100	ms	offset	at	the	start,	to	
avoid	capturing	silence	or	other	unpleasant	effects	such	as	clicks.	
	

	
Figure	7	-	mel-spectrogram	400ms	

The	image	above	shows	the	mel-spectrogram	of	a	400ms	snippet	taken	from	a	single	
utterance	from	VoxCeleb	captured	after	applying	the	same	processing	chain	as	would	be	
used	on	the	spectrograms	of	our	system	before	feeding	them	to	the	networks	input	to	
generate	embeddings.	On	the	x-axis,	a	single	discrete	timestep	represents	a	hop	of	160	
samples,	where	40	such	hops	result	in	400	ms	given	a	sampling	rate	of	16’000	Hz.	On	the	y-
axis,	a	single	discrete	step	represents	one	of	128	frequency	bands.	The	colors	represent	the	
energy	of	each	frequency	band	at	a	given	timestep	x.	
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3.2.1.2 Data-Splits 
In	[4]	it	is	defined	that	for	the	speaker	verification	task,	all	samples	from	speakers	whose	
names	start	with	the	letter	‘E'	are	reserved	for	testing.	The	paper	states	that	this	procedure	
provides	a	good	balance	of	male	and	female	speakers.	
To	generate	training	and	verification	splits,	we	first	calculate	a	vector	where	each	
component	corresponds	to	the	number	of	occurrences	of	a	Gender/Nationality	combination	
in	all	samples.	We	then	randomly	split	the	speakers	in	an	80/20	ratio	and	calculate	the	same	
vector	for	the	two	resulting	split	sets.	Using	those	vectors,	we	calculate	a	metric;	
	

𝑚𝑒𝑡𝑟𝑖𝑐 = �|2 ⋅ 𝑜𝑐𝑐��������������⃗ − 𝑜𝑐𝑐���������������������⃗ − 𝑜𝑐𝑐����������������⃗ |�
-
	

	
which	we	try	to	minimize	by	repeating	the	process	mentioned	above.	

3.2.1.3 Pair-Generation 
To	maximize	the	training	effect,	we	generated	pairings	which	are	hard	to	learn	for	the	
Neural	Network.	In	our	implementation,	a	random	sample	is	selected	first,	followed	by	a	
second	random	sample	from	the	same	speaker.	Then	a	negative	pairing	is	created	by	
selecting	samples	from	two	different	speakers,	again	randomly,	but	under	the	condition	that	
they	speak	the	same	language	and	have	the	same	gender.	This	should	make	the	two	samples	
as	similar	as	possible	while	being	from	two	distinct	speakers.	If	there	is	only	one	speaker	
with	a	particular	Gender	/	Nationality	combination,	the	sample	is	skipped,	and	the	process	
repeated.	

3.2.2 Network-Architecture 

3.2.2.1 Basic Network 
	

	
Figure	8		–	Visualization	of	the	ANNPR	Network	Architecture	from	[3]	

