Flatland-RL : Multi Agent Reinforcement Learning on Trains

Sharada Mohanty* Erik Nygren* Adrian Egli Marcel Salathé

mohanty@aicrowd.com
erik.nygren@sbb.ch

adrian.egli@sbb.ch

marcel@aicrowd.com

March 9, 2019

Abstract

The Flatland Challenge is a competition to facilitate the progress of multi-agent
reinforcement learning for any vehicle re-scheduling problem (VRSP)[5]. The challenge
addresses a real world problem faced by many transportation and logistics companies
around the world (e.g. Swiss Federal Railway). Using reinforcement learning (or oper-
ations research methods) the participants must solve different tasks related to VRSP
on a simplified 2D multi-agent railway simulations environment called as Flatland, re-
leased just in context of this competition. Insights and prototypes from this challenge
will influence and shape the way modern traffic management systems are implemented
not only in railway but also in other areas of transportation and logistics. We aim to
establish these series of proposed tasks as a long-term benchmark for the Multi-Agent
Reinforcement Learning Community to measure their progress over time.

Keywords

multi-agent reinforcement learning, operations research, vehicle re-scheduling problem, au-
tomated traffic management system

Competition type

The Flatland - Challenge will be a regular challenge.

*These authors have equal contribution

FLATLAND

1 Competition description

1.1 Background and impact

The Swiss Federal Railway Company (SBB) operates the most dense mixed railway traffic
in the world. SBB maintains and operates the biggest railway infrastructure in Switzerland.
Today, there are more than 10,000 trains running each day, being rerouted at over 13,000

switches and managed by over 32,000 signals. Almost half of all goods within Switzerland
and 1.2 million passengers are transported on this railway network each day. Due to the
growing demand for mobility, SBB needs to increase the transportation capacity of the
network by approximately 30%.
The increase in transport capacity can be achieved through different measures such as
denser train schedules, large infrastructure investments, and/or investments in new rolling
stock[12]. However, the SBB currently lacks suitable technologies and tools to quantita-
tively asses these different measures.
A promising solution to this dilemma is a complete railway simulation that efficiently
evaluates the consequences of infrastructure changes or schedule adaptations for network
stability and traffic flow. A complete railway simulation consists of a full dynamical physics
simulation as well as an automated traffic management system (TMS).
The research group at SBB has developed a high performance simulator which simulates
the dynamics of train traffic as well as the necessary elements of the railway infrastructure.
We are currently investigating the possibility of an automated TMS [1]. The role of the
traffic management system is to select routes for all trains and decide on their priorities at
switches in order to optimize traffic flow across the full network.
The same high performance physical simulation also unfortunately brings with itself enough
real world complexity to inhibit fast iteration cycles in experimenting new ideas. Hence, in
this work, we propose a simpler 2D grid environment which allows for fast experimentation
of ideas, which can eventually be applied to the high performance physical simulation.
At the core of this work, we are trying to solve the more general vehicle re-scheduling
problem proposed by Li, Mirchandani and Borenstein in 2007 [5] :

The wvehicle rescheduling problem (VRSP) arises when a previously assigned trip is dis-

rupted. A traffic accident, a medical emergency, or a breakdown of a vehicle are examples
of possible disruptions that demand the rescheduling of vehicle trips. The VRSP can be
approached as a dynamic version of the classical vehicle scheduling problem (VSP) where
assignments are generated dynamically.

The ”Flatland” Competition aims to address the VRSP by providing a simplistic grid world
environment and allowing for diverse solution approaches from the fields of reinforcement
learning and operations research.

The problems are formulated as a 2D grid environment with restricted transitions
between neighbouring cells to represent railway networks. On the 2D grid, multiple
agents with different objectives must collaborate to maximize global reward. There are
different tasks that need to be solved as explained in section

The vehicle re-scheduling problem is of the same nature as the job shop scheduling prob-
lem (3], aircraft landing problem|17] and many more problems connected to logistics and
transportation. Therefore, any promising solution found in this challenge will find many
applications across a broad range of industries.

The re-scheduling problem has been a main research topic for operational researches for
many decades [8, |2]. In recent years, the advancement of deep learning and machine learn-
ing in general have sparked interest for this problem in the deep learning and specifically
in the reinforcement learning domain [4, (10} |11].

One of the key goals of this competition is to design the proposed competition in a way
that is equalling appealing to both the operations research community and the deep rein-
forcement learning community.

