

N-WAY / FEW-SHOT LEARNING FOR TEXT
CLASSIFICATION

MASTER THESIS IN DATA SCIENCE

at ZHAW Zürich University of Applied Science

Winterthur, 30.06.2021

Author Supervisor 1 Supervisor 2

Hunkeler Bruno

Prof. Dr. Cieliebak Mark

Deriu Jan Milan, PhD Student

Ibergstrasse 99
8405 Winterthur

ZHAW School of Engineering
8400 Winterthur

ZHAW School of Engineering
8400 Winterthur

+41 79 699 80 67
bruno.hunkeler@gmx.ch ciel@zhaw.ch deri@zhaw.ch

https://d.docs.live.net/aa893333c5787da3/Dokumente/MAS%20Data%20Science/MAS_Master_Thesis/Project/docs/Thesis_Documentation/deri@zhaw.ch

N-way / Few-shot learning for text classification MAS Data Science

Page 2 / 78

Table of contents

1 Management Summary .. 7

2 Introduction .. 8
2.1 Problem description and Objectives ... 9
2.1.1 Problem description.. 9
2.1.2 Objectives ... 10
2.1.3 Delimitations ... 10
2.2 Structure of Thesis ... 10

3 Basic Terminology and Definitions .. 12
3.1 Supervised Learning .. 12
3.2 Text Classification .. 12
3.3 Machine and Deep Learning .. 12
3.3.1 Machine Learning (ML) .. 12
3.3.2 Deep Learning (DL) .. 12
3.3.3 Hyperparameter ... 12
3.3.4 Optimization ... 13
3.3.5 Loss Function ... 13
3.3.6 Bias, Variance .. 13
3.4 Natural Language Processing (NLP) ... 13
3.4.1 Text Pre-Processing ... 13
3.4.2 Imbalanced Data .. 14
3.4.3 Text Data Augmentation .. 14
3.4.4 Stratified Sampling ... 14
3.5 Feature Engineering in NLP ... 14
3.5.1 TF-IDF- and Count Vectors as features ... 15
3.5.2 Word embeddings .. 15

4 Meta-Learning .. 16
4.1 Meta-learning – learning to learn ... 17
4.2 Transfer Learning for NLP .. 19
4.3 Transfer learning vs Meta-learning .. 19

5 Model-Agnostic Meta-Learning (MAML) .. 21
5.1 Meta-learning task description ... 22
5.2 Formalizing meta-learning .. 22
5.3 Model Architecture in Model-Agnostic Meta-Learning ... 23
5.3.1 Loss function, multi-class cross-entropy loss ... 23
5.3.2 Optimization ... 23
5.3.2.1 Stochastic Gradient Descent (SGD) ... 23
5.3.2.2 Adam Optimizer... 24
5.3.2.3 Adam vs Stochastic Gradient Descent ... 24
5.4 Convolutional Neural Network (CNN / ConvNet) ... 24
5.4.1 Weight initialization ... 25
5.4.2 Learning schedule .. 25
5.5 Bias-Variance ... 26
5.5.1 Bias... 26
5.5.2 Variance ... 26
5.5.3 Bias- Variance trade-off.. 26
5.5.4 Potential approaches to prevent bias / variance in Neural Networks .. 26
5.5.5 Regularization .. 26
5.5.5.1 Dropout .. 27
5.5.5.2 Early stopping.. 27

6 Baseline classifiers .. 28
6.1 Experiment details .. 28
6.1.1 Dataset ... 28
6.1.2 Data set-up ... 28
6.1.3 Features ... 28
6.2 Machine Learning Classifiers ... 29
6.2.1 Random Forest (RF) .. 29

N-way / Few-shot learning for text classification MAS Data Science

Page 3 / 78

6.2.2 Multinominal Naïve Bayes (NB) ... 29
6.2.3 XGBoost (XGB) .. 30
6.3 Deep Learning Classifiers .. 30
6.3.1 Sequence Model (SEQ) ... 31
6.3.1.1 Model architecture ... 31
6.3.1.2 Sequence Model - results ... 31
6.3.2 Convolutional Neural Network (CNN, ConvNet) .. 32
6.3.2.1 Model architecture ... 32
6.3.2.2 Convolutional Neural Network – results .. 33
6.3.3 Bidirectional Encoder Representations from Transformers (BERT) .. 33
6.3.3.1 Model architecture ... 34
6.3.3.2 BERT Model - results .. 35
6.4 Baseline model results ... 35

7 Meta-Learning Experiment .. 37
7.1 Experiment details .. 37
7.1.1 Dataset ... 37
7.1.2 Data set-up ... 38
7.1.3 Features ... 39
7.2 Model architecture .. 39
7.2.1 Hyperparameter evaluation .. 39
7.2.2 Model-Agnostic Meta learning algorithm .. 40
7.3 Meta-training, validation, and testing ... 41
7.3.1 Evaluation Metrics .. 42
7.3.2 Results on HuffPost dataset ... 42
7.3.2.1 Meta-training, validation, and testing 5-way/10-shot... 43
7.3.2.2 Meta-training, validation, and testing 5-way/5-shot... 45
7.3.2.3 Meta-training, and testing 5-way/10-shot .. 46
7.3.2.4 Meta-training, and testing 5-way/5-shot .. 48
7.3.3 Results on SWA dataset .. 48
7.4 Production setup .. 49
7.4.1 Meta-training and testing 5-way/10-shot .. 50
7.4.2 Meta-training and testing 5-way/5-shot .. 51
7.5 Experiment summary ... 52
7.6 Ensemble learning for Deep Learning Neural Networks .. 54
7.6.1 Ensemble techniques ... 54

8 Challenges and ways to overcome .. 56
8.1 MAML / MAML++ ... 56
8.2 Text Classification .. 57
8.3 Data pre-processing (data cleaning, feature engineering) ... 57
8.4 Out-of-Vocabulary vector representation (OOV) .. 58
8.5 Ensemble technique ... 58

9 Conclusion.. 59

10 Appendix ... 61
10.1 Data pre-processing ... 61
10.2 Explanatory data analysis (EDA) ... 62
10.2.1 HuffPost data analysis.. 62
10.2.2 Swiss Economic Archive (SWA) .. 64
10.2.3 Vocabulary ... 66
10.3 Text data augmentation ... 67
10.4 Error analysis / Error attribution ... 67
10.5 Model-Agnostic explanations for Machine Learning classifiers ... 68
10.6 Convolutional Neural Network layers ... 69
10.6.1 Embedding Layer ... 69
10.6.2 Convolutional Layer.. 69
10.6.3 Pooling Layer ... 69
10.6.4 Fully Connected Layer ... 69
10.6.5 Rectified Linear Unit (ReLU) .. 69
10.6.6 Softmax .. 69

N-way / Few-shot learning for text classification MAS Data Science

Page 4 / 78

10.6.7 Batch Normalization ... 69
10.6.8 Dropout Layer ... 69
10.7 Meta learning algorithm .. 70
10.8 Software System .. 71
10.8.1 Application structure ... 71
10.8.2 Meta-learning core system ... 72

11 References .. 73

12 Glossary .. 75
12.1 Abbreviations .. 75
12.2 Terms ... 75

13 Index .. 76

N-way / Few-shot learning for text classification MAS Data Science

Page 5 / 78

Table of figures

Figure 1: Meta-data set, adopted from Optimization as a Model for few-shot learning 17
Figure 2: Learn-to-learn ... 18
Figure 3: Sequence model accuracy, loss curves ... 32
Figure 4: CNN model accuracy-, loss curve .. 33
Figure 5: BERT model accuracy, loss curve.. 35
Figure 6: MAML pseudo code .. 40
Figure 7: MAML task vs. batch level loss curve... 42
Figure 8: Meta-learning 5-way/10-shot accuracy, loss curves .. 43
Figure 9: Meta-validation 5-way/10-shot accuracy, loss curves .. 44
Figure 10: Meta-testing 5-way/10-shot accuracy, loss curves... 44
Figure 11: Meta-training 5-way/5-shot accuracy, loss curves ... 45
Figure 12: Meta-validation 5-way/5-shot accuracy, loss curves .. 45
Figure 13: Meta-testing 5-way/5-shot accuracy, loss curves... 46
Figure 14: Meta training 5-way/10-shot accuracy, loss curves.. 46
Figure 15: Meta-testing 5-way/10-shot accuracy, loss curves... 47
Figure 16: Meta-training 5-way/5-shot accuracy, loss curves ... 48
Figure 17: Meta-testing 5-way, 5-shot accuracy, loss curves .. 48
Figure 18: Meta-training production 5-way/10-shot accuracy, loss curves ... 50
Figure 19: Meta-testing production 5-way/10-shot accuracy, loss curves ... 51
Figure 20: Meta-training production 5-way/5-shot accuracy, loss curves ... 51
Figure 21: Meta-testing production 5-way, 5-shot accuracy, loss curves .. 52
Figure 22: HuffPost - Class distribution and number of samples per class ... 63
Figure 23: HuffPost - Average number of words per class .. 63
Figure 24: HuffPost - 30 most used words .. 64
Figure 25: Swiss Economical Archive - Class distribution and number of samples per class 65
Figure 26: Swiss Economic Archive - Average number of words per class .. 65
Figure 27: Swiss Economic Archive - 30 most used words ... 66
Figure 28: Error analysis / Error attribution .. 67
Figure 29: Lime weight attribution .. 68
Figure 30: Class diagram learn-to-learn .. 72

N-way / Few-shot learning for text classification MAS Data Science

Page 6 / 78

Tables

Table 1: Approaches to prevent bias-variance ... 26
Table 2: Parameter settings Random Forest classifier .. 29
Table 3: Parameter settings Multinominal Naïve Bayes classifier ... 29
Table 4: Parameter settings XGBoost classifier ... 30
Table 5: Sequence model architecture ... 31
Table 6: Parameter settings sequence model .. 31
Table 7: Convolutional Neural Network architecture .. 32
Table 8: Parameter settings Convolutional Neural Network ... 33
Table 9: BERT Architecture .. 34
Table 10: Parameter settings BERT model .. 34
Table 11: Results – machine learning models ... 36
Table 12: Results –deep learning models .. 36
Table 13: HuffPost class split ... 37
Table 13: Swiss Economic Archive class split .. 38
Table 13: Data setup – training, validation, test set ... 38
Table 14: Time consumption – model training.. 38
Table 15: Model architectures .. 39
Table 16: Hyperparameter evaluation .. 39
Table 17: Hyperparameter settings .. 40
Table 18: Random class split ... 41
Table 19: Class split scenario 1 .. 41
Table 20: Class split scenario 2 .. 41
Table 21: Ensemble techniques ... 54
Table 22: HuffPost data metrics ... 62
Table 23: HuffPost – categories ... 62
Table 24: Swiss Economic Archive data metrics .. 64
Table 25: Swiss Economic Archive – excerpt of categories ... 64
Table 26: Metrics: Out-of-vocabulary words – vocabulary size .. 66
Table 27: Abbreviations .. 75
Table 28: Terms .. 75

N-way / Few-shot learning for text classification MAS Data Science

Page 7 / 78

1 Management Summary
Unstructured data in the form of text is everywhere: social media, emails, chats, web pages, support tickets,
survey responses, and more. Text is an extremely rich source of information but extracting insights or
classifying text can be hard and time-consuming due to its unstructured nature. Text classification via Machine-
or deep learning can help businesses to automatically structure and analyze their text data, in a quick and
cost-efficient way, which leads to enhanced data-driven decisions.

The process of learning good features for Machine Learning applications can be very computationally
expensive and data intensive. Today’s standard deep neural networks fail in the small data regime, but with
many real-world problems there are only a few samples available per class. Collecting additional data is either
remarkably time consuming and costly or altogether impossible. Therefore, the need to learn from only a few
available samples is omnipresent and would relieve us from the data-gathering burden and would also reduce
the requirement of large compute resources.

Deep neural networks have shown great success in the large data domain but fail in small data settings. The
field of few-shot learning has recently seen substantial advancements. Few-shot learning encapsulates a
family of methods that can learn new concepts with only a handful of data points. Most of these advancements
came from casting few-shot learning as a meta-learning problem. Model-Agnostic Meta-Learning (MAML) is
currently one of the best approaches for few-shot learning via meta-learning. MAML is simple, elegant and
very powerful.
Meta-learning has shown strong performance in computer vision, where low-level patterns are transferable
across learning tasks. However, directly applying this approach to text is challenging.

In this paper, we will cast few-shot learning as a meta-learning problem by applying the Model-Agnostic Meta-
Learning method to text classification. The nature of few-shot learning requires prior knowledge of an existing
task to be able to classify text. A knowledge transfer from similar tasks is crucial to learn a robust model (e.g.,
transfer learning). However, manual knowledge transfer from one task to another for the purpose of fine-tuning
on a new task can be a time consuming and ultimately inefficient process. Meta-learning, or learning to learn,
can instead be used to automatically learn across-task knowledge, such that our model can, at inference time,
quickly acquire task-specific knowledge from new tasks using only a few samples.

We will show that the approach of combining MAML with few-shot learning will reduce the need for data
collection and labelling, hence reducing the time and resources needed to build robust machine learning
models, but still being able to generalize well. We describe ways to capitalize on discriminative features to
generalize by predicting not just new data, but entire new classes.

With our approach in combining Model-Agnostic Meta-Learning with Convolutional Neural Network
architectures by applying just a hand-full of data, usually 5 or 10-samples per class, we can achieve near state-
of-the-art performance.

N-way / Few-shot learning for text classification MAS Data Science

Page 8 / 78

2 Introduction
The human capacity to learn new concepts using only a handful of samples is immense. In contrast, modern
deep neural networks need, at a minimum, thousands of samples before beginning to learn representations
that can generalize well to unseen data points (Krizhevsky et al., 2012; Huang et al., 2017), and mostly fail
when the data available is scarce. The fact that standard deep neural networks fail in the small-data regime
can provide hints about some of their potential shortcomings. Solving those shortcomings has the potential to
open the door to understanding intelligence and advancing Artificial Intelligence.

Deep learning-based approaches have seen great successes in a variety of fields. Successes have largely
been in areas where vast quantities of data can be collected, and where huge compute resources are available.
This excludes many applications where data is intrinsically rare or expensive, or compute resources are
unavailable.

The field of few-shot learning has recently seen substantial advancements. Few-shot learning encapsulates a
family of methods that can learn new concepts with only a handful of data points (usually 5-10 samples per
class). This possibility is attractive for several reasons. Few-shot learning would reduce the need for data
collection and labelling, hence reducing the time and resources needed to build robust machine learning
models. It would potentially reduce training and fine-tuning times to adapt systems to newly acquired data. In
many real-world problems there are only a few samples per class available and the collection of additional
data is either remarkably time consuming and costly or altogether impossible. Therefore, there is a need to
learn from only a few available samples.

Meta-learning has emerged as a promising methodology in computer vision for learning in a low-resource
regime. This is especially interesting if the goal is to enable an algorithm to expand to new classes for which
only a few training instances are available. These models learn to generalize in these low-resource conditions
by recreating such training episodes from the data available. Even in the most extreme low-resource scenario
with a single training example per class, this approach shows near state-of-the-art performance.

Given this strong empirical performance, we are interested in employing meta-learning frameworks in Natural
Language Processing (NLP). The challenge, however, is the degree of transferability of the underlying
representation learned across different classes. In computer vision, low-level patterns and their corresponding
representations can be shared across tasks. However, the situation is different for language data where most
tasks operate at the lexical level. Words that are highly informative for one task may not be relevant for other
tasks. Words highly salient for one class do not play a significant role in classifying others.

Neural network meta-learning has a long history. However, its potential as a driver to advance the frontier of
today’s deep learning industry has led to an explosion of recent research. In particular, meta-learning has the
potential to alleviate many of the main criticisms of contemporary deep learning, for instance, by providing
better data efficiency, exploitation of prior knowledge transfer, and enabling unsupervised learning.

Model Agnostic Meta-Learning (MAML) is currently one of the best approaches in the field of few-shot learning
via meta-learning but is a rather young research area. The vast majority of research is based in the area of
computer vision rather than in text analytics or classification. Applying Model Agnostic Meta-Learning for text
classification is a road less travelled.

N-way / Few-shot learning for text classification MAS Data Science

Page 9 / 78

2.1 Problem description and Objectives

2.1.1 Problem description

Unstructured data in the form of text is everywhere: social media, emails, chats, web pages, support tickets,
survey responses, and more. Text is an extremely rich resource of information but extracting insights or
classifying text can be hard and time consuming due to its unstructured nature. Text classification via machine
or deep learning can help businesses to automatically structure and analyze their text data in a quick and cost-
efficient way. Text classification is associated with Natural Language Processing (NLP), which is a field within
Artificial Intelligence (AI) and machine learning that combines linguistics and computer science to break down
language so it can be analysed by machines. Text understanding, text classification, language translation and
question and answering are just a few of the subjects in the NLP space.

As a product manager for financial applications, I am confronted in many ways with lots of unstructured text
data, such as news information, cash management reports, texts in invoices, etc. The richness of information
contained in text data allows us to enhance and automate our product in many ways. Text classification in that
sense is one of the main drivers in my current area of work. Training contemporary deep learning models
requires vast quantities of data. In many real-world problems there are only a few samples per class available
and the collection of additional data is either remarkably time consuming and costly or altogether impossible.
Therefore, learning from only a few available samples (few-shot learning) is omnipresent and would relieve us
from the data-collection burden.

Few-shot learning is interesting in many ways. Certain real-world problems have long-tailed and imbalanced
data distributions. This means the vast majority of text information is available for certain types of classes
(usually just a handful) and rare for most other classes. This may result in poor performance of
models/applications based on long-tailed or imbalanced data distributions. A further aspect is the fact that this
might reduce the time and resources needed to build robust machine learning models and reduce the
computing resources required for training models.

The main problem we intend to solve is to apply a mechanism, which allows one to overcome the problem of
classifying text separated in various classes in a low-data regime. This would relieve us from the data-collection
burden and the computationally expensive training cycles. Multi-class text classification problems in our
application often appear in different flavours. A usual case is to distinguish between 2, 5 or 10 classes. But
there are also cases where we need to classify text information, for example, in cash management reports or
invoices and assign them to a set a 30, 40 or even 50 classes. However, cash management reports of our
customers contain sensitive information and therefore are not always easy to get hold of. Therefore, we will
use publicly available news text data with ~40 or even more classes.

The nature of few-shot learning requires prior knowledge of an existing task to be able to classify text. A
knowledge transfer from similar tasks is crucial to learn a robust model (e.g., transfer learning). However,
manual knowledge transfer from one task to another for the purpose of fine-tuning on a new task can be a time
consuming and ultimately inefficient process. Meta-learning, or learning to learn, can instead be used to
automatically learn across-task knowledge, such that our model can, at inference time, quickly acquire task-
specific knowledge from new tasks using only a few samples. Meta-learning can be broadly defined as a class
of machine learning models that become more proficient at learning with more experience, hence learning how
to learn. More specifically, meta-learning involves learning at two levels. At the task level, where the base
model is required to acquire task-specific knowledge rapidly, and at the meta-level, where the meta-model is
required to slowly learn across-task knowledge.

Meta-learning has emerged as a promising methodology in computer vision for learning in a low-resource
regime. Model-Agnostic Meta-Learning (MAML), which is a relatively new approach in the field of few-shot
learning, is currently one of the best approaches for such a setting. Even though most cases MAML is used
for are in computer vision, we will apply this technique to our text classification problem, given the favourable
properties of the algorithm.

N-way / Few-shot learning for text classification MAS Data Science

Page 10 / 78

2.1.2 Objectives

The aim is to apply n-way/few-shot learning in text classification (multi-class text classification), where n-
way is the number of classes to distinguish between and few-shot the number of samples per class. This
should resolve two omnipresent problems: building a classification system with a limited amount of training
data and training models on low computational resource constraint environments. With these boundaries, it
favors the use of meta-learning based on the Model-Agnostic Meta-Learning (MAML) method. The few-shot
setting must be applicable to any news text data in the form of “text, label”. The system must allow the flexibility
to classify news text data in the form of a hierarchical or non-hierarchical structured with a broader range of
class labels (e.g., >30). The system should provide similar accuracy to conventional Machine Learning (ML)
or Deep Learning (DL) models for a respective task. Given the fact that our applications are used in central
Europe the system must be able to classify English and German news text data.

2.1.3 Delimitations

Scope:
Data considerations:
▪ The application must be applicable to news data sets in a hierarchical/non-hierarchical structure in the form

of “text, label”. The class assignment to text data must be disjoint (no multi-label classification).

▪ The application must be able to process English as well as German news text data.

Text Pre-processing / Feature Engineering:
▪ Establish a text pre-processing pipeline, which considers text cleaning, such as stop word elimination,

stemming, lemmatization, contraction expanding, etc.

▪ Feature engineering should consider aspects like syntactic parsing, entity extraction, statistical features,

word embeddings.

Model Building:
▪ Establish a baseline, based on conventional machine learning and deep learning models for comparison.

▪ Build a meta-learning system by favouring the Model-Agnostic Meta-Learning method based on Neural

Networks and the associated loss functions for a classification task.

Model comparison:
▪ Apply appropriate metrics for model comparison, such as accuracy, f1-score, confusion matrix, etc.

▪ Compare the results of the meta-learning algorithm with conventional machine and deep learning

classifiers.

Out of Scope:
Reinforcement Learning, which is a next stage in a few-shot regime, will not be applied. Further languages
apart from German and English are not considered.

2.2 Structure of Thesis

Part 1 - Data Preparation, Pre-Processing
The main driver in part 1 is the getting to know the data (explanatory data analysis) and text data pre-
processing. The text data preparation part focuses on building a data cleaning pipeline considering steps that
fall into the categories of Noise Removal, Lexical Normalization, and Standardization. Aspects in this context
are stop word elimination, stemming, lemmatization, contraction extraction, Named Entity Recognition (NER),
Part-of-Speech tagging (POS), etc. Other parts covered in this section are data augmentation (imbalanced
data), building vocabularies, applying word embeddings, and preparing the data into a digestible form to be
used in deep learning models.

Even though data preparation and pre-processing is the first part in a Data Science project, the above-
mentioned descriptive parts have been placed in the Appendix, chapter 10.