The	basic	network	of	our	system	resembles	the	architecture	proposed	by	Lukic	et	al.	in	[2],	
which	consists	of	2	Bidirectional	layers	with	dropout	between	them,	followed	by	3	dense	
layers	and	a	Softmax	layer,	where	a	second	dropout	layer	is	between		the	first	and	the	
second	dense	layer,	as	can	be	seen	in	figure	8.	
The	implementation	of	the	second	bidirectional	LSTM	layer	by	Lukic	et	al.	[2]	uses	a	
dimensionality	of	512	for	the	output.		
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Input	is	provided	at	every	step	of	the	LSTM	layer	(40	timesteps),	and	each	input	is	of	
dimensionality	128	(mel	frequency-bands).	The	number	of	units	in	the	corresponding	
hidden	state	therefore	also	amounts	to	128.	Since	in	the	present	case	we	are	dealing	with	a	
bidirectional	LSTM	network,	the	dimensionality	of	the	resulting	output	is	256.	In	the	adapted	
version	which	we	compared	to	the	original,	we	decided	to	set	the	number	of	units	of	the	
second	LSTM	layer	to	128.	The	resulting	output	dimensionality	in	the	case	of	a	bidirectional	
LSTM	is	256	as	opposed	to	512	in	the	original	Version.	This	decision	was	motivated	by	the	
fact	that	the	number	of	hidden	units	and	the	number	of	output	units	should	usually	match,	as	
described	in	section	2.3.1	on	LSTMs.	
In	the	original	version,	the	dimensionality	of	the	dense	layers	directly	corresponds	to	the	
number	of	speakers	present	in	the	dataset,	which	is	denoted	as	cs,	so	the	dimensionality	of	
the	first	layer	is	10	*	number	of	speakers.	VoxCeleb	comprises	1251	speakers,	which	would	
have	resulted	in	a	dimensionality	of	12’510	for	the	first	dense	layer.	If	this	approach	is	
applied	to	all	layers,	the	resulting	network	has	89’955’039	trainable	parameters	as	can	be	
seen	in	figure	9,	in	our	experiments	this	led	to	prolonged	training	times	and	proved	to	be	
unfeasible.	
	

	
Figure	9-	Number	of	trainable	parameters	for	original	layer	settings	

We	intended	to	find	a	compromise	that	would,	on	the	one	hand,	maintain	the	relationships	
between	the	individual	dimensions	as	much	as	possible	and,	on	the	other	hand,	enable	
effective	training.	
For	this	reason,	we	decided	on	the	following	adjusted	dimensions	for	the	dense	layers:	
	

	
Figure	10	-	Adjusted	dimensions	of	the	dense	layers	

This	led	to	a	reduction	in	the	number	of	parameters	from	over	89,000,000	to	13,193,160.	
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3.2.2.2 Identification / Pre-Training 
Nagrani	et	al.	[4]	and	Hajibabaei	and	Dai	[15]	both	use	the	categorical	cross	entropy	loss	
function	to	first	train	their	network	on	the	task	of	speaker	identification,	before	using	more	
discriminative	loss	functions	for	the	task	of	speaker	verification.	Hajibabaei	and	Dai	state	
that	"Initializing	the	networks'	coefficients	before	training	them	with	more	discriminative	
loss	functions	…	often	results	in	convergence	to	sub-optimal	solutions	or	no	convergence	at	
all“	[15].		For	this	reason,	and	in	order	to	better	compare	the	basic	features	of	our	
architecture	with	those	of	the	reference	systems,	we	decided	on	the	following	configuration	
for	the	pre-training,	i.e.	the	identification	step:	The	base-network,	trained	with	categorical	
cross	entropy	and	Adam-optimization	in	accordance	with	[2]	as	can	be	seen	in	the	graphic	
below:	

	 	
	

Where	Batch	denotes	batch-size,	T	the	number	of	timesteps	(40),	freq	the	number	of	
frequency-bins	(128),	emb	the	dimensionality	of	the	desired	embeddings	(512	in	our	case),	
and	n-speak	the	number	of	speakers	contained	in	the	dataset	on	which	the	network	is	
trained.	

3.2.2.3 Verification / Training 
Nagrani	et	al.	state	in	[4]	that	for	generating	embeddings	it	is	possible	to	use	the	network	
trained	on	the	task	of	speaker	identification	but	point	out	that	“…	it	is	better	to	learn	an	
embedding	by	training	a	Siamese	network	with	a	contrastive	loss	…”	[4]	such	as	suggested	by	
Chopra	et	al.	in	[6]	which	is	concerned	with	face	verification.	We,	therefore,	modified	the	
original	architecture,	by	using	the	basic	network	described	above	as	the	two	sub-networks	
of	a	Siamese	network.	Each	branch	would	receive	a	mel-spectrogram.	To	join	the	branches,	
we	used	a	lambda-layer	from	Keras,	which	allows	applying	arbitrary	functions	to	its	input-
layers,	and	then	used	this	layer	as	the	final	output.		
To	ensure	that	the	Siamese	part	of	the	network	shares	the	weights	rather	than	computing	
them	twice,	one	has	to	instantiate	the	basic	network	only	once,	and	hand	in	both	branches	of	
the	Siamese	network	as	inputs.	Team	Keras	also	used	this	approach	in	their	Siamese	
network	implementation.	[19]	
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With	the	same	naming	as	in	the	diagram	on	pre-training,	note	the	output	of	distance1	is	1-
dimensional,	this	is	the	calculated	symmetrized	Kullback-Leibler	divergence.		
	

