

Bachelor’s Thesis Computer Science

Document Digitization for Chess

Scorecards

Authors

 Béla Horváth

Colin Dreher

Supervisors

 Prof. Dr. Mark Cieliebak

Date

 19.06.2020

Zürcher Fachhochschule

Erklärung betreffend das selbstständige Verfassen einer

Bachelorarbeit an der School of Engineering

Erklärung betreffend das selbstständige Verfassen einer Bachelorarbeit an der
School of Engineering

Mit der Abgabe dieser Bachelorarbeit versichert der/die Studierende, dass er/sie die Arbeit
selbständig und ohne fremde Hilfe verfasst hat. (Bei Gruppenarbeiten gelten die Leistungen der
übrigen Gruppenmitglieder nicht als fremde Hilfe.)
Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch Internetseiten)
im Text oder Anhang korrekt nachgewiesen sind, d.h. dass die Bachelorarbeit keine Plagiate
enthält, also keine Teile, die teilweise oder vollständig aus einem fremden Text oder einer
fremden Arbeit unter Vorgabe der eigenen Urheberschaft bzw. ohne Quellenangabe
übernommen worden sind.

Bei Verfehlungen aller Art treten die Paragraphen 39 und 40 (Unredlichkeit und Verfahren bei
Unredlichkeit) der ZHAW Prüfungsordnung sowie die Bestimmungen der
Disziplinarmassnahmen der Hochschulordnung in Kraft.

Ort, Datum: Name Studierende:

Winterthur, 19.06.2020 Béla Horváth

Winterthur, 19.06.2020 Colin Dreher

ZHAW School of Engineering Document Digitization of Chess Scorecards

i

Zusammenfassung

Schachpartien werden von Schachspielern an Turnieren oder im Training auf sogenannten

“Scorecards” in einer genormten Syntax notiert. Diese Scorecards variieren pro Anlass in ihrem

Aufbau. Damit diese zu einem späteren Zeitpunkt mit einem Computerprogramm analysiert

werden können, müssen die Schachzüge von Hand in eine Analysesoftware übertragen werden,

was mühsam und zeitaufwendig ist. Momentan gibt es auf dem Markt keine Lösung, welche

diesen Digitalisierungsprozess übernimmt, ohne ein genormtes Scorecard Format zu verwenden.

In dieser Arbeit wurde ein System entwickelt, welches dem Benutzer diesen

Digitalisierungsprozesses abnimmt. Es wurde eine Webanwendung entwickelt, in welcher ein

Bild hochgeladen wird und eine “Portable Game Notation” (PGN) Datei zurückerhalten wird. Die

bei der Digitalisierung erkannten Schachzüge werden dem Benutzer zur Kontrolle präsentiert

und der Benutzer kann im Nachhinein auf die Erkennung Einfluss nehmen, um allfällige Fehler zu

beheben. Die Arbeit wurde in Problemstellungen aufgeteilt und iterativ erarbeitet, mit dem Ziel,

eine komplette Pipeline zu erzeugen. Danach wurden die einzelnen Schritte im Algorithmus an

den Stellen optimiert, wo die grössten Verbesserungen im Prozess erzielt werden konnten. Die

erzeugte “Proof of Concept” Applikation verwendet für die Handschriftenerkennung die ABBYY

Cloud OCR SDK API (ABBYY). Zusätzlich wurde ein zweiter Ansatz implementiert, in welchem in

weiteren Schritten eigene, neuronale Netze als Klassifizierer trainiert und eingesetzt werden

können. Die implementierten Teile wurden mittels einer selbst erstellten Datenserie evaluiert.

Das Resultat zeigte, dass die von ABBYY erhaltenen Erkennungen für schön geschriebene

Scorecards bereits gute Übereinstimmungen liefern. Diese konnten mit der Hilfe von

Entscheidungsbäumen und Heuristiken weiter verbessert werden. Gesamt entscheidet jedoch die

Schrifterkennung, ob die Digitalisierung erfolgreich oder fehlerbehaftet ist. Die Applikation bietet

eine solide Basis, auf welcher aufgebaut werden muss, um ein marktfähiges Produkt zu erzeugen.