N-way / Few-shot learning for text classification MAS Data Science

Page 11 / 78

Part 2 – Meta-learning, Model-Agnostic Meta-Learning
The central subject, meta-learning with respect to Model-Agnostic Meta-Learning, in this thesis is covered in
chapters 4 and 5. We address meta-learning and Model-Agnostic Meta-Learning to formalize the high-level
problem in order to understand and position these methods. We also will position meta-learning with respect
to related topics, such as transfer learning, and provide a brief description of methodologies in terms of
meta-representation, and meta-optimizer as model-based, metric-based (non-parametric) and optimization-
based methods. This section then focusses on the various aspects of building a meta-learning architecture
by discussing loss and optimizer functions.

Part 3 – Baseline of Conventional Machine and Deep Learning Classifiers
Meta-learning as a novel method in supervised learning needs to be compared to a reference system. Baseline
classifiers described in chapter 6 focus on building conventional machine and deep learning classifiers as a
reference system and provide respective performance metrics. Baseline classifiers include Random Forest,
Multinominal Naïve Bayes and XGBoost in a conventional machine learning context, while in deep learning
we consider models like Convolutional Neural Network, Sequence Model and Bidirectional Encoder
Representations from Transformers (BERT). As part of the model analytics (e.g., scores, error, etc.) provided
in chapter 6, we include further analytics in the form of “model explainability” via Lime, which will be available
in the Appendix.

Part 4 – Experiment, Challenges, and Conclusion
Part 4, covered in chapters 7, 8, 9, provides insight into the effective Model-Agnostic Meta-Learning
experiment, to understand whether MAML really learns to adapt to novel tasks. This includes data set-up,
model architectures, optimization, error and loss functions and the training and validation procedure. As part
of chapter 8 we will discuss challenges and ways to overcome certain shortcomings in our experiment. Finally,
we will conclude the learnings in the thesis and provide potential next steps to consider.

N-way / Few-shot learning for text classification MAS Data Science

Page 12 / 78

3 Basic Terminology and Definitions

This chapter describes the basic terminology and definitions used throughout this thesis.

3.1 Supervised Learning

In machine learning and artificial intelligence, supervised learning refers to a class of systems and algorithms
that determine a predictive model using data points with known outcomes. The model is taught by training
through an appropriate learning algorithm (such as linear Regression, Random Forests, or Neural Networks)
that typically works through some optimization routine to minimize a loss or error function. Different
denominations are used, depending on the output. If the system has a continuous output, the task is typically
denoted as regression, while it is called classification for nominal outputs. In case of several quantitative
outputs, it is called multivariate regression and for multiple qualitative outputs, it is named a multi-class
classification. Unsupervised learning in contrast, has an unknown target output. Throughout this thesis, we will
focus on methods for supervised learning and multi-class classification.

3.2 Text Classification

Classification is a process of categorizing a given set of data into classes. It can be performed on both
structured and unstructured data. Classes are often referred to as target, label, or categories.
Text classification as such is the task of assigning predefined categories to text documents. Classes are
selected from a previously established taxonomy (a hierarchy of categories or classes). News text, for
example, is typically organized by subject categories (topics) such as business, health, medicine etc.

3.3 Machine and Deep Learning

3.3.1 Machine Learning (ML)

Machine Learning is a field of computer science that aims to teach computers how to learn and act without
being explicitly programmed. More specifically, machine learning is an approach in data analytics that involves
building and adapting models, which allow programs to "learn" through experience. Machine learning involves
the construction of algorithms that adapt their models to improve their ability to make predictions. It is a sub-
field of Artificial Intelligence.

3.3.2 Deep Learning (DL)

Deep learning, a sub-field of machine learning, is a technique that constructs artificial neural networks to mimic
the structure and function of the human brain. In practice, deep learning, also known as deep structured
learning or hierarchical learning, uses large numbers of hidden layers, typically more than 3 but often many
more. Deep learning networks process nonlinear functions to extract features from data and transform the data
into different levels of abstraction (representations). Nonlinearities means that the neural network can
successfully approximate functions that do not follow linearity or it can successfully predict the class of a
function that is divided by a decision boundary which is not linear.

Deep learning drives many Artificial Intelligence (AI) applications and services that improve automation,
performing analytical and physical tasks without human intervention. Deep learning technology lies behind
everyday products and services (such as image recognition, digital assistants, voice-enabled TVs, and credit
card fraud detection) as well as emerging technologies (such as self-driving cars).

3.3.3 Hyperparameter

Every machine or deep learning algorithm requires hyperparameters. Hyperparameters are parameters that
need to be set before training a machine learning algorithm, as opposed to normal parameters of an algorithm
that are not fixed before execution but optimized while training the algorithm. Hyperparameters are learning
rate, number of epochs, momentum, regularization constant and so forth.

https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/artificial-intelligence
https://deepai.org/machine-learning-glossary-and-terms/linear-regression
https://deepai.org/machine-learning-glossary-and-terms/random-forest
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/epoch

N-way / Few-shot learning for text classification MAS Data Science

Page 13 / 78

3.3.4 Optimization

Optimization is the process of maximizing or minimizing an objective function by finding the best available
values across a set of inputs. Some variation of optimization is required for all deep learning models to function,
whether using supervised or unsupervised learning. There are many specific techniques to choose from, but
all optimization algorithms require as a minimum an objective function 𝑓(𝑥), to define the output that is being
maximized or minimized. This function can be deterministic (with specific effects) or stochastic (achieving a
probability threshold) and inputs that are controllable, in the form of variables like 𝑥1, 𝑥2, etc. Each can be
either discrete or continuous. There is a wide variety of optimizers, such as Gradient Descent, Stochastic
Gradient Descent, Adam, MSProp, Adagrad and so forth, each holding specific properties.

3.3.5 Loss Function

Loss functions are used to determine the error (“the loss”) between the output of our algorithms and the given
target value. Loss functions also take part in optimization problems with the goal of minimizing the loss. Loss
functions are used while training Neural Networks by influencing how their weights are updated. The larger the
loss is, the larger the update. By minimizing the loss, the model’s accuracy is maximized. However, the trade-
off between size of update and minimal loss must be evaluated in a respective machine learning algorithm.

3.3.6 Bias, Variance

A supervised machine learning model aims to train itself on the input variables (𝑋) in such a way that the

predicted values (𝑌) are as close to the actual values as possible. This difference between the actual values
and predicted values is the error and it is used to evaluate the model. The error for any supervised machine
learning algorithm comprises 3 parts: Bias error, Variance error and Noise. Noise is the irreducible error that
cannot be eliminated, while bias and variance are reducible errors that can be minimized. There are different
strategies to approach high/low bias and variance. Another term often used in the same context is over- and
underfitting. This situation where any given model is performing too well on the training data, but the
performance drops significantly over the test set, is called an overfitting model. On the other hand, if the model
is performing poorly over the test and the training set, then we call that an underfitting model.

3.4 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field of computer science that is primarily concerned with the
interactions between computers and natural (human) languages. Major emphases of natural language
processing include speech recognition, natural language understanding, natural language generation,
language translation and so forth. Machine learning methods can be applied to each of these areas.

3.4.1 Text Pre-Processing

Text in its core is the most unstructured form of available data and is associated with various types of noise.
Text pre-processing is traditionally an important step for natural language processing tasks. It transforms text
into a more digestible form so that machine learning algorithms can perform better. Pre-processing consists of
a number of steps, but generally fall under the broad categories of Noise Removal, Lexical Normalization, and
Standardization.

Noise Removal
This step deals with the removal of all types of noise entities present in texts. Any piece of text which is not
relevant or does not provide additional information to the context or semantic in data can be specified as noise.
Commonly used words in a language as “is”, “am”, “the”, “of”, “in”, etc. are known as stopwords. URLs, links,
mentions, hashtags (in social media entities), punctuations and industry-specific words, also contribute little
value in text classification and can therefore, be treated as noise.

https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning
https://deepai.org/machine-learning-glossary-and-terms/probability
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-model/text-generator

N-way / Few-shot learning for text classification MAS Data Science

Page 14 / 78

Lexical Normalization
Lexical normalization is the task of translating/transforming a non-standard text to a standard register. Textual
noise is about multiple representations exhibited by a single word, e.g., “play”, “player”, “played”, “plays” and
“playing”, which are different variations of the word “play”. The most common approaches in lexical
normalizations are stemming and lemmatization. Stemming is a rudimentary rule-based process of stripping
the suffixes (“ing”, “ly”, “es”, “s”, etc) from a word, while lemmatization is an organized and step-by-step
procedure of obtaining the root form of the word, making use of a vocabulary and morphological analysis (word
structure and grammar relations).

Standardization
Text data often contains words or phrases which are not present in any standard lexical dictionaries. These
pieces are not recognized by search engines and models. If an application does not benefit from these words
and is just leading to sparsity issues, one can consider removing these words from the datasets.

3.4.2 Imbalanced Data

An imbalanced classification problem is an example of a classification problem where the distribution of
examples across the known classes is biased or skewed. The distribution can vary from a slight bias to a
severe imbalance where there is one example in the minority class for hundreds, thousands, or millions of
examples in the majority class or classes. When we encounter the problem of imbalanced data, we are bound
to have difficulties solving it with standard algorithms. Conventional algorithms are often biased towards the
majority class, not taking the data distribution into consideration. In the worst case, minority classes are treated
as outliers and ignored. For some cases, such as fraud detection or cancer prediction, we would need to
carefully configure our model or artificially balance the dataset, by under- or over-sampling each class. Under-
sampling in this context means to reduce the number of samples of a majority class towards the number of
samples of a minority class. Over-sampling, in contrast, is the process of creating additional artificial samples
for minority classes, so the number of samples per class is balanced. This can be achieved via data
augmentation.

3.4.3 Text Data Augmentation

When working on Natural Language Processing applications, such as text classification, manually collecting
enough labelled examples for each category can be difficult. There are various strategies to overcome the lack
of an equivalent amount of text data per class. Data augmentation helps to prevent overfitting and train more
robust models. Several approaches exist to augment text data. The approaches are mentioned in appendix
10.3.

3.4.4 Stratified Sampling

Stratified sampling is a sampling technique where the samples are selected in the same proportion (by dividing
the population into homogeneous subpopulations called ‘strata’ based on a specific characteristic, e.g., race,
gender, location, etc.) as they appear in the population. Every member of the population should be in exactly
one stratum. Implementing the concept of stratified sampling ensures that the training and test sets have the
same proportion of the feature of interest as in the original dataset. Doing this with the target variable ensures
that the result is a close approximation of generalization error.

3.5 Feature Engineering in NLP

The input to machine learning models usually consists of features and a target variable. The target is the item
that the model is meant to predict, while features are the data points being used to make the predictions.
Feature engineering in natural language processing is very difficult. The major difficulties are that we do not
consciously understand the language ourselves. Another aspect is that a language itself is ambiguous.
Linguistic concepts, such as words or sentences, seem to be simple, clear, and well-formed ideas, but in
reality, there are so many borderline cases that can be quite difficult to grasp. If we just consider homonyms
or synonyms. A single word can have many different meanings, or different words have the same meaning. In
order to understand what a sentence means, we have to understand the meaning of the words in that sentence,
which is not a simple task. The field of NLP aims to convert the human language into a form of representations
that are easy for computers to manipulate. In other words, when we deal with an NLP problem, our input text
needs to convert into something that our algorithms can understand. Hence, a feature needs to be converted
into a numerical representation.

In general, we can categorize text features into two main categories. One category is meta-features, such as
word counts, stop word counts, punctuation counts, the length of characters, the language of text, and many
more. Other types of features are text-based features, such as tokenization, vectorization, stemming, part of

N-way / Few-shot learning for text classification MAS Data Science

Page 15 / 78

speech tagging, named entity recognition and so on. As for tokenization there are several possible ways, like
TF-IDF, Unigrams, bigrams, trigrams, character-grams, count vectors and so forth. TF-IDF and count vectors

will be used as features with our ML baseline models (see chapter 3.5.1 TF-IDF- and Count Vectors). Feature
engineering in NLP is a research area by itself. The process of extracting meaningful features requires domain
knowledge. Well-curated features result in machine learning models with higher accuracy.

3.5.1 TF-IDF- and Count Vectors as features

TF-IDF Vectors
TF-IDF score represents the relative importance of a term in the document and the entire text corpus. TF-IDF
score is composed of two terms: the first computes the normalized Term Frequency (TF), the second term is
the Inverse Document Frequency (IDF), computed as the logarithm of the number of the documents in the
corpus divided by the number of documents where the specific term appears.

tf(t, d) = (Number of times term 𝑡 appears in a document (𝑑)) / (Total number of terms in the document)

𝑡𝑓(𝑡, 𝑑) =
𝑓𝑑(𝑡)

𝑚𝑎𝑥(𝑓𝑑(𝑤)

𝑤 ∈ 𝑑

idf(t) = log (Total number of documents / Number of documents containing term t)

𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔
𝑛 + 1

𝑑𝑓 + 1

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇𝐹(𝑡, 𝑑) ∗ 𝐼𝐷𝐹(𝑡)

TF-IDF Vectors can be generated at different levels of input tokens (words, characters, n-grams)

Word level: TF-IDF: Matrix representing tf-idf scores of every term in different documents
N-gram level: N-grams are the combination of N terms together. This Matrix represents tf-idf

 scores of N-grams
Character level: Matrix representing tf-idf scores of character level n-grams in the corpus

Count Vector
Count Vector is a matrix notation of the dataset in which every row represents a document from the corpus,
every column represents a term from the corpus, and every cell represents the frequency count of a particular
term in a particular document.

Tf-idf, count vector and the associated word, n-gram character representations will only be used with our
Machine Learning baseline models (Multinominal Naïve Bayes, Random Forest and XGBoost).

3.5.2 Word embeddings

Many machine learning algorithms and almost all deep learning architectures are incapable of processing
strings or plain text in their raw form. A word embedding is a form of representing words and documents using
a dense vector representation. The position of a word within the vector space is learned from text and is based
on the words that surround the word when it is used. This allows words that are used in similar ways to result
in having similar representations, naturally capturing their meaning. Word embeddings can be trained using
one’s own text corpus. This will require a large amount of text data (usually millions or billions of words) to
ensure that useful embeddings are learned. Another option is to use pre-trained word embeddings, such as
Glove, FastText, and Word2Vec. Such embeddings have been trained on billions of words and are publicly
available. All of them are available in 100, 200, and 300 dimensional versions. For the current problem setting
we apply pre-trained embeddings: GloVe for English (300d) and FastText for German (300d) texts.

N-way / Few-shot learning for text classification MAS Data Science

Page 16 / 78

4 Meta-Learning

Today’s machine learning models can master complex tasks. They are typically trained from scratch for a
specific task using a fixed learning algorithm designed to solve a specific problem. Deep learning-based
approaches in the supervised learning space have seen great successes in a variety of fields. These
successes have largely been in areas where vast quantities of data can be collected or simulated, and where
large computing resources are available. These datasets are expensive to create, especially when one needs
to involve domain experts.

Such approaches become less effective for domain-specific problems, which still require large amounts of
task-specific labelled data to achieve good performance. This was the situation when pre-trained models were
introduced. Pre-trained models are beneficial if a new task is similar to the previous task. Using a pre-trained
model requires less training and less effort in building a new model architecture, but they fail when a model
needs to acquire new skills or adapt to new tasks. We cannot afford to train each skill in each setting from
scratch. Instead, we need to teach our system to learn, how to learn new tasks by reusing previous experience,
rather than considering each new task in isolation.

Meta-learning provides an alternative paradigm where a machine learning model gains experience over
multiple learning episodes mostly covering a distribution of related tasks. Meta-learning uses this experience
to improve its future learning performance. This learning-to-learn can lead to a variety of benefits, such as
data and computing efficiency, but furthermore, to the ability to adapt to new unseen tasks. Meta-learning is
also much better aligned with human learning, where learning strategies improve both on a lifetime and
evolutionary timescale.

Learning-to-learn is an aspect conventional machine learning or deep learning approaches do not attempt.
This is what makes meta-learning particularly attractive. Meta-learning has the potential to alleviate many of
the main criticisms of today’s deep learning algorithms. It provides, for instance, a better data and computing
efficiency, exploitation of prior knowledge transfer, and enables unsupervised and self-directed learning. Meta–
learning can learn from a handful of samples and adapt to novel tasks quickly. It has the capability to build
more generalizable systems.

One of the most popular problems meta-learning helps us to solve is few-shot learning. In a few-shot learning
scenario, we only have a limited number of examples on which to perform a supervised learning task. Even
more important is the ability to learn effectively from them. This might relieve us from the data-gathering
burden.

Therefore, meta-learning proposes an end-to-end, deep learning algorithm that can learn a representation
better suited for few-shot learning. It is similar to the pre-trained network approach, except that it learns an
initialization that serves as a good starting point for a handful of training data points. In a few-shot classification
problem for text classification, one could leverage training data that is available from different news text
classes, for instance, text passages describing subjects (classes) like sports, medicine, business, etc. The
model could then build up prior knowledge such that, at inference time, it can quickly acquire task-specific
knowledge with only a handful of training examples. This way, the model first learns parameters from a given
training dataset that consists of texts from one type of class, and then uses those parameters as prior
knowledge to tune them further, on a new set of classes, based on the limited training set.

But how can a model learn a good initial set of parameters which can then be easily adapted to a
downstream task? The answer lies in a simple training principle, which was initially proposed by Vinyals et.
al. 1

Train and test conditions must match

The idea is to train a model by showing it only a few examples per class, and then test it against samples from
the same classes that have been held out from the original dataset, much the way it will be tested when
presented with only a few training samples from novel classes. Each training sample, in this case, comprises
pairs of train and test data points called tasks or episodes.

This is a departure from the way that data is set up for conventional supervised learning. The training data
(meta-training data) is composed of train and test samples, alternately referred to as the support and query
set. The figure below uses icons as a visual explanation. A more formal description of the data set-up is
outlined in chapter 5

1 Vinyals et al. Matching Networks for One Shot Learning (2016), arXiv:1606.04080

https://deepai.org/machine-learning-glossary-and-terms/machine-learning

N-way / Few-shot learning for text classification MAS Data Science

Page 17 / 78

Figure 1: Meta-data set, adopted from Optimization as a Model for few-shot learning

The number of classes (N) in the support set defines a task as an N-class classification task or
N-way task, and the number of labeled samples in each class (k) corresponds to k-shot, making it an
N-way, k-shot learning problem.

4.1 Meta-learning – learning to learn

Meta-learning is commonly understood as learning-to-learn, which refers to the process of improving a learning
algorithm over multiple learning tasks. In contrast, conventional machine learning considers the process of
improving model predictions over multiple data instances. In a meta-learning regime, an inner learning model
(base algorithm) solves a task, such as text classification, defined by a dataset and an objective. During meta-
learning, an outer model (algorithm) updates the inner learning model, such that the model learned by the
inner model improves an outer objective. A meta-learning model should be trained on a variety of tasks, and
then optimized further for novel tasks. A task, in this case, is basically a supervised learning problem. The idea
is to extract prior information from a set of tasks that allows efficient learning on new tasks. For our text
classification problem, the ideal set-up would include many classes, with at least a few samples each. These
can then be used as a meta-training set to extract prior information, such that when a new task comes in, the
model can perform it more efficiently. Meta-Learning models can be decomposed into two stages: meta-
learning and adaptation. In the meta-learning phase, the model learns an initial set of parameters slowly across
tasks; during the adaptation phase, it focuses on quick acquisition of knowledge to learn task-specific
parameters. Since the learning happens at two levels, meta-learning is also known as learning to learn.

A variety of approaches have been proposed that vary based on how the adaptation portion of the training
process performs. These can broadly be classified into three categories: model-based, metric-based, and
optimization-based approaches.

A model-based approach simply trains an entire neural network, given some training samples in the support
set and an initial set of meta-parameters, and then makes predictions on the query set. The model-based
setting approaches the problem as supervised learning task, although there are approaches that try to
eliminate the need to learn an entire network.

Metric-based approaches usually employ non-parametric techniques (for example, k-nearest neighbors) for
learning. The core idea is to learn a feature representation (e.g., learning an embedding network that
transforms raw inputs into a representation, which allows similarity comparison between the support set and
the query set). Hence, the performance depends on the chosen similarity metric (like cosine similarity or
Euclidean distance).

N-way / Few-shot learning for text classification MAS Data Science

Page 18 / 78

Optimization-based approaches treat the adaptation part of the process as an optimization problem. In this
thesis we will focus only on the optimization-based approach. In the following, we will briefly describe how
such a process works.

During training, we iterate over datasets of tasks or episodes. In meta-training, we start with the first task, and
the meta-learner takes the training set (support set) and produces a learner (model) that will take as input the
test set (query set) and make predictions on it. The meta-learning objective is based on a loss function (in our
case cross-entropy) that is derived from the query set samples and will backpropagate through these errors.
The parameters of the meta-learner (meta-parameters) are then updated based on these errors to optimize
the loss. In the next step, we pick up the next task, train with the support set samples, make predictions on the
query set and update meta-parameters. This procedure is repeated with all available tasks. In attempting to
train a meta-learner this way, we are trying to solve the problem of generalization. The samples in the query
set are not part of the training set, so the meta-learner is learning to extrapolate. The conceptual approach of
meta-learning learn-to-learn as mentioned above is depicted in Figure 2: Learn-to-learn.

Figure 2: Learn-to-learn

N-way / Few-shot learning for text classification MAS Data Science

Page 19 / 78

4.2 Transfer Learning for NLP

With the advancement in deep learning, neural network architectures, like Recurrent Neural Networks and
Long Short Term Memory (RNN and LSTM) and Convolutional Neural Networks (CNN), have shown a decent
improvement in performance in solving several Natural Language Processing (NLP) tasks like text
classification, language modelling, machine translation, etc. However, this performance of deep learning
models in NLP pales in comparison to the performance of deep learning in computer vision.

One of the main reasons for this slow progress could be the lack of large, labelled text data sets. Most of the
labelled text datasets are not big enough to train deep neural networks because these networks have a huge
number of parameters and training such networks on small datasets will cause overfitting.

Another quite important reason for NLP lagging behind computer vision was the lack of transfer learning in
NLP. Transfer learning has been instrumental in the success of deep learning in computer vision. This
happened due to the availability of huge, labelled datasets like ImageNet2 on which deep CNN-based models
were trained and later they were used as pre-trained models for a wide range of computer vision tasks.

Transfer learning is a technique where a deep learning model is trained on a large dataset, learning the weights
for the initial model. Then it is used to perform similar tasks on another dataset. We call such a deep learning
model a pre-trained model. The most renowned examples of pre-trained models are the computer vision deep
learning models trained on the ImageNet dataset. So, it is better to use a pre-trained model as a starting point
to solve a problem rather than building a model from scratch.

