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Zusammenfassung

Das Gebiet der Gehirn-Computer-Schnittstellen befasst sich mit der Aufgabe,
Geräte direkt durch die neuronale Aktivität im Gehirn steuern zu können. Die
Dekodierung von Elektroenzephalographie-Signalen (EEG) wird durch mehrere
Probleme erschwert, von denen einige eine langwierige Kalibrierung von BCIs
vor einer Anwendung erfordern. Kürzlich wurden Convolutional Neural Net-
works (CNN) mit Erfolg in diesem Bereich eingesetzt. Im Feld der Computer
Vision haben Multitask-Learning-Modelle bewiesen, dass sie auf kleinen Daten-
sätzen sehr gute Performanz erzielen können. Wir implementieren einen Deep-
Multi-Task-Learning-Ansatz mit Convolutional Neural Network, bei dem einzelne
Probanden als verschiedene Aufgaben (Tasks) betrachtet werden. Wir trainieren
auf einem Mehrklassen-MI-EEG-Datensatz und vergleichen die resultierende Per-
formanz mit Single-Task-Modellen. Des Weiteren untersuchen wir die Möglichkeit,
das gelernte Grundgerüst zum Training von Klassifikatoren für neue Probanden
zu verwenden, da dies das Potenzial hätte, die Kalibrierungszeit in Zukunft zu
reduzieren. Schließlich verwenden wir zwei verschiedene Visualisierungsmetho-
den, um Einblicke in die gelernten Modelle, zum Zwecke der Interpretierbarkeit,
zu erhalten. Unsere Ergebnisse zeigen, dass MTL in der Lage ist, die Leistung
von CNNs bei der Dekodierung von MI-EEG-Signalen zu verbessern, aber ob die
Leistung tatsächlich besser wird, hängt von der zugrunde liegenden Architektur
ab. Unsere Visualisierungen zeigen, dass ein MTL-Modell andere Eigenschaften
lernt als ihre Single-Task-Pendants.
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Abstract

The field of brain-computer interfacing addresses the task of enabling devices to
be controlled directly by neural activity in the brain. The decoding of electroen-
cephalography signals (EEG) is complicated by several issues, some of which
necessitate tedious calibration of BCIs prior to usage. Recently, convolutional
neural networks have been applied with success to this domain. In computer
vision, multi-task learning models have shown to perform well on small data sets.
We implement a deep multi-tasklearning approach with convolutional neural net-
works, where different subjects are considered as different tasks. We train on a
multi class MI-EEG data set and compare the resulting performance with single-
task models. Further, we examine the possibility of using the learned backbone
to train classifiers for new subjects, as this would have the potential of reducing
calibration time in the future. Finally, we use two different visualization meth-
ods to gain insights into the learned models for the purpose of interpretability.
Our results show that MTL is able to improve the performance of CNNs on de-
coding MI-EEG signals, but whether performance does improve is dependent on
the underlying architecture. Our visualisations show, that a MTL model selects
different features as their single-task counterparts.
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Chapter 1

Introduction

1.1 Motivation

Brain-computer interfaces allow a computer to be controlled without activating
the nervous system (i.e. without any involvement of the motor periphery or
speech) through direct recording and decoding of brain activity. They can be
used in several areas of application, one of which is to enable individuals who are
prevented by disability from controlling a device through conventional methods.
Examples of this are controlling a wheelchair or prosthetic limbs [1, 2].
Electroencephalography (EEG) is often used as a method of recording neuronal
activity, as it is non-invasive and thus eliminates the risk of surgery for the user.
However, decoding EEG signals is challenging for several reasons, including low
signal-to-noise ratio, high inter-subject and inter-session variability and low spa-
tial resolution. Another issue is the high cost of collecting labelled data in this
domain. The resulting data sets are significantly smaller than data sets used
in other areas where neural networks are applied, for example computer vision
or natural language processing. This creates a bottleneck, as neural networks
require large amounts of data to reach an acceptable performance level. An ad-
ditional issue is the need for expert knowledge to extract meaningful features
[3]. To address these challenges, various methods from the field of deep learn-
ing are used, which have proven to be extremely successful in other areas such
as computer vision [4]. The application of neural networks in recent years has
enabled the decoding of these signals in an end-to-end manner, removing the
requirement to craft features manually [5]. It has been shown that convolutional
neural networks can achieve a similar performance level in decoding EEG signals
compared to earlier approaches [6]. However, the problems associated with high
inter-subject and inter-session variability persist, necessitating tedious calibra-
tion for a given subject or a new session prior to usage to render brain-computer
interfaces usable. A promising method to shorten calibration time is transfer
learning. In transfer learning, previously learned knowledge is used to learn a
target task. Although research on transfer learning for BCI is relatively new,
several transfer learning methods have already been applied to BCIs [7, 8].
Another method that promises better generalization by using domain-specific
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1. Introduction 2

knowledge is multi-task learning (MTL). MTL has already been applied with
success in areas such as computer vision. Typically, MTL involves training dif-
ferent related tasks from a certain domain together. An example from computer
vision would be to simultaneously train segmentation, depth estimation, and ob-
ject recognition on an image [9]. Due to the high inter-subject variability when
decoding EEG signals, we believe it is reasonable to consider different subjects
as different tasks. MTL has also shown increased performance in scenarios where
the data sets are small.[10] We think that the scanty data sets in BCI could
benefit from this potential. We will therefore try to apply MTL in this manner,
with the expectation that the sharing of knowledge between different subjects
will lead to improved generalization.
Furthermore, because the interpretation of deep neural networks is intrinsically
difficult, we want to use visualization methods to achieve better interpretability
of our models.

1.2 Objectives

The aim of this thesis is to explore multi-task learning in a deep learning approach
suitable for the characteristics of brain-machine interfacing, in order to overcome
current issues in decoding of EEG data. We start by briefly analyzing the cur-
rent state of EEG decoding, transfer learning, and how it can be extended to a
MTL architecture. We discuss publications on models used in EEG decoding,
transferability of features in deep neural networks, and how MTL can be used
in EEG decoding. We want to evaluate the performance of three deep learning
models Deep4Net, EEGNet and ShallowFBCSPNet, when a multi-task learning
architecture, where each subject in the data set is considered a task. Addition-
ally, we want to evaluate ways to further improve the performance of the MTL
models.

While state of the art EEG decoding research reaches new accuracy highscores
in EEG classification, we are not focusing on outperforming these with our work,
but instead propose a new architecture and analyze its potential for EEG decod-
ing. Our aim is to create an approach that is helpful for future research in this
field.



Chapter 2

Theoretical background

This chapter serves to briefly present the theoretical foundations on which this
thesis is based.

2.1 Brain-computer interfaces (BCI)

Brain-computer interfacing is an interdisciplinary field that attempts to use achieve-
ments from neuroscience, signal processing, artificial intelligence, and information
theory to control devices by directly using brain activity. The origin of BCIs can
be traced to works by Delgado and Fetz in the 1960s [11, 12]. The more recent
increase in interest in BCI can be attributed to both more available computing
capacity and better signal processing and machine learning algorithms.
BCIs make use of electrical potentials produced by neurons. Recording of these
potentials can be done either by invasive or non-invasive methods [13].

Brain-computer interfaces rely on signal processing and machine learning algo-
rithms. Processing of the signal is typically necessary because not all signals are
caused by or correlate with the relevant mental processes, due to the presence
of muscle or motion artifacts and electromagnetic noise in the recorded signal.
The components which are yielded from the preprocessing steps are called fea-
tures. This term is commonly used in machine learning literature to designate
the inputs to the respective algorithms.

In general, decoding of (preprocessed) signals can be viewed as applying a
mathematical function,

y = f(Xr, θ) (2.1)

with Xr ∈ RN×T being the measured brain activity (with N channels and T
samples), and θ the given parameters. The output y, the inferred command, is
then used to control a device. The steps that together constitute a closed loop are
illustrated in Figure 2.1. The general principles are described more thoroughly

3



2. Theoretical background 4

in Iturrate et al. [14].

Figure 2.1: Processing steps of a brain-computer interface: The acquired
signal is preprocessed and relevant features are selected. A decoder receives the
features as an input and infers an action. The user receives feedback either
explicitly or via their own senses [14].

2.2 Electroencephalography (EEG)

Electroencephalography (EEG) is a popular non-invasive technique for recording
neural activity that involves placing sensors on the scalp. The sensors measure
the summed postsynaptic potentials of many thousands of neurons [15]. Currents
tangential to the scalp are not detected. EEG recordings have a poor spatial res-
olution, mainly due to the layers of tissue that lie between the source of the
signals and the sensors. Furthermore, since voltage fields fall with the square of
the distance, signals originating deep in the brain are not detected. The temporal
resolution, on the other hand, is good (in the millisecond range).
The amplitude of the recorded signals is in the range of a few tens of microvolts.
As a result, the signals can be easily contaminated by electrical lines, but also
by movements (blinking, talking, movement of the eyebrows, etc.). Subjects are
therefore usually instructed to avoid any movement, and powerful artifact re-
moval algorithms are used to exclude or filter out parts of the EEG signal that
are corrupted by muscle artifacts. Additional sources of noise include changing
electrode impedances and varying psychological states of the user due to bore-
dom, distraction, stress, or frustration [13].

For consistent placement and naming of sensors across laboratories, there is an
international standard, the 10-20 system. Reference electrodes are specified, and
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from these points the perimeters are divided into 10 and 20 percent intervals, as
shown in Figure 2.2.

Figure 2.2: (A) Subject wearing a 32-electrode EEG cap. (B) Interna-
tional 10–20 system for standardized EEG electrode locations on the
head [13].

The waves captured by EEG recordings are typically categorized into different
frequency ranges that are associated with different mental states. For example,
alpha waves (or the alpha rhythm) occur in awake subjects in the absence of
movement and beta waves are recorded when a person is alert and concentrating.
Theta waves are associated with drowsiness or idleness in children and adults,
while delta waves can be observed in infants in general and in adults at certain
stages during sleep. One particular type of alpha wave popular in applications of
BCIs is the mu rhythm. It is found over the sensorimotor areas and is influenced,
namely attenuated or suppressed, by movement or by imagining movement [13].
The EEG rhythms and their frequency ranges can be seen in Figure 2.3.