ZHAW School of Engineering Document Digitization of Chess Scorecards

ii

Abstract

Chess games are noted by chess players at tournaments or in training on so-called "scorecards"

in a standardized syntax. These scorecards vary in their structure for each occasion. To later

analyse them with a computer program, the chess moves must be transferred manually to

analysis software, which is tedious and time-consuming. Currently there is no solution on the

market that can take over this digitization process without using a standardized scorecard

format. In this thesis a system was developed, which relieves the user of this digitization process.

A web application was developed in which an image is uploaded and a "Portable Game Notation"

(PGN) file is retrieved. The chess moves detected during the digitization process are presented to

the user for control and the user can influence the detection afterwards to correct any errors. The

work was divided into problems and worked out iteratively, with the aim of creating a complete

pipeline. Then the individual steps in the algorithm were optimized at those points where the

greatest improvements in the process could be achieved. The generated "Proof of Concept"

application uses the ABBYY Cloud OCR SDK API (ABBYY) for handwriting recognition. In addition,

a second approach was implemented, in which own neural networks can be trained and used as

classifiers in further steps. The implemented parts of the algorithm were evaluated using a self-

created data set. The result showed that the recognitions received from ABBYY for beautifully

written scorecards already provide good matches. These could be further improved with the help

of decision trees and heuristics. Overall, however, the character recognition decides whether the

digitization is successful or not. The application offers a solid basis on which to build to create a

marketable product.

ZHAW School of Engineering Document Digitization of Chess Scorecards

iii

Preface

We are Colin Dreher and Béla Horváth. During our last semester as bachelor students we could

apply and consolidate the knowledge we had learned during our studies in the fields of software

development, image processing and artificial intelligence in this thesis. It was a challenge but

offered more opportunities to build on our own ideas.

We would like to thank Prof. Dr. Mark Cieliebak very much. Thanks to the good supervision and

the great discussions, exciting topics and interesting suggestions could be discussed every week.

Despite the Corona crisis, the collaboration was continued and we always found an open ear when

questions arose. We would also like to thank Anand for sharing his ideas with us. Through him a

direct connection to a customer of such a software could be established and this bachelor thesis

would not have been possible without him. And finally, we would like to thank all the people who

have voluntarily agreed to fill in scorecards for the evaluation.

