
Project Work Computer Science

A Framework to Optimize Machine
Learning Algorithms for Text Classifica-
tion through an Intuitive User Interface

Authors Linus Metzler

Nadina Siddiqui

Main supervisor Mark Cieliebak

Sub supervisor Don Tuggener

Date 20.12.2017

Zürcher Fachhochschule

Erklärung betreffend das selbständige Verfassen einer
Projektarbeit an der School of Engineering

Mit der Abgabe dieser Projektarbeit versichert der/die Studierende, dass er/sie die Arbeit selbständig
und ohne fremde Hilfe verfasst hat. (Bei Gruppenarbeiten gelten die Leistungen der übrigen Gruppen-
mitglieder nicht als fremde Hilfe.)

Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch Internetseiten) im Text
oder Anhang korrekt nachgewiesen sind, d.h. dass die Projektarbeit keine Plagiate enthält, also keine
Teile, die teilweise oder vollständig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe
der eigenen Urheberschaft bzw. ohne Quellenangabe übernommen worden sind.

Bei Verfehlungen aller Art treten die Paragraphen 39 und 40 (Unredlichkeit und Verfahren bei
Unredlichkeit) der ZHAW Prüfungsordnung sowie die Bestimmungen der Disziplinarmassnahmen der
Hochschulordnung in Kraft.

Ort, Datum: Unterschriften:

Das Original dieses Formulars ist bei der ZHAW-Version aller abgegebenen Projektarbeiten zu Beginn
der Dokumentation nach dem Titelblatt mit Original-Unterschriften und -Datum (keine Kopie)
einzufügen.

Nadina
Stamp

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 1

Abstract
We developed a tool which allows a non-expert user to perform text classification with a selection

of machine and deep learning algorithms and compare these algorithms in a straightforward way.

This application consists of a graphical user interface, the implementation of the underlying algo-

rithms, and a server which connects the other two components. The primary focus was on con-

necting the different tools involved and then presenting the calculations of the algorithms in a

visually pleasing fashion. Consequently, we did not optimize the algorithms and instead used
readily-available libraries for the underlying implementation. Some of these libraries, however,

required special attention as to make their output usable for further, automatic processing.

While a lot of machine and deep learning algorithms have been developed in recent years, they

often require an experienced programmer to be able to use these algorithms. Additionally, the

setup and configuration of these algorithms is often based on intuition and comparing different

algorithms on the same input is rather involved. In the first part we will discuss prior work in this

area.

Next, we have a look at our application and its features and capabilities. We will explain how the

different components interact with each other and what challenges we faced. This chapter will be

augmented with visual examples.

Since we aimed to make text classification simpler to use, especially when one is not sure which

algorithm is suited best for the task at hand, we decided to conduct a user test which involved

two people who were unfamiliar with the project. The results of this test will be presented in the

following section.

As the application should be useful for practical use, we dedicate a chapter to possible use cases

and look at both the immediate use case and envision what it could achieve in the field of text

classification in general.

Lastly, we take a step back and discuss the results we have achieved in this project. As this project

was designed to lay the foundation for future work, we will explore possible extensions and fea-

tures that could be implemented in future projects.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 2

Zusammenfassung
Wir haben ein Programm entwickelt, welches es einem Benutzer, der über kein Expertenwissen

verfügt, erlaubt, Textklassifikation mittels einer Auswahl von Maschinen- und Deep-Learning Al-

gorithmen auf einfache Art und Weise durchzuführen.

Das Programm besteht aus einer graphischen Benutzeroberfläche, der Implementierung der zu-

grundeliegenden Algorithmen und einem Server, der die anderen beiden Komponenten verbin-

det. Der Hauptfokus lag auf dem Verbinden der verschiedenen verwendeten Werkzeuge and dem

Darstellen der Berechnungen in einer optisch ansprechenden Weise. Folglich haben wir, statt die

Algorithmen zu optimieren, bereits verfügbare Bibliotheken für die eigentliche Implementierung

verwendet. Bei einigen dieser Bibliotheken waren Anpassungen notwendig, um deren Ausgabe

für die automatische Weiterverarbeitung verwenden zu können.

In den letzten Jahren wurden viele Algorithmen entwickelt, welche für Maschinen und Deep-Lear-

ning eingesetzt werden, jedoch benötigen diese oft eine/n erfahrene/n Programmierer/in, um

sie verwenden zu können. Ausserdem ist das Aufsetzen und Konfigurieren der Algorithmen oft-

mals auf Intuition basiert und das Vergleichen verschiedener Algorithmen auf den gleichen Daten

ist verhältnismässig aufwändig. Im ersten Teil werden wir vorangegangene Arbeit in diesem Be-

reich erläutern.

Anschliessend werden wir einen Blick auf unsere Applikationen und deren Funktionen und Merk-

male werfen. Dabei erklären wir, wie die verschiedenen Komponenten miteinander interagieren

und welche Herausforderungen uns dabei begegneten. Dieses Kapitel wird durch visuelle Bei-

spiele ergänzt.

Eines unserer Ziele ist, die Verwendung von Textklassifikation zu vereinfachen, insbesondere bei

einer dahingehenden vorhandenen Unsicherheit, welcher Algorithmus am besten für die jewei-

lige Aufgabe geeignet ist. Daher haben wir einen Test mit zwei Personen, welche mit dem Projekt

nicht vertraut waren, durchgeführt. Die Ergebnisse dieses Tests werden im anschliessenden Ab-

schnitt präsentiert.

Da die Applikation auch einen praktischen Nutzen haben sollte, haben wir ein Kapitel möglichen

Anwendungsfällen gewidmet. Dabei betrachten wir sowohl den unmittelbaren Anwendungsfall

wie auch mögliche Auswirkungen, welche diese Applikation auf die Forschung im Bereich der

Textklassifikation im Allgemeinen haben könnte.

Zum Schluss betrachten wir unsere Arbeit aus der Vogelperspektive und diskutieren die in die-

sem Projekt erreichten Resultate. Da dieses Projekt auf eine Fortsetzung hin ausgerichtet ist, wer-

den wir mögliche Erweiterungen untersuchen und Funktionalitäten betrachten, welche in wei-

terführenden Projekten implementiert werden können.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 3

Preface
Every day new tools are published, yet only a small fraction is actively maintained and used in

production. There are many factors contributing to whether it is used in practice. One of these

factors, we believe, is how easy it is to use a tool and whether its interface appeals to a developer.

In machine and deep learning, most tools focus on achieving good results, yet few have a pleasant

interface and even fewer a graphical user interface. By building a framework to connect these

algorithms to a graphical user interface, we hope to make these tools more accessible.

We would like to thank our coaches, Mark Cieliebak and Don Tuggener, for taking their time every

week to give us feedback on our work and being patient with us. We are looking forward to our

bachelor thesis with you. Furthermore, we would like to thank Jan Deriu and Fernando Benites

for performing the user test. Special thanks to Monika Metzler for proofreading this report.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 4

Contents
Abstract .. 1

Zusammenfassung ... 2

Preface ... 3

1 Introduction .. 7

2 Related Work .. 8

2.1 Automatic Machine Learning ... 8

2.1.1 Auto-Sklearn .. 8

2.1.2 Prodigy ... 8

2.1.3 AutoML ... 8

2.2 Text Classification Tools ... 8

2.2.1 GATE ... 8

2.2.2 IBM SPSS Modeler Text Analytics ... 9

3 Application .. 10

3.1 Classification .. 10

3.1.1 Changes done in Python files ... 10

3.1.2 Data input format ... 11

3.2 Backend .. 12

3.2.1 SQLite Database... 12

3.2.2 Node.js Server .. 13

3.2.3 Python virtualenv Support ... 14

3.2.4 Challenges .. 14

3.3 GUI .. 14

3.3.1 Tech Stack .. 15

3.3.2 Structure... 15

3.3.3 Challenges .. 16

3.4 Walkthrough .. 17

3.4.1 Start .. 17

3.4.2 Monitor ... 21

3.4.3 Evaluate .. 27

4 Implemented Algorithms .. 32

4.1 Overview .. 32

4.1.1 Bag Tree .. 32

4.1.2 Deep-MLSA .. 32

4.1.3 Multinomial Naive Bayes ... 32

4.1.4 Random Forest .. 32

4.1.5 Support Vector Machine .. 32

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 5

4.2 Performance ... 33

5 Use Cases ... 35

5.1 One-click Solution for Researchers ... 35

5.2 Understanding Algorithm Suitability and Solving Text Classification 37

6 User Test .. 38

6.1 Instructions ... 38

6.2 Setup .. 38

6.3 Results... 39

6.3.1 Starting a Job .. 39

6.3.2 Monitoring a Job .. 39

6.3.3 Evaluating a Job ... 40

6.3.4 Additional Comments ... 40

6.4 Conclusion ... 40

7 Conclusion ... 41

7.1 Achieved Results... 41

7.2 Features Planned for the Bachelor’s Thesis .. 41

8 References ... 43

8.1 Bibliography ... 43

8.2 Figures .. 49

8.3 Tables .. 50

9 Appendix.. 51

9.1 Official description of the task .. 51

9.2 Installation Instructions .. 52

9.2.1 Using Docker ... 52

9.2.2 Manual Setup .. 53

9.3 Port Mappings ... 53

9.4 Meeting Notes .. 55

9.4.1 2017-09-19 ... 55

9.4.2 2017-09-27 ... 56

9.4.3 2017-10-04 ... 56

9.4.4 2017-10-10 ... 57

9.4.5 2017-10-24 ... 58

9.4.6 2017-11-01 ... 58

9.4.7 2017-11-08 ... 59

9.4.8 2017-11-15 ... 59

9.4.9 2017-11-22 ... 60

9.4.10 2017-12-06 ... 61

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 6

9.4.11 2017-12-13 ... 62

9.5 GUI Sketches ... 64

9.6 Timetable ... 65

9.7 License Information .. 66

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 7

1 Introduction
Our task was to develop a tool which allows a user to perform text classification using machine

and deep learning algorithms while not requiring the user to write code, and evaluating the re-

sults in an effort to give the user an idea which algorithms are suitable for this particular data set

and which are not. We were also asked to use readily-available tools to implement said algorithms

and adapting code to our needs. Optimizing the algorithms, or the preprocessing and feature ex-

traction step, however, is outside of the scope of this work and is scheduled for a follow-up bach-

elor’s thesis.

It has proven to be useful to devise a “Definition of Done” [1] to have a clear understanding what

is part of this project and what is not and to define the scope of the project. Our Definition of Done1

reads as follows:

- Our application offers a selection of five different algorithms, some of which have multi-

ple configurations, i.e. parameter settings.

- Training and test input data sets can be uploaded.

- We only guarantee execution with the files we provide i.e. CSV files with a fixed column

order.

- All parts of the application run on the same machine.

- The application runs the algorithms in parallel.

- While executing the algorithms, the application displays the current score for each one

of these processes provided the underlying algorithm exposes this datum.

- If available, the GUI displays a graph of the F1 score over time per algorithm.
- Once an algorithm is done, the final score is displayed, and the underlying model can be

used for further evaluations, string and file input, through an interface

- A user can terminate individual processes or a whole algorithm.

- It is possible to switch between different jobs, no matter their execution state provided

the host has the necessary computation power.

- Optimizing the algorithms, parameters, preprocessing, and feature extraction is not part

of this project.

- Since this work will, as previously mentioned, be continued in the form of a bachelor

thesis by the same team, writing a prioritized feature list (see chapter 7.2) for the fol-

low-up project was also part of the assignment.

Please see chapter 9.1 for the official task description.

The nickname of this project, “The Good, The Bad, and The Ugly”, the title of a famous Western

movie [2], is a play on words with the three commonly used labels in machine learning, “positive”,

“negative”, and “neutral”.

1 Please note: while the DoD is a core instrument in Scrum teams, we did not expressly use Scrum tech-
niques. The attentive reader will note, however, we made use of other Scrum techniques such as sprints,
too.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 8

2 Related Work
Classic machine learning requires a lot of human work. Annotations need to be done by hand and

the models need to be selected and finetuned by an expert in machine learning. This project aims

to reduce some of the workload by offering multiple algorithms to simultaneously classify data.

This section will focus on other automatic machine learning (Auto-ML) tools and some text clas-

sification tools.

2.1 Automatic Machine Learning
In recent years plenty of projects have yielded promising results in the field of Auto-ML. There

are different parts of the machine learning process that can be automated. The following subsec-

tions are a selection of projects that all focus on automating something else.

2.1.1 Auto-Sklearn
The Sklearn [3] library provides several classification algorithms that can be configured with mul-

tiple parameters. Auto-Sklearn is designed to take the selection of the estimator and the parame-

ters out of your hands. The hardware resources it uses can be limited as well as the time to train

one model. [4]

2.1.2 Prodigy
The goal behind Prodigy is to make annotation the data as simple and fast as possible. It even
provides some trained models for text classification, e.g. sentiment, topic and intent. Otherwise,

the user can design one themselves. The data is classified by the model and displayed with the

predicted label. The user can then choose to confirm or deny the prediction. With each user input,

the model gets optimized in real time. [5]

2.1.3 AutoML
Google’s AutoML has automated the building and testing of neural nets. A controller neural net

designs a child neural net and tests it. After analyzing the performance of the child, the controller

builds another child taking the evaluation of the previous children into account. The AutoML runs

for thousands of cycles and the resulting net is on par with state-of-the-art neural nets designed

by machine learning experts. [6]

2.2 Text Classification Tools
The following subsections show two very different text classification tools, the first one is an open

source framework to develop your own models, while the second is a paid service for data mining

that already includes the needed models.

2.2.1 GATE
General Architecture for Text Engineering, short GATE, has been around since 1995. It offers mul-

tiple tools for text analysis.