1.2 Novelty

There have been other multi-agent reinforcement learning challenges where the objective
was to learn either collaboration or competition (or both) among the agents, e.g. Pommer-
man [9], MarlO|7], SC2LE [15]. The key aspects in which the proposed challenge differs
from the previous challenges are:

e In Flatland, the tasks have to be solved by a large group of agents (n > 1000), which
means that collaboration becomes a much more complex problem.

e The allowed transitions in Flatland differ vastly from free movement on a grid. This
requires participants to come up with novel approaches to represent the observations
spaces in contrast to pixel or grid view observations.

e Flatland directly correlates to a real world problem. A feasible solution to this
challenge will influence the evolution of railway re-scheduling around the globe.

e Flatland provides an easily extensible framework to define novel tasks in an easy and
accessible way.

And most importantly, many of the competitions around reinforcement learning and multi
agent reinforcement learning, are designed in a way that the challenge organizers of the
competitions have the role of asking many of the difficult research questions, and also
doing many of the key design decisions for the participants, for example : what is the
best way to represent the observation space, reward function, etc. In this competition, we
open up the many important questions around representation of observation spaces, etc
to the participants. And make sure they have all the information accessible to them to
efficiently compute the same at their end. The idea will be to gather many such alter-
nate representations, and eventually include them in the parent library as general purpose
functions.

That said, the proposed competition also shares a lot of similarities with above mentioned
competitions, and in fact takes inspirations from many of the design decisions of the above
mentioned and many other Multi-Agent Reinforcement Learning Environments.

1.3 Data/Resources

The competition revolves around a two-dimensional grid world environment for multi-agent
problems, built on top of the MAgent [16] environment. The easily extensible environment
can represent a broad array of diverse problems from infectious disease spreading to train
traffic management. Our hope is for the environment to serve as an easy to use and
accessible test-bed for many multi-agent reinforcement problems from various domains.
Much of this work, and our earlier experiments on this library are inspired by the previously
mentioned MAgent environment [16], and also by many ideas introduced by Lowe et. al [6]
in their work around Mixed Cooperative-Competitive Environments. In the current scope
of this work, we focus on the just Cooperative Agents. The following sections describe the
formalisms and assumptions around our implementation of this multi agent environment.

1.3.1 Environment

Flatland is a 2D grid environment of arbitrary size, where the most primitive unit is a cell.
A cell is a location in the grid environment represented by two integral coordinates x and
y, where x € [0, W] and y € [0, H] (where W is the maximum width of the grid world, and
H is the maximum height of the grid world).

Each cell has the capacity to hold a single agent. E|

An agent is an entity which resides at a particular cell, and has a direction d which repre-
sents the direction the agent is facing, where the integral value d € [0,4) , each of values
representing one of the 4 directions (North, East, South, West) an agent can face in a grid
world.

An agent can move to a subset of adjacent cells. The subset of adjacent cells that an agent
is allowed to transition to, is determined by a transition map.

A single transition map is stored as a 4-bit bitmask representing the legality of moving
to any of the 4 adjacent cells. As the movements of agents in Flatland is directional (eg.
a train cannot move backwards/back-and-forth on the track), each cell has 4 such 4-bit
transition maps, to encode the information of directionality (e.g. If the agent is facing
east, the transition maps available to the agent are different than when the agent is facing
south).

This setup allows us to store the information about the constrained transitions using 4x4
bits of information per cell, and at the same time allows us efficient access to this data in
O(1) time at a minimal memory expense (O(W H)). For example, to store the transition
maps for a grid size of 1000x1000, the cost in terms of memory will be 1.9 MB for the whole
grid. Section discusses in more detail about the movement patterns that emerge from
this particular approach of representing legality of moves using transition maps.

!The implementational details of the environment do allow for the cells to hold multiple agents, but for
the sake of simplicity we assume the capacity of a single cell to be 1 in context of this proposed competition.

Flatland is a discrete time simulation. A discrete time simulation performs all actions
with constant time step. A single simulation step synchronously moves the time forward
in equal duration of time.

1.3.2 Tile Types of Wall-Based Cell Games

(Theseus and Minotaurs puzzle, Labyrinth Game)

The Flatland approach can also be used the describe a variety of cell based logic games.
Without going into any detail, it is still worthwhile noting that the games are usually
visualized using cell grid with wall describing forbidden transitions (negative formulation).

a) b)

Y)

L] HREH

.

Figure 1: The sub figure on the left (a) shows a classical way of denoting forbidden tran-
sitions in grid world environments by a wall. But, we use a transition encoding based
approach, where every cell encodes the information about transitions are possible from
that cell.

1.3.3 Transition maps and emergent patterns

Each Cell within the simulation grid consists of a distinct transition map which limits the
movement possibilities of the agent through the cell.

N
°

Figure 2: Fach cell can have transitions to its 4 neighbouring cells located North,Fast,
South or West.

