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Abstract
TheWav2Vec 2.0-XLSR-53 is a powerful model that was pre-trained to learn multilingual
speech representation end-to-end in an unsupervised way. Dialect Identification (DID)
and Accent Identification (AID) can be used to improve Automatic Speech Recognition
(ASR) systems in languages with multiple distinctive dialects or accents. This thesis
uses a classifier on top of wav2vec to classify speech. It is evaluated how the model
performs when trained on low-resource datasets. Various experiments are conducted in
the areas of AID in English and Spanish. In addition, evaluations were executed on
short samples. To further explore the capabilities of wav2vec, an age and sex classifier
is trained on German speech. The used corpora were extracted from Mozilla’s Common
Voice (Common Voice). Trained was on 1.5 up to 8 hours per class. An average F1-score
of 0.396 could be achieved for English while classifying six accents. On seven Spanish
accents, an F1-score of 0.266 was reached. In the area of sex identification, an F1-score
of 0.90 was reached while achieving 0.360 for age identification with a Macro Averaged
Mean Absolute Error (MAEM) of 0.982. The results show that it is possible to train
a classifier on wav2vec. However, the achieved scores do not correspond to the desired
values. It is shown that for training a better classifier, longer and more samples are
needed. Furthermore, it is important for the collection of training-data that the samples
contain recordings with freely-spoken speech that is not read from a text.

Zusammenfassung
Wav2Vec 2.0-XLSR-53 ist ein leistungsfähiges Modell, das pre-trained wurde, um mehr-
sprachige Sprachrepräsentationen end-to-end zu erlernen. Dialekt-Identifikation (DID)
und Akzent-Identifikation (AID) können verwendet werden, um automatische Spracher-
kennungssysteme (ASR) in Sprachen mit mehreren ausgeprägten Dialekten oder Ak-
zenten zu verbessern. In dieser Arbeit wird ein Klassifikator auf Basis von wav2vec
verwendet, um Sprache zu klassifizieren. Es wird evaluiert, wie das Modell performt,
wenn es auf Datensätzen mit geringen Ressourcen trainiert wird. Es werden verschiede-
ne Experimente in den Bereichen AID in Englisch und Spanisch durchgeführt. Zusätzlich
wurden Evaluationen auf kurzen Samples durchgeführt. Um die Fähigkeiten von wav2vec
weiter zu untersuchen, wird ein Alters- und Geschlechtsklassifikator in deutscher Spra-
che trainiert. Die verwendeten Korpora wurden aus Mozillas CommonVoice (Common
Voice) extrahiert. Trainiert wurde auf 1.5 bis 8 Stunden pro Klasse. Bei der Klassifika-
tion von sechs Akzenten konnte für Englisch ein durchschnittlicher F1-Score von 0.396
erreicht werden. Bei sieben spanischen Akzenten wurde ein F1-Score von 0.266 erreicht.
Im Bereich der Geschlechtsidentifikation wurde ein F1-Score von 0,90 erreicht, während
für die Altersidentifikation ein Wert von 0.360 mit einem Macro Averaged Mean Ab-
solute Error (MAEM) von 0.982 erzielt wurde. Die Ergebnisse zeigen, dass es möglich
ist, einen Klassifikator auf wav2vec zu trainieren, allerdings entsprechen die erreichten
Scores nicht den gewünschten Werten. Es zeigt sich, dass für das Training eines besseren
Klassifikators längere und mehr Audiodaten benötigt werden. Für die Sammlung von
Trainingsdaten ist es wichtig, dass die Aufnahmen frei gesprochene Sprache enthalten,
die nicht von einem Text abgelesen wurden.
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1. Introduction
In the last decade, Automatic Speech Recognition (ASR) became an important research
topic, as there are more and more use cases. For example, big companies provide voice
assistants, smart home devices, meeting transcriptions or live subtitle generation. Meth-
ods like deep learning helped a lot address this technological hurdle, and therefore sig-
nificant improvements were made, including the availability of massive amounts of data.
One of the biggest trade-offs regarding the training of neural networks is the amount
of data needed to achieve good results. Therefore those systems are mainly available
in languages where that amount of data is available. Especially in Swiss German, the
amount of freely available training data is minimal, and one has to rely on training meth-
ods that address the problem of training data volumes. These solutions are currently
developing very quickly, and one of the most recent solutions is wav2vec 2.0 (wav2vec),
which Facebook AI released in October last year. It is a framework that learns through
pre-training, end-to-end language representations that can be fine-tuned on a specific
language with only a small amount of training data. [1]

Since there are very different dialects in Swiss German, a future ASR system may
have to be trained separately for different dialect groups to be more successful. For
this purpose, this thesis examines whether wav2vec is also suitable for speech classifica-
tion. There is already a paper that deals with wav2vec in language identification and
proves that wav2vec extracts features that can be used for classification. [2] But, this
paper worked with a wav2vec model that was only pre-trained on English data. In the
meantime, however, a model was released that was trained on several languages simul-
taneously and thus should be more eligible for that case.

This new model, named XLSR for Cross-Language Speech Representation, is used in this
thesis to perform language classification in different domains to give an outlook on what
to look for when classifying later on Swiss dialects. For this purpose, experiments are
conducted to identify a speaker’s accent with little training data available. Furthermore,
we analyse how a trained classifier behaves when it receives only very short inputs. The
aim is to recognise a speaker’s dialect as quickly as possible in an ASR system. In addi-
tion, we explore some other more unconventional classifications in further experiments,
explicitly addressing the vast possibilities of transfer learning in speech processing using
wav2vec.
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1.1. Literature Review
Research in Dialect Identification (DID), and Accent Identification (AID) has been a big
topic in recent years. As a result, many different approaches to address this challenge
has been chosen.

In the dissertation of F. Baidsy [3], it is demonstrated that dialects can be distinguished
on behalf of certain phones that are different in dialects. It also shows the possibility of
improving ASR by identifying the corresponding dialect before the transcription.

In 2014, Lazaridis et al. attempted to identify Swiss-French regional accents based on
Gaussian Mixture Modelling (GMM) with two different GMM-based algorithms. First,
universal background modelling followed by maximum-a-posteriori adaptation and total
variability (i-vector) modelling. The i-vector-based system outperformed the other by
a relative improvement of 15.3 %. The best accuracy while classifying four regional
accents was 38.5 %. [4]

In the INTERSPEECH 2016 Computational Paralinguistics Challenge, the subject was
the identification of foreign English accents. [5] The winning system used an approach
based on i-vectors, classifying 11 accents with an accuracy of 84 %. [6]

In [7], they classify Mandarin into 15 accents and explore bidirectional Long Short-
Term Memory and i-vectors to model longer-term acoustic context. They reached an
accuracy of up to 34.1 % with 15 accents to predict. They then grouped the accents into
three groups based on their geographical features, which boosted their accuracy. They
also showed that individual systems trained on these accents could yield Character
Error Rate improvements with the classifier in front.

In the Arabic Speech Recognition in the Wild challenge 2017, one of the two tasks
was identifying five Arabic dialects. The best participant was able to reach an average
of 80 % accuracy using Generative Adversarial Networks. [8] Before the challenge in [9]
a multi-class Support Vector Machine was used to differentiate between English and
Arabic with an accuracy of 100 %. When, distinguishing between the five most common
dialects, they achieved an accuracy of 59.2 %. In 2018 Suwon Shon et al. [10] combined
an end-to-end and a Siamese neural network to classify the five Arabic dialects on the
same dataset as in [8] and [9]. They achieved an accuracy of 78 %.

P. Praikh et al. in 2020 [11] introduced a fused system consisting of a Deep Neural
Network, Recurrent Neural Network and a Convolutional Neural Network. They differ-
entiate between three English accents, namely Spanish, American and Indian, with an
accuracy of 68.7 %

A binary classifier between Indian and American English was trained in [12]. They
used Mel-frequency cepstral coefficients feature extraction on a dataset with five speak-
ers reaching an accuracy of 95 % achieved with a feed-forward neural network.

7



Fan et al. evaluated the capability of the pre-trained wav2vec for speaker verification
and language identification. They added a fully connected layer on top of wav2vec’s fea-
ture encoder to distinguish ten languages or 1’211 speakers. They run their experiments
with a pre-trained wav2vec feature encoder, and a randomly initialised one. The results
showed that the pre-trained feature encoder was able to retain distinguishable features
for both tasks. However, the results for speaker verification were better than those for
language identification. They further assumed the underlying issue being that the model
was pre-trained on solely English and suggest pre-training on multiple languages could
mitigate this issue. [2]

1.2. Outline
This thesis is divided into four parts. First, in the Foundation Chapter 2 the underlying
concepts and tools needed for understanding are explained in detail. Then, in the exper-
iments Chapter 3, the experimental setup and all conducted experiments are described.
Third, the corresponding results are presented in Chapter 4. Finally, in Chapter 5, the
results are discussed, and further research opportunities are proposed.

1.3. Terminology
wav2vec
Wav2vec is an ASR system designed by Facebook. There are multiple publications
available, and they can be distinguished in the following four parts.

Definition 1.3.1 (wav2vec 1.0). Wav2vec 1.0 is the first release and represents Face-
book’s attempt to learn latent speech representation described by A. Baevski et al. [13]

Definition 1.3.2 (vq-wav2vec). Vq-wav2vec is the second release and extends wav2vec
1.0 with a quantization module described by A. Baevski et al. [14]

Definition 1.3.3 (wav2vec 2.0). Wav2vec 2.0 is the third release described by A.
Baevski et al. [1] and the first release including a Transformer module.

Definition 1.3.4 (wav2vec 2.0 XLSR). Wav2vec 2.0 XLSR is the fourth release built
on wav2vec 2.0 and the first one including multilingual pre-training on 53 languages
described by A. Conneau et al. [15]

Dialect vs. Accent
In this thesis, the words dialect and accent are increasingly used. In order not to confuse
the two, they are defined as follows:

Definition 1.3.5 (Dialect). The Cambridge Dictionary defines a dialect as: "A form
of a language that is spoken in a particular part of a country or by a particular group
of people and that contains some words, grammar, or pronunciations (= the ways in
which words are said) that are different from the forms used in other parts or by other
groups."[16]

Definition 1.3.6 (Accent). The Cambridge Dictionary defines an accent as: "The way
in which people in a particular area, country, or social group pronounce words."[17]
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This shows that an accent describes mainly the pronunciation, while a dialect contains
much more. Therefore, the word dialect is only used when speakers in sound recordings
are speaking freely. On the other hand, if the speakers are reading from a text, this is
more in line with the definition of an accent. The individual speakers differ more on
their pronunciation because they tend not to use words they usually do and build their
sentences biased.