2.3 Motor imagery (MI)

Motor imagery is a frequently used paradigm in BCI. Motor imagery is described
as mentally rehearsing a motor action without performing movement [16]. Con-
scious motor imagination and unconscious preparation for a movement share com-
mon mechanisms and are functionally equivalent. Therefore, very similar brain
signals occur during motor imagery as during actually performed movement [17].
The movement of different body parts is associated with different brain areas. For
example, when imagining movements in the hands, signals occur in the regions
over which electrodes C3 and C4 are placed [18].
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Figure 2.3: Examples of EEG rhythms and their frequency range [13].

2.4 Artificial neural networks (ANNs)

Artificial neural networks are loosely inspired by the biological brain. They con-
sist of artificial neurons that mimic biological neurons (albeit much less complex).
Artificial neurons are a generalization of the idea of a perceptron, and artificial
neural networks are therefore also called multilayer perceptrons. The perceptron
was first introduced by Frank Rosenblatt in 1958 [19]. An illustration of a biolog-
ical neuron and an artificial neuron is shown in Figure 2.4. An artificial neuron
receives an input x, which is multiplied by the weights w. The products xiwi are
summed and a bias b is added before they are passed to a non-linear activation
function f , whose output is also the output of the neuron. The output of a neu-
ron can therefore be written as f(

∑n
i=0 xiwi + b). As an activation function, the

rectified linear unit activation function (ReLU) is recommended for most feed-
forward neural networks. This is because, although it is non-linear, its closeness
to linearity facilitates the optimization of the model by gradient-based methods
[20]. ReLU is defined by the activation function f(x) = max(0, x) depicted in
Figure 2.5.

By arranging the neurons in layers, and creating connections between neurons
of two adjacent layers (but none in the layer itself), a neural network is obtained
(Figure 2.6). The outputs of the neurons of the last layer together form the
output ŷ of the network. To train the network, input samples are fed through the
network, and the distance of the output ŷ to the true value y (label of the input) is
calculated (by default the Euclidean distance or L2 norm, but many more exist).
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Figure 2.4: A representation of a biological neuron (left) and its math-
ematical model (right) [21].

Figure 2.5: Rectified Linear Unit (ReLU) activation function, which is
zero when x < 0 and then linear with slope 1 when x > 0 [21].

This distance is called loss, and is used to optimize the network. For this purpose,
the gradients are calculated (in the case of gradient-based optimization) and back-
propagated through the network and the weights are adjusted accordingly. This
process can be considered as approximating a multivariable function that maps
the input to the output [22].

2.4.1 Convolutional neural networks (ConvNets/CNNs)

Convolutional neural networks are inspired by the visual cortex of animals [24].
CNNs are very similar to common neural networks as they consist of neurons
that have learnable weights and biases. However, as the name indicates, they
additionally use convolutions as an operation. Discrete convolution can be viewed
as multiplication by a matrix. In the context of CNNs, a kernel (a matrix of
weights) is slid over the input and a weighted sum is computed at each position.
The use of convolution is motivated by the fact that, for example, in images or
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Figure 2.6: Artificial Neural Network [23]

time series, inputs that are far apart (spatially or temporally) are presumably
not dependent on each other. By using a kernel that is smaller than the input,
an output unit no longer interacts with every input unit, which is termed sparse
connectivity. In a deep convolutional network, units in the deeper layers may
interact indirectly with a larger portion of the input. The number of neurons with
which a unit interacts indirectly defines the receptive field of the unit. A typical
layer of a CNN consists of three stages. First the convolutions are applied, then
the non-linearity, and after that the output is often modified by a so called pooling
function. The pooling function takes the summary statistics of nearby outputs at
a given location and replaces the output of the network with it. Without pooling,
small translations in the input could result in a large variance in the output [20].

2.5 Transfer learning

In cases where large data sets are not available due to expensive acquisition or
expensive labeling, transfer learning can be useful in overcoming the problem of
insufficient amounts of training data. Transfer learning relaxes the hypothesis
that the training data is independent and identically distributed (i.i.d.) with
the test data. Transfer learning aims to facilitate the training of a target task
Tt from a target domain Dt by using a source task Ts from a source domain Ds
where Dt 6= Ds or Tt 6= Ts. Usually there is more data available from the source
domain, or training the source tasks is easier [25]. An illustration comparing the
traditional learning process to transfer learning is shown in Figure 2.7. Pan and
Yang note in their survey on transfer learning that the transfer learning research
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community is concerned with three main questions: (1) what to transfer, (2) how
to transfer, and (3) when to transfer. The first two questions are concerned with
what knowledge between the domains or tasks is shared and can be transferred,
and the development of algorithms that are able to transfer this knowledge. The
third question arises because negative transfer is possible, i.e. the transferring
of knowledge inhibits the performance of the target task. They note that the
important issue of how to avoid negative transfer is attracting more and more
attention [26].

Figure 2.7: Different learning processes between (a) traditional machine
learning and (b) transfer learning [26].

2.6 Multi-task learning

Multi-task learning (MTL) refers to a strategy in which several related tasks are
trained simultaneously while using a shared representation. The primary goal is
to increase generalization performance, i.e. performance on samples which were
not used to train the model [27]. By training multiple tasks in parallel, a model
can be enabled to leverage domain-specific knowledge from the training signals
of other tasks. In this context, other tasks serve as inductive bias, that is, a
set of assumptions of a learning algorithm that leads to a preference of certain
hypotheses over other hypotheses [28, 29]. An illustration of a multi-task neu-
ral network is shown in Figure 2.8. Goodfellow et al. describe MTL as a type
of regularization, where sharing the lower layers can be seen as imposing a soft
constraint on the parameters of the model [20].

MTL is similar to transfer learning, in the sense that both methods aim to trans-
fer knowledge. The difference is the task on which more focus is laid. With
transfer learning, one tries to learn a target task better with the help of a source
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task. In MTL, one aims to improve all tasks by sharing knowledge among all
tasks. Transfer learning therefore puts more focus on the target task, while in
MTL all tasks are considered equally important [30].

Figure 2.8: Illustration of a multi-task neural network [28]. Unlike a single-
task model, a multi-task model has outputs that are associated with multiple
tasks. In this illustration, only one output per task is shown, but there can be
(and usually will be in practice) multiple outputs.



Chapter 3

Related work

In this chapter, we briefly summarize literature that is related to our work or on
which we have based parts of our work.

3.1 Deep convolutional neural networks for motor im-
agery classification

Schirrmeister et al. showed that deep convolutional neural networks, together
with recent advances from the field of machine learning, such as batch normal-
ization, exponential linear units and dropout combined with a cropped training
strategy can achieve at least as good a performance as the widely used filter
bank common spatial patterns (FBCSP) algorithm. To accomplish this, they
had to address some difficulties in applying CNNs to EEG. CNNs were initially
developed for image recognition. Yet, EEG signals have characteristics that differ
from those of images. In addition to the aforementioned problems associated with
EEG signals, unlike images, they are not static, but dynamic time series. Learn-
ing features from EEG data with CNNs is therefore more difficult than learning
features from images. For this reason, Schirrmeister et al. adapted CNNs from
computer vision for EEG input. They analyzed the influence of design choices,
for example the overall architecture of the networks, as well as training strate-
gies. Regarding design choices, the first important decision for them was how
to represent the input. They argue that EEG signals do not show any obvious
hierarchical compositionality in space, but that it is known that EEG signals are
organized over multiple time scales, i.e., appear as nested oscillations. For this
reason, they decided to represent the input as a 2D array with the number of time
steps as the width and the number of electrodes as the height. Further concerning
the design decisions, they evaluated architectures with varying number of layers.
The two models that could achieve similar or better performance than FBCSP
are the ShallowFBCSPNet (2 layers) and the Deep4Net (5 layers). We describe
the models further below. Regarding the training strategy, cropped training, i.e.
using sliding input windows in order to increase the amount of training samples,
proved to be beneficial, especially for the deep model. They attribute this to the

11
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fact that a large number of examples are needed to learn the relevant features,
and that the model does not overfit to phase information due to the shifted win-
dows.

They do, however, note that besides the advantages CNNs provide, such as end-
to-end learning, i.e. learning from raw data without any a priori feature selection
and the scalability to large datasets, there are also disadvantages using CNNs
compared to other machine learning models. The disadvantages include the re-
quirement of a large amount of training data, the time needed to train CNNs,
and that they may output false predictions with high confidence. Additionally,
CNNs are difficult to interpret, i.e. it is difficult to determine which characteris-
tics of the data are used by them to perform a prediction. To address this, they
proposed a visualization method, which we describe in more detail in chapter
Methods [6].

3.1.1 ShallowFBCSPNet

The ShallowFBCSPNet is inspired by the FBCSP pipeline. The first two lay-
ers perform temporal convolution and spatial filtering. These are followed by a
squaring non-linearity, mean pooling and a logarithmic activation function. The
steps are analogous to the trial log-variance computation in FBCSP [6]. An
illustration of the architecture is shown in appendix C.

3.1.2 Deep4Net

The Deep4Net is inspired by successful models in computer vision. It consists
of four convolution-max-pooling blocks, with a special first block designed to
handle EEG input and a softmax classification layer. The architecture can be
seen in appendix C. The reasons given by Schirrmeister et al. for using a generic
architecture are as follows: They wanted to see if an architecture designed with
minimal expert knowledge could achieve competitive performance and to support
the idea that CNNs can be used as a general-purpose tool to decode brain signals.
Additionally, such an architecture can directly benefit from future methodological
advances in deep learning [6].

3.1.3 EEGNet

A further model for EEG decoding is the EEGNet proposed by Lawhern et al.
In contrast to Deep4Net, EEGNet does not have a generic architecture, but is
specifically designed for decoding EEG signals. Unlike the Deep4Net, the EEG-
Net uses depth-wise and separable convolutions after the temporal convolution.
The authors argue that in addition to reducing the number of learnable parame-
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ters, this enables spatial filters to be learned directly for each temporal filter (for
depthwise convolution) and achieves decoupling of relationships within and across
feature maps (for separable convolution). The EEGNet has up to two orders of
magnitude fewer learnable parameters compared to the ShallowFBCSPNet and
Deep4Net. It should be noted that to facilitate implementation, they used 2D
convolutions, but in reality 1D convolutions are performed [31]. An illustration
of the architecture can also be found in appendix C.