3.2.2.4 Implementation of the objective function 
As	can	be	seen	from	the	formulas	in	the	section	on	the	Loss	function	of	the	ANNPR-System,	
the	Kullback-Leibler	divergence	must	only	be	calculated	once	and	is	then	also	used	in	the	
Hinge	loss.	In	consideration	of	[6]	and	the	Keras	implementation	by	team	Keras	[19]	we	
decided	to	calculate	the	symmetrized	Kullback-Leibler	divergence	as	a	measure	for	distance	
in	the	lambda	layer	that	connects	the	two	branches	of	the	Siamese	network.	The	output	of	
the	lambda	layer,	in	turn,	was	used	to	compute	the	final	loss	function.	The	label	y	of	the	pair	
(either	1	or	0)	could	then	be	used	to	determine	the	applicable	loss.	Our	objective	function,	
therefore,	implements	the	loss	defined	in	equation	(4)	as	follows:	
	

𝐿𝑜𝑠𝑠(𝑃||𝑄) = 𝑦 ⋅ 𝐾𝐵N���(𝑃||𝑄) + (1 − 𝑦) ⋅ 𝐻𝐿(𝐾𝐵N���)	
	

3.2.2.5 Embedding Extraction 
To	extract	the	embeddings,	one	can	use	an	instance	of	the	base-network	and	feed	it	the	total	
number	of	400	ms	spectrograms	comprising	a	complete	segment.	The	embeddings	are	
obtained	by	capturing	the	output	of	the	networks	last	layer,	which	during	the	training	stage	
was	the	input	to	the	lambda	layer	responsible	for	computing	the	Kullback-Leibler	
divergence.	With	this	approach,	we	can	extract	embeddings	from	the	layer	that	was	
responsible	for	generating	the	values	provided	to	the	loss	function.	Another	advantage	of	
this	approach	is	the	ability	to	use	a	function	supplied	by	Keras	called	predict_on_batch,	that	
facilitates	the	transformation	of	entire	segments	consisting	of	any	number	of	spectrograms	
into	a	single	embedding	within	a	single	pass.	

4 Experiments 

In	order	to	better	compare	the	results	of	our	network	with	the	investigated	systems	under	
section	3.1,	we	chose	a	two-part	approach.	In	a	first	step	we	would	examine	the	properties	of	
the	network	developed	by	Lukic	et	al.	[2]	concerning	the	task	of	identification,	Likewise,	with	
the	adjusted	model,	we	proceeded	in	the	same	way.	In	a	second	step,	we	used	the	weights	of	
the	model	that	performed	better	and	transferred	them	to	the	Siamese	model	as	initialization	
values,	in	order	to	examine	its	properties	concerning	verification.		
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4.1 Identification 

