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ABSTRACT

This paper is based on the ZHAW Deep Voice project, which
consists of several speaker clustering models trained on
TIMIT [1] and VoxCeleb2 [2]. Recent work [3] led to the
conclusion that the Kullback-Leibler Divergence Loss does
not scale well, when the number of labels in the training set is
increased. Angular margin losses like ArcFace [4], CosFace
[5] and SphereFace [6] do not have this problem and teach
a model to separate labels better, by adding a margin in the
angular or cosine space to the true label of a prediction and
yielded promising results in face recognition tasks. We an-
ticipate those losses to suit speaker clustering tasks as well.
To prove this, we have conducted several experiments and
summarized them in this article.

Index Terms— Deep Learning, Speaker Recognition,
Angular Margin Loss

1. INTRODUCTION

Speaker recognition is a broad research field, with many dif-
ferent subareas, the most difficult being speaker clustering.
The goal here is to compare two utterances and decide, if
they are coming from the same speaker (who is not known
to a model in advance) or not.

A common approach to solve the problem is by train-
ing a Deep Neural Network (DNN) to classify the speaker
of speech segments. The fully trained model is then used to
extract features, also called embeddings, by retrieving the out-
put of the model after a certain layer. Those are then fed to a
clustering algorithm, which generates clusters of speakers.

In previous experiments conducted at ZHAW Datalab
[7][8][3], networks have been trained on TIMIT [1] using the
Pairwise Kullback-Leibler Divergence (PKLD) loss function.
Altough those models have outperformed state-of-the-art re-
sults on a training set with 100 speakers, recent work of
Sonderegger and Walter [3] showed that when using PKLD

on a larger training set consisting of 470 speakers, the perfor-
mance drops significantly. Therefore, the project was in need
of a better matching loss function to overcome the problem.

We considered angular margin losses like CosFace [5],
ArcFace [4] and SphereFace [6] as suitable losses, since
they have the benefit of boosting inter-class diversity and
intra-class compactness. Furthermore, they use an increased
amount of training classes to their advantage.

Albeit those losses being designed for face recognition ap-
plications, we were able to prove that they also can be applied
in speaker clustering. Despite our approach only being close
to the state-of-the-art when trained using 100 speakers, it ex-
ceeds all the previous results when trained on 470 speakers.

2. RELATED WORK

Angular margin losses have already been introduced in
speaker recognition applications by Xie et al. [9]. They ap-
plied the ArcFace loss on a thin-ResNet structure, combined
with a dictionary-based NetVLAD or GhostVLAD layer to
aggregate features across time, and achieved state-of-the-art
results on the VoxCeleb1 and VoxCeleb2 datasets.

2.1. ZHAW Deep Voice

The ZHAW Deep Voice project is the result of several bache-
lor theses that were conducted at the Institute of Applied In-
formation Technologies at the Zurich University of Applied
Sciences. Its purpose is the research of speaker clustering
methods and consists of a CNN and a LSTM approach, both
of them following the approach mentioned in the Introduc-
tion. The clustering algorithm used for all the conducted
experiments is a hierarchical agglomerative clustering with
complete linkage and the cosine metric.

The CNN approach originally used a common categori-
cal crossentropy loss to train the model, which later has been
modified by using the PKLD loss. This newly introduced loss



is comparing embeddings pairwise. Its intention is to pro-
duce embeddings that are similar to embeddings of the same
speaker, but dissimilar to those of different speakers. The
similarity between pairs is calculated by using their Kullback-
Leibler Divergence.

Since speech data is highly time dependent, CNNs are by
design not as well suited for the problem as RNNs. Therefore,
a second model using bidirectional LSTM layers, that also
makes use of the PKLD loss, has been implemented.

Latest results [3] led to the conclusion that when using
PKLD, the probability of a segment being compared to an-
other one having the same speaker decreases, as we increase
the number of speakers in the training set. While the network
takes its focus on inter-class diversity, it nearly ignores intra-
class compactness, resulting in a massive performance drop.

Until recently, the project has only been trained and eval-
uated on the TIMIT dataset. Since this dataset is small and
was recorded in studio conditions, it is not so expressive, but
more importantly, it does not represent real world conditions.
In the work of Lehmann and Lauener [10], the VoxCeleb2
dataset has been introduced. It contains over a million utter-
ances of 6112 speakers that have been extracted from video
clips uploaded to YouTube. However, due to the change of
environment and increasement of the number of speakers, the
results did not meet our goals.

