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Confidence-Rated Predictions from Deep Learning
Ensembles for Music Object Detection

Urs Gut

Abstract—The RealScore project is ScorePad’s research part-
ner for their sheet music scanning service. In recent years,
multiple deep neural network architectures have been tested as
part of this project. Although some models exhibited excellent
predictive performance, the problem of overconfident predictions
persists, at least for certain musical symbols.

In this thesis, we provide a summary of relevant methods for
estimating model uncertainty in neural networks. Specifically, we
focus on ensemble methods that are economic in terms of memory
and computational costs and are compatible with the current
network architecture. We present an implementation of the
BatchEnsemble approach and a visualization tool that is based on
post-processing detections using a combination of Non-Maximum
Suppression and the Weighted Boxes Fusion Algorithm.

Our experimental results are preliminary in nature as a
consequence of unanticipated technical issues. Despite the sub-
optimal performance of our prototype, the proposed visualization
method shows promising practical benefits for quickly identifying
low confidence detections.

Index Terms—Predictive Uncertainty, Ensemble Learning,
Economic Ensembles, Confidence Visualization, Weighted Boxes
Fusion, Optical Music Recognition, Single-shot Alignment Net-
work

I. INTRODUCTION

The RealScore research project aims at improving the
Optical Music Recognition (OMR) pipeline for ScorePad’s
sheet music scanning service [1]. In recent years, several deep
neural network architectures have been evaluated in the context
of the RealScore project [2], [3]. While some of these models
have achieved state-of-the art predictive performance, there
still exists the problem of overconfident predictions for certain
classes of musical symbols [3].

Generally, deep neural networks (NNs) are poor at quan-
tifying predictive uncertainty in the model parameters (i.e.
epistemic uncertainty), and often produce overconfident pre-
dictions [4], [5]. Overconfident and incorrect predictions are
problematic for many applications of deep learning [6], [7]. As
a consequence, there exists a growing number of approaches
for quantifying predictive uncertainty in NNs.

Broadly speaking, these approaches can be divided into
two groups, referred to as ’Bayesian’ and ’non-Bayesian’.
Bayesian approaches are considered to offer a more consistent
mathematical framework [8]. Yet, at the same time, they
are usually more difficult to implement and often have a
higher computational cost [4]. Moreover, since exact Bayesian
inference is computationally intractable, the quality of the
predictive uncertainty obtained using Bayesian approaches de-
pends on the quality of the approximation to the true Bayesian

Urs Gut was with the Centre for Artificial Intelligence, ZHAW School of
Engineering, Technikumstrasse 71, 8400 Winterthur, e-mail: u.gut@posteo.de.

Submitted on 2022-01-31

posterior distribution [8]. This approximation is influenced by
(1) the compromises resulting from computational constraints
and (2) the adequacy of the chosen prior distribution [4], [5].

Because of these complexities, in recent years, non-
Bayesian approaches, especially methods that take advantage
of ensemble predictions, have regained attention [4], [9].
Aggregating over multiple predictions from ensembles of
models is a well-known technique to improve the predictive
performance in machine learning [9]. Good ensembles result
when the predictions of the specific ensemble members are
both accurate and have independent errors [9].

Typically, computational and memory costs of ensemble ap-
proaches increase linearly with ensemble size in both training
and testing [9]. However, these higher costs seem acceptable
because ensembles have been shown to outperform Monte-
Carlo-Dropout (MC-Dropout) approaches, which are a popular
Bayesian alternative to ensembles and have a relatively low
computational cost [5], [10]. Moreover, the reduction of the
computational and memory overhead of ensembles has been
the object of many recent studies. Thus, several methods for
decreasing memory and computational costs have already been
developed under the label of ’economic ensembles’ [9], [11]–
[13].

Even more importantly, ensembles seem to offer more
robust estimates of predictive uncertainty. [14] postulated that
variational Bayesian methods only capture local uncertainty
modes whereas ensembles explore different global modes in
the loss landscape [9]. Hence, most state-of-the-art approaches
to estimating predictive uncertainty, whether formulated within
a Bayesian or a non-Bayesian framework, rely on ensembles
[5], [7], [9], [12], [13], [15]–[18].

Consequently, our literature survey (section II) focuses on
ensemble approaches that are economic and are potentially
compatible with the current architecture of the RealScore
project. Specifically, we will give a short introduction to
the BatchEnsemble [9], HypernetEnsemble [12], BatchNor-
mEnsemble [13], Masksembles [19], SnapshotEnsemble [20],
and HatchEnsemble [18] approaches. Moreover, we briefly
present the Late-Phase Weights method, which is potentially
compatible with the ensemble approaches presented and could
be used as a further methodological extension.

Following the survey, we detail the Single-shot Alignment
Network architecture [21] and give a conclusion detailing
which of the surveyed ensemble approaches seems to be the
most readily implementable with respect to this architecture
(section III). Next, we detail the prototype implemented and
introduce the Weighted Boxes Fusion Algorithm [22] as a
means to visualize predictions from ensembles of detectors
(section IV). After presenting the results generated by our
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Fig. 1. The BatchEnsemble weight generation algorithm illustrated for the
case of two ensemble members. (Copy of the original Figure 2 in [9]).

prototype (section V), we provide a final discussion (section
VI) and a conclusion (section VII) where we outline paths for
future research.