For this railway specific problem 8 basic transition maps (as outlined in Figure are
defined which describe a real world railway network. For railway network, transition maps
allow at most for a binary decision, this means that given the entry direction to a given

cell, at most two transitions are possible. A curved line in a transition map means that
the agent also changes orientation while moving into the cell. Changes of agent orientation
are only allowed at cells with transition maps including curved lines. Figure gives an
overview of the eight basic types.

4

case case case case case case case case
0 1 2 3 4 5 6 7
straight simple Diamond single slip double slip symetrical deadend
switch crossing switch switch switch

Figure 3: The railway configuration of Flatland consists of § basic transition maps. For
each type of transition map all orientations are possible. Curves are a special type of case 1
transition maps where the transition includes a 90 degree rotation. Only transitions between
cells connected through lines with no sharp bend are allowed.

e Case 0 represents an empty cell, thus no agent can occupy the tile at any time.

e Case 1 represent a passage through the tile. While on the tile the agent can make
no navigation decision. The agent can only decide to either continue, i.e. passing on
to the next connected tile, wait or move backwards (moving the tile visited before).

e Case 2 represents a simple switch thus when coming the top position (south in the
example) a navigation choice (West or North) must be taken. Generally the straight
transition (S — N in the example) is less costly than the bent transition. Therefore
in Case 2 the two choices may be rewarded differently in future implementations.
Case 6 is identical to case 2 from a topological point of view, however the is no
preferred choice when coming from South.

e Case 3 can be seen as a superposition of Case 1. As with any other tile at maximum
one agent can occupy the cell at a given time.

e Case 4 represents a single-slit switch. In the example a navigation choice is possible
when coming from West or South.

e In Case 5 coming from all direction a navigation choice must be taken.

e Case 6 : represents a symmetrical switch without a preferred direction. At this
switch the agent must either deviate left or right if coming from the South in this
example. Coming from East or West this cell acts like curve.

e Case 7 represents a dead-end, thus only stop or backwards motion is possible when
an agent occupies this cell.

As a general consistency rule, it can be said that each connection out of a cell must be
joined by a connection of a neighboring cell. We use this consistency rule to generate
random valid railway network configurations (Figure . These random configurations are
used for training while a set of fixed, secret network configurations are used for validation
and evaluation.

a) b) c)
N I I I B I I I (i I I
.) || . . L (I —
J - —L 1 R S I
L L [I I

Figure 4: a) The transition maps can only be connected if neighbouring cells are connected
by an allowed transition. In this way any real world railway network can be implemented
within the Flatland environment. The transition maps are direction dependent and thus the
possible paths for an agent on Flatland depend not only on its position but also its current
direction as shown in sub figures b) € c).

Agents can only travel in the direction of their current facing direction (details in action-
section below). Thus, the permitted routes for any given agent depend both on its
position and on its direction. This is illustrated in the figure [on a simple railway network
configuration.

1.3.4 Action

The action space is discrete(4) for this railway specific implementation of Flatland con-
sisting of:

e Go forward

e Deviate Left

e Deviate Right

e No operation (Halt)

This is distinctly different from freely moving agents in other environments where the
heading of an agent can be changed by rotation of the agent.

Deviate left and deviate right can only be executed when a switch is present (in the tran-
sition map of the current cell that the agent resides in) with an allowed transition either
to the left or to the right (see Fig. |3| cases 2,3,4 and 6). In cases where the deviation is
chosen, the heading of the agent is changed simultaneously with the move to the next cell.

Any action is executed if it is allowed by the transition map of the current cell and the
subsequent cell is not occupied by another agent. In the case an action cannot be executed
the environment executes a No operation action and illegal move reward is returned to the
agent.

Figure 5: This figure illustrates a typical situation that can occur between two or more
agents. A routing decision needs to be made in order to avoid deadlocks between multiple
agents. The complexity grows vastly when considering the effects of each such decision
on the full network traffic. Thus problems of this nature cannot be solved using only local
information. The figures are take from an earlier version of Flatland.

1.3.5 Observation

This challenge differs from most other reinforcement learning challenges because the ob-
jective for participants is two fold. On one hand they are asked to produces an efficient
agent which solves the formulated tasks (Section and on the other hand we encourage
the participants to come up with their own observation space to improve the performance
of their agent.

This is a very strong differentiating factor of this proposed competition from many other
similar competitions.

As an inspiration and baseline we provide three different implementations of observation
space representations as well as access to the full underlying information of the environment.
In addition we provide wrapper functions that can be used to generate novel observation
space representations by the participants (something that is greatly encouraged in this
competition).