3.2 Transferability of features in deep neural networks

Yosinki et al. investigated the transferability of features in deep neural networks.
They make the observation that many deep neural networks trained on images
learn similar features in the first layer. These features do not seem to be specific
to a dataset or task. They label such features which are applicable to many
data sets and tasks and occur regardless of the exact cost function as general.
Features in the last layers of a network successfully trained towards a supervised
classification objective are referred to as specific. Moreover, they ask themselves
to what extent it is quantifiable to which degree a layer is general or specific,
where the transition from general to specific takes place, and which criteria are
decisive for the transferability of features [32].

3.3 Transfer learning for EEG decoding

Variations between subjects or sessions are typical in EEG signals. Transfer
learning is thus promising for decoding EEG signals because transfer learning
does not assume that the train set and the test set are in the same feature space
and are subject to the same probability distribution. A review conducted by
Zhang et al. that examined 80 studies from 2010 to 2020 on the application
of transfer learning to EEG decoding concluded that transfer learning allows
adequate initialization of BCIs for new subjects and thus reduces calibration time.
In addition, higher accuracies were achieved across sessions and subjects [8]. Uran
et al. investigated the application of transfer learning to two MI-EEG data sets.
They compared different training strategies, of which frozen learning performed
best, closely followed by distributed learning (pooled learning). Frozen learning
involves training a model on all but one subject, then continuing to train the
model with the remaining subject while the lower layers of the model are frozen,
meaning the parameters of these layers are not adjusted during the training
process. In distributed learning, training is performed on the first session of all
subjects, and the performance evaluated on the second session of each subject
[33].
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3.4 Multi-task learning for EEG decoding

Multi-task learning has thus far already been applied to problems in computer
vision, natural language processing, and bioinformatics, among other spheres.
In their survey on multi-task learning, Zhang and Yang list only one study on
MTL for brain-computer interfaces [30]. In this work, Alamgir et al. proposed a
multi-task framework for decoding MI-EEG data to learn feature characteristics
that are consistent across subjects. They used a linear classifier for this purpose
and considered each subject as a task. According to them, their system could
achieve satisfactory classification performance for new subjects without calibra-
tion. They note that when their classifier was calibrated with subject-specific
data, a significant increase in accuracy was achieved compared to a classifier
trained on subject-specific data only [34].

Other approaches to MI-EEG decoding that involve multi-task learning have
been proposed, however, not regarding each subject as a task, but training addi-
tional tasks, e.g. training an autoencoder or metric learning parallel to training
on subjects [35, 36].



Chapter 4

Methods

4.1 Multi-task network architecture

Based on the successful decoding of EEG signals with deep convolutional neural
networks and application of transfer learning with the latter, and motivated by
the results of multi-task learning with a linear classifier, we propose a deep multi-
task architecture for EEG decoding. Due to the high inter-subject variability, we
want to consider each subject as a task. To the best of our knowledge, this ap-
proach has not yet been applied with deep neural networks. We believe that the
end-to-end learning capability of CNNs, together with knowledge sharing between
tasks with MTL will facilitate selecting features that are more consistent across
subjects. When applying MTL to a problem, one has to consider whether the
tasks are related in terms of low-level features or high-level concepts. Alamgir et
al. note that despite the known inter-subject variability, the principle characteris-
tics of features remain invariant across subjects. In motor imagery, event-related
desynchronization (i.e. a decrease in power) of µ- and β-rhythms over the con-
tralateral sensorimotor areas is typical [34]. Therefore, we expect features in the
lower layers, where usually temporal and spatial convolutions are performed, to
be consistent across subjects. Selected features would then correspond to chan-
nels and frequencies associated with the respective mental processes. Because of
the hierarchical nature of CNNs, features become increasingly complex from one
layer to the next. By combining the low-level features, they would be able to
model complex frequency modulations. We believe that these can differ between
subjects. The transition from general features, i.e. features that are consistent
across subjects, to specific features has to occur somewhere in the network [32].
We consider it reasonable to split the network into one path per subject (we refer
to these subject-specific paths as heads) before this transition. The reason we
consider subject-specific heads to be potentially useful is that conflicting gradi-
ents may interfere with the optimization of the network. However, this approach
reduces the number of samples that pass through a head. Since it is not known
where the aforementioned transition from general to specific features takes place,
we have chosen an additional hyperparameter layer split and made it part of our
hyperparameter estimation. Mormont et al. have already applied such an archi-

15
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tecture, similar to the one we envisioned for our problem, to images in the field
of digital pathology [37]. An illustration of this architecture is shown in Figure
4.1. Because the models of Schirrmeister et al. were tailored to decode MI-EEG
data and achieved good results, we want to build on these to see if performance
can be further improved by MTL.

Figure 4.1: Multi-task architecture proposed by Mormont et al.: From
the input x a shared representation θs is computed. Samples from this represen-
tation are forwarded to the respective heads. The loss is calculated per task and
aggregated [37].

4.1.1 Forwarding to all heads

Due to the possible disadvantage of a reduced number of samples passing through
the upper layers, we will also explore an alternative approach. This approach
involves forwarding the samples of all subjects to all heads. A new class irrelevant
is introduced, as which the sample should be classified, if the sample does not
belong to the subject associated with the head.

4.1.2 Splitting the models

To use the MTL architecture with the three models Deep4Net, EEGNet and Shal-
lowFBCSPNet, we have to define split points for each model, where the backbone
ends and the heads start. The Deep4Net is built with 4 convolutional pool blocks
and a classification layer. We decided to set the splits between each block and
the classification layer. For the EEGNet and ShallowFBCSPNet, the splits are
between convolution layers and the classification layer. Where to set the split
point for the experiments will be determined by a hyperparameter optimization
with the layer split as a parameter. An overview of the split points can be seen
in figure 4.2.

4.2 Pretraining

Mormont et al. have shown that pretraining MTL models has a positive effect on
their performance [37]. We also see pretraining as a way to increase the amount
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Figure 4.2: MTL Layer Splits

of samples passing through a head. We are examining different variants. Firstly,
we want to see whether it is helpful if a head is pre-trained with data from all
subjects. Secondly, we will look at how performance is affected when one head is
trained only with data from the respective subject. Both variants are performed
once with and once without a pretrained backbone (i.e. the shared layers).

4.3 Task weighting

Although many deep MTL models have been proposed due to the success of
deep learning, the dynamics of MTL are still not well understood, neither at
the theoretical level nor at the experimental level. In particular, the usefulness of
different task pairs is not known a priori. Gong et al. found in their comparison of
loss weighting strategies for multi-task learning in deep neural networks that the
appropriate combination of the losses of different tasks is crucial for the success
of the model. They also note that MTL usually shows no benefit when using
combinations of tasks defined by the user [38]. For this reason, we implemented
a widely adopted dynamic task weighting strategy based on task uncertainty
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proposed by Kendall et al. [39]. We used a deviation of this loss-weighting
strategy by Liebel and Körner, which has the benefit of no longer yielding negative
loss values [40]. Using this strategy, the loss of our model is calculated as follows:

LT (xT ,yT , ŷT ;wT ) =
∑
τ∈T

1

2 · c2τ
· Lτ (xτ ,yτ , ŷτ ;wτ ) + ln(1 + c2τ ) (4.1)

In our case, L is the negative log-likelihood (NLL) loss. The coefficients cτ
are added to the learnable parameters of the model. It should be noted that in
our case the inputs xτ are also task-specific in contrast to the inputs in the two
publications mentioned above.

4.4 Transfer learning

To assess whether our backbone learns a more general representation compared
to single-task or pooled models, we evaluate the performance when transferring
knowledge from the previously learned backbone to new subjects. Uran et al [33]
proposed the three methods of Distributed Learning, Split Learning and Frozen
Learning for transfer learning based on the BCI Competition IV 2a dataset.

Split Learning "The model is trained on data from sessions of all but one
user and then retrained on the first session of the last user
with the previously initialized parameters. Finally the model
is tested on the second session of the same user." - Uran et
al. [33]

Frozen Learning "Similar to Split Learning but when the model is re- trained,
the lower layers will be frozen, thus reducing the amount of
parameters to be trained. The number of layers to be frozen
can be manually selected." - Uran et al. [33]

In our Multitask-Learning architecture we can transfer knowledge with dis-
tributed and frozen learning. We train the model with all but one subjects and
add a new head to the resulting model. The same parameters will be used and
trained with the first session of the remaining subject and tested on the second
session of the same user. This will further fine-tune the backbone and train a
complete new head. For a comparison with the Frozen Learning approach, the
backbone will be frozen. In the MTL architecture, a new head has not seen any
data yet and thus is not trained. For a better comparison of the features learned
in the backbone, we will also run an experiment where the non-frozen layers will
be reset in the baseline model. For the results, TL stands for transfer learning.
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4.5 Visualizations

For the purpose of better interpretability of our models, we have used two different
visualization methods, which are described in the following sections.

4.5.1 Input-perturbation network-prediction correlation maps

Schirrmeister et al. proposed a visualization method to help see if a trained
model actually focuses on the relevant brain signals. The visualization method
in the original paper involves perturbing input frequencies and measuring the
correlation with the change in the predictions of the model. We used a slightly
modified version from their repository, where the correlation is not measured with
the change in the outputs of the model, but with the change in the gradients in
the model [6].

4.5.2 Most-activating input windows

Using the most-activating input window method, Hartmann et al. showed for the
first time that CNNs not only learn different sinusoids from EEG data but also
exhibit complex oscillatory patterns, especially in the last convolutional layer [41].
With this method, inputs are passed through the network and the activations of
the neurons are stored after each layer. These activations can then be sorted, and
the input windows associated with the highest activations can be analyzed. We
want to use this method to show potential differences between subjects, which
could be informative regarding which subjects are suitable to train in parallel.
Furthermore, we want to identify possible differences in the learned features of
MTL models compared to single-task models.

4.6 Data set

We used the 2a Continuous Multi-class Motor Imagery data set from Brunner et
al. provided for BCI competition IV. It is therefore also referenced as BCIC IV
2a. This data set consists of 9 subjects with a cue-based BCI paradigm consisting
of four different motor imagery tasks. These are imagining movement of the left
hand, right hand, both feet and tongue. Each subject has two recorded sessions
on different days, consisting of 6 runs each with short breaks in between. One
run comprises 12 trials for each class, resulting in 48 trials per run or a total of
288 trials per session [42, 43]. To load the data sets we are using the MOABB
library [44].
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4.7 Preprocessing

The unmodified preprocessing steps used by Schirrmeister et al. are used. They
include a bandpass filter for frequencies below 4Hz and above 38Hz and an ex-
ponential moving standardization [6]. We used MNE-Python to preprocess the
data [45].