So, the need for transfer learning in NLP was at an all-time high. In 2018, the transformer was introduced by
Google in the paper “Attention Is All You Need”, which turned out to be a ground-breaking milestone in NLP.

BERT (Bidirectional Encoder Representations from Transformers) is a large neural network architecture, with
a huge number of parameters, that can range from 110 million to over 340 million parameters. So, training a
BERT model from scratch on a small dataset would result in overfitting. But using the pre-trained model and
applying those weights to another downstream task, is computationally less expensive and reduces the risk of
overfitting by using smaller datasets.

4.3 Transfer learning vs Meta-learning

The terms transfer learning and meta-learning are often the source of confusion in the literature. Transfer
learning is a machine learning method where a model is developed for one downstream task and is reused as
the starting point for a model on another downstream task. It uses past experience of a source task to improve
learning. In today’s neural network context, it often refers to a particular methodology of parameter transfer
plus optional fine-tuning. The benefits of transfer learning are that it can speed up the development and training
process by reusing predefined modules and pre-trained models. Transfer learning is simply freezing all the
trained layers but substituting the fully connected layer (FC) with the new to-be-trained model. While transfer
learning can refer to a problem area, meta-learning refers to a methodology which can be used to improve
transfer learning as well as other problems.

Transfer learning as a methodology is differentiated to meta-learning as the prior is extracted by learning on
the source task without the use of a meta-objective. In meta-learning, the corresponding prior would be
defined by an outer optimization that evaluates how well the prior performs when helping to learn a new task.
More generally, meta-learning deals with a much wider range of meta-representations than solely model
parameters.

Bidirectional Encoder Representations from Transformers (BERT)3 is an excellent example of transfer
learning. BERT is a transformer-based machine learning technique for natural language processing (NLP)
developed and pre-trained by Google (published in 2018). BERT is pre-trained on unlabeled text (Wikipedia -
2.5 billion and Book Corpus - 800 million words). A pre-trained BERT comes in two flavors:

BERT - Base: 12-layers (transformer blocks), 768-hidden, 12-attention-heads, 110M parameters
BERT - Large: 24-layers (transformer blocks), 1024-hidden, 16-attention-heads, 340M parameters

2 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances

in neural information processing systems, (2012).
3 Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding (2018). arXiv:1810.04805

https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/?utm_source=blog&utm_medium=fine_tune_BERT
https://arxiv.org/abs/1706.03762
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Google
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://arxiv.org/search/cs?searchtype=author&query=Devlin%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Chang%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Toutanova%2C+K

N-way / Few-shot learning for text classification MAS Data Science

Page 20 / 78

Training such a model is nearly impossible, as long as one cannot access the required computing resources.
Therefore, such pre-trained models are commonly used with transfer learning. Pre-trained weights are applied
and then fine-tuned on a downstream task.
Transfer learning with a BERT model is available as a baseline implementation based on the HuffPost data
set. It is only available as a Colab implementation since training a BERT model on a downstream task even
by using a pre-trained model is computationally expensive.

N-way / Few-shot learning for text classification MAS Data Science

Page 21 / 78

5 Model-Agnostic Meta-Learning (MAML)

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) 4 is a meta-learning framework for few-shot learning.
Model-Agnostic, means that it is applicable to any model trained with gradient descent and, therefore, can be
applied to a variety of different learning problems, including classification, regression, and reinforcement
learning. MAML is elegantly simple yet can produce state-of-the-art results in few-shot regression and
classification learning problems. The objective of MAML is to learn an internal feature representation that is
broadly applicable for all the tasks 𝑇𝑖 in a task distribution 𝑝(𝑇), using only a few data points (k-shot) and
training iterations, rather than a single task. It optimizes a set of parameters such that when a gradient step is
taken with respect to a particular task 𝑇, the parameters 𝜃ᵢ are close to the optimal parameters for task 𝑖. This

is achieved by minimizing the total loss ∑ 𝐿𝑇𝑖
 across all the sampled tasks from task distribution 𝑝(𝑇). At the

end of meta-training, new tasks are sampled from 𝑝(𝑇), and meta-performance is measured by the model’s
performance after learning from k samples. Generally, tasks used for meta-testing are held out during meta-
training.

Formally, we consider a model represented by a parametrized function 𝑓𝜃 with parameters 𝜃. When adapting

to a new task 𝑇𝑖, the model’s parameters 𝜃 become 𝜃𝑖
∗. In our method, the updated parameter vector 𝜃𝑖

∗.

is computed using one or more gradient descent updates on task 𝑇𝑖,. For example, when using one gradient
update:

𝜃𝑖
∗ = 𝜃 − 𝛼∇𝜃ℒ𝑇𝑖

(𝑓𝜃)

The step size (learning rate) 𝛼 may be fixed as a hyperparameter or learned via meta-learning. The model

parameters are trained for the performance of 𝑓𝜃𝑖
∗ with respect to 𝜃 across tasks sampled from 𝑝(𝑇). The meta-

objective is as follows:

min
𝜃

∑ ℒ𝑇𝑖
(𝑓𝜃𝑖

∗

𝑇𝑖 ∼ 𝑝(𝑇)

) = ∑ ℒ𝑇𝑖
(𝑓𝜃 −𝛼𝛻𝜃ℒ𝑇𝑖

(𝑓𝜃)

𝑇𝑖 ∼ 𝑝(𝑇)

)

Note that the meta-optimization is performed over the model parameters 𝜃, whereas the objective is computed
using the updated model parameters 𝜃∗. The proposed method aims to optimize the model parameters such
that one or a small number of gradient steps on a new task will produce maximally effective behavior on that
task.

The MAML meta-gradient update involves a gradient through a gradient. Computationally, this requires an
additional backward pass via function 𝑓 to compute vector products, which is supported by standard deep
learning libraries, such as TensorFlow. In our experiments, we will use PyTorch in cooperation with the higher
library instead of TensorFlow or PyTorch. In our project, we use the higher framework to apply MAML. Higher
is a library providing support for higher-order optimization, hence it ensures the second order gradient handling.

The meta-optimization across tasks is performed via stochastic gradient descent (SGD), such that the model
parameters 𝜃 are updated as follows:

𝜃 ← 𝜃 − 𝛽∇𝜃 ∑ ℒ𝑇𝑖
(𝑓𝜃)

𝑇𝑖 ∼ 𝑝(𝑇)

𝛽 is the step size (learning rate). Further aspects regarding optimization are discussed in chapter 5.3.2
Optimization.

4 Chelsea Finn, Pieter Abbeel, Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (2017)

N-way / Few-shot learning for text classification MAS Data Science

Page 22 / 78

5.1 Meta-learning task description

In the typical machine learning setting, we are interested in a dataset 𝐷 and usually split 𝐷 so that we optimize
parameters 𝜃 on a training set 𝐷𝑡𝑟𝑎𝑖𝑛 and evaluate its generalization on the test set 𝐷𝑡𝑒𝑠𝑡. In meta-learning,

however, we are dealing with meta-sets 𝒟 containing multiple regular datasets, where each 𝐷 ∈ 𝒟 has a split

of 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡.
We consider an N-way, k-shot classification task, where for each dataset 𝐷, the training set consists of k

labelled examples for each of 𝑁 classes, meaning that 𝐷𝑡𝑟𝑎𝑖𝑛 consists of 𝑘 ∗ 𝑁 examples, and 𝐷𝑡𝑒𝑠𝑡 has a set
number of examples for evaluation. Vinyals et al. used the term episode to describe each dataset consisting
of a training and test set.

In meta-learning, we have different meta-sets for meta-training, meta-validation, and meta-testing (𝒟𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛,

𝒟𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and 𝒟𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡). On 𝒟𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛, we are interested in training a learning procedure (the meta-

learner) that can take as input one of its training sets 𝐷𝑡𝑟𝑎𝑖𝑛 and produce a classifier (the learner) that achieves
high average classification performance on its corresponding test set 𝐷𝑡𝑒𝑠𝑡. Using 𝒟𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 one can
perform hyperparameter selection of the meta-learner and evaluate its generalization performance on
𝒟𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡.

 5

For this formulation to correspond to the few-shot learning setting, each training set in datasets 𝐷 ∈ 𝒟 will
contain few labelled samples (we consider k = 5 or k = 10), that must be used to generalize to good
performance on the corresponding test set.

5.2 Formalizing meta-learning

Conventional machine learning
In conventional supervised machine learning, we are given a training dataset 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}, such

as (input text, output label) pairs. We can train a predictive model �̂� = 𝑓𝜃(𝑥) parameterized by 𝜃, by solving:

𝜃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

ℒ(𝐷; 𝜃, 𝜔)

where 𝐿 is a loss function that measures the match between true labels and those predicted by 𝑓𝜃(𝑥). We
include the condition 𝜔 to make it explicit that there exists a dependency in this solution on factors such as

choice of optimizer for 𝜃 or function class for 𝑓, which we denote by 𝜔. Generalization is then measured by
evaluating several test points with known labels.

The conventional assumption is that this optimization is performed from scratch for every problem 𝐷; and
furthermore that 𝜔 is pre-specified. However, the specification 𝜔 of how to learn 𝜃 can dramatically affect
generalization, data-efficiency, computation cost, etc.

Meta-learning
The meta-learning problem, is defined by the following formula (max log probabilities), which we need to solve
in order to find the required parameters:

Meta-learning step:

𝜃∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

𝑙𝑜𝑔 𝑝(𝜃|𝒟𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 , 𝜔)
𝒟𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 = {(𝐷1

𝑡𝑟 , 𝐷1
𝑡𝑠), . . . , (𝐷𝑛

𝑡𝑟 , 𝐷𝑛
𝑡𝑠)}

𝐷1
𝑡𝑟 = {(𝑥1

𝑖 , 𝑦1
𝑖), . . . , (𝑥𝑘

𝑖 , 𝑦𝑘
𝑖)}

𝐷1
𝑡𝑠 = {(𝑥1

𝑖 , 𝑦1
𝑖), . . . , (𝑥𝑙

𝑖 , 𝑦𝑙
𝑖)}

Adaptation step:

𝜙∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙
𝑙𝑜𝑔 𝑝(𝜙|𝐷𝑡𝑟 , 𝜃∗, 𝜔) ↔ 𝜙∗ = 𝑓𝜃∗(𝐷𝑡𝑟 , 𝜔)

learn 𝜃 such that 𝜙 = 𝑓𝜃∗(𝐷𝑖
𝑡𝑟 , 𝜔)

is good for (𝐷𝑖
𝑡𝑠 , 𝜔)

𝜃∗ = max
𝜃

∑ 𝑙𝑜𝑔 𝑝(𝜙𝑖|𝐷
𝑡𝑠 , 𝜔) 𝑤ℎ𝑒𝑟𝑒 𝜙𝑖 = 𝑓𝜃(𝐷𝑖

𝑡𝑠, 𝜔)

𝑛

𝑖 = 1

final meta-learning formulation

5 Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning (2017)

https://deepai.org/machine-learning-glossary-and-terms/loss-function

N-way / Few-shot learning for text classification MAS Data Science

Page 23 / 78

5.3 Model Architecture in Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning has the fine property to allow any kind of model to be applied. If the model is
trained using gradient descent, the approach does not place any constraints on the model architecture or the
loss function. This characteristic makes it applicable to a wide variety of problems, including regression,
classification, and reinforcement learning.

In our setting, we propose the use of convolutional neural networks in conjunction with Model-Agnostic Meta-
Learning. Convolutional neural networks are generally used in computer vision; however, recent advances
showed promising results on various NLP tasks (chapter 5.4).

A deep learning neural network learns to map a set of inputs to a set of outputs from training data. We cannot
calculate the perfect weights for a neural network; there are too many unknowns. Instead, the problem of
learning is cast as a search or optimization problem and an algorithm is used to navigate the space of possible
sets of weights the model may use in order to make good or good enough predictions.

Neural networks are usually trained using stochastic gradient descent. One needs to choose a loss function
when designing and configuring a model. There are many loss functions to choose from and it can be
challenging to choose the best loss function to solve a given problem.

5.3.1 Loss function, multi-class cross-entropy loss

Cost or loss functions are used to determine the error (loss) between the output of our algorithms and the
given target value and also in optimization problems with the goal of minimizing the loss. Loss functions are
used while training neural networks by influencing how their weights are updated. The larger the loss is, the
larger the update. By minimizing the loss, the model’s accuracy is maximized. However, the trade-off between
size of update and minimal loss must be evaluated in a respective machine learning algorithm and is related
to the bias/variance subject discussed in chapter 5.5.

The common loss functions used for supervised classification tasks is cross-entropy, which is described below.
In our solution, we apply cross-entropy loss, but other supervised loss functions can also be used:

ℒ𝑇𝑖
 = ∑ 𝑦(𝑖) 𝑙𝑜𝑔 𝑓𝜙(𝑥(𝑖)) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 (1 − 𝑓𝜙(𝑥(𝑖)))

𝑥𝑖,,𝑦𝑖 ∼ 𝑇𝑖

5.3.2 Optimization

Mathematical optimization is the process of maximizing or minimizing an objective function by finding the best
available values across a set of inputs. Some variation of optimization is required for all deep learning models
to function, whether using supervised or unsupervised learning. There are many specific techniques to choose
from, but all optimization algorithms require as minimum an objective function 𝑓(𝑥), to define the output that is
being maximized or minimized. This function can be deterministic (with specific effects) or stochastic (achieving
a probability threshold).
In a meta-learning setting, two independent optimizers are required for the inner and the outer loop. The
optimizers applied in our project are a Stochastic Gradient Descent and an ADAM optimizer.

5.3.2.1 Stochastic Gradient Descent (SGD)

Stochastic gradient descent is a method to find the optimal parameter configuration for a machine learning
algorithm. It iteratively makes small adjustments to a machine learning network configuration to decrease
the error of the network.

Error functions are rarely as simple as a typical parabola. Most often they have lots of hills and valleys (local
and global minima). Stochastic gradient descent attempts to find the global minimum by adjusting the
configuration of the network after each training point. Instead of decreasing the error, or finding the gradient,
for the entire dataset, this method merely decreases the error by approximating the gradient for a randomly
selected batch (which may be as small as a single training sample). In practice, the random selection is
achieved by randomly shuffling the dataset and working through batches in a stepwise manner.

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning
https://deepai.org/machine-learning-glossary-and-terms/probability
https://deepai.org/machine-learning-glossary-and-terms/machine-learning

N-way / Few-shot learning for text classification MAS Data Science

Page 24 / 78

5.3.2.2 Adam Optimizer

Adam is an alternative optimization algorithm that provides more efficient neural network weights by running
repeated cycles of adaptive moment estimation. Adam extends on stochastic gradient descent to solve non-
convex problems faster while using fewer resources than many other optimization algorithms. It is most
effective in extremely large datasets by keeping the gradients “tighter” over many learning iterations.

Adam combines the advantages of two other stochastic gradient techniques, Adaptive Gradients and Root
Mean Square Propagation, to create a new learning approach to optimize a variety of neural networks.

5.3.2.3 Adam vs Stochastic Gradient Descent

With Stochastic Gradient Descent (SGD), a single learning rate (called alpha) is used for all weight updates.
In addition, the learning rate for each network parameter (weight) does not change during training.

SGD separately calculates the individual adaptive learning rates for different weights by taking estimates of
the first (the mean) and second (the uncentered variance) moments of the gradients.

Adam, on the other hand, adapts the parameter learning rates in real-time based on the average of the first
and second moments by calculating an exponential moving average of the gradient as well as the squared
gradient. Then the parameters beta1 and beta2 can control the decay rates of both moving averages. Finally,
bias correction estimates are run before updating the learning parameters.

5.4 Convolutional Neural Network (CNN / ConvNet)

Convolutional neural networks are generally used in computer vision; however, recent advances showed
promising results on various NLP tasks. Given the promising results we decided to use CNNs throughout all
our meta-learning experiments.

Convolutional neural networks are very similar to ordinary neural networks. They are made up of neurons that
have learnable weights and biases. Each neuron receives some inputs, performs a dot product and optionally
follows it with a non-linearity. The whole network still expresses a single differentiable score function: from the
raw input at one end to class scores at the other end.

Neural networks receive an input (a single vector) and transform it through a series of hidden layers. Each
hidden layer is made up of a set of neurons, where each neuron is fully connected to all neurons in the previous
layer, and where neurons in a single layer function completely independent and do not share any connections.
The last fully connected layer is called the “output layer” and in classification settings it represents the class
scores.

Convolutional neural networks take advantage of the fact that the input consists usually of raw text and they
constrain the architecture in a more sensible way. In particular, unlike a regular neural network, the layers of
a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note that the word depth here refers
to the third dimension of an activation volume, not to the depth of a full neural network, which can refer to the
total number of layers in a network.).

A ConvNet is a sequence of layers, and every layer of a ConvNet transforms one volume of activations to
another through a differentiable function. We carved multiple ConvNets for our implementation but will take
just one to describe the set-up.

In our CNN, we use different types of layers to build ConvNet architectures: Embedding layer, Convolutional
layer, Pooling layer, Batch Normalization, Dropout and Fully Connected layer (much the way it is used in
regular neural networks). We will stack these layers to form a full ConvNet architecture.

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/moment
https://deepai.org/machine-learning-glossary-and-terms/estimator
https://deepai.org/machine-learning-glossary-and-terms/stochastic-gradient-descent
https://deepai.org/machine-learning-glossary-and-terms/variance

N-way / Few-shot learning for text classification MAS Data Science

Page 25 / 78

Example architecture of a CNN:

nn.Sequence(nn.Embedding()

 nn.Conv2D()

 nn.RELU()

 nn.MaxPool1D()

 nn.BatchNorm1d()

 nn.Conv2D()

 nn.RELU()

 nn.MaxPool1D()

 nn.BatchNorm1d()

 nn.Conv2D()

 nn.RELU()

 nn.MaxPool1D()

 nn.BatchNorm1d()

 nn.Dropout()

 nn.Linear()

 nn.SoftMax()

)

A brief description of individual layers used in our model architectures is attached in the Appendix, chapter
10.6

5.4.1 Weight initialization

The weight initialization step can be critical to the model’s ultimate performance, and it requires the right
method. Initializing all the weights with zeros leads the neurons to learn the same features during training. In
fact, any constant initialization scheme will perform very poorly. Consider a neural network with two hidden
units, and assume we initialize all the biases to 0 and the weights with some constant 𝛼. If we forward

propagate an input (𝑥1,𝑥2) in this network, the output of both hidden units will be ReLU (𝛼𝑥1 + 𝛼𝑥2). Hence,

both hidden units will have identical influence on the cost, which will lead to identical gradients. Thus, both
neurons will evolve symmetrically throughout training, effectively preventing different neurons from learning
different things. Choosing proper values for initialization is necessary for efficient training. A too large
initialization leads to exploding gradients, while a too small initialization leads to vanishing gradients.

Therefore, to prevent the gradients of the network’s activations from vanishing or exploding, we will stick to the
following rules of thumb:

▪ The mean of the activations should be zero.

▪ The variance of the activations should stay the same across every layer.

There is a large variety of initialization methods. Xavier initialization works with tanh activations. But since we
are using ReLU, a common initialization is Kaiming He initialization (He et al., Delving Deep into Rectifiers) 6,
in which the weights are initialized by multiplying the variance of the Xavier initialization by 2.

In our models, we initialize all biases with constant weights 0.01 and Batch Normalization with a value 1.
Conv2D and Linear layers have been initialized via Kaiming normal distribution.

5.4.2 Learning schedule

Learning schedule is a way to dynamically assign learning rates to an optimizer on given conditions, usually
after a certain number of epochs. We did not apply a learning schedule in our meta model. Instead, we applied
a static value.

6 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet

Classification (2015). arXiv 1502.01852.

https://arxiv.org/pdf/1502.01852.pdf

N-way / Few-shot learning for text classification MAS Data Science

Page 26 / 78

5.5 Bias-Variance

5.5.1 Bias

Bias is the difference between the average prediction of our model and the correct value which we are trying
to predict. A model with high bias pays very little attention to the training data and oversimplifies the model. It
always leads to high error on training and test data.

5.5.2 Variance

Variance is the variability of model prediction for a given data point or a value which tells us about the spread
of our data. A model with high variance pays a lot of attention to training data and does not generalize on the
data which it has not seen before. As a result, such models perform very well on training data but have high
error rates on test data.

5.5.3 Bias- Variance trade-off

If our model is too simple and has very few parameters, then it may have high bias and low variance. On the
other hand, if our model has a large number of parameters then it is going to have high variance and low bias.
So, we need to find the right balance without overfitting and underfitting the data. This trade-off in complexity
is why there is a trade-off between bias and variance. An algorithm cannot be more complex and less complex
at the same time.

5.5.4 Potential approaches to prevent bias / variance in Neural Networks

Small neural networks, with fewer parameters are more prone to underfitting, but are computationally cheaper,
while large neural networks are computationally more expensive, but are more prone to overfitting. There are
strategies to approach the bias-variance problem.

Solving bias / variance problem

 Fixing the high variance problem Fixing the high bias problem

[1] Get more training data [5] Apply additional features

[2] Smaller set of features [6] Increase number of epochs

[3] Increase 𝜆 (in the regularization) [7] Decrease 𝜆 (in the regularization)

[4] Change the model architecture [8] Change the model architecture

Table 1: Approaches to prevent bias-variance

There are several solutions mentioned above that can take part in our solution in case of a bias-variance
problem. The only thing not applicable is item [1]. The intention in our problem setting is to use as little data as
possible. Other aspects, such as adding or removing features, in our case increasing or decreasing the number
of words, are possible, but need to be handled with care since adding more features is computationally more
expensive. In general, we are left with the possibility of changing the model architecture or using regularization
(e.g., dropout, early stopping, etc.) in case of a bias-variance problem (see chapter 5.5.5).

5.5.5 Regularization

Regularization is a technique to reduce the complexity of the model. It does so by adding a penalty term to the
loss function (cost function). The most common techniques are known as L1 (Lasso Regression) and L2 (Ridge
Regression) regularization:

The L1 penalty aims to minimize the absolute value of the weights.

 𝐿(𝑥, 𝑦) = ∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖

𝑛

𝑖 = 1

)2 + 𝜆 ∑ |𝜃𝑖|

𝑛

𝑖

The L2 penalty aims to minimize the squared magnitude of the weights.