2.2. Angular Margin Losses

In Face Recognition, there has been a need for a loss func-
tion that enhances the discriminative power of the network
for large scale datasets. Possible solutions for the problem
are CosFace [5], ArcFace [4] and SphereFace [6]. They are
an extension of the widely used softmax loss, which is defined
in the following equation:
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Where N and n denote the batch size, number of classes. yi
is the ground truth class of the i-th sample.

We recall that the softmax loss sees the logits WT
j xi as a

linear combination of the features xi and the weights Wj of
class j at the last fully connected layer. The three losses all
see Wj as the class centre in an angular space, thus transform
the logit to: WT

j xi = ‖Wj‖‖xi‖ cos(θj), with θj being the
angle between Wj and xi. To simplify the problem, the bias
b is set to zero.

To be able to recieve θj , the features and the weights are
being L2 normalized, which results in ‖Wj‖ = ‖xi‖ = 1 and
therefore WT

j xi = cos(θj). Now each of the losses add a
margin to the ground truth class, while leaving the rest of the
logits untouched. CosFace adds a margin mc to the logit in
the cosine space, while ArcFace and SphereFace add ma and
multiply ms a margin, respectively, in the angular space. In

the end, all the resulting logits are being rescaled by a fixed
feature norm s, which all together results in cos(msθyi +
ma)−mc. The remaining steps are the same as in the softmax
loss. All three losses can easily be combined, as visible in the
next equation, which enables us to further boost performance.
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Unlike PKLD, those losses benefit of an increased number

of classes in the training set. Furthermore, they are boosting
intra-class compactness and inter-class diversity, while being
computationally efficient. All three losses showed promising
results when applied to face recognition. ArcFace was even
able to consistently outperform the state-of-the-art.

3. EXPERIMENTS

To prove that the angular margin loss functions are a desire-
able substitute for the PKLD loss, several experiments have
been conducted. In the first experiment, we tried to exchange
the PKLD loss with the proposed angular margin losses, while
not changing the rest of the network at all. In the second
experiment, our goal was to research the effect on the per-
formance of the model, when changing the dimension in the
bottleneck layer. In the third experiment, the model has been
changed once more to only use the proposed loss functions,
but was trained and evaluated on the VoxCeleb2 dataset.

All experiments are benchmarked using the Misclassifi-
cation Rate (MR), Average Cluster Purity (ACP), Adjusted
RAND Index (ARI) and Diarization Error Rate (DER) met-
rics. However, this work sets its focus on the MR metric,
since it shows how many utterances are not linked to the cor-
rect cluster and we want to be able to compare it to our ear-
lier work. We use it as introduced in [11], which is defined
as: MR = 1

N

∑Nc

j=1 ej . N and Nc denotes the total num-
ber of embeddings and the total number of found clusters,
respectively. ej is the amount of embeddings in cluster j, that
are not mapped with the correct cluster. We define a cluster
as unique and correct, if it is the one containing the largest
amount of embeddings from the corresponding speaker, and
if the amount of embeddings from that speaker is larger than
the amounts of embeddings from other speakers.

We have used a time of 400ms for the utterances in all our
setups, since earlier work [8] proved this to be a sweet spot
for the clustering.

3.1. Angular Margin Loss Integration

The key idea of this experiment was to prove that we can
exchange PKLD for the proposed losses, to further improve
the state-of-the-art performance. The structure of the used
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Fig. 1. Structure of the angular margin loss model, with N
being the number of speakers in the training set. The Angular
Margin Dense layer is a customized dense layer without a
bias, that first L2-normalizes its input and its weights and then
returns their dot-product.

model is visible in Figure 1. We have trained the model sev-
eral times on both, the 100 and 470 speakers training set. All
models have been evaluated on the 40, 60 and 80 speaker test
set. For training, a parameter setting of (ma,mc,ms, s) =
(0.01, 0, 1, 30) was used. This means, it only applies a mar-
gin of 0.01 to the ArcFace part of the loss, as well as a feature
norm of 30.

Loss Function MR (40) MR (60) MR (80)
PKLD (100) 2.81 3.54 5.94
Angular Margin (100) 3.21 4.76 6.79
PKLD (470) 27.50 27.92 30.63
Angular Margin (470) 1.88 3.19 3.33

Table 1. Averaged MR results of the PKLD and angular mar-
gin loss models in %. The number after the loss name repre-
sents the number of speakers in the training set and the num-
ber after each ”MR” denotes the amount of speakers used in
the test set.

When we compare the models trained on the 100 speakers
set, the PKLD loss indicates a better performance than the
proposed loss. When trained on the 470 speakers set on the
other hand, the new model was not only able to beat PKLD,
but also outperform all previous models. Thus, we proved
that the angular margin loss benefits from larger amounts of
speakers.