4.8 Hyperparameter optimization

While there are many public benchmarks for these CNNs on the BCIV Compe-
tition 2a dataset, the hyperparameters used are not published. To compare the
performance of our architecture, we did our own hyperparameter optimization
for all three models and used them as our hyperparameters for all experiments.

For the hyperparameter selection, the tool Weights & Biases [46] was used in
a bayesian optimization configuration. It uses the principles of Bayes rules 4.2
and a Gaussian process to model the relationship between parameters and the
metric that is being minimized or maximized. It chooses parameters to optimize
the probability of improvement. The parameters in table 4.2 were optimized.
For defining the parameters a grid search was done on each model first to narrow
down the range for the values.

P(metric|hyperparameter) = P(hyperparameter|metric)P(metric)
P(hyperparameter)

(4.2)

Parameter batch size drop prob layer split learning rate weight decay

Values 12,32,64 0.1-0.9 1,2,3,41 0.005-0.02 0.0001-0.1

Table 4.2: Hyperparameter Search Configuration.

4.9 Baselines

We used the respective single-task counterparts to the models as baselines. For
the baselines, we both trained each subject individually (referred to as single) and
all subjects together (referred to as pooled). For methods that aim to improve
the performance of our MTL models (such as pretraining or task weighting) we
compared the results to the same MTL model trained without these methods.

1For ShallowFBCSPNet only 1,2 was configured.
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4.10 Experiments

For all experiments, we used a cropped training strategy that was adapted by
Schirrmeister et al. [6], which uses crops, i.e. sliding input windows within a
trial. This leads to many more training examples for the network. We used the
training session of the data set to train the model and test it with the evaluation
session. For each experiment, 10 runs were executed with random seeds and the
results were averaged.

Hyperparameter optimization To maximize performance in our environ-
ment, a hyperparameter optimization will be
run, in particular to find out where to split
each model in a MTL architecture to maxi-
mize performance. (See 4.8 )

Multi-task learning To evaluate the performance of each model in
the MTL architecture, we trained the models
with all 9 subjects, thus having 9 heads.

Forwarding to all heads The heads will see all samples, but the ones
not corresponding to the subject will be la-
beled as irrelevant. (See 4.1.1)

Transfer Learning To evaluate the transferability of the learned
features, the model will be trained with 8
subjects. For the remaining subject, a new
head will be added to the model. For one
experiment the backbone will be fine tuned
and the new head trained, and one time the
backbone will be frozen so only the new head
is trained (See 4.4). For comparison, we will
train the single task equivalent of the model
with 8 subjects and fine tune it with the re-
maining subject, freeze the same layers as in
the backbone of the MTL model and once
with also resetting the not frozen layers.

Pretrained models We will train the MTL model with loaded
pretrained backbone, heads, per subject
heads and both backbone and heads, which
are based on the single task counterpart of
the MTL model. (See 4.2)

Task weighting All experiments will be run once with task
weighting turned on and once turned off. (See
4.3)
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Layer split sensitivity To evaluate the models’ sensitivity to layer
splits, we will train the MTL architecture
from layer split 0, which is equivalent to sepa-
rate models per subject, up to layer split 5 for
MTL Deep4Net and MTL EEGNet and layer
split 3 for MTL ShallowFBCSPNet, which is
equivalent to pooled training.

4.11 Performance evaluation & statistics

To evaluate model performance we will use multiple metrics: a confusion matrix,
validation accuracy, visualization of input windows and correlation maps. We will
split the data set between the two sessions and use the first one as test and the
second session as validation. We will not mix sessions, as it is not best-practice
in BCI [47].



Chapter 5

Results

In this chapter, the results of the experiments are shown. Unless stated otherwise,
results and visualizations of the plain models are shown (i.e., without pretraining,
task weighting, etc., thus differing from the baseline only in architecture).

5.1 Validation of multi-task learning implementation

We used the braindecode library [6] for the Deep4Net, EEGNet and ShallowF-
BCSPNet models. We implemented our MTL architecture and their evaluation
ourselves. To ensure a fair comparison, we first validated our implementation.
We used the same hyperparameters for the models as in MTL and trained each
subject in a single task experiment for 10 runs. Using the same preprocessing
(4Hz - 38Hz), time window (4s, offset -0.5) and cropped windows, we compared
the models to our MTL implementation in a single head configuration for each
subject. Table 5.1 shows that for all three models, we reached similar performance
with statistically insignificant differences.

Model Single Task MTL p

Deep4Net 60.78 60.93 p = .98
EEGNet 68.91 68.94 p = .432
ShallowFBCSPNet 69.53 68.86 p = .084

Table 5.1: Results for validation of multi-task learning implementation.
The results are given in percent. Single Task refers to the base model implemen-
tation by braindecode[6]. MTL refers to our implementation.

23
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5.2 Result 1: Deep4Net

5.2.1 Layer split sensitivity

The MTL Deep4Net performs best with a layer split at 1. The accuracy rises
significantly from the layer split 0, which corresponds to the single subject trained
Deep4Net, to 1 and from there decreases in performance up to layer split 4. With
layer split 5, the model reaches the level of performance of the pooled training
strategy. As layer split 1 is the best performing split in MTL Deep4Net, this
indicates that more complex heads perform better. (See ’Layer Sensitivity’ in
Figure 5.1)

5.2.2 Comparison of multi-task architecture to single-task archi-
tecture performance

Overall, the MTL Deep4Net performed better than the baseline Deep4Net on
single and pooled training on absolute accuracy (see 5.2). The accuracies per
subject can be found in ’Multihead’ from Figure 5.1. Compared to the pooled
training, the MTL Deep4Net achieved worse accuracy on subject 5 and 9, but
better on every subject compared to the single trained model.

Dataset Mode Deep4Net MTL Deep4Net

BCIC IV 2a single 60.78 +7.70*
BCIC IV 2a pooled 64.91 +3.56**

Table 5.2: Decoding accuracy of Deep4Net baseline and of MTL
Deep4Net. The Deep4Net results are given in percent and MTL Deep4Net
in absolute percent increase. BCIC IV 2a: BCI Compeition Dataset IV 2a.
Mode: single refers to single subject training and pooled to all subjects trained.
(Wilcoxon signed-rank test, *:p = .002, **:p = .019)

5.2.3 Forwarding all subjects to all heads

As visible in the "Forward to all heads" plot in figure 5.1, forwarding all data
to every head underperforms in the MTL Deep4Net enormously, i.e., 47.48% vs
68.48% (Wilcoxon signed-rank test, p = .002).

5.2.4 Transfer learning performance

For the Deep4Net, the frozen and reset layers perform worse with -11.58% and
-12.49% than the Deep4Net TL baseline. This might be because the frozen
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layers, which represent the backbone in the MTL architecture, do not generalize
enough in a pooled training setting for an unseen subject. The MTL Deep4Net
TL approach reached an +2.42% in accuracy compared to the baseline and an
even higher accuracy with a frozen backbone of +6.96% (See figure 5.3). With a
frozen backbone the MTL Deep4Net performs only -0.37%, which is statistically
insignificant (Wilcoxon signed-rank test, p = .86), worse in transfer learning than
the MTL Deep4Net with the subject already trained. This hints at the fact that
the backbone of MTL Deep4Net learns more generalized features for EEG data,
which can be better shared amongst subjects than its single task counterpart.

Deep4Net
TL

Deep4Net
TL frozen

Deep4Net
TL frozen
reset layers

MTL
Deep4Net TL

MTL Deep4Net
TL frozen

61.14 49.57 48.65 63.56 68.11

-11.58* -12.49* +2.42** +6.96*

Table 5.3: Transfer Learning Results for MTL Deep4Net. The results in
the first row are given in percent and the values of the second row are in absolute
percent increase compared to Deep4Net TL. Stars indicate statistically significant
differences. (Wilcoxon signed-rank test, *:p < .001, **:p = .036)

5.2.5 Pretrained models

Figure 5.4 shows how using a pretrained model for the MTL Deep4Net has not
caused any significant performance change, except for the pretrained backbone
with the pretrained head based on a pooled Deep4Net. While the result is sta-
tistically significant, it might also be achievable with more training epochs.

MTL
Deep4Net

backbone head per subject
head

backbone
+ head

backbone +
per subject

head

68.47 +0.33 +0.27 -0.11 +1.03* +0.29

Table 5.4: Pretrained Results for MTL Deep4Net. The MTL Deep4Net
result is given in percent and the values for each pretraining type in absolute
percent increase. Stars indicate statistically significant differences. (Wilcoxon
signed-rank test, *:p = .01)
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Figure 5.1: MTL Deep4Net Results: Multi-task learning, transfer learning,
forward to all heads and layer sensitivity. Values in brackets are average accura-
cies.
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5.3 Result 2: EEGNet

5.3.1 Layer split sensitivity

The MTL EEGNet performs best with a layer split at 0, which corresponds to
the single subject trained EEGNet. The accuracy is significantly reduced from
layer split 1 to 4, and from layer split 5 onward, performance improves, reaching
the same level of the performance of the pooled training strategy. Layer split 1
being the best performing split in MTL EEGNet indicates that more complex
heads perform better. (See ’Layer Sensitivity’ in Figure 5.2)

5.3.2 Comparison of multi-task architecture to single-task archi-
tecture performance

The MTL EEGNet performed overall worse than the baseline EEGNet on single
training on absolute accuracy but higher compared to pooled training (see 5.2).
The accuracies per subject can be found in figure ’Multihead’ 5.1. Compared to
the pooled training, the MTL EEGNet achieved a better accuracy on subject 7,
8 and 9, but worse on every subject, except 8, compared to the single trained
model.

Dataset Mode EEGNet MTL EEGNet

BCIC IV 2a single 66.80 -1.28*
BCIC IV 2a pooled 62.97 +2.55**

Table 5.5: Decoding accuracy of EEGNet baseline and of MTL EEGNet.
The EEGNet results are given in percent. BCIC IV 2a: BCI Compeition Dataset
IV 2a. Mode: single refers to single subject training and pooled to all subjects
trained. (Wilcoxon signed-rank test, *:p = .002, **:p = .032)

5.3.3 Forwarding all subjects to all heads

As visible in the "Forward to all heads" plot in figure 5.2, forwarding all data to
every head performs slightly better on subject 2, 3 and 7 with the MTL EEGNet
but drops in accuracy for every other subject. On average forwarding to all heads
results in accuracy of 63.66% vs 65.52% with the default MTL EEGNet model.
(Wilcoxon signed-rank test, p = .002).

