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Abstract

Transcribing audio recordings of interviews or meetings manu-

ally is time-consuming. An automated system could therefore

help to speed up the process. When creating a conversation tran-

scription system, the task of speaker diarization (SD) is one of

the most challenging ones.

In this thesis we present a solution, which uses a speaker iden-

tification (SI) system based on a convolutional neural network

(CNN) developed by the Visual Geometry Group (VGG). In or-

der to tailor the system for SD it was solely trained on audio

data.

Short, a-priori voice samples of each speaker are used to adapt

the system to a new conversation instantly. Self-designed heuris-

tics support the system on how the results from the identifica-

tion part should be interpreted. To assess the best fitting param-

eters, Verbmobil II, a speech corpus, was used. Verification of

these parameters was done with the LibriSpeech corpus to en-

able comparison with other state-of-the art speaker recognition

(SR) projects.

We determined that speech samples of 25 seconds are sufficient

to minimize the diarization error rate (DER). On the LibriSpeech

corpus, the system achieved a DER of 1.7% and an accuracy of

95.7% with two speakers. For five speakers, a DER of 4.8% and

an accuracy of 91.8% was reached.



Zusammenfassung

Das Transkribieren von Interviews und Dialogen ist zeitaufwän-

dig. Ein automatisiertes System könnte daher helfen, den Pro-

zess zu beschleunigen. Bei der Entwicklung eines solchen Sy-

stems ist die Aufgabe der Sprechererkennung (”speaker diariza-

tion”) eine der grössten Herausforderungen.

In dieser Arbeit wird eine Lösung präsentiert, welche ein Sy-

stem zur Identifikation von Sprechern (”speaker identification”)

verwendet. Die Basis bildet ein Convolutional Neural Network

(CNN), welches auf Audiodaten trainiert wurde. Dieses neuro-

nale Netz wurde von der Visual Geometry Group entwickelt

und trägt daher den Namen VGG.

Kurze, a-priori Stimmproben jedes Sprechers wurden verwen-

det, um das System dynamisch an ein neues Gespräch anzupas-

sen. Heuristiken unterstützen bei der Interpretation der Ergeb-

nisse. Der Sprachkorpus Verbmobil II wurde verwendet, um die

optimalen Parameter unseres Systems zu ermitteln. Um einen

Vergleich mit anderen aktuellen Sprecher-Erkennungs-Systemen

zu ermöglichen, wurde die Verifikation mit dem LibriSpeech

Korpus durchgeführt.

Es wurde festgestellt, dass Sprecherproben von 25 Sekunden

ausreichen, um die Fehlerrate der Sprechererkennung (”DER”)

zu minimieren. Auf dem Korpus LibriSpeech erreichte das Sy-

stem mit zwei Sprechern eine DER von 1.7% und eine Genau-

igkeit (”accuracy”) von 95.7%. Bei fünf Sprechern wurde eine

DER von 4.8% und eine Genauigkeit von 91.8% erreicht.
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Chapter 1

Introduction

Nowadays, automation moves forward at an ever-faster pace. How-

ever, transcribing audio recordings is still often done by hand. Auto-

mated transcription systems are able to take over this task, but they

face several problems during this procedure.

One challenge of automatic text transcription is to identify who is

currently speaking. If no preliminary information about the speakers

is present, a speaker diarization (SD) system is used to detect speaker

changes within an audio file and to identify, when the same speaker

resumes speaking.

A simplification of a SD system is a speaker identification (SI) system.

A SI system finds the actual speaker among a list of predefined speak-

ers. Therefore, initial voice recordings of each user have to be present.

Speaker verification (SV) is a further simplification of SI and verifies

whether a given utterance fits a claimed identity or not. Speaker

recognition (SR) is the umbrella term for SV, SI and SD, with the

terms set in order of increasing complexity.

On this background, it will be evaluated in this thesis, how a SD

system can be simplified by a SI system, when short audio recordings
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of each participant are available as a-priori information.

1.1 Related Work

If an audio stream with multiple speakers is divided into homoge-

neous segments (speaker change detection) and assigned to these

speakers (speaker clustering), it is called SD. As shown by Tranter

and Reynolds [1], SD systems have so far been used for different

types of audio, which differ not only in their quality of recordings

but also in the number of speakers, the duration and sequencing of

speaker turns.

Modern SD solutions follow different methods. SD with unsuper-

vised i-vector clustering proposed by Dehak et al. [2] has gained great

attention in recent years due to its outperforming results. I-vector ar-

chitectures recommend a process, where vectors are extracted from

short excerpts of speech and are organized into speaker clusters [3].

These vectors have the characteristics of reducing the dimensions to a

fixed-length feature vector while preserving the relevant information.

Neural networks are state-of-the-art in many classification problems,

especially image classification. Deep neural networks (DNN) can be

used for classification (direct method) or for feature extraction that is

then used to train a secondary classifier (indirect method) [4]. The

indirect method allows the DNN to transfer knowledge gained from

one problem where a lot of labelled data is present and then reuse it

to solve a similar problem. This technique is called transfer learning.

Nowadays, Neural Networks (NN) are not only used in standard im-

age classification problems, they are also seen as an appropriate al-

ternative for audio classification using i-vectors. To visualize audio
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streams for DNNs, spectrograms are typically extracted from audio

segments [4]. In-depth explanation on spectrograms will be discussed

in section 2.1.1.

Convolutional Neural Networks (CNN), a subcategory of DNNs, are

frequently used in SR systems. However, their application has been

evaluated especially in image classification, where they are proven to

be very effective [5]. CNNs like AlexNet [5], Inception [6], ResNet

[7] and VGG [8] emerged from intense investigation. After the pub-

lication of large image repositories, such as ImageNet [9], they ex-

perienced an enormous upturn due to the now available amount of

training data. Research has shown that CNNs, which are used for im-

age classification, also perform well in audio classification tasks [10].

Similarly to image classification, the provision of large scale audio

datasets like VoxCeleb [11] or LibriSpeech [12] have also given this

research area a boost.