4.1.1 Setup 
The	identification	experiment	was	carried	out	in	two	variants.	In	the	first	variant,	we	tried	to	
configure	the	network	as	similar	as	possible	to	Lukic's	description	in	[2].	However,	as	
already	explained	in	section	3.2.2.1	with	adapted	dimensions	of	the	layers.	In	the	second	
variant,	we	compared	the	characteristics	of	the	original	model	with	those	of	the	model	we	
had	adjusted.	In	both	cases,	we	used	the	same	parameters	except	for	the	addition	of	a	ReLU	
activation	function	in	the	dense	layers	and	an	output	dimension	of	256	in	the	adjusted	model	
of	the	second	BLSTM	layer.	
The	maximum	number	of	epochs	was	500.	Early	stopping	was	applied.	The	abort	condition	
was	related	to	the	validation	accuracy,	and	the	delta	value	was	1e-4,	hence	if	the	accuracy	
did	not	improve	by	this	value,	the	abort	condition	is	fulfilled.	Also,	the	Patience	parameter	
was	set	to	a	value	of	10.	Thereby	ten	more	epochs	were	carried	out	after	fulfilling	the	abort	
condition.	The	batch	size	for	all	experiments	was	256.	

4.1.2 Results 

4.1.2.1 Original ANNPR Model 
	
4.1.2.1.1 Loss 

	
Figure	11-	Training	loss	of	the	original	ANNPR	model	

As	can	be	seen	in	figure	11	the	loss	decreased	monotonously	during	training,	with	an	initial	
value	of	just	over	6.5	and	reached	a	value	of	1.5	after	epoch	53.	This	value	would	have	
decreased	further,	as	previous	experiments	showed,	but	would	have	been	contrary	to	the	
development	of	the	validation	loss.	
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Figure	12-Validation	loss	of	the	original	ANNPR	model	

The	validation	loss	shown	in	figure	12	decreased	until	epoch	16,	where	it	reached	its	
minimum	value	of	4.2.	After	that,	the	validation	loss	increased	again,	with	a	maximum	value	
of	5.6	at	epoch	50.	The	value	after	53	epochs	was	5.1.		
4.1.2.1.2 Accuracy 

	
Figure	13-	Training	accuracy	of	the	original	ANNPR	model	

In	figure	13	it	can	be	observed	that	the	accuracy	in	training	increased	monotonously,	
whereby	the	maximum	after	53	epochs	amounted	to	a	value	of	61	%.		
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Figure	14-	Validation	accuracy	of	the	original	ANNPR	model	

	
The	validation	accuracy,	on	the	other	hand,	approached	an	upper	limit	of	26	%	until	epoch	
25	and	did	not	increase	noticeably	afterward,	as	shown	in	figure	14.	It	reached	its	peak	at	
epoch	43,	with	a	value	of	25.25%.	

4.1.2.2 Adjusted ANNPR Model 
4.1.2.2.1 Loss 

	
Figure	15	-	Training	Loss	of	the	adjusted	ANNPR	model	

	
As	with	the	original	model,	the	loss	decreased	monotonously,	it	also	began	at	an	initial	value	
of	a	little	over	6.5,	but	then	reached	a	value	of	0.27	at	epoch	78.	Even	taking	into	account	the	
higher	number	of	trained	epochs,	the	adapted	model	performed	better	in	this	respect,	which	
is	shown	in	figure	15.	
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Figure	16-	Validation	loss	of	the	adjusted	ANNPR	model	

	
The	validation	loss,	by	contrast,	only	decreased	up	to	epoch	10	reaching	a	value	of	4.5,	and	
then	increased	continuously,	resulting	in	a	value	of	8.6	after	78	epochs.	
4.1.2.2.2 Accuracy 
	

	
Figure	17	-	Training	accuracy	of	the	adjusted	ANNPR	model	

	
In	figure	17	the	training	accuracy	of	the	adapted	model	is	presented.	Up	to	epoch	32,	this	
model	has	a	high	slope,	which	then	decreases	again,	resulting	in	an	accuracy	of	91	%	after	78	
epochs.	
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Figure	18-	Validation	accuracy	of	the	adjusted	ANNPR	model	

	
Figure	18	shows	the	validation	accuracy	of	the	adjusted	model,	and	its	behavior	is	similar	to	
the	original	model,	the	validation	accuracy	increases	monotonously	up	to	a	certain	point,	in	
this	case,	epoch	15.	After	that,	however,	an	upper	limit	is	approached,	which	is	even	2	%	
lower	in	the	adapted	model	than	in	the	original	model,	namely	24	%.	The	peak	was	reached	
at	a	value	of	23.5	during	epoch	61.		