5.3.4 Transfer learning performance

For the EEGNet the frozen and reset layers perform worse with -4.35% and -
4.29% than the EEGNet TL baseline. This might be because the frozen layers,
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which represent the backbone in the MTL architecture, do not generalize enough
in a pooled training setting for an unseen subject. The MTL EEGNet TL ap-
proach reached an -0.66% in accuracy compared to the baseline and an even worse
accuracy with a frozen backbone of +4.32% (See figure 5.6). The MTL EEGNet
TL performs +1.1% better than the default MTL EEGNet model, which is sta-
tistically insignificant (Wilcoxon signed-rank test, p = .731). This hints at the
fact that that the backbone of MTL EEGNet for transfer learning learns similar
generalized features for EEG data as the MTL EEGNet.

EEGNet
TL

EEGNet
TL frozen

EEGNet
TL frozen
reset layers

MTL EEGNet
TL

MTL EEGNet
TL frozen

67.29 62.94 62.99 66.62 62.97

-4.35* -4.2* -0.66 -4.32*

Table 5.6: Transfer Learning Results for MTL EEGNet. The results in
the first row are given in percent and the values of the second row are in absolute
percent increase. Stars indicate statistically significant differences. (Wilcoxon
signed-rank test, *:p < 0.001)

5.3.5 Pretrained models

Figure 5.7 shows the use of a pretrained model for the MTL EEGNet has not
caused any significant performance change, rather resulted in a decrease in accu-
racy. While the result is statistically significant, it might also be achievable with
more training epochs.

MTL
EEGNet

backbone head per subject
head

backbone
+ head

backbone +
per subject

head

65.52 -0.32 -0.32 -0.44 -0.14 -0.83

Table 5.7: Pretrained Results for MTL EEGNet. The MTL EEGNet result
is given in percent and the values for each pretraining type in absolute percent
increase. There is no statistically significant difference. (Wilcoxon signed-rank
test, *:p > .13)
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Figure 5.2: MTL EEGNet Results: Multi-task learning, transfer learning, for-
ward to all heads and layer sensitivity. Values in brackets are average accuracies.
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5.4 Result 3: ShallowFBCSPNet

5.4.1 Layer split sensitivity

The MTL ShallowFBCSPNet performs best with a layer split at 0, which corre-
sponds to the single subject trained ShallowFBCSPNet. The accuracy decreases
significantly from the layer split 1 to 2, and from there increases in performance
by layer split 3, which is the performance of the pooled training strategy. Layer
split 1 is the best performing split in MTL ShallowFBCSPNet, which indicates
that more complex heads perform better. (See ’Layer Sensitivity’ in Figure 5.3)

5.4.2 Comparison of multi-task architecture to single-task archi-
tecture performance

The MTL ShallowFBCSPNet performed slightly worse than the baseline Shal-
lowFBCSPNet on single and better compared to pooled training on absolute
accuracy (see 5.2). The accuracies per subject can be found in figure ’Multihead’
5.1. Compared to the pooled training, the MTL ShallowFBCSPNet achieved a
better accuracy on subject 7, but failed to perform better on every other subject.
The single task trained ShallowFBCSPNet had a higher accuracy on every sub-
ject compared to the MTL architecture. This hints that for a MTL architecture
to perform well, more complex networks are needed where the ShallowFBCSPNet
for its shallow design is not suited.

Dataset Mode ShallowFBCSPNet MTL ShallowFBCSPNet

BCIC IV 2a single 69.53 -1.90*
BCIC IV 2a pooled 61.72 +5.92**

Table 5.8: Decoding accuracy of ShallowFBCSPNet baseline and of
MTL ShallowFBCSPNet. The ShallowFBCSPNet results are given in per-
cent. BCIC IV 2a: BCI Compeition Dataset IV 2a. Mode: single refers to single
subject training and pooled to all subjects trained. Stars indicate statistically
significant differences. (Wilcoxon signed-rank test, *:p = .335, **:p < .001)

5.4.3 Forwarding all subjects to all heads

As visible in the "Forward to all heads" plot in figure 5.3, forwarding all data to
every head performs in MTL ShallowFBCSPNet slightly worse on some subjects.
No subject could benefit from the added samples and the model had difficulties
to identify samples of subject 3, which results in the poor accuracy. On average,
forwarding to all heads results in accuracy of 59.42% vs 67.63% with the default
MTL ShallowFBCSPNet model. (Wilcoxon signed-rank test, p = .002).
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5.4.4 Transfer learning performance

For the ShallowFBCSPNet, the frozen and reset layers perform worse with -24.5%
and -24.29% than the ShallowFBCSPNet TL baseline. This might be because
the frozen layers, which represent the backbone in the MTL architecture, do
not generalize enough in a pooled training setting for an unseen subject. The
MTL ShallowFBCSPNet TL approach reached a -7.47% in accuracy compared
to the baseline and an even worse accuracy with a frozen backbone of -8.94%
(See figure 5.9). The MTL ShallowFBCSPNet TL performs +1.1% better than
the default MTL ShallowFBCSPNet model, which is statistically insignificant
(Wilcoxon signed-rank test, p = .731). This hints at the fact that the backbone of
MTL ShallowFBCSPNet for transfer learning learns similar generalized features
for EEG data as the MTL ShallowFBCSPNet.

ShallowNet
TL

ShallowNet
TL frozen

ShallowNet
TL frozen
reset layers

MTL
ShallowNet TL

MTL
ShallowNet TL

frozen

69.42 44.87 45.13 61.95 60.48

-24.5 -24.29 -7.47 -8.94

Table 5.9: Transfer Learning Results for MTL ShallowFBCSPNet. The
results in the first row are given in percent and the values of the second row are
in absolute percent increase. (Wilcoxon signed-rank test, p < .001)

5.4.5 Pretrained models

Figure 5.4 shows the use of a pretrained model for the MTL ShallowFBCSPNet
has not caused any significant performance change, rather resulted in a decrease
in accuracy. The result are statistically insignificant.

MTL
ShallowNet

backbone head per subject
head

backbone
+ head

backbone +
per subject

head

67.64 -0.08 -0.08 -0.14 +0.65 +0.21

Table 5.10: Pretrained Results for MTL ShallowFBCSPNet. The MTL
ShallowFBCSPNet result is given in percent and the values for each pretraining
type in absolute percent increase. There is no statistically significant difference.
(Wilcoxon signed-rank test, *:p > .13)
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Figure 5.3: MTL ShallowFBCSPNet Results: Multi-task learning, transfer
learning, forward to all heads and layer sensitivity. Values in brackets are average
accuracies. For layout reasons ShallowFBCSPNet is shortened to ShallowNet in
this figure.
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5.5 Result 4: Task weighting

The level of performance with task weighting decreased slightly on average and
the learned coefficients were similar for all subjects. Some subjects benefitted
slightly, while others saw their performance decrease. As seen with forwarding
to all heads for MTL EEGNet (see 5.3.3) the model has the best capabilities of
the three models to differentiate between subjects. The learned coefficients for
MTL EEGNet demonstrated the biggest difference between subjects, but had no
big effect on training performance. When setting weights manually, one could
observe that accuracy for single subjects improved, but to the detriment of the
accuracy of other subjects. 5.11

Coefficients change in
accuracy

Subject 1 0.6763 -0.84%
Subject 2 0.8713 +0.61%
Subject 3 0.6448 -1.65%
Subject 4 0.8487 +0.49%
Subject 5 0.8217 -1.04%
Subject 6 0.8686 -0.82%
Subject 7 0.7117 +0.39%
Subject 8 0.7037 -0.31%
Subject 9 0.5775 +0.73%

Table 5.11: Weight coefficients of MTL EEGNet. The learned coefficients
for each task by the MTL EEGNet model. Change in accuracy is in comparison to
the MTL EEGNet without weights. There is no statistically significant difference
(Wilcoxon signed-rank test, p > .492).
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5.6 Result 5: Confusion matrices

To examine the performance of the models with respect to the different classes,
we will present their confusion matrices below. Models that performed above
average (compared to other runs of the same model) were used to obtain the
confusion matrices, so that potential differences between architectures would be
more visible. In Figure 5.4, we compare the confusion matrices yielded by the
models that were trained using the pooled training strategy to the corresponding
MTL models. Overall, classification accuracy is balanced across classes for all
models. While the confusion matrices are generally similar, slight improvements
in classification accuracy can be observed for the MTL models. Both versions of
Deep4Net seem to have a bias towards one of the hands, in the sense that they
tend to confuse other labels with one of the hands more often. With the EEGNet,
it can be seen that the MTL counterpart mistakes the feet or tongue for one of
the two hands less often, while the tongue and feet are still mixed up approxi-
mately equally often. The MTL ShallowFBCSPNet confuses the two hands less
frequently compared to the single-task trained ShallowFBCSPNet. The tongue
is less confused with the feet, while the reverse is not true and in fact happens
to a worse degree.

Figure 5.5 shows the confusion matrices of the MTL models trained with the
strategy of forwarding the data of all subjects to all heads. As already apparent
from the respective section of results 1-3, the Deep4Net performs significantly
worse with this strategy compared to the other two models. It seems that the
Deep4Net has difficulty associating the subject’s data from a new session with the
subject (and therefore classifies the samples as belonging to a different subject).
It is particularly noticeable that the tongue is almost never correctly identified.
In contrast, samples containing motor imagery of the right hand are correctly
classified in nearly all cases.
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¨

Figure 5.4: Confusion matrices for all models trained on the pooled
subjects (left) and their MTL counterparts (right). Note that the scale
of the Deep4Net differs from those of the other models, hence comparisons across
these models should not be made based on color intensity.
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¨

Figure 5.5: Confusion matrices for the three MTL models when using
the strategy to forward the data of all subjects to all heads. As labels
change depending on the subject, subject 1 (performance above average compared
to other subjects) is shown as an example. The matrices were obtained by using
subject-specific data only; as a result, the row for the label irrelevant (to be
predicted when a sample does not belong to the given subject) is empty.
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5.7 Result 6: Input-perturbation network-prediction
correlation maps

The MTL Deep4Net seems to rely more on frequencies in the beta band for clas-
sification than the single-task model. The mean absolute gradient in the classifier
layer that arises when the amplitude of the input frequencies is perturbed shows
higher and narrower peaks in the beta band for most subjects, except for poorly
performing subjects such as subject 2 and subject 5. The mean absolute gradient
in the classifier layer for subject 1 is shown in Figure 5.6. A similar effect can be
observed for the MTL EEGNet, but not for the MTL ShallowFBCSPNet, where
the mean absolute gradient remained similar to its single-task counterpart.