Global observation

The global observation is the simplest observation to get started. In this case every agent is
provided a global view of the full flatland environment. This can be compared to raw-pixel
data used in many Atari games. The size of the observation space is h X w X ¢, where h is
the height of the environment, w is the width of the environment and ¢ are the number of
channels of the environment. These channels can be modified by the participants but in
the initial configuration we include the following 5 channels:

Transition maps This channel provides a unique value for each type
of transition map and its orientation. This gives the
agent an overview of the current map.

Agent position This channel is an one-hot representation of the agents
position in the map.

Agent target This channel is an one-hot representation of the agents
target on the map.

Other agents This is an one-hot representation of all other agent
positions on the map.

Other targets This is an one-hot representation of all the other tar-
gets on the map.
This observation space is well suited for single-agent navigation but does not provide enough
information to solve the multi-agent navigation task (see Section , thus participants
must improve on this observation space to solve the challenge.

Local grid observation

The local grid observation is very similar to the global observation where we only replace
h and w by agent specific dimensions. Each agent has an observation grid of uneven width
w; and arbitrary height h; which is spanned from its current position. The agent is always
situated at the position (0, (width + 1)/2) within the observation grid (Fig. [6), and the
observation grid is rotated according to the agents heading such that the full height h; of
the observation grid is in front of the agent.

This is in line with many other similar grid world based Multi Agent RL works [16][6].
The initial local grid view provides the same channels as the initial global view introduced
above.

This observation space offers benefits over the global view mostly by reducing the amount
of irrelevant information in the observation space. Global navigation with this local ob-
servation would be impossible if no indication of target direct where given. We therefore
compute a distance map for every agent-target and provide this distance map as an addi-
tional channel.

Additional channel:
Distance map This additional channel in the local observation grid

allows for a sense of direction without the need of a
global view.

10

height hj

width wij
A 4

Figure 6: An abstract visualization of the local field of view of an agent. The green boxes
represent visible cells in the agents field of view. This field of view is turned as the agents

heading changes.

Local tree search

The most task specific observation space is a local tree search on the railway network.
This method takes the transition maps into account when generating the observation for
each agent. There are several different possibilities how to aggregate information along the
tree search. For the Flatland environment with railway transition maps we provide the
following tree search observation.

1.

2.

Start at the agent position.

Take all allowed transitions given the initial heading.

Collect information at given cell.

If max tree depth is reached stop.

Check if cell is a switch (more than one allowed transition detected)

o If switch store aggregated information in previous tree node, branch tree and
continue process from step 2 for each branch

e If no switch is detected return to step 2

What information is collected at each cell can be adjusted by the participants of the
challenge. However, the initial configuration will collect the following information:

11

Agent detected distance | Current depth
Agent detected Oor1
Target detected Current depth
Switch detected Current depth
Distance map value € [0,1]

In order to aggregate this information to the appropriate tree node we always select the
minimal value detected, except for Agent detected which will be summed, before reaching
the next switch. The reasoning behind this is to give the agents an implicit sense of their
surrounding and the traffic situation around them. The aggregated tree is flattened to an
array, and empty nodes are represented by O.

Figure [7] illustrates the tree search on a simple network example where the switches are
highlighted and numbered in order to identify them with their corresponding nodes in the
tree.

a) b)

~

J
-

- | -5

N
=

Figure 7: An abstract visualization of the local tree search observation space. The tree is
calculated from the position of the agent along the heading of the agent. Figure a) shows
the switches (in red) where the tree search branches and the intermediate cells (green) where
information is aggregated. On the right (Figure b)) we see the corresponding tree, where
green circles indicate nodes with an aggregated value and white circles indicate that no value
has been collected at the corresponding node.

Individual observations

By investigating the performance of the three different observation spaces it quickly became
clear that one of the important questions that needs to answer is indeed what is the best way
to represent the observation space. We therefore decided to include the observation space
as part of the challenge objective. Participants are incentivized to contribute observations
spaces representations by setting aside a community contribution award as mentioned in
section

12

All predefined observations can be modified and combined in order to achieve better perfor-
mance in this challenge. Furthermore, the full Flatland state information can be accessed
and aggregated into new agent observations by using our predefined wrapper functions or
implementing new ones.