- GATE Developer: An IDE that provides interactive GUIs to build and analyze algorithms.

- GATE Teamware: A web-based platform for collaborative curation and annotation of

data.

- GATE Mímir: A framework for implementing indexing and search functionality across

different data types.

Using GATEs APIs search engines or text classifiers can be built and embedded into existing ap-

plications. [7]

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 9

2.2.2 IBM SPSS Modeler Text Analytics
The IBM SPSS Modeler Text Analytics is designed to process and classify unstructured data like

reports, e-mails and meeting notes. It extracts concept from the text and sorts these concepts into

categories. The tool provides different models for the data mining. How well a model performs is

subject to the data it analyses. [8]

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 10

3 Application
The application consists of three main code repositories: classification (chapter 3.1), backend

(3.2), and gui (chapter 3.3). In this chapter we look at each of these repositories from a technical

point of view which is complemented by a walkthrough of user interface (chapter 3.4).

3.1 Classification
At the heart of the project lies the classification repository. Here the different models get trained

and evaluated. At the moment, the repository contains five open-source algorithms written in

python. Four of them were originally implemented by Poyu Li in Sklearn [3] to classify IMDb2

review ratings based on the review contents [9], the other one, the deep-mlsa [10], a CNN built

by SpinningBytes for the sentiment analysis of tweets.

3.1.1 Changes done in Python files
To integrate them into the framework provided by the backend and GUI repository some of the

code had to be changed. Because it should still be possible to update the tools the changes were

kept as minimal as possible. The necessary alterations can be summarized in four groups:

- Standardize the call of the python scripts

- Output redirection to JSON

- Saving the best model

- Standardize the output

In total only 5 files were changed and 1 created to accommodate all requirements. For an over-

view of all changes, consult Table 1.

Tool File Alteration
deep-mlsa runner.py - Standardize the call of the python

scripts
- Output redirection to JSON
- Standardize the output

keras utils/generic_utils.py Output redirection to JSON
utils/fit_utils.py Saving the best model

Sklearn imple-
mentation

sentiment.py - Standardize the call of the python
scripts

- Output redirection to JSON
- Standardize the output
- Saving best model

evaluate.py Created
Sklearn model_selection/_valida-

tion.py
- Output redirection to JSON
- Saving the best model

Table 1: Changed files

2 IMDb refers to the “Internet Movie Database”, a platform which provides information about movies and
allows users to leave a review on a movie.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 11

3.1.1.1 Standardized call of the script

Six switch characters were defined and implemented in both scripts main files. For the complete

list see Table 2. The changes were done in the main files of the tools: runner.py for the CNN and

sentiment.py and evaluate.py for the Sklearn. All parameters that contain paths are saved in the

environment string of the operating system. This is done so that no additional arguments need to

be passed along to other methods or even other libraries. Once saved, the path can be accessed

from everywhere by calling os.environ[‘path_variable’].

Short Verbose Example Required Function
-c --config= config.json Always Path to the configurations for the algo-

rithm.
-o --output= output.json Always Defines where the output is saved. The

name of the file is the UUID of the job.
-r --train= train.tsv Train Contains the data to trains the model.
-e --test= test.tsv Always Contains the data to test the model.
-m --model= model.sav Test Path to the model that is to be evaluated.
-s --single= “I am happy” Test (op-

tional)
If the option is present the tool returns a
single label for the given query.

Table 2: Command line paramters

3.1.1.2 Output redirection to JSON

The redirection of the final output to JSON is done in the main files as above. Redirecting the in-

termediate results posed more of a challenge because the command line printout is done in

library files. The deep-mlsa uses the Keras [11] library, here, JSON output was added to the

method update() in utils/generic_utils.py. For the Sklearn the problem was solved similarly by

editing the cross_val_score() method in the model_selection/_validation.py file of the Sklearn li-

brary.

3.1.1.3 Saving the best model

It is possible to evaluate all algorithms with epochs once the first intermediate score is displayed.

For this, the best model needs to be saved. Fortunately, the CNN already had this function imple-

mented. All that had to be done was redirecting the output so that the models could be allocated
to a job. The best model is saved in the folder models/supervised_phase, using the UUID taken from

the output parameter as the name. For the Sklearn a solution had to be implemented. Because the

tool does quite a bit of preprocessing, not only the model needed to be saved but also three

additional files. In models/ a folder with the UUID of the job is created to store the four files needed

for the evaluation. The preprocessing files are saved in sentiment.py and loaded in evaluate.py

using the pickle library. The model itself is pickled in the file _validation.py. Conveniently, those

are the same files that had previously been altered.

3.1.2 Data input format
For the training job, two data files are required, one containing the training and one the testing

data. It is recommended to use 20% of the data for testing and keeping the distribution of the

labels the same for both files.

At the current state of the framework, a fixed data input format is required. Each data entry is in

a single line containing four values. The ID, followed by an abbreviation of the data language, and

the classification label, and finally the classified text. The different values are separated by tabs

and the data is saved as a .tsv file. Moving forward with the development, the input format needs

to be addressed. Not only is it very inconvenient having to format the data exactly, but also all line

breaks and tabs need to be removed from the texts.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 12

3.2 Backend
The backend repository is the glue between the GUI (chapter 3.3) and classification (chapter 3.1)

repositories (resp.). Whereas the GUI allows a user to interact with jobs (i.e. start a new job, mon-

itor the status, run evaluations etc.) and the classification tools are responsible for the processing

of the aforementioned jobs, the backend on one hand serves as an API for the GUI to control jobs

and on the other hand manages the classification processes3.

The backend consists of an SQLite database and a server written in JavaScript on top of Node.js.

As a result, the server is very light-weight (less than 1,000 lines of code) and easy to set up thanks

to the portability of SQLite and the Yarn4 package manager’s robustness for installing JavaScript

dependencies.

3.2.1 SQLite Database
SQLite was chosen as the database for several reasons:

1. The whole database resides in a single file [12] which makes portability, being desirable

for local development in a team, very easy.

2. SQLite fully implements the SQL standard [13] and only a small subset of that standard

was required for this application.

3. SQLite itself is thoroughly tested [14] and, notwithstanding its simplicity, is very perfor-

mant and reliable [15].

3.2.1.1.1 Schema

The schema of the database is reflected in several parts of the application and for that reason, we

would like to explore it further. The full schema can be found in the appendix. There are three

main models – jobs, processes, and algorithms.

An algorithm refers to a directory in the classification repository, consists of a name and descrip-

tion, and defines the interpreter (e.g. Python). Such an example is the “Support Vector Machine”

algorithm. Furthermore, an algorithm, for it to be usable, has one or more algorithm configs which

specify the command line arguments passed to an executable or script for various different calls

(train, evaluate string, evaluate file). Each config has a name and optionally a description.

A process is an instance of an algorithm config and as such corresponds to an OS-level process. A

process stores structured (JSON) and unstructured (plain text) output of a running algorithm as

well as extracted and computed data (e.g. maximum F1 score, current F1 score etc.). Additionally,

meta information such as PID5, hostname, status, and timestamps are stored.

A job is started by a user in the GUI. It consists of one or more processes, which were created based

on the algorithm configs the user selected, and store links to the training and test files the user

provided. Based on the training file, a baseline is computed and stored as well as an optional user-

specified job name. This data is augmented by meta information such as job status and

timestamps. Since this model is the only user-addressable model, it also has a time-based univer-

sally unique identifier (UUID v1) [16] for simplified URL-generation.

3 Processes, in this context refers to processes in the sense of OS-level processes.
4 Yarn is a package manager for JavaScript and an alternative to npm. It is developed by Facebook and its
main goals are performance, reliability, security.
5 The process ID given to a running algorithm by the OS.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 13

3.2.1.1.2 Access

The database is exclusively accessed and controlled by the Node.js server. Upon starting the

server, it checks whether the database exists and if not, it creates the database together with its

tables and runs an init file which populates the database with values. This approach, in our expe-

rience, has proven to make development simpler. The necessary scripts can be found in the db/

subdirectory.

3.2.2 Node.js Server
As mentioned in the previous section, the server is responsible for managing and interfacing with

the SQLite database. Additionally, it exposes an API on port 3000 to the GUI using an Express [17]

server, and it interacts with processes.

The JavaScript code makes heavy use of well-tested and well-known libraries such as Express,

Moment.js [18], Lodash [19] and is built on top of the Node.js, a JavaScript runtime [20]. As there

are almost two dozen direct dependencies, we chose to rely on Yarn [21] to manage the state of

packages and ensuring reliable set-up across machines and operating systems. To ensure con-

sistent coding style and use of best practices, we used ESLint [22].

JavaScript makes heavy use of asynchronous code and both the web server library and the SQLite

library we decided to use, make heavy use of callbacks. To prevent landing in the infamous

Callback Hell [23], we used the new async/await keywords (where possible and appropriate).

These newly supported [24] keywords make asynchronous code look almost identical to synchro-

nous code and allow for easier reasoning of the code [25].

In addition to the database, the backend also stores data on disk, relative to its root directory.

These files are structured and unstructured output files produced by the classification algorithms

and are removed when the database is recreated as they are named after the job UUIDs and are

no longer of use as soon as the database has been regenerated. The backend also stores the train-

ing and test files uploaded by users on the filesystem.

The server itself is described in src/server.js and defines a variety of GET and POST routes. De-

pending on configuration, logging of incoming and outgoing HTTP requests is performed, which

can be useful during development. This feature is automatically disabled in production by setting

the environment variable NODE_ENV accordingly. As a user may upload files, the server also sup-

ports multi-part form data. Since the server and the GUI are not served on the same port, Cross-

Origin Resource Sharing HTTP headers [26] are set automatically. For simplicity, these headers

are set liberally.

Just like src/server.js is responsible for the web server, src/db.js handles database communication

including initialization and queries. SQL queries are exposed as functions to other JS modules.

Since the job and process model are more involved than the algorithm model, there is an addi-

tional JS file for each of the two models in src/models. The job.js is responsible for creating a job

and starting the corresponding processes, which involves setting up pipes for stdout and stderr,

and resolving the arguments working directories for the algorithms. Some of these tasks involve

path names which are generated and resolved by src/helpers.js. The necessary functionality to

manage an individual process, such as monitoring its JSON output, killing and tailing6 the process

as well as the exit handler, is provided by src/models/process.js.

6 In the sense of the UNIX command tail.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 14

One unintended consequence of this setup is, whenever the server is restarted (which, while de-

veloping, happens every time a source file is saved due to a watcher process7), any running algo-

rithms are killed, too. This is caused by a fs.spawn() [27] call in src/models/job.js which spawns a

new child process which in turn is killed automatically when its parent process dies. We will dis-

cuss this further in chapter 3.2.4.

3.2.3 Python virtualenv Support
All of the currently supported machine and deep learning tools are written in Python and each

have different, sometimes conflicting, requirements for packages/libraries upon which they are

built on. To overcome this problem, we make use of a well-known package in the Python world,

virtualenv, which “is a tool to create isolated Python environments” [28]. The algorithm in

src/helpers.js is capable of detecting a local virtualenv (in a subfolder called venv) and using the

Python interpreter in that virtual environment in a cross-platform fashion (Windows and Linux).

3.2.4 Challenges
As previously mentioned our application was developed under Windows and while Node.js is to

a large degree platform-independent (or even platform-agnostic [29]), there are instances where
Windows and POSIX-compatible systems do not behave in the same way. One such example is the

aforementioned child_process.spawn() which we make use of. While coding that particular fea-

ture, we switched back and forth between spawn() and the related exec (and execFile) to satisfy

our requirements (having control over the process and capturing stdout and stderr) while also

being able to pass arguments to a process without having to write custom logic for each new al-

gorithm. In the end we chose spawn(), which seemed to behave fine under Windows 10 and Linux

Ubuntu 16.04 LTS, even though argument-passing is slightly cumbersome as every pair of key-

word and value has to be an array. We solved this problem by storing the argument string as a

JSON array in the database and then using string replacement to substitute the pre-defined vari-

ables with the actual values in the argument list.

Another challenge we have briefly touched on previously is the issue of long-running processes

and ensuring stability of the server as once the server’s process terminates, all the algorithms,

which are child processes, terminate, too. While it is possible to change this behavior [30], it

makes the “process killing” feature of the GUI harder to implement and if one is not careful during

implementation, a process cannot be killed unless a user has system-level access to the process.

As most machine learning algorithms are fairly resource-hungry, we decided against using the

detached options at this stage in our work.

3.3 GUI
The (most) visible part of our work is arguably the graphical user interface (GUI). It is the primary

source of interaction for any end-user of our application and allows a user to start a job, monitor

any job on the server, and, provided a given job has made sufficient progress, run evaluations

against the computed models.

The GUI is web-based and runs in any modern browser. By using a web-based approach, we, also

by nature of the platform, decouple the presentation from the underlying data and process man-

agement, which is handled by the backend. Since machine and deep learning algorithms tend to

use a lot server resources, one might add cluster support to the backend. In that case, it will be

beneficial not to have a tight coupling between front- and backend.

7 This process, in our case nodemon, watches for any changes on the filesystem and automatically restarts
the server. This is very helpful during development and can easily be turned off for production.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 15

3.3.1 Tech Stack
The GUI heavily relies on Twitter Bootstrap v4 [31] and the Vue.js framework [32]. In an effort to

focus on the what rather than the how while also ensuring rapid development and prototyping

and browser compatibility, we chose the well-known and feature-rich Bootstrap framework

which comes with a lot of built-in components. The decision to use Vue.js was on one hand due

its appealing data-driven approach and on the other hand out of curiosity and desire to get famil-

iar with the framework. Fortunately – and due to the popularity of both Bootstrap and Vue, we

were able to use a package by the name of “Bootstrap Vue” [33] which bridges the two frame-

works and greatly facilitated development.