It is worth mentioning, that we consider the 40 speakers
test set as critical, due to receiving several results being iden-
tical for different runs. Hence, the set seems to be too small
for a secure and expressive evaluation.

Since we were unable to find a proper explanation on how
to find the margin and feature norm hyperparameters of each
of the three angular margin losses, we performed a gridsearch
over a set of sample parameters for both training sets. We
came to the conclusion that the number of speakers in the
training set did influence the choosing of parameters in some

MR 100 speakers 470 speakers
Good Parameters 5.19 3.69
All Parameters 21.41 23.94

Table 2. Averaged MR results of the angular margin loss
models trained during the gridsearch in %.

ways. While both networks have the same good and bad pa-
rameters, the 470 speaker model seems to be more sensitive to
them. This means that if compared to the 100 speaker model,
they tend to be better, when trained using good parameters,
but also worse, when trained using bad parameters.

3.2. Bottleneck Adaption

According to [4] and [6], a bottleneck layer using 512 hidden
units has been used for their models. However, they had been
trained on large scale datasets, consisting of over 10K classes
and they explained that in theory, this dimension should be
sufficient for far more classes. This puts our approach in
question, as we have bottleneck dimensions of 500 for the
100 speaker set and 2’350 for the 470 speaker set.

We have tried to decrease said dimension as low as possi-
ble, while keeping up the performance of the model up to the
state-of-the-art. In consideration of us being in a time rush,
only models using a dimension of 3 in the bottleneck layer
have been evaluated. Since the model learns a lot slower hav-
ing such a small bottleneck, it had to be trained for 5’000
epochs to achieve acceptable performance.

The best model achieved a MR of 18.75% on the 40
speakers test set. Although this result is bad, we see room
for improvement and anticipate results that keep up with the
previous experiment.

3.3. VoxCeleb2

As we want to evaluate our model on real world data, we ap-
plied the proposed loss to the model introduced in [10]. It has
the same structure as in the first experiment, but uses active
learning rounds for training. It is not clear yet, what the opti-
mal setting for this setup is, however, only a few models were
been trained to get an idea of the performance of the proposed
losses.

Loss Function MR
PKLD 39.41
Angular Margin 32.63

Table 3. MR of the best models trained and evaluated on the
VoxCeleb2 dataset in %.

We were able to improve the MR of the model by 6.78%,
as visible in Table 3. It is important to know that we retrieved
the MR differently for the PKLD loss. This leads to a value
lower than the actual MR, which should be around 46% -



50%. Unfortunately, we were not able to retrieve the actual
MR in given time, what we are very sorry for.

Nevertheless, we still wanted to give a more accurate im-
pression of the influence of the proposed losses, since an im-
provement of around 16% is quite a change.

4. CONCLUSIONS

In this work, we introduced angular margin losses to speaker
clustering applications for the first time and have evaluated its
performance on the TIMIT and VoxCeleb2 dataset. We were
able to prove that the losses improved state-of-the-art perfor-
mance, thus are well suited for this research area as well. We
see all the experiments as a success, but plan to further ex-
plore the second and third experiment, as the results clearly
did not reach their full potential yet.

4.1. Future Work

We plan to decrease the complexity of the models while pre-
serving the achieved performances of the first experiment, by
conducting more research regarding the adaption of the bot-
tleneck layer. We also see a possibility of completely remov-
ing the dense layer before the bottleneck. Therefore, we will
be initiating another gridsearch to find the best configurations.

As mentioned, there is still a lot of work to be done for the
models using the VoxCeleb2 dataset. We will conduct exper-
iments on how to perform the training, as well as finding the
best active learning setting, better utterance time and angular
margin loss configurations.

Since the generation of a spectrogram transforms raw au-
dio waveforms to a time-frequency domain, we simultane-
ously lose certain information about a speaker that may be
better visible in the raw waveform. The WaveNet [12] is
a generative model, that works on raw audio data, and has
yielded great results in text-to-speech, multi-speaker speech
generation, and speech recognition applications. As it seems
to be possible to learn the characteristics of a speaker to gen-
erate speaker specific speech, we plan to train a WaveNet
model on speaker recognition and speaker clustering. The
WaveNet outperformed the state-of-the-art in speech recogni-
tion on the TIMIT dataset. Hence, we anticipate it to work
for our problem setting too, as they are related. Altough the
WaveNet being a model designed to process raw audio data,
we still could feed it the spectrogram of the speech [13]. This
could lead to interesting new knowlege, such as figuring out,
if there is more information about a speaker encoded in the
time-frequency domain, or in the raw audio waveform.
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