Sex vs. Gender
For some experiments in this thesis, the words sex and gender are used. To clarify in
which context the words are used and why they have to be distinguished, the definition
is given here:

Definition 1.3.7 (Sex). The Office for National Statistics UK defines sex as: "referring
to the biological aspects of an individual as determined by their anatomy, which is
produced by their chromosomes, hormones and their interactions." [18]

Definition 1.3.8 (Gender). The Office for National Statistics UK defines gender as: "a
social construction relating to behaviours and attributes based on labels of masculinity
and femininity; gender identity is a personal, internal perception of oneself and so the
gender category someone identifies with may not match the sex they were assigned at
birth." [18]

Since this thesis attempts to identify the sex of a speaker by voice alone, it is important
to know under which term the relevant data was collected. For example, in the case of
gender, people might identify as something other than their biological sex.
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2. Foundations

2.1. Speech Processing
The history of Speech Processing goes back to the late 18th century, whereby the first
attempts were made in producing speech rather than Speech Recognition. Resonance
tubes connected to organ pipes were used to produce vowel-like sounds. [19] From trying
to create a speaking machine, the focus shifted to recognising speech with technological
advancements. In 1952 Bell Laboratories developed a system that was able to recog-
nise isolated digits from one speaker. [20] Further development introduced a rule-based
system where the speech recognition language was represented in a graph including
grammatical rules or word orders. [19] [21] In the 1980s, statistical methods developed
rapidly, and with the upcoming hidden Markov model [22], the foundation of the modern
speech recognition system was laid out.

With the upcoming of neural networks, the possibility emerged of modelling complex
patterns in speech data. Since 2014 end-to-end ASR systems got much interest in re-
search as they reduced the training complexity. Connectionist Temporal Classification
(CTC) based systems were introduced in 2014, these models were able to map acoustics
to characters, but they rely on a language model to improve transcription quality. [23]
Another attempt for end-to-end ASR are attention-based systems. They can learn all
the components from the pronunciation- to the acoustic- and the language-model di-
rectly. [24]

2.2. wav2vec
The first generation of wav2vec 1.0 released in September 2019 was one of Facebook
AI’s initiatives [25] to improve speech recognition systems not only in terms of accuracy1

but also in a massive reduction in needed training data and its corresponding training
time. [13] Traditional systems required thousands of hours of transcribed training-data,
which is always very hard to get, especially for the 7’000 languages [26] worldwide, from
which most are rarely spoken, such as Swiss-German. Over time new research led to fur-
ther improvements published in chronological order of vq-wav2vec [14], wav2vec 2.0 [1],
and wav2vec XLSR [15].

Wav2vec 2.0, for the first time, tackles this problem by learning speech representa-
tion end-to-end from unlabeled data in pre-training. This approach of using unlabeled
data to train is called unsupervised learning. The pre-trained model can then be used

1Accuracy in this context refers to multiple metrics like Word Error Rate, Character Error Rate or
Phoneme Error Rate
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by various speech recognition system to fine-tune them with labelled data on a particu-
lar task. [1] Furthermore, to understand how wav2vec works, the involved concepts are
explained in this chapter.

2.2.1. Transformer
Until the proposed concept of Transformers by A. Vaswani et al. [27], sequence-to-
sequence models based on Recurrent Neural Networks were the state-of-the-art models
to deal with context in a temporal sequence. However, they are computationally ex-
pensive as their architecture prevents parallelisation, and dealing with long-range de-
pendencies is a challenge. [28] Transformers, on the other hand, tackle these problems.
What makes Transformers so special is their concept of self-attention. A. Vaswani et
al.’s explains self-attention as: "Self-attention, sometimes called intra-attention is an at-
tention mechanism relating different positions of a single sequence in order to compute
a representation of the sequence."[27] Although self-attention is a compelling concept, it
was still limited to a fixed-length input. [28]

Transformers are built upon encoders and decoders. The architecture and their func-
tionality are the same except that the decoder takes additional input from the encoder.
Figure 2.1 displays a high-level view of a Transformer’s encoders and decoders and how
they are coupled.

Figure 2.1.: High-level view of how input is processed trough a encoder-decoder Trans-
former.

11



In a Transformer-only network, the first decoder and encoder also need to map the
input to an embedding representation. The number of encoder and decoder can vary
depending on the chosen architecture, but the initial proposal worked with six of them.
The first encoder takes the input representing embedding xi and computes its corre-
sponding internal values. It then runs the self-attention computation and passes the
resulting zi into a feed-forward neural network. The output ri of each encoder is then
passed to the next encoder as inputs. The matrices keys K and values V are then fed
into every decoders’ encoder-decoder-attention layer, enabling them to focus on essential
parts of the input sequence while decoding. [28] The self-attention layer of each decoder
is used to process the made outputs. The output of the last decoder is then passed into
a linear layer that is a simple, fully connected neural network. After passing that output
through a softmax layer, the final vector represents the probabilities for each word in
the vocabulary. The corresponding word with the highest probability represents the first
word of the output. Finally, the whole output is embedded and represents additional
input for the decoders next iteration to predict the next word for the sequence in the
process.

Self-attention
The self-attention computation takes a query Q, keys K, and values V as input. Those
matrices are computed by multiplying the embedding matrices X with the corresponding
internal weight matrices WQ, WK or WV . Defined in Equation 2.1. Let I be I ∈
{Q, K, V }

I = X ×WI (2.1)
The self-attention computation is defined in Equation 2.2:

attention(Q, K, V ) = softmax(Q ·KT )V (2.2)

Equation 2.2 is the classical dot-product (multiplicative) attention function, even though
A. Vaswani et al. proposed a slightly different function that includes a scaling factor.
The scaling factor is ignored for simplicity, as it is not important to understand the
concept.

BERT
Bidirectional Encoder Representation from Transformers (BERT) [29] is a bidirectional
implementation of Transformers XL [30]. Transformers XL are an advancement of the
Transformer explained in section 2.2.1 to learn dependencies beyond the fixed-length
limitations. BERT leverages the multi-layer bidirectionality to learn dependencies in
both directions. It is pre-trained in an unsupervised - sometimes referred to as self-
supervised - fashion. To pre-train, it uses Masked Language Modeling (MLM) and next
sentence prediction. MLM enables BERT to learn to predict words within a sentence.
This is achieved by masking 15 % of the words in pre-training according to the following
rules:

• 80 % of the masked words are replaced with a mask-token.

• 10 % are replaced with a random word.

• 10 % are deleted and not replaced with anything.
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This left BERT with the challenging task of predicting the masked word and checking if
there is a word missing or an incorrect word in the sentence. The 20 % without mask-
tokens are essential because, in the fine-tuning task, BERT will never see the mask-token.

In the sentence prediction task, pairs of sentences are fed to the network, and it has
to predict if the second sentence is the correct next sentence. In 50 % of the pairs, the
second sentence is replaced with a random sentence from the corpus for pre-training. [28]
This training involves building an overall understanding of how sentences are dependent
on each other.

2.2.2. Latent speech representation
Speech is a composition of phonemes, which describes a group of sounds that all have the
same meaning-distinguishing function in a language. In theory, the number of phonemes
per language is tiny. For example, in English, there are 44 phonemes, and in Spanish,
24. [31] In reality, speech waveforms, however, have a complex distribution with a high
variance. This arises because of a wide variety of factors that influence the way people
speak. They include dialects, accents, speaker identity, emotional state, surrounding
sounds, etc. [32] The extraction of the smallest perceptible but distinct sound frag-
ments from from these waveforms yields the so-called latent speech representations.
Before 2017, attempts were made to model these by hand. However, by processing large
amounts of unlabelled speech, these representations can be learned unsupervised. [32]

2.2.3. Quantization
As the latent speech representation is learned in an unsupervised way, one has to build
a ground truth to calculate a loss to optimise the Transformer in training. This ground
truth is created by quantization, which transforms the continuous latent speech repre-
sentation into a discrete vector called quantized representation. A quantizer has one or
multiple codebooks, which can be seen as dictionaries containing various discrete repre-
sentations. The quantizer itself is nothing more than a mapping function that returns the
nearest value from the codebooks for a specific continuous speech representation [33]. In
wav2vec, this is done via product quantization. [1] This uses several distinct codebooks.
Each speech representation is split into several subvectors that match the number of
codebooks before quantizing them separately. In the end, the results are then concate-
nated into one single vector again. [33] To choose the representations from the codebook
in a fully differentiable way, the Gumbel softmax is used. [1] [34]
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2.2.4. wav2vec 2.0
The model of wav2vec illustrated in Figure 2.2 consists of a multi-layer convolutional
feature encoder represented by the blue trapezoids. In the source code, this is also called
a feature extractor. As input, it takes raw audio waves X and outputs latent speech
representation Z. It does this for T time-steps using a sliding window of 25ms with a
stride of 20ms. The outputs Z of the feature encoder are discretised to a finite set of
speech representations using the quantization module described in subsection 2.2.3. On
the other hand, Z is partially masked and fed to a Transformer, which is built similarly
like BERT is. [29] The Transformer then builds contextualized representations C over
the whole input sequence X. [1]

Figure 2.2.: High-level architecture of wav2vec 2.0 and how context representations are
learnt from raw waveforms.

Wav2vec is pre-trained similarly to BERT. To pre-train the model, some randomly
selected parts of the latent speech representations Z are masked and fed into the Trans-
former. Masking is done in three different ways simultaneously but not in equal distri-
bution:

• Replacing a time-step with a mask-token.

• Replacing a time-step with a random different time-step.

• Cutting out a time-step with no defined mask.