At its core, Vue uses a virtual document object model (DOM) where a user can write components

(custom HTML elements) and data, logicf and event handlers are defined by attributes. This com-

bination results in code which is both easy to write and read and files that are self-contained.

As mentioned before, Vue is data-driven, which means the DOM – and thus what is displayed to

the user – depends on the state of the data and any modifications a user performs, updates the

data store which then updates the view. In our application, the initial state is loaded via AJAX/XHR

[34], i.e. asynchronous HTTP requests initiated by the JavaScript code running in the browser.

These HTTP requests, which in the first phase use the GET HTTP verb, are then handled by the

backend’s Node.js server.

The frontend retrieves all data form the backend, including algorithms a user may start. This al-

lows for a user to use the same GUI to (theoretically) connect to different backends/servers while

the GUI is always served from the same server.8

To both facilitate bug fixes and implementing new features as well as maintainability and exten-

sibility by other developers, the GUI adheres to most sections of the official Vue.js style guide [35].

Just like for the backend code, we also used ESLint [22] for the GUI’s code to ensure consistent

use of syntactic features, spacing, and preventing bad practices.

3.3.2 Structure
Due to unfamiliarity with the Vue.js ecosystem at the beginning of this project, we chose to base

the structure of the source code on a freely available template [36], which combines Bootstrap,

Vue, and a few other tools such as Webpack [37] and Babel [38].

Webpack bundles and resolves all the assets’ dependencies optimized for both development (e.g.

support for source maps [39]) and production (e.g. minification of assets [40]) which allows for

cleaner code (by e.g. using JS modules) and does not bother the developer with setting up an as-

sets pipeline.

Babel on the other hand, as the name might suggest, ensures language compatibility, in this case

for JavaScript. JS, or rather the underlying ECMAScript specification, is regularly revised [41] –

especially in the past few years – and extended, yet browser support is lagging behind – due to

vendors and, obviously, outdated browser versions. Babel allows a developer to use the latest

ECMAScript version which it then compiles for use with older ECMAScript versions to ensure

browser compatibility. A portion of features introduced by newer versions of ECMAScript is syn-

tactic sugar which helps code readability and is therefore desirable to use.

8 This feature is not implemented at the time and would require carefully setting HTTP CORS headers.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 16

As Vue is centered around the concept of components, and therefore, all of our work can be found

in src/components, save for the two files located in the src directory and src/router/index.js. The

two files in src serve as a skeleton for the application and initialize Vue.

As the name suggests, src/router/index.js, defines all the applications routes and defines which

components and packages are loaded into the application.

Our core components, the ones responsible for starting, execution, and evaluating jobs, can be

found in the three subfolder Jobs, Monitor, and Evaluate (resp.).

The Jobs subfolder only contains one component, the Start component, which displays the form

to start a new job.

Monitor and Evaluate both have a component called Choose which allows the user to choose a job

on the server to monitor or evaluate (resp.) in case the user has not used a link in the application

which already contains the job ID. Once the user has decided which job to use, the Job component

is used to display the corresponding view.

In the case of monitoring a job, there is an additional subfolder, Processes, which contains two

more components – Overview, and Detail. These components are responsible for displaying a sim-

plified or detailed (resp.) view of a process in a job. By refactoring the Monitor/Job component

into these sub-components, the code not only gained readability and made the component more

minimal, it also helped simplifying some of the logic around calculating the “best” process etc. and

thus makes reasoning about the code easier.

We will not further discuss the other component files (e.g. the ones located in the Snippets sub-

folder) which are responsible for the navigation, footer, and static sites (home, about).

3.3.3 Challenges
Apart from diving head-first into the ecosystem of a new framework, Vue.js, we faced some other

– and mostly unrelated – challenges, most of which are natural when developing a GUI, yet still

deserve to be mentioned.

It is often tempting to implement a UI in a proof-of-concept fashion, meaning you are satisfied

when it works, yet not a lot of time is spent reflecting on the UI, whether it is intuitive and serves

its intended purpose well and – in short – the usability (UX). We were fortunate to have weekly

meetings with our coaches where we could get feedback on new features and had to explain our

thinking behind some decisions. When you explain a feature to someone else, you often realize if

it is intuitive or whether it requires a complicated explanation. An example where a lot of feed-

back went into, are the progress bars in the job overview. Additionally, as time passes, and you

use a feature you built a few weeks prior, you start noticing the little things that make it easier to

use – or not. One such example are buttons where you can un-/check all checkboxes.

Another problem is building the GUI based on how the backend operates and you, as a developer,

interact with it, i.e. you focus on the developer instead of the user. What makes sense for a devel-

oper may not always be the most obvious way to perform an action for a user – even if that user

has a computer science background. While not always easy to do, it is worth the time and effort

to try to put yourself in the shoes of the user and imagine how they would expect this action to

work.

Another challenge was striking a balance between performing work in the backend and in the

GUI, e.g. whether you calculate the maximum F1 score of all processes in a job on the server or

the client. Part of this problem was solved, up to a certain degree as byproduct, by refactoring the

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 17

Monitor/Job component; first it was a big monolithic component which performed a lot of calcu-

lations, some with process-scope, some with job-scope – and some with all-processes-in-the-job

scope. By refactoring the component and having sub-components per process, it quickly became

a pattern to perform the last category of calculations on the server while keeping some of the

calculations (which fall into the category of “computed attribute”, e.g. the maximum of two scores)

on the client. Additionally, properties should be calculated where it is sensible to perform them

and only on-demand.

And lastly, dealing with and designing for empty state is often a challenge and this application is

no different. Since all of the GUI’s content is loaded asynchronously via the network, a number of

failures (connection to the server, server is down/has crashed etc.) can occur and at the very

least, a loading icon has to be displayed and information regarding a failure has to be shown as

well. Furthermore, we display confusion matrices and “F1 score per epoch”-graphs – if we can.

Some algorithms either do not have epochs or it is not possible to extract the data necessary for

the graph (the same applies to confusion matrices). This has to be taken into account and the user

should know a certain piece of information is missing and not have to assume a bug occurred.

3.4 Walkthrough
While the user interface consists of no more than three main screens, they convey a lot of infor-

mation and are the main interaction point with the user. In this section we would like to present

the main screens in the order a user typically engages with them (see chapter 6) and point out

the various features each screen (or component, see chapter 3.3) offers.

The application has a main navigation bar which allows the user to start, monitor, and evaluate a

job:

Figure 1: The application's navigation bar

As the application consists of three main screens, this chapter consists of three sections.

3.4.1 Start
When a user wants to start a new job, they would click on “Start a job” (see Figure 1) and be

greeted with the following screen:

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 18

Figure 2: The "Start a New Job" screen

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 19

This screen consists, as described below the heading (see Figure 2) of three parts:

1. Data sets (see chapter 3.4.1.1)

2. Algorithms (see chapter 3.4.1.2)

3. Name (see chapter 3.4.1.3)

These three parts are distinguishable by boxes (or cards, as they are known in the Bootstrap

world [42]) to help visually guide the user. This pattern of boxes is used throughout the applica-

tion and, in case they contain input fields, a thin border around the card indicates whether all

required inputs have been filled in or not.

Figure 3: Red indicates not all re-
quired inputs have been filled

Figure 4: Green indicates all required
inputs have been filled

Figure 5: Blue indicates there are
non-required inputs that are empty

Additionally, the submit button is only active once all required fields have been filled and also

changes its color accordingly:

Figure 6: The submit button has a yellow background
and is disabled since not all required fields have been
filled.

Figure 7: Once all required fields have been filled, the but-
ton is active and has a blue (primary color) background.

3.4.1.1 Data sets

The order has been chosen carefully to ensure the flow feels natural. The user would first choose

the data sets (which are formatted according to chapter 3.1.2) by either using the “Choose File”

button (see Figure 8) or by dragging-and-dropping the file into the corresponding file input. This

is the only time the user (partially) leaves the context of the browser and interact with another

program (the file browser of the local machine). By asking the user to perform this step first, they

will not be further interrupted and can stay within the application. To start a job, both train and

test data have to be provided, which is also indicated by the red border in Figure 8.

Figure 8: Choosing the data sets when starting a job

3.4.1.2 Algorithms

By default, all algorithms are active since one of the goals of this application is to make compari-

son of different algorithms on the same input more straightforward. A user can easily toggle be-

tween “all” and “none” for the algorithm selection using the corresponding button9 on the top

right of the card (see Figure 9). It should be noted, however, while the “none” button may be use-

ful when one only wants to run a small number of algorithms, at least one algorithm is required

9 The buttons are two-way coupled i.e. clicking on e.g. the “All” button, checks all algorithm configurations
and when all algorithm configurations are checked, the “All” button is active (as seen in Figure 9). The
“None” button works analogously.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 20

to start a job. Each algorithm is accompanied by a small description text and has one or more

checkboxes (these correspond to the algorithm configuration described in chapter 3.2.1.1.1) to

toggle de-/activate running the same algorithm with different configurations.

Figure 9: Choosing the algorithms when starting a job.

3.4.1.3 Name

Once the files have been selected and possible adjustments to the algorithm selections have been

made, the user may give the job a name (see Figure 10). This step, however, is optional and if no

name is provided the job will be named after its starting time, formatted depending on the

server’s locale [43]. Yet naming the job is suggested, especially in a multi-user environment in

order for different people to be able to identify their job(s).

Figure 10: The input field where a job can be named before starting it.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 21

Once the button is blue (see Figure 7), the user can click on “Start job on server” and is automati-

cally redirected to the “Monitor” screen for the job.

3.4.2 Monitor
The “Monitor” screen (and to an extent also the “Evaluate” screen, see chapter 3.4.3) make heavy

use of colors to indicate the status of a job or process. As such, this is a sensible time to introduce

the colors and the meanings associated with each color10 in the context of the application11 (see

Table 3). These colors are used consistently and frequently to (subconsciously) be able to better

relate the color with the text. Usages include:

- The job status in the title right of the job name (see chapter 3.4.2.1).

- In the overview (“F1 Scores”): a circle icon left of the name of the process as well as the

bar chart of the F1 scores (see chapter 3.4.2.2).

- In the process card: the process’ status, the F1 score, and the card’s border (see chapter

3.4.2.3).

Usage Meaning

Figure 11: The grey created label

The process has been created in the server’s database but has
not started yet. In the current version of the application, this
label is never visible since the processes are started immedi-
ately and transition to “running” (see Figure 13).

Figure 12: The green completed la-
bel

The job or process has completed. In the case of a process, this
indicates a non-zero exit code12.

Figure 13: The blue running label

This label is used when a process or job is running.

Figure 14: The cyan killed label

Should the user have decided to terminate a process through
the GUI, the process will have this label to distinguish it from
“running” (Figure 13) and “errored” (Figure 15).13

Figure 15: The red errored label

Table 3: An overview of the differently colored labels used and their meanings.

10 These colors correspond to the “contextual variations” [71] or “variants” [72] in the lingo of the underly-
ing Bootstrap framework and Vue.js package (respectively).
11 In practical usage, we expect the user to learn the colors and what they mean by using the application
as there is a 1:1 mapping of color and text.
12 This is based on the convention “[…] for a child process to return (exit with) zero to the parent signify-
ing success.” [73]
13 The keen-eyed used might notice when killing a process, it occasionally has the “errored” label (Figure
15) for a brief time. The reason is as follows: when killing a process, the process returns with a non-zero
exit status (i.e. it errored). After a brief timeout, the application then overwrites the status (which has au-
tomatically been set to “errored” by the corresponding handler) to “killed” as it is not able to distinguish,
based on the exit handler, between an algorithm that has been terminated by the user and one that has
errored.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 22

The “Monitor” screen consists, strictly speaking, of two screens – one to choose which job to mon-

itor (see Figure 16) and the actual monitoring screen (see Figure 17). In practice, the former’s on-

screen time is close to zero, as the user is automatically taken to the latter after starting a job. Yet,

the former screen allows to easily load the monitoring screen for any job.

Figure 16: The screen where one can choose which job to load and monitor

Assuming the user has just started a job (as described in chapter 3.4.1), the monitoring screen is

automatically loaded (see Figure 17). It consists of three parts, where the last part is repeated by

as many algorithm configurations as have been chosen for this job.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 23

Figure 17: The “Monitor” screen for a job which ran with all algorithms on the tweets input (excerpt, for space reasons)

3.4.2.1 Header

The first part consists of the job name and status, information about the runtime of the job as well

as data about the training and test files (file size and name), as well as a “Tools” menu and the

monitor status (see Figure 18). As the monitor refreshes automatically every 1,000 ms, there is

an HTTP request every second 14. The status of the last HTTP request is displayed and colored

according to its response status. During normal operation the output is “200 OK” [44], yet it might

occasionally be a timeout (in case the server is under high load15).

14 Actually, there are 𝑛 + 1 HTTP requests where 𝑛 is the number of processes and the 1 request is for the
job itself.
15 Such as when starting all algorithms on a dual-core laptop.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 24

The “Tools” menu (see Figure 19) provides easy access to switch to the “Evaluate” screen for the

job currently being monitored and, if applicable (i.e. if at least one process is still running),

shortcuts to kill all processes and kill all processes of a given algorithm16.

An interesting detail about the runtime is the fact of it being presented in two different ways; on

one hand it is presented as a hh:mm:ss string as one would expect, and on the other hand it is also

displayed as a “humanized” [45] string i.e. an approximation of the timespan as an effort to make

the application feel more natural.