1.3.6 Reward

Each agent receives combined reward consisting of a local and global reward signal. Locally
the agent receives r; = —1 for each time step ¢ and r; = 0 for each time step after it has
reached its target location. In addition an illegal move reward r; = —2 is received when
the action cannot be executed. The global reward signal r, = 0 only returns a non-zero
value when all agents have reached their targets r, = 1. Thus, every agent i receives a
reward

ri(t) = ar(t) + Bry(t) +ri(t) €[-a—-2,7], (1)

where « and (8 are factors for tuning collaborative behavior. This reward creates an
objective of finishing the episode as quickly as possible in a collaborative way. At the end
of each episode the return of each agent is calculated as

T
gi = Zri(t)v (2)
t=1

where T is the time step when the episode terminated. Submissions by participants are
measured according to the metrics in section

1.3.7 Environment interface

Participants can interact with the environment using a familiar gym-flavoured API inspired
by numerous other Multi Agent RL environments. Figure|8shows the basic usage example.
The environment will be made available on PyPi, and also at :

https://gitlab.aicrowd.com/flatland /flatland-rl

1.4 Tasks and application scenarios

The competition is set up to gradually introduce the vehicle re-scheduling problem to the
participants. Through the different tasks, the participants will become familiar with the
"Flatland” environment and the specific difficulties of the re-scheduling problem. FEach
task addresses important questions in order to arrive at an automatic traffic management
system in the future. It is important to note that task 1, is a toy task, which
can be deterministically solved using numerous grid search approaches. Task
2 will be the major focus of this competition. Task 3 and Task 4, are more

13

Figure 8: Example API for interacting with the Flatland Multi Agent environment.

difficult problem formulations which we eventually want to solve, but are only
included here in this proposal (and will be made available to the participants)
to provide a broad view of the future directions.

1. Single agent navigation on railway grid: The first (toy) task is used as an entry
level to the ”Flatland” environment. In this setting, an agent simply needs to find
the shortest path from a randomly chosen starting position to a randomly chosen
target position. Movement of the agent is restricted to the railway network. The
objective for the participants is to find the shortest path given limited computational
resources and time. This task illustrates that shortest path calculations can be done
efficiently.

2. Multi-agent navigation on railway grid: As an extension of the simple naviga-
tion task, many more agents are added to the railway network. This is the main task
to be solved by the participants. Final ranking of the competition will be based on
the score obtained on this task. In this task multiple agents must collaborate to avoid
deadlocks (when two trains face each other and don’t have any alternative routes to
avoid each other) and navigate to all targets efficiently. This task is significantly
harder due to the interactions between the agents. The objective here is to show that
a feasible solution, meaning all agents arrive at their target, can be found for any
given starting configuration. The constraints on computational resources and time

14

are relaxed for this task.

Due to the complexity of the multi-agent navigation task we will not include the following
additional tasks in this challenge. They are two additional tasks that highlight the flexi-
bility of Flatland as well as close the gap between the abstract Flatland environment and
the fully dynamic railway simulation:

e Multi-agent traffic with schedule on railway grid: Adding a schedule for all
agents to follow adds complexity in form of diversity among the agents. Beyond
avoiding deadlocks, agents have to collaboratively agree on priorities amongst them-
selves in order to stay as close as possible to the dictated schedule. The objective for
the participants is to prove that a multi-agent system can collaboratively solve an
asymmetric problem with a global reward.

e Multi-agent mixed railway traffic with schedule: Minor change to the previous
task by adding different types of agents with different properties such as velocity.
This implementation of ”Flatland” comes very close to real-world railway traffic.
Any feasible solution found for this task will illustrate the feasibility of an automatic
traffic management system for the real railway network.

1.5 Metrics

Submitted agents by the participants will be evaluated by a fixed set of environment
configurations for each task. The participants can submit a different agent for each task.
The metrics used to evaluate the performance are as follows:

1. Single agent navigation on railway grid: The score (S) is the accumulated total
return (section [1.3.6) over N = 100 predefined, secret railway network configurations
and over all agents (M):

N M
So=2_> 9 ®3)
i=0 j=0
A higher score is better. This score will not be part of the ranking as this task is

only a toy example for participants to get used to the restricted transitions between
cells.

2. Multi-agent navigation on railway grid: The score (S7) is the accumulated total
return (section |1.3.6) over N = 100 predefined, secret railway network configurations
and over all agents (M)::

$1=2_> 9 (4)

The challenge ranking will be based on this score (57 in equation , where a higher
score is better.

15

1.6 Baselines, code, and material provided

Baselines will be provided for all initial observation spaces explained in section [I.3.5] They
are based on previous work done by the SBB research lab on an earlier version of the
Flatland environment. We will adapt them to the improved environment. Baselines in-
clude executable code with documentation explaining the code as well as a documentation
about the corresponding observation space. This documentation contains learnings from
our observation space investigations and provides insights for participants about different
aspects of the vehicle re-scheduling problem. Some of the new baselines will be provided
by PhD students from a collaborating Swiss applied university (ZHAW), also in form of
executable code and an accompanying paper or explanatory blogpost.