These modified or deleted time-steps then have to be predicted by the Transformer. To
verify the resulting context representations C, the model calculates a contrastive loss
between them and the quantized representations Q, which is then used to optimize the
Transformer. When calculating the contrastive loss, it tries to minimize the distance
between C and Q while maximizing the distance to a set of distractors sampled from
other masked time steps. For this task to work, it needs the codebook to represent
positive and negative examples. For this purpose, a diversity loss is applied, which leads
to the representations of the codebooks being used as equally often as possible.[1]
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2.2.5. wav2vec 2.0 XLSR
Wav2Vec XLSR builds upon wav2vec 2.0; it follows the same architectural choices of
their previous work in A. Baevski et al. [1]. The main goal of XLSR was to learn
speech representations across multiple languages. The data to pre-train the model was
collected from Mozilla’s Common Voice (Common Voice) [35], BABEL that includes
several African and Asian languages and the Multilingual LibriSpeech that includes
audiobooks. Those datasets were integrated into one big dataset. In Figure 2.3 it
can be seen how the latent speech representations are shared between languages. The
most significant benefit of sharing these representations is the possibility to use language
features from another language without pre-training the model again on a new language.

Figure 2.3.: Wav2vec XLSR and how speech representation are shared across languages.

The model used in this thesis and the biggest one released by Facebook AI is called
wav2vec XLSR-53. It includes a pre-trained model on 53 languages covering 56’000
hours of audio. As there was not an equal distribution across the languages in pre-
training, data-rich languages were penalized. [15]

2.3. Accent / Dialect Identification
DID refers to identifying the different dialects in a specific language spoken by natives.
In addition, AID however can involve non-native-speakers who are greatly influenced by
their maternal language. The task of identifying a dialect or accent is a subproblem in
the category of Language Identification (LID). However, it is considerably more chal-
lenging as it detects differences in the phoneme space and how words are pronounced
within the same language. [36] However, some differences exist when considering di-
alects: Dialects occur in small areas, and some spread over vast geographical regions
or even continents. For example, the Arabic language can be distinguished into five
different dialects: Egyptian (EGY), North African (NOR), Gulf or Arabian Peninsula
(GLF), Levantine (LAV), and Modern Standard Arabic (MSA). However, as stated by
A. A. Najim et al.: "An objective comparison of the varieties of Arabic dialects could
lead to the conclusion that Arabic dialects are historically related, but not synchroni-
cally, and are mutually unintelligible languages like English and Dutch." [9] Therefore,
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it must be considered that these dialects can be considered sufficiently distinct. Hence
the distinction is more in line with LID than DID.

As described in Section 1.3, accents are more specific to how words are pronounced.
AID is therefore even harder than DID as it is only possible to focus on the differences
in pronunciation. Even for humans, it is challenging to distinguish between accents. In
an experiment [37] participants had to distinguish 14 British dialects from telephone
conversations they achieved an accuracy of 58 %. For humans, it is particularly difficult
to distinguish between accents or dialects from regions where they never lived.

In practice, DID or AID can be used to improve ASR systems to transcribe text more
accurately. The ultimate goal would be to detect the dialect or accent of an audio
sequence and then distribute it to an ASR system optimised for that specific dialect,
thereby achieving better results.

2.4. Metrics
To verify the quality of a classifier, it is crucial to choose the right metrics for the use
case, as each metric makes a different statement about the classifier. The metrics used
in this thesis are explained further in the following sections.

Accuracy
Accuracy is one of the most known metrics to classify if something is good. However,
the problem with accuracy is that, in an unbalanced setting, it is easy to achieve high
accuracy by always predicting the class with the higher distribution. What accuracy
shows is all the correct predictions to the total predictions; more formally, accuracy is
defined in Equation 2.3.

Accuracy = TruePositive + FalsePositive

TruePositive + FalsePositive + TrueNegative + FalseNegative
(2.3)

Precision And Recall
Precision, also called Positive-Predictive-Value, is a metric that summarises how many
predicted outcomes are actually correct. As defined in Equation 2.4, it is calculated per
class by setting all True-Positives in relation to the actual results. [38]

Precision = TruePositive

TruePositive + FalsePositive
(2.4)

Recall, also called True-Positive-Rate or Sensitivity, on the other hand, makes a state-
ment on how many of a specific class are recognised as such. As defined in Equation 2.5,
it is calculated per class by setting all True-Positives in relation to the predicted re-
sults. [38]

Recall = TruePositive

TruePositive + FalseNegative
(2.5)
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F1-Score
It is challenging to optimise Precision and Recall simultaneously as they tend to change
in opposite directions. The F1-score resolves this problem. As defined in Equation 2.6,
it is calculated by weighting Precision and Recall equally and building a harmonic mean,
resulting in a metric that can be used to optimise both simultaneously. [38] Therefore,
it is often used to evaluate the quality of classifiers and, in this thesis, for comparing the
experiments.

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(2.6)

Multi-class F1-Score
In a multi-class environment, other factors must be included to calculate the F1-score.
The first and most basic way to calculate an F1-score, in this case, is macro-averaged,
meaning that one calculates the F1-score per class individually, as explained above and
takes the mean over all results. However, this also ignores a possible unbalance in the
distribution of samples per class.

If the ignorance of this unbalance is not wanted, the F1-score can be calculated in a
weighted-averaged manner. When averaging the individual F1-scores together, each
score gets multiplied by the number of samples in that class first.

The last way of calculating an F1-score is micro-averaged. This is different from the
other two. It works by first calculating the micro-averaged precision and the micro-
averaged recall over all samples and then calculating the F1-score on that base. Thus
simulating a kind of binary setup again. What is special for this case is that the following
statement is always true for a micro-averaged F1-score: precisionmicro = recallmicro =
F1micro = accuracy.[39].

Which type of calculation to choose depends on the standpoint one wants to support.
This thesis aims to use the F1-score to make a statement about how good a model would
generalise. Since in the corpora used, some individual classes, unfortunately, have very
few samples, the macro-averaged F1-score is chosen. This means that the imbalance is
not considered, which corresponds more to the actual general reality.

Macro Averaged Mean Absolute Error
Some of the experiments have classes that have a logical order in relation to each other.
To assess how far the average error is from the correct classes, another metric is needed in
addition to the F1-score. The Mean Absolute Error (MAE) measures the average error
across all predictions in absolute terms. Let h be the classifier, Te the data samples and
y the corresponding correct classes for each sample; the MAE is defined as follows.

MAE(h, Te) = 1
|Te|

∑
xi∈T e

|h(xi)− yi| (2.7)

However, this metric in Equation 2.7 is not really suitable for an unbalanced dataset
because it treats all predictions equally regardless of which class they belong to. There-
fore, classes that have more representations in the dataset receive a stronger weighting.
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Thus, the MAE can be macro-averaged by splitting the predictions by its true class, cal-
culating the MAE separately and taking the mean of the results.[40] Be C the distinct
classes and Tej the samples whose true class is Cj; the Macro Averaged Mean Absolute
Error (MAEM) is defined in Equation 2.8.

MAEM(h, Te) = 1
|C|

|C|∑
j=1

1
|Tej|

∑
xi∈T ej

|h(xi)− yi| (2.8)

2.5. Plots
Confusion Matrix

The main plot for comparing experiments in this thesis will be the confusion matrix.
It is helpful for unbalanced data and classifiers with more than two classes, as it can
clearly show where the classifier is making mistakes. A confusion matrix summarises
the number of correct and incorrect predictions for each class.[41] The scores in the
confusion matrix can be normalised by plotting the scores relative to each classes size.
This is particularly useful for unbalanced datasets and is, therefore, most commonly
used in this thesis.

Precision-Recall Curve

The Precision-Recall Curve (PR-Curve) represents the qualities of the classifier graph-
ically. While the Receiver Operating Characteristic Curve (ROC-Curve), which is also
widely used, summarises the trade-off between the recall and the false-positive-rate. The
PR-Curve, however, does so for the trade-off between the recall and the precision. This
is particularly useful in unbalanced datasets. The y-axis shows the precision, and the
x-axis the recall for different threshold values. For example, a No-Skill classifier would
print a horizontal line with the value of the ratio of positive cases in the dataset. A
perfect classifier would print a point in the top right corner(1, 1), and a skilful classifier
is represented by a curve that bows towards that point.[42]

2.6. Transfer learning
In general, Transfer learning refers to the use of existing knowledge in a different domain.
For example, in machine learning, the trained capabilities of one model are used on
different related tasks. This enables models trained on large amounts of data to be
reused and trained on a task where smaller datasets are more common. In terms of
applying Transfer learning in this thesis, the capabilities from wav2vec in recognising
features in natural speech are used to classify and distinguish accents, age and the sex
of the speaker.
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3. Experimental Setup

3.1. Objectives
The main objective of this thesis is to investigate the capabilities of wav2vec in the case of
transfer learning, in particular, the applicability of wav2vec to distinguish accents within
one language. Three different classification models based on wav2vec will be trained:
AID, Age Identification and Sex Identification. It will be tested how the training volume
affects the classifier’s success in each domain. In addition, the performance of the trained
AID models will be examined based on their performance at different lengths (e.g. one
second) of audio samples. Furthermore, it is investigated whether this success can be
further improved by taking a most voting over several short samples.

3.2. Corpora Selection
The corpora used had to meet several requirements, as well as general public availability.
The following requirements had to be met by a corpus to be eligible for the experiments:

• speaker independence between train and test sets

• metadata for accents or dialect

• length of audio samples approximately five seconds or longer

• accents are all within the same language

Common Voice
Mozilla’s Common Voice (Common Voice) is a crowdsourced corpus designed to help
machines understand how people communicate. It currently includes 60 languages with
about 7’000 validated hours. [43][35] People can record their voice, freely with or without
creating an account, directly on the Common Voice homepage. The recording is reviewed
by other users and eventually added to the corpus. If a speaker has created an account,
additional demographic data can be added to that speaker’s recording. Demographic
data includes, for example, accent, age or gender. The recording itself is based on
reading a sentence into a microphone. The corpus thus provides the required metadata,
is speaker-independent, and most audio samples are about five to six seconds long.
Depending on the language, there is a different amount of data available. Therefore
not every language is suitable. For the experiments, only three of the 60 languages are
used. The original corpus is divided into three parts: dev, train and test. Since there
is limited labelled test-data for the English and Spanish corpus, these test-data were
augmented with the dev-data. This was eligible because it was verified that there was
no data leakage in speaker independence between the dev-data and the train-data.
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English Common Voice
The extracted English dataset consists of six accents with sufficiently labelled data. The
constellation shown in Table 3.1 refers to the subset of the entire English Common Voice
corpus. In principle, there are nine accents in the English dataset, but only six accents
had more than 5’000 labelled samples. If possible, double the number of the smallest
accent was taken for all accents to get more variety in the dataset. The surplus was
removed randomly for each class.