The use of VGG, a model developed by the Visual Geometry Group

from the University of Oxford, for SI has already been evaluated in

various forms and is also used in this thesis (section 2.1.3). In 2016,

Eghbal-Zadeh et al. [13] participated in the DCASE2016 challenge, a

challenge covering the detection and classification of acoustic scenes

and events. They won the challenge by using a hybrid system with

multi-channel i-vectors and VGG.

In 2018, Vélez, Rascon and Fuentes-Pineda [14] proposed a Siamese

CNN architecture in the context of one-shot SI. The CNN takes over

the task of extracting proper audio features and a classifier deter-

mines the similarity between these features. The VGG architecture,

which was trained on VoxCeleb [10] or LibriSpeech [11], was among

the top three performing models of their research.
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1.2 Main Objective

The primary objective of this thesis is to implement a SI system which

can be trained and adapted to new voices in near real-time. As few

utterances as possible from each speaker should be used to tailor

the system to the given conversation. One investigated solution will

be implemented and applied to a chosen speech corpus to assess its

feasibility and properties.

The initial problem description can be found in the appendix under

section 7.4.

1.3 Sub-Objectives

In addition to the main goal described in the section above, there are

several sub-objectives which will be addressed in this document.

1.3.1 Host System on Own Infrastructure

The designed solution would ideally be able to run on private infras-

tructure. There are several reasons why this can be important:

• No dependence on a third party provider is created. The sys-

tem won’t be affected by interruptions or other changes in an

external system.

• No additional costs are incurred through the use of external

services.

• Sensitive data that may be present in the conversation will not

be passed to third parties.
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1.3.2 Keep Error Rate as Low as Possible

The key metric to evaluate the system is the diarization error rate

(DER). This measurement is described in a more detailed manner

in section 2.2.2. The DER of 7.6% from Google’s fully supervised

speaker diarization approach by Zhang et al. [15] is taken as a refer-

ence for the system to develop.

1.4 Secondary Objectives

Depending on the remaining time and progress on the main objec-

tives, a stretched objective is defined.

1.4.1 Create Voice Database

With the solution described above, the system can only use short au-

dio fragments to learn the voice of a speaker. This secondary objective

defines the next step to further lower the error rate and improve the

model’s overall accuracy by creating a voice database. This database

contains verified voice chunks for each speaker from previous conver-

sations. This data can be re-used in the case that the same person

attends a further discussion.

1.5 Thesis Overview

This section provides a brief overview of this thesis.

Theoretical Background (chapter 2) This chapter explains the core

concepts used for the chosen implementation.

Approach and Methods (chapter 3) This section covers the system

architecture and implementation as well as details of how the system
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was parameterized and how results were measured and validated.

Results and Discussion (chapter 4) This part shows and discusses

the achieved results. Special attention is given to section 4.1.5 where

the best parameters to achieve a low DER are evaluated.

Conclusion (chapter 5) In this section, the significance of the results

is critically questioned. A reflection on what was achieved compared

to the initial objective will also be presented. Additionally, possible

improvements to the system and ideas will be proposed.
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Chapter 2

Theoretical Background

This chapter provides the main theoretical background and context

for SR and its evaluation, as well as the algorithms used in the thesis.

2.1 Speaker Identification

This section introduces the main techniques of the SI system used in

this thesis.

2.1.1 Log-Mel Spectrogram

The Mel-scale was first introduced in the 1930s. The goal was to

define a unit of pitch, such that distances that sounded alike to the

listener were measured as equal [16]. A Mel spectrogram is the visual

representation of sound on which the Mel-scale was applied. If the

amplitude is additionally logarithmized, the spectrogram is referred

to as Log-Mel spectrogram. The logarithmic compression of the Mel

spectrograms has been established in neural network audio classifiers

and are according to Kinnunen and Li [17] the preferred visual repre-

sentation of audio.
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2.1.2 Convolutional Neural Network

CNNs belong to the category of deep learning and are often used

in the field of computer vision. A CNN can take an image as input

and reduces it to a form which is simpler to process while capturing

relevant features. The network is then able to differentiate one image

from another [18]. Image classification is often based on CNNs for

several reasons. On one hand, images can be entered directly into

the system as input and therefore handcrafted feature extraction is

no longer necessary. On the other hand it is, on the basis of spatial

size reduction, scalable to a large amount of data [18].

2.1.3 Visual Geometry Group Model

VGG is one of various CNN architectures and one of the most used

image recognition architectures [19]. In 2014, Simonyan and Zisser-

mann demonstrated in [8] that the depth of a CNN is crucial for the

model’s accuracy. That’s the reason why VGG pays particular atten-

tion to this aspect. Additionally it was shown that the combination

of an increasing depth to 16-19 weight layers and the usage of very

small (3x3) convolution filters improves the performance of a CNN

remarkably [8].

2.1.4 VGGish

TensorFlow, an open source platform for end-to-end machine learn-

ing, provides an implementation of VGG, which was trained on the

initial AudioSet [20], a large YouTube dataset. This model was intro-

duced as VGGish [21].

AudioSet is a human labeled dataset for audio events released in 2017
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by Google [20]. The aim of this large scale dataset is to close the

research loop between image and audio [20]. The corpus comprises

labeled YouTube segments of 10 seconds which belong to one or more

class labels. The dataset has the following characteristics [20]:

• The categories have been chosen so that they describe audio

from the real-world.

• The categories are named to indicate instantly to the listener

what the sound is when it is heard.

• The categories are structured in a hierarchical way, so that, for

example, the category ”dog sounds” includes sounds of ”growl”

or ”howl” and ”dog sounds” belongs to ”domestic animals”,

which in turn is a subcategory of ”animal sounds”.

• The audio should be assignable to a category without any con-

text details or visual support.

VGGish can be used with different strategies:

• As a feature extractor With this approach the model can extract

features from the input audio, which can be fed into a classifi-

cation model afterwards. It takes over the task of the feature

extractor and can be used for transfer learning as described in

section 1.1.

• As a classifier VGGish can also directly be used for classification

by adding additional layers on top of the provided model [21].