In Figure 5.7, one can see that the frequencies in the beta band that are
relevant for classification also originate at the expected source (at least for the
right and left hand). For the MTL model, clearly defined spatial correlations
with the electrodes C3 and C4 that are placed over the sensorimotor regions
associated with hand movement are apparent in the beta band, while for the
pooled Deep4Net this is only visible for the right hand. In return, a spatial
correlation with the electrode CPz (associated with movement of feet) for the
classification of feet can be seen in the alpha band. Much less spatially defined
correlations are seen for the Deep4Net that was trained on only one subject.



5. Results 38

Figure 5.6: Mean absolute gradient in the classifier layer when perturbing
amplitude of input frequencies for subject 1.
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Figure 5.7: Scalp plots of input-perturbation network-prediction corre-
lation maps for the classifier layer in the alpha and beta bands for subject
1. The colors indicate the correlation coefficient (min: blue, max: red).
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5.8 Result 7: Most-activating input windows

The features used by the models become more complex from lower to higher
layers, which is expected when using ConvNets. The respective single most-
activating input windows for the Deep4Net (for electrode C4) when using data
from subject 1 are shown in Figure 5.8 as an example. One can see that features
evolve across layers from parts of simple sinusoids into complex oscillatory pat-
terns. The ShallowFBCSPNet, due to the small number of layers, was not able to
learn such complex features. However, the features in the first layer are already
slightly more complex compared to the features in the first layer of the Deep4Net.
The characteristics of the features in the second layer are similar to those of the
third layer of the deeper model. Unfortunately, due to implementation challenges
relating to architectural differences, we were not able to obtain these plots for
the EEGNet.

We hypothesized that the features would reflect differences between the sub-
jects. While the exact features varied from subject to subject, the characteristics
of those are very similar across subjects. Quantifying the differences is difficult;
unfortunately, we could not use these feature visualizations to make statements
about the similarity of subjects to each other. However, for subject 4 (which
benefited the most from MTL with Deep4Net), we analyzed the features in the
first layer. We estimated the frequency of the features by fitting a sinusoidal
function. We could see that the preferred frequency differed between training
strategies. Namely, for example for the Beta band, the frequency increased from
just under 13Hz for the single model to 15.6Hz for the pooled model to almost
17Hz for the MTL model. Due to time constraints, an analysis for other subjects
was omitted.



5. Results 41

Figure 5.8: The respective most-activating input window for the MTL
Deep4Net with data from subject 1 in the beta band for all layers up to the
last one before the classifier layer.



Chapter 6

Discussion and outlook

6.1 Conclusions

Our results show that MTL is able to improve the performance of CNNs on de-
coding MI-EEG signals, but whether performance does improve is dependent on
the underlying architecture. In the following section, we will discuss possible
reasons for the difference in results between architectures.

Of the models evaluated, only the Deep4Net was able to achieve higher accu-
racy when using MTL compared to both single and pooled strategies (result 1).
The two other models, EEGNet and ShallowFBCSPNet, both perform best when
a separate model is used per subject (result 1-2). Sharing the first layer, however,
performs better compared to pooled training (i.e. sharing all layers). One reason
for the Deep4Net being able to profit from MTL could be its ability to learn com-
plex features. This is supported by Zhang et al., according to which deep MTL
models perform better on images than shallow models, since they learn more
powerful feature representations [30]. In contrast, Caruana finds that the useful-
ness of MTL is independent of network size [28]. Therefore, it cannot be ruled out
that the gain in performance was not achieved by sharing knowledge, but possi-
bly only by a regularization effect. Whereby, one could discuss whether such a
regularization effect represents an implicit sharing of knowledge. The apparent
greater emphasis on frequencies in the beta band in the Deep4MTL compared
with the single and pooled models (result 6), and the increased performance, may
indicate knowledge sharing between subjects. We believe that more focus being
laid on the beta band might be due to event related potentials in the beta band
frequencies being more consistent across subjects compared to frequencies in the
alpha band, and that the MTL model is able to exploit this better. A similar
effect was observed with the EEGNet, and yet, the desired outperformance of the
single model was not achieved with MTL. It did, however, improve performance
over the pooled model. The Deep4Net is also the only model for which pooled
training achieves better results than training subjects individually. It has more
learnable parameters than the other two models, and therefore requires more
examples to avoid overfitting on the training data. Thus, it seems reasonable

42
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that it benefits from more samples. With using MTL we show that apparently
it is sufficient and even improves performance when only lower layers are pro-
vided with the additional training samples. The number of parameters of the
shallow model is closer to the number of parameters of the deep model than to
that of the EEGNet (Deep4Net: 170’000, ShallowFBCSPNet: 100’000, EEGNet:
1’000; approximate values from [31]). Therefore, based only on the capacity of
the models, one might expect more similar results between the Deep4Net and the
ShallowFBCSPNet.

Another notable difference from the Deep4Net to the other two models is the
following: The Deep4Net was intended as a general decoder for brain signals. It
is inspired by computer vision models and is not specifically designed for decoding
EEG data (except that the input layers have been adapted for EEG input). In
contrast, the other two models incorporate expert knowledge in EEG decoding.
The ShallowFBCSPNet was implemented analogously to the FBCSP pipeline,
one of the most successful methods in decoding EEG data. EEGNet was also
designed specifically for this task. In result 5, it can be seen that the two models
had significantly less difficulty distinguishing different subjects compared to the
Deep4Net. This suggests that the internal representations of subjects in the two
models specialized for EEG are more distinct from each other. We believe it is
possible that this leads to more conflicting gradients when sharing layers (and
through this to negative transfer), which could be the reason why these two mod-
els perform worse with the pooled training strategy compared to single-subject
training. When sharing less layers (e.g. by using MTL with layer split 1), the
performance is again increased.

Regarding the sensitivity of the models to the layer split, it can be confirmed
that the features in the lowest layers (where temporal and spatial convolutions
are performed by the evaluated models) have the highest transferability.

The transfer learning performance for the Deep4Net could be improved by
using MTL. This indicates that the learned backbone is more general compared
to the same layers of the single and pooled trained Deep4Nets. However, the
single and pooled trained models might perform better with a different approach,
such as transferring other layers. No improvement was achieved in this area for
the other models.

Task weighting did not provide an advantage for any of the MTL models. We
suspect that it is due to the fact that our tasks, despite the high inter-subject
variability, are still more similar to each other compared to tasks in typical use
cases of MTL. This is supported by the fact that the learned weights were more
different for models that performed better with the forward all training strategy.
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6.2 Limitations

We were not able to achieve the performances of the models published in the re-
spective papers. We attribute this to less extensive hyperparameter optimization.
Since we make our comparisons among models with the same hyperparameters,
this does not affect the validity of our comparisons. The data set we used is very
small. With more subjects, different results may possibly be obtained. The use
of visualization methods resulted in a very large number of plots that had to be
considered. We looked for changes across subjects and models that seemed con-
sistent, and showed them using an example. However, most of these differences
found are subject to our perception and have not yet been quantified.

6.3 Future work

Our conclusions suggest, above all, a need to prevent negative transfer of knowl-
edge. We see several ways to address this. One could try a different MTL
architecture, which also learns what to share, e.g. sluice networks. Another way
would be to cluster the subjects so as not to train subjects with together that
negatively affect each other. However, we are not sure which metric would be
suitable for this. If this were achieved, heads could also be used for groups for
subjects instead of only individual subjects. Finally, the use of an optimizer
specifically designed for MTL could be beneficial, such as the recently proposed
PCGrad [48].



Bibliography

[1] T. C. Major and J. M. Conrad, “A survey of brain computer interfaces and
their applications,” in IEEE SOUTHEASTCON 2014, 2014, pp. 1–8.

[2] J. Zhang and M. Wang, “A survey on robots controlled by motor
imagery brain-computer interfaces,” Cognitive Robotics, vol. 1, pp. 12–24,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S266724132100001X

[3] M. Rashid, N. Sulaiman, A. P. P. Abdul Majeed, R. M. Musa, A. F.
Ab. Nasir, B. S. Bari, and S. Khatun, “Current status, challenges, and
possible solutions of eeg-based brain-computer interface: A comprehensive
review,” Frontiers in Neurorobotics, vol. 14, p. 25, 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2020.00025

[4] H.-J. Yoo, “Deep convolution neural networks in computer vision: a review,”
IEIE Transactions on Smart Processing and Computing, vol. 4, pp. 35–43,
Feb 2015.

[5] X. Zhang, L. Yao, X. Wang, J. Monaghan, and D. McAlpine, “A
survey on deep learning based brain computer interface: Recent advances
and new frontiers,” CoRR, vol. abs/1905.04149, 2019. [Online]. Available:
http://arxiv.org/abs/1905.04149

[6] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
“Deep learning with convolutional neural networks for eeg decoding and
visualization,” Human Brain Mapping, Aug 2017. [Online]. Available:
http://dx.doi.org/10.1002/hbm.23730

[7] A. Azab, M. Arvaneh, J. Toth, and L. Mihaylova, A review on transfer learn-
ing approaches in brain–computer interface. The Institution of Engineering
and Technology, 09 2018.

[8] K. Zhang, G. Xu, X. Zheng, H. Li, S. Zhang, Y. Yu, and R. Liang,
“Application of transfer learning in eeg decoding based on brain-computer
interfaces: A review,” Sensors, vol. 20, no. 21, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/21/6321

[9] L. Liebel and M. Körner, “Multidepth: Single-image depth estimation via
multi-task regression and classification,” CoRR, vol. abs/1907.11111, 2019.
[Online]. Available: http://arxiv.org/abs/1907.11111

45

https://www.sciencedirect.com/science/article/pii/S266724132100001X
https://www.sciencedirect.com/science/article/pii/S266724132100001X
https://www.frontiersin.org/article/10.3389/fnbot.2020.00025
http://arxiv.org/abs/1905.04149
http://dx.doi.org/10.1002/hbm.23730
https://www.mdpi.com/1424-8220/20/21/6321
http://arxiv.org/abs/1907.11111


Bibliography 46

[10] G. Crichton, S. Pyysalo, B. Chiu, and A. Korhonen, “A neural network
multi-task learning approach to biomedical named entity recognition,” BMC
Bioinformatics, vol. 18, 08 2017.