𝐿(𝑥, 𝑦) = ∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖

𝑛

𝑖 = 1

)2 + 𝜆 ∑ 𝜃𝑖
2

𝑛

𝑖=1

N-way / Few-shot learning for text classification MAS Data Science

Page 27 / 78

5.5.5.1 Dropout

Dropout proposed by (Geoffrey Hinton et al.) 7 is a regularization technique that prevents neural networks from
overfitting. Regularization methods like L1 and L2 reduce overfitting by modifying the cost function. Dropout,
on the other hand, modifies the network itself. It randomly drops neurons from the neural network during
training in each iteration. When we drop different sets of neurons, it is equivalent to training different neural
networks. The different networks will overfit in different ways, so the net effect of dropout will be to reduce
overfitting. Dropout introduces an extra hyperparameter, the probability of retaining a unit. This hyperparameter
controls the intensity of dropout. 𝑝 = 1, implies no dropout and low values of 𝑝 mean more dropout. Typical

values of 𝑝 for hidden units are in the range 0.5 to 0.8. For input layers, the choice depends on the kind of
input.

5.5.5.2 Early stopping

“Early stopping”, is also a regularization technique. The idea is very simple. The model optimizes the loss given
the training data, by tuning the model parameters. The validation set, which contains unseen samples and is
used for validation as we train the model, keeps a record of the loss function on the validation data. Model
training is stopped, rather than training all the epochs, when there is no further improvement on the validation
set. This strategy of stopping early based on the validation set performance is called Early Stopping. It does
not only protect against overfitting, but it also needs a considerable smaller number of epochs to train a model.

7 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural

Networks from Overfitting (2014).

N-way / Few-shot learning for text classification MAS Data Science

Page 28 / 78

6 Baseline classifiers

Measuring the performance of an algorithm given a dataset is just one side of the coin. A reference system is
required to finally draw conclusions. Therefore, several machine learning as well as deep learning baseline
classifiers have been created. There is no specific reason for choosing Random Forest, Multinominal Naïve
Bayes or an XGBoost algorithm. All of them are well-known and so-called commodity models. The only
requirement was to choose algorithms of different families to see if one type performs better than others. In
our case, we used Random Forest as it is an ensemble technique, a Naïve Bayes because it uses a
probabilistic classifier and a gradient boosting algorithm (ensemble meta-algorithm) for primarily reducing bias,
and variance. The situation with deep learning models is a little different. I went the route of creating CNN,
BERT and Sequential Models, since those are state-of-the art in text classification.

6.1 Experiment details

6.1.1 Dataset

HuffPost headlines consists of ~136’000 news headlines and short descriptions, published on HuffPost
between 2012 and 2018 (Misra, 2018). Headlines and descriptions are shorter and less grammatical than
formal sentences. Each headline/short description is assigned to one out of 41 classes, where each class has
at least 800 samples. Some minor Explanatory Data Analysis is available in Chapter 10.2.1 HuffPost data
analysis.

6.1.2 Data set-up

We apply an 80/20 split on the given dataset. In that case the training data receives ~109’000 samples while
the test data contains ~27’000 samples. The dataset has been stratified. In that way we can ensure that the
class distribution contains the same proportions in the training and test set.

6.1.3 Features

Features for machine learning models
Our machine learning and deep learning models will receive different feature sets. The original data has been
pre-processed based on our NLP pipeline. There are two independent pre-processing pipelines for English
and German texts (see chapter 10.1 Data pre-processing).
The pre-processed data has then been transformed into word level tf-idf, n-gram level tf-idf, character level tf-
idf vectors and count vectors (see chapter 3.5.1 TF-IDF- and Count Vectors). These vector representations
have then been applied to our ML models (Random Forest, Multinominal Naïve Bayes and XGBoost).

Features for deep learning models
Our deep learning baseline models receive the same pre-processed text data as our machine learning models,
but instead of transforming the text into tf-idf vectors, we use 300 dimensional embeddings (GloVe for English
and FastText for German). As with our machine learning models, certain transformations are required to work
with our deep learning models. To transform our data, we use libraries from the TensorFlow (Keras)
ecosystem. We created a vocabulary (word index) of size 20’000 by tokenizing our text data, created a
mapping between the word indices and the embedding indices which resulted in an embedding matrix. The
embedding matrix had then to be padded to ensure equal length vectors. The maximum sequence length of
our features has been set to 150 words. Those vectors where then applied to our Sequence, CNN and BERT
model.

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Meta-algorithm
https://en.wikipedia.org/wiki/Supervised_learning#Bias-variance_tradeoff

N-way / Few-shot learning for text classification MAS Data Science

Page 29 / 78

6.2 Machine Learning Classifiers

6.2.1 Random Forest (RF)

Random Forest (RF) is an ensemble learning technique consisting of the aggregation of a large number 𝑇 of
decision trees, resulting in a reduction of variance compared to a single decision tree. In this paper we consider
the original version of RF first described by Breiman (2001) 8, while acknowledging that other variants exist,
for example, RF based on conditional inference trees (Hothorn et al., 2006) 9, which address the problem of
variable selection bias investigated by Strobl et al. (2007) 10. Our considerations are, however, generalizable
to many of the available RF variants and other methods that use randomization techniques. A prediction is
obtained for a new observation by aggregating the predictions made by the 𝑇 single trees. In the case of
regression RF, the most straightforward and common procedure consists of averaging the prediction of the
single trees, while majority voting is usually applied to aggregate classification trees. This means that the new
observation is assigned to the class that was most often predicted by the 𝑇 trees.

Parameter settings Random Forest classifier

Parameter Setting

bootstrap true

max_depth 80

max_features "auto"

min_samples_leaf 3

min_samples_split 8

n_estimators 100

random_state 0

Table 2: Parameter settings Random Forest classifier

6.2.2 Multinominal Naïve Bayes (NB)

Naïve Bayes classifier is a probabilistic classifier based on Bayes’ theorem, which assumes that each feature
makes an independent and equal contribution to the target class. NB classifier assumes that each feature is
independent and does not interact with others, such that each feature independently and equally contributes
to the probability of a sample belonging to a specific class. NB classifier is simple to implement and
computationally fast and performs well on large datasets having high dimensionality. NB classifier is beneficial
for real-time applications and is not sensitive to noise. NB classifier processes the training dataset to calculate
the class probabilities and the conditional probabilities, which define the frequency of each feature value for a
given class value divided by the frequency of instances with that class value. NB classifier best performs when
correlated features are removed because correlated features will be voted twice in the model leading to the
overemphasis of the importance of the correlated features. The parameter settings for a Multinominal Naïve
Bayes classifier are rather simple.

Parameter settings Multinominal Naïve Bayes classifier

Parameter Setting

alpha 0.1

Table 3: Parameter settings Multinominal Naïve Bayes classifier

8 Leo Breimann. Random Forests (2001)
9 Hothorn T, Hornik K., Zeileis A. Unbiased Recursive Partitioning: A Conditional Inference Framework (2006)
10 Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis and Torsten Hothorn. Bias in random forest variable importance measures:

Illustrations, sources and a solution (2007)

N-way / Few-shot learning for text classification MAS Data Science

Page 30 / 78

6.2.3 XGBoost (XGB)

XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting” originates from the
paper Greedy Function Approximation: A Gradient Boosting Machine, by Friedman. XGBoost is a decision-
tree-based ensemble machine learning algorithm that uses a gradient boosting framework. XGBoost algorithm
was developed as a research project by Tianqi Chen and Carlos Guestrin in 201611. The most important factor
behind the success of XGBoost is its scalability in all scenarios. The system runs more than ten times faster
than existing popular solutions on a single machine and scales to billions of examples in distributed or memory-
limited settings. The scalability of XGBoost is due to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm is for handling sparse data; a theoretically justified
weighted quantile sketch procedure enables handling instance weights in approximate tree learning. Parallel
and distributed computing makes learning faster, which enables quicker model exploration.

Parameter settings XGBoost classifier

Parameter Setting

n_estimators 100

max_depth 5

min_child_weight 1

gamma 0

eta 0.3

subsample 0.8

colsample_bytree 0.8

objective multi:softmax

nthread 4

learning_rate 1e-5

Epochs 50

Table 4: Parameter settings XGBoost classifier

6.3 Deep Learning Classifiers

The baseline models have been developed with the Keras Framework. Keras is a deep learning framework for
Python that provides high-level building blocks to define and train almost any kind of deep learning model. It
does not handle low-level operations, such as tensor manipulation and differentiation. Instead, it relies on a
specialized, well-optimized tensor library, serving as the backend engine of Keras. The implementation at hand
uses the TensorFlow backend. It allows the same code to run seamlessly on CPU or GPU. It has a user-
friendly API that allows for quickly prototyping deep learning models. The Keras framework also provides
further functions which need to be considered while developing deep learning classifiers such as callback, loss
and optimizer function. Loss and optimizer functions have been discussed previously but will be mentioned
again for the sake of completeness. The functions mentioned below have been applied to all our deep learning
baseline models.

Callback function
When training a model, there are many things one cannot predict from the start. In particular, one cannot tell
how many epochs will be needed to get to an optimal validation loss.

A much better way to handle this is to stop training when the validation loss in no longer improving. This can
be achieved using a Keras callback function. A callback is an object (a class instance implementing specific
methods) that is passed to the model. A callback is called by the model at various points during training. It has
access to all model parameters which reflect the state of the model and its performance. A callback function
can take actions as to interrupt training, save a model, load a different weight set, or otherwise alter the state
of the model.

We applied two callback functions ModelCheckpoint and EarlyStopping. ModelCheckpoint takes the role of
storing the best model while training. The EarlyStopping verifies if validation loss in no longer improving and
stops training if such a condition appears. EarlyStopping is often used for regularization reasons.

Loss function
Keras provides a wide variety of loss functions to apply to models. A cross-entropy loss function is usually
used for classification tasks, but this would require applying a one-hot encoded array to match the output
shape. With the help of the sparse categorical crossentropy loss function, we can skip that step and keep
integers as target labels.

11 Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System (2016)

https://xgboost.ai/
https://en.wikipedia.org/wiki/Gradient_boosting
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf

N-way / Few-shot learning for text classification MAS Data Science

Page 31 / 78

Optimizer function
Machine learning as well as deep learning algorithms require an optimization function in order to learn weights.
Adam is an optimization algorithm that can be used instead of the classical stochastic gradient descent
procedure to update network weights iterative based in training data. An important aspect for Optimization
algorithms is the learning rate and the learning rate decay. These parameters need to be selected carefully
(not big or to small) in such a way that the algorithm is able to converge.

6.3.1 Sequence Model (SEQ)

A sequential model groups a linear stack of layers into a model. A sequential model provides training and
inference features in this mode. The model architecture has been intentionally kept simple. The applied
architecture is listed in the table below. The output layer (dense layer) applies a softmax activation function
with a vector size 41, which reflects the number of classes to predict.

6.3.1.1 Model architecture

Sequence model architecture based on Keras

Layer (type) Output Shape # Parameters

Input layer [(None, None)] 0

Embedding layer (None, None, 300) 6’000’000

GlobalAveragePooling1D (None, 300) 0

Dense (activation = relu) (None, 128) 38’528

Dropout (None, 128) 0

Dense (activation = softmax) (None, 41) 5289

Total params Trainable params Non-trainable params

6’043’817 43’817 6’000’000

Table 5: Sequence model architecture

Parameter settings sequence model

Parameter Setting

Feature size 150

Optimizer
- learning rate / epsilon

Adam
1e-4 / 1e-8

Loss function Sparse categorical crossentropy

Model Callbacks ModelCheckpoint / EarlyStopping

Epochs 50

Table 6: Parameter settings sequence model

6.3.1.2 Sequence Model - results

The model has been trained on 50 epochs. The training accuracy at the end of 50 epochs is approximately.
62%, while the validation accuracy levels out at about 54% (see Figure 3). The accuracy of 62% compared to
54% seems feasible for a text classification task given the 41 classes. There are also several factors, that tend
to influence the performance, such as the applied optimizer or learning rates.
The data set has not been balanced, but since we stratified the data, the proportion of classes and samples
should not matter much. Both, model accuracy as well as the loss curve indicate a slight overfitting (bias-
variance problem). There are several applicable options to approach a bias/variance problem. Such options
are mentioned in chapter 5.5. Regularization is one such option. The applied dropout layer which takes the
role of regularizing the model has a dropout factor 𝑝 = 0.5 (dropping 50 percent of the neurons). Typical

values of 𝑝 for hidden units are in the range 0.5 to 0.8. So, it might be appropriate to change the factor 𝑝 to
0.7, which is still in the range of typical values. Other options are changing the model architecture to a more
sophisticated model, which might help, but also will enlarge training times.

We will take the given accuracy for granted for the time being, since the objective is not a benchmark. We
rather take these values as a baseline to compare to our meta learning approach.

N-way / Few-shot learning for text classification MAS Data Science

Page 32 / 78

Figure 3: Sequence model accuracy, loss curves

6.3.2 Convolutional Neural Network (CNN, ConvNet)

A convolutional neural network, or CNN, is a deep learning neural network designed for processing structured
arrays of data, such as images. CNNs are widely used in computer vision and reached state of the art in many
visual applications, like image classification. In recent years CNNs have also shown groundbreaking results in
the field of natural language processing. Such networks are excellent at picking up patterns. Unlike earlier
algorithms, CNNs can directly operate on raw data (no tedious pre-processing required). A ConvNet is a feed-
forward neural network, which often consists of more than 20 layers.

The magic in convolutional neural network comes from a special kind of layer called the convolutional layer.
Convolutional neural networks contain many convolutional layers stacked on top of each other, each one
capable of recognizing more sophisticated shapes.

6.3.2.1 Model architecture

The present CNN has intentionally been kept simple, so we are not supposed to learn too many parameters.
It consists of 14 layers. Here we also use an embedding layer, which represents the words. Then there is 3
times the same structure of layers: Convolution, Batch Normalization and Pooling. Then again, as in the
previous model architecture, a dense layer with a ReLU activation, a dropout layer and a dense layer with a
softmax activation.

CNN Architecture based on Keras

Layer (type) Output Shape # Parameters

Input layer [(None, None)] 0

Embedding layer (None, None, 300) 6’000’600

Conv2D (None, None, 128) 192’128

BatchNorm2D (None, None, 128) 0

MaxPooling1D (None, None, 128) 0

Conv2D (None, None, 128) 82’048

BatchNorm2D (None, None, 128) 0

MaxPooling1D (None, None, 128) 0

Conv2D (None, None, 128) 82’048

BatchNorm2D (None, None, 128) 0

GlobalMaxPooling (Global (None, 128) 0

Dense (activation = relu) (None, 128) 16’512

Dropout (None, 128) 0

Dense (activation = softmax) (None, 41) 5289

Total params Trainable params Non-trainable params

6’378’625 378’025 6’000’600

Table 7: Convolutional Neural Network architecture

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/computer-vision
https://deepai.org/machine-learning-glossary-and-terms/natural-language-processing
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network

N-way / Few-shot learning for text classification MAS Data Science

Page 33 / 78

Parameter settings CNN model

Parameter Setting

Feature size 150

Optimizer
- learning rate / beta 1 / beta 2 / weight decay

Adam
1e-3 / 0.9 / 0.99 / 1e-5

Loss function Sparse categorical crossentropy

Model Callbacks ModelCheckpoint / EarlyStopping

Epochs 50

Table 8: Parameter settings Convolutional Neural Network

6.3.2.2 Convolutional Neural Network – results

The model has been trained on 30 epochs. The training accuracy at the end of 30 epochs rises to
approximately 80%, while the validation accuracy drops to about 53% (see Figure 4).

The training loss decreases, while the training accuracy increases with every epoch. That is what you would
expect when running gradient descent optimization. The quantity we are trying to minimize should be less with
every iteration. In our case, that applies while training the model. During validation, the validation loss starts
rising at around the 8th epoch, while the accuracy starts dropping they diverge with every additional epoch. A
model that performs better on the training data is not necessarily a model that will do better on data it has
never seen before. The given model has an extreme overfit. We are overoptimizing on the training data and
will end up learning representations that are specific to the training data but do not generalize to unseen data.

The best suited training accuracy is at about 62%, while the validation accuracy shows 57%. Those figures
seem about right when we compare them with the other baseline models.

Figure 4: CNN model accuracy-, loss curve

6.3.3 Bidirectional Encoder Representations from Transformers (BERT)

2018 was a turning point in the field of natural language processing. A series of deep learning models appeared
on the horizon that achieved state-of-the-art results on NLP tasks ranging from question answering, language
translation to sentiment classification. Most recently, Google’s BERT algorithm has emerged as a sort of “one
model to rule them all”, based on its superior performance over a wide variety of tasks.

BERT builds on two key ideas that have been responsible for many of the recent advances in NLP: the
transformer architecture and unsupervised pre-training. The transformer is a sequence model that forgoes the
recurrent structure of RNNs for a fully attention-based approach, as described in the instant classic Attention
Is All You Need. 12 BERT’s pre-trained weights are learned in advance through two unsupervised tasks,
masked language modelling (predicting a missing word given the left and right context) and next sentence
prediction (predicting whether one sentence follows another). BERT does not need to be trained from scratch
for each new task; its weights are instead fine-tuned. Attention models are quite complex systems, but using
a pre-trained model, makes the architecture simple as reflected below.

12 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Attention

Is All You Need (2018)

http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e
https://arxiv.org/search/cs?searchtype=author&query=Vaswani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Jones%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez%2C+A+N
https://arxiv.org/search/cs?searchtype=author&query=Kaiser%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Polosukhin%2C+I

N-way / Few-shot learning for text classification MAS Data Science

Page 34 / 78

There is a slight difference compared to conventional input data preparation. Attention frameworks require 3
input layers (input_ids, input_mask, input_token) unlike normal neural networks. The inputs need to be pre-
processed towards adding additional attention-related tokens [CLS] and [SEP] with each sentence.

6.3.3.1 Model architecture

BERT Architecture

Layer (type) Output Shape # Parameters

Input layer (input_ids) [(None, 50)] 0

Input layer (input_mask) [(None, 50)] 0

Input layer (input_token) [(None, 50)] 0

bert (TFBertMainLayer) [(None, 768)] 109’482’241

Dense (activation = relu) (None, 64) 49’216

Dropout (None, 64) 0

Dense (activation = relu) (None, 32) 2080

Dropout (None, 32) 0

Dense (activation = softmax) (None, 41) 1353

Total params Trainable params Non-trainable params

109’534’890 109’534’889 1

Table 9: BERT Architecture

The BERT experiment is only available as a colab notebook. The model has been trained on 10 epochs and
a reduced feature size of 50, given the complexity of the model and the time consumption for training. The
settings had to be reduced to be able to train the model within 12 hours. Google’s Colab platform retrieves
resources at the latest after 12 hours.

Parameter settings BERT model

Parameter Setting

Feature size 50

Optimizer
- learning rate / epsilon

Adam
1e-4 / 1e-8

Loss function Sparse categorical crossentropy

Model Callbacks ModelCheckpoint / EarlyStopping

Epochs 10

Table 10: Parameter settings BERT model

N-way / Few-shot learning for text classification MAS Data Science

Page 35 / 78

6.3.3.2 BERT Model - results

As mentioned before, the model has been trained on 10 epochs. The training accuracy at the end of 10 epochs
is approximately 67%, while the validation accuracy reaches its top at about 61%. The validation accuracy
where we need to focus on is about 8% higher than the one with the sequence model. This also makes sense.
BERT models in general tend to show better performance given the pre-trained model. With this model as well,
model accuracy and loss curve indicate an overfitting. The model starts overfitting around the 5th epoch. The
loss curve shows the classical behaviour when a bias-variance problem exists. Ways to overcome are
discussed in chapter 5.5.4.

BERT significantly improves classification performance, compared to the other baseline models. But in
general, we expected an even better performance based on other experiences. The reason might be that news
text is shorter and less grammatical than formal sentences. We postulate that this discrepancy arises because
relation classification is highly contextual, while news text classification is mostly key-word based.

Figure 5: BERT model accuracy, loss curve

6.4 Baseline model results

The baseline models are meant to be a reference towards the representation of our meta-learning algorithms.
All baseline models have been evaluated on the HuffPost Dataset (~136’000 samples, 41 classes). The
conventional machine learning models received features in different forms as count vector and Word, n-gram,
character level tf-idfs as described in a chapter 3.5.1. Deep learning models on the other hand receive raw-
text data, words translated into a vector representation, so the models can cope with the given data.
The results for machine learning models show that none of the types, be it an ensemble, probabilistic or
boosting algorithm, showed better results. All are in the same range with slight differences. It also indicates
that applying different feature representations did not much improve in one over another case. None of the
baseline models stands out. The accuracy ranges in the high 30s up to the mid 40s (39% - 45%).

The situation looks slightly different with the more sophisticated deep learning algorithms. The results here
range from 53% up to 61%, about 8% - 16% higher than the ML models, considering the highest accuracy.
The models applied did not receive a thorough parameter fine-tuning. A fine-tuning cycle would certainly
improve the accuracy of each individual model.

N-way / Few-shot learning for text classification MAS Data Science

Page 36 / 78

Contextualized representation (BERT)
In general, we expected an even better performance with the BERT algorithm (previous experience). A BERT
model takes the contextual representation into consideration. The reason might be that news text is shorter
and less grammatical than formal sentences. We postulate that this discrepancy arises because relation
classification is highly contextual, while news text classification is mostly key-word based.

Results – Random Forest

ML Model Features Accuracy [%] Precision [%] Recall [%] F1_score [%]

Random Forest Count Vector 35.80 38.50 57.10 38.50

 Word level 36.10 40.20 54.50 40.20

 N-gram level 16.70 22.40 55.30 22.40

 Char level 39.60 45.20 53.90 45.20

Best model Char level 39.60 45.20 53.90 45.20

Results – Multinominal Naïve Bayes

ML Model Features Accuracy [%] Precision [%] Recall [%] F1_score [%]

Naïve Bayes Count Vector 45.60 51.70 55.10 51.70

 Word level 43.20 49.80 56.20 49.80

 N-gram level 29.40 33.50 48.90 33.50

 Char level 36.90 43.30 50.20 43.30

Best model Count Vector 45.60 51.70 55.10 51.70

Results – XGBoost

ML Model Features Accuracy [%] Precision [%] Recall [%] F1_score [%]

XGBoost Count Vector 33.80 36.10 46.80 36.10

 Word level 43.20 49.80 56.20 49.80

 N-gram level 29.40 33.50 48.90 33.50

 Char level 36.90 43.30 50.20 43.30

Best model Word level 43.20 49.80 56.20 49.80

Table 11: Results – machine learning models

Results – deep learning models

DL Model Accuracy [%] Loss Validation accuracy [%] Validation loss

Sequence 61.69 1.3991 53.68 1.7728

CNN 80.55 0.6113 57.48 2.7111

BERT 66.54 1.3463 61.16 1.6756

Best model 66.54 1.3463 61.16 1.6756

Table 12: Results –deep learning models

N-way / Few-shot learning for text classification MAS Data Science

Page 37 / 78

7 Meta-Learning Experiment

The MAML paper explores the approach for multiple problems, such as regression, classification, and
reinforcement learning. In this thesis we focus solely on text classification to gain a better understanding of the
algorithm and investigate whether MAML really learns to adapt to novel tasks. We also intend to answer the
question if Model Agnostic Meta-learning is a suitable approach for productive use and if it gives a better
initialization for classification. We will apply two different datasets, HuffPost and Swiss Economic Archive (see
chapter 7.1.1) to test the technique.