II. SURVEY OF RELEVANT ENSEMBLE APPROACHES

A. BatchEnsemble

BatchEnsemle has been proposed by [9] to remedy the
large computational and memory overhead of conventional
ensemble methods such as [4], [23]. The savings are achieved
by a weight generation mechanism that generates the weight
matrices for each ensemble member by the Hadamard product
(i.e. element-wise product) between: (1) a single weight matrix
that is shared among all members; and (2) multiple rank-one
matrices (products of two vectors) that vary between ensemble
members [9]. The shared weights are referred to as ’slow
weights’ and the rank-one matrices are referred to as ’fast
weights’ [9]. The latter are calculated from a tuple of trainable
vectors, i.e., ri and si, which are specific to each ensemble
member [9] (Fig. 1). The ensemble weights Wi result from
the Hadamard product between slow and fast weights [9]:

Wi =Wi ◦ Fi,where Fi = ris
>
i , (1)

B. HypernetEnsemble

A hypernetwork is a NN that generates the weights of an
other NN (i.e., the main network) from an embedding input
[7], [12], [24]–[26]. [7] investigated the ability of hypernet-
works to produce arbitrarily complex, multi-modal weight pos-
teriors for Bayesian variational inference. Thus, they quantified
model uncertainty without relying on ensembles. [12] built
upon the concept of parameter sharing using hypernetworks
and leveraged this technique to generate economic ensembles.
To build an ensemble of N models, they input N different
embeddings to the same hypernetwork to generate N different
ensemble weight matrices [12]. The weight matrix W of the
main NN is partitioned or ’chunked’ layer-wise to enable
compression and allow a much smaller hypernetwork to learn

Fig. 2. The hypernetwork with parameters θ(g) is shared across N specialists
and within a group of layers g (dashed area). The specialist weights W (l)

i for
some layer l and specialist i are generated using a low-dimensional weight
embedding vector e

(l)
i . Thus, for each input x results a set of predictions

{fi(x)Ni=1}. Averaging over the N specialists yields the ensemble prediction
f(x). (Copy of the original Figure S1 in [12]).

the parameters of the primary NN [12]. Thus, they calculate
the weights for a certain layer l of the primary network as:

W (l) = θe(l), (2)

where e(l) are the embedding vectors of each layer l, which
are ensemble member specific and are trained in parallel, and
θ are the hypernetwork parameters, which are shared among
all ensemble members [12] (Fig. 2).

C. BatchNormEnsembles

[13] demonstrated how to use BatchNorm units (cf. [27])
to construct economic ensembles. BatchNorm units possess a
learnable multiplicative (scale) parameter γ and an additive
(shift) parameter β, which are not only low-dimensional but
have also a large expressive power [13]. Consequently, learn-
ing only γ and β while freezing the remaining weights can
lead to significantly lower loss than learning random subsets
of other weights [13], [28], [29]. Thus, ensembles can be
constructed by training γ and β member-wise and sharing the
rest of the weights across ensemble members [13].

D. HyperBatchEnsembles

[17] combine the already introduced BatchEnsemble ap-
proach ([9]) with a procedure that involves a random search
over different hyperparameter settings. Thereby, both ensemble
member weights and ensemble member hyperparameters are
learned end-to-end and in parallel during training resulting in
HyperBatchEnsembles [17].

E. Masksembles

Masksembles were proposed by [19] as an economical
ensemble method. [19] conceptualize a spectrum of ensemble-
like models of which MC-Dropout and conventional deep
ensembles are extreme examples. While MC-Dropout relies
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Fig. 3. Left: Stochastic Gradient Descent optimization with a typical learning
rate schedule. Right: SnapshotEnsembling. The model runs through several
learning rate annealing cycles, leading to the exploration of multiple local
minima [20]. A snapshot is taken at each minimum and used during test-time
to construct an ensemble. (Copy of the original Figure 1 in [20]).

on a potentially infinite number of highly correlated models,
conventional ensembles are based on a relatively small number
of independent models [19]. This independence arises from
the fact that the individual models do not share any weights
and are trained completely separately [4], [19]. In contrast,
MC-Dropout models use shared weights and ensembles are
obtained by applying random binary masks to drop a portion
of network activations simultaneously [8], [19]. In practice, the
randomly sampled masks often overlap significantly. Hence,
predictions may be highly correlated, which potentially leads
to underestimated uncertainty [19]. To remedy this issue,
[19] propose to use a limited number of predefined binary
masks whose overlap can be controlled. Consequently, these
masks are used to drop corresponding network activations
which results in sufficiently decorrelated models [19]. In
their experiments they achieve a performance comparable to
conventional ensembles at a fraction of the cost [19].

F. SnapshotEnsemble

The SnapshotEnsemble approach of [20] tries to achieve the
seemingly paradoxical goal of producing an ensemble at no
additional training cost. Their method leverages work on cyclic
learning rate schedules [30], [31]. [20] lower the learning rate
at a very fast pace, thus encouraging the model to converge
quickly to its first local minimum. Then the optimization is
continued with a higher learning rate to dislodge the model
from this local minimum again [20]. This procedure is repeated
multiple times. At each local minimum, the model is saved (i.e.
a snapshot is taken, Fig. 3). [20] report consistently lower
error rates than single models, but do not quite match the
performance of conventional ensembles.