4.1.3 Verification  
The	same	procedure	was	used	for	the	verification	experiment	as	for	the	identification	
experiment.	Only	the	patience	parameter	was	reduced	to	a	value	of	3	since	it	took	about	50	
minutes	to	train	on	one	epoch.	The	results	showed	a	rapid	movement	towards	a	final	value,	
which	did	not	change	noticeably	afterward.	However,	the	results	achieved	could	not	be	
interpreted	meaningfully.	We	suspect	that	the	implementation	of	the	loss	function	is	faulty.	
In	order	to	achieve	meaningful	results,	further	work	in	this	respect	is	necessary.	
	

	
Figure	19-Validation	Loss	of	the	Siamese	model	
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Figure	20	-	Validation	accuracy	of	the	Siamese	model	

The	diagrams	for	training	and	validation	are	practically	identical,	except	that	the	loss	during	
training	remained	completely	static	after	a	steep	decrease	in	epoch	1.	Therefore,	we	decided	
to	only	present	the	data	of	the	verification.	

4.1.3.1 Summary of the results 
The	results	show	that	the	original	model	was	not	able	to	exceed	62%	accuracy	in	
identification	during	training.	Together	with	the	maximum	accuracy	of	25.25	%	in	the	
validation	phase,	we	conclude	that	this	variant	has	high	bias	and	high	variance.	
The	adjusted	model	reached	an	accuracy	of	91	%	during	training.	However,	the	variance	
compared	to	the	original	mode	increased	all	the	more	since	it	was	even	below	it,	having	a	
value	of	23.5	%	in	the	validation	phase.	

5 Discussion 

5.1 Possible improvements of the ANNPR-System 

5.1.1 Magic Numbers 
Martin	suggests	in	[20]	to	exchange	so-called	magic	numbers	with	named	constants	he	
points	out	that	"In	general	it	is	a	bad	idea	to	have	raw	numbers	in	your	code."	[20]	In	our	
examination	of	the	existing	code	we	encountered	several	places,	where	such	numbers	would	
lead	to	errors,	those	can	usually	be	identified	and	corrected,	while	time-consuming,	this	does	
not	pose	mature	harm	to	the	results	of	the	experiments.	It	is	much	harder	to	identify	
incorrect	results,	based	on	values	that	have	been	set	somewhere	in	the	code,	and	do	not	
result	in	errors	when	they	do	not	match	the	current	setting,	and	we	believe	that	while	not	
directly	related	to	the	system	as	such,	it	is	worth	stressing	the	importance	of	this	matter.		
The	reason	why	we	were	not	able	to	carry	out	experiments	on	the	existing	codebase	is	to	a	
certain	degree	due	to	issues	related	to	clean	code.	
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5.1.2 Loss Function 
In	the	current	System,	a	contrastive	Loss	function	as	described	in	Combined	Kullback-Leibler	
and	Hinge	Loss	in	section	2.4	is	used.	Lukic	et	al.	[2]	would	first	compute	the	output	of	a	
complete	batch	and	then	compare	each	possible	pair.	For	a	batch	size	of	100	this	results	in	
1002	comparisons	for	each	batch.	Since	the	compilation	of	each	batch	is	generated	randomly,	
there	is	no	control	over	the	ratio	of	same/different-speaker	comparisons.	Since	the	success	
criterion	is	binary,	i.e.	only	same/different	is	considered,	we	believe	that	the	ratio	between	
same	and	different	speakers	should	be	balanced	in	order	to	train	both	cases	equally	
frequently,	so	as	not	to	distort	accuracy	in	one	direction.	As	a	simple	example:	If	a	positive	
pair	only	occurs	in	a	quarter	of	the	cases,	the	network	could	achieve	80%	accuracy	by	
merely	stating	that	they	are	different	speakers	in	each	case.		