All of the experiments were performed using PyTorch (which allows for automatic differentiation of the gradient
updates) along with the Higher library. Higher13, is a library providing support for higher-order optimization,
e.g., through unrolling first-order optimization loops of "meta" aspects of such loops. It provides tools for turning
existing “torch.nn.Module” instances "stateless", meaning that changes to the parameters can be tracked, and
gradient steps with regard to intermediate parameters can be taken. It also provides a suite of differentiable
optimizers, to facilitate the implementation of various meta-learning approaches. It extends PyTorch to enable
the easy and natural implementation of such meta-learning approaches at scale. There are also other libraries
available on the market, like Torch-Meta (Facebook), learn2learn or Meta-datasets (Google). Those have also
been considered. Torch-Meta (Deleu et al., 2019) 14, for example, provides a library aiming to assist the
implementation of meta-learning algorithms, supplying useful data loaders for meta-training. However, unlike
the convenience provided by Higher, it requires re-implementation of models using their functional/stateless
building blocks, and to reimplement the optimizers in a differentiable manner. Therefore, the Higher library
seemed the most promising.

7.1 Experiment details

7.1.1 Dataset

HuffPost headlines consist of ~136’000 news headlines and short descriptions, published on HuffPost
between 2012 and 2018 (Misra, 2018). Headlines and descriptions are shorter and less grammatical than
formal sentences. Each headline/short description is assigned to one out of 41 classes, where each class has
at least 800 samples. Some minor explanatory data analysis is available in Chapter 10.2.1 HuffPost data
analysis.

The 41 classes were randomly split into tasks for 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛, 𝐷𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑 and 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. The training and
evaluation were performed on the meta-training and meta-validation set. Where the meta-validation set was
mostly used for hyperparameter tuning. The meta-test set measured the generalization to new tasks.

HuffPost class split

𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 20 classes

𝐷𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑 10 classes

𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 11 classes

Table 13: HuffPost class split

13 Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho,

Chintala Soumith. Generalized Inner Loop Meta-Learning (2019). arXiv:1910.01727
14 Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, Yoshua Bengio. Torchmeta: A Meta-Learning library for PyTorch

(2019). arXiv 1909.06576

N-way / Few-shot learning for text classification MAS Data Science

Page 38 / 78

Swiss Economic Archive (SWA) consists of news articles published in various news media starting from
1950. The news articles are split among 485 classes. Multiple labels are assigned for certain news articles.
The focus in this thesis is not to predict multiple labels per class. Therefore, two datasets have been created.
Dataset 1 contains only samples that have an assignment to a single class. Hence, Dataset 1 contains 146
classes, where Dataset 2 uses the 146 classes with a single class assignment, but also samples where 2 class
assignments existed, but only the first of the two class assignments have been used. This leaves us with 246
distinct classes in dataset 2. We will initially stick to dataset 1 with its 146 classes.

Swiss Economical Archive class split:

Swiss Economic Archive class split

𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 100 classes

𝐷𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑 20 classes

𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 26 classes

Table 14: Swiss Economic Archive class split

7.1.2 Data set-up

We consider the N-way, k-shot classification setting where a meta-learner trains on many related but small
training sets of k samples for each of the N classes (5-way/10-shot). We first split the list of all classes in the
data into disjoint sets and assign them to each meta-set of meta-training, meta-validation, and meta-testing
dataset 𝐷 = (𝐷𝑡𝑟𝑎𝑖𝑛; 𝐷𝑣𝑎𝑙𝑖𝑑 ; 𝐷𝑡𝑒𝑠𝑡) ∈ 𝒟.

A dataset, e.g., training set, consists of any number of batches. A batch is formed by 32 tasks. To generate
each instance of a N-class, k-shot task dataset, we initially create a book-keeping dictionary, which contains a
class-sample index mapping (samples that belong to a respective class). Then ran through the following steps:

1) Sample N classes from the list of classes corresponding to the meta-set we consider (𝐷𝑡𝑟𝑎𝑖𝑛; 𝐷𝑣𝑎𝑙𝑖𝑑 ; 𝐷𝑡𝑒𝑠𝑡).

2) Sample k examples from each of those classes. These k samples per N-classes composes a task in the

training set 𝐷𝑡𝑟𝑎𝑖𝑛.

3) Compose a batch, by aggregating 32 tasks into a batch

4) The number of batches varies for meta-train, meta-valid and meta-test

The same procedure is then applied for 𝐷𝑣𝑎𝑙𝑖𝑑 and 𝐷𝑡𝑟𝑎𝑖𝑛. The difference between a training, validation, and
test set lies in the number of batches, while for training 1000 batches are allocated, we only allocate 250 each
for validation and test set. An experiment consists of the following setting:

Training, validation, test set

Unit Type (5-way/10-shot) (5-way/5-shot)

1 task 50 samples 25 samples

1 batch 32 tasks 32 tasks

1000 batch 32 tasks à 50 samples
{1000} * 32 * 50 = 1’600’000 samples

32 tasks à 25 samples
{1000} * 32 * 25 = 800’000 samples

Table 15: Data setup – training, validation, test set

Time consumption for training, validation, and testing
In terms of time consumption, we can allocate the following figures. The times greatly depend on the size of
model and can, therefore, vary slightly. On average the time to process a (5-way/10-shot) batch is about
~30sec. resp. 18sec. for a (5-way/5-shot). The figures are based on the given system configuration: Nvidia
GeForce RTX3080 and CUDA 11.1

Training, validation, and test time consumption

Phase (5-way/10-shot) (5-way/5-shot)

Training 1000 * [27…32] sec ~7.5 - 9h 1000 * [15…23] sec ~4 – 6.5h
Validation 250 * [27…32] sec ~2 – 2.5h 250 * [15…23] sec ~1 – 1.5h
Testing 250 * [27…32] sec ~2 – 2.5h 250 * [15…23] sec ~1 – 1.5h

Table 16: Time consumption – model training

N-way / Few-shot learning for text classification MAS Data Science

Page 39 / 78

7.1.3 Features

PyTorch has been used for all meta-learning models as mentioned in the introduction. So, I used the torchtext,
library a package out of the PyTorch ecosystem. Torchtext provides a set of convenience functions to handle
NLP tasks. We used torchtext because it nicely integrates with PyTorch. It allows to quickly apply embeddings
and create a vocabulary.
The steps to create features were in general the same as we did with our baseline models. We also use the
pre-trained FastText (Joulin et al., 2016) 15 and GloVe (stanford.edu) embeddings. The embeddings are
applied depending on the used language in a respective data set (GloVe for English and FastText for German).
The mapping between our embedding matrix and the vocabulary is done by torchtext behind the scenes. We
also use a vocabulary size of 20’000 words and set the maximum sequence length of our features to 150
words.

7.2 Model architecture

In terms of model architecture, 5 hand-woven convolutional networks have been created. For that purpose,
multiple convolutional blocks comprised of Convolutional, MaxPooling, Dropout, Batch Normalization and Fully
Connected layers have been stacked on top of each other.

The individual models differ in minor ways. Some of the models are comprised of 1D convolutional layers,
while the other use 2D convolutional layers. One uses Batch Normalization, while the others do not. Some
models use a different number of filters. Common to all models is the use of a ReLU as intermediate activation
function and a “softmax” activation function on the last layer to distinguish between several classes. A stride
of 1 and a cross-entropy loss function to calculate the error has been applied to all models.

Model architectures

Model Trainable parameters Layer

Meta-Model 1 332’405 3 x Conv2D, MaxPooling, Dropout, Linear layer, filter size (100)

Meta-Model 2 373’241 3 x Conv1D, MaxPooling, BatchNorm, Dropout, Linear layer, filter size (100)

Meta-Model 3 361’805 3 x Conv1D, MaxPooling, Dropout, Linear layer, filter size (100)

Meta-Model 4 362’405 3 x Conv2D, MaxPooling, Dropout, Linear layer, filter size (128)

Meta-Model 5 994’205 6 x Conv2D, MaxPooling, Dropout, Linear layer, filter size (100)

Table 17: Model architectures

7.2.1 Hyperparameter evaluation

As we saw previously, learning occurs in two stages: gradual learning is performed across tasks, and rapid
learning is performed within tasks. This requires two learning rates, which introduces difficulty in choosing
hyperparameters that would help to achieve training stability. A parameter optimization cycle has been applied
to find the best settings. Finding the optimal parameters is a tedious and time-consuming task but finding the
best set of optimization parameters is vital and might lead to substantially better results. Meta-learning
algorithms are also suitable for finding optimal parameters, but that technique has not been applied yet.
Parameter fine-tuning is more of an art than an exact science. With more experience, one tends to get a gut
feeling as to which settings might be better suited than others. In my own case, I lack the experience as well
as the required time to run a full-fledged tuning cycle. Despite this, the following ranges have been verified:

Hyperparameter evaluation

SGD learning rate [0.1, …, 0.0001]

SGD momentum [0.5, …, 0.9]

Adam learning rate [0.01, …, 0.0001]

Adam beta 1 [0.5, …, 0.9]

Adam beta 2 [0.5, …, 0.99]

Table 18: Hyperparameter evaluation

15 Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, Tomas Mikolov. FastText.zip: Compressing text

classification models (2016). arXiv 1612.03651

https://arxiv.org/search/cs?searchtype=author&query=Joulin%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Grave%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Bojanowski%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Douze%2C+M
https://arxiv.org/search/cs?searchtype=author&query=J%C3%A9gou%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Mikolov%2C+T

N-way / Few-shot learning for text classification MAS Data Science

Page 40 / 78

The optimizer settings which seemed best are listed in the table below:

Hyperparameter settings

Data set Learning loop Optimizer Learning Rate Momentum Beta 1 Beta 2

HuffPost Inner loop SGD 0.1 0.9

 Meta loop Adam 0.001 0.9 0.99

SWA Inner loop SGD 0.005 0.9

 Meta loop Adam 0.001 0.9 0.99

Table 19: Hyperparameter settings

7.2.2 Model-Agnostic Meta learning algorithm

The Model-Agnostic Meta-Learning algorithm is the central part of this thesis. The following pseudo code
describes the mechanism of our meta-learning application (see Figure 6: MAML pseudo code). A detailed
implementation of the algorithm using the Higher library is attached in the appendix chapter 10.7.
The MAML approach fine-tunes its model using gradient descent each time for a new task. This requires it to
backpropagate the meta-loss through the model’s gradients, which involves computing derivatives of
derivatives, i.e., second derivatives. While the gradient descent at test time helps it extrapolate better, it does
have its costs. Since we use the Higher library, we do not have to worry about second derivatives. All is covered
by the library.

Algorithm: MAML for few shot supervised learning

Require: 𝑝(𝑇): distribution over tasks

Require 𝛼, 𝛽: step size hyperparameters

Randomly initialize 𝜃
while not done do

 Sample batch of tasks 𝑇𝑖 ∼ 𝑝(𝑇)

 for all 𝑇𝑖 do

 Sample K datapoints 𝐷 = {𝑥𝑖 , 𝑦𝑖 } from 𝑇𝑖

 Evaluate ∇𝜃ℒ𝑇𝑖
(𝑓𝜃) using 𝐷 and 𝑇𝑖 [1]

 Compute adapted parameters with gradient descent: 𝜃𝑖
∗ = 𝜃 − 𝛼∇𝜃ℒ𝑇𝑖

(𝑓𝜃) [2]

 Sample datapoints 𝐷𝑖
′ = {𝑥𝑖 , 𝑦𝑖 } from 𝑇𝑖 for meta update [3]

 end for

 Update: 𝜃 ← 𝜃 − 𝛽∇𝜃 ∑ ℒ𝑇𝑖
(𝑓𝜃)𝑇𝑖 ∼ 𝑝(𝑇) using each 𝐷𝑖

′ and ℒ𝑇𝑖
 [4]

end while

Figure 6: MAML pseudo code

We take 𝑘 datapoints (support and query set). We optimize the likelihood of the support set by taking a few
gradient steps with respect to the model's parameters. In our case, we apply 5 inner gradient steps on the
support set. This adapts the model's meta-parameters to the task. Higher, which takes a central role in
managing the model’s parameters, is able to automatically keep copies of the network's parameters as they
are being updated. The final set of adapted parameters will induce some final loss and accuracy (loss and
accuracy are logged as mentioned later) on the query set. These will be used to update the model's meta-
parameters during backpropagation.

Finally, we update the model's meta-parameters to optimize the query losses across all of the tasks sampled
in this batch. This unrolls through the gradient steps.

Gradient steps:
Backpropagating through many inner steps can be computationally and memory intensive. With only a few
gradient steps, it might be a less time-consuming endeavor, but it may not be the best solution for scenarios
that require a higher number of gradient steps at test time. So, we applied a medium-sized inner gradient step
value of 5 to balance the situation.

N-way / Few-shot learning for text classification MAS Data Science

Page 41 / 78

Logging of loss and accuracy
Our implementation keeps track of the loss and accuracy on a task and batch level. This is done via the two
simple methods. Task-level logging contains the query loss and query accuracy per task, while the data stored
on batch level contains averaged values of all tasks in a batch. This makes the curves smoother and hence
more readable. Task and batch metrics are stored in csv files, for visualization reasons.

task_metric = per_task_metric(task_cnt, query_loss, query_accuracy, mode)

batch_metric = per_batch_metric(batch_idx, batch_loss, batch_accuracy, mode)

7.3 Meta-training, validation, and testing

Following Vinyals et al. (2016), we consider the k-shot, N-class classification setting where a meta-learner
trains on many related but small training sets of k examples for each of N classes. We first split the list of all
classes in the data into disjoint sets and assign them to each meta-set of meta-training, meta-validation, and
meta-testing. During inference, we use the meta-trained model to predict on the meta-test set, except this time
although the meta-trained model undergoes additional gradient steps to help classifying the query set
examples, the learner parameters are not updated.

Meta-training, validation and testing will be performed on a 5-way/10-shot and 5-way/5-shot setting. The
assignment of classes to a train, validation, and test set is usually a random assignment. Table 20 shows an
initial random assignment of classes into training, validation, and testing. The given class assignment will from
now on be kept static, to ensure comparability between the different models and settings. The setting will not
be 100% equivalent, since we cannot control the sample assignment to a given class. Those will always be
random. Building on the idea of predicting seen as well as unseen classes, we formulate 2 scenarios.

Meta-training, validation, testing class split

Training classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2]

Validation classes [29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Testing classes [5, 36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Table 20: Random class split

Validation, in a conventional meta-training, validation, and test setting, is used for fine-tuning. Table 20 shows
that our class distribution for training, validation and testing is indeed disjoint. We will change the conventional
procedure towards the following settings:

Meta-training, validation, testing class split

Training classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2]

Validation classes [29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Test classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 5, 36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Table 21: Class split scenario 1

Scenario 1:
Validation is more an academic scenario, where we only validate on unseen classes. In a production setting
we will almost never have the situation that during inference only unseen classes need to be predicted. The
usual case during inference is, that seen as well as unseen classes need to be identified. Therefore, our test
cycle will contain a combination of seen and unseen classes. For that purpose, we merge the 20 classes
assigned to training and the 11 classes assigned to testing (bold) to form our final test set. It will be a mixture
of seen and unseen samples, while neither classes nor samples out of the test class assignment (bold) have
ever appeared during training.

Scenario 2:
In our 2nd scenario, we train on samples from 30 classes (training and validation of the initial class assignment)
and perform testing on 41 classes. In that case we cover all 41 classes (30 classes seen, 11 classes unseen).

Meta-training, validation, testing class split

Training classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Testing classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35, 5,
36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Table 22: Class split scenario 2

N-way / Few-shot learning for text classification MAS Data Science

Page 42 / 78

7.3.1 Evaluation Metrics

We will only use accuracy (acc) to evaluate the classification performance, in all our text classification
experiments. A confusion matrix is often used in machine learning and specifically by visualizing statistical
classification. A confusion matrix, also known as an error matrix, is a specific table layout that allows the
visualization of the performance of an algorithm, typically in supervised learning. Confusion matrices are very
useful when the performance of a handful of classes need to be visualized. A graph becomes confusing, when
visualizing 41 classes as in our case.

7.3.2 Results on HuffPost dataset

The following section describes how MAML performs on the 5-way/10-shot and a 5-way/5-shot setting on the
HuffPost dataset.

In both sections, we illustrate accuracy and loss curves for training, validation, and testing. The individual plots
yield 4 curves which reflect the individual models and their respective performances.

As mentioned before, training has been taken on 1’000 tasks, which adds up to 1’600’000 in a 5-way/10-shot
and 800’000 datapoints in a 5-way/5-shot setting, while we only applied 250 tasks for validation and testing
which on that side adds up to 400’000 respectively 200’000 datapoints. One such setting qualifies for an epoch.
The figure below illustrates a training cycle of 1 epoch. The HuffPost dataset does itself not contain that many
samples. The 1’000 tasks yield different combinations of 5 classes and their respective samples.

We expect that a 10-shot setting yields better results than a 5-shot setting on both the meta-validation and
meta-test set. Therefore, as the number of shots/examples per class increase, we probably will see a better
performance during validation and test time.

Restriction:
Training only on a single epoch (time consumption).

Experiment summary:
Detailed performance figures of the individual models are available in a table in chapter 7.5.

Remark:
Figure 7 is just for illustration reasons. The 2 plots top left and middle depict, in fact, the same data. One
shows the loss values per task, while the other is an averaged loss value over all tasks in a batch. It is hard to
derive any information from a task-level plot. Therefore, we will only use batch-level data from now on.

Figure 7: MAML task vs. batch level loss curve

N-way / Few-shot learning for text classification MAS Data Science

Page 43 / 78

7.3.2.1 Meta-training, validation, and testing 5-way/10-shot

The results described in this section reflect scenario 1. The procedure is described in chapter 7.3.

Scenario 1:
Meta-training on 20 classes (seen classes) and meta-validation on 10 classes (unseen classes). In meta-
testing we perform tests on 31 classes (20 seen classes from meta-training and 11 unseen classes from
meta-testing)

Meta-training, validation, testing class split

Training classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2]

Validation classes [29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Testing classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 5, 36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Meta-training:
The individual models show a relatively diverse performance. The performance after one cycle ranges from
~64% up to ~72%. The complexity of the individual models rises with the number assigned to each model
name. This means meta_model_1 is a rather simple model, while meta_model_5 has a higher complexity. The
initial assumption was that the model performance would improve with additional layers. As we add more
layers, the model should be able to learn different (more diverse aspects) from the given data. But our
assumptions seem to be incorrect. The model with the lowest complexity reaches the best training accuracy,
while meta_model_5, which has about twice the number of convolutional layers, does not do very well. But in
fact, we should not focus on the training accuracy too much. The more important performance measures are
the results with the validation and test set.

The one thing all our models have in common is the fact that the loss curve gradually degrades. Training loss
decreases, while the training accuracy increases with every epoch. That is what one would expect when
running gradient descent optimization. The quantity we are trying to minimize should be less with every
iteration. The expectation is that we see an asymptotic behaviour towards 0. This certainly applies only as we
run more training cycles. Meta_model_5 fails in this case. The loss curve levels out after training about 600
tasks.

Figure 8: Meta-learning 5-way/10-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 44 / 78

Meta-validation:
The validation accuracy verifies how good the learned weights effectively are. We apply unseen classes and
samples in the validation cycle, as mentioned in the introduction to this chapter. Here we see a relatively static
behaviour of the individual models. The figures below show the same sequence as we saw in the training
phase. Meta_model_1 yields the best result, while meta_model_5 has the lowest performance. All curves show
a slightly lower performance than in the training cycle. In conventional machine learning models this would
indicate a slight overfitting. A model that performs better on the training data is not necessarily a model that
will do better on data it has never seen before. When we see overfitting, we overoptimize on the training data,
and one ends up learning representations that are specific to the training data and do not generalize to data
outside of the training set.
In a meta-learning context, we would imply that our models generalize well. Consider meta_model_1 which
yields a training accuracy of ~72% compared to the ~69% during validation or if we consider meta_model_3
with training/validation accuracy of ~70% / ~68% This in general indicates a robust model that generalizes
well (see all results in chapter 7.5 Experiment summary).

Figure 9: Meta-validation 5-way/10-shot accuracy, loss curves

Meta-testing:
The meta testing results are somewhat interesting. We merged the 20 classes the model has been trained on
(seen classes) with the 11 unseen classes, which we initially put aside. So, we test on 31 classes. We expected
the performance to be somewhere between the training and the validation results, a little lower than the training
performance, but better than the validation results. The figures yield a different view. The results, and this
virtually applies to all models, are even a little higher than the training performance, which seems rather odd.

Figure 10: Meta-testing 5-way/10-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 45 / 78

7.3.2.2 Meta-training, validation, and testing 5-way/5-shot

The results described in this section reflect scenario 1. The procedure is described in chapter 7.3.

Meta-training:
The performance with 5-way/5-shot settings is, as we expected in the introduction, lower than the ones with
the 5-way/10-shot setting. The performance after one cycle ranges from ~59% up to ~65%, which is about
~5% -~7% lower than in the 10-shot case. The situation here looks a little different. Meta_model_5, which did
not perform well in the previous setting, tells a completely different story. It shows almost the same
performance as our simple model (meta_model_1). A reason might be, that the newly assigned samples
contain words, that have a better predictive power and therefore can better be allocated to a given class. In
general, all loss curves degrade gradually as one would expect.