Accent train samples train duration test samples test duration Avg. Duration
australia 12’360 19h 09m 37s 78 07m 54s 5.58s
canada 12’360 19h 24m 10s 141 15m 37s 5.66s
england 12’360 18h 23m 41s 431 43m 37s 6.07s
indian 12’360 19h 43m 08s 805 1h 20m 29s 5.23s
scotland 6’180 11h 01m 32s 24 02m 32s 6.42s

US 12’360 18h 50m 16s 1’575 2h 34m 47s 5.53s
total 67’980 106h 32m 24s 3’054 5h 04m 56s 5.75s

Table 3.1.: English dataset containing six accents with autralia and scotland having less
than 80 test-samples.

Spanish Common Voice
The extracted Spanish dataset consisting of seven accents was extracted the same way
as the English corpus. It had initially nine accents, but two had to be removed be-
cause they had less than 4’000 samples in the train-data. The remaining seven accents
can be geographically grouped into Spain and Hispanic America. In Spain, there are:
nortepeninsular, centrosurpeninsular and surpeninsular, whereas in Hispanic America
are: mexicano, caribe, andino and rioplatense. The resulting corpus can be viewed in
Table 3.2.

Accent train samples train duration test samples test duration Avg. Duration
andino 7’306 11h 19m 24s 655 1h 07m 16s 5.63s
caribe 5’058 8h 19m 08s 466 48m 17s 5.95s

centrosurpeninsular 5’437 7h 59m 01s 300 28m 38s 5.31s
mexicano 10’116 15h 52m 14s 1’082 1h 47m 47s 5.68s

nortepeninsular 10’116 15h 00m 45s 360 34m 03s 5.35s
rioplatense 7’476 11h 37m 25s 438 44m 33s 5.63s

surpeninsularr 10’116 13h 47m 22s 176 16m 52s 4.92s
total 55’625 83h 55m 19s 3’477 5h 47m 26s 5.50s

Table 3.2.: Spanish dataset containing seven accents with caribe and centrosurpeninsular
having less than 5’500 train-samples.

German Common Voice
The extracted German dataset did not contain enough data to use for AID, as it only
contains three accents with an unbalanced distribution. Nevertheless, it was suitable
for age and sex classification, with the advantage of making it easier to perform sanity
checks after training. Common Voice provides metadata for age and gender.

20



For the age, metadata from teens to nineties is provided. Table 3.3 displays the con-
structed age corpus. The data from sixties to nineties had to be merged into one class
to get a balanced corpus.

Age train samples train duration test samples test duration Avg. Duration
10 - 19 8’636 12h 07m 08s 262 24m 01s 5.07s
20 - 29 17’272 25h 16m 53s 582 53m 37s 5.28s
30 - 39 17’272 26h 03m 06s 453 43m 21s 5.44s
40 - 49 17’272 31h 04m 07s 269 26m 19s 6.47s
50 - 59 17’272 27h 07m 53s 280 29m 34s 5.67s
>= 60 9’703 17h 23m 09s 170 18m 52s 6.45s
total 87’427 139h 02m 16s 2’016 3h 15m 44s 5.73s

Table 3.3.: German age dataset containing seven classes with a balanced distribution.

As Common Voice collects the metadata under the term gender, the classes were origi-
nally female, male and other. However, the goal is to identify the biological sex by voice
only. Therefore, only the classes male and female were extracted, knowing that some
people could identify as the other gender. The resulting sex corpus in Table 3.4 is also
very unbalanced, which is particularly noticeable in the area of test-data. Apart from
that, the corpus meets our specifications by far.

Sex train samples train duration test samples test duration Avg. Duration
Female 22’114 35h 34m 58s 246 24m 59s 5.80s
Male 44’228 70h 58m 26s 1’745 2h 48m 34s 5.78s
total 66’342 106h 33m 24s 1’991 3h 13m 33s 5.79s

Table 3.4.: German sex dataset containing two classes, with female having only 246
test-samples.

ADI5
The five classes Arabic Dialect Identification (ADI5) corpus consists of the five dialects:
EGY, GLF, LAV, MSA, and NOR, each providing more than ten hours of speech broken
down in Table 3.5. The corpus is a collection of two corpora from the Multi-Genre
Broadcast-2 and 3 challenge held at 20161 and 20172 IEEE Workshops. [8] The data
is based on TV recordings from the international Arabic news channel Al Jazeera and
different YouTube channels. As the Common Voice corpora, the ADI5 corpus is split
into dev, train and test. Since the corpus is only used to recreate other results, the train-
data was augmented with the dev-data as was done for the results to be reproduced.
This was done without knowing if there were any data leakage between the dev-data
and the test-data.

12016 IEEE Workshop on Spoken Language Technology.
22017 IEEE Automatic Speech Recognition and Understanding Workshop
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Dialect train samples train duration test samples test duration Avg. Duration
EGY 3’492 14h 23m 14s 302 1h 59m 27s 15.54s
GLF 3’138 12h 07m 34s 250 2h 04m 35s 15.09s
LAV 3’466 12h 16m 08s 334 2h 00m 02s 13.52s
MSA 2’502 12h 23m 48s 262 1h 56m 26s 18.67s
NOR 3’560 12h 28m 15s 344 2h 06m 38s 13.45s
total 16’158 63h 38m 59s 1’492 10h 7m 8s 15.25s

Table 3.5.: ADI5 dataset containing five classes with a balanced distribution.

3.3. System Selection
At the beginning of this thesis, it was tried to extend the wav2vec XLSR model with a
fully connected layer. Since wav2vec’s output depends on the length of the input data,
the idea was to average the output features so that our model could work with flexible
input sizes. However, during training with the ADI5 corpus, it became clear that there
was a bug in the code as the loss was not decreasing. By then, a member of the Arabic
Machine Learning (ARBML) community successfully implemented a classifier based on
wav2vec. [44] He published his model, named Klaam, on Hugging Face with an accuracy
of 83.78%. [45] His implementation differed slightly from ours in one important feature,
which will be described in more detail shortly. Nevertheless, it showed that the idea of
using wav2vec’s XLSR model for speech classification has real potential.

Figure 3.1.: Visualized dimension reduction of wav2vec’s output using torch.mean().

In order to better understand the adaptations to the model, the outputs of the XLSR
model must first be discussed. The output of wav2vec is a tensor with three dimensions:
batch-size, number-of-output-features and number-of-layers. The batch-size can be ig-
nored for better visualisation. What is interesting are the other two seen in Figure 3.1.
The number of output features refers to the length of the input given to the XLSR
model. For example: when the input has a length of twenty seconds, the number of
output features is 999, and for ten seconds, it is 499. The number of layers is static and
is 1’024. The handling of these variable sizes is done differently by the Klaam model
and ours. As shown in Figure 3.2, the Klaam model reduces the output to a layer with
the size 128, still carrying the dimension of output features, which is 999 as the model
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was trained with twenty-second inputs. It then uses a Hyperbolic Tangent activation
function and increases to a layer of the size 128*999 by concatenating the two dimensions
into one large vector, leaving only the dimensions of the batch-size and the number-of-
layers. With that, it reduces to a layer with the size of the number of classes to predict.
This process makes the whole model dependent on the size of the model’s inputs, which
is undesirable. Therefore, our model eliminates the dimension of output features before
it forwards the input to the classification layer using torch.mean(), which averages the
output features into one vector. The resulting tensor is then put into a layer of the size
1’024, an activation function and another layer of the same size which gets reduced to
the number of classes to predict.

Figure 3.2.: Comparison between Klaam’s classifier which concatenates the dimensions
into one vector, and our classifier where the dimensions are reduced by
averaging.

To verify if the changes were eligible. Our model was trained with the ADI5 corpus
described in Table 3.5 to reproduce the accuracy of the deployed Klaam model. It was
trained for ten epochs and matched the given figures with an accuracy of 84.25 % and
an F1-score of 84.17 %. With a training time of 22 hours and 38 minutes, the total
training time was reduced by 36 %. Therefore, our model was used for all experiments.
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3.4. Metrics and Evaluation Tool
The primary metric for measuring the quality of the experiments used in this thesis will
be the F1-score described in Section 2.4. The MAEM is also used but only for evalu-
ating the experiments about age identification as it is the only topic where the order
of classes is relevant. To calculate the metrics, the python library scikit-learn is used,
except for the macro averaging in the MAEM, which had to be implemented by ourselves.

To log the metrics and diagrams, Weights & Biases (W&B) was used. It is a library that
allows for tracking, comparing and visualising machine learning experiments and also
provides quick and easy integration from various frameworks such as Hugging Face.[46]

3.5. Training
Training is done on the domains of accent, age and sex. The input data from the train-
data and test-data is prepared by a pre-processor, which resamples the data to 16 kHz,
cuts it to the desired length and pads it if necessary. The data is then mixed and divided
into batches of size 16. The Hugging Face trainer is used as a training pipeline. This
uses Adam as an optimiser that optimises a cross-entropy loss. Each model is trained
for eight epochs on the train-data with an initial learning rate of 0.00003, which adjusts
during training. The feature extractor of wav2vec is frozen so that the optimiser does
not adjust its weights. After each epoch, the model is evaluated on the test-data, the
metrics are calculated and transferred to W&B, where they are monitored. In the end,
the final model is saved to a local directory.