G. HatchEnsemble

HatchEnsemble uses a standard basic NN architecture as a
so-called ’SeedNet’ [18]. After the SeedNet has been trained
to convergence, a series of function-preserving transforma-
tions is used to generate the so-called ’HatchNets’ (function-
preserving means these transformations do not compromise
the function already learned during training). The HatchNets
are wider then the SeedNet because additional parameters, i.e.

neurons in the case of fully connected layers and channels in
the case of convolutional layers, are inserted in the HatchNet’s
layers [18]. These additional parameters are randomly copied
from existing parameters in the SeedNet. Moreover, Gaussian
noise is added to the copied parameters to amplify diversity
between the HatchNets (or ensemble members, respectively).
[18] report faster training for HatchNets due to the fact that
the SeedNet has already converged in its own parameter
space. Thus, the HatchNets need to explore a small parameter
subspace, only. In [18]’s experiments, the model diversity of
HatchNets was higher than that of MC-Dropout models.

H. Late-Phase Weights

The Late-Phase Weights Algorithm is not an actual en-
semble method in its own right. Rather, it is a method that
can be combined with many of the aforementioned ensemble
approaches and potentially results in even more substantial
savings regarding computational, memory and training-time
costs. To apply Late-Phase Weights to a given NN the weights
W need to be specified in terms of two components, i.e., base
and late-phase weights (θ and φ, respectively), whereby the
function W = h(θ, φ) defines the interaction between the two
weight components [13]. Both components are learned as a
single model until time step T0 (a hyperparameter of the al-
gorithm), after which K late-phase components φ = {φk}Kk=1

are introduced [13]. These late-phase components (i.e., en-
semble members) can be generated via an arbitrary economic
ensemble method, provided the latter allows for training the
late-phase components in parallel until convergence [13].

III. THE CURRENT REALSCORE ARCHITECTURE AND ITS
COMPATIBILITY WITH ECONOMIC ENSEMBLES

A. Single-shot Alignment Network

Currently, the RealScore Project uses a Single-shot Align-
ment Network (S2A-Net) [21]. Single-shot detectors represent
one of the two main frameworks that are implemented in
modern object detectors [6]. The alternative framework, i.e.,
two-stage detectors, rely on a Region Proposal Network (RPN)
and an R-CNN detection head [21]. Typically, in a first stage,
the RPN is used to generate Regions of Interest (RoIs) from
horizontal anchors. Via an RoI pooling operation, features are
then extracted from the RoIs [21]. In the second stage, the R-
CNN head regresses bounding boxes and classifies them into
different categories [21]. This two-stage framework was used
to build detectors that reached state-of-the-art performances
regarding accuracy but that did not match the speed of single-
shot detectors [21].

With their S2A-Net, [21] were able to present a single shot
detector that offers comparable accuracy as R-CNN based
detectors without compromises regarding speed. They identi-
fied severe misalignment between heuristically defined anchors
and axis-aligned convolutional features, as the main source of
inconsistency between the classification score and localization
accuracy in single-stage detectors [21]. Their solution to this
issue are the two modules that make up the S2A-Net detection
head: the Feature Alignment Module (FAM) and the Oriented
Detection Module (ODM) [21].
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Fig. 4. Illustration of the misalignment problem (red arrows) between
an anchor box (blue bounding box) and convolutional features (light blue
rectangle). [21]’s solution is to refine the initial anchor into a rotated anchor
(orange bounding box). Consequently, the feature sampling locations (orange
points) are adjusted with the guide of the refined anchor box. This finally
yields the aligned deep features [21]. Green box = ground truth. (Copy of the
original Figure 1 a) in [21]).

The FAM generates anchors that accurately cover objects
with an Anchor Refinement Network (ARN) and then adap-
tively aligns features according to their corresponding anchor
boxes by applying an Alignment Convolution (ACL) (Fig. 4)
[21].

Next, the ODM adopts active rotating filters (ARF) to
encode orientation information, which in turn can be used
to produce orientation sensitive features (adding orientation
specific channels to the respective features). The bounding
box regression task benefits from these orientation sensitive
features, but the object classification task relies on orientation-
invariant features [21]. Therefore, [21] pool the orientation-
sensitive features by choosing the orientation channel with the
strongest response. Finally, the orientation-sensitive and the
orientation-invariant features are fed into two sub-networks to
regress the bounding boxes and classify the categories [21]
(Fig. 5).

Because of the high accuracy of the oriented bounding
box detections and the computational efficiency of the fully
convolutional single-shot detector architecture, the S2A-Net
is suited particularly well for large images (i.e. 4000 × 4000
pixels) where objects are densely clustered, as is the case with
musical symbols in the DeepScores data set [3], [21].

The implementation of [21] was adopted for the RealScore
project [32]. Like the original implementation of [21], it is
based on the MMDetection toolbox [33]. Moreover, it uses
project specific extensions of the code base, namely: (1) an
Oriented Bounding Box Annotations module [34] and (2) an
adapted version of the MMCV code base [35]. Regarding the
architecture, the S2A-Net of [21] was chosen as detection
head, a ResNet-50 ([36]) as the network backbone and a
Feature Pyramid [37] with five levels as the network neck.
Like in [21], the loss of this S2A-Net version is a multi-task
loss (i.e., classification task and bounding box regression task,
respectively) that consists of (1) a classification loss (Focal
loss) and (2) a smooth L1 loss as the regression loss. During
inference, the input image is passed to the backbone network
to extract pyramid features [21]. Consequently, these are fed
into the FAM to generate refined anchors and aligned features
[21]. Next, the ODM encodes the orientation information and
makes predictions [21]. In the end, the top-k (e.g., k=2000)

predictions with the highest confidence score are chosen
and, after Non-Maximum Suppression (NMS) [38], the final
detections are provided [21].