[11] R. G. Bickford, “Physical control of the mind. toward a psychocivilized
society. josé m. r. delgado. harper and row, new york, 1969. xxii, 282 pp.,
world perspectives, vol. 41,” Science, vol. 169, no. 3946, pp. 666–666, 1970.
[Online]. Available: https://science.sciencemag.org/content/169/3946/666.1

[12] E. Fetz, “Operant conditioning of cortical unit activity,” Science, vol. 163,
pp. 955 – 958, 1969.

[13] R. P. N. Rao, Brain-Computer Interfacing: An Introduction. Cambridge
University Press, 2013.

[14] I. Iturrate, R. Chavarriaga, and J. del R. Millán, “Chapter 23 -
general principles of machine learning for brain-computer interfacing,”
in Brain-Computer Interfaces, ser. Handbook of Clinical Neurology,
N. F. Ramsey and J. del R. Millán, Eds. Elsevier, 2020, vol. 168,
pp. 311–328. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780444639349000238

[15] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and
J. Faubert, “Deep learning-based electroencephalography analysis: a
systematic review,” Journal of Neural Engineering, vol. 16, no. 5, p. 051001,
aug 2019. [Online]. Available: https://doi.org/10.1088/1741-2552/ab260c

[16] R. Leeb, C. Keinrath, D. Friedman, C. Guger, R. Scherer, C. Neuper, M. Ga-
rau, A. Antley, A. Steed, M. Slater, and G. Pfurtscheller, “Walking by think-
ing: The brainwaves are crucial, not the muscles!” Presence, vol. 15, pp.
500–514, 10 2006.

[17] M. Lotze and U. Halsband, “Motor imagery,” Journal of Physiology-Paris,
vol. 99, no. 4, pp. 386–395, 2006, brain Imaging in Neurosciences - An
Interdisciplinary Approach. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0928425706000210

[18] G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, and C. Neuper,
“Brain oscillations control hand orthosis in a tetraplegic,” Neuroscience
Letters, vol. 292, no. 3, pp. 211–214, 2000. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304394000014713

[19] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain.” Psychological Review, vol. 65, no. 6,
pp. 386–408, 1958. [Online]. Available: http://dx.doi.org/10.1037/h0042519

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org

https://science.sciencemag.org/content/169/3946/666.1
https://www.sciencedirect.com/science/article/pii/B9780444639349000238
https://www.sciencedirect.com/science/article/pii/B9780444639349000238
https://doi.org/10.1088/1741-2552/ab260c
https://www.sciencedirect.com/science/article/pii/S0928425706000210
https://www.sciencedirect.com/science/article/pii/S0928425706000210
https://www.sciencedirect.com/science/article/pii/S0304394000014713
http://dx.doi.org/10.1037/h0042519
http://www.deeplearningbook.org


Bibliography 47

[21] A. K. et al. Cs231n convolutional neural networks for visual recognition.
[Online]. Available: cs231n.github.io/neural-networks-1/

[22] P. C. Kainen, V. Kůrková, and M. Sanguineti, Approximating Multivariable
Functions by Feedforward Neural Nets. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 143–181. [Online]. Available: https:
//doi.org/10.1007/978-3-642-36657-4_5

[23] F. Bre, J. M. Gimenez, and V. D. Fachinotti, “Prediction of wind
pressure coefficients on building surfaces using artificial neural networks,”
Energy and Buildings, vol. 158, pp. 1429–1441, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378778817325501

[24] N. Aloysius and M. Geetha, “A review on deep convolutional neural net-
works,” in 2017 International Conference on Communication and Signal
Processing (ICCSP), 2017, pp. 0588–0592.

[25] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in Artificial Neural Networks and Machine Learning
– ICANN 2018, V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and
I. Maglogiannis, Eds. Cham: Springer International Publishing, 2018, pp.
270–279.

[26] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[27] C. Sammut and G. I. Webb, Eds., Generalization Performance.
Boston, MA: Springer US, 2010, pp. 454–454. [Online]. Available:
https://doi.org/10.1007/978-0-387-30164-8_329

[28] R. Caruana, Multitask Learning. Boston, MA: Springer US, 1998, pp.
95–133. [Online]. Available: https://doi.org/10.1007/978-1-4615-5529-2_5

[29] E. Hüllermeier, T. Fober, and M. Mernberger, Inductive Bias. New
York, NY: Springer New York, 2013, pp. 1018–1018. [Online]. Available:
https://doi.org/10.1007/978-1-4419-9863-7_927

[30] Y. Zhang and Q. Yang, “A survey on multi-task learning,” CoRR, vol.
abs/1707.08114, 2017. [Online]. Available: http://arxiv.org/abs/1707.08114

[31] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P.
Hung, and B. J. Lance, “Eegnet: a compact convolutional neural
network for eeg-based brain–computer interfaces,” Journal of Neural
Engineering, vol. 15, no. 5, p. 056013, Jul 2018. [Online]. Available:
http://dx.doi.org/10.1088/1741-2552/aace8c

[32] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” 2014.

cs231n.github.io/neural-networks-1/
https://doi.org/10.1007/978-3-642-36657-4_5
https://doi.org/10.1007/978-3-642-36657-4_5
https://www.sciencedirect.com/science/article/pii/S0378778817325501
https://doi.org/10.1007/978-0-387-30164-8_329
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/978-1-4419-9863-7_927
http://arxiv.org/abs/1707.08114
http://dx.doi.org/10.1088/1741-2552/aace8c


Bibliography 48

[33] A. Uran, C. V. Gemeren, R. van Diepen, R. Chavarriaga, and J. del
R. Millán, “Applying transfer learning to deep learned models for
EEG analysis,” CoRR, vol. abs/1907.01332, 2019. [Online]. Available:
http://arxiv.org/abs/1907.01332

[34] M. Alamgir, M. Grosse-Wentrup, and Y. Altun, “Multitask learning for
brain-computer interfaces,” in JMLR Workshop and Conference Proceedings
Volume 9: AISTATS 2010, Max-Planck-Gesellschaft. Cambridge, MA,
USA: JMLR, May 2010, pp. 17–24.

[35] P. Autthasan, R. Chaisaen, T. Sudhawiyangkul, P. Rangpong, S. Ki-
atthaveephong, N. Dilokthanakul, G. Bhakdisongkhram, H. Phan, C. Guan,
and T. Wilaiprasitporn, “Min2net: End-to-end multi-task learning for
subject-independent motor imagery eeg classification,” 2021.

[36] Y. Song, D. Wang, K. Yue, N. Zheng, and Z.-J. M. Shen, “Eeg-based motor
imagery classification with deep multi-task learning,” in 2019 International
Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[37] R. Mormont, P. Geurts, and R. Maree, “Multi-task pre-training of deep
neural networks for digital pathology,” IEEE Journal of Biomedical and
Health Informatics, vol. 25, no. 2, p. 412–421, Feb 2021. [Online]. Available:
http://dx.doi.org/10.1109/JBHI.2020.2992878

[38] T. Gong, T. Lee, C. Stephenson, V. Renduchintala, S. Padhy, A. Ndirango,
G. Keskin, and O. H. Elibol, “A comparison of loss weighting strategies
for multi task learning in deep neural networks,” IEEE Access, vol. 7, pp.
141 627–141 632, 2019.

[39] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,” in 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.

[40] L. Liebel and M. Körner, “Auxiliary tasks in multi-task learning,” CoRR, vol.
abs/1805.06334, 2018. [Online]. Available: http://arxiv.org/abs/1805.06334

[41] K. G. Hartmann, R. T. Schirrmeister, and T. Ball, “Hierarchical internal
representation of spectral features in deep convolutional networks trained
for EEG decoding,” CoRR, vol. abs/1711.07792, 2017. [Online]. Available:
http://arxiv.org/abs/1711.07792

[42] C. Brunner, R. Leeb, G. R. Müller-Putz, A. Schlögl, and G. Pfurtscheller,
“Bci competition 2008 graz data set a experimental paradigm.” 2008.
[Online]. Available: http://www.bbci.de/competition/iv/desc_2a.pdf

[43] M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun,
C. Brunner, R. Leeb, C. Mehring, K. Miller, G. Mueller-Putz, G. Nolte,

http://arxiv.org/abs/1907.01332
http://dx.doi.org/10.1109/JBHI.2020.2992878
http://arxiv.org/abs/1805.06334
http://arxiv.org/abs/1711.07792
http://www.bbci.de/competition/iv/desc_2a.pdf


Bibliography 49

G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre,
S. Waldert, and B. Blankertz, “Review of the bci competition iv,”
Frontiers in Neuroscience, vol. 6, p. 55, 2012. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2012.00055

[44] V. Jayaram and A. Barachant, “MOABB: trustworthy algorithm
benchmarking for BCIs,” Journal of Neural Engineering, vol. 15, no. 6, p.
066011, Sep 2018. [Online]. Available: https://doi.org/10.1088/1741-2552/
aadea0

[45] A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier,
C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and
M. Hämäläinen, “MEG and EEG data analysis with MNE-Python,”
Frontiers in Neuroscience, vol. 7, p. 267, 2013. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2013.00267

[46] L. Biewald, “Experiment tracking with weights and biases,” 2020, software
available from wandb.com. [Online]. Available: https://www.wandb.com/

[47] E. Thomas, M. Dyson, and M. Clerc, “An analysis of performance
evaluation for motor-imagery based BCI,” Journal of Neural Engineering,
vol. 10, no. 3, p. 031001, May 2013. [Online]. Available: https:
//doi.org/10.1088/1741-2560/10/3/031001

[48] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn,
“Gradient surgery for multi-task learning,” CoRR, vol. abs/2001.06782,
2020. [Online]. Available: https://arxiv.org/abs/2001.06782

https://www.frontiersin.org/article/10.3389/fnins.2012.00055
https://doi.org/10.1088/1741-2552/aadea0
https://doi.org/10.1088/1741-2552/aadea0
https://www.frontiersin.org/article/10.3389/fnins.2013.00267
https://www.wandb.com/
https://doi.org/10.1088/1741-2560/10/3/031001
https://doi.org/10.1088/1741-2560/10/3/031001
https://arxiv.org/abs/2001.06782