3.6. Experiments
Four different main experiments are conducted. The first experiment is AID; it focuses
on the different amounts of training data and the capabilities of wav2vec to learn on small
datasets. The Sample Length Evaluation (SLE) experiment investigates what length an
audio sample needs to be successfully classified. In addition to the SLE experiment, a
most voted prediction is tested. It explores if the results of SLE can be improved if
multiple parts of one file are classified on their own and pulled together for one classifi-
cation. To further explore the capabilities of wav2vec, the last two experiments go in a
different direction and try to identify the age or sex of the speaker. Each experiment is
repeated three times.

3.6.1. Accent Identification
The first experiments revolve around AID. Since the ultimate goal of wav2vec is to en-
able speech recognition with limited data. [1] These experiments focus on how much
training data is needed to create an efficient classifier.

Unfortunately, the experiments are limited in training data volume per class, as the
aim was to train on balanced classes. The experiments conducted with the English and
Spanish Common Voice corpus are listed in Table 3.6. In order to measure a correlation
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between the amount of training data and success, the amount per class is increased by
1’000 per experiment up to the limits we have defined. Training is done with ten-second
samples, as there are no samples longer than that. Shorter samples are padded to ten
seconds.

ID max length of input volume per class number of classes language
AID-EN-1 10s 1’000 6 English
AID-EN-2 10s 2’000 6 English
AID-EN-3 10s 3’000 6 English
AID-EN-4 10s 4’000 6 English
AID-EN-5 10s 5’000 6 English
AID-ES-1 10s 1’000 7 Spanish
AID-ES-2 10s 2’000 7 Spanish
AID-ES-3 10s 3’000 7 Spanish
AID-ES-4 10s 4’000 7 Spanish

Table 3.6.: Accent identification experiments with increasing training-volume per class.

3.6.2. Sample Length Evaluation
In a conversation between people, the speaker changes very often, and the individuals
only say short, coherent sentences. Therefore, experiments are conducted to find out
how accuracy3 behaves with short segments of different lengths. For this purpose, the
models from the accent identification experiment with the largest training volume are
used. Each of the three models per language is evaluated with different sample lengths.
Care is taken to use the same volume of test data as in the original Accent Identifications
experiment. The experiments to be conducted can be seen in Table 3.7. Since the
average sample length for both languages is about five to six seconds, the maximum
sample length tested is five seconds.

ID max length of input number of classes language
SL-EN-1 1s 6 English
SL-EN-2 2s 6 English
SL-EN-3 3s 6 English
SL-EN-4 4s 6 English
SL-EN-5 5s 6 English
SL-ES-1 1s 7 Spanish
SL-ES-2 2s 7 Spanish
SL-ES-3 3s 7 Spanish
SL-ES-4 4s 7 Spanish
SL-ES-5 5s 7 Spanish

Table 3.7.: Sample length evaluation experiments on models of AID-EN-5 and AID-ES-
4.

3represented by F1-score
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Most-voted prediction
Inspired by the sample length experiment, the classification could be improved by ap-
plying a most-voted prediction. As shown in Figure 3.3, an audio file is split into several
parts of equal length. Each section is then classified by itself. After summing up all votes
by class, the class with the most votes over all slices is selected as the final classification.
If more than one class have reached the same number of votes, the decision between the
classes with the same number is made randomly.

Figure 3.3.: Example of most-voted prediction

Experimentation is done with three different lengths of slices as listed in Table 3.8. The
number of votes corresponds to the maximum number of votes cast for one audio file.
There are few files longer than eight to nine seconds, so this is an acceptable loss. Each
audio file is sliced as many times as possible until the maximum is reached. If the
desired number of slices cannot be reached, the last slice is padded, and all other empty
slices are ignored. Experimentation is conducted using the models trained in the AID
experiments with the largest amount of training data.

ID length of input number of votes number of classes language
MV-EN-1 1s 8 6 English
MV-EN-2 2s 4 6 English
MV-EN-3 3s 3 6 English
MV-ES-1 1s 8 7 Spanish
MV-ES-2 2s 4 7 Spanish
MV-ES-3 3s 3 7 Spanish

Table 3.8.: Most voting evaluation experiments on models of AID-EN-5 and AID-ES-4.
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3.6.3. Age Identification
To explore the limits of wav2vec in speech classification, experiments are also conducted
that are more unconventional than classical AID. In these experiments, the suitability
of wav2vec as a classifier for age identification is examined. It is attempted to identify
the age of a person based on their voice. The goal is to recognise the age in ten-year
groups except for people who are over 60, which should be classified as such.

Apart from the corpus, the experiments are similar to those described in Section 3.6.1.
However, one significant difference is that the severity of a misclassified class can be
taken into account. Since age is a continuous sequence, the severity of the error can
vary as it is much better to estimate a person in his thirties as being in his twenties
than to estimate him in his sixties. Therefore, in addition to assessing the quality of the
experiment with the F1-score, the MAEM is also used to assess the severity of the error.
The four corresponding experiments are documented in Table 3.9.

ID max length of input volume per class number of classes
AGE-1 10s 1’000 6
AGE-2 10s 2’000 6
AGE-3 10s 3’000 6
AGE-4 10s 4’000 6

Table 3.9.: Age identification experiments with increasing training-volume per class.

3.6.4. Sex Identification
Another experiment that addresses the possible limitations of wav2vec as a classifier
revolves around sex identification. In these experiments, the possibility of identifying
the biological sex of a person by their voice is tested. From a human perspective, this
should be easier to accomplish compared to age identification.

The classification is a so-called binary classification, as there are only two classes to
choose from. As with the accent and age identification experiments, the aim is to eval-
uate the relationship between the amount of training data per class and the quality of
the resulting classifier. The four experiments that will be conducted can be seen in
Table 3.10.

ID max length of input volume per class number of classes
SEX-1 10s 1’000 2
SEX-2 10s 2’000 2
SEX-3 10s 3’000 2
SEX-4 10s 4’000 2

Table 3.10.: Sex identification experiments with increasing training-volume per class.
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4. Results
In this chapter, the results of all experiments are presented. Based on the initial results,
further analyses are carried out to draw better conclusions. Where possible, the results
are checked for plausibility by taking a closer look at the misclassified samples and con-
ducting experiments with self-generated data.

Each experiment was repeated three times to assure certain stability of the results.
Some experiments build on previous ones by evaluating trained models under additional
conditions, such as shorter samples. To compare the performance of the different exper-
iments in a topic, the metric of the macro-averaged F1-score is used, as the test-data
sets are not well balanced, and therefore accuracy is not suitable. The listed F1-Scores
represent the average of all three repetitions of an experiment.

4.1. Statistical Significance
To assess the significance of the different results obtained, the student’s t-test provided
by scipy was applied. The corresponding results can be found in the Appendix A.3.
They show that the differences measured from the most successful experiment to all
other experiments are mostly not significant. One reason for this is that with only three
repetitions of an experiment, the standard deviation can be relatively large. Therefore,
the results of this thesis should be treated with caution, as more repetitions would have
to be carried out to draw more reliable conclusions1.

4.2. Accent Identification
The goal of this experiment was to investigate what performance is possible with different
amounts of training data. The experiments were conducted for English and Spanish,
with the English experiments having one more experiment because the corpus was larger.
The statistics of all runs can be viewed in Appendix A.1.1.

1This would go beyond the time frame that was available for this thesis
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4.2.1. English
Table 4.1 shows the comparison of the different trained models and their averaging
F1-score described in Section 2.4.

ID volume per class average F1 standard deviation
AID-EN-1 1’000 0.346 0.026
AID-EN-2 2’000 0.363 0.014
AID-EN-3 3’000 0.37 0.003
AID-EN-4 4’000 0.367 0.013
AID-EN-5 5’000 0.396 0.021

Table 4.1.: Results of English Accent Identification experiments and their averaged F1
over all runs.

It can be observed that the more data is available, the better the models are performing.
Even though the rise in performance is not that significant as the rise from wav2vec when
fine-tuned with more data. Experiments from Facebook AI’s researcher showed a clear
improvement if more data for fine-tuning was used.[1] However, it is astonishing that the
model can reach an F1-score of 0.346 with only 95 minutes of training data per class.

Figure 4.1.: Confusion Matrices of the best performing model of AID-EN-5 in absolute
and normalized values.

Investigating further into the best performing model with an F1-score of 0.413, Figure 4.1
shows the confusion matrix in absolute numbers on the left side. On the right side, the
normalized view presents that the model is confusing similar accents as a human would,
such as confusing the canadian accent with the us accent or the australian accent with
the english accent. Nevertheless, at the same time, being consistent in classifying the
indian accent. The indian accent is more distinctive than the other accents as it is the
only foreign accent in the dataset. Even for humans, it can be said that accents from
non-native speakers are easier identifiable.
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Figure 4.2.: Confusion Matrix of best AID-EN-5 and worst AID-EN-1 performing En-
glish model.

The fact that these confusions exist is preferably good, especially compared to the worst
performing model with an F1-score of 0.313 in Figure 4.2 where the classification is
more randomised, especially for the us accent. Nevertheless, it is also observable that
the worst model focused on the canadian accent, whereas the best model focused on us.
This is another indicator that canadian and us are hard to distinguish. In addition, the
english accent is more often classified wrong as australian accent. However, the indian
accent is classified correctly more often.

Figure 4.3.: Precision vs. Recall Curve of best AID-EN-5 and worst AID-EN-1 perform-
ing English model.

30



When comparing the models with the worst and the best F1-score in Figure 4.3, it be-
comes more apparent that the best model performs better on the us accent than the
worst model. The indian accent seemed to be better classified by the worst model in
Figure 4.2. In contrast, Figure 4.3 shows that the precision of the best model was still
better. Training on more data, therefore, is still beneficial.

Since we are not native English speakers, it is difficult for us to distinguish between
the accents of native English speakers. However, we can determine whether someone
has a foreign accent. We are confident enough to determine whether someone speaks
with an indian accent or not. Therefore, it was possible to check the miss-classifications
in this class.

model errors in total correlating files correlation
AID-EN-5-RUN-1 1’313 986 75 %
AID-EN-5-RUN-2 1’384 1098 79 %
AID-EN-5-RUN-3 1’697 1326 78 %

Table 4.2.: Absolute number of miss-classified files per run and how many of them are
miss-classified in other runs (correlation).