Contrarily to the old watershed detector architecture, which
was previously used in the RealScore project, the network
output of the S2A-Net comprises of the confidence scores (of
the classification) and the bounding boxes only. No feature
maps are provided that could be compared to the energy, class
and bounding box maps of the watershed detector [2]. Thus,
no pixel-wise confidence scores can be retrieved using the
S2A-Net.

B. Conclusion Regarding the Different Economic Ensemble
Methods

Ideally, a useful compromise between computational costs
and ensemble diversity can be found by choosing one of the
economic ensemble approaches presented. Moreover, the S2A-
Net is a complex architecture, thus, changes to the NN need
to be well considered regarding their costs and benefits.

SnapshotEnsemble seems to be the least complex approach
and could possibly be implemented quickly. However, the
member predictions coming from SnapshotEnsembles might
be too similar and yield no accurate estimate of the predictive
uncertainty. Maksembles are also relatively easy to implement.
In addition, the predefined binary masks, which are used to
drop activations within the dropout layers, might sufficiently
decorrelate the ensemble members. However, they rely on
MC-Dropout layers of which there are none in the current
S2A-Net architecture. Similarly, BatchNormEnsemble could
be readily implemented if the mini batch size was > 1. Yet,
the DeepScore data set consists of very large images that
necessitate to process mini batches of size = 1. Thus, the
BatchNorm Layers in the S2A-Net are replaced by Layer
Normalization [39]. It is unclear if the parameters of Layer
Normalization could be used to generate economic ensembles
analogous to the BatchNormEnsemble approach.

Despite [12] and [17]’s claims to the simplicity of their ap-
proaches, HypernetEnsemble and HyperBatchEnsemble seem
to require fundamental changes to the implementation of the
S2A-Net, which are beyond the scope of this thesis. The
same is true for the HatchEnsemble approach. Moreover, the
random copying of weights involved using the latter approach
might cause undesired behaviour within the relatively complex
architecture and compromise the training of the S2A-Net.

The BatchEnsemble approach appears to be the best first
choice for a prototype. Besides its concise mathematical
formulation, this approach might also be among the most cost
efficient: According to the experiments of [9] the speedup
at test time was 3X and memory reduction was 3X with
an ensemble size of 4 compared to conventional ensembles.
From an implemetational point of view, a slight setback only
results from the fact that the original implementation uses
the TensorFlow API, whereas the S2A-Net code is written
using PyTorch. Luckily, [40] presented BatchEnsemble Con-
volutional Layers implemented with the PyTorch API that can
be readily modified and integrated in the current code base.
Moreover, after a first prototype has been implemented and
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Fig. 5. Illustration of the S2A-Net architecture with the detection head (right part) applied to all prediction levels of the Feature Pyramid Network. Abbreviations:
ARN = Anchor Refinement Network; ACL = Alignment Concolution Layer; ARF = Active rotating filters; cls. = classification branch; reg. = regression branch
(Copy of the original Figure 2 in [21]).

tested, one could consider a Late-Phase Weight version of this
prototype. Initializing ensembles late in training would allow
for an even more substantial cost saving.

IV. ASSESSING THE PREDICTIVE UNCERTAINTY OF THE
S2A-NET

A. Implementational Details of the S2A-Net BatchEnsemble
Prototype

Theoretically, all fully connected layers and all convolu-
tional layers could be replaced by a BatchEnsemble-version
of the respective layer. However, in case debugging would
become necessary, one would have to consider a multitude of
possible error locations. Thus, we decided to first concentrate
our efforts on implementing BatchEnsemble layers in the S2A-
Net detection head only. The backbone and neck of the NN
remained unchanged.

Within the head, we chose four key locations where we re-
placed conventional convolution layers with a BatchEnsemble
version (implementation as in: [41]). Specifically, we chose the
last convolution layer for each, the FAM classification branch,
the FAM regression branch, the ODM classification branch and
the ODM regression branch, respectively (cf. Fig. 5). These
layers seemed to have the biggest impact on the S2A-Net’s
predictions.

The BatchEnsemble convolution layers internally reshape
the layer-inputs by copying and concatenating the inputs m
times, where m = size of the ensemble. Consequently, the
outputs of these layers are m-times larger and contain the
features of all ensemble members. For each of the m members,
the loss can be calculated during training. To enable parallel
training in one forward-pass, we calculate the mean loss over
all members before taking the next optimizer step. Because
this is a differentiable mathematical operation, the weights of
all members can be properly updated during back propagation
and we can still log a single loss value.

The architecture of the S2A-Net head posed one further
difficulty: The ARN sub-network within the FAM uses an
Alignment Convolution Layer (ACL, cf. [21], Fig. 5). This
special convolutional layer would require a re-implementation
from scratch in order to make it fully compatible with our
BatchEnsemble approach. However, to start experimentation

as soon a possible, we decided to run our first version of the
prototype without implementing BatchEnsemble in the ARN.
Instead, we directly passed the inputs of the first ensemble
member to the ARN.

Our complete code base is available on GitHub: [42]. The
key classes, i.e., S2ANetHeadBE and S2ANetDetectorBE,
can be found within the mmdet models module (paths:
mmdet/models/anchor heads rotated/s2anet head BE.py and
mmdet/models/detectors/s2anet BE.py, respectively). The
paths to the training- and testing-script are tools/train BE.py
and tools/test BE.py, respectively.