Figure 18: The top part of the “Monitor” screen

Figure 19: The "Tools" menu for a job

3.4.2.2 Overview

Following the header of the “Monitor” screen, is the overview (named after the corresponding

Vue.js component, see chapter 3.3.2) which is again a card and is designed to give the user a quick

overview of the processes in the job by providing insight into the process status, runtime, and

current/max F1 score as well as, if available, a mini chart of the F1 score per epoch (a larger ver-

sion of this chart is shown in the detail view of a process, see Figure 23) – and, as an added bonus,

the currently highest scoring process is awarded a trophy (see Figure 20). The title of this section

(“F1 Scores”) also contains the highest score of any process at the moment (i.e. the maximum of

the final scores for completed processes and of the current scores of the running algorithms) as

well as the highest score achieved in any epoch. The bar chart on the right packs a lot of infor-

mation:

- The color is indicative of the process’ status (see Table 3).

- If there is only a single number, this means either the process’ final F1 score is equal to

the highest F1 score achieved in any epoch or the process did not provide any details

about epochs and the score is the final F1 score.

- If there are two numbers, the first value represents the current (if the process is still

running) / final score of this process whereas the value in brackets refers to the highest

score this process achieved in any epoch. A popover when hovering over the bar ex-

plains this as well.

16 This is useful when running multiple configurations of the same algorithm in one job.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 25

- The length of the bar corresponds to the current score if the process is still running and

to the max score once the process has completed.

- In case the process is running, and the current score is less than the maximum score,

there is a yellow bar between the current and the max F1 score to indicate this gap (see

Figure 21). This is also explained by a popover [46] appearing when hovering over the

yellow area.

For each job, a baseline is calculated which corresponds to the score a random algorithm would

achieve (see also chapter 4.2). This baseline is shown by a thin line above the bar, which is either

black (see Figure 21) or red (see Figure 22). In the case of a red line, the maximum score this

process has achieved in any epoch is below the score a random algorithm would achieve. Once

the maximum score is above the baseline, the line turns black.

Figure 20: The overview card in the “Monitor” screen

Figure 21: A bar chart where the current score is less than
the maximum score

Figure 22: A bar chart where the maximum score is be-
low the baseline

3.4.2.3 Detail

While the overview is designed and intended to gain a quick insight into how the algorithms are

performing, which, depending on the use case, is all a user needs, the detail screen (see Figure

23) offers more information presented in a fashion with more whitespace which is “an important

element of design” and “increase[s] content legibility” [47]. Each detail screen, following the “Pro-

cesses” heading, is a card with a border colored according to the process’ status (see Table 3).

On the right side of the header slot [48] is a label with the process’ status and the process identi-

fier17 (PID) [49] and on the left side the F1 score(s)18, again on a background colored with the

process’ status color.

The footer slot [48] offers information on when the job was started or has ended (depending on

whether the process is running) and, if it has completed, how long the execution took. As machine

and deep learning algorithms tend to run for a long time, one is usually more interested in how

long the process took approximately and not in the exact millisecond figure. For this reason, the

durations are displayed in a “humanized” [45] form.

17 This corresponds to the ID given to the process by the operating system of the server and not to the ID
of the process in the database.
18 For the explanation, please see the description of the overview.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 26

The main content of the card starts with the title consisting of the name of the algorithm followed

by the subtitle which corresponds to the name of the algorithm configuration. Following the title,

is the confusion matrix on the left and the score-over-epoch graph on the right – assuming a pro-

cess provides this information19. The confusion matrix is an important piece of information to see

how well the predicted and the actual classes align (see also [50]). The graph shows the develop-

ment of the F1 score per epoch, providing insight into whether the computed model is improving.

This graph is based on the same data as the mini chart in the overview (see Figure 20).

While the score/epoch graph can be interesting to look at – and since it is updated automatically

after every epoch, it gives a sense of a “live view” (see also chapter 6) – it can also be helpful when

deciding whether to terminate a process before it has completed its computation. When the pro-

cess is running, there is an additional element in the header slot: a red button on the right to kill

the process (see Figure 24). Killing a process has the benefit of freeing up system resources which

can be used for other processes (such as pending computations in the job being monitored).

For debugging purposes (both during development and usage of the application) as well as to

extract information which is not presented by the GUI, there is the option to display the raw out-

put (stdout and stderr, see [51] for more information) by clicking “Toggle raw output” (compare

Figure 17 and Figure 23). This output may contain artefacts which decrease legibility such as

when the underlying algorithm paints a progress bar in the console output. No methods are in

place to treat this raw output and it is presented “as is”.

19 Missing information is either due to the algorithm not providing the information or the process not
having completed yet.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 27

Figure 23: The detail view of a process in the overview (in this case: Naïve Bayes for Tweets) with expanded raw output

Figure 24: A process which is still running and thus can be terminated

3.4.3 Evaluate
Each algorithm computes a model (see chapter 3.1.1.3) which is saved after the algorithm has

completed and, in case the process has more than one epoch, a model is also saved after each

epoch, provided its F1 score is the highest score this process has achieved thus far (i.e. only the

best20 model is saved). The purpose of the “Evaluate” screen is to be able to interact with the

computed models and run evaluations against these models (see Figure 25). The user may at any

point in time, after starting the job, switch to the “Evaluate” screen, no matter whether zero, one,

more, or all processes have completed.

This screen has a layout and structure similar to the “Start a job” (see chapter 3.4.1) and “Monitor”

(see chapter 3.4.2) screens. There is a header accompanied by a short explanation on how to use

this screen as well as a “Tools” menu. Following the header (see chapter 3.4.3.1) there are initially

two cards, one to choose which models should be used for an evaluation (see chapter 3.4.3.2), and

the other one to provide the evaluation input (string or file; see chapter 3.4.3.3). Additionally, for

20“Best” is according to the F1 score where higher is better.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 28

each evaluation that was run21, there is an additional card with the result of the evaluation (see

chapter 3.4.3.4).

Figure 25: The "Evaluate" screen for a job with no models selected and all inputs empty

21 Evaluation runs are not saved in the database and as such the results are lost once the browser win-
dows is reloaded.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 29

3.4.3.1 Header

The title consists of the job name and the word “evaluate” and the “Tools” menu offers a shortcut

to jump back to the “Monitor” screen (see Figure 26).

Figure 26: The header section of the "Evaluate" screen

3.4.3.2 Models

The next section is the “Models” card where the user can choose which models to use for the

evaluation. In the case of algorithms that have epochs and save models after each epoch, the com-

puted models of processes which are still running can be selected, too (see Figure 27). The card’s

border color is again indicative of whether the required inputs have been filled, i.e. if at least one

model has been selected (compare Figure 25 and Figure 27). To increase usability, there are (sim-

ilar to the “Start” screen; see chapter 3.4.1) buttons to facilitate using either all or no models as

well as a separate button to only select the best model22. Apart from the name of the process

which generated the model, the F1 score is also presented, with a background matching the color

of the process’ status (see Table 3).

Figure 27: Choosing models where one process is still running

3.4.3.3 Input

After the user has selected the models to be used for the evaluation(s), the next step is to provide

the input for the evaluation. The order of the cards was chosen based on the assumption a user is

more likely to run several evaluations on the same group of models than to run the same input on

different groups of models.

Figure 28: The two different input fields for the "Evaluate" screen

22 See footnote 9 on details about the coupling between checkboxes and buttons.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 30

There are two types of input: string input and file input (see Figure 28) as there is the option to

either provide a string (see Figure 29) as an input or upload a file (see Figure 30). As soon as

either one of the inputs is not empty, the other field is hidden and reappears once the field with

input has been emptied, as indicated by an explanatory text below the input field.

Figure 29: A string was provided as input

The file has to be in a specified format (see chapter 3.1.2) and it will be uploaded once the form is

submitted.

Figure 30: A file was uploaded to be evaluated

As soon as both cards, “Models” and “Input”, have a green border, i.e. all the required fields have

been filled, the submit button is active and changes from yellow (see Figure 6) to blue23 (see Fig-

ure 31).

Figure 31: A blue (or green) button indicates the evaluation is ready to be started

23 Once at least one evaluation has been run, the button remains green and the toggles between disabled
and enabled to indicate whether a new evaluation can be started based on the input fields.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 31

3.4.3.4 Results

The “Results” card is shown for every (see also footnote 21) evaluation and next to the title, which

indicates the type of input used, is a strictly monotonically increasing counter to be able to differ-

entiate between different evaluation runs. The runs are sorted in descending order and, as the

time to perform an evaluation is different for each algorithm, the results are displayed as soon as

they become available.

In case a string input was fed into the evaluation, the card displays (see Figure 32) the computed

label as soon as the computation of the evaluation has finished.

Figure 32: The results of an evaluation with string input

If a file was provided as input, the cards display a button to download the generated output file

(see Figure 33) which, compared to the uploaded file, contains an additional column with the

predicted label (see chapter 3.1.2).

Figure 33: The "Download" buttons are shown when a file served as input for the evaluation

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 32

4 Implemented Algorithms
This section offers an overview of the algorithms currently implemented in the framework and

their performance. The algorithms are Bag Tree (BT), Multinomial Naive Bayes (MNB), Random

Forest (RF) Support Vector Machine (SVM), all originally implemented in Sklearn for movie re-

view analysis [9] and the deep-mlsa CNN [10].

4.1 Overview

4.1.1 Bag Tree
The bag tree implementation creates 100 decision trees. Bootstrap aggregation, or bagging, is

used to reduce the variance. Each tree is built with a part of the data set that has a low variance.

Usually a tree contains about 2/3 of the data, while the rest can be used to test the tree’s accuracy.

[52]

4.1.2 Deep-MLSA
The deep-mlsa has three training phases, the unsupervised, the distant supervised and the super-

vised phase. In the first phase raw tweets are used to build the word-embeddings. The second

uses tweets with happy and sad smiles to train the CNN. In the last phase the model is trained

with the hand-labeled training data. [10]

4.1.3 Multinomial Naive Bayes
The basic Naïve Bayes model evaluates texts based on the presence or absence of a word while

the Multinomial Naïve Bayes takes the number of occurrences of the word into consideration, too.

[53]

4.1.4 Random Forest
The Random Forest Model is based on the Bag Tree. Unlike the Bag Tree, the Random Forest only

uses a small sample of data for each split. Thus the created trees have less correlation because

usually the same split values dominate a data set. With smaller samples it is possible for weaker

spilt values to win the competition. [52]

4.1.5 Support Vector Machine
A Support Vector Machine plots a function that separates the data in two-dimensional space. If

the plot performs very good on the training data, there is a high chance that the algorithm could

be overfitting. [54]

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 33

4.2 Performance
The performance is evaluated using two data sets. One is a sentiment analysis of tweets and the

other one an entry level rating for job advertisements. See Table 4 for more information on the

data files. The deep-mlsa algorithm is not included because the available word-embeddings are

for English and the job advertisement data is German. For detailed information on how the CNN

performs on tweets, please refer to “Leveraging Large Amounts of Weakly Supervised Data for

Multi-Language Sentiment Classification” [10]. For the SVM four different scalings are imple-

mented during preprocessing: default24, standard25, signed26 and unsigned27.

 Tweets Job advertisements
language English German
Size training data 14218 337
Size test data 3605 85
Classes (Distribution) Positive (43%)

Negative (15%)
Neutral (42%)

1 (29%)
2 (18%)
3 (20%)
4 (33%)

Random accuracy 38% 27%
Table 4: Data Overview

The Table 5 shows the results of three runs with each data set.

 BT28 MNB RF28 SVM
De-
fault

SVM
Stand-
ard

SVM
Signed

SVM
Un-
signed

Duration Tweets29 10 min 30 s 1.5 min 17 min 2.5 h 2.5 h 15 min
Duration Job Ads29 20 s 15 s 17 s 40 s 3 min 5 min 40 s
Best Training F1
Score Tweets29

 67.93% 69.54% 70.39% 68.99% 70.04%

Test F1 Score
Tweets29

58.21% 58.91% 58.33% 61.74% 61.16% 61.48% 61.19%

Best Training F1
Score Job Ads29

 72.73% 64.35% 84.85% 72.73% 69.7%

Test F1 Score Job
Ads29

43.67% 39.25% 42.11% 35.04% 34.86% 42.46% 39.9%

Table 5: Performance of algorithms

The results over the different runs are quite stable, with a difference of maximum 5%. But espe-

cially with the job advertisements, there are large gaps between the cross validation during train-

ing and the performance on the test data. The worst example is the SVM with standard scaling

where the best training score is 84.85% and the test score is 34.86%. A possible cause for this

could be overfitting the algorithm to the training data. Optimizing the algorithms was not part of

this project though it is a point that needs to be analyzed in the next phase.

Notable is also that the fast algorithms like the Bag Tree or the Random Forest perform better on

the job ads data, but for the tweets waiting for the slower algorithms pays off. As seen in Figure

24 No scaling
25 Scaling data to center around 0
26 Scaling data between -1 and 1
27 Scaling data between 0 and 1
28 Algorithm does not provide scores during training
29 Average of three runs

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 34

34 the graph of the F1 scores during training for the SVM’s changes direction a lot. To get the best

model it is therefore prudent to let the training run its course.

Figure 34: F1 Score/Epoch for SVM with default scaling

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 35

5 Use Cases
After having described the application (see chapter 3), we would like to present a few use cases

for the application. While some of them may require further work, such as adding additional al-

gorithms (see chapter 3.1) or being able to apply different preprocessing and feature extraction

strategies to the input data, the foundation is readily available. As outlined in chapter 7.2, the

application is scheduled to be extended and to reach a more complete level by Q2 2018.

5.1 One-click Solution for Researchers
Experimenting with different variations of preprocessing, feature extractions, and algorithms in

general is time-consuming in more than one way:

1. Coding time: The time to write the code to (either by manual or automatic selection)

run the algorithm(s) with different settings.