Table 4.2 lists how many errors were made in the evaluation per model. The correlation
tells how many incorrectly classified files can also be found incorrectly in one of the other
models. On average, about 77 % of all files were miss-classified in more than one model.
This could be an indicator that the quality of this data is not good.

indian predicted/actual positive negative
positive 502 153
negative 303 2’096

Table 4.3.: Indian accent: binary confusion matrix of all 3’054 files in test-data (F1:0.69,
Precision: 0.77, Recall: 0.62)

For the indian accent, there were 153 false-positive classifications and 303 false-negatives,
as seen in Table 4.3. 105 of the 153 files classified as indian were listened to more closely.
These then were classified by hand, resulting in 55 with a clear indian accent. Table 4.4
lists the first 85 files with the highest confidence classified by the AID-EN-5-RUN-1
model. Surprisingly, when the model classifies a file as indian with a confidence greater
than or equal to 90 %, the probability of the file having a wrong label is still 81 %. The
overall F1-score for the prediction of the indian accent resulted in 0.69. Therefore, if
an F1-score of around 0.7 is reached, the model’s capability to detect miss-labelled data
is good enough. Most of the miss-labelled files were intended to have an us speaker in
them. The problem is that these labels come from user input, and anyone can enter
what they want. The 303 false-negatives, on the other hand, of which 30 were listened
to, almost all seem to have an indian accent. Therefore, these errors can be counted as
real miss-classifications.
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model’s confidence correctly classified as indian total classified as indian accuracy
≥ 99 % 18 21 86 %
≥ 95 % 35 43 81 %
≥ 90 % 42 52 81 %
≥ 80 % 52 71 73 %
≥ 70 % 54 85 64 %

Table 4.4.: Accumulated miss-classifications of model AID-EN-5-RUN-1 errors in rela-
tion to its confidence. Accuracy represents the correctly classified files when
errors are relabelled by hand.

Conclusion
More than 1’000 samples with an average length of five to six seconds are needed to train
a more successful classifier. Especially when learning to distinguish similar accents, more
data is needed. The F1-score increases as more data is available, but 5’000 samples per
class is still not enough to achieve acceptable performance. As described in sanity testing,
the quality of the test-data needs to be improved as the model correctly classified the
files when its confidence was high. If the detection of incorrectly labelled test-data is
taken as a benchmark, it could be suggested that from an F1-score of 0.7 per class, the
model can detect miss-labelled data if the confidence is above 90 %.

4.2.2. Spanish
Apart from identifying accents in another language, the Spanish experiments have one
more class to predict compared to the English accents. Therefore, the results shown
in Table 4.5 also show that the F1-scores are much lower overall. However, they do
not seem to improve much when the volume per class is increased in training. What
stands out are the experiments AID-ES-2 with a volume per class of 2’000, which have
a lower F1-score than the experiments with less training data and have a particularly
high standard deviation. Even though the high standard deviation is mainly due to one
particularly bad run, the other runs were not much better, as seen in Appendix A.1.2.

ID volume per class average F1 standard deviation
AID-ES-1 1’000 0.258 0.011
AID-ES-2 2’000 0.226 0.034
AID-ES-3 3’000 0.258 0.017
AID-ES-4 4’000 0.266 0.020

Table 4.5.: Results of Spanish Accent Identification experiments and their averaged F1
over all runs.
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By investigating the corresponding confusion matrices from the worst run with 1’000
samples and the best run with 4’000 samples per class in Figure 4.4, it does not look very
promising at first glance. However, when looking more closely at the miss-classifications
of the best performing model represented in purple, it can be seen that even if andino
is rarely classified correctly, it gets confused with the accents caribe, mexicano and
rioplatense rather than nortepeninsular and surpeninsular. On the other hand, norte-
peninsular gets confused with centrosurpeninsular and of all Hispanic American accents,
only mexicano.

Figure 4.4.: Confusion Matrix of best AID-ES-4 and worst AID-ES-1 performing Spanish
model.

This tendency led to the assumption that even though the classifier has difficulties iden-
tifying all seven accents, it can assign them to the two groups mentioned in Section 3.2:
Hispanic-America and Spain. To check this, the evaluation of all three runs of the AID-
ES-4 experiment were repeated and the resulting predictions grouped according to their
geographical affiliation. The result was a classifier with an average F1-score of 0.712
and a standard deviation of 3.93 %. This is great, considering that the classifier was not
trained on this particular task. It could be assumed that it would have been even better
if trained on this binary task. However, this was not pursued. The detailed confusion
matrices of the three runs can be seen in Figure 4.5.
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(a) Absolute values of binary evaluation (b) Normalized values of binary evaluation

Figure 4.5.: Confusion Matrices of binary evaluation of AID-ES-4.

Figure 4.5 shows that as in the original experiment AID-ES-4, the first run was again
the best run with the fewest miss-classifications. However, the other two are directly
inverted. It is also noticeable that the second run has a strange bias for Spain that is
not noticeable in the others. This makes it difficult to say whether there is a correlation
between success in training in the original setting and the evaluation in the binary
setting.

Conclusion
The results of the Spanish experiments are a little worse than the English ones. The
difference is that in the case of Spain, it was tried to classify three accents within one
country. It also seems that the Hispanic American accents are more similar to each
other. As the binary evaluation showed, the distinction between these two groups works
much better. However, since we do not comprehend Spanish, it is difficult to analyse
these results more deeply.
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4.3. Sample Length Evaluation
In this experiment, it was evaluated how well a trained model can classify shorter sample
lengths. All evaluations were done for each of the models trained in the AID experi-
ments AID-EN-5 and AID-ES-4. A detailed listing of these results can be found in
Appendix A.2.2 and A.2.3.

ID length average F1 standard deviation
SL-EN-1 1s 0.165 0.012
SL-EN-2 2s 0.241 0.014
SL-EN-3 3s 0.279 0.016
SL-EN-4 4s 0.301 0.020
SL-EN-5 5s 0.315 0.015
SL-ES-1 1s 0.144 0.014
SL-ES-2 2s 0.183 0.020
SL-ES-3 3s 0.207 0.014
SL-ES-4 4s 0.222 0.012
SL-ES-5 5s 0.225 0.015

Table 4.6.: Results of English and Spanish sample length evaluation experiments and
their averaged F1 over all runs.

Table 4.6 shows the reached average F1-scores for a certain length of input data, classified
by the different models and their corresponding standard deviation. It mainly shows that
for both languages, Spanish and English, the classification was random for the 1-second
samples. English had six different accents to classify and Spanish seven, resulting in 1/6
and 1/7 of hitting the correct class. The longer the sample, the better is the achieved
F1-score. However, it is crucial to consider that the evaluation was made on models
trained with a maximum sample length of ten seconds. Moreover, it could be possible
that models trained on shorter lengths would have performed better, as wav2vec is
specialised in building contextualised representations over longer sequences. In addition,
our classifier was trained on the output from wav2vec of longer sequences, which makes
it harder for our model to classify shorter samples.
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Figure 4.6.: Confusion Matrix English with best run for each sample length.

When taking a deeper look into the English classification results with the best perform-
ing models for each sample length. The confusion matrix in Figure 4.6 shows that the
models are more biased to classify towards the english accent the shorter the samples
are. If the 5s and the 10s evaluation are compared. For the 5s model, the indian accent
is classified mostly wrong as english, whereas in the 10s model, the favourable choice
was us. The favourable choice of us in the 10s reflects the dataset, as there are false
labelled indian accented files in the us dataset. In terms of classifying almost everything
as english, a possible explanation could be that english acts like a neutral accent, and it
generalises best for all different accents. However, this theory has not been investigated
further.

Similar behaviour can be observed in the Spanish Experiment. Although the previ-
ously proposed generalisation happens between mexicano and nortepeninsular instead
of only one accent, as shown in Figure 4.7. However, the overall performance of the
Spanish models are worse than those of the English ones and lay nearer the random
threshold.
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Figure 4.7.: Confusion Matrix Spanish with best run for each sample length.

Conclusion
To identify an accent with a classifier trained on a maximum of ten seconds, it is prefer-
able to have input data as long as possible. On the other hand, we also see a trend of
all trained models that are biased towards one accent if the length of the sample gets
shorter.

4.3.1. Most voted
In the most voted experiment, the idea was to increase the accuracy by slicing one file
into multiple samples, evaluating each of them and counting the votes. The final clas-
sification is therefore done on one file and not just on one slice. Finally, the class with
the most votes per file is selected.

In Table 3.8, it can be observed that the evaluation is not getting better for the English
models, especially for the 1-second slicing; it performs 40 % worse than the evaluation
did on each sample on its own. On the contrary, the Spanish models performed better
with the most votes evaluation. However, these numbers have to be considered as not
too accurate as each time multiple classes have the same amount of votes; a random class
is chosen. This especially gets problematic when comparing the results of the 3s-runs as
the average length is under six seconds, resulting in only two possible votes.
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ID length average F1 standard deviation average F1 only 1 sample
MV-EN-1 1s 0.099 0.03 0.165
MV-EN-2 2s 0.221 0.023 0.241
MV-EN-3 3s 0.268 0.017 0.279
MV-ES-1 1s 0.157 0.016 0.144
MV-ES-2 2s 0.202 0.019 0.183
MV-ES-3 3s 0.214 0.015 0.207

Table 4.7.: Results of English and Spanish most voting evaluation experiments and their
averaged F1 over all runs compared to the corresponding average score from
Table 3.7.

Conclusion
The most-voted prediction does not benefit from better accuracy. Especially when files
get longer, it is hard to classify a file when only two votes are possible. Furthermore, the
performance is still coupled to the overall performance in classifying one short sample.

4.4. Age Identification
Looking at the age identification results summarised in Table 4.8, the documented F1-
score ranges from 0.30 to 0.36. Even though the score seems to rise with increasing
training data, the differences cannot be considered significant because the standard
deviation is relatively high.

ID volume per class average F1 standard deviation
AGE-1 1’000 0.303 0.018
AGE-2 2’000 0.340 0.016
AGE-3 3’000 0.351 0.004
AGE-4 4’000 0.360 0.024

Table 4.8.: Results of Age Identification experiments and their averaged F1 over all runs.