B. Class-wise Average Precision
To assess the test performance of our prototype, we calculate

class-wise average precision (AP) [6] for a test set of 200 im-
ages. Detections are non-maximum suppressed (score thresh-
old = 0.3, IoU-threshold = 0.1). After this post-processing,
detections are considered to be true positives (TP) if their
labels match with the ground truth label and their intersection
over union (IoU) with the ground truth annotations is ≥ 0.5.
Otherwise, they are regarded as false positives (FP). The IoU
is determined as (cf. [6]):

IoU(b, bg) =
area(b ∩ bg)
area(b ∪ bg)

, (3)

where b is the detected bounding box and bg is the respective
ground truth bounding box. Using TP and FP, the average
precision is calculated as the area under the precision-recall
curve [6]. Class-wise AP values are calculated for each class
of musical symbols in the test set. We process detections and
calculate APs separately per ensemble member. Consequently,
summary metrics can be calculated that aggregate the class-
wise APs over all ensemble members. To provide information
on the spread of the class-wise APs across ensemble members,
not only the mean, but also the 0.25 percentile, the 0.75
percentile, the minimal and the maximal class-wise AP values
are reported.

C. Confidence Visualization
The class-wise APs provide overall summary metrics only.

To be able to quickly assess problematic detections, a vi-
sualization becomes necessary. The standard method used
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by single model detectors is to generate a specific number
of detections per input image (e.g. 2000) and then apply
NMS to generate the final predictions [38]. This first sorts
all detections by their confidence scores. Next, the detection
with the maximum score is chosen. All other detections that
have an IoU larger than a predefined threshold with the
chosen detection are discarded [22], [38]. In addition, often a
threshold for the minimal confidence score is chosen. Finally,
the detections thus post-processed are plotted on the respective
input images.

With detection proposals coming from several ensemble
members, rather than selecting the best detections per member,
a method must be found that is able to aggregate the best
detections across all ensemble members [22].

1) Plotting Transparent Polygons: As a first go-to ap-
proach, we separately applied NMS to the predictions of each
ensemble member. Then we plotted the non-maximum sup-
pressed detections of all members using transparent polygons
with an alpha value of 1/m (where m = ensemble size). Thus,
areas with no transparency corresponded to detections that
were present in all ensemble members. Increasing transparency
correlated to detections that were less consistently detected
across ensemble members. We could then have mapped the
different transparency levels to a color map resulting in a heat
map representation for the detections. However, the method’s
results were unsatisfactory (cf. section V-B; Appendix A, Fig.
A1). Hence, we explored an alternative solution.

2) Weighted Boxes Fusion Algorithm: The Weighted Boxes
Fusion Algorithm (WBF) was introduced by [22] to provide
accurate detections for ensembles of detectors. The algorithm
comprises six steps:

1) All predicted detections of all ensemble members are
added to a single list B, which is sorted in decreasing
order of the confidence scores C [22].

2) Empty lists L and F are declared for detection clusters
and fused bounding boxes, respectively. In the list L,
each position can represent a set of detections (or a sin-
gle detection), which form a cluster. In F, each position
contains only one bounding box, i.e. the fused bounding
box from the corresponding cluster of detections in L
(for the calculation of the fused box see equations below)
[22].

3) Now, iterate through predicted detections in B to find a
matching box in the list F. A valid match is found, when
the IoU of a detection in B with a fused bounding box
in F is larger than a predefined threshold (i.e., an IoU-
threshold; we set it to IoU = 0.1 for our experiments).
[22]. Moreover, thresholds can be defined for the fused
score and the skip threshold. By applying the latter,
detections with a score lower than the threshold are
skipped.

4) If no match is found, the respective detection from list
B is added to the end of lists L and F as new entries.
We then proceed the search for matches, with the next
detection listed in B [22].

5) If a match is found, the detection is added to list L at
the position (pos) corresponding to the matching fused
bounding box in list F [22].

6) Finally, the fused box coordinates and its confidence
score need to be updated.

The S2A-Net uses rotated bounding boxes. Hence, we need
to adjust the calculation of the IoU to be compatible with
rotated boxes (adapting code from the polyiou module in
[34] and the ensemble-boxes module [43]). Moreover, the
coordinates calculation requires expansion to include all four
vertex points (i.e., x1, y1, x2, y2, x3, y3, x4 and y4) of a rotated
bounding box. In contrast to [22], we first apply NMS to
the detections proposed by each ensemble member (score
threshold = 0.3, IoU-threshold = 0.1). Thus, we reduce the
number of imprecise detections per detectable object and speed
up the calculation of the fused bounding boxes.

Following formulas were used to calculate (1) the overall
confidence score and (2) the coordinates of the respective fused
bounding box over all T bounding box detections that belong
to a specific cluster of detections at L[pos] (adapted from
[22]):

Cfused[pos] =

∑T
i=1 Ci

T
, (4)

Fxy[pos] =

∑T
i=1(Ci ∗V[i])∑T

i=1 Ci

, (5)

where V holds the vertex point coordinates of all detections
at position pos in list L. Hence, V holds the coordinates of the
detections that form a cluster, which we want to fuse into one
box (i.e., Fxy[pos]). Finally, this fused box and its confidence
score Cfused[pos] are added to the list F at position pos, i.e.,
F[pos].

As a last step, the fused bounding boxes and the respective
input images are visualized. The confidence score (within
the interval [0,1]) can be mapped to a diverging color map
(red-yellow-green) and is plotted below each bounding box
detection. Bounding boxes receive the same color as the
scores, but are only plotted if the fused score is > 0.5. For
detections with lower confidence, only a polygon shape with
transparent fill (red) is drawn.