2. Computation time: Machine and deep learning algorithms can take, depending on the

available hardware, anywhere from hours to weeks [55].

3. Analysis time: Once the results are available, they have to be compared and evaluated

for suitability.

While the application cannot improve computation time per-se (see chapter 5.2 for how it might

improve runtime indirectly), it is able to reduce the time spent coding the algorithms to zero (not

accounting for time required to convert the input into the required format (see chapter 3.1.2) as

there is no need to write code to perform any kind of analysis. As a byproduct, this also decreases

the need for so-called “quick and dirty”30 solutions (which often incur technical debt [56]) as there

is a tool ready to use.

Furthermore, by providing visual guidance on how well the algorithms scored, a user is able to

quickly see which algorithm scored better than others31. When parsing console output, which is

the default for algorithms implemented using the popular scikit-learn package [57] (see Figure

35), there is significant cognitive overhead to discern relevant information and thereafter to com-

pare the data extracted from the output of different processes.

As an example, below is the console output from a Naïve Bayes algorithm ran on the “job ads”

input:

C:\Users\Linus\Dropbox\ZHAW\5. Semester\PA\Code\classification\sklearn\sentiment.analy-
sis-master\venv\lib\site-packages\gensim\utils.py:860: UserWarning: detected Windows; ali-
asing chunkize to chunkize_serial
 warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.2s finished
Vectorizing input texts
Performing feature selection based on chi2 independence test
[CV] ..
[CV] , score=0.5714285714285714, total= 0.0s
[CV] ..

30 This term, while it may have a negative connotation, is used as a neutral term in this context, not least
since factors other than knowledge and experience can influence code quality [74].
31 We also observed this during our user test (see chapter 6).

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 36

[CV] , score=0.5428571428571428, total= 0.0s
[CV] ..
[CV] , score=0.6470588235294118, total= 0.0s
[CV] ..
[CV] , score=0.7058823529411765, total= 0.0s
[CV] ..
[CV] , score=0.6764705882352942, total= 0.0s
[CV] ..
[CV] , score=0.5, total= 0.0s
[CV] ..
[CV] , score=0.7272727272727273, total= 0.0s
[CV] ..
[CV] , score=0.48484848484848486, total= 0.0s
[CV] ..
[CV] , score=0.42424242424242425, total= 0.0s
[CV] ..
[CV] , score=0.59375, total= 0.0s
Training Naive Bayes
CV Score = 0.587381111536
Predicted 1 2 3 4 __all__
Actual
1 14 2 1 5 22
2 16 2 1 1 20
3 4 2 5 8 19
4 7 1 1 15 24
__all__ 41 7 8 29 85

Figure 35: stdout and stderr from scikit-learn

In comparison, the information shown in the application’s overview of the same process:

Figure 36: The overview of the process

And detailed view of the process:

Figure 37: Detailed view of the process

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 37

By extracting the relevant data from the output and presenting (Figure 36 and Figure 37) the

output from different algorithms in the same way, this cognitive overhead is reduced to the one-

time task of familiarizing oneself with the interface – which, as shown in see chapter 6, takes less

than fifteen minutes.

5.2 Understanding Algorithm Suitability and Solving Text Classification
While text classification is by no means a new problem [58, pp. 253-287], [59], it is still relevant

today and actively researched as it has the potential to solve or simplify a wide range of problems

– from phishing and spam [60] to bug reports [61] and reactions to drugs [62].

These applications require developing and evaluating different approaches for the problem at

hand while only having limited knowledge which combination of preprocessing, feature extrac-

tion, and algorithm is suitable for this type of input – and in text classification, there exists a huge

range of different approaches and accompanying algorithms [63, pp. 165 - 166].

Choosing the correct combination is in no small part based on experience and validated by trial-

and-error [64] and often it is not apparent which algorithm is most suitable for a problem (see

also chapter 4).

It would be desirable to have access to a tool which furthers understanding given an input as to

which algorithms are suited for this task. This would drastically reduce the time spent experi-

menting with different preprocessing and feature extraction pipelines and would bring the scien-

tific community closer to not only understanding algorithm suitability in text classification but to

possibly solve text classification as a research field.

Since the application presented in this paper allows for comparison of several algorithms on one

input data set, it may be used to gain insights which algorithm(s) are optimal for a given problem

and to thereby contribute to solving text classification.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 38

6 User Test
Towards the end of this project, we asked two research assistants, Fernando Benites and Jan

Deriu, at the institute we worked with, to try out our application during a user test. They both

interacted with the application for fifteen minutes during which they explored virtually all the

features it offers. We asked them to think out loud and – combined with our observations of their

interaction with the application and a short individual chat after the test – we gained valuable

feedback on what works well, what could be optimized, and which features they wish were of-

fered.

Both testers knew virtually nothing about our application and were not part of any prior meet-

ings. They were told the application is “an AutoML tool with a web GUI”. As such they had very

little clue as to what to expect and what the application’s features and limitations are.

6.1 Instructions
We decided against using a set of very specific instructions and instead went with a task descrip-

tion which would invite them to explore the interface. Using the application always consists of

the same three (or two, if one is not interested in evaluating the trained models) steps:

1. Starting a job

2. Monitoring a job and waiting until it has completed

3. Evaluating the job using string or file input

Consequently, the instructions were based on these steps, which closely resemble the envisioned

real-world usage.

These are the instructions Jan and Fernando were given:

Our application offers training and evaluation of text classification algorithms. We have provided

you with two sets of data. One contains English tweets for sentiment analysis and the other German

job advertisements that are rated between 1 and 4 according to the entry level required. Feel free to

use either one of them.

During this test, we'd like you to do the following:

0. Please always think out loud and tell us why and what you are doing

1. Start a job with >2 algorithms

2. Interpret the information shown in the monitor. What information can you see about a

process? How do the algorithms compare to each other? What results/output do you get?

3. Kill a process you think is not worth waiting for until it has completed.

4. Evaluate the job

- With text input → interpret the result

- With file input → interpret the result

6.2 Setup
During the test, the tester sat in front of a laptop with us sitting around the tester. The laptop

served as a client for a remote connection to a machine (Windows 10 desktop) where the appli-

cation was running. The remote machine was used for performance reasons as that machine was

more powerful and capable of easily running several algorithms in parallel. The file upload dialog

of the browser we used, Chrome 64, was set to a folder containing four files: jobads_test.tsv,

jobads_train.tsv, tweets_test.tsv, tweets_train.tsv.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 39

While we attempted to reduce any frictions and issues not relevant for the test (such as afore-

mentioned file upload dialog), we only handed the tester the instructions (see chapter 6.1) and

neither gave an introductory talk nor answered any questions during the test.

Both testers spent fifteen minutes interacting with the application while the other person was in

a different room and as such both tests were performed independently from one another.

6.3 Results
Just as the application has three main screens (start job, monitor, evaluate) we divide this section

into three parts and present the results from the user test. This section is supplemented by an

additional fourth part about further comments we received from the testers.

6.3.1 Starting a Job
- Both testers had no major issues navigating the interface and quickly figured out where

they could start a job.

- They selected the correct files for “evaluate tweets” for the two file inputs (train and test)

and chose to run all algorithms.

- One tester, Fernando, wondered what the parameters were. He again commented on the

lack of inspecting the parameters when in the “Monitoring” phase.

- The other tester, Jan, wondered what would happen if he mixed the two datasets e.g. use

tweets for training and job ads for testing.

- Both testers named their jobs – whether they wanted us to be able to identify their job later

on or they did not notice the job name is optional, is unclear.

- Only one tester, Fernando, also started a job with the job ads whereas we skipped this step

with Jan for time reasons. When Fernando was starting this job, he clicked on “Show more

information”32 again commented he would like to get more information on the algorithms’

parameters.

6.3.2 Monitoring a Job
- Neither tester has noticed the trophy icon awarded to highest scoring process nor the base-

line indicated above each job’s score bar in the overview.

- Both testers were initially confused when nothing was visible on the screen since the pro-

cesses were yet to generate any output.

- After noticing a few key metrics and features (runtime, different processes running simulta-

neously, raw output), Fernando spent a considerable amount of time getting into the details

of the algorithms and interpreting the epochs in the Naïve Bayes and its confusion matrix,

noting how it was not able to detect negative tweets well. When monitoring the second job

(with the job ads), he interpreted the Random Forest’s matrix.

- While exploring the screen, Fernando was not able to tell which algorithms were still run-

ning and at some point (when he intended to switch to the “Evaluate” screen), accidentally

killed a few algorithms.

- Both testers successfully (and intentionally) killed one or more processes using the red but-

ton in a process box.

- One of Jan’s first questions was what the color green indicated which was quickly followed

by whether the bars in the overview were progress bars. Later on, he noticed the final score

on the bar and read the accompanying tooltip.

- Just like Fernando, Jan also inspected the confusion matrix, but he did not explore it in such

a detailed way.

32 This is a debugging feature which shows the arguments etc. as they are stored in the database. How-
ever, it does not show more information about the underlying algorithm or its parameters.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 40

- Furthermore, Jan was wondering how many epochs have elapsed (when he was looking at

the overview) and noted how the graphs were being updated in real time.

6.3.3 Evaluating a Job
- Whereas Fernando chose to run the evaluation against three generated models, Jan clicked

the button to only activate the best model.

- Both testers first performed one or more evaluations with string input and then success-

fully (without reloading) switched to file input.

- Fernando was interested in the results and tried to get the unsigned SVM to predict the

“neutral” label for an input.

- Jan wondered whether he could switch between the F1 score and other metrics (e.g. accu-

racy) for choosing the “best” model.

- Both testers looked at the downloaded file after the file evaluation and were delighted to

see the predicted labels. Fernando compared the predicted and the actual labels.

- Jan asked whether a model is saved for a process he killed (which had already produced

output) and which model (in general) was saved. We answered these questions after the

test33.

6.3.4 Additional Comments
- Jan would like to see more info about the epochs (e.g. loss) and to be able to retrieve more

information (in a machine-readable format) for further logging in an external environment.

- Additionally, Jan would like to see more figures about the input such as the number of texts.

- Fernando wished he would like to have confidence figures for the evaluation with file input.

However, he mentioned the confidence matrix was useful and the overview was “very

good”.

- Both testers expressed positive feedback about the user interface and were pleased with it.

6.4 Conclusion
From the user test we gained valuable feedback from both testers and insights from how they

interacted with the application which we added to the list of planned features (see chapter 7.2).

We purposefully performed this test late in the project as we did not want the testers to be both-

ered with bugs and incomplete features (alpha stage) but rather with the near-final work from

this project (beta stage). The test was also rewarding –both from what we observed and heard

from the testers, the application is intuitive and may be useful in the every-day work of a re-

searcher (see chapter 5.1).

33 For the curious: the answers are: yes, a model is saved (and kept) for killed processes, too, assuming
they had already generated a model; the best model (according to the F1 score, higher being better) is
saved.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 41

7 Conclusion
In this chapter we would like to take the bird’s eye perspective on our project and on one hand

reflect on the results achieved (chapter 7.1) and on the other hand look at the features which are

scheduled for the follow-up project in form of a bachelor’s thesis (chapter 7.2).

7.1 Achieved Results
In this project we have successfully (see chapter 6) built an application to run and compare sev-

eral machine and deep learning algorithms. By doing so we have not only satisfied the Definition

of Done (see chapter 1) but also laid the foundation for continued development of the application.

In its current state, the application contains five algorithms, which we have described (see chap-

ter 4.1) and evaluated their performance (see chapter 4.2) on two different data sets.

The GUI (see chapter 3.3) and the backend server (see chapter 3.2) were built using state-of-the

art technologies and frameworks and the two repositories have high cohesion with one another

yet as little coupling as necessary.

We have performed a user test (see chapter 6) where our application was used by two research-

ers for fifteen minutes each and virtually all the application’s features (from a user’s perspective)

worked without any major problems. Additionally, we gained valuable feedback and insights on

the behavioral patterns of users.

As for possible use cases (see chapter 5), there is the obvious one to use the application to perform

text classification and compare different algorithms (see chapter 5.1). Yet the application also has

the potential to contribute to the deeper understanding of algorithm suitability in the field of text

classification (see chapter 5.2) where it could contribute to solving the problem of text classifica-

tion.

7.2 Features Planned for the Bachelor’s Thesis
While we have built a first working version of our application in the scope of this work, there is

still ample room for more features, some of which are planned to be implemented in the scope of

a follow-up bachelor’s thesis.