 Winterthur, June 19, 2020

ZHAW School of Engineering Document Digitization of Chess Scorecards

iv

Table of contents

Zusammenfassung ... i

Abstract .. ii

Preface ... iii

1 Introduction ..1

1.1 Initial situation .. 1

1.2 Goal and task.. 1

1.3 Overview of the thesis ... 2

1.4 Reduction of the scope .. 2

2 State of the art ..4

2.1 Competitor analysis ... 4

2.1.1 Reine – Chess .. 4

2.1.2 CheSScan ... 6

2.1.3 Results .. 7

3 Methods and procedures ...8

3.1 Workflow .. 8

3.2 Approach ... 9

4 Application showcase .. 10

4.1 Upload image ... 10

4.2 Box selection .. 11

4.3 Output/replay.. 14

5 Implementation .. 17

5.1 Image alignment ... 17

5.1.1 Results & Discussion .. 18

5.2 Table extraction .. 19

5.2.1 Pre-processing .. 19

5.2.2 Results & Discussion .. 23

5.3 Chess move localisation .. 25

5.3.1 Box detection ... 25

5.3.2 User validation of relevant boxes .. 30

ZHAW School of Engineering Document Digitization of Chess Scorecards

v

5.3.3 Results & Discussion .. 31

5.4 CNN approach .. 33

5.4.1 Extracting single characters... 33

5.4.2 EMNIST pre-processing.. 36

5.4.3 Results & Discussion .. 37

5.5 ICR engine implementation ... 38

5.5.1 ICR engine selection ... 38

5.5.2 ABBYY .. 41

5.5.3 Results & Discussion .. 44

5.6 Improvement of recognition ... 46

5.6.1 Post-processing of the ABBYY recognition .. 46

5.6.2 Stochastic decision tree .. 49

5.6.3 Results & Discussion .. 59

6 Conclusion .. 65

7 Outlook .. 66

8 Listings .. 67

8.1 Bibliography .. 67

8.2 List of Figures .. 71

8.3 List of Tables .. 74

9 Appendix ... 75

9.1 Official task, project assignment .. 75

9.2 Software architecture .. 76

9.2.1 Physical architecture ... 76

9.2.2 Logical architecture .. 77

9.3 Technical documentation ... 86

9.3.1 Installation .. 86

9.3.2 Deployment .. 87

9.3.3 Overview of the files .. 88

9.4 XML ... 90

9.4.1 Input XML format .. 90

9.4.2 Output XML format ... 91

9.5 Test scenarios .. 92

ZHAW School of Engineering Document Digitization of Chess Scorecards

vi

9.5.1 Removing of leading numbers .. 92

9.5.2 ABBYY common error evaluation ... 94

9.5.3 Evaluation of threshold definition .. 98

ZHAW School of Engineering Document Digitization of Chess Scorecards

1

1 Introduction

1.1 Initial situation

Nowadays chess players write down the moves of a chess game in a Standard Algebraic Notation

(SAN) on a scorecard while they are playing. If the players want to analyse their game, they must

replay all the moves by hand in a tool as for instance “Chess.com”. This takes a lot of time but can

give the players valuable information about their behavior and tactics. Currently the existing

standard for scorecard scanning is called “Reine – Chess”1. To use the software, a player must use

their standardized scorecard template to automatically read and digitize all the moves. This limits

individual players because tournaments often have their own scorecard format which must be

used at their event. Currently the only product on the market that follows the approach to read

in different scorecards with tables is the app “CheSScan”2. It allows to take a picture of a scorecard

which is then processed and output as “Portable Game Notation” (PGN). However, the product is

not yet fully developed, since the user is not allowed to touch the table lines with his handwriting

and must write legibly in block letters with sufficient distance. The reason for this is that such

conditions make image recognition very difficult and current state of the art approaches still

struggle to make handwritten character recognition in tables work. Furthermore, it might be

objected why one does not write the moves directly on an electronic device. However, at official

tournaments it is forbidden to use any electronic devices, unless it is considered a "chess notation

device"3. These devices must be officially certified which limits the usage and market of potential

buyers since it is an extra device and not only a service.

1.2 Goal and task

The aim of this bachelor thesis is to implement an algorithm which processes an image of a

scorecard. It should detect the handwritten moves, recognize them with optical/intelligent

character recognition (OCR/ICR), check them for correctness and return them as a machine

readable PGN.

1 Reine - Scannable chess scoresheets. Available: https://www.reinechess.com/ [20.03.2020]
2 CheSScan - Chess scoresheet scanner. Available: https://chesscan.com/ [28.03.2020]
3 ChessNoteR – The future of chess notation. Available: https://www.chessnoter.com/ [28.05.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

2

The algorithm should be implemented in Python on a web server and be usable in a web

application with an interface for the user to interact with. The possibility of correcting unclear or

incorrect moves is also provided to the user when interacting with the PGN output.

1.3 Overview of the thesis

Initially, the current competition and the software available on the market are discussed.

Afterwards, the final product is presented within the application showcase. After the showcase,

the focus lies on the encountered and solved challenges inside of the implementation chapter.

This is the main part of the thesis. Each subchapter contains the necessary theory, methodology,

evaluation, results and a discussion. Further information about the software architecture and the

deployment of the application are in the appendix in chapter 9.2 and are not a central part of the

work.