However, when looking more closely at the confusion matrix of the best run in experiment
AGE-4, shown in Figure 4.8, some interesting constellations in the normalised values
stand out. The difference to all other experiments is that the age is continuous, which
means that the order of the classes has a meaning.
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Figure 4.8.: Confusion Matrix of best AGE-4 performing age identification model.

The class fifties in the first row of the matrix in Figure 4.8 is mainly confused with the
classes sixties-nineties and fourties and less with the classes teens, twenties and thirties.
This observation can be made for most classes, leading to the Macro Averaged Mean
Absolute Error (MAEM) defined as a metric for this experiment.

ID volume per class average F1 standard deviation
AGE-1 1’000 1.077 0.022
AGE-2 2’000 1.005 0.024
AGE-3 3’000 1.006 0.005
AGE-4 4’000 0.982 0.039

Table 4.9.: Results of Age Identification experiments and their averaged MAEM over all
runs.

The measurements on the MAEM to the correct classifications, documented in Table 4.9,
show that the actual average error is about one class apart. This puts the errors of the
classifier into perspective and shows that it is not necessarily as bad as the F1-score
alone makes it look. It is also important to point out that identifying a person’s age just
by their voice is not very easy, even for a human.
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In the sanity testing, it was considered whether the sex of the speaker could influence
the result of the age identification. For this purpose, the misclassified samples were ex-
amined more closely. It was found that over all three runs, a total of 3’632 samples were
incorrectly classified. These were produced by a total of 508 different speakers. The sex,
however, seemed not to influence the classifications, as can be seen in Appendix A.2.6.
The distributions were almost similar.

For further investigations, all speakers that produced errors in all three repetitions were
attributed by their absolute error. The ones with an error greater than or equal to four,
were listened to more closely. The results did not yield much insight. However, it was
suspected that speakers who had a bad microphone, spoke very loudly or very softly, or
generally spoken more unclearly often fell into the sixties-nineties category even when
they were very young. To check this, an attempt was made to classify own recordings
of the same speaker saying the same sentence under different conditions. The tests were
carried out with six different people, three of whom were female and three male. The age
distribution for both sexes was two twenties and one fifties. The tested conditions were:
normal, with background noise, far from the microphone and close to the microphone.
The results in Table 4.10 do not confirm the assumption. However, they show that the
setting influences the quality of the classification, whereby the settings of the different
distances to the microphone had the greatest influence with the greatest MAEM.

condition twenties fifties female male MAEM
normal 4 2 3 3 1.125

background noise 4 2 3 3 1.375
far from microphone 4 2 3 3 1.542
close to microphone 4 2 3 3 1.667

Table 4.10.: Results of Age Sanity Testing on self-generated inputs and their averaged
MAEM over all runs.

Conclusion
Interestingly, age identification works to some extent, especially when looking at the
MAEM. Moreover, the sex does not seem to have any influence on the quality of the
classification. However, the setting seems to matter. This makes it difficult to judge
whether the classifier learned the classification based on voice or other factors in the
recordings. It is quite conceivable that the way different age groups dictate a text differs
so much that they can be distinguished.
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4.5. Sex Identification
Table 4.11 shows the results on sex identification. It is noticeable that, with only 1’000
samples per sex in training, an F1-score above 0.85 is already achieved. Furthermore,
the standard deviation between repeated runs is very low, except for experiment SEX-3,
which had one run with an F1-score of only 0.72, resulting in a high standard deviation.

ID volume per class average F1 standard deviation
SEX-1 1’000 0.869 0.004
SEX-2 2’000 0.874 0.006
SEX-3 3’000 0.804 0.059
SEX-4 4’000 0.900 0.022

Table 4.11.: Results of Sex Identification experiments and their averaged F1 over all
runs.

When investigating the worst run of SEX-1 and the best run of SEX-3 in Figure 4.9, an
apparent reduction of the produced errors can be observed. It is around 50 % less for
the male miss-classifications, and for the female classifications, the reduction is around
30 % less. This is an excellent result as the best run had only 66 miss-classifications
throughout the total 1’991 evaluations, which is about 3.3 %.

Figure 4.9.: Confusion Matrix of best SEX-4 and worst SEX-1 performing sex identifi-
cation model.

Another interesting finding that emerged subsequently concerns the age distribution of
miss-classifications per sex. The miss-classified samples from all three runs of the SEX-4
experiment were reviewed and grouped by sex and age. The results in Figure 4.10 show
that more than two-thirds of all miss-classifications relate to teens and twenties for the
male samples. At the same time, no specific trend can be identified for female miss-
classifications. Although most miss-classifications for females also relate to twenties,
there are none for teens. This was followed by examining whether there were any female
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teens at all in the test data, which yielded 33 samples, representing 13.4 % of all female
samples. Overall, the observed pattern seems plausible since children have high-pitched
voices. This contrast is particularly pronounced in males, making it more difficult, even
for humans, to identify a child’s sex by voice alone.

(a) Female test-data

teens
twenties
thirties
fourties
fifties
sixties
seventies
eighties
unknown

(b) Male test-data

(c) Female miss-classifications (d) Male miss-classifications

Figure 4.10.: Distributions of test-data and miss-classifications by sex and age of SEX-4.

Since the corpus is in German, it was easy to subject the results to a more in-depth
examination: It turned out that 284 errors were produced by only 66 different speakers
across all repetitions of the experiment. Of these, 18 speakers produced errors in all
three runs, with a total of 155 errors. Therefore, the samples of these speakers were
listened to more closely. The associated findings are documented in Table 4.12.

number of speakers total of samples findings of analysis
9 75 young and hard to distinguish
4 41 wrong metadata
3 18 poor German pronunciation
2 21 older female
18 155 total

Table 4.12.: Findings of Sex Sanity Testing when listening to miss-classified samples.

These show that it is indeed challenging to distinguish between young people. A total
of nine speakers and 75 samples fell into this category. Furthermore, it stood out that
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there seems to be miss-labelled metadata in the corpus. Four speakers and 41 samples
are, in our opinion, incorrectly labelled. However, it is worth mentioning that the
survey in Common Voice is done under the term gender and not sex. Therefore, these
four individuals may identify with this gender, making the assessment difficult in this
context. In addition, three speakers were found to have poor German pronunciation and
two older female speakers. Together they produced another 39 errors.

Conclusion
It is impressive how well wav2vec can determine sex. Especially when looking at the
results of the sanity checks, which show that the model has most of the same difficulties
as if the job was given to a human. It is also possible to achieve good results with
only a small amount of training data. What also stands out is that the same speaker is
classified chiefly the same way, regardless of what he says. This shows in this context the
importance of having speaker independence, especially in evaluation, as it can quickly
distort an F1-score otherwise.
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5. Discussion and Outlook
Wav2vec is a powerful tool that currently achieves the best scores in ASR with little
data. It learns speech representation based on which speech classification systems can
be trained. Through experiments in the areas of AID, age identification and sex iden-
tification, this thesis has demonstrated further possibilities. Many insights that can
contribute to training successful speech classifiers based on wav2vec have been gained
in this process.

When AID and DID are compared, it is essential to respect the difference. An accent, by
definition, describes a different pronunciation, while a dialect is a separate form of lan-
guage with its own grammar and words besides different pronunciation. Therefore AID
is a more complex task than DID. Related to this, it was found that it depends on how
the data of a corpus is collected. In this sense, a distinction was made between freely-
spoken speech, which corresponds more to the setting of DID and read-speech, which
corresponds more to the setting of AID. Therefore, the results presented in this thesis
can not compete with the achievements of DID in Arabic. All experiments conducted
were repeated three times. Therefore, the observed differences cannot be considered
statistically significant. For that reason, the results should be treated with a certain
degree of caution. However, as the experiments have been conducted on low-resource
datasets, our conclusions focus on these amounts explicitly.

The experiments in AID have shown that it is possible to train a classifier on wav2vec to
distinguish between accents with only around eight hours per accent. It turned out to
be difficult to distinguish similar accents. In evaluations with grouped accents, however,
better results have been achieved. In addition, a trained classifier was able to detect
wrong labelled samples in the test-data as shown with the Indian accent. The SLE
experiment has shown that shorter samples are more challenging to classify than longer
samples. It is unclear whether longer samples or shorter samples should be used for
training to improve the results. Both seem to have potential because in training with
shorter samples, the training would be better adapted to the evaluation, whereas in
training with longer samples, more interconnected features of an accent can be learned.
Most Voting could not cause an increase in accuracy of the prediction of short samples.
As the original samples were already short, only a small number of votes could be given.
Several accents often received the same number of votes, which added certain random-
ness from which it was not possible to benefit. However, age and sex classification have
proved that wav2vec’s ability in learning speech representation can be used for entirely
unrelated ASR tasks. However, the age classification experiment has experienced a de-
pendency on the audio recording setting. Therefore, it cannot be ruled out that the
classification is based on factors other than speech. In contrast to the AID experiment,
the sex classification reached high scores with a low-resource dataset.
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This thesis has succeeded in showing that wav2vec can be used for a wide range of
applications in speech classification as it was possible to classify speech with a small
amount of data. Moreover, even if the scores obtained do not yet correspond to the
desired values, the insights gained can be used to explore the field further.