Each feature is given an ID34, a priority between 1 (highest) and 3 (lowest), and is part of a pack-

age. The packages are:

- algorithms: optimizing and implementing algorithms as well as parameter search

- stats & figures: display statistical figures about input data and results

- preprocessing: tweak preprocessing and feature extraction of input data

- performance: make the system faster and more responsive

- (unclassified): other features that cannot be assigned to another package

ID Feature Package Priority

1 Add more deep learning algorithms to the application algorithms 1

2 Make use of ensemble learning algorithms 3

3 Add the ability to run in the individual algorithms in
Docker containers

algorithms 3

4 Add support for cluster environments such as AWS EC2
or Microsoft Azure

performance 2

34 The order of features, and thus the ID, has no meaning besides providing a unique number to reference
to a feature later.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 42

ID Feature Package Priority

5 Provide an estimated time to completion for each pro-
cess

stats & figures 1

6 Allow the user to choose whether to execute the pro-
cesses in parallel or sequentially

performance 2

7 Allow the preprocessing step to be configured by the
user

preprocessing 1

8 Allow the feature extraction to be configured by the user preprocessing 1

9 Provide an export of any computed model in the form of
a ready-to-use playground

evaluation 2

10 Add the option to set a maximum execution time for a
process

performance 3

11 Implement heuristics to automatically choose algo-
rithm(s) for a given input

algorithms 2

12 Provide general estimates for the running time of algo-
rithms independent from the input (minutes, hours,
days)

stats & figures 3

13 Automatic termination of low-scoring processes performance 3

14 Allow for different input formats (unclassified) 1

15 Support running one algorithm with different prepro-
cessing configurations

algorithms 1

16 Support running one preprocessing configuration with
different algorithms

algorithms 1

17 Provide sample input for the different supported file for-
mats

(unclassified) 2

18 Generate per-class word clouds evaluation 3

19 Analyze input data and provide statistical figures about
it

stats & figures 3

20 Evaluation with file input: provide statistical figures
about the label/class distribution

stats & figures 2

21 Evaluation with file input: output the number of matches stats & figures 2

22 Evaluation with text input: display confidence of as-
signed class/label

stats & figures 2

23 Allow the natural language of the input data to be chosen preprocessing 3

24 Output F1 scores per class/label stats & figures 3

25 Run a few dozen data sets and compare with state-of-
the-art results

(unclassified) 2

26 Add the option to clean up generated files on the server
through the GUI

(unclassified) 2

28 Make the filename of a file downloaded from the evalua-
tion with file input more human-friendly

(unclassified) 2

Table 6: Prioritized feature list for the bachelor’s thesis

Implementing these features will enhance the application’s functionality and ease of use such as

more flexible input formats, distributed execution of individual processes, and configurable vari-

ations of preprocessing and feature extraction.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 43

8 References

8.1 Bibliography

[1] D. Panchal, "What is Definition of Done (DoD)?," Scrum Alliance, 03 09 2008. [Online].

Available: https://www.scrumalliance.org/community/articles/2008/september/what-

is-definition-of-done-(dod). [Accessed 05 12 2017].

[2] IMDb, "The Good, the Bad and the Ugly (1966)," [Online]. Available:

http://www.imdb.com/title/tt0060196/. [Accessed 16 12 2017].

[3] Sklearn, "Sklearn," [Online]. Available: http://scikit-learn.org. [Accessed 01 12 2017].

[4] M. Feurer, K. Aaron, E. Katharina, J. T. Springberg, M. Blum and F. Hutter, "Efficient and

Robust Automated Machine Learning," Advances in Neural Information Processing Systems,

no. 28, pp. 2962-2970, 2015.

[5] Prodigy, "Prodigy," 2017. [Online]. Available: https://prodi.gy/. [Accessed 01 12 2017].

[6] L. Quoc and Z. Barret, "Using Machine Learning to Explore Neural Network Architecture,"

Google, 17 05 2017. [Online]. Available:

https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html.

[Accessed 01 12 2017].

[7] GATE, "GATE: a full-lifecycle open source solution for text processing," The University of

Sheffield, 2017. [Online]. Available: https://gate.ac.uk/overview.html. [Accessed 01 12

2017].

[8] IBM, "About IBM SPSS Modeler," IBM, 2017. [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/SS3RA7_18.0.0/modeler_mainhel

p_client_ddita/clementine/entities/clem_family_overview.html. [Accessed 01 12 2017].

[9] P. Li, "sentiment.analysis," 06 05 2015. [Online]. Available:

https://github.com/Poyuli/sentiment.analysis. [Accessed 01 12 2017].

[10] J. Deriu, A. Lucchi, V. De Luca, A. Severyn, S. Müller, M. Cieliebak, T. Hofmann and M. Jaggi,

"Leveraging Large Amounts of Weakly Supervised Data for Multi-Language Sentiment

Classification," in WW 2017 - International World Wide Web Conference, Perth, Australia,

2017.

[11] Keras, "Keras," [Online]. Available: https://keras.io/. [Accessed 01 12 2017].

[12] SQLite, "SQLite Is Serverless," [Online]. Available: https://www.sqlite.org/serverless.html.

[Accessed 01 12 2017].

[13] SQLite, "Full-Featured SQL," [Online]. Available: https://www.sqlite.org/fullsql.html.

[Accessed 01 12 2017].

[14] SQLite, "How SQLite Is tested," [Online]. Available: https://www.sqlite.org/testing.html.

[Accessed 01 12 2017].

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 44

[15] SQLite, "High Reliability," [Online]. Available: https://www.sqlite.org/hirely.html.

[Accessed 01 12 2017].

[16] P. Leach, M. Mealing and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace,"

07 2005. [Online]. Available: https://tools.ietf.org/html/rfc4122. [Accessed 01 12 2017].

[17] expressjs.com contributors, "Express - Node.js web application framework," [Online].

Available: https://expressjs.com/. [Accessed 01 12 2017].

[18] moment.js, "Moment.js," [Online]. Available: http://momentjs.com/. [Accessed 01 12

2017].

[19] @veksenn and @zthall, "Lodas," [Online]. Available: https://lodash.com/. [Accessed 01 12

2017].

[20] Node.js Foundation, "Node.js," [Online]. Available: https://nodejs.org/en/. [Accessed 01

12 2017].

[21] Yarn, "Yarn," [Online]. Available: https://yarnpkg.com/en/. [Accessed 01 12 2017].

[22] JS Foundation and contributors, "ESLint - PLuggable JavaScript linter," [Online]. Available:

https://eslint.org/. [Accessed 01 12 2017].

[23] M. Ogden, "Callback Hell," [Online]. Available: http://callbackhell.com/. [Accessed 01 12

2017].

[24] I. A. Casas, "Node v7.6.0 (Current)," Node.js Foundation, 22 02 2017. [Online]. Available:

https://nodejs.org/en/blog/release/v7.6.0/. [Accessed 16 12 2017].

[25] T. Kadlecsik, "Mastering Async Await in Node.js," RisingStack, 05 07 2017. [Online].

Available: https://blog.risingstack.com/mastering-async-await-in-nodejs/. [Accessed 01

12 2017].

[26] MDN web docs, "Cross-Origin Resource Sharing (CORS)," Mozilla, 15 11 2017. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS. [Accessed 01 12

2017].

[27] Node.js, "child_process.spawn," [Online]. Available:

https://nodejs.org/api/child_process.html#child_process_child_process_spawn_comman

d_args_options. [Accessed 01 12 2017].

[28] Ian Bicking, The Open Planning Project, PyPA, "Virtualenv," [Online]. Available:

https://virtualenv.pypa.io/en/stable/. [Accessed 03 12 2017].

[29] Node.js, "Path: Windows vs. POSIX," [Online]. Available:

https://nodejs.org/api/path.html#path_windows_vs_posix. [Accessed 09 12 2017].

[30] Node.js, "options.detached," [Online]. Available:

https://nodejs.org/api/child_process.html#child_process_options_detached. [Accessed

01 12 2017].

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 45

[31] @mdo and @fat, "Bootstrap · The most popular HTML, CSS, and JS library in the world.,"

[Online]. Available: http://getbootstrap.com/. [Accessed 01 12 2017].

[32] E. You, "Vue.js," [Online]. Available: https://vuejs.org/. [Accessed 01 12 2017].

[33] Bootstrap Vue core team, "Bootstrap Vue," [Online]. Available: https://bootstrap-

vue.js.org/. [Accessed 01 12 2017].

[34] MDN web docs, "XMLHttpRequest," Mozilla, 02 12 2017. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest. [Accessed 03 12

2017].

[35] Vue.js, "Style Guide," [Online]. Available: https://vuejs.org/v2/style-guide/. [Accessed 03

12 2017].

[36] BootstrapVue, "bootstrap-vue/webpack," [Online]. Available:

https://github.com/bootstrap-vue/webpack. [Accessed 03 12 2017].

[37] webpack, "webpack," [Online]. Available: https://webpack.js.org/. [Accessed 03 12 2017].

[38] Babel, "Babel," [Online]. Available: https://babeljs.io/. [Accessed 03 12 2017].

[39] R. Seddon, "Introduction to JavaScript Source Maps," HTML5 Rocks, 21 03 2012. [Online].

Available: https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/.

[Accessed 03 12 2017].

[40] Google Developers, "Minify Resources (HTML, CSS, and JavaScript)," 26 04 2016. [Online].

Available: https://developers.google.com/speed/docs/insights/MinifyResources.

[Accessed 03 12 2017].

[41] MDN web docs, "JavaScript language resources," Mozilla, 10 10 2017. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources.

[Accessed 03 12 2017].

[42] Twitter Bootstrap, "Cards," [Online]. Available:

https://getbootstrap.com/docs/4.0/components/card/. [Accessed 15 12 2017].

[43] MDN web docs, "Date.prototype.toLocaleString()," Mozilla, 03 09 2017. [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleString. [Accessed 15

12 2017].

[44] MDN web docs, "HTTP response status codes," Mozilla, 18 07 2017. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status. [Accessed 15 12 2017].

[45] Moment.js, "Docs: Durations: Humanize," [Online]. Available:

http://momentjs.com/docs/#/durations/humanize/. [Accessed 15 12 2017].

[46] Twitter Bootstrap, "Popover," [Online]. Available:

https://getbootstrap.com/docs/4.0/components/popovers/. [Accessed 15 12 2017].

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 46

[47] The Segue Creative Team, "Why Whitespace is so Important in Web Design," Segue

Technologies, 10 09 2015. [Online]. Available: https://www.seguetech.com/whitespace-

web-design/. [Accessed 15 12 2017].

[48] BootstrapVue, "Card: Header and footer," [Online]. Available: https://bootstrap-

vue.js.org/docs/components/card#header-and-footer. [Accessed 15 12 2017].

[49] Wikipedia, "Process identifier," 25 10 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Process_identifier. [Accessed 15 12 2017].

[50] Wikipedia, "Confusion matrix," 07 08 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Confusion_matrix. [Accessed 15 12 2017].

[51] Wikipedia, "Standard streams," 10 12 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Standard_streams. [Accessed 15 12 2017].

[52] S. Singh, "A Practical Guide to Tree Based Learning Algorithms," 22 07 2017. [Online].

Available: https://sadanand-singh.github.io/posts/treebasedmodels/. [Accessed 01 12

2017].

[53] A. McCallum and K. Nigam, "A Comparison of Event Models for Naive Bayes Text

Classification," Pittsburgh, 1998.

[54] S. Patel, "Chapter 2 : SVM (Support Vector Machine) — Theory," 03 05 2017. [Online].

Available: https://medium.com/machine-learning-101/chapter-2-svm-support-vector-

machine-theory-f0812effc72. [Accessed 01 12 2017].

[55] R. Shukla, "How to train your Deep Neural Network," 05 01 2017. [Online]. Available:

http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/. [Accessed 14 12 2017].

[56] M. Fowler, "TechnicalDebt," 01 10 1003. [Online]. Available:

https://martinfowler.com/bliki/TechnicalDebt.html. [Accessed 14 12 2017].

[57] scikit-learn, "Working With Text Data," [Online]. Available: http://scikit-

learn.org/stable/tutorial/text_analytics/working_with_text_data.html. [Accessed 14 12

2017].

[58] C. D. Manning, P. Raghavan and H. Schütze, Text classification and Naive Bayes, Cambridge:

Cambridge University Press, 2009.

[59] F. Sebastiani, "Machine learning in automated text categorization," ACM Computing Surveys

(CSUR), vol. 34, no. I, pp. 1-47, 2002.

[60] N. K. Nagwani and A. Sharaff, "SMS spam filtering and thread identification using bi-level

text classification and clustering techniques," Journal of Information Science, vol. 43, no. I,

pp. 75-87, 2017.

[61] J. Xuan, H. Jiang, Z. Ren, J. Yan and Z. Luo, "Automatic Bug Triage using Semi-Supervised

Text Classification," 15 04 2017. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1704/1704.04769.pdf. [Accessed 15 12 2017].

[62] R. Ginn, P. Pimpalkhute, A. Nikfarjam, A. Patki, K. O'Connor, A. Sarker, K. Smith and C.

Gonzalez, "Mining Twitter for Adverse Drug Reaction Mentions: A Corpus and

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 47

Classification Benchmark," 05 2014. [Online]. Available:

https://www.researchgate.net/profile/Abeed_Sarker/publication/280301158_Mining_T

witter_for_adverse_drug_reaction_mentions_a_corpus_and_classification_benchmark/link

s/56d205b608ae85c8234ae39d.pdf. [Accessed 15 12 2017].

[63] C. C. Aggarwal and C. Zhai, "A Survey of Text Classification Algorithms," 2012. [Online].

Available:

https://pdfs.semanticscholar.org/5c89/852b90a1e9e506d237749c745bf42ac0f737.pdf.

[Accessed 14 12 2017].

[64] D. Effrosynidis, S. Symeonidis and A. Arampatzis, "A Comparison of Pre-processing

Techniques for Twitter Sentiment Analysis," 02 09 2017. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-319-67008-9_31. [Accessed 14 12

2017].

[65] Docker Inc., "Get Docker CE for Ubuntu," [Online]. Available:

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/. [Accessed 01 12

2017].

[66] Keymetrics, "PM2 - Advanced Node.js Process Manager," [Online]. Available:

http://pm2.keymetrics.io/. [Accessed 03 12 2017].

[67] Docker Inc., "docker load," [Online]. Available:

https://docs.docker.com/engine/reference/commandline/load/#extended-description.

[Accessed 03 12 2017].

[68] Node.js, "Downloads," [Online]. Available: https://nodejs.org/en/download/. [Accessed

03 12 2017].

[69] Yarn, "Installation," [Online]. Available: https://yarnpkg.com/en/docs/install. [Accessed

03 12 2017].

[70] Python Software Foundation, [Online]. Available: https://www.python.org/downloads/.

[Accessed 03 12 2017].