The baselines and documentation will be bundled into a github starter kit as with our
previous SBB challenge [13].

The environment will be packaged and easily installable through pip.

Examples of policy learnt by multiagent-DQN with local tree search as the observation
space :

e https://s3.eu-central-1.amazonaws.com /aicrowd-static/mohanty /trained_policy.mp4
e https://s3.eu-central-1.amazonaws.com /aicrowd-static/mohanty /trained_policy_1.mp4

e https://s3.eu-central-1.amazonaws.com /aicrowd-static/mohanty /10_agent_side_by_side.mp4

1.7 Tutorial and documentation

A starter kit introducing the problem, with the basic getting started instructions and along
with the above mentioned baselines will be available for the participants at:
https://gitlab.aicrowd.com/flatland /flatland-starter-kit

The code for the environment will be available for the participants at:
https://gitlab.aicrowd.com/flatland /flatland-rl

Participants can then easily make their first submission by following the instructions at:
https://gitlab.aicrowd.com/flatland /flatland-rl-sample-submission
2 Organizational aspects

2.1 Protocol
2.1.1 Platform

The evaluation of the submissions will be managed by Alcrowd.com. Alcrowd is built
by the same team that created crowdAl, the (now retired) challenge platform developed

16

https://s3.eu-central-1.amazonaws.com/aicrowd-static/mohanty/trained_policy.mp4
https://s3.eu-central-1.amazonaws.com/aicrowd-static/mohanty/trained_policy_1.mp4
https://s3.eu-central-1.amazonaws.com/aicrowd-static/mohanty/10_agent_side_by_side.mp4

at EPFL. The platform offers state-of-the art technology and management specifically for
running challenges like the one proposed here. The technology underlying Alcrowd has
been tried and tested in over 50 challenges, including some at NeurIPS (the Learning to
Run Challenge in 2017, the AI for Prosthetics Challenge in 2018, and the Adversarial
Vision Challenge in 2018). The Alcrowd platform offers to the full range of services for
a challenge, from user management to discussion forums and leaderboards. The evaluator
infrastructure can be flexibly adapted to any execution requirements, and allows for full
traceability and reproducibility of the submissions.

2.1.2 Submission Protocol

Throughout the competition, participants can work on their code bases as private git
repositories on https://gitlab.aicrowd.com. The requirements of the Alcrowd evalua-
tors require participants to package their intended software runtime in their repositories,
to ensure that the evaluators can automatically build relevant Docker images from their
repositories, and orchestrate them as needed by the evaluators of the particular round.
This approach also ensures that all the user submitted code that is successfully evaluated
in context of this competition is both versioned across time, and also completely repro-
ducible.

Software Runtime Packaging. Packaging and specification of the software runtime is
among the most time consuming (and frustrating) tasks for many participants. And hence,
to make this step easier, we will be supporting numerous approaches of easily packaging the
software runtime by the help of aicrowd-repo2docker (https://pypi.org/project/aicrowd-
repo2docker/). A tool which lets participants specify their runtime using Anaconda envi-
ronment exports, requirements.txt , or even with the fall back of a traditional Dockerfile.
This significantly decreases the barrier to entry for the less technically inclined participants
by transforming an irritating debug cycle to a deterministic one-liner which does all the
work behind the scenes.

Submission Mechanism. Participants can collectively collaborate together on their
private git repository throughout the competition, and whenever they wish to make a
submission, they have to create and push a git tag, which triggers the evaluation pipeline
: image building, orchestration of the containers with the required evaluation context. On
the successful evaluation of the submission, the scores and any necessary artifacts

Orchestration of the Submissions. The ability to reliably orchestrate user submis-
sions over large periods of time will be a key determining feature of the success of the
proposed competition. We will be using the evaluators of Alcrowd.com which use cus-
tom Kubernetes clusters to orchestrate the submissions against pre-agreed resource usage
constraints. The same setup has been successfully used previously in numerous other

17

https://gitlab.aicrowd.com

complicated machine learning competitions in the past. The evaluation setup allows for
evaluations of arbitrarily long time-periods, and also can privately provide feedback about
the current state of the evaluation to the respective participants.

The challenge will run on the challenge platform Alcrowd (www.aicrowd.com).

2.2 Rules

e Participants are allowed up to 5 submissions a day
e Participant submitted code cannot access the external network during evaluation

e Participants will have to open source their submitted code to be eligible for prizes

2.3 Schedule and readiness

The competition will start in June 2019 and run till mid October to allow for enough time
before NeurIPS 2019 to review and publish the results.