Figure 11: Meta-training 5-way/5-shot accuracy, loss curves

Meta-validation:
The meta-validation tells us an equivalent story as described in the above section. Our meta_model_1
generalizes quite well. The meta-training and meta-validation performance of that model is virtually the same
(meta-train: ~65.07%, meta-validation: ~64.72%), while the other models slightly overfit. This proves, that
given the prior knowledge, we in fact can predict entirely new classes very well.

Figure 12: Meta-validation 5-way/5-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 46 / 78

Meta-testing:
Our expectation with the 5-shot setting is the same as with the 10-shot setting. We expected the performance
to be somewhere between the meta-training and the meta-validation results. A little lower than the training
performance, but better than the validation results. Meta_model_4 shows an equivalent performance between
meta-training and meta-validation, while meta_model_1 and meta_model_5 even exceed the meta training
performance. This basically yields an indication that a slight bias exists.

Figure 13: Meta-testing 5-way/5-shot accuracy, loss curves

7.3.2.3 Meta-training, and testing 5-way/10-shot

Scenario 2:
In our 2nd scenario, we train on samples from 30 classes (training and validation) and perform testing on 41
classes. In that case we cover all 41 classes in our dataset (30 classes seen, 11 classes unseen).

Meta-train, -validation, -test class split

Train classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Test classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35, 5,
36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Meta-training:
In scenario 2 as we defined above or the introduction in chapter 7.3, we apply the full stack of classes. We
see a similar situation as with our scenario 1 in chapter 7.3.2.1. The assumption that the training accuracy is
smaller on the 30 classes than on the 20 classes, does not hold true. The spread of training accuracy is
tighter over all models. The lowest training accuracy improved by ~3% while the top accuracy dropped by
~2% compared to the similar situation in scenario 1. Accuracies range from ~67% up to ~70%.

Figure 14: Meta training 5-way/10-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 47 / 78

Meta-testing:
For our final inference scenario we preload each individual meta-trained model. As before our models undergo
additional gradient steps to help classifying the query set examples, but the learner’s parameters are not
updated. The result depicted below shows a rather positive image. The test accuracies range from ~73.6% –
~75%.
It is actually incredible how good the learned weights are, if we consider the fact that only 10 samples per class
have been used. Initially I had the feeling something is wrong with the setup, but if we consider the data
preparation setup, everything is plain vanilla.

Our application provides 3 independent data loaders (training, validation, and test data loader). In case of
training, the data loader takes 30 classes and assigns 10 samples per class. Our book-keeping method
ensures, that a class does not get the same sample assigned twice. In fact, we assign 20 samples per class,
but they are split 50/50 into a support and query set later on, to ensure that they are coming from the same
class distribution.

The test data loader does the same thing but on 41 classes. The 11 unseen classes for sure get samples the
system has never seen before, while the remaining 30 classes might get samples it has seen before. But when
we consider our dataset. The number of samples per class range from ~800 up to >20’000 samples. By even
only considering the least number of samples of ~800 in one class, we can be sure that the overlay (match) is
minor.

Figure 15: Meta-testing 5-way/10-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 48 / 78

7.3.2.4 Meta-training, and testing 5-way/5-shot

Meta-training:
The performance with 5-way/5-shot settings is as we expected, lower than the ones with the 5-way/10-shot
setting. The performance after one cycle ranges from ~59% up to ~62%, which is about ~8% lower than in the
10-shot case. The situation here looks a little different. Meta_model_5 which did not perform well, shows
almost the same performance as our simple model (meta_model_1). Here as well, we can only assume if the
reason is related to the newly assigned samples and the respective words. The fact, that it behaves the same
way as in the 5-way/5-shot scenario trained on 20 classes, does not support our assumption. So, there must
be a different reason. In general, all loss curves degrade gradually as one would expect.

Figure 16: Meta-training 5-way/5-shot accuracy, loss curves

Meta-testing
In this setting we see again the expected behaviour. Accuracies with 5-shots are lower than with 10-shots.
Accuracies range from ~66.7% up to ~69.5%. The loss is basically a mirror of the accuracy. Highest
accuracies have the lowest loss and vice versa.

Figure 17: Meta-testing 5-way, 5-shot accuracy, loss curves

7.3.3 Results on SWA dataset

The results on the Swiss Economic Archive dataset had to be skipped given the time constraint to finalize
this thesis. We only ran one training cycle, which resulted in a training accuracy of ~58%.

N-way / Few-shot learning for text classification MAS Data Science

Page 49 / 78

7.4 Production setup

When one consults the currently available research papers on MAML in an N-way/few-shot setting, one will
not find any hint on how MAML is supposed to be used in a production set-up. I racked my brain on that
subject, but the only solution I could come up with, was that the MAML N-way/few-shot pre-trained models can
be used as a good initialization in a transfer learning context. But I was not sure if that assumption really holds
true. So, I wrote my question to two researchers (Sergey Levine16 and Antreas Antoniou17) with the expectation
not to get any feedback. Interestingly, I got an invitation from Antreas for a video call.

We discussed the subject on “How to apply MAML in a productive setting”, which would suit as a good title for
a research paper. It was a fruitful discussion, where I received some valuable hints. He also mentioned that
the subject is not discussed anywhere in the research community.

The following points came out of our discussion:

▪ Use MAML as a well-trained starting point for transfer learning by retraining our model on a newly

assigned output layer (softmax), which covers all available classes.

▪ Build a model architecture that provides an output layer (softmax), which covers all available classes

and apply meta-learning as an N-way/few-shot setting.

▪ Generating softmax parameters for task-specific classification, by dynamically allocating a changing

output layer (softmax) while meta-training (depending on the number of classes in each task).

Transfer learning
Transfer learning would be a straightforward task. The primary step is to load a pre-trained model, then we
need to obtain access to all layers and parameters. Having access, we can freeze the respective layers by
setting the parameters requires_grad to False. This would prevent calculating the gradients for these
parameters in the backward step, which in turn prevents the optimizer from updating them. And finally apply
the new output layer.

Generating softmax parameters for task-specific classification
Existing applications of MAML consider few-shot learning with a fixed N-way assignment. This limits the
applicability to a reduced number of applications. Classification tasks, which would need a different set of 𝑁
classes with each individual task could not be covered. The remedy to this, would be to generate task-

dependent softmax parameters (both linear weights and bias). Given the training data, 𝐷𝑖
𝑡𝑟 = {(𝑥𝑖 , 𝑦𝑖)}, for a

task 𝑇𝑖, we first would need to partition the input into the 𝑁𝑖 number of classes for the task (available in 𝐷𝑖
𝑡𝑟)

an then obtain the softmax classification weights and bias for task 𝑇𝑖. Currently I have no clear picture how to
address this situation. I would need to add more brain power into it, since many open questions remain as
calculating and concatenating the weights and biases, class remapping etc.

Model architecture with a 41-class output layer
For our final experiment we will apply approach 2 from the list above. It is the fastest way, given our model
architecture. We just need to provide the number of classes in the output layer (softmax) covering all 41 classes
and switching off the remapping by creating the 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. Remapping of classes is required
when applying a 5-way classification with a model architecture containing an output layer to distinguish
between 5 classes. Since we will cover all classes in our current setting, a remapping of classes for meta-
training and validation, as we did in a conventional 5-way classification, will not be required.

16 Chelsea Finn, Pieter Abbeel, Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (2017)

17 Antreas Antoniou, Harrison Edwards, Amos Storkey. How to train your MAML (2019).

N-way / Few-shot learning for text classification MAS Data Science

Page 50 / 78

7.4.1 Meta-training and testing 5-way/10-shot

We will perform meta-training on the same classes as in scenario 2. We again run experiments on 5-way/5-
shot and 5-way/10-shot. The only difference is that the output layer (softmax) of our model consists now of 41
classes. A remapping is not required in such a setting as mentioned above.

Meta-training, validation, testing class split

Training classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35]

Test classes [13, 1, 25, 6, 12, 24, 8, 28, 18, 19, 22, 9, 33, 3, 40, 30, 34, 0, 11, 2, 29, 16, 14, 39, 7, 17, 21, 4, 32, 35, 5,
36, 15, 38, 23, 27, 20, 37, 26, 10, 31]

Meta-training
Meta-training in our production scenario should show around the same results as in the previous section
scenario 2, since we use the same class initialization. There could be a slight difference because of different
sample assignments and certainly weight initializations. The meta-training accuracy of our models is in the
range of ~71% to ~74%, which is, surprisingly, a few percent higher than the previously trained models in
scenario 2. Our assumption here was that we will get similar performance or even a little less. When it comes
to the training accuracy of our simplest and most complex model, they are again in a comparable range.

Figure 18: Meta-training production 5-way/10-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 51 / 78

Meta-testing
When we now compare the meta-testing performance, we see a different situation. The model performance of
all models drops to a range between ~58% and ~59.6%, which in my view is still surprisingly good. If we
compare our BERT baseline model, which reached an accuracy of ~61%. A model, which we in fact consider
a state-of-the-art model only shows a ~1.5% improvement compared to our best meta-trained model.
Taking into consideration the number of samples we applied to our meta model (10 samples per class), I would
call our performance near state-of-the-art. One thing to recognize is the fact, that our simplest model again
performs best. The remaining question to answer here is the difference between meta-training and meta-
testing performance. The models in general were rather robust and did generalize quite well, as we saw in
previous experiments. So, why is there such a drop?

Figure 19: Meta-testing production 5-way/10-shot accuracy, loss curves

7.4.2 Meta-training and testing 5-way/5-shot

Meta-training
We assume to see the same situation with our 5-shot models as we described in the meta-training section for
10-shots. Meta-training is around ~64.6% to ~67.6% which is ok, but the more interesting figures are the testing
results.

Figure 20: Meta-training production 5-way/5-shot accuracy, loss curves

N-way / Few-shot learning for text classification MAS Data Science

Page 52 / 78

Meta-testing
The spread of meta-testing results is wider than before. Results are around ~53.2% to 58.7%, which gives a
spread of around 5%. If we compare the performance of our best model with 10-shots and 5-shots, we see
only a small difference of ~1%. When we now check again our best 5-shot result and compare them to the
BERT baseline model, we see again a rather positive situation. Our BERT model only performs better by
~2.3%.

Figure 21: Meta-testing production 5-way, 5-shot accuracy, loss curves

7.5 Experiment summary

The following section aggregates the results acquired in chapter 6 Baseline classifiers and 7 Meta-Learning
Experiment. The six baseline classifiers have been evaluated in a conventional machine, and deep learning
setting, where an 80/20 split on the data has been applied to separate training from test data. In chapter 7 we
evaluated four CNN models in a meta-learning setting where we applied only 5 or 10 samples per class.
A summary of all results is reported in the tables below.

Conventionally trained machine learning models show a rather poor performance with certain model
architectures, while the deep learning baseline models reach a substantially better performance. So, if we put
the baseline results into context to our few-shot learning results, we see a comparable performance (compared
to deep learning baseline models) or even exceeded the performance with the MAML few-shot approach.

Baseline models

Results – Baseline machine learning models

ML Model Features Accuracy [%] Precision [%] Recall [%] F1_score [%]

Naïve Bayes Count Vector 45.60 51.70 55.10 51.70

Random Forest Char level 39.60 45.20 53.90 45.20

XGBoost Word level 43.20 49.80 56.20 49.80

Best model Word level 45.60 51.70 55.10 51.70

Results – Baseline deep learning models

DL Model Train accuracy [%] Loss Validation accuracy [%] Validation loss

Sequence 61.69 1.3991 53.68 1.7728

CNN 80.55 0.6113 57.48 2.7111

BERT 66.54 1.3463 61.16 1.6756

Best model 66.54 1.3463 61.16 1.6756

Meta-learning - scenario 1

Results - 5-way/10-shot scenario 1 scenario 2

Meta Models Max train acc [%] Mean valid acc [%] Std Dev Mean test acc [%] Std Dev

meta_model_1 71.7434 69.2425 0.1890 73.6086 0.3433

meta_model_3 69.7435 68.1698 0.1479 73.0847 0.1455

meta_model_4 69.8745 69.7306 0.1720 73.7491 0.1754

meta_model_5 63.8355 57.4486 0.1746 61.6377 0.2256

Best model 69.8745 69.7306 0.1720 73.7491 0.1754

N-way / Few-shot learning for text classification MAS Data Science

Page 53 / 78

Results - 5-way/5-shot scenario 1 scenario 2

Meta Models Max train acc [%] Mean valid acc [%] Std Dev Mean test acc [%] Std Dev

meta_model_1 65.0735 64.7239 0.2272 69.2529 0.2001

meta_model_3 62.2178 62.2155 0.1860 67.8646 0.3187

meta_model_4 62.2435 62.3846 0.1823 68.1202 0.1727

meta_model_5 64.7922 62.2000 0.4087 67.9395 0.2416

Best model 65.0735 64.7239 0.2272 69.2529 0.2001

Meta-learning – scenario 2

Results - 5-way/10-shot

Meta Models Max train acc [%] Mean test acc [%] Std Dev

meta_model_1 68.9872 75.0241 0.1518

meta_model_3 67.2384 73.6493 0.1155

meta_model_4 66.7008 74.2973 0.2247

meta_model_5 69.8295 74.3173 0.2881

Best model 69.8295 74.3173 0.2881

Results - 5-way/5-shot

Meta Models Max train acc [%] Mean test acc [%] Std Dev

meta_model_1 62.2355 69.4641 0.3215

meta_model_3 59.6042 67.9522 0.1791

meta_model_4 59.4348 67.9966 0.2616

meta_model_5 61.3382 66.7902 0.2369

Best model 62.2355 69.4641 0.3215

Meta-learning production setting

Results - 5-way/10-shot

Meta Models Max train acc [%] Mean test acc [%] Std Dev

meta_model_1 73.0900 59.3255 0.4404

meta_model_3 70.9728 59.6567 0.4441

meta_model_4 70.9813 57.8953 0.6950

meta_model_5 73.7565 57.8065 0.3329

Best model 70.9728 59.6567 0.4441

Results - 5-way/5-shot

Meta Models Max train acc [%] Mean test acc [%] Std Dev

meta_model_1 67.5878 58.6563 0.5934

meta_model_3 64.5836 55.1179 0.3209

meta_model_4 64.6915 58.1110 0.2419

meta_model_5 66.426 53.2604 0.3014

Best model 67.5878 58.6563 0.5934

Our results demonstrate that the MAML approach is indeed beneficial for learning with only a few samples.
In the conventional 5-way scenario (meta-train and validation – scenario 1), the tasks indicate an accuracy of
around 69% mean validation accuracy on just 10 samples, while the scenario with 5 samples shows an
accuracy of approximately 65%. We also see that our second approach with a mixture of seen and unseen
classes during meta-testing shows even better results (~73% on 10 samples and ~69% on 5 samples). Such
results are remarkable.

When we used MAML in a productive setting, meaning that we intend to classify 41 classes instead of just
5 classes, the performance dropped down to about 59.6%. But we need to put those results into perspective.
Our BERT baseline model achieved an accuracy of ~61%. A model, which we in fact consider a state-of-the-
art model. Taking into consideration the number of samples we applied to our meta model (10 samples per
class), I would call our performance near state-of-the-art. But the question why we experience such a
difference between meta-training and meta-testing performance, remains. The models in general were rather
robust and did generalize quite well, as we saw in previous experiments.

We were able to reproduce the advantages of MAML by using the prior knowledge to improve its future learning
performance. We even experienced that MAML is able to gain experience over multiple learning tasks mostly
covering a distribution of related tasks and being able to classify unseen classes.

N-way / Few-shot learning for text classification MAS Data Science

Page 54 / 78

Does that imply that we learn a better weight initialization with the MAML approach?
I would say, yes.
Given the fact that the MAML algorithm is simple, and its ability to perform a few gradient steps at inference
time allowing to generalize quickly to unseen classes (derived from prior knowledge), is remarkable.

Does a productive setup benefit with the MAML approach?
Here as well, I would answer with yes. Our results indicated comparable results in our production set-up. Using
the MAML pre-trained weights by applying them in a transfer learning context probably allows to achieve even
better results in a productive setting.

There was an important finding while training and testing our approach. The dropout layer, which is used for
regularization in the way that it modifies the network by removing neurons during training, contributes to the
stability and robustness of a network. In the testing phase, a dropout layer should be eliminated since the
learned parameters have already been trained for robustness. Removing the dropout layer during testing was
beneficial. It added 4% - 6% to the final accuracy in either setting (5 and 10-shot).

Final words regarding our experiment results:

Meta-learning and especially the MAML approach shows exactly what I intended to achieve. It provides a
possibility to relieve us from the data-gathering burden and reduces compute resources. It is certainly not
perfect, but the future seems bright.

There is one last approach, which I regret not being able to finalize “yet”. One of my favourite technique is
model ensembles. I personally believe, combining ensembles technique and meta-learning could show
favourable results. The subject is described in the next chapter.

7.6 Ensemble learning for Deep Learning Neural Networks

A powerful technique for obtaining the best possible results on a given task is an ensemble of models.
Deep learning neural networks are nonlinear methods. They offer increased flexibility and can scale in
proportion to the amount of training data available. A downside of this flexibility is that they learn via a stochastic
training algorithm, which means that they are sensitive to the specifics of the training data and may find a
different set of weights each time they are trained, which in turn produces different predictions. Generally, this
is referred to as neural networks having a high variance and it can be frustrating when trying to develop a final
model to use for making predictions. A successful approach to reducing the variance of neural network models
is to train multiple models instead of a single model and to combine the predictions of these models. This is
called ensemble learning and not only reduces the variance of predictions but can also result in predictions
that are better than any single model. The idea behind ensembles is that different models learn different areas
from the data. Combining these models usually leads to a better performance.

Combining several models is most helpful when the individual models are different from each other and in
order to make neural net models different, they should either have different architectures or be trained on
different data. However, the obvious idea of averaging the outputs of many separately trained nets is
prohibitively expensive.

7.6.1 Ensemble techniques

Ensemble techniques are mainly separated into algebraic and voting methods. We only listed four of the
most interesting methods, but there are several more.

Ensemble techniques

Algebraic methods Voting methods

Averaging Majority voting

Weighted Average Ensemble Weighted majority voting

Table 23: Ensemble techniques

Majority voting
The majority voting method is generally used for classification problems. In this technique, multiple models are
used to make predictions for each data point. The predictions by each model are considered as a ‘vote’. The
predictions which we get from the majority of the models are used as the final prediction.

N-way / Few-shot learning for text classification MAS Data Science

Page 55 / 78

Averaging
Similar to the majority voting technique, multiple predictions are made for each data point in averaging. In this
method, we take an average of predictions from all the models and use it to make the final prediction. Averaging
can be used for regression as well as classification problems.

Weighted average
Weighted average or weighted sum ensemble is an ensemble approach that combines the predictions from
multiple models, where the contribution of each model is weighted proportionally to its capability or skill.
The weighted average ensemble is an extension of the averaging method.

Weighted majority voting
The weighted majority voting is a combination of the weighted average and the majority voting method.

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

N-way / Few-shot learning for text classification MAS Data Science

Page 56 / 78

8 Challenges and ways to overcome

8.1 MAML / MAML++

The MAML approach fine-tunes its model using gradient descent each time for a new task. This requires it to
backpropagate the meta-loss through the model’s gradients, which involves computing derivatives of
derivatives, i.e., second derivatives. While the gradient descent at test time helps to extrapolate better, it does
have its costs.

Backpropagating through many inner steps can be compute and memory intensive. With only a few gradient
steps, it might be a less time-consuming endeavor, but it may not be the best solution for scenarios that require
a higher number of gradient steps at test time. That said, the authors of the MAML paper also propose a first-
order approximation that eliminates the need to compute the second derivatives, with a comparable
performance. Another closely related approach is Reptile. Reptile builds on first order MAML but does not
need to split the task into support and query sets, making it a natural choice in certain settings. However,
approaches to reduce computation time while not sacrificing generalization performance are still at the
experimental stage.

As we saw previously, learning occurs in two stages: gradual learning is performed across tasks, and fast
learning (fast adaptation) is performed within tasks. This requires two learning rates, which introduces difficulty
in choosing hyperparameters that would help achieve training stability. Finding two independent learning rates
may lead to the application of a hyperparameter grid search computation, but this is time and resource
intensive.

Special care needs to be taken in selecting the learning rate for the adaptation process, because it is learning
over only a few examples. In that regard, some solutions or extensions to MAML have been developed to
reduce the need for grid search or hyperparameter tuning. Alpha MAML, for example eliminates the need to
tune both the learning rates by automatically updating them as needed.

The research paper How to train your MAML (Antoniou et al.)18 describes an improved variant of the MAML
framework (MAML++) that offers the flexibility of MAML along with many improvements, such as robust and
stable training and automatic learning of inner loop hyperparameters. The paper proposes updating the query
set loss (meta-loss) for every training step in the adaptation process, which can help get rid of the training
instabilities. We also see such instabilities in our experiments, but since we average our results, this is not
obvious. Another improvement is the “Per-Step Batch Normalization Weights and Biases” which compensates
the absence of the “Batch Normalization Statistics Accumulation”. The missing “Batch Normalization Statistics
Accumulation” has a negative effect on the generalization performance. That was exactly one of the aspects
we experienced in our experiments. In addition, they suggest various other steps, which greatly improve the
computational efficiency both during inference and training and significantly improved generalization
performance.

The MAML++ approach has been implemented in this thesis. The implemented algorithm in general works but
could not be thoroughly tested, because we were facing out of memory issues while running the code on a
GPU. We will keep the investigation on the MAML++ memory issues for later.

A current research paper that performs neural architecture search for gradient-based meta-learners suggests
that approaches like MAML and its extensions tend to perform better with deeper neural architectures for few-
shot classification tasks. Nevertheless, this should be explored with further experiments, since we saw during
our tests that a more sophisticated model does not per se lead to a better performance.

18 Antreas Antoniou, Harrison Edwards, Amos Storkey. How to train your MAML (2019).

N-way / Few-shot learning for text classification MAS Data Science

Page 57 / 78

8.2 Text Classification

In computer vision, meta-learning has emerged as a promising methodology for learning in a low-resource
regime. These models learn to generalize in low-resource conditions by recreating such training tasks from
the data available. Given this strong empirical performance, employing meta-learning in NLP is challenging.
The challenge is the degree of transferability of an underlying representation learned across different classes.
With language data, most tasks operate at the lexical level. Words that are highly informative for one task may
not be relevant for other tasks. If we consider the corpus of HuffPost headlines, categorized into 41 classes,
those highly salient for one class do not play a significant role in classifying others. But words informative for
one class might also be informative for another class (e.g., “Trump” might be relevant in the classes Politics
and Business).