1.4 Reduction of the scope

This thesis focuses on creating an algorithm and a proof of concept implementation. To reduce

the scope of the thesis, certain steps were simplified and need further follow up work to produce

a marketable product. These simplifications include multiple users working simultaneously and

the support of scorecards without a table layout. Additionally, while different chess notations

exist, the request was to support the PGN syntax [1]. PGN is a data format which is used to store

and share chess games in an ASCII text file. The PGN syntax is mostly based on SAN [2] which uses

single character abbreviations for chess pieces like “K” for king and “Q” for queen etc.

Due to the reduction of the scope, the algorithm is only developed for scorecards with solid table

lines in a similar form as seen in Figure 1 or Figure 2. Layouts, as in Figure 3 are not supported.

Tables can also be separated by whitespace but they must be visible and fully connected at the

top and bottom of the moves. This layout was chosen after receiving confirmation from the Swiss

Chess Federation that it was the most common.

ZHAW School of Engineering Document Digitization of Chess Scorecards

3

Figure 1 USCF scorecard

layout with a closed table.4

Figure 2 A different scorecard layout

with a closed table.5

Figure 3 A scorecard layout with

an open table layout.6

4 Official US chess Self-Duplicating Scorecards. Available: https://www.uscfsales.com/carbonless-score-
sheets-single-sheet.html, [30.03.2020]
5 13 Free Sample Chess Scorecards. Available: https://www.printablesample.com/wp-
content/uploads/2017/01/chessnotation-1.jpg [30.03.2020]
6 13 Free Sample Chess Scorecards. Available: https://www.printablesample.com/wp-
content/uploads/2017/01/chess-score-sheet-13.jpg [30.03.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

4

2 State of the art

This chapter analyses which solutions already exist on the market. It also discusses the direction

in which the development of the application will be steered and which features are prioritized.

2.1 Competitor analysis

In the following, the existing scorecard digitization services and solutions for end users are

investigated in a competitor analysis. The analysis of the individual providers focuses on the

services offered and the restrictions. The prices, the supported scorecard formats, and other

features are listed.

2.1.1 Reine – Chess

“Reine – Chess” is a free web service. It offers the possibility to download a scorecard in the format

seen in Figure 4 and to upload it when filled out. Due to their own format the sources of error are

reduced. On each corner of the image, an “ArUco” mark [3] can be spotted. These marks allow for

a transformation of the image since those marks can always be located within an image with their

coordinates and rotation. This leads to perfectly aligned images, which is needed for the chess

move recognition if the table wants to be used as a guideline. The rough procedure of the

application is as follows:

1. Take image

2. Align image with “ArUco” markers

3. Cut the individual characters

4. Pre-process characters for convolutional neural network (CNN)

5. Classification by CNN (custom CNN per chess move length)

6. Post-processing the classification

7. Download PGN

ZHAW School of Engineering Document Digitization of Chess Scorecards

5

Figure 4 The downloadable scorecard

format from Reine – Chess 7 with ArUco

markers in the corners.

When visiting the source code8, each character is analysed individually, and this is implemented

using different convolutional neural networks (CNN) trained with different training data based

on the EMNIST data set [4]. This improves the accuracy of the recognition since it is known what

patterns are possible in each two to five-character long chess move. No extra validation regarding

the board state is done in the current implementation.

Limitations:

• Currently only supports their own scorecard format

• Move can only have five characters and no special characters i.e. “#, =, +, -“

• Currently no mobile application exists

7 Scannable Scoresheets. Available: https://77614886-b378-4a7e-8da3-
e37d91040160.filesusr.com/ugd/384def_8971d714115343ccb8db211816f057eb.pdf [05.04.2020]
8 GitHub repository of Reine – Chess. Available: https://github.com/Messier-16/Reine-Chess-Scoresheet-
Scanner [20.03.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

6

2.1.2 CheSScan

“CheSScan” is a mobile application available for iOS and android. The first step while using the

app is to take a picture of a scorecard. Secondly the image is automatically analysed and the

detected moves are displayed as shown in Figure 5. Afterwards the user can correct them

individually by overwriting the moves or by playing a move with a chess piece. Finally, the PGN

can be output or the game can be analysed.