The architecture of VGGish is based on a configuration described

in [8], which comprises eleven weight layers. However, TensorFlow

made some adjustments in their reference implementation:
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Input Image
conv2D-64

max pooling
conv2D-128
max pooling
conv2D-256
conv2D-256
max pooling
conv2D-512
conv2D-512
max pooling

global average pooling

Table 2.1: VGGish architecture implemented by TensorFlow

• The model uses an input size of 96 x 64 for log mel spectrogram

audio inputs [21].

• Only four groups of convolution / maxpool layers have been

used. For this purpose the last group of convolutional and max-

pool layers has been dropped.

Reducing the architecture to four layers, outputs the structure as

shown in table 2.1 in which all activation functions are rectified linear

units (ReLU).

2.1.5 Classification

Classification is a subcategory of supervised learning. Given some in-

put variables x, classification is the process of approaching a function

f which maps the input to discrete output variables y. These are also

called labels, categories or classes [22]. In the following the classifiers

that are used in this thesis are briefly described:

• Support vector machines (SVM) are a set of supervised learning

methods, which can be used for classification. For binary and
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multi-class classification on a dataset, Support Vector Classifica-

tion (SVC) and Linear SVC are possible characteristics of SVM.

The latter characteristic contains the term linear because of its

linear kernel [23].

• kNN is an acronym and stands for k-Nearest Neighbor. When

an input x is received, it analyses the closest k instances (nearest

neighbors) and takes the most common class, according to these

nearest neighbors, as prediction [22].

Cross-validation (CV) can be applied to all of the classifiers men-

tioned above. It is used that the risk of overfitting, a modeling error

when a function is too close to the given training data points, can

be reduced [22]. Using the basic approach, the so called k-fold CV,

the training data is partitioned into k smaller sets. The model is then

trained on k-1 of the folds as training data and the remaining part of

the data is used as test set [24].

2.2 Evaluation of the System

After training the model, different evaluations can be conducted. Two

evaluation possibilities are introduced in this section.

2.2.1 Accuracy

One metric for evaluating classification models is accuracy. It gives

an indication about the quality of the model. Accuracy is calculated

as follows [25]:

accuracy =
number of correct predictions
total number of predictions
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2.2.2 Diarization Error Rate

Another measurement possibility and the de facto standard metric for

the quality of a SD system is the DER.

DER =
false alarm + missed detection + con f usion

total speech

The numerator is the sum of false alarm, missed detection and confu-

sion. It represents the input signal that is incorrectly labeled.

• False alarm is the length of non-speech that was wrongly classi-

fied as speech.

• Missed detection is in fact the length of speech incorrectly clas-

sified as non-speech.

• Confusion represents the length of speech that was assigned to

the wrong speaker [26]. This error emerges for example through

a speaker change which is not detected [27].
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Chapter 3

Approach and Methods

This thesis covers a self-hostable system, implemented in Python,

which is described in section 1.3.1. Other approaches, such as us-

ing an established speech service, have been evaluated. For reasons

described in section 1.3.1 these services were discarded from further

evaluation. The implemented solution is solely based on open source

libraries which greatly reduces costs of running the system.

The core system consists of three main parts. Figure 3.1 shows these

parts, as well as the inner modules. Each of these parts and its mod-

ules will be explained in depth in the following sections.

3.1 Data Preprocessing

The first part of the application is responsible for preprocessing the

audio file which is given as input. After this step, the data can then

be submitted to the speaker recognition part.
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Figure 3.1: System architecture and data flow overview

3.1.1 Voice Activity Detection

Voice activity detection (VAD) is used in a wide range of different

speech technologies [28]. Since silence is not assignable to a speaker,

it must be removed from the conversation. This module analyses the

audio file and discards parts which do not include speech.

The application built for this thesis relies on Google’s VAD implemen-

tation which was developped for the Web Real-Time Communication

(WebRTC) [29], an open source application programming interface

(API) for browsers.
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Chunk No. Text
1 Grüss Gott Frau Müller
2 Frau Müller ich
3 ich komm vorbei
4 komm vorbei wegen
5 bei wegen unserer
6 unserer Geschä
7 Geschäftsrei
8 ftsreise

Table 3.1: An example of the division of an initial sentence into
chunks

3.1.2 Sliding Chunks Generation

A sliding and overlapping window algorithm, as shown in figure 3.2,

was implemented to generate equally long audio files from the out-

put of the VAD. The choice to overlap the chunks is based on the fact

that the advantages of big and small chunks can be combined. Big-

ger audio fragments contain more speech which is beneficial to the

developed system. Smaller chunks on the other hand reduce the risk

of more than one speaker in a segment.

Since there is no gold standard on how long these chunks and the

overlap between them should be, this was parameterized. Further

details on chosen parameters can be found in section 3.4.1.

Table 3.1 illustrates how a sentence of 3375 ms with the content ”Grüss

Gott Frau Müller, ich komm vorbei wegen unserer Geschäftsreise” is

divided with a chunk size of 750 ms. It is apparent that such a short

chunk size can already incorporate several words and that the gram-

matical correctness is not crucial.
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Figure 3.2: Visualization of the sliding window algorithm used to
create audio chunks

3.1.3 Spectrogram Generation

Since VGG is commonly used for image classification (as described in

section 1.1), the system needs to visualize the audio files in order to

feed them into the neural network. TensorFlow’s reference implemen-

tation for VGGish uses Log-Mel frequency spectrograms [21] which is

explained in depth in section 2.1.1. Figure 3.3 shows what the gener-

ated Mel spectrogram and Log-Mel spectrogram of four 750 ms audio

chunks seperated by 250 ms silence look like. Clearly visible is the

applied sliding window algorithm, as the second half of a preceding

chunk is the same as the first half of the next one.

3.2 Speaker Recognition

The second block is intended for the SR part. An indirect approach,

as described in section 1.1, has been chosen for the implementation.

3.2.1 Feature Extraction

VGGish, as described in section 2.1.4, is used for feature extraction.