[71] Twitter Bootstrap, "Badges: Contextual variations," [Online]. Available:

https://getbootstrap.com/docs/4.0/components/badge/#contextual-variations.

[Accessed 15 12 2017].

[72] BootstrapVue, "Badges: Contextual variations," [Online]. Available: https://bootstrap-

vue.js.org/docs/components/badge/#contextual-variations. [Accessed 15 12 2017].

[73] Wikipedia, "Exit status: Semantics," 07 05 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Exit_status#Semantics. [Accessed 15 12 2017].

[74] M. Lavallée and P. N. Robillard, "Why Good Developers Write Bad Code: An Observational

Case Study of the Impacts of Organizational Factors on Software Quality," 16-24 05 2015.

[Online]. Available:

http://www.upedu.org/papers/ICSE2015_OrganizationalFactors/LavalleeRobillard_ICS

E2015_WhyGoodDevelopersWriteBadCode.pdf. [Accessed 14 12 2017].

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 48

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 49

8.2 Figures
Figure 1: The application's navigation bar ... 17

Figure 2: The "Start a New Job" screen... 18

Figure 3: Red indicates not all required inputs have been filled ... 19

Figure 4: Green indicates all required inputs have been filled ... 19

Figure 5: Blue indicates there are non-required inputs that are empty ... 19

Figure 6: The submit button has a yellow background and is disabled since not all required fields

have been filled... 19

Figure 7: Once all required fields have been filled, the button is active and has a blue (primary

color) background. .. 19
Figure 8: Choosing the data sets when starting a job ... 19

Figure 9: Choosing the algorithms when starting a job. .. 20

Figure 10: The input field where a job can be named before starting it... 20

Figure 11: The grey created label ... 21

Figure 12: The green completed label .. 21

Figure 13: The blue running label .. 21

Figure 14: The cyan killed label ... 21

Figure 15: The red errored label ... 21

Figure 16: The screen where one can choose which job to load and monitor 22

Figure 17: The “Monitor” screen for a job which ran with all algorithms on the tweets input

(excerpt, for space reasons) .. 23

Figure 18: The top part of the “Monitor” screen .. 24

Figure 19: The "Tools" menu for a job .. 24

Figure 20: The overview card in the “Monitor” screen .. 25

Figure 21: A bar chart where the current score is less than the maximum score 25

Figure 22: A bar chart where the maximum score is below the baseline .. 25

Figure 23: The detail view of a process in the overview (in this case: Naïve Bayes for Tweets) with

expanded raw output ... 27

Figure 24: A process which is still running and thus can be terminated ... 27

Figure 25: The "Evaluate" screen for a job with no models selected and all inputs empty 28

Figure 26: The header section of the "Evaluate" screen.. 29

Figure 27: Choosing models where one process is still running ... 29

Figure 28: The two different input fields for the "Evaluate" screen .. 29

Figure 29: A string was provided as input .. 30

Figure 30: A file was uploaded to be evaluated .. 30

Figure 31: A blue (or green) button indicates the evaluation is ready to be started 30

Figure 32: The results of an evaluation with string input .. 31

Figure 33: The "Download" buttons are shown when a file served as input for the evaluation .. 31

Figure 34: F1 Score/Epoch for SVM with default scaling ... 34

Figure 35: stdout and stderr from scikit-learn .. 36

Figure 36: The overview of the process ... 36

Figure 37: Detailed view of the process ... 36

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 50

8.3 Tables
Table 1: Changed files .. 10

Table 2: Command line paramters ... 11

Table 3: An overview of the differently colored labels used and their meanings............................... 21

Table 4: Data Overview ... 33

Table 5: Performance of algorithms .. 33

Table 6: Prioritized feature list for the bachelor’s thesis .. 42

Table 7: How to change the application ports ... 54

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 51

9 Appendix

9.1 Official description of the task
Ist ein Tweet positiv oder negativ? Hat jemand Selbstmord-Gedanken? Welche Note sollte ein Prü-

fungstext erhalten?

Diese Fragen so unterschiedlich sie klingen haben eines gemeinsam: Man muss einen Text in vorge-

gebene Kategorien einteilen, z.B. positiv/negativ oder Selbstmord-gefährdet ja/nein. Dies wird

heute typischerweise mit einem Machine-Learning-System gelöst, das für die jeweilige Aufgabenstel-

lung konfiguriert und auf geeigneten Trainingsdaten trainiert wird. Dabei werden z.B. Feature-ba-

sierte Systeme eingesetzt, aber auch Neuronale Netze wie CNNs oder RNNs.

Die manuelle Auswahl des geeigneten Systems für eine konkrete Klassifikationsaufgabe ist sehr viel

Aufwand. Deswegen möchten wir gern ein Framework entwickeln, das verschiedene Basis-Systeme

für Textklassifikation kennt und für einen neuen Task automatisch ein möglichst gutes Klassifikati-

onssystem aufbaut. Damit könnte man quasi auf Knopfdruck jedes beliebige Klassifikationsproblem

lösen. Das Framework soll jedes Basis-System für den Task trainieren und optimieren, und anschlies-

send das beste System daraus entwickeln.

Das Ziel dieser Arbeit ist die Grundfunktionen des Frameworks zu entwickeln:

- Einlesen in das Thema automatische Text-Klassifikation

- Konzeption und Implementierung des Frameworks, das aus gegebenen Trainingsdaten ein

Klassifikationssystem generiert. Focus ist hierbei eine ausbaufähige Architektur

- Integration von verschiedenen Basis-Systemen. Dabei kann auf bestehende Systeme zu-

rückgegriffen werden, die am InIT entwickelt wurden

- Anwendung des Frameworks auf Klassifikationstasks und Vergleich mit dem State of the

Art in der Wissenschaft.

Je nach Qualität der Resultate können die Ergebnisse als Open-Source-Tool oder sogar in einem wis-

senschaftlichen Paper publiziert werden.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 52

9.2 Installation Instructions
These installation instructions assume you have a local clone of the Git repositories classification,

backend, gui, and docker-app-image which can be found at https://github.engineer-

ing.zhaw.ch/good-bad-ugly/. This does not apply if you only wish to run the docker image.

The deep-mlsa algorithm requires some special attention as it uses files we cannot35 check in to

version control. We have, however, created the necessary skeleton in folder structure to make

this process easier for you. Please perform these steps in classification/deep-mlsa-master/code.

1. Download the “Word Embeddings trained with Word2Vec on 200 million English

Tweets using 200 dimensions” from https://spinningbytes.com/resources/embed-

dings/ and extract the results to embeddings/en_embeddings_200M_200d/. Rename bi-

gram and trigram to 0gram and 1gram (respectively).

2. Download “Supervised Phase” in the chapter of “WWW-2017: Leveraging Large

Amounts of Weakly Supervised Data for Multi-Language Sentiment Classification” from

https://spinningbytes.com/resources/suppmaterialpub/ and extract the contents to the

models folder.

9.2.1 Using Docker
While the setup is not exceptionally difficult, there are quite a few steps involved which can be

cumbersome yet can easily be automated. For this reason, we have prepared a Dockerfile which

generates (using docker-app-image/build.sh and docker-app-image/save-image.sh) an archive

called app.tar.

We do not recommend using Docker for development, as the build, due to the large size of pre-

trained models and embeddings, takes a few minutes to execute in the best-case scenario (when

all layers are unmodified and can be loaded from the cache) which is impractical.

You can use a pre-built app.tar or build the image yourself. In either case, you need a working

Docker environment. While installation is possible on all major operating systems (Windows, ma-

cOS, Linux), we tested it only using Linux Ubuntu 16.04. For setup instructions, we refer to the

official Docker CE installation instructions [65].

9.2.1.1 Building the Image

Please ensure you have the directory structure set up as described above and Docker installed

and working. There is a convenience script located at docker-app-image/build.sh which you can

execute36 as root37. The build script will perform a series of tasks such as installing Python and

Node.js in the container, installing the necessary packages/libraries, and finally starting the PM2
process manager [66] to run the front- and backend. Furthermore, it will tag the image as good-

bad-ugly/app.

To run the image, please refer to the appropriate section (9.2.1.2).

35 For both legal/copyright reasons and file size issues.
36 It might be necessary to give the script the necessary executable permissions which can be done with
chmod +x docker-app-image/*.sh which will also grant that permission to the other convenience scripts
related around Docker tasks.
37 This is due to Docker requiring root permissions. Should you have added your user to the docker group
(which is less secure), you still need to run the script(s) as root since the scripts only run if the user is
root to cover all cases.

https://github.engineering.zhaw.ch/good-bad-ugly/
https://github.engineering.zhaw.ch/good-bad-ugly/
https://spinningbytes.com/resources/embeddings/
https://spinningbytes.com/resources/embeddings/
https://spinningbytes.com/resources/suppmaterialpub/

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 53

9.2.1.2 Running the Image

If you received the image in form of a tar archive (called app.tar by default), you will first have to

load it into your local Docker environment. To do so, please consult the CLI reference [67].

To run the image, you can either use docker-app-image/run.sh (for details about the scripts, please

refer to the previous section, 9.2.1.1) or run the command docker run --rm -it -p 8080:8080 -p

3000:3000 -p 5000:5000 good-bad-ugly/app.

The port mapping of the port 5000 is not required, it exposes PM2’s health endpoint to the host

which can be used for monitoring purposes. We refer to PM2’s documentation for further details

on how to make use of that endpoint.

You can then start the application by pointing your modern web browser to http://lo-

calhost:8080.

9.2.2 Manual Setup
Should you decide to perform the setup manually, you basically execute the aforementioned Dock-

erfile by hand. This can be done either on Windows or Linux. It should be noted, however, we

developed the application under Windows 10. This is the recommended setup for development.

Prerequisites to run our application are Node.js 8 LTS [68], Yarn [69], and Python 3 [70]. After

installing these tools and having verified their binaries are included in the PATH variable of your

system, please install virtualenv globally by running pip3 install virtualenv and nodemon globally

by running yarn global add nodemon38.

After installing these additional packages, please setup the virtual environments for Python in the

classification repo as described in the Dockerfile. Please note, the command to activate the corre-

sponding venv needs to be executed only once per venv (contrary to what one reads in the Dock-

erfile) and the command is different yet similar for Windows39. Also, do not forget to copy/over-

write the patched sklearn file as described in the Dockerfile.

Once you have successfully set up the Python tools, you may continue with setting up the JavaS-

cript parts of the application. First copy or rename backend/.env.example to backend/.env and ad-

just if need be. Afterwards you may execute yarn install in both the gui and backend directory in

the shell of your choice followed by yarn dev to start the respective services. The services started

will be auto-reloading, i.e. as soon as you save/modify a source file, the respective server will be

restarted automatically. You can also use yarn prod instead which serves production-optimized

files and does not automatically restart the servers.

9.3 Port Mappings
Should the need arise to use other ports than the ones documented (3000 for the backend and

8080 for the GUI), please consult the following table.

Component, de-
fault port

Where to change the port Further changes necessary

Backend, 3000 backend/.env at “PORT=” docker-app-image/Dockerfile: the line
which reads “EXPOSE 3000”

38 The attentive reader will note our Dockerfile also installs the pm2 package. For local development, pm2
is not needed and we use nodemon instead. They are both similar tools whereas pm2 focusses more on
production setups while nodemon’s focus is development environments.
39 Since it also differs whether you use cmd.exe or PowerShell, we ask you to please familiarize yourself
with virtualenv as described in https://virtualenv.pypa.io/en/stable/userguide/#usage.

http://localhost:8080/
http://localhost:8080/
https://virtualenv.pypa.io/en/stable/userguide/#usage

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 54

gui/src/main.js: change “Vue.http.op-
tions.root”

GUI, 8080 gui/config/index.js in “mod-
ule.exports.dev.port”

docker-app-image/Dockerfile: the line
which reads “EXPOSE 8080”

Table 7: How to change the application ports

Please also adjust the docker run (and/or docker-app-image/run.sh) command accordingly.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 55

9.4 Meeting Notes

9.4.1 2017-09-19
• old school approach: SVM, feature-based; cheap; Python and Java; 20 - 30 algorithms

• new approach: mentioned in the ETH paper we read, based on deep learning; expensive;

10 algorithms; mostly Python

Ziel Wettbewerb - effizienter sein, als, was es bis jetzt gibt

Data Robot als Inspiration: number crunching, similar to what we'll be doing, just for a different

field; PWC's solution also goes in that directionPWC: GUI as inspiration - do we want access

and/or integration?

currently the deep learning algorithms are chosen based on gutt feeling

we should interface between the many different libraries and compare/evaluate them (automat-

ically); NOT improve any of them or implement any algorithms-> unify the current process

an important step for feature-based approaches is preprocessing

what we need to do: create a pipeline à la:

--------> data >---------> preprocessing >------------------> choose algorithms >--------------------->

output

 csv configure the libs language-independent interface GUI

 xml

 json

the GUI should allow:

• monitoring

• graphs to compare the algorithms

• changing + tweaking the settings

additionally, one should be able to use clustersand keep licensing in mind

tools for feature-based approach:

• nltk

• Stanford CoreNLP
• spacy.io

• textblob

• ZHAW's own work on sentiment analysis

• scikit-learn

tools for deep learning approach:

• keras -> implement standard algos from literature; usually one-liners

• glove, word2vec etc. -> need / can be trained with Wikipedia, news, Twitter

goal for PA: text in, config by hand, result outgoal for BA: comparison, GUI etc.

schriftlicher Teil:30 - 40 pages, > 20de or en?overview of literature-> already start taking notes

and summarize readingZitierstandard ist egal

DEADLINE DECEMBER 21

regular meetings

http://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/
https://spacy.io/
https://textblob.readthedocs.io/en/dev/
http://scikit-learn.org/
https://keras.io/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 56

after trying out something for 30 mins, get in touch with Don (tuge@zhaw.ch), he's in the office

Mon - Thu

beginning of May, take ~ 20 competitions and try to beat 'em all :)

read papers on Mark's website, http://dreamboxx.com/mark

9.4.2 2017-09-27
To Do / where to start

ein Klassifikationssystem zum Laufen bringen (open source oder ZHAW) -> sentiment analysis in

English

deep learning (Python, TensorFlow, ready to use; github) -> need word embeddings (ready to use

from Mark), train, toy around, draw learning curve etc.

scikit-learn (simple, feature-based)

usually, preprocessing is the most work

afterwards, 2 - 3 systems with completely different technologies

=> first do for sentiment analysis, afterwards e.g. suicide prevention with same data

=> try to find similarities (understand the concept, get the feel for it)

also try out https://github.com/facebookresearch/fastText

data from ZHAW (semeval 2016)

first only for English, but also account for multi-language system (e.g. Swiss German)

get in touch with Remo Maurer (murm) (GPU cluster; not needed for sentiment analysis, but for

word embeddings)

read semeval16 paper

read Swiss Chocolate paper

book about old-school sentiment analysis: "Sentiment Analysis" by Bing Lu, ISBN 978-1-107-

01789-4, Cambridge

4th week: hand in Zeitplan

https://spinningbytes.com/

9.4.3 2017-10-04
this semester: classic ML ansprechen + Task analysieren lassen

next semester: deep learning

ensemble: verschiedene Klassifikationen nochmals neu lernen -> better score

challenge framework: parallelization (how?)