List of Figures

2.1 Processing steps of a brain-computer interface: The ac-
quired signal is preprocessed and relevant features are selected. A
decoder receives the features as an input and infers an action. The
user receives feedback either explicitly or via their own senses [14]. 4

2.2 (A) Subject wearing a 32-electrode EEG cap. (B) In-
ternational 10–20 system for standardized EEG electrode
locations on the head [13]. . . . . . . . . . . . . . . . . . . . . 5

2.3 Examples of EEG rhythms and their frequency range [13]. 6

2.4 A representation of a biological neuron (left) and its math-
ematical model (right) [21]. . . . . . . . . . . . . . . . . . . . 7

2.5 Rectified Linear Unit (ReLU) activation function, which is
zero when x < 0 and then linear with slope 1 when x > 0 [21]. . . 7

2.6 Artificial Neural Network [23] . . . . . . . . . . . . . . . . . . 8

2.7 Different learning processes between (a) traditional ma-
chine learning and (b) transfer learning [26]. . . . . . . . . 9

2.8 Illustration of a multi-task neural network [28]. Unlike a
single-task model, a multi-task model has outputs that are associ-
ated with multiple tasks. In this illustration, only one output per
task is shown, but there can be (and usually will be in practice)
multiple outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Multi-task architecture proposed by Mormont et al.: From
the input x a shared representation θs is computed. Samples from
this representation are forwarded to the respective heads. The loss
is calculated per task and aggregated [37]. . . . . . . . . . . . . . 16

4.2 MTL Layer Splits . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 MTL Deep4Net Results: Multi-task learning, transfer learning,
forward to all heads and layer sensitivity. Values in brackets are
average accuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 MTL EEGNet Results: Multi-task learning, transfer learning,
forward to all heads and layer sensitivity. Values in brackets are
average accuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

50



LIST OF FIGURES 51

5.3 MTL ShallowFBCSPNet Results: Multi-task learning, trans-
fer learning, forward to all heads and layer sensitivity. Values in
brackets are average accuracies. For layout reasons ShallowFBC-
SPNet is shortened to ShallowNet in this figure. . . . . . . . . . . 32

5.4 Confusion matrices for all models trained on the pooled
subjects (left) and their MTL counterparts (right). Note
that the scale of the Deep4Net differs from those of the other
models, hence comparisons across these models should not be made
based on color intensity. . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Confusion matrices for the three MTL models when us-
ing the strategy to forward the data of all subjects to all
heads. As labels change depending on the subject, subject 1 (per-
formance above average compared to other subjects) is shown as
an example. The matrices were obtained by using subject-specific
data only; as a result, the row for the label irrelevant (to be pre-
dicted when a sample does not belong to the given subject) is
empty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Mean absolute gradient in the classifier layer when perturb-
ing amplitude of input frequencies for subject 1. . . . . . . . . . . 38

5.7 Scalp plots of input-perturbation network-prediction cor-
relation maps for the classifier layer in the alpha and beta
bands for subject 1. The colors indicate the correlation coefficient
(min: blue, max: red). . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 The respective most-activating input window for the MTL
Deep4Net with data from subject 1 in the beta band for all layers
up to the last one before the classifier layer. . . . . . . . . . . . . 41

C.1 ShallowFBCSPNet architecture [6]. . . . . . . . . . . . . . . C-1

C.2 Deep4Net architecture [6]. . . . . . . . . . . . . . . . . . . . . C-2

C.3 EEGNet architecture [31]. . . . . . . . . . . . . . . . . . . . . C-3



List of Tables

4.2 Hyperparameter Search Configuration. . . . . . . . . . . . . 20

5.1 Results for validation of multi-task learning implementa-
tion. The results are given in percent. Single Task refers to the
base model implementation by braindecode[6]. MTL refers to our
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Decoding accuracy of Deep4Net baseline and of MTL
Deep4Net. The Deep4Net results are given in percent and MTL
Deep4Net in absolute percent increase. BCIC IV 2a: BCI Com-
peition Dataset IV 2a. Mode: single refers to single subject train-
ing and pooled to all subjects trained. (Wilcoxon signed-rank test,
*:p = .002, **:p = .019) . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Transfer Learning Results for MTL Deep4Net. The results
in the first row are given in percent and the values of the second row
are in absolute percent increase compared to Deep4Net TL. Stars
indicate statistically significant differences. (Wilcoxon signed-rank
test, *:p < .001, **:p = .036) . . . . . . . . . . . . . . . . . . . . 25

5.4 Pretrained Results for MTL Deep4Net. The MTL Deep4Net
result is given in percent and the values for each pretraining type
in absolute percent increase. Stars indicate statistically significant
differences. (Wilcoxon signed-rank test, *:p = .01) . . . . . . . . 25

5.5 Decoding accuracy of EEGNet baseline and of MTL EEG-
Net. The EEGNet results are given in percent. BCIC IV 2a: BCI
Compeition Dataset IV 2a. Mode: single refers to single subject
training and pooled to all subjects trained. (Wilcoxon signed-rank
test, *:p = .002, **:p = .032) . . . . . . . . . . . . . . . . . . . . 27

5.6 Transfer Learning Results for MTL EEGNet. The results
in the first row are given in percent and the values of the second
row are in absolute percent increase. Stars indicate statistically
significant differences. (Wilcoxon signed-rank test, *:p < 0.001) . 28

5.7 Pretrained Results for MTL EEGNet. The MTL EEGNet
result is given in percent and the values for each pretraining type
in absolute percent increase. There is no statistically significant
difference. (Wilcoxon signed-rank test, *:p > .13) . . . . . . . . . 28

52



LIST OF TABLES 53

5.8 Decoding accuracy of ShallowFBCSPNet baseline and of
MTL ShallowFBCSPNet. The ShallowFBCSPNet results are
given in percent. BCIC IV 2a: BCI Compeition Dataset IV 2a.
Mode: single refers to single subject training and pooled to all
subjects trained. Stars indicate statistically significant differences.
(Wilcoxon signed-rank test, *:p = .335, **:p < .001) . . . . . . . 30

5.9 Transfer Learning Results for MTL ShallowFBCSPNet.
The results in the first row are given in percent and the values of
the second row are in absolute percent increase. (Wilcoxon signed-
rank test, p < .001) . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.10 Pretrained Results for MTL ShallowFBCSPNet. The MTL
ShallowFBCSPNet result is given in percent and the values for
each pretraining type in absolute percent increase. There is no
statistically significant difference. (Wilcoxon signed-rank test, *:p
> .13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.11 Weight coefficients of MTL EEGNet. The learned coeffi-
cients for each task by the MTL EEGNet model. Change in accu-
racy is in comparison to the MTL EEGNet without weights. There
is no statistically significant difference (Wilcoxon signed-rank test,
p > .492). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Appendix A

Project Description

A-1



-
-
-

-

-
-
-

-
-

-

Friday 18. December 2020 13:11

Transfer Learning of Deep Neural Network

Representations of Brain Activity

BA21_stdm_03

BetreuerInnen: Thilo Stadelmann, stdm
Ricardo Chavarriaga, chav

Fachgebiete: Datenanalyse  (DA)
Software (SOW)

Studiengang: IT
Zuordnung: Institut für angewandte Informationstechnologie (InIT)

Gruppengrösse: 2

Kurzbeschreibung:
There is an increasing interest of using machine learning and artificial intelligence techniques to analyse
brain activity and provide insights on the neurological basics of cognitive processes. Building up on the
success of deep neural networks in the analysis and recognition of other types of signals (e.g. image or
speech processing), this project is oriented towards their use for analysing biological neural data.
 

ZHAW students and researchers have been successful on the development of deep learning methods in
multiple applications and this project is aimed at applying these tools to the analysis of electrical activity of
the brain. Specifically, the field of brain machine interfaces (BMI) aims at decoding this activity in real-time,
allowing interaction with external devices. Application of deep neural networks in this field has been
challenging since the amount of available data is considerable smaller than in other fields like computer
vision and natural language processing.
 

The goal of this thesis is to implement and evaluate deep learning approaches suitable for the
characteristics of brain-machine interfacing. Namely, large signal variability, low signal-to-noise ration and
small data sets. Of particular interest is the use of explainable methods that help understanding the
underlying cognitive processes reflected by the brain signal. During the project, students should perform
the following tasks:
 

a literature study on current state-of-the-art systems
setting up the development envirnoment (locally and on the InIT GPU cluster)
designing and carrying out experiments to compare different classification approaches, comprising non-
DL classification systems (e.g. LDAs or SVMs) and DL-based methods, including group analysis of the
data, training/testing individual classifiers per individual, transfer learning approaches
writing a scientific report with a focus on motivation, argumentation & results

 

 

Voraussetzungen:
No prior knowledge of neuroscience or machine learning / AI is expected at this stage. Necessary,
however, is a passion for the project topic, a curiosity for research work (creating and evaluating
hypotheses and striving to find the reasons behind observations), a pragmatic approach to
experimentation, a very good command of programming in general, and a very good previous track record
in the study programme. Data and code from previous BMI experiments are available.
 

Details for above:
 

Group analysis of the data (i.e., pooling together data from several people)
Training/testing individual classifiers per individual
Transfer learning approaches(i.e., training on a set of individuals ; test on a different person)

 

Useful references:
 

A Beginners Guide to Brain-Computer Interface and Convolutional Neural Networks
Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. Braincomputer interfaces for communication and
rehabilitation. Nat Rev Neurol 12, 513525 (2016). https://doi.org/10.1038/nrneurol.2016.113
Yannick Roy et al. Deep learning-based electroencephalography analysis: a systematic review. 2019 J.
Neural Eng. 16 05100. https://doi.org/10.1088/1741-2552/ab260c



Friday 18. December 2020 13:11

 

With good results, the joint publication of a scientific paper together with the supervisors is likely.
 

 

Die Arbeit ist vereinbart mit:
Benjamin Bertalan (bertaben)
Gian Andri Hess (hessgia1)



Appendix B

Contact information and code
access

If you have any questions regarding this work, you can contact us via gian.hess@gmail.com
or benjamin@brtln.com.

B-1



Appendix C

Figures

C.1 Architectures

Figure C.1: ShallowFBCSPNet architecture [6].
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Figures C-2

Figure C.2: Deep4Net architecture [6].



Figures C-3

Figure C.3: EEGNet architecture [31].
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