5.1.3 Sampling Rate 
The	implementation	of	ANNPR	System	uses	the	default	sampling	rate	of	librosa	which	is	
according	to	[21]	22’500	Hz,	Stadelmann	et	al.	state	to	use	a	sampling	rate	of	16000	Hz	in	
their	experiments	[3],	to	which	Lukic	et	al.	refer	in	their	work	[2].		

5.1.4 Rescaling of the LSTM- Output 
As	explained	in	the	section	on	LSTMs	the	shape	of	all	weights	within	an	LSTM	block	is	equal	
and	depends	on	the	dimensions	of	the	input	at	each	given	timestep.	In	the	implementation	of	
the	ANNPR	the	dimensionality	of	the	output	is	rescaled	to	512,	by	setting	the	unit-
parameter,	this,	in	turn,	affects	the	dimensions	of	the	internal	weights.	As	can	be	seen	in	
figure	2	in	section	2.3.	

5.1.5 Activation Function 
In	the	dense	layers	of	the	ANNPR	system,	no	activation	function	has	been	specified,	Keras	
has	a	default	value	of	None	"If	you	don't	specify	anything,	no	activation	is	applied	(i.e.	
"linear"	activation:	a(x)	=	x)"		[22].	
If		𝑥, = 𝐴𝑥�, 		𝑥- = 𝐵𝑥,	and	𝐶 = 𝐵𝐴		then		𝑥- = 𝐶𝑥�		
Therefore,	it	might	be	of	interest	to	add	a	nonlinear	activation	function	between	the	dense	
layers	following	the	bidirectional	LSTM.	

5.1.6 Manual Embedding Extraction 
The	extraction	of	the	embeddings	in	the	original	implementation	was	achieved	by	storing	
the	weights	and	subsequent	manual	extraction,	which	involved	reshaping	of	the	dimensions	
of	the	obtained	weights,	this	approach	might	be	error	prone	but	more	importantly	is	hard	to	
comprehend	for	third	parties.		

5.1.7 Reducing Variance 
As	the	experiments	have	shown,	one	of	the	most	urgent	problems	of	the	current	system	is	its	
high	variance.	To	counteract	this,	we	make	two	proposals:	
5.1.7.1.1 Data Augmentation 
We	found	the	approach	of	Hajibabaei	in	[15]	worth	mentioning,	which	is	characterized	by	
the	fact	that	an	utterance	is	repeated	several	times	in	order	to	set	the	starting	point	
differently	each	time	a	specific	utterance	is	sampled.	Also,	he	reports	that	by	adding	inverted	
utterances	he	could	achieve	better	results,	which	we	believe	is	worth	trying.			
We	find	the	approach	of	Okabe	et	al.	[16]	should	also	be	considered.	It	involves	applying	
noise	or	reverberation	to	the	actual	utterances.	
Training	over	significantly	more	examples	might	help	to	reduce	the	problem	of	variance.		
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5.1.7.1.2 Additional 1x1 Convolutional Layer 
	

	
Figure	21-	Additional	convolutional	layer	before	LSTM	

	
What	we	noticed	during	the	evaluation	of	the	considered	reference	systems	was	that	they	all	
used	spectrograms	of	much	longer	time	intervals.	We,	therefore,	suggest	adding	a	1	x	1	
convolutional	layer	before	the	first	BLSTM	layer,	which	could	extract	information	already	
before	the	recurrent	part	of	the	network.	A	possible	approach	to	the	implementation	is	
presented	in	figure	21	where	n	represents	the	number	of	inputs	in	the	time	domain.	The	
Conv-1	D	layer	allows	to	shrink	the	dimensionality,	and	therefore	the	needed	LSTM	Blocks.	
Extending	the	system	in	this	way	would	allow	covering	a	longer	period	without	enlarging	
the	computationally	intensive	recurrent	part	of	the	network	further.	