Training neural networks is a computationally expensive task, especially when building
on top of large pre-trained deep neural networks as wav2vec XLSR. Through limita-
tions in time and computing capacity, it was not possible to conduct further thorough
investigations. We propose to investigate whether it makes sense to focus on grouping
similar dialects. Therefore, better results could be achieved if little data is available.
On the other hand, it is equally interesting how wav2vec would behave with much more
data. The data could be more valuable if it contained freely-spoken speech to repre-
sent a more realistic scenario for DID. Also, concerning training, better results could
be achieved with longer samples. In terms of most voted classification, it could be pos-
sible that there are opportunities in evaluating longer audio samples. As seen in the
age and sex experiment, speakers are consistently classified into the same class. There-
fore it could be possible that speaker identification is another scenario where wav2vec’s
characteristics could be applied.
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Adam derived from adaptive moment estimation, is a popular optimization algorithm

used in the field of deep learning. 24
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powered by the reference open source in natural language processing.. 22, 24

Klaam Arabic dialect classifier based on wav2vec 2.0 XLSR.. 22, 23
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wav2vec 2.0 A Framework for Self-SupervisedLearning of Speech Representations cre-
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A. Appendix

A.1. Training details
A.1.1. English Accent Identification

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
AID-EN-1 8h 8m 0.3129 0.3757 0.3480 0.345533 0.025697
AID-EN-2 14h 18m 0.3635 0.3795 0.3445 0.362500 0.014306
AID-EN-3 20h 27m 0.3673 0.3749 0.3680 0.370067 0.003430
AID-EN-4 25h 42m 0.3861 0.3616 0.3549 0.367533 0.013411
AID-EN-5 32h 22m 0.4134 0.4081 0.3667 0.396067 0.020878

Table A.1.: English accent identification results

A.1.2. Spanish Accent Identification

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
AID-ES-1 4h 53m 0.2653 0.2426 0.2660 0.257967 0.010870
AID-ES-2 8h 59m 0.2461 0.1773 0.2531 0.225500 0.034202
AID-ES-3 13h 19m 0.2614 0.2354 0.2762 0.257667 0.016864
AID-ES-4 17h 25m 0.2889 0.2682 0.2397 0.265600 0.020170

Table A.2.: Spanish accent identification results

A.1.3. Age Identification F1

ID time/run F1 run 1 F1 run 2 F1 run 3 average standard deviation
AGE-1 3h 44m 0.2915 0.3278 0.2891 0.302800 0.017705
AGE-2 7h 7m 0.3243 0.3340 0.3622 0.340167 0.016075
AGE-3 10h 34m 0.3498 0.3560 0.3475 0.351100 0.003590
AGE-4 14h 40m 0.3428 0.3441 0.3932 0.360033 0.023458

Table A.3.: Age identification results F1
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A.1.4. Age Identification MAEM

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
AGE-1 3h 44m 1.072 1.053 1.105 1.076667 0.021484
AGE-2 7h 7m 1.004 1.034 0.9756 1.004533 0.023845
AGE-3 10h 34m 1.01 0.9988 1.009 1.005933 0.005061
AGE-4 14h 40m 1.01 1.009 0.9259 0.981633 0.039412

Table A.4.: Age identification results MAEM

A.1.5. Sex Identification

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
SEX-1 1h 36m 0.8638 0.8734 0.8711 0.869433 0.004093
SEX-2 2h 48m 0.8758 0.8813 0.8661 0.874400 0.006284
SEX-3 4h 1m 0.7192 0.8507 0.8375 0.802467 0.059125
SEX-4 5h 12m 0.8712 0.9235 0.9061 0.900267 0.021746

Table A.5.: Sex identification results

A.2. Evaluation
A.2.1. Spanish Binary Evaluation

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
SL-ES-4 4m 48s 0.7610 0.6648 0.7111 0.712300 0.039283

Table A.6.: Spanish sample length evaluation results

A.2.2. English Sample length

ID length time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
SL-EN-1 1s 38m 57s 0.1520 0.1817 0.1634 0.165700 0.012234
SL-EN-2 2s 25m 41s 0.2471 0.2556 0.2216 0.241433 0.014447
SL-EN-3 3s 20m 20s 0.2889 0.2916 0.2560 0.278833 0.016183
SL-EN-4 4s 19m 5s 0.3159 0.3146 0.2722 0.300900 0.020301
SL-EN-5 5s 16m 4s 0.3334 0.3165 0.2962 0.315367 0.015208

Table A.7.: English sample length evaluation results

56



A.2.3. Spanish Sample length

ID length time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
SL-ES-1 1s 22m 25s 0.1634 0.1288 0.1427 0.144967 0.014216
SL-ES-2 2s 12m 13s 0.2058 0.1571 0.1861 0.183000 0.020002
SL-ES-3 3s 8m 49s 0.2272 0.1978 0.1957 0.206900 0.014380
SL-ES-4 4s 7m 24s 0.2388 0.2148 0.2110 0.221533 0.012308
SL-ES-5 5s 6m 30s 0.2441 0.2232 0.2071 0.224800 0.015147

Table A.8.: Spanish sample length evaluation results

A.2.4. English most voted

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
MV-EN-1 21m 7s 0.0984 0.0626 0.1353 0.098767 0.029681
MV-EN-2 17m 49s 0.2504 0.1930 0.2209 0.221433 0.023436
MV-EN-3 17m 21s 0.2836 0.2757 0.2435 0.267600 0.017344

Table A.9.: English most voting evaluation results

A.2.5. Spanish most voted

ID time/run f1 run 1 f1 run 2 f1 run 3 average standard deviation
MV-ES-1 22m 59s 0.1631 0.1343 0.1742 0.157167 0.016823
MV-ES-2 19m 46s 0.2159 0.1753 0.2161 0.202413 0.019152
MV-ES-3 19m 28s 0.2324 0.1954 0.2151 0.214306 0.015123

Table A.10.: Spanish most voting evaluation results

A.2.6. Age Sanity Tests

sex run 1 run 2 run 3 sum percentage corpus percentage
female 155 150 152 457 12.58 % 245 12.15 %
male 1’033 1’054 1’009 3’096 85.24 % 1’734 86.01 %
other 14 13 10 37 1.02 % 19 0.94 %

unknown 12 17 13 42 1.16 % 18 0.89 %
total 1’214 1’234 1’184 3’632 100 % 2’016 100 %

Table A.11.: Age Corpus and miss-classifications distribution by sex
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AGE-4 run 1 AGE-4 run 2 AGE-4 run 3
condition twenties fifties twenties fifties twenties fifties avg. twenties avg. fifties macro avg.
normal 0.5 2 0 2 0.25 2 0.250 2.000 1.125
noise 0.75 3.5 0.25 1.5 0.75 1.5 0.583 2.167 1.375

far from mic 0.75 3.5 0 2.5 0.5 2 0.417 2.667 1.542
close to mic 0.75 2.5 0 3.5 0.75 2.5 0.500 2.833 1.667

Table A.12.: MAEM of age sanity tests per class

A.2.7. Sex miss-classifications

SEX-4 run 1 SEX-4 run 2 SEX-4 run 3
age female male female male female male total female total male
teens 0 38 0 17 0 22 0 77

twenties 5 38 8 16 6 26 19 80
thirties 0 20 4 2 5 7 9 29
fourties 4 11 4 1 4 3 12 15
fifties 0 4 4 0 4 1 8 5
sixties 1 2 7 0 6 1 14 3

seventies 0 1 2 0 0 0 2 1
eighties 0 0 0 0 0 0 0 0
nineties 0 0 0 0 0 0 0 0
unknown 0 8 0 1 0 1 0 10
total 10 122 29 37 25 61 64 220

Table A.13.: Absolute number of sex miss-classifications grouped by age

age total female percentage total male percentage overall percentage macro averaged
teens 0 0.00 % 77 35.00 % 27.11 % 17.50 %

twenties 19 29.69 % 80 36.36 % 34.86 % 33.03 %
thirties 9 14.06 % 29 13.18 % 13.38 % 13.62 %
fourties 12 18.75 % 15 6.82 % 9.51 % 12.78 %
fifties 8 12.50 % 5 2.27 % 4.58 % 7.39 %
sixties 14 21.88 % 3 1.36 % 5.99 % 11.62 %

seventies 2 3.13 % 1 0.45 % 1.06 % 1.79 %
eighties 0 0.00 % 0 0.00 % 0.00 % 0.00 %
nineties 0 0.00 % 0 0.00 % 0.00 % 0.00 %
unknown 0 0.00 % 10 4.55 % 3.52 % 2.27 %
total 64 100.00 % 220 100.00 % 100.00 % 100.00 %

Table A.14.: Distribution of sex miss-classifications by age
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A.3. Significance tests results

Pair T statistic p value significantly different (<=0.05)
AID-EN-5 AID-EN-1 1.9978 0.1838 False

AID-EN-2 4.0089 0.057 False
AID-EN-3 1.8376 0.2075 False
AID-EN-4 2.8431 0.1047 False

AID-ES-4 AID-ES-1 0.4496 0.697 False
AID-ES-2 1.3305 0.3148 False
AID-ES-3 0.3562 0.7557 False

SL-EN-5 SL-EN-1 9.4265 0.0111 True
SL-EN-2 10.0728 0.0097 True
SL-EN-3 6.1425 0.0255 True
SL-EN-4 2.2061 0.1581 False

SL-ES-5 SL-ES-1 9.2068 0.0116 True
SL-ES-2 3.182 0.0862 False
SL-ES-3 4.3956 0.0481 True
SL-ES-4 0.8845 0.4698 False

MV-EN-3 MV-EN-1 5.3823 0.0328 True
MV-EN-2 2.4926 0.1302 False

MV-EN-1 SL-EN-1 -2.4697 0.1322 False
MV-EN-2 SL-EN-2 -0.9376 0.4474 False
MV-EN-3 SL-EN-3 -3.5949 0.0694 False
MV-ES-3 MV-ES-1 6.7664 0.0212 True

MV-ES-2 1.821 0.2102 False
MV-ES-1 SL-ES-1 1.2511 0.3374 False
MV-ES-2 SL-ES-2 3.3635 0.0782 False
MV-ES-3 SL-ES-3 1.1583 0.3664 False
AGE-4 AGE-1 2.2428 0.1541 False

AGE-2 3.2719 0.0821 False
AGE-3 0.4845 0.6759 False

SEX-4 SEX-1 2.4664 0.1325 False
SEX-2 1.6966 0.2319 False
SEX-3 3.6052 0.0691 False

Table A.15.: F1 Significance test results

Pair T statistic p value significantly different (<=0.05)
AGE-4 AGE-1 -2.2438 0.154 False

AGE-2 -1.4212 0.2912 False
AGE-3 -0.8224 0.4973 False

Table A.16.: MAEM Significance test results
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A.4. Code
The code used for this thesis can be viewed on Github.com :
https://github.com/DReiser7/w2v_did
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