Through this process, the prepared spectrograms are converted to 128

dimensional embeddings which can then be fed into the next module.
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Figure 3.3: Four 750 ms long audio chunks visualized as Mel spectro-
gram and Log-Mel spectrogram

3.2.2 Classification

The classification maps the features extracted by the VGGish to the

speaker. This results in the confidence of each speaker for the given

audio segment. Since there are different types of classifiers (section

3.4.1), the best one according to section 4.1.1 was chosen.

3.3 Post-processing

The SR block provided the confidences for each speaker in each au-

dio chunk. This part allows the modules to concatenate the speech

fragments as precisely as possible.
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3.3.1 Apply Heuristics

This module incorporates self-developed heuristics which define on

how the segments should be concatenated back to a whole audio file.

Two heuristics were implemented in this thesis and are used together:

1. Given three audio chunks (chunkx - 1, chunkx and chunkx + 1):

If chunkx - 1 and chunkx + 1 are assigned the same speaker but

chunkx is assigned a different one, then assign chunkx to the same

speaker as chunkx - 1.

2. Given x audio chunks (chunki, chunki+1, .. , chunki+x) of length

c which are consecutive and assigned to the same speaker but

surrounded by chunks assigned to other speakers. Further there

is a factor a (described in section 3.4.1) and a function len, which

calculates the length of a chunk in milliseconds.

If

len(chunki + .. + chunki+x) <= c ∗ a

then assign the chunks (chunki, chunki+1, .. , chunki+x) to the

speaker of chunki-1.

3.3.2 Prepare Result

This module prepares the final result. In order to generate the ulti-

mate result, the chunks were merged to homogeneous speaker seg-

ments by reverting the sliding window algorithm. Since each chunk

contains half of the next one, the system needs to append the first

half of each segment to the summary of the preceding ones. Addi-

tionally, the non-speech parts, which were removed by the VAD in

section 3.1.1, must be reapplied. The outputs of this module are con-
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Parameter Values
Training data duration in ms { x + 250 | 250 ≤ x ≤ 2000 }

Chunk length in ms { x + 5000 | 5000 ≤ x ≤ 60000 }
Classifier { kNN, SVC (linear&RBF kernel) }

Skip factor a { 1.2, 1.8 }

Table 3.2: Parameters applied to the system during the experimental
phase

sistent segments with the corresponding speakers and timestamps of

the original audio file.

3.4 Experiments

This section describes the used corpus as well as the parameters that

have been applied in order to build the best possible SD system with

respect to the sub-objectives described in section 1.3.1.

3.4.1 Parameters

As described in sections 1.2 and 1.3.1, the goal of the thesis is to imple-

ment a SI system with a DER as low as possible by only having few

utterances given by each speaker. But how short can these segments

be without worsening the DER? And what is generally the perfect

balance between the length of the utterances and the DER? To answer

these questions, the system was trained on the parameters as shown

in table 3.2 to provide the best possible setting.

• Training data duration: This parameter can take values from

0.25 to two seconds, with an increase step of 250 milliseconds.

This parameter defines the total length of the training time per

speaker.
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• Chunk length: This parameter can take values from five sec-

onds to one minute, with an increase step of five seconds. This

parameter defines the length of a chunk that is used for training

purposes.

• Classifier: According to section 2.1.5, two different classifiers

are tested. The SVC classifier is further evaluated with diverse

parameters, such as a linear or radial basis (RBF) kernel. The

best performing constellation is in addition tuned with CV. The

used regularization parameter C [30] can take the following val-

ues: 1, 10, 100, 1000. The regularization parameters are deter-

mined anew for each conversation.

• Skip factor a: To get the lowest possible DER, heuristics are

applied before the chunks are merged back into one audio file.

This factor determines how long the smallest segment may be.

The factor can represent the values 1.2 and 1.8 according to table

3.2.

Based on the training time and the length of the chunks, the amount

of training data can be calculated. The training time is therefore taken

as dividend and the chunk length is chosen as divisor. Applying

the division algorithm, the quotient yields to the number of training

samples which are then given as input into the proposed system of

this thesis.

3.4.2 Training and Testing

Speech Corpus

Testing is crucial to measure the performance of the system. To asses

the developed software, a part of Verbmobil II [31], a speech corpus
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Metric Value
No. of used conversations 68

Avg. conversation duration 194.6 s
Female conversations 49 (72.0%)
Male conversations 3 (4.4%)

Mixed conversations 16 (23.6%)
Discarded conversations 12

Table 3.3: Key metrics of the used Verbmobil II speech corpus

developed by the University of Munich, was used. Table 3.3 describes

key metrics of this dataset. All used conversations which are less than

two minutes are discarded.

Different recording settings can be assigned to each conversation:

• Speakers are on a mobile or analog phone.

• Speakers are in the same room.

• Speakers are in a closed, separate room. Recording is then done

either by a headset, a neckband microphone or a clip micro-

phone.

Phone recordings are subject to more white noise and have a sample

rate of 8 kHz, while the other recording settings have a 16 kHz sample

rate.

All used conversations in Verbmobil II are limited to two persons

without overlapping speech. Each speaker fragment is an own au-

dio file, thus it is possible to get the exact timestamps of all speaker

changes.

Training Data

To create training data, a defined number of chunks of length c (as

described in section 3.4.1) from each speaker is taken randomly from
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a conversation. This data is used for training the classifier.

Testing Data

The test dataset for the use case in this thesis is different when calcu-

lating the accuracy and the DER.

• Accuracy To calculate the accuracy, the remaining chunks after

extracting the training set is taken as testing data.

• DER For the DER the whole conversation, including the training

data, is taken as test set. The reason for this is that the verified

voice samples of the speakers in our use case are taken from the

same conversation which needs to be transcribed.
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Chapter 4

Results and Discussion

In this chapter different experiments are described, evaluated and

discussed on the corpus described in section 3.4.2. For comparison

purposes LibriSpeech was used in the last experiment.

4.1 Choosing Appropriate Parameters

This section explains the most suitable choice of parameters.

4.1.1 Choosing an Appropriate Classifier

As a first step, a fitting classifier is chosen from the various classifiers

described in section 3.4.1. All classifiers have been applied with the

default parameters [32].