Instead of directly considering words, one way would be to utilize their distributional signatures, characteristics
of the underlying word distributions, which exhibit consistent behavior across classification tasks. Within the
meta-learning framework, these signatures would enable us to transfer attention across tasks, which can
consequently be used to weight the lexical representations of words. One broadly used example of such
distributional signatures is tf-idf weighting, which explicitly specifies word importance in terms of its frequency
in a document collection, and its skewness within a specific document. Distributional signatures could be
utilized in the context of cross-class transfer. This subject is described in the paper Few-shot text classification
with distributional signatures.19

Different data sets expose specific characteristics. These characteristics have a great impact on the
performance of MAML. Therefore, we need to consider many impacting factors when applying MAML on NLP
tasks, such as data quality, quantity, similarity among tasks, and the balance between language model and
task-specific adaptation.

The one model fits all data approach does not hold true. The HuffPost data set contains headlines and
descriptions which are shorter and less grammatical than formal sentences. The Swiss Economic Archive data
on the other hand contains more contextual data. Our approach of applying a CNN on a word-level setting
shows a surprisingly good performance, while our BERT baseline model, which also has been applied on the
HuffPost data set, showed a decent but not excellent performance. Previous experiences with BERT models
imply a much better performance. Therefore, an attention-based model like BERT would probably be better
suited to the Swiss Economic Archive data, since it provides contextual information in formal sentences.

When it comes to the quantity of data. A 5 respectively, 10-shot setting shows quite substantial difference, as
we saw in our experiments. As in a conventional deep learning setting, applying more data would yield a much
better performance as well.

Let me get that clear, few-shot learning on 5 or 10 samples per class shows a surprisingly good performance
but acquiring 20 or 50 datapoints per class might improve the performance even more and would not lead to
a data-gathering burden.

8.3 Data pre-processing (data cleaning, feature engineering)

The previously mentioned approach in applying distributional signatures is one possible way, but when it
comes to data quality, the pre-processing step is a vital aspect in improving the performance of a model. Pre-
processing (data cleaning and feature engineering) is an art and needs a lot of domain knowledge. A thorough
investigation on a given data set might even lead to better results by applying already available mechanisms.

I find there are so many open questions on what mechanisms should be applied or prevented. What pre-
processing method does support or reduce the performance? Is it, for example, better to use stemming or
lemmatization? Is it helpful to remove person names via Named Entity Recognition (NER), because those will
almost never occur in embeddings? Is applying Part of Speech (POS) tagging supportive, or would it be
favorable to apply a combination of them all? Should one remove single or double characters, expand
contractions, and how should one handle terms in double quotes (e.g., book titles), etc.? The list goes on and
on. The correct answer is hard to find and needs to be answered on a case-by-case basis. Our implementation
allows the application of almost any combination, by building a pipeline which permits stacking individual pre-
processing steps on top of each other. But that still does not answer some of the questions mentioned above.
By analyzing the dataset, we found categories which are similar or relatively similar (e.g., “Arts & Culture” and
“Culture & Arts” and “Arts”). It such cases it might be wise to aggregate them.

19 Yujia Baoy_, Menghua Wuy_, Shiyu Changz, Regina Barzilay. Few-shot text classification with distributional signatures (2020)

N-way / Few-shot learning for text classification MAS Data Science

Page 58 / 78

8.4 Out-of-Vocabulary vector representation (OOV)

Word Embeddings encode the relationships between words through vector representations of the words.
These word vectors are analogous to the meaning of the word. A limitation of word embeddings is that they
are learned by the natural language model (FastText, GloVe and the like) and, therefore, words must have
been seen in the training data before in order to have an embedding. Out-of-vocabulary (OOV) words are
words that appear in text that need to be classified but do not receive a vector representation, since they do
not exist in the embeddings.

There are many techniques to handle out-of-vocabulary words:

▪ Typically, a special out-of-vocabulary token <unk> is added to the language model. Often the first word

in the document is treated as out-of-vocabulary. In that way, we can ensure the out-of-vocabulary words

occur somewhere in the training data and get a positive probability. This is what we applied in our

application as a quick fix.

▪ Another method often mentioned in the literature is sampling values either uniformly from a fixed interval

centered at zero, or more often, from a zero-mean normal distribution with the standard deviation varying

from 0.001 to 10.

▪ Another common trick, particularly when working with word embedding-based solutions, is to replace the

word with a nearby word retrieved from a synonym dictionary.

▪ But there are more sophisticated ways, such as applying a model for predicting vector representations of

out-of-vocabulary words in a sentence by considering the context of words surrounding the OOV word.

There are many research papers available which discuss such possible approaches.

8.5 Ensemble technique

One of my favorite approaches is an ensemble of models. A model ensemble is a powerful technique for
obtaining the best possible results on a given task. Deep learning neural networks are nonlinear methods.
They offer increased flexibility and can scale in proportion to the amount of training data available. A downside
of this flexibility is that they learn via a stochastic training algorithm, which means that they are sensitive to the
specifics of the training data and may find a different set of weights each time they are trained, which in turn
produces different predictions. Generally, this is referred to as neural networks having a high variance and it
can be frustrating when trying to develop a final model for the use of making predictions. A successful approach
to reducing the variance of neural network models is to train multiple models instead of a single model and to
combine the predictions of these models. This is called ensemble learning and not only reduces the variance
of predictions but can also result in predictions that are better than any single model. The idea behind
ensembles is that different models learn different areas from the data. Combining these models leads usually
to a better performance. More information is available in chapter 7.6.

An implementation has been prepared in this thesis based on the majority voting. Our implementation is based
on the applied software architecture for meta-learning, which randomly samples training examples. With
majority voting all models require the use of the same sample to finally apply a majority voting. So, final tests
could not be performed, since our software architecture does not allow us to control the sequence of samples
directly. We would need to refactor our productive code, which is not possible in the given time frame. A short
cut to a solution might be the seed technique, but I am not too familiar with that yet.

There are certainly many more improvements which could be tackled to improve the performance.

N-way / Few-shot learning for text classification MAS Data Science

Page 59 / 78

9 Conclusion

Prior to starting this thesis, I quickly searched the web and thought there were many resources available.
Having a closer look later showed that a lot of the resources I initially found were talking about the same thing
repeatedly with, to me, minor variations. Most of the meta-learning research falls into the area of computer
vision. I found some but not many valuable research papers tackling meta-learning in cooperation with text
classification. Meta-learning for text classification still seems to be a road less travelled.

The whole thesis was a challenge. When I chose the topic “N-way/few-shot for text classification”, I was certain
that this was going to be quite an endeavour, since I was not familiar with the subject, but my perception was
that it is already widely used in the community. Time has taught me otherwise. I soon found out that this is
rather a young area and research is only picking up. It turned out that the task has become a research subject
rather than applied science. There were not many sources I could rely on. Almost every step I had to take
meant creating my own implementation. Thanks to the Higher framework for solving the second order gradient
subject.

One aspect that caused some sleepless nights was to understand the departure of the data set-up for
conventional supervised learning towards few-shot learning and applying it to a Model-Agnostic Meta-Learning
algorithm. There were many stumbling blocks to overcome. The “slough of despond” was wide. But as soon
as one’s implementation works, everything seems so clear.

Meta-learning is appealing; its ability to learn from a few examples makes it particularly attractive. A gradient-
based approach like MAML puts us in familiar territory: using pre-trained models and fine-tuning them. The
MAML algorithm is simple, and its ability to perform a few gradient steps at inference time allows it to generalize
quickly to unseen classes.

The approach is applicable to a variety of problems, including regression, classification, and reinforcement
learning and can be combined with any model architecture, as long as the model is trained based on gradient
descent.

Meta-learning and especially the MAML approach shows exactly what I intended to achieve. Meta-learning for
text classification as a way to reach near state-of-the-art performance with just a handful of samples per class
was a tremendous learning breakthrough, leading to a brighter future relieving us from the data-gathering
burden by training models on systems with reduced computing resources.

While there are many areas for future research on meta-learning, here is a perspective on what could make it
more adoptable in real-world scenarios, as well as which areas could benefit from future work.

Some of the successes of meta-learning in solving few-shot learning problems can be attributed to the data
set-up for training and testing tasks. In general, learning is much easier if you train the model to do N-way,
few-shot learning. The set-up in our experiments is arbitrary. We assumed that during meta-training and meta-
testing time we would face a 5-way problem, with each class having either 5 or 10 samples.

But will a real-world inference scenario always match this expectation? Most likely not. Our implementation to
apply a configuration setting, which allows control of the creation of any kind of task, is valuable for future
experiments.

An area worth exploring is whether it is possible to train on heterogeneous datasets. For example, can we train
a meta-learning model to classify a fork based on online news text and text passages from any other document
presenting a short description (forks from different training domains or environments)?

How should we define the meta-training set and tasks in such a scenario? Should we consider classes from
all the environments to define the meta-training, validation, and test datasets?

There is one interesting paper I came across related to image classification where the authors suggest using
classes from one environment for the support set and classes from another environment for the query set. The
authors find that meta-learning (MAML) can benefit, especially when there is a high degree of diversity in the
data. Applying such profound aspects in text classification, by applying more sophisticated models, such as
BERT and the like, could make it the next frontier.

In real-world scenarios, it is often likely that we will have lots of unlabelled data. Is it possible to employ meta-
learning algorithms to leverage these unlabelled datasets, under such circumstances? The authors of one
research paper propose a solution to this by augmenting a metric-based meta-learning approach to leverage
unlabelled samples. In addition to the support set and the query set, the task includes an unlabelled set. This
unlabelled set may or may not contain examples from the support set classes. The idea is to use labelled

N-way / Few-shot learning for text classification MAS Data Science

Page 60 / 78

samples from the support set and unlabelled samples within each task to generalize for a good performance
on the corresponding query set.

Over the coming years, we will see additional approaches that will make meta-learning even more adoptable
in real-world scenarios; whether it is using meta-learning successfully on heterogeneous data or leveraging
unlabelled data, these approaches will make learning and generalizing with fewer labelled samples possible.
As previously mentioned, we will hopefully continue to see research that simplifies both the training and
inference process but also set ways to use meta-learning in a productive setting. These advances will allow
machine learning practitioners to develop even more new ways of designing machine learning systems.

Meta-learning will be an exciting frontier for AI research and can be a big step forward in our quest to achieve
Artificial General Intelligence, as computers would have the ability to not only make accurate classifications
and estimates but would be able to improve their parameters (hyperparameters) to get better at multiple tasks
in multiple problem contexts.

I would like to mention a few loose ends in this thesis, which I had to put aside given the time constraint. The
main open point is our investigation on the Swiss Economic Archive dataset, but up front there are other
aspects which need to be considered, since they have a direct dependency on text classification results, such
as a thorough investigation (data analytics) on text pre-processing and out-of-word-vocabulary initialization.
There should also a deep dive into model explainability since this also might give hints on how to improve text
pre-processing. As a last point I would refactor my code and apply an enseble technique.

Finally, I would like to thank Prof. Dr. Mark Cieliebak and Jan Milan Deriu, PhD student, for their valuable
support during this thesis.

N-way / Few-shot learning for text classification MAS Data Science

Page 61 / 78

10 Appendix

10.1 Data pre-processing

Data cleaning is one of the major parts in natural language processing. Many decisions need to be taken how
to best clean text. The given implementation provides a whole set of text cleaning functions, which can be
applied in a pipeline. The nlp_helper package contains 4 classes, each containing several static methods to
apply in a pipeline. The classes are separated in NLP_Helper, Remove, Expand, Replace. Most the functions
are removing “noise” (unwanted characters) as mentions, hash tags, html tags, punctuations, numbers etc.
But there are further functions to expand contractions, detect named entities (person names, organizations,
locations), replace “umlauts” (German words) or lemmatize text. A contraction is a word or phrase that has
been shortened by dropping one or more letters. In writing, an apostrophe is used to indicate the place of the
missing letters. Contractions are commonly used in speech (or written dialogue), informal forms of writing, and
where space is limited, such as in advertising. It usually is wise to expand contractions in written text, since
such expressions seldom occur in vocabularies, hence will lead to noise in a text.

Other functions not yet applied are spell checker or thesaurus functions. Such functions might even further
improve the quality of text.

Implementation of data cleaning functions:
Package nlp.nlp_helper:

class NLP_Helper()

class Remove()

class Expand()

class Replace()

Example pipeline for English text data

def clean_text_data_en(text):

 pers, lo, org = NLP_Helper. \

 find_entities(nlp(text))

 text = Remove.entities(text, pers)

 text = Expand.contractions_en(text)

 text = NLP_Helper.to_lower(text)

 text = Remove.stopwords_en(text)

 text = Remove.mentions(text)

 text = Remove.hashtags(text)

 text = Remove.html_tags(text)

 text = Remove.singlechar(text)

 text = Remove.ascii(text)

 text = Remove.numbers(text)

 text = Remove.punctuation(text)

 text = Remove.nline_and_car_ret(text)

 text = NLP_Helper.lemmatization(nlp(text))

 #text = NLP_Helper.stemming(text,

 Stemmer ='porter',

 lang = 'en')

 text = Remove.two_chars(text)

 text = Remove.white_spaces(text)

 return text

Example pipeline for German text data

def clean_text_data_de(text):

 pers, lo, org = NLP_Helper. \

 find_entities(nlp(text))

 text = Remove.entities(text, pers)

 text = Expand.Contraction_DE.expand(text)

 text = NLP_Helper.to_lower(text)

 text = Remove.stopwords_de(text)

 #text = Replace.umlaut(text)

 text = Remove.mentions(text)

 text = Remove.hashtags(text)

 text = Remove.html_tags(text)

 text = Remove.singlechar(text)

 text = Remove.ascii(text)

 text = Remove.numbers(text)

 text = Remove.punctuation(text)

 text = Remove.nline_and_car_ret(text)

 text = NLP_Helper.lemmatization(nlp(text))

 #text = NLP_Helper.stemming(text,

 stemmer = 'snowball',

 language = 'de')

 text = Remove.two_chars(text)

 text = Remove.white_spaces(text)

 return text

https://www.thoughtco.com/speech-linguistics-1692121

N-way / Few-shot learning for text classification MAS Data Science

Page 62 / 78

10.2 Explanatory data analysis (EDA)

10.2.1 HuffPost data analysis

In this section a few metrics are listed. The metrics have been drawn on the pre-cleaned data. There are more
metrics available but have not been applied here, because of their exhaustive character.

HuffPost data summary

Item figures

Number of categories 41

Number of samples 135’835

Min number of words 10

Max number of words 136

Table 24: HuffPost data metrics

The categories (classes) available in the data set are listed in Table 25 below. By analysing the list of
categories one can see that there are a few relatively similar or even similar categories. Being able to clearly
predict a class assignment will be relatively hard since similar classes usually use similar words to describe
the respective news. In such a case it is feasible to aggregate similar classes into one class.

Similar categories for example are:
- “Arts”, “Arts & Culture”, “Culture & Arts”
- “World Post”, “World News”, “The World post”
- “College”, “Education”
- “Parenting”, “Parents”

Categories

Arts Environment Parenting The Worldpost

Arts & Culture Fifty Parents Travel

Black Voices Food & Drink Politics Weddings

Business Good News Queer Voices Weird News

College Green Religion Wellness

Comedy Healthy Living Science Women

Crime Home & Living Sports World News

Culture & Arts Impact Style WorldPost

Divorce Latino Voices Style & Beauty

Education Media Taste

Entertainment Money Tech

Table 25: HuffPost – categories

N-way / Few-shot learning for text classification MAS Data Science

Page 63 / 78

Imbalanced data
The chart below (see Figure 22) shows the class distribution and the respective number of samples available
for a respective class (category). Imbalanced data is usually a problem in text classification, but since our
approach only uses few samples per class, we are not bound to balance the classes.

Figure 22: HuffPost - Class distribution and number of samples per class

Average number of words
In the data cleaning phase, we removed the stopwords, punctuation (noise) etc., but also applied lemmatization
which unifies words to its base form. These few steps reduce the number of words per sample substantially.
The average number of words per class is depicted below (see Figure 23)

Figure 23: HuffPost - Average number of words per class

N-way / Few-shot learning for text classification MAS Data Science

Page 64 / 78

Most used words
The graph below (Figure 24) indicates the 30 most used words in all samples. One thing that catches one’s
eye is the fact that almost none of the words might lead to clear class assignment. This might lead to the fact
that different feature engineering steps need to be applied, to retrieve the essence of a news text. One possible
way would be to apply distributional signatures20.

Figure 24: HuffPost - 30 most used words

10.2.2 Swiss Economic Archive (SWA)

In this section a few metrics are listed. The metrics have been drawn on the pre-cleaned data. There are more
metrics available but have not been applied here, because of their exhaustive character.
The original Swiss Economic Archive (SWA) dataset is a multi-class/ multi-label data set. The data set contains
485 classes, where samples might be assigned to more than one class. There are samples with up to 9
assigned classes. For our analysis we only consider single class assignments. Therefore, the Swiss Economic
Archive (SWA) data comes now in two flavours. Dataset 1 contains news text samples exclusively assigned
to one class (146 classes), where dataset 2 also considers samples, which have 2 class assignments, but only
one will be used. Dataset 2 contains samples which are split into 248 classes. Initially we only consider dataset
1.

Swiss Economic Archive data metrics

Item Figure

Number of categories 146

Number of samples 12’244

Min number of words 21

Max number of words 2040

Table 26: Swiss Economic Archive data metrics

The following list is an excerpt of the 146 classes.

Categories

Volkswirtschaft. USA Strassenfahrzeug Weltwirtschaft Arbeitsmarkt. Schweiz

Krankenversicherung Mobilkommunikation Aussenhandel Ärzte

Wirtschaftspolitik Tourismus. Schweiz Öffentl. Beschaffung Bank

Aktiengesellschaft Mineralö Familienplanung Steuerstraftat

AHV 'Politisches System Studienfinanzierung Nukleare Entsorgung

Militär Zahlungsverkehr Glücksspiel Wasserbau

Lehrkräfte Verlagsgewerbe Mehrwertsteuer Energiepolitik

Finanzausgleich Bio- und Gentechnik' Nahrungsmittelgewerbe Erwerbsunfähigkeit

Europapolitik Justiz Soziale Sicherung Entwicklungshilfe

Klima Naturkatastrophe Volkswirtschaft. EU Wasserkraft

Naturschutz Flüchtlinge Sexgewerbe Volkswirtschaft CH

Table 27: Swiss Economic Archive – excerpt of categories

20 Yujia Baoy_, Menghua Wuy_, Shiyu Changz, Regina Barzilay. Few-shot text classification with distributional signatures (2020)

N-way / Few-shot learning for text classification MAS Data Science

Page 65 / 78

Imbalanced data
The chart below (Figure 25) shows the class distribution and the respective number of samples available in a
class (category). Imbalanced data is usually a problem in text classification, but since our approach only uses
few samples per class, we are not bound to balance the classes.

Figure 25: Swiss Economical Archive - Class distribution and number of samples per class

Average number of words
In the data cleaning phase, we removed the stopwords, punctuation (noise) etc., but also applied lemmatization
which unifies words to its base form. These few steps reduce the number of words per sample substantially.
The average number of words per class is depicted in Figure 26.

Figure 26: Swiss Economic Archive - Average number of words per class

N-way / Few-shot learning for text classification MAS Data Science

Page 66 / 78

Most used words
The graph in Figure 24 indicates the 30 most used words in all samples. One thing that catches one’s eye is
the fact that almost none of the words might lead to clear class assignment. This might lead to the fact, that
other feature engineering steps need to be applied, to retrieve the essence of a news text. One possible way
would be to apply distributional signatures21. Some words should also be reconsidered and potentially be
treated as noise.

Figure 27: Swiss Economic Archive - 30 most used words

10.2.3 Vocabulary

The vocabulary is a aggregation area for processed text before it is transformed into some representation for
the impending task, be it classification, or language modeling, or something else. In NLP, a text corpus (raw
text), in our case news text data, needs to be pre-processed and cleaned. These steps are vital for a good
vocabulary. Text cleaning is described in chapter 10.1. The next step after pre-processing and cleaning is
tokenization, where we split a text into tokens, which is a of segmentation (usually words). Usual vocabularies
may contain 10s of thousands of words. In our case we removed the noise (unwanted words as stop words)
clean contractions and applied a lemmatization etc. This reduces the number of relevant words substantially.
For our purpose we created a vocabulary of 20’000 words. It could also be 30’000 words, but we intend to
keep the balance between resource consumption and still be able to run our classification tasks.

Out-of-vocabulary words (OOV)
Word Embeddings encode the relationships between words through vector representations of the words.
These word vectors are analogous to the meaning of a word. A limitation of word embeddings is that they are
learned by the natural language model (Word2Vec, GloVe and the like) and therefore words must have been
seen in the training data before, to have an embedding.
The current solution in this thesis uses the pre-trained embeddings GloVe for English (glove.6B.300d) and
FastText for German (ft.de.300d.vec) texts. OOV’s in both cases are initialized with the special character
<unk>, which corresponds to a 0 value. The prediction rate could certainly improve if handling out-of-
vocabulary words would be applied. OOV handling is described in the paper “Handling Out-of-Vocabulary
Words in Natural Language Processing based on Context”22.

Metrics: Out-of-vocabulary words – vocabulary size

Dataset out-of-vocabulary words vocabulary size

HuffPost 416 20’002 (including <pad> and <unk>)

Swiss Economic Archive 138 20’002 (including <pad> and <unk>)

Table 28: Metrics: Out-of-vocabulary words – vocabulary size

21 Yujia Baoy_, Menghua Wuy_, Shiyu Changz, Regina Barzilay. Few-shot text classification with distributional signatures (2020)

22 Shabeel Kandi, Handling Out-of-Vocabulary Words in Natural Language Processing based on Context (2018)

https://www.kdnuggets.com/2018/11/data-representation-natural-language-processing.html
https://www.kdnuggets.com/2018/10/main-approaches-natural-language-processing-tasks.html
https://shabeelkandi.medium.com/?source=post_page-----4bbba16214d5--------------------------------

N-way / Few-shot learning for text classification MAS Data Science

Page 67 / 78

10.3 Text data augmentation

Data Augmentation is the process that allows to increase the size of training data without collecting the data.
Image data augmentation steps such as flipping, cropping, rotation, blurring, zooming, etc. helped
tremendously in computer vision. Also, it is relatively easy to create augmented images. Text augmentation in
contrast is not as easy due to the complexities inherent in the language. (For example, we cannot replace
every word by its synonym, and even if we replace it, the meaning of the sentence might change completely).
Text data augmentation is not particularly relevant in this thesis, since we go the route of using as little data
as possible and still be able to predict a class given some text. This subject is mentioned here, because it has
been used for our baseline models, which rely on a balanced dataset. The following types of text augmentation
could be applied:

▪ Synonym Replacement
▪ Random Insertion
▪ Swap and Deletion
▪ Shuffle Sentences Transform
▪ Character-, Word- and Sentence level augmentation

In our implementation we applied a swap mechanism. 20% of the words in a sentence are randomly chosen
and replaced (swapped) with similar words from pretrained word embeddings (GloVe and FastText).