At the time of this proposal submission we have an early version of Flatland running
and the development of the improved environment started a few weeks ago. Thorough
investigation about the performance of different observation spaces have been made on the
earlier Flatland environment as shown in the linked videos of this submission.

An international team of reinforcement learning experts are involved in the open source
development of the Flatland environment and both the EPFL and ZHAW are supporting
baseline investigations with PhD students.

2.4 Competition promotion

The competition will be promoted in the social media channels of SBB and Alcrowd (with
a reach to numerous RL researchers from the many RL competitions organized in the past).
Competition will also be circulated among researchers at EPFL and ETH-Zurich.

18

19

3 Resources

3.1 Organizing team

Sharada Prasanna Mohanty is the CEO & Co-founder
of Alcrowd, an opensource platform for encouraging Repro-
ducible research in Artificial Intelligence. He has been the
co-organizer of numerous large scale machine learning com-
petitions like NIPS 2017: Learning to Run Challenge, NIPS
2018: AI for Prosthetics Challenge, NIPS 2018: Adversar-
ial Vision Challenge, MarLLO Challenge 2018. While doing
his PhD at EPFL, he was working on numerous problems
at the intersection of Al and Health, with a strong interest
in Reinforcement Learning. In his current role, he focusses
on building better engineering tools for Al researchers, and
on making research in Al accessible to a much larger com-
munity of engineers. He will be responsible for advise on
general challenge design, and for integration with Alcrowd
evaluators.

Erik Nygren is an Al researcher at the Swiss federal rail-
way company (SBB) research group. His research focus is
on applied machine learning, in particular the use of deep
reinforcement learning to tackle the vehicle re-scheduling
problem. He was involved in a previous crowdsourcing
Challenge by SBB and Alcrowd. He will help designing
and implementing the challenge as well as provide base-
lines.

Adrian Egli is a high performance computing expert at
the Swiss federal railway company (SBB) research group.
His focus is the design and implementation of high per-
formance simulations for real world challenges. He will
design and optimize the Flatland to guarantee good rein-
forcement learning compatibility and high computational
performance.

Marcel Salathé is a professor at the Swiss Institue of
Technology Lausanne (EPFL) where he heads the Digi-
tal Edpidemiology Lab. His group created the challenge
platform crowdAl and co-organized multiple NeurIPS chal-
lenges before (Learning to Run Challenge in 2017, AI for
prosthetics Challenge in 2018, Adverserial Vision Challenge
2018). He is a co-founder of Alcrowd, whigl has spun out
off crowdAl. He will advise the team and help with the
promotion in the academic community.

Design & imple-
ment submission
and evaluation

backend

Advise on chal-
lenge design

Provide Base-
lines

Platform Ad-
ministration

Design & imple-
mentation chal-
lenge

Provide base-
lines

Administration

Design & im-
plementation of
challenge

Optimization of
Flatland perfor-
mance

Advise on de-
sign & imple-
mentation

Promotion

Administration

3.2 Resources provided by organizers, including prizes

Just like our previous SBB challenge [14] with crowdAlI we will provide monetary prices
to the top three ranks as well as at least 4 travel grants to visit a relevant conference. We
will also try to find sponsoring for machine learning hardware (e.g. Nvidia graphics cards)
for the remaining top ten contributions.

Participants solutions will be evaluated using docker images on cloudservices (e.g. AWS)
provided by SBB.

3.3 Support and facilities requested

We would request full conference tickets for the winners and top participants of the com-
petitions.

References

1]

Adrian Egli and Erik Nygren. Real World Application of Multi-Agent Deep Reinforce-
ment Learning: Autonomous traffic flow management. Oct. 2018. DOI:[10.13140/RG.
2.2.13164.62085.

Brian A Foster and David M Ryan. “An integer programming approach to the vehicle
scheduling problem”. In: Journal of the Operational Research Society 27.2 (1976),
pp. 367-384.

Albert Jones, Luis Rabelo, and Abeer T. Sharawi. “Survey of Job Shop Scheduling
Techniques”. In: Dec. 1999. 1SBN: 9780471346081. DOI: |10.1002/047134608X .W3352.

Eric Larsen et al. “Predicting Tactical Solutions to Operational Planning Problems
under Imperfect Information”. In: arXiv preprint arXiv:1901.07935 (2019).

Jing-Quan Li, Pitu B Mirchandani, and Denis Borenstein. “The vehicle rescheduling
problem: Model and algorithms”. In: Networks: An International Journal 50.3 (2007),
pp. 211-229.

Ryan Lowe et al. Multi-Agent Actor-Critic for Mized Cooperative-Competitive Envi-
ronments. 2017. eprint: arXiv:1706.02275.