Figure 4.1 shows the predefined classifier’s performance according to

different training data durations. The performance metrics are the

average DER and accuracy (sections 2.2.2 and 2.2.1) per training dura-

tion across all conversations, skip factors and chunk sizes described

in section 3.4.1.
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Figure 4.1: Performance of various classifiers on a range of different
training data durations measured by accuracy and DER

As is clearly visible in figure 4.1, SVC with a linear kernel (referred to

as linearSVC) performs better from the very beginning than the kNN

or SVC with a RBF (referred to as SVC). With a training data dura-

tion of only 30 seconds, linearSVC achieves an accuracy of over 90%.

For the same length of training data duration, kNN only achieves an

accuracy of approximately 72% and SVC even below 63%.

Looking at the classifier’s DER, the same trend emerges. LinearSVC

achieves an average DER of less than 20% at 20 seconds of training

data. With the same training data duration, kNN achieves a DER of

about 30% and SVC is even worse at 38%.
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Figure 4.2: Performance of linearSVC with and without cross-
validation on a range of different training data lengths measured by
accuracy and DER

According to figure 4.1 it is assumed that linearSVC is best suited for

the setting.

With the help of CV, overfitting can be prevented. This could lead

to a performance increase of the classifier. CV was therefore applied

on linearSVC with the parameters described in section 3.4.1. The

comparison of linearSVC and cross-validated linearSVC was again

carried out on the basis of accuracy and DER. The results achieved

are shown in figure 4.2.

Comparing linearSVC and linearSVC with CV, the discrepancy be-
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tween them is no longer that striking. LinearSVC with CV always

performs better than without, if accuracy is taken as the measure.

Comparing the DER, no clear winner can be determined.

Since the two classifiers have similar performances and the one with

CV has achieved better accuracy, the following experiments are per-

formed with cross-validated linearSVC.

4.1.2 Choosing an Appropriate Training Data Duration

Given the selected classifier, a suitable training data duration can be

selected next. As visible in figure 4.2, there is a kink in the graph at

25 seconds. From that moment, DER decreases only minimally in the

range of around 2%. For this reason, the training data duration of 25

seconds is assumed to be the most suitable.

4.1.3 Choosing an Appropriate Chunk Size

After the classifier and the training data duration were fixed, the right

choice of chunk length is being evaluated. A scoring algorithm as

follows was chosen:

For each conversation

1. Sort the chunk sizes ascending by their achieved DER

2. Score the chunk size with the lowest DER three points, the

chunk size with the second lowest DER two points and the

chunk size with the third lowest DER one point. All other chunk

sizes score zero points.

Figure 4.3 shows the points that each chunk size has achieved. The

750 milliseconds chunk size was the best, with 95 points, followed by

1000 milliseconds with significantly fewer points.
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Figure 4.3: Evaluation of the selected chunk sizes based on their
achieved scores

Figure 4.4: Evaluation of the skip factors based on the DER

The strong differentiation of the scores shows that the appropriate

choice of chunk size is very important for the performance of the

system.

4.1.4 Choosing an Appropriate Skip Factor

The last parameter to be evaluated is the skip factor a (section 3.4.1)

which determines the smallest segment.

Figure 4.4 shows the result of the comparison between the three fac-
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tors which were chosen to merge the chunks:

• No skip factor applied for merging the chunks

• A skip factor of 1.2 (section 3.4.1)

• A skip factor of 1.8 (section 3.4.1)

As shown in figure 4.4, there is not much difference between the three

skip factors. In particular the skip factor of 1.2 and 1.8 differ in a DER

of less than one percent. It is therefore assumed that the skip factor

has no great influence on the DER.

4.1.5 Summary of the Findings on the Parameters

According to the above sub-experiments, it can be concluded that the

correct choices of a classifier and the length of the chunks are key

criteria for success, because they significantly influence the DER. In

addition to these two parameters it is also important to have a certain

amount of training time available.

In contrast to these three important factors, the skip factor does not

play a major role. It is debatable whether further skip factors will

lead to a significant improvement.

For the further experiments the parameters were set as follows:

• Classifier: Cross-validated SVC with linear kernel

• Training data duration: 25000 milliseconds

• Chunk size: 750 milliseconds

• Skip factor: 1.2
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Figure 4.5: Evaluation of the different conversation settings based on
the DER

4.2 Evaluation on Different Settings

As described in section 3.4.2, there are different settings for a conver-

sation. Given the parameters chosen in section 4.1.5, it is analysed,

how the DER vary by settings.

Figure 4.5 shows the conversations from the Verbmobil II corpus,

which were recorded in 3 different settings. The settings can be de-

scribed as follows:

• acn: the setting acn is an acronym and stands for the scenario

main (a), the technical definition of the recording close (c) and the

detailed description neckband microphone (n). The audio record-

ings in this setting have a sample rate of 16 kHz.

• arr: the setting arr is an acronym and stands for the scenario

main (a), the technical definition of the recording room (r) and

the detailed description room (r). The audio recordings in this

setting have a sample rate of 16 kHz.
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ID Dialogue Setting Gender Conversation Length DER
1 g222a atx f, m 310580 ms 2.1%
2 g222a acn f, m 290820 ms 2.7%
3 g236a acn f, f 120880 ms 3.7%
4 g239a atx f, f 148020 ms 5.0%
5 g215a atx f, m 314580 ms 5.1%

Table 4.1: Details from the five best settings of the Verbmobil II corpus
according to the DER

• atx: the setting atx is an acronym and stands for the scenario

main (a) and the technical definition of the recording telephone (t).

The x stands either for mobile or analog phone and is a detailed

description of the recording. The audio recordings in this setting

have a sample rate of 8 kHz.

As can be seen in figure 4.5, there is no setting that consistently shows

the lowest DER. Accordingly, there is no direct correlation between

the sample rate and the DER, although a higher sample rate of an

audio recording leads to a greater audio resolution. Therefore, it can

be deduced that the system proposed in this thesis can also handle

different settings.

4.3 Evaluation of the Outliers

The aim of this experiment is to evaluate the dialogues that scored

particularly well and particularly badly in relation to the DER. It is

the goal to analyse the outliers and to find connections between them.