V. EXPERIMENTS

During our project, we encountered unexpected technical
issues with the current setup and code base of the S2A-
Net used in the RealScore project. Extensive debugging was
unavoidable. Thus, the hyper parameter tuning of our proto-
type remained incomplete. Currently, we observe a training
loss plateau after epoch 12. Despite this, we present our
experiments to give a glimpse of the results that could be
obtained using a properly trained model. All experiments were
conducted with an ensemble size = 30.

A. Class-wise Average Precision

As expected, most classes yielded low APs (i.e., 85% of
the mean APs were < 0.5; cf. Table I). However, there were
notable exceptions such as noteheadBlackOnLine, notehead-
BlackInSpace, restWhole, clefG or clefF. These classes had a
mean AP > 0.8 across ensemble members. Moreover, often
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the minimal AP calculated for one of these classes was high
too (i.e. > 0.7). In total, 14 classes exhibited a mean AP >
0.6 (Table I, highlighted in green).

In general, we observed relatively high ensemble diversity:
There existed a considerable mean range of 0.33 between
minimum and maximum class-wise APs across ensemble
members (excluding classes for which min and max were both
0).

B. Visualization

The visualization using transparent polygons (cf. section
IV-C1) did not allow for a quick identification of low con-
fidence predictions (Appendix A, Fig. A1). It became obvious
that this issue would persist even if the transparency levels
were mapped to a heat map with different colors.

In contrast, on the visualizations produced by the combi-
nation of NMS and WBF (cf. section IV-C2) low confidence
predictions stand out immediately. Due to the insufficiently
trained model, high confidence predictions are scarce and
sometimes difficult to spot. Hence, we report filtered and
unfiltered visualization results for (1) an easier example (Fig.
6), where the model seems to provide decent predictions and
(2) a more difficult example (Fig. 7), where the model’s
predictions are less accurate.

The easier example (Fig. 6) shows that note heads and clefs
are detected reasonably well. Line shaped objects, such as
stems, are much more challenging for our model to detect.
The same observations are true for the more difficult example
(Fig. 7). Multiple low confidence detections are shown e.g. for
the stem class because the IoU of these line shaped detections
is extremely sensitive to the rotation angle, i.e. a high IoU
results for perfectly aligned detections only (consequently,
these bounding boxes are not fused). Moreover, note that very
low confidence scores are possible for the unfiltered results
(i.e., Fig. 6 a) and Fig. 7 a)). This is a result of the calculation
of the fused confidence score. If e.g. only one member predicts
a detection for a certain object with a score = 0.3, this results
in a fused score of 0.3/30 = 0.01 with an ensemble of size =
30 as was used here.

VI. DISCUSSION

First, we discuss our experimental results and how our
visualization method could be further developed. Afterwards,
we dedicate a separate subsection to the discussion of potential
improvements to our current prototype.

A. Experimental Results and Confidence Visualization

The class-wise APs offer only a basic assessment of NN
predictive confidence. However, in our case of a sub-optimally
trained model, these APs provide a quick sanity check and
are an important tool for overall model evaluation during
hyperparameter tuning. Once a fully trained model is available,
also the calibration of the predictions should be examined
and the diversity of ensemble member predictions should be
investigated more comprehensively [5].

TABLE I
CLASS-WISE AVERAGE PRECISION (AP)