Excerpt of data augmentation methods:
Package data.data_augmentation:

class Data_Augmentation()

 augment_<dataset_name>(df, samples = 300, pr = 0.2)

 balance_<dataset_name>_classes(df)

 augmentation_check(text)

10.4 Error analysis / Error attribution

Building a machine learning pipeline, especially when the pipeline is complex is not easy. Error analysis and
error attribution is one of the major aspects while analysing a complex machine learning pipeline, where one
needs to improve, the system’s performance. Which part of the pipeline should you work on improving? By
attributing errors to specific parts of the pipeline, one can decide how to prioritize work.

Our pipeline consists mainly of four pipeline components: data cleaning, vocabulary, feature selection and
model architecture. It is possible to spend ages working on improving either of these four pipeline components.
How do you decide which component(s) to focus on?

One way to approach this, is by carrying out error analysis by parts. One can try to attribute each mistake
the algorithm makes to one (or sometimes more) of the four parts of the pipeline.

Figure 28: Error analysis / Error attribution

N-way / Few-shot learning for text classification MAS Data Science

Page 68 / 78

10.5 Model-Agnostic explanations for Machine Learning classifiers

Model-Agnostic Explanations for Machine Learning classifiers also known as Explainable AI refers to methods
and techniques in the application of artificial intelligence technology (AI) such that the results of the solution
can be understood by humans. It contrasts with the concept of the "black box" in machine learning where even
its designers cannot explain why an AI arrived at a specific decision.
In the following we will apply the lime package, which provides some convenience methods to shed light on
our black box model and find some explanations.

Implementation of explainability functions:
Package analytics.explainability:

class Explainability()

Example:
Words in training example 34:
[‘pray’, ‘jewish’, ‘new’, ‘year’, ‘big’, ‘holiday’, ‘obscene’, ‘amount’, ‘food’, ‘long’, ‘hour’, ‘synagogue’, ‘year’,
‘something’, ‘different’, ‘instead’, ‘use’, ‘synagogue’, ‘prayer’, ‘book’, ‘designate’, ‘take’, ‘prayer’, ‘book’]
Predicted class: RELIGION
True class: RELIGION

The following plots show, how Lime attributes weights to different classes given the respective words.

Figure 29: Lime weight attribution

N-way / Few-shot learning for text classification MAS Data Science

Page 69 / 78

10.6 Convolutional Neural Network layers

10.6.1 Embedding Layer

Embedding layers are mainly used in natural language processing-related tasks, such as language modelling.
It is usually the first layer in a neural network when working with textual data. Word embedding is an alternate
to one-hot encoding along with dimensionality reduction. The embedded words are represented by dense
vectors where a vector represents the projection of the word into a continuous vector space. The position of a
word within the vector space is learned from text and is based on the words that surround the word when it is
used. Embedding layers adapt pre-trained embeddings like GloVe or FastText.

10.6.2 Convolutional Layer

The Conv layer is the core building block of a convolutional network that does most of the computational heavy
lifting. Convolutional layers apply a convolution operation to the input, passing the result to the next layer. A
convolution converts all the input values in its receptive field into a single value by applying filters. If we apply
a convolution on text data, this will decrease the size as well as bringing all the information in the field together
into a single field.

10.6.3 Pooling Layer

It is common to periodically insert a pooling layer in between successive Conv layers in a ConvNet architecture.
Its function is to progressively reduce the spatial size of the representation to reduce the number of parameters
and computation in the network, and hence to also control overfitting. The pooling layer operates independently
on every depth slice of the input and resizes it spatially, using the MAX operation.

10.6.4 Fully Connected Layer

Neurons in a fully connected layer have full connections to all activations in the previous layer. Their activations
can hence be computed with a matrix multiplication followed by a bias offset.

10.6.5 Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) activation function is responsible for transforming the summed weighted input
from the node into the activation of the node or output for that input. The ReLU is a piecewise linear function
that will output the input directly if it is positive, otherwise, it will output zero. It has become the default activation
function for many types of neural networks because a model that uses it is easier to train and often achieves
better performance.

10.6.6 Softmax

A softmax activation function is a mathematical function that converts a vector of numbers into a vector of
probabilities, where the probabilities of each value are proportional to the relative scale of each value in the
vector. Softmax is basically a probabilistic version of the argmax function.

10.6.7 Batch Normalization

Batch Normalization (Ioffe & Szegedy, 2015)23 is a method to stabilize and speed up learning of deep neural
networks by reducing internal covariate shift within the learner’s hidden layers. This reduction is achieved by
normalizing each layer’s pre-activation, by standardizing the values. Standardization is a common requirement
for many machine learning classifiers since they might behave badly if the individual features do not more or
less look like standard normally distributed data such as Gaussian with zero mean and scaling the variance.
During training, the mean and standard deviation are estimated using the current batch being trained on,
whereas during evaluation a running average of both statistics calculated on the training set is used. We need
to be careful with batch normalization for the learner network in the meta-learning setting, because we do not
want to collect mean and standard deviation statistics during meta-testing in a way that allows information
leaking between different tasks to be considered. One easy way to prevent this issue is to not collect statistics
at all during the meta-testing phase, but just use our running averages from meta-training.

10.6.8 Dropout Layer

The dropout layer in neural networks takes a regularization function and is, therefore, described in the next
section.

23 Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015).

N-way / Few-shot learning for text classification MAS Data Science

Page 70 / 78

10.7 Meta learning algorithm

I am pretty certain that plotting code is not the best idea. But be it that way
def maml_experiment(self, nt_loader, model_name, epoch, mode = 'train'):

 self._model.to(device = self._device)

 self._model.train()

 # {} placeholder variable initializations

 batches = nt_loader.load_episodes(mode)

 for batch_idx in range(len(batches)):

 tasks = batches[batch_idx]

 num_tasks = len(tasks)

 for task_idx in range(num_tasks):

 task = tasks[task_idx]

 dataloader = torch.utils.data.DataLoader(task, **self._params)

 for task in dataloader:

 # Unpack the inputs from dataloader

 x_support_set, y_support_set, x_query_set, y_query_set = task

 inner_step_size = 5

 # Initialize the inner optimizer to adapt the parameters to the support set.

 self._inner_optimizer = optim.SGD(self._model.parameters(),

 lr = self._config['sgd_learning_rate'],

 momentum = self._config['sgd_momentum'])

 self._meta_optimizer.zero_grad()

 with higher.innerloop_ctx(self._model,

 self._inner_optimizer,

 copy_initial_weights = False) as (fmodel, diffopt):

 # Optimize the likelihood of the support set by taking gradient steps w.r.t.

 # the model's parameters. This adapts the model's meta-parameters to the task.

 # higher is able to automatically keep copies of the network's parameters as they

 # are being updated.

 for _ in range(inner_step_size):

 try:

 support_logit = fmodel(x_support_set)

 support_loss = F.cross_entropy(support_logit, y_support_set)

 diffopt.step(support_loss)

 except Exception as e:

 print('Exception: {0}'.format(e))

 # The final set of adapted parameters will induce some final loss and accuracy

 # on the query set. These will be used to update the model's meta-parameters.

 query_logit = fmodel(x_query_set)

 query_loss = F.cross_entropy(query_logit, y_query_set) # per_task_loss

 query_losses.append(query_loss.detach().item()) # per_task_losses

 with torch.no_grad():

 query_accuracy, predictions = self.get_accuracy(query_logit, y_query_set)

 query_accuracies.extend(query_accuracy)

 metric = self.per_task_metric(task_cnt, query_loss, query_accuracy, mode)

 task_metrics.append(metric)

 # Update the model's meta-parameters to optimize the query losses across all

 # of the tasks sampled in this batch. This unrolls through the gradient steps.

 query_loss.backward()

 self._meta_optimizer.step()

 batch_metrics.append(self.per_batch_metric(**parameters))

 # {} save best model to disk

 return batch_metrics_df, task_metrics_df

N-way / Few-shot learning for text classification MAS Data Science

Page 71 / 78

10.8 Software System

In this section we just give a brief overview of our software system structure:

10.8.1 Application structure

All source code is mainly located in the lib and the respective sub directories. Only packages are listed here.

n_way_few_shot

 - configs

 - <config_files>.json

 - data

 - bbc (pre-processed data)

 - eu_news (pre-processed data)

 - huffpost (pre-processed data)

 - meta (metrics data acquired during training and testing)

 - swa (pre-processed data)

 - embeddings (pre-trained embeddings)

 - doc

 - lib

 - mltools

 - analytics (data analytics classes)

 - data (data management classes)

 - models (baseline models)

 - nlp (nlp related classes)

 - utils (general purpose classes, methods)

 - meta

 - analytics (data analytics classes)

 - datasets (data management classes)

 - meta_higher (maml, maml++ classes)

 - utils (general purpose classes, methods)

 - meta_l2l (learn to learn playground)

 - models (meta models)

 - transforms (transformations)

 - model

 - features (pickle file storage)

 - meta (pre-trained meta models)

 - weights (pre-trained baseline models)

 - notebooks ()

 - resources (stored images)

 - test (test classes)

 requirements.txt (used libraries)

 scripts and notebooks (main entry point)

Python Version: 3.8.5
Libraries: all used libraries are listed in the requirements.txt file
Development Environment: Visual Studio Code

Source code: MAS_Master_Thesis on github

https://github.com/bhunkeler/MAS_Data_Science/tree/master/MAS_Master_Thesis

N-way / Few-shot learning for text classification MAS Data Science

Page 72 / 78

10.8.2 Meta-learning core system

Class diagram of the main Meta-Learning core:

The main meta learning algorithm consists of 3 items

▪ MT_maml (main script)

▪ Class Meta_System()

▪ Class Meta_Learner()

MT_maml script primary work:

▪ Data loading

▪ Loading embeddings

▪ Vocabulary creation

▪ Model initialization

Class Meta_System() orchestrates all involved classes:

▪ Meta system holds an instances of the Meta_Learner() and NewsTextDataset()

▪ creates 𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑚𝑒𝑡𝑎−𝑣𝑎𝑙𝑖𝑑 , 𝐷𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 via a data_splitter()

the data_splitter() is the work horse. It does the book_keeping and class remapping (if required) and

creates the tasks respectively batches.

▪ aggregates the individual data loaders (train, valid and test)

▪ create meta-train, meta-valid and meta-test set

Class Meta_Learner()

▪ Holds the optimizer inner and outer loop (SGD and Adam)

▪ Performs the meta-learning and optimization (learning and adaptation)

▪ Prepares metrics (task and batch accuracies and loss)

Figure 30: Class diagram learn-to-learn

N-way / Few-shot learning for text classification MAS Data Science

Page 73 / 78

11 References

[1] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra. Matching networks for one shot

learning. In Advances in Neural Information Processing Systems, (2016). arXiv:1606.04080

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, (2012).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding (2018). arXiv:1810.04805

[4] Chelsea Finn, Pieter Abbeel, Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep

Networks (2017). arXiv 1703.03400

[5] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning (2017)

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification (2015). arXiv 1502.01852.

[7] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov. Dropout: A

Simple Way to Prevent Neural Networks from Overfitting (2014)

[8] Leo Breimann. Random Forests (2001). Stat. Berkeley

[9] Hothorn T, Hornik K., Zeileis A. Unbiased Recursive Partitioning: A Conditional Inference Framework

(2006)

[10] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis and Torsten Hothorn. Bias in random forest

variable importance measures: Illustrations, sources and a solution (2007)

[11] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System (2016). arXiv:1603.02754

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, Illia Polosukhin. Attention Is All You Need (2018). arXiv 1706.03762

[13] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,

Douwe Kiela, Kyunghyun Cho, Chintala Soumith. Generalized Inner Loop Meta-Learning (2019).
arXiv:1910.01727

[14] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, Yoshua Bengio. Torchmeta: A Meta-

Learning library for PyTorch (2019). arXiv 1909.06576

[15] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, Tomas Mikolov.

FastText.zip: Compressing text classification models (2016). arXiv 1612.03651

[17] Antreas Antoniou, Harrison Edwards, Amos Storkey. How to train your MAML (2019).

arXiv 1810.09502

[19] Yujia Baoy_, Menghua Wuy_, Shiyu Changz, Regina Barzilay. Few-shot text classification with

distributional signatures (2020). arXiv:1908.06039

[22] Shabeel Kandi, Handling Out-of-Vocabulary Words in Natural Language Processing based on Context

(2018)

[23] Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift (2015). arXiv 1502.03167

https://arxiv.org/search/cs?searchtype=author&query=Devlin%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Chang%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Toutanova%2C+K
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/search/cs?searchtype=author&query=Vaswani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Jones%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Gomez%2C+A+N
https://arxiv.org/search/cs?searchtype=author&query=Kaiser%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Kaiser%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Polosukhin%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Joulin%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Grave%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Bojanowski%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Douze%2C+M
https://arxiv.org/search/cs?searchtype=author&query=J%C3%A9gou%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Mikolov%2C+T
https://shabeelkandi.medium.com/?source=post_page-----4bbba16214d5--------------------------------

N-way / Few-shot learning for text classification MAS Data Science

Page 74 / 78

[24] Koch G.; Zemel R. & Salakhutdinov R. Siamese Neural Networks for One-shot Image Recognition
(2015)

[25] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, Tomas Mikolov. Learning Word
Vectors for 157 Languages (2018)

[26] Zequn Liu, Ruiyi Zhang, Yiping Song, Ming Zhang. When does MAML work the Best? An Empirical
Study on Model-Agnostic Meta-Learning in NLP Applications (2020)

[27] Trapit Bansaly and Rishikesh Jhaz, Andrew McCallum. Learning to Few-Shot Learn Across Diverse
Natural Language Classification Tasks (2020)

[28] Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, Ekaterina Shutova. Multilingual and
cross-lingual document classification: A meta-learning approach (2021)

[29] Marcin Andrychowicz, Misha Denil, Sergio Gómez Colmenarejo, Matthew W. Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, Nando de Freitas. Learning to learn by gradient descent (2016).
arXiv 1606.04474.

[30] Benyamin Ghojogh, Mark Crowley. The Theory Behind Overfitting, Cross Validation, Regularization,

Bagging, and Boosting: Tutorial (2019). arXiv 1905.12787

[31] Aniruddh Raghu and Maithra Raghu and Samy Bengio and Oriol Vinyals. Rapid Learning or Feature

Reuse? Towards Understanding the Effectiveness of MAML (2020). arXiv 1909.09157

N-way / Few-shot learning for text classification MAS Data Science

Page 75 / 78

12 Glossary

12.1 Abbreviations

Acc Accuracy

CNN / ConvNet Convolutional Neural Network

DL Deep Learning

EDA Explanatory Data Analysis

GPU Graphics Processing Unit

IDF Inverse Document Frequency

LSTM Long Short Term Memory

MAML Model Agnostic Meta Learning

ML Machine Learning

NLP Natural Language Processing

OOV Out-of-vocabulary words

RL Reinforcement Learning

RNN Recurrent Neural Network

SNN Siamese Neural Network

SWA Swiss Economic Archive (Schweizerisches Wirtschafts Archiv)

TF Term Frequency

Table 29: Abbreviations

12.2 Terms

f1-score F1-score is a measure of a model’s accuracy on a data set. It is used to evaluate
classification systems. The F1-score is a way of combining the precision and recall
of the model, and it is defined as the harmonic mean of the model’s precision and
recall. The F1-score is commonly used for evaluating in in natural language
processing.

𝑓1_𝑠𝑐𝑜𝑟𝑒 = 2 ∗
p𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

 p𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

precision Precision is the fraction of true positive examples among the examples that the
model classified as positive.

precision =
True positives

 True positives + False positives

recall Recall, also known as sensitivity, is the fraction of examples classified as positive,
among the total number of positive examples.

𝑟𝑒𝑐𝑎𝑙𝑙 =
True positives

 True positives + False n𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

feature engineering Feature engineering is the process of using domain knowledge to extract
meaningful features from a data set. The features result in Machine Learning
models with higher accuracy.

imbalanced data Imbalanced data sets are those where there is a severe skew in the class
distribution, such as 1:100 or 1:1000 examples in the minority class to the majority
class.

undersampling /
oversampling

Addressing the problem of class imbalance is to randomly resample the training
data set. The two main approaches to randomly resampling an imbalanced data set
are to delete examples from the majority class, called undersampling, and to
duplicate examples from the minority class, called oversampling.

support set /
query set

Consider a k-shot / n-way classification task: The support and query set contain k
labelled examples for each of n classes for learning and prediction.

Table 30: Terms

https://deepai.org/machine-learning-glossary-and-terms/precision-and-recall
https://deepai.org/machine-learning-glossary-and-terms/harmonic-mean
https://deepai.org/machine-learning-glossary-and-terms/natural-language-processing
https://deepai.org/machine-learning-glossary-and-terms/natural-language-processing

N-way / Few-shot learning for text classification MAS Data Science

Page 76 / 78

13 Index

A
Accuracy and loss curve 43, 44, 45, 46, 47, 48

Adagrad .. 13

Adam... 13

Adam Optimizer... 24

Adaptive Gradients .. 24

Artificial Intelligence ... 12

Average number of words.................................... 63, 65

Averaging .. 55

B
Baseline classifier .. 29

Batch Normalization .. 24, 69

BERT .. 19

Bias ... 26

Bias, Variance ... 13

Bias-Variance .. 26

Bias-Variance trade-off .. 26

C
Callback function ... 31

Character level .. 15

Classification 10, 12, 14, 16, 17, 19, 22, 24, 29, 31

Convolutional layer .. 24, 69

Convolutional Neural Network 19, 24, 32, 39, 69

Count Vector ... 15

D
Data pre-processing .. 61

Dataset .. 28, 37

Deep Learning ... 12

Delimitations .. 10

Dropout ... 27

Dropout layer ... 24, 69

E
Early stopping ... 27, 31

Embedding layer ... 24, 69

Ensemble techniques .. 54

Error Analysis .. 67

Error Attribution ... 67

Explanatory data analysis .. 62

F
FastText .. 15, 66

Feature engineering .. 14

Fully connected layer... 24, 69

G
GloVe .. 15, 66

Gradient optimization... 21

H
Higher framework .. 21

Hyperparameter ... 12, 21

I
Imbalanced data .. 14, 63, 65

Inverse Document Frequency 15

K
Kaiming He initialization ... 25

Keras ... 28, 31

L
Lasso Regression .. 26

Learning rate ... 21

Learning schedule ... 25

Learning-to-learn ... 16

Lemmatization ... 14

Lexical Normalization ... 14

Long Short Term Memory .. 19

Loss function ... 13, 23

M
Machine Learning .. 12

Machine learning classifier ... 29

Majority voting ... 55

MAML .. 56

MAML++ .. 56

Management Summary .. 7

Masked language modelling 33

Meta-learning ... 16, 22

Meta-Learning Experiment ... 37

Meta-optimization .. 21

Meta-training, validation and testing ... 41, 43, 44, 45, 46

Metric-based meta-learning 18

Model Agnostic Meta-Learning................................... 21

Model Architecture ... 23

Model checkpoint ... 31

Model-based meta-learning 18

Most used words .. 64, 66

MSProp ... 13

Multi class cross entropy loss 23

Multinominal Naïve Bayes.. 29

N
Natural Language Processing 13, 61

Next sentence prediction ... 33

N-gram level .. 15

Noise Removal .. 13

O
Objectives .. 10

Optimization ... 13, 23

Optimization-based meta-learning 18

Out-of-vocabulary .. 66

Overfitting .. 13

N-way / Few-shot learning for text classification MAS Data Science

Page 77 / 78

P
Pipeline ... 61

Pooling layer ... 24, 69

PyTorch ... 21

R
Random Forest.. 29

Rectified Linear Unit 24, 25, 31, 34, 39, 69

Recurrent Neural Network ... 19

Regression .. 12

Regularization .. 26, 31, 54, 69

ReLU ... 25

Ridge Regression .. 26

Root Mean Square Propagation 24

S
Softmax 24, 31, 32, 34, 39, 49, 69

Sparse categorical crossentropy 31

Standardization ... 14

Stemming .. 14

Stochastic Gradient Descent 13, 21, 23

Stratified sampling ... 14

Structure of Thesis .. 10

Supervised learning ... 12

Swiss Economic Archive ... 64

T
tanh ... 25

TensorFlow .. 21, 28, 31

Term Frequency .. 15

Terminology ... 12

Text Classification .. 12

Text corpus .. 15

Text data augmentation 14, 67

Text pre-processing ... 13

TF-IDF ... 15

Transfer learning .. 19

Transfer learning vs Meta learning 19

U
Underfitting .. 13

V
Variance .. 26

Vocabulary... 66

W
Weight initialization .. 25

Weighted average .. 55

Weighted majority voting .. 55

Word embeddings .. 15

Word level.. 15

Word2Vec .. 15, 66

X
Xavier initialization ... 25

XGBoost .. 30

N-way / Few-shot learning for text classification MAS Data Science

Seite 78 / 78

Wahrheitserklärung

Mit der Abgabe dieser Abschlussarbeit versichert der/die Studierende, dass er/sie die Arbeit selbständig
und ohne fremde Hilfe verfasst hat (Bei Teamarbeiten gelten die Leistungen der übrigen Teammitglieder
nicht als fremde Hilfe).

Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch Internetseiten) im Text
oder Anhang korrekt nachgewiesen sind, d.h. dass die Abschlussarbeit keine Plagiate enthält, also keine
Teile, die teilweise oder vollständig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe der
eigenen Urheberschaft bzw. ohne Quellenangabe übernommen worden sind.

Name des/der Studierenden (Druckbuchstaben)

Bruno Hunkeler
………………………………………..

Winterthur, 30. Juni 2021
__
(Ort, Datum) (Unterschrift der Studierenden / des Studierenden)