5.2 Usage of the VoxCeleb Dataset for Future Clustering Experiments 
An	essential	requirement	of	a	clustering	experiment	is	to	examine	the	ability	of	the	system	
under	observation	to	clusters	speakers	on	whom	it	has	not	been	trained	previously.	For	this	
reason,	we	excluded	the	identification	split	offered	by	Nagrani	et	al.	from	the	outset.	
We	propose	to	use	the	verification	split	as	a	foundation	to	define	a	new	subdivision,	where	
the	test	set	is	reserved	for	the	clustering	experiment,	and	the	dev	set	is	used	for	training	and	
validation	respectively.	
For	reasons	of	comparability,	it	is	preferable	to	maintain	the	subdivision	much	as	possible,	
but	the	fact	that	the	test	set	with	40	speakers	is	rather	small	should	be	considered,	in	cases	
where	the	clustering	experiment	should	comprise	more	speakers.	
To	ensure	a	similar	distribution	among	both,	train	as	well	as	dev	set,	we	recommend	
applying	stratified	sampling	with	respect	to	country,	as	there	are	the	most	significant	
fluctuations	in	this	category	while	keeping	the	speakers	disjunct.	
Since	the	number	of	training	examples	using	this	procedure	is	less	than	100,000,	we	think	
that	data	augmentation	would	be	of	great	benefit.	

6 Conclusion 

We	have	rewritten	the	part	of	the	ANNPR	codebase	concerned	with	embedding	extraction	
from	scratch,	focusing	on	avoiding	so-called	Magic	Numbers,	and	integrating	current	
versions	of	the	libraries	in	use.	We	were	able	to	identify	two	concrete	ways	to	improve	the	
identification	experiments,	namely	adding	non-linear	activation	functions	and	avoiding	the	
rescaling	of	the	output	of	the	second	BLSTM	layer.	Furthermore,	the	results	of	the	
experiments	showed	that	the	adapted	model	has	a	higher	accuracy	on	the	training	data,	but	
also	a	higher	variance	during	validation.	In	our	opinion,	this	indicates	that	the	model	needs	a	
more	differentiated	dataset.	To	take	this	into	account,	we	suggested	the	use	of	data	
augmentation	techniques,	especially	those	used	by	Hajibabaei	in	[15].	Besides,	we	provided	
an	approach	on	how	to	make	longer	sections	of	an	utterance	accessible	to	the	network	by	
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prepending	an	additional	convolutional	1	x	1	layer	to	the	LSTM	layer.	We	developed	a	new	
approach	to	implementation,	namely	the	introduction	of	a	Siamese	network.	It	allows	a	finer	
granularity	in	the	selection	of	the	ratio	of	positive	to	negative	pairs	in	training.	However,	we	
were	not	able	to	generate	meaningful	results	using	the	combined	Kullback	Leibler	Hinge	loss	
function.	Further	research	in	this	regard	is	needed.	
Additionally,	we	propose	to	consider	the	contrastive	loss	function,	from	[6]	which	is	also	
used	by	Nagrani	for	verification	in	[4],	as	a	possible	alternative.	Since	our	architecture	
already	shows	a	high	similarity	to	the	reference	implementation	of	Keras	concerning	the	
Siamese	part,	this	should	be	feasible.	We	also	proposed	an	approach	subdividing	VoxCeleb	
optimized	for	the	clustering	experiment,	which	meets	the	condition	that	the	system	is	
confronted	with	speakers	in	the	clustering	phase	that	it	has	not	seen	before.	These	measures	
should	help	to	increase	the	quality	of	the	embeddings	and	ultimately	contribute	to	
improving	the	results	of	the	existing	diarization	pipeline.	
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