Diego Perez-Liebana et al. “The Multi-Agent Reinforcement Learning in Malmfffdfffd
(MARLfffdfffd) Competition”. In: (2019). eprint: arXiv:1901.08129.

Jean-Yves Potvin and Jean-Marc Rousseau. “A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows”. In: Furopean
Journal of Operational Research 66.3 (1993), pp. 331-340.

Cinjon Resnick et al. Pommerman: A Multi-Agent Playground. 2018. eprint: arXiv:
1809.07124.

21

https://doi.org/10.13140/RG.2.2.13164.62085
https://doi.org/10.13140/RG.2.2.13164.62085
https://doi.org/10.1002/047134608X.W3352
arXiv:1706.02275
arXiv:1901.08129
arXiv:1809.07124
arXiv:1809.07124

[10]

[11]

[12]

[13]

Darja Semrov et al. “Reinforcement learning approach for train rescheduling on a
single-track railway”. In: Transportation Research Part B: Methodological 86 (2016),
pp. 250-267.

Jamal Shahrabi, Mohammad Amin Adibi, and Masoud Mahootchi. “A reinforcement
learning approach to parameter estimation in dynamic job shop scheduling”. In:
Computers € Industrial Engineering 110 (2017), pp. 75-82.

smartrail 4.0: An innovation programme from the Swiss railway industry. https :
//smartrail40.ch/index.asp?inc=&lang=en.

Starter Kit. https://github . com/crowdAIl/train- schedule-optimisation-
challenge-starter-kit/#starter-kit-repo-for-the-sbb-train-schedule-
optimisation-challenge-on-crowdai.

Train Schedule Optimisation Challenge. https://www.crowdai.org/challenges/
train-schedule-optimisation-challenge.

Oriol Vinyals et al. StarCraft II: A New Challenge for Reinforcement Learning. 2017.
eprint: |arXiv:1708.04782.

Lianmin Zheng et al. MAgent: A Many-Agent Reinforcement Learning Platform for
Artificial Collective Intelligence. 2017. eprint: arXiv:1712.00600.

Li Zipeng and Wang Yanyang. “A Review for Aircraft Landing Problem”. In: MATEC

Web of Conferences 179 (Jan. 2018), p. 03016. DOI:|10.1051/matecconf/201817903016.

Appendix : Multi-agent movement

22

https://smartrail40.ch/index.asp?inc=&lang=en
https://smartrail40.ch/index.asp?inc=&lang=en
https://github.com/crowdAI/train-schedule-optimisation-challenge-starter-kit/##starter-kit-repo-for-the-sbb-train-schedule-optimisation-challenge-on-crowdai
https://github.com/crowdAI/train-schedule-optimisation-challenge-starter-kit/##starter-kit-repo-for-the-sbb-train-schedule-optimisation-challenge-on-crowdai
https://github.com/crowdAI/train-schedule-optimisation-challenge-starter-kit/##starter-kit-repo-for-the-sbb-train-schedule-optimisation-challenge-on-crowdai
https://www.crowdai.org/challenges/train-schedule-optimisation-challenge
https://www.crowdai.org/challenges/train-schedule-optimisation-challenge
arXiv:1708.04782
arXiv:1712.00600
https://doi.org/10.1051/matecconf/201817903016

,_,.
Il
—

,_,.
Il
Ul

L
o
£

.
1l
(0]
-+
1l
o]
-+
1l

10

I
£
[

,_,.
1l
—
N
-
1
—
w
~
1l
[y
S

.
£
£

~
I
—
)]
[
I
-
N
~
I
-
[00]

£
£
£

—+
1l
N
o
[
1l
N
=
—
1l
N
N

£
£
£

t=24 t=25

~

= 26

Figure 9: This figure illustrates a typical situation that can occur between two or more
agents. A routing decision meeds to be made in order to avoid deadlocks between multiple
agents. The complexity grows vastly when considering the effects of each such decision
on the full network traffic. Thus problems of this nature cannot be solved using only local
information.

23

	Competition description
	Background and impact
	Novelty
	Data/Resources
	Environment
	Tile Types of Wall-Based Cell Games
	Transition maps and emergent patterns
	Action
	Observation
	Reward
	Environment interface

	Tasks and application scenarios
	Metrics
	Baselines, code, and material provided
	Tutorial and documentation

	Organizational aspects
	Protocol
	Platform
	Submission Protocol

	Rules
	Schedule and readiness
	Competition promotion

	Resources
	Organizing team
	Resources provided by organizers, including prizes
	Support and facilities requested

	Appendix : Multi-agent movement