4.3.1 Evaluation of the Best Performers

By analyzing the data shown in table 4.1, no conclusions can be drawn

from the details. However, it is interesting that the speakers in conver-
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Figure 4.6: Comparison between the calculated and reference speaker
changes of an audio recording. The figure shows homogeneous
speaker segments based on the best performing conversation of the
used corpus.

sation g222a (ID 1 & 2) and the speakers in conversation g236a (ID 3)

respectively g239a (ID 4) are the same. It seems that there are speaker

pairs which are especially favorable for the setting. It is also apparent

that no male pair has made it into the top five.

Figure 4.6 visualizes the best conversation (ID 1) evaluated in table 4.1

by comparing the hypothesis calculated by the system to the reference

speaker changes. The audio stream is divided into homogeneous

segments of the different speakers whereas each speaker is assigned

a specific colour. It can be clearly seen that reference and hypothesis

speaker changes are almost identical, Which is an indication that the

system performs well for the conversation.

4.3.2 Evaluation of the Worst Performers

If one looks at the five worst performers in table 4.2 in relation to

DER, it is striking that in all five settings the genders of both speakers

are the same. The combination of two women is particularly difficult

for the system to distinguish.
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ID Dialogue Setting Gender Conversation Length DER
1 g525a ach f, f 195600 ms 25.6%
2 g539a ach f, f 156380 ms 26.1%
3 g538a ach f, f 214360 ms 26.9%
4 g247a atx m, m 188460 ms 32.1%
5 g522a ach f, f 317380 ms 35.7%

Table 4.2: Details from the five worst settings of the Verbmobil II
corpus according to the DER

Figure 4.7: Comparison between the calculated and reference speaker
changes of an audio recording. The figure shows homogeneous
speaker segments based on the worst performing conversation of the
used corpus.

Figure 4.7 visualizes the worst conversation (ID 5) evaluated in table

4.2 by comparing the hypothesis calculated by the system to the ref-

erence speaker changes. If the speaker changes are compared, it is

noticeable that only a few segments match. This is an indication that

the system is not performing well for the setting.

A manual qualitative analysis has shown that it can be difficult even

for a human to distinguish these speakers.
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4.4 Evaluation on a Different Corpus

To be able to compare to other state-of-the-art systems, conversations

generated from the LibriSpeech corpus [33] were used. To represent

a real-world scenario, different conversations were assessed and the

diarization was executed with the parameters discussed in section

4.1.5. The conversations were generated by randomly concatenating

audio recordings from different speakers. The speakers were chosen

sequentially, which means that the speakers were the same for all

conversations and just one new person was added to increase the

total number per experiment.

Table 4.3 shows the results with various numbers of speakers as well

as different conversation durations.

By evaluating the DER compared to the number of speakers, it can be

seen that raising the number of conversation participants also slightly

raises the DER. Surprisingly, the DER does not augment dramatically

as the number of speakers rises, although increasing the number of

speakers makes a SD setting a lot more complex.

In most cases incrementing the conversation duration also leads to a

higher DER. But again, no significant increase is apparent.

Based on the findings just explained it can be assumed that a further

proliferation of speakers and conversation duration will not unexpect-

edly increase the DER by a multiple.
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ID No. of Speakers Conversation Length DER Accuracy
1 2 (1x f, 1x m) 8:36 min 1.7% 95.7%
2 2 (1x f, 1x m) 17:12 min 3.1% 95.5%
3 3 (1x f, 2x m) 08:54 min 4.8% 92.6%
4 3 (1x f, 2x m) 17:42 min 2.9% 96.9%
5 4 (2x f, 2x m) 09:00 min 2.9% 96.9%
6 4 (2x f, 2x m) 17:54 min 3.8% 94.2%
7 5 (3x f, 2x m) 09:06 min 4.8% 91.8%
8 5 (3x f, 2x m) 18:00 min 4.9% 90.8%

Table 4.3: Evaluated results on conversations generated from Lib-
riSpeech corpus
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Conclusion

This thesis presented a system to perform SD with a short amount of

voice recording for each speaker as training data. The conversations

are cut into small chunks of 0.25 - two seconds. The latter is fed into

VGGish, a VGG based model from Keras, trained solely on audio files,

to perform feature extraction. These features are then predicted by a

variety of classifiers.

Evaluating the best performing parameters, cross-validated SVC with

linear kernel paired with a training data duration of 25 seconds and

a chunk size of 0.75 seconds has proven the most successful. When

merging the chunks together, a skip factor (section 4.4) of 1.2 have

shown best results.

The system proposed has an average accuracy of 89% and a DER of

11.3% over all results evaluated on the Verbmobil II corpus (section

3.4.2, appendix 7.3).
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5.1 Comparison with Initial Objective

A system for SD based on SI with a-priori speaker samples was built

in this thesis according to the main objective, described in section

1.2. This system can be hosted on any infrastructure, which was,

according to section 1.3.1, a sub-objective of this thesis.

By evaluating more than 58’000 parameter combinations (all combi-

nations can be found in appendix 7.2), the most suitable parameters

for reducing the DER (section 1.3.2) have been identified.

Due to the lack of time it was not possible to implement the voice

database, described in section 1.4.

5.2 Significance of this Thesis

The results shown in this thesis have proven that SD through identifi-

cation is a promising concept.

However there are some limitations which should be kept in mind:

• The parameters were evaluated on a limited corpus.

• A conversation in the corpus is on average three minutes long.

Having a training data duration of 25 seconds restricts the ex-

pressiveness of the DER, because the training data can take up

to one-seventh of the original file. This does not reflect a real

interview or conversation.

• Each conversation of this dataset consists of only two persons.

• There is no overlapping speech.

Part of these limitations have been justified by evaluating the system

on a second corpus described in section 4.4.
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5.3 Questions Arising

During the implementation phase of the system, a few questions were

raised. To create a production-ready system, this questions should be

analyzed in-depth.