class label mean 0.25 0.75 min max nr occur
stem 0.0 0.0 0.0 0.0 0.0 36650.0
noteheadBlackOnLine 0.87 0.86 0.87 0.83 0.9 19482.0
noteheadBlackInSpace 0.85 0.84 0.86 0.8 0.88 18769.0
ledgerLine 0.0 0.0 0.0 0.0 0.0 12741.0
beam 0.14 0.13 0.16 0.07 0.19 10637.0
augmentationDot 0.14 0.12 0.16 0.07 0.19 3261.0
staff 0.0 0.0 0.0 0.0 0.0 2165.0
keySharp 0.32 0.27 0.36 0.18 0.48 2018.0
restWhole 0.88 0.88 0.9 0.78 0.91 1814.0
noteheadHalfOnLine 0.62 0.55 0.7 0.26 0.85 1690.0
tie 0.08 0.08 0.1 0.0 0.11 1636.0
keyFlat 0.66 0.63 0.74 0.0 0.81 1626.0
noteheadHalfInSpace 0.35 0.27 0.45 0.07 0.64 1612.0
slur 0.23 0.22 0.25 0.16 0.28 1528.0
rest8th 0.43 0.39 0.49 0.14 0.55 1437.0
flag8thDown 0.08 0.07 0.09 0.06 0.13 1352.0
restQuarter 0.24 0.18 0.31 0.1 0.4 1313.0
clefG 0.94 0.96 0.98 0.06 0.99 1256.0
accidentalSharp 0.26 0.24 0.27 0.19 0.31 1249.0
accidentalNatural 0.07 0.05 0.08 0.0 0.11 1187.0
flag8thUp 0.11 0.1 0.13 0.07 0.16 1163.0
clefF 0.98 0.99 0.99 0.86 0.99 830.0
timeSig4 0.85 0.9 0.93 0.0 0.95 805.0
dynamicF 0.16 0.14 0.18 0.11 0.24 802.0
articStaccatoAbove 0.05 0.04 0.06 0.0 0.1 750.0
accidentalFlat 0.23 0.2 0.28 0.0 0.39 728.0
dynamicP 0.81 0.8 0.83 0.76 0.87 646.0
repeatDot 0.01 0.01 0.02 0.0 0.05 568.0
noteheadWholeInSpace 0.3 0.21 0.36 0.05 0.63 544.0
noteheadWholeOnLine 0.43 0.4 0.49 0.17 0.56 470.0
rest16th 0.19 0.1 0.26 0.0 0.6 428.0
restHalf 0.31 0.23 0.4 0.0 0.52 398.0
dynamicM 0.47 0.44 0.52 0.0 0.64 367.0
articStaccatoBelow 0.01 0.0 0.01 0.0 0.04 271.0
articAccentAbove 0.56 0.51 0.66 0.06 0.74 222.0
tuplet6 0.0 0.0 0.01 0.0 0.01 214.0
clef8 0.09 0.03 0.13 0.0 0.23 202.0
timeSig3 0.01 0.0 0.01 0.0 0.12 194.0
timeSig8 0.11 0.05 0.14 0.0 0.32 187.0
dynamicCrescendoHairpin 0.24 0.2 0.29 0.1 0.43 162.0
flag16thUp 0.14 0.13 0.18 0.0 0.24 145.0
tuplet3 0.33 0.3 0.35 0.02 0.57 136.0
clefCAlto 0.18 0.17 0.22 0.0 0.27 133.0
fingering1 0.14 0.06 0.2 0.0 0.33 130.0
flag16thDown 0.02 0.01 0.03 0.0 0.04 116.0
dynamicDiminuendoHairpin 0.06 0.0 0.13 0.0 0.26 111.0
articAccentBelow 0.64 0.55 0.85 0.06 0.94 107.0
fermataAbove 0.88 0.88 0.9 0.71 0.92 107.0
clefCTenor 0.48 0.41 0.53 0.34 0.63 102.0
timeSig1 0.02 0.0 0.02 0.0 0.09 95.0
caesura 0.1 0.0 0.11 0.0 0.61 86.0
articStaccatissimoBelow 0.0 0.0 0.0 0.0 0.04 85.0
fingering2 0.01 0.0 0.0 0.0 0.09 85.0
fingering3 0.02 0.0 0.03 0.0 0.15 83.0
accidentalDoubleSharp 0.04 0.0 0.08 0.0 0.17 80.0
fingering4 0.03 0.0 0.03 0.0 0.21 74.0
keyNatural 0.13 0.08 0.17 0.0 0.27 73.0
timeSig5 0.0 0.0 0.0 0.0 0.06 72.0
timeSig6 0.15 0.01 0.27 0.0 0.56 71.0
timeSig2 0.04 0.01 0.06 0.0 0.09 70.0
fingering0 0.0 0.0 0.0 0.0 0.01 70.0
stringsDownBow 0.04 0.01 0.04 0.0 0.26 63.0
keyboardPedalUp 0.25 0.05 0.41 0.0 0.51 58.0
stringsUpBow 0.74 0.67 0.9 0.15 0.98 55.0
timeSigCommon 0.07 0.04 0.11 0.0 0.18 55.0
dynamicS 0.02 0.0 0.03 0.0 0.08 54.0
noteheadDoubleWholeOnLine 0.15 0.09 0.22 0.0 0.3 54.0
articStaccatissimoAbove 0.0 0.0 0.0 0.0 0.02 53.0
ornamentMordent 0.08 0.02 0.12 0.0 0.25 52.0
articTenutoAbove 0.01 0.0 0.01 0.0 0.06 48.0
articMarcatoBelow 0.27 0.11 0.44 0.0 0.62 46.0
timeSig9 0.31 0.22 0.36 0.0 0.7 46.0
keyboardPedalPed 0.11 0.06 0.16 0.0 0.2 45.0
ornamentTurn 0.42 0.37 0.51 0.05 0.76 43.0
articMarcatoAbove 0.25 0.12 0.37 0.0 0.63 42.0
restDoubleWhole 0.27 0.16 0.38 0.01 0.48 40.0
rest32nd 0.01 0.0 0.03 0.0 0.04 39.0
timeSig7 0.08 0.01 0.13 0.0 0.21 38.0
segno 0.88 0.93 0.97 0.0 0.97 36.0
arpeggiato 0.01 0.0 0.02 0.0 0.06 36.0
fermataBelow 0.28 0.19 0.4 0.0 0.51 29.0
timeSig0 0.35 0.25 0.43 0.0 0.97 28.0
coda 0.95 0.97 1.0 0.0 1.0 27.0
clef15 0.0 0.0 0.0 0.0 0.0 25.0
ornamentTrill 0.1 0.05 0.15 0.0 0.25 20.0
dynamicZ 0.33 0.15 0.53 0.0 0.85 20.0
noteheadDoubleWholeInSpace 0.02 0.0 0.01 0.0 0.22 18.0
flag32ndUp 0.0 0.0 0.0 0.0 0.0 17.0
ornamentTurnInverted 0.0 0.0 0.0 0.0 0.0 14.0
timeSigCutCommon 0.49 0.43 0.68 0.0 0.78 14.0
tupletBracket 0.0 0.0 0.0 0.0 0.0 13.0
rest64th 0.04 0.0 0.08 0.0 0.18 10.0
flag32ndDown 0.01 0.0 0.0 0.0 0.16 8.0
rest128th 0.08 0.0 0.04 0.0 0.57 7.0
flag128thUp 0.04 0.0 0.08 0.0 0.22 6.0
dynamicR 0.0 0.0 0.0 0.0 0.0 4.0
flag64thUp 0.0 0.0 0.0 0.0 0.03 4.0
flag64thDown 0.0 0.0 0.0 0.0 0.0 3.0
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b)