To-Do

In Grundarchitektur einlesen:

• CNN, neuronales Netz, Standard

• SVM / random forest (semeval 2014) -- Gegensatz zu CNN

http://dreamboxx.com/mark
https://github.com/facebookresearch/fastText
mailto:remo.maurer@zhaw.ch
http://m-mitchell.com/NAACL-2016/SemEval/pdf/SemEval18.pdf
http://dreamboxx.com/mark/data/SemEval14_Swiss_Chocolate.pdf
https://spinningbytes.com/

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 57

Zeitplan nächste Woche

Verschiedene Algorithmen mit den gleichen Daten ausprobieren

POS etc. in Python -> spacy.io

Python 3!

9.4.4 2017-10-10
Questions (pre-meeting)

• GUI web-based (probably Node.js)

• GUI with 3 pre-defined presets (quick, average, in-depth analysis/comparison) per algo

• settings: use preset and a selection of options (5 - 10) are configurable with a "Settings"

dialog

• A bunch of progress bars, one per each algo

• Backend/preprocessing with Python

• process algos sequentially or in parallel (option, GUI)

• configurable preprocessing

Meeting

• Nadina: create issues for deep-mlsa https://github.com/spinningbytes/deep-mlsa/is-

sues, cc Mark when done, tensorflow-gpu

• Linus: scikit-learn: use http://scikit-learn.org/stable/modules/gener-

ated/sklearn.model_selection.train_test_split.html

• Linus: fastText better split train/test

• Linus: scikit-learn: not multiple files

• Linus: scikit-learn - use all classifiers in a loop; pipeline class (see mail from Don)

• At some point: use Docker

• Inspiration: https://github.com/tensorflow/tensorboard (visualization, not control)

• GUI should automatically do everything, maybe a "full or simple" toggle

• GUI: setting for timeout / time allotment per algo

• GUI runs on a server, decoupled from algos

• Heuristics for choosing (and not-restarting etc.) algos

• no pwc!

• graph F1-score for different parameters for each algo

• for the time being: input not a csv, but numeric feature vector; later stage

• (scikit-learn has a feature selection class)

• feature extraction: again, separate; later stage

• POS-tagging: one-hot encoding / Einheitsvektor

• semeval: emoji prediction (do tweet and emoji align) <-- our tool has to be functional by

end of the year; adapt deep-mlsa

ToDo

• 5 Features by hand, test which ones are worth it (unigrams, contains positive/negative

word (hard-coded list))

• read slides from Mark

• look at semeval 2018

• write-up a vision for PA / week 11 ("use case", use as Aufgabenstellung for report)

Post-meeting research

https://github.com/spinningbytes/deep-mlsa/issues
https://github.com/spinningbytes/deep-mlsa/issues
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://github.com/tensorflow/tensorboard

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 58

http://gearman.org/ / https://stackoverflow.com/questions/32974791/handle-long-running-

processes-in-nodejs / https://nodejs.org/api/child_process.html

9.4.5 2017-10-24
Questions (pre-meeting)

• discuss Vision document

• deep-mlsa: what does distant do?

• BA

Meeting

• word embeddings map similar words close (cat/dog vs rocket fuel)

• word embeddings are terrible / unable to detect sentiment ("good" and "bad" are mapped

closely)

• deep-mlsa in distant phase accounts for above problem with e.g. smiley detection (3 - 4

%% difference)

• BA: good

• semeval has plenty of annotated sets of tweets

• use exact train data to compare with papers!

• for sentiment analysis: use avg of positive and negative labels (not including neutral) (<-

de-facto standard for semeval)

• use DB for backend; store algo, output, params, progress, alive/dead etc.

• which tool do we use to evaluate

• for the time being: ignore fastText, focus on sklearn

ToDo

• Linus

o GUI graph

o GUI job uuid hash

o GUI job <input>

o backend DB

• Nadina

o parallelize scikit (n_jobs=2, pickling of pipelinize, pipelinize_feature fails)

o scikit: better output possible?

o convert stdout (fastText etc.) to JSON

• Ask Jan about h5 problems

• DB Modell

• (graphical) overview of architecture

• dummy implementation of all arch. parts

• wireframe sketch of GUI

9.4.6 2017-11-01
Questions (pre-meeting)

• sklearn intermediate output?

Meeting

• wireframe

o aggregated graph of all processes (scatter plot)

o "The current winner is ... with an F1-score of ..."

o leaderboard of algos with settings

http://gearman.org/
https://stackoverflow.com/questions/32974791/handle-long-running-processes-in-nodejs
https://stackoverflow.com/questions/32974791/handle-long-running-processes-in-nodejs
https://nodejs.org/api/child_process.html

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 59

o group leaderboard by algo

o terminate low-scoring algos / preemptive killing

ToDo

• DB

• MVP

• no OS-level details

9.4.7 2017-11-08
ToDo

• Linus

o ✓ read Nadina's JSONs and graph them

o ✓ file upload

o ✓ friendly name for job

o ✓ optional: custom job name

o monitor: above process details: show summary charts of F scores + overview of
proc status + graph of F scores over time

o ✓ "horse race graph" in monitor

o mini-chart per proc

o ✓ per proc: F over t

o ✓ summary: F per proc

o monitor: show ETA

o ✓ kill algorithms (and not just algorithm configs)

o ✓ more descriptive texts for "start job"

o ✓ job.ended_at -> momentjs buggy

• ✓ "test case": a few algos (shortened) just for show

• outlook: automated parameter selection

• wireframe of ~5 main screens / balsamiq

• ✓ standardize format for confusion matrix?

• ✓ parametrize "sentiment.py" -> choose algos, features etc. via CLI args

o read up on "sensible defaults"

• report: intro, goal, etc.
o mention: not about optimization, but UI/UX, framework etc.

• update Zeitplan

• ✓ definition of done

• ✓ BA title

9.4.8 2017-11-15
Questions (pre-meeting)

• BA title: classification horserace

• we are "done" / DoD

• F scores as 0.42 or 42%?

• talk about venv detection

• download? what data?

Meeting

• no download of results (csv)

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 60

• download docker/zip to run result

• export- and importability of models (per framework)

• input formats?

• provide sample inputs / structure of input

• BA: options for preprocessing (tweets, hashtags etc.)

• BA: compare different preprocessings for one algo

• BA: dimensions to change: preprocessing (lowercasing etc.) + feature extraction (count

exclamation signs etc.), algorithm, parameter/settings of algo

• display ETAs for algos ("seconds", "hours", "days")

• analyze training data (stats, Eckpunkte, baselines)

• horserace chart: display baseline

• BA: all about text classification

• word clouds per class

ToDo

• Linus

o ✓ backend cleanup input+output

o ✓ display current AND max F1 score per algo in overview

o ✓ F1 score overview: minichart of epochgraph -> sparklines

o ✓ display best F1 score explicitly

o ✓ F1 scores in %

o ✓ job: store best process_id

o ✓ GUI for evaluate text + file

o ✓ display file sizes

o ✓ display confusion matrix (replace description by conf. matrix -> hide desc be-

hind info button)

o ✓ docker image

o ✓ serve gui from static

o ✓ log level dependent on NODE_ENV=production

• export model

• export parameter settings

• CLI tool for REPL evaluation of best model + code skeleton

• Nadina

o pickle classifier

o store best model (using a parameter)

• BA title

o ML/AI/text analysis/auto ML

o buzzwords "unglaublich impressive"

• change evaluationsmass

9.4.9 2017-11-22
Questions (pre-meeting)

• done!

• code docs?

o licensing (GPL, MIT, BSD etc.) of libs

o own code

o lib code

• contents of report?

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 61

o current state of the art / prior work

o outlook (-> BA)

o tech overview (gui, backend, classification)

o methodology

• docker image

Meeting

• evaluate: display stats

o file: about label/class distribution + number of matches

o text input: confidence, score of machine

• check licenses...

• BA packages:

o preprocessing

o algo optimization/implementation, horserace, parameter search

o evaluate

o code cleanup

ToDo

• BA title

• second set of data (not sentiment analysis)

o e.g. age + gender; job ads (entry-level or not)

• Linus

o Vue styleguide

o ✓docker repo + build file (contexts...)

• confusion matrix: F1 score per class

• report

o installation docs (-> Dockerfile)

o state of the art:

▪ pwc

▪ AutoML

▪ tensorboard

o overview of tools used

o 2 use cases

• what we did:

o created a base architecture

o frontend design

o plumbing

• user test / user acceptance test

o Jan, Fernando

o concrete task

▪ e.g. here's the data, give algorithm which is the best after 5 minutes

o have user think out loud

• sensible code docs

o backend/

• have a look at "Domänenübergreifende Sentiment-Analyse mit Deep Convolutional Neu-

ral Networks" as inspiration

9.4.10 2017-12-06
Questions (pre-meeting)

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 62

• we removed the diff bar once a process is dead

• email addresses of Jan, Fernando (user test)

• Show other data set

• BA feature list

• BA title:

o Framework for automatic text classification using classical machine and deep

learning algorithms

▪ automatic detection/identification of suitable algo

Meeting

• BA title Mark: Automatic [selection and] optimization of machine learning and deep learn-

ing algorithms for text classification

ToDo

• BA title

• PA drucken

o schwarzes Teil am Rücken

• 2-sided

9.4.11 2017-12-13
Questions (pre-meeting)

• report: walk-through?

• BA title (Mark: Automatic optimization of machine and deep learning algorithms for text

classification)

• Fachbegriff für currentScore < maxScore

• Report / User Test: results only or also step-by-step?

• PA title??? Developing a tool to train and evaluate machine and deep learning algorithms

for text classification through a simple user interface

• Mark: A framework to optimize machine learning algorithms for text classification

through an intuitive user interface

Meeting

• when comparing algos -> look at best scoring algorithm, epoch score over time (shape of

curve) -> first insight, not highly scientific, auf extreme Ausreisser eingehen, runtime

• BA:

o given a text collection: explore/analyze collection (grep, sed, awk, wc-style), word

clouds, distribution, mining, "Text Analyse Workbench", preprocessing/feature

extraction -> input text, display the tokenized results

o explore the results of n tokenizers on a small subset of the input texts (for visual

inspection)

ToDo

• ask Don if he wants a print-out, too

• Linus:

o three main screens

o change "overfitting" to "current (max)"

o start screen: Wikipedia source

• put user test logs in attachment

• prepare thumb drive

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 63

• LOOK AT ZHAW GUIDELINES

o Plagiatserklärung

• prior work: mention AutoML (+ reference papers), AutoML for text classification; tools

for text classification (GATE https://gate.ac.uk/, IBM SPSS https://www.ibm.com/sup-

port/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.ta.help/tmfc_intro.htm)

• outlook:

o Stolpersteine / Grenzen

• use case

o simplify work for researchers (one-click)

o beat the problem text classification by running all and everything

o understand which algo is optimal for problem

• good-bad-ugly <--> positive-negative-neutral

https://gate.ac.uk/
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.ta.help/tmfc_intro.htm
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.ta.help/tmfc_intro.htm

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 64

9.5 GUI Sketches
These were mentioned in chapter 9.4.6.

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 65

9.6 Timetable
Week (semester | calendar) To-Do
1 | 38 Kick-off
2 | 39 Read literature
3 | 40 Get familiar with tools
4 | 41 Test tools with same data, set up timetable
5 | 42 Test tools with different data
6 | 43 Test tools with different data
7 | 44 GUI
8 | 45 GUI + Python algorithms
9 | 46 GUI + Python algorithms
10 | 47 Testing + refactoring + fine tuning
11 | 48 Write report
12 | 49 Write report
13 | 50 Proofreading
14 | 51 Hand-in

pa::good-bad-ugly Nadina Siddiqui, Linus Metzler

 66

9.7 License Information
Due to the nature of the programming languages involved (JavaScript and Python) we made

heavy use of open source packages. As this application is not intended neither for commercial

usage nor redistribution, no special considerations where made regarding whether a package

might not be usable due to its license. Please see the file LICENSES.txt in the corresponding repos-

itories/folders. We would like to thank the authors and contributors of these packages for their

work.