5.3.1 Voice Activity Detection

The VAD, which is responsible to cut out non-speech segment, could

be too aggressive. This may lead to the deletion of sections which

incorporate speech. However, the calculation of DER in this thesis

does not take this error into account.

To reduce the risk of having this issue, the detected non-speech seg-

ments should be re-applied to the final result.

5.4 Comparison to Other Systems

In section 4.4, a brief, qualitative evaluation of the system was made

on the LibriSpeech Corpus, which resulted in an average accuracy of

94.3% on a system of two to five speakers. Compared to Vélez, Rascon

and Fuentes-Pineda [14], who also used VGG for SI and LibriSpeech

Corpus for the evaluation, the system of this thesis performed 3%

worse. It can be assumed that with the implementation of the sug-

gestions for improvement, which are listed in section 5.5, an increase

of accuracy becomes noticeable. Furthermore, only a small amount

of comparative data was taken from the LibriSpeech corpus during

the evaluation. For an accurate comparison, a quantitative evaluation

should be carried out.

The average DER on the Verbmobil II corpus is 11.3% and 3.6% on the
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LibriSpeech corpus. Zhang et al. reached in the paper published in

2019 [15] a DER of 7.6%. Even though the difference between the DER

achieved with the Verbmobil II corpus and the DER of Zhang et al. is

not striking, it is important to note that Zhang et al. [15] has made

its evaluation on the NIST SRE 2000 CALLHOME corpus [34], which

includes telephone conversations with overlapping speech. The com-

parison should therefore be treated with caution. Instead, the system

from this thesis should be evaluated on the same corpus in order to

be able to make a valid comparison.

5.5 Directions for Future Research

The scope of this thesis was to build a SD system with a low DER. The

following suggestions explain how the performance of the proposed

system can be improved.

• Train own model A custom trained model may lead to better

performance, since it is trained exactly for the use case. This

includes the adjustment of the training data to fit exactly the

parameters defined in section 3.4.1.

• Different training and test data lengths In the evaluation of the

parameters the chunk size of the training data was always cho-

sen to be exactly the same length as the testing data. However,

it cannot be assumed that this leads to better results. The effect

of varying chunk size and how to optimize should therefore be

investigated.

• Fully connected VGGish Instead of using a classifier for trans-

fer learning, additional layers can be added to the pre-trained

VGGish model to perform the direct method mentioned in sec-
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tion 1.1. This could have an impact on the suggested parame-

ters.

• Fine tuning of the applied heuristics Since only a few heuris-

tics are implemented (section 3.3.1) and evaluated, finding more

appropriate heuristics may have a huge impact on the DER and

the overall performance. This is considered as a key element to

the system.

• Replace VAD To solve the risk discussed in section 5.3.1 the

VAD could be fully removed. As an alternative, a silent speaker

which is trained on a variety of background noises could be

introduced.

• Adding principal component analysis As a postprocessing step

of the feature extraction, a principal component analysis (PCA)

could be applied. This would lead to an increasing interpretabil-

ity of the data while minimizing the information loss.
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6.2 Glossary

accuracy Metric for evaluating classification models. iii, iv, 1, 5, 8, 11,

22–26, 35, 37

AudioSet A large YouTube human labeled dataset for audio events.

1, 8

diarization error rate De-facto standard metric for measuring the qual-

ity of a speaker diarization system. iii, 1, 5

i-vector Vector of fixed size which is used to represent speech utter-

ances in a compact way. 1–3

LibriSpeech Large-scale corpus of read English speech which can be

used free of charge. iii, iv, 1, 3, 23, 33, 37, 38

overfitting Modeling error which occurs if a function is fitted too

close to a limited set of data points. 1, 11

principal component analysis A technique to reduce dimensions while

keeping the variation present in the dataset. 1, 39

rectified linear units A non-linear activation function which is popu-

lar in deep learning. 1, 10

speaker change detection Aims to find the boundries between speaker

turns. 1, 2

speaker clustering The task of differentiating speakers in an audio

file. 1, 2
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speaker diarization The task of detecting speaker changes and iden-

tifying when the same speaker speaks again. iii, iv, 1

speaker identification The task of finding a given speaker among a

list of predefined speakers. iii, iv, 1

speaker recognition Umbrella term for speaker verification, speaker

identification and speaker diarization. iii, 1

speaker verification The task of verifying whether a given utterance

fits a claimed identity or not. 1

spectrogram A visual representation of an audio signal. 1, 3, 7, 16

TensorFlow A end-to-end open source platform for machine learn-

ing. 1, 8, 9, 16

transfer learning A strategy which uses stored knowledge gained

while solving one problem and uses it for a related problem.

1, 2

Verbmobil II Corpus which contains dialogue recordings developed

by the Bavarian Archive for Speech Signals at the University of

Munich. iii, iv, 1, 20, 21, 29, 35, 37, 38

VGGish A solely on audio files trained VGG model. 1, 8, 9, 16, 35,

38

Visual Geometry Group A CNN developed by the Visual Geometry

Group from the University of Oxford. iii, iv, 1, 3

voice activity detection A technique used to distinguish speech and

non-speech parts. 1, 14

VoxCeleb Speech and video corpus which contains over one million

utterances extracted from YouTube videos. 1, 3
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6.5 Abbreviations

CNN Convolutional Neuronal Network. iii, iv, 1, 3, 8

CV Cross-validation. 1, 11, 20, 25, 26

DCASE2016 Challenge on Detection and Classification of Acoustic

Scenes and Event 2016. 1, 3

DER Diarization Error Rate. iii, iv, 1, 5, 6, 12, 19, 20, 22–26, 28–31, 33,

35–39

DNN Deep Neuronal Network. 1–3

kNN k-Nearest Neighbor. 1, 11, 24

NN Neuronal Network. 1, 2

PCA Principal Component Analysis. 1, 39

RBF Radial Basis Function. 1, 19, 20, 24

ReLU Rectified Linear Units. 1, 10

SD Speaker Diarization. iii, 1, 2, 12, 19, 33, 35, 36, 38

SI Speaker Identification. iii, 1, 3, 4, 7, 19, 36, 37

SR Speaker Recognition. iii, 1, 3, 7, 16, 17

SV Speaker Verification. 1

SVC Support Vector Classification. 1, 11, 24–26, 28, 35

SVM Support Vector Machine. 1, 10, 11

VAD Voice Activity Detection. 1, 14, 15, 18, 37, 39
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VGG Visual Geometry Group. iii, iv, 1, 3, 8, 16, 35

WebRTC Web Real-Time Communication. 1, 14
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Chapter 7

Appendix

7.1 Technical Instructions

Requirements

• Python 3.6 or newer

• Pip

• Virtualenv

Setup environment

The setup instructions as well as the code can also be found in the

following Github repository: Link.