Since “CheSScan” is not an open source project, there is no freely available code. Through a

conversation with the developer it turned out that he follows similar approaches to those used in

the application “Reine – Chess”.

Limitations:

• It is only available as a mobile application in the app and play store

• The user cannot see why the app does not recognize anything or only a part

• Unable to recognize cursive written text

• Not fully developed, no manual correction feature

Figure 5 Screenshot of

CheSScan Android App

interface9.

9 CheSScan Android App. Available:
https://play.google.com/store/apps/details?id=com.nagdev.alok.chesscan [05.04.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

7

2.1.3 Results

The competitor analysis shows that only the reviewed two applications exist. "Reine – Chess"

offers a working solution that is under development which only works for their scorecard format.

In practice, tournament organizers use their own scorecards or standardized templates of the

local chess federation. On the other hand, "CheSScan" offers a general solution that supports

various scorecard layouts but does not provide reliable detection. While testing it was unclear

when or where an error occurred, and it sometimes failed after less than five moves. Furthermore,

neither of the applications, present the ability to trace the source of the failed recognition back to

the responsible step. This is important as it enhances the user experience and helps to avoid

common mistakes in later uploads.

To present a solution that takes as many steps from the user as possible and informs him if

something fails, this is also considered in the implementation. Whenever an error occurs, its

source must be clearly communicated to the user.

ZHAW School of Engineering Document Digitization of Chess Scorecards

8

3 Methods and procedures

3.1 Workflow

The software produced in this thesis is called "Very Chess" and was developed using a semi-agile

approach. Meetings with the supervisor were held in intervals of one to two weeks in which the

progress was discussed. A trelloboard10 was used to maintain the overview of open tasks and

priorities. To ensure code versioning and collaboration, Git was used in combination with

GitHub11. At the beginning of the thesis, questions regarding the task, goal and scope were

clarified with the thesis supervisor. To get an idea of what is possible, a meeting with an external

expert was held. The collected information from the meeting was compiled and discussed with

the supervisor. Since the task was only roughly predefined, the scope had to be limited.

The aim during implementation was to have a complete pipeline as quickly as possible. The steps

should at least provide a correct and robust output for simple table designs and well legible

handwriting. Comparisons with the state of the art are made and alternative approaches are

pursued. Everything that can already be solved with the help of libraries is implemented.

10 Trello. Available: https://trello.com/ [17.06.2020]
11 GitHub. Available: https://github.com/ [17.06.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

9

3.2 Approach

Based on the competitor analysis shown in chapter 2.1, “Reine – Chess” implements the most

promising approach. In this thesis a similar approach is followed. However, since “Reine – Chess“

uses a special scorecard, some steps must be implemented differently.

• General scorecards do not have “ArUco” markers, a different alignment approach must be

chosen.

• The scorecards have unknown layouts. Therefore, an algorithm must be implemented

that extracts the written moves inside of the tables.

• The letters in scorecards are not individually located in fields. Thus, they must be

recognized and separated from each other or read as a whole “word”.

• Whole words could be recognized with an ICR/OCR engine instead of single characters.

• The post-processing approach of “Reine – Chess” relies on the length of the recognition.

This is robust since all characters are individually localized and the length of the move is

therefore correct. This is not possible in general table layouts.

Considering the alternative implementations stated above, the following approach is defined:

1. Image alignment (align the uploaded image before continuing with the pre-processing)

2. Table extraction (filter noise in the scorecard and extract the table)

3. Chess move localisation (locate the relevant boxes that contain chess moves)

4. Recognize chess moves with ICR

a. CNN approach (pre-process and implement a custom CNN)

b. ICR engine implementation (select and implement a fitting ICR engine/API)

5. Improvement of recognition (further improve the recognition of the implemented ICR

engine)

6. Present PGN and download PGN (web interface to interact with the output and to

download the output)

Furthermore, intermediate results of the algorithm (the steps above) are presented to the user

for validation. The presented results can be confirmed, corrected or rejected to guarantee a

successful recognition and prediction. The steps 1-5 can be mapped to the steps of the

Implementation chapter and will be discussed in detail in their respective subchapters.