Fig. 6. An easier example where the prototype manages to propose quite decent detections. a) IoU-threshold = 0.1, fused score threshold = 0.00001, skip
threshold = 0.00001; b) IoU-threshold = 0.1, fused score threshold = 0.1, skip threshold = 0.1. Image-ID: lg-110143839-aug-gutenberg1939-.

b)

Fig. 7. A more difficult example where the prototype struggles to propose accurate detections. a) IoU-threshold = 0.1, fused score threshold 0.00001 = 0,
skip threshold = 0.00001; b) IoU-threshold = 0.1, fused score threshold = 0.1, skip threshold = 0.1. Image-ID: lg-210359136-aug-lilyjazz–page-14.

The visualization using a combination of NMS and WBF
provides a means of quickly identifying low confidence de-
tections. This would be even more obvious in the case of a
well performing model, as most bounding boxes would be
displayed in dark-green and only a few red polygon shapes
would stand out immediately. However, there are several im-
provements that can be considered regarding the visualization:

1) The font size of the plotted score values could be scaled
relatively to the score. For example, low confidence scores
(below a user-defined threshold) could be displayed in a larger
font size to further highlight them.

2) The confidence score standard deviation across the de-
tections in a cluster (L[pos]) could be added to the plot.
Depending on the informativeness of the standard deviation,
the scores could also be replaced by this measure.

3) Alternative confidence measures such as nonconformity
measures might be considered should the current scores fail to
capture predictive uncertainty on unseen, real data [44]–[46].

B. Potential Improvements to the S2A-Net BatchEnsemble
Prototype

Our prototype is sub-optimally trained only. Experiment-
ing with different data augmentation pipelines, learning rate
schedules and other hyper parameter settings seems the first
approach to remedy this. However, hyperparameter tuning
using a single GPU turned out to be limited by the considerable

memory overhead of our prototype. Multiple times we ran
into memory overflow issues when trying to replicate training-
or test-time data augmentation pipelines that had been used
for training/testing the single model version of the S2A-Net.
Therefore, debugging the distributed training routine seems to
be a top priority. Moreover, no time was left for profiling the
memory usage of our prototype. Catching up on this might
also help to locate bottle necks and make our prototype more
efficient in terms of memory costs. An other way to reduce
memory costs, is offered by the Late-Phase Weights approach
(cf. section II-H, [13]). However, starting ensemble training
later will still require the allocation of more memory at that
point in training.

If hyperparameter tuning does not lead to significantly
improved performance, implementational causes for the low
performance should also be considered. For example, it is
possible that the shortcut taken in the implementation of the
BatchEnsemble S2A-Net prototype had more severe conse-
quences for the performance of the model than anticipated.
In particular, performance problems may have been caused by
skipping the BatchEnsemble implementation of the ACL in the
ARN sub module of the FAM, which is crucial for refining the
anchors. The ARN was trained on the entire training dataset,
although it was only trained for one member and distributed to
the rest. Still, this ARN might have performed sub-optimally
for other members. Adopting BatchEnsemble for the ACL,
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however, would require a complete re-implementation of the
layer, which would exceed the remainder of the time frame
available for this study.

Alternative approaches to economic ensembles could also be
considered in case our prototype cannot be tuned to a sufficient
performance. SnapshotEnsemble in particular could provide
a relatively straightforward and quick approach to generate
economic ensembles, if it really is compatible with the S2A-
Net architecture. At least this seems to be the case on paper,
as apparently only the cyclic learning rate schedule has to be
implemented [20]. Probably, the resulting SnapshotEnsembles
will show less diversity than our prototype. Moreover, the
long training (over 500 epochs) that was necessary to train the
single model S2A-Net could be prohibitive. SnapshotEnsemble
relies on multiple learning rate annealing cycles ([20] used
cycles of 50 epochs). That is, the learning rate is lowered
quickly to get the model to converge early during training.
Then the learning rate is increased again to get the model
out of the current local minimum. However, useful early local
minima may not be found in the case of the S2A-Net.

VII. CONCLUSION

Our literature survey of relevant state-of-the-art eco-
nomic ensemble methods allowed for the identification of
BatchEnsemble as an approach that is (1) efficient in terms
of memory and computational cost and (2) is compatible with
the Single-shot Alignment Network [21] currently used in the
RealScore project.

Although, the memory overhead of our BatchEnsemble
prototype was not as low as we had hoped for, it evinced
considerable diversity across ensemble member predictions.
Moreover, even using the sub-optimal output of our prelim-
inary model, the visualization results are promising. With a
properly trained model, low confidence scores should be easy
to spot. Combining WBF and NMS to post-process detections
improves the practical value of our visualizations and could
pave the way for a fully developed visualization tool for
ensemble predictions.
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Appendix A

a)

b)

Fig. A1. Plotting all detections of all ensemble members on one image using an alpha level = 1/m, where m is the ensemble
size. Detections were post-processed using NMS with: Score threshold = 0.3, IoU-threshold = 0.1.
a) Image-ID: lg-110143839-aug-gutenberg1939-.
b) Image-ID: lg-210359136-aug-lilyjazz–page-14.