• Create a virtualenv: virtualenv env

• Activate environment: source env/bin/activate

• Install packages pip install -r requirements.txt

• Additionally execute pip install

git+https://github.com/beasteers/pumpp@tf_keras

https://github.com/aliciarueegg/speaker-diarization-with-few-training-samples
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Data Preparation

Caution: Check that the environment variables in the .env file are set

correctly.

Verbmobil II Corpus

• The corpus must be present in the following folder structure:

corpora/corpora_german/gxxa

• Execute data_preparation/data_preparation_german.py

This should generate a current/ folder inside corpora/.

LibriSpeech Corpus

• Adjust parameters in

data_preparation/librispeech_preparation.py.

• Execute data_preparation/data_preparation_german.py.

Run Locally

To let the system run locally, you need to set some environment vari-

ables. Put a .env file in the root folder of the project with the follow-

ing content:

corpora_path=corpora/

corpora_german_path=corpora/corpora_german/

model_persistence_path=models/

results_path=results/

plots_path=plots/

Adjust the variables as needed. Also, check the variables set in

params_config.py

Execute main.py.
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Containerization

Docker

Everything Docker related is done inside the docker directory.

1. Get the audioset_weights.h5 file from here: Download link

2. Make docker\build.sh executable: chmod +x docker\build.sh

3. To build the image, run ./build.sh inside the docker directory.

This creates a tag called

speaker-diarization-with-few-training-samples:latest.

If you want to build, tag and push the image to docker hub, append

the repository name: ./build.sh username/the-repository

Singularity

To run the container on the ZHAW GPU cluster (or any other cluster

with Singularity and Slurm):

1. Transfer the /corpora folder to the cluster

2. Pull the image from docker hub and convert it into a Singularity

image:

singularity pull docker://repo/image-name:latest

3. Create a slurm batch job to execute the system in the back-

ground:

sbatch

--ntasks =1

--cpus -per -task=5

--mem=32G

--gres=gpu:1

--output=main.log --error=main.err

https://drive.google.com/uc?id=1mhqXZ8CANgHyepum7N4yrjiyIg6qaMe6&export=download
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singularity exec --cleanenv --nv

speaker -diarization -with -few -

training -samples -latest.simg

env

corpora_path=corpora/

corpora_german_path=

corpora/corpora_german/

model_persistence_path=models/

results_path=results/

plots_path=plots/

python /usr/main.py

This command executes the main.py on 5 cpus, 32GB memory

and 1 GPU. Alter the environment variables according to your

needs.

7.2 Result Structure

After executing the system described above, the following folders and

files are generated:

models/

This folder contains all persisted models. Each model is named as

follows:

dataset_char_classifier_trainDuration_chunkSize.clf

plots/

This folder contains all DER plots. Each plot is named as follows:

dataset_char_classifier_trainDuration_chunkSize_factor.png

results/
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This folder contains a single result.csv file. Each run (parameters,

model name, plot name, accuracy and DER) is listed in this file.

diarization object/

This folder acts as a ”temp” folder and is persists all files which are

used by the system.

diarization.log

This file contains all log entries higher or equal to the INFO level.

DEBUG levels are only logged to the console.

7.3 Additional Content

The following content will be handed over with this thesis. A zip file

named ”BA20 ciel 02.zip” with the given structure will be uploaded:

• Thesis.pdf: This thesis as a pdf document.

• directory explanation.pdf: This pdf explains the directory struc-

ture uploaded.

• code/: Contains the source code and documentation developed

for this thesis.

• results/:

– Verbmobil II: Contains the result.csv file with all the pa-

rameter constellations used with the Verbmobil II corpus.

– LibriSpeech: Contains the result.csv file with the tested

conversations based on the LibriSpeech corpus.

• plots/

– Verbmobil II: Contains DER plots for all parameter con-

stellations mentioned in the result.csv file.
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• models/

– Verbmobil II: Contains the trained models for all parame-

ter constellation mentioned in the result.csv file.

• thesis code/: Contains the Latex code of this thesis.

7.4 Initial Problem Description

This is the initial problem description provided by Prof. Dr. Mark

Cieliebak:

We are working on a solution for automatic transcription of inter-

views and meetings, i.e. generating text transcripts from audio record-

ings. One crucial subtask is to identify who is currently talking.

If the participating persons would be known, and if we would have

audio samples of each participant, we could train a Speaker Identifi-

cation (SI) system to solve this task. However, in many settings there

are no audio samples available beforehand. In these cases, Speaker

Diarization (SD) systems try to detect when speakers change within

the audio file, and when the same (anonymous) speaker talks again.

As you might imagine, the quality of Diarization is much worse than

a well-trained speaker identification system.

In order to circumvent this gap, we want to apply a four-step ap-

proach:First, we run SD (and automatic speech recognition) on the

audio file and present the results to the user. Then we ask him to

identify for each speaker some few utterances (say 1-2 minutes of au-

dio per speaker). Using this data, we want to train an SI system on

the fly, and finally apply this system to the entire audio file hopefully

getting much better speaker assignments.
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Project Goals: The goal of this project is to implement a system to

train a Speaker Identification system on the fly, based on few utter-

ances of each speaker in the audio file. This includes the following

steps:

* Identify potential technical solutions for SI on few training samples

(and few speakers, usually 2-8)

* Implement one such solution

* Apply the solution to test data (e.g. RT corpus) to assess its feasibil-

ity and properties (error rate, training duration, required amount of

training data etc.)
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7.5 Project Management
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