ZHAW School of Engineering Document Digitization of Chess Scorecards

10

4 Application showcase

To ensure the overview over the workflow, the final application is presented first. The whole

process is described from the user's perspective. The workflow starts with uploading an image to

the web server and ends after the user decides to download the resulting PGN file (Figure 6). The

process is presented in a simplified form and is clearly defined in the following chapters. Further

information about the chosen software architecture is in the appendix in chapter 9.2.

4.1 Upload image

First, with a press of the “Choose Scorecard” button an image of a scorecard must be chosen where

all four corners of the sheet are visible. The image is uploaded with a press of “Digitalize

Scorecard”. Only “.jpeg” and “.png” file formats can be uploaded. It is possible to directly take an

image with a mobile phone. The resolution of the selected image must be above 2000x1500 pixel.

Figure 6 The general workflow of the application. Each main step is in a hexagon.

ZHAW School of Engineering Document Digitization of Chess Scorecards

11

4.2 Box selection

In Figure 8, the user is asked to validate that the image alignment worked. This step can be

continued when the “Confirm” button is clicked. If the image is aligned incorrectly, the user must

take a new image with better quality.

Figure 7 Landing page of the application where the user can upload an image and start the application.

Figure 8 The aligned image is displayed in the page. The user can confirm the correctness of the

alignment.

ZHAW School of Engineering Document Digitization of Chess Scorecards

12

After the first confirmation, the user is asked to select his “final move”. This corresponds to the

last handwritten chess move on his scorecard. After the selection, the colours will indicate which

parts are still active as shown on the right side of Figure 9.

With a click on “Confirm” the user is then asked to unselect any boxes that do not belong to his

chess moves. This is only the necessary in certain scorecard layouts and thus not needed if

everything looks correct as it is shown in Figure 10. Figure 11 on the other hand shows the

deselection process of the boxes containing “White” and “Black” which do not belong to the chess

moves.

Figure 9 The user selects the last move and automatically the

rest of the boxes are unselected.

Figure 10 The user selects any unwanted boxes. This example does not contain any unwanted

boxes.

ZHAW School of Engineering Document Digitization of Chess Scorecards

13

After validating that no wrongly highlighted boxes exist, the “Confirm” button can be pressed once

more to send the selected boxes to the server. There they are recognized by ABBYY and based on

the recognition a prediction is made for each move.

For every asynchronous step, a loading screen is displayed to inform the user that the application

is working, seen in Figure 12.

Figure 11 The unwanted boxes are

deselected by the user and marked

in red.

Figure 12 The loading screen that is

displayed in every asynchronous step.

ZHAW School of Engineering Document Digitization of Chess Scorecards

14

4.3 Output/replay

Once the moves are processed, the prediction is presented to the user in a table with the same

layout as given on the scorecard.

The user has the possibility to control a prediction by clicking on one. A popup window displays

an image of this box and the predicted move as shown in Figure 14. A every entry in the table has

a colour and every colour represents a different state (Figure 15). For example, if the move is

highlighted in green it corresponds to “Move was validated by the user” and it can be regarded as

the true and thus correct move for this specific recognition (for this specific move). This state is

reached by either changing the value or selecting one of the suggested candidates from the drop-

down list. The correction can be applied with the “Apply” button.

Figure 13 The predicted game that is presented to the user based on the

recognition.

ZHAW School of Engineering Document Digitization of Chess Scorecards

15

If a correction is applied, the table data is sent to the server and processed with the corrections.

Meanwhile the loading screen is shown. This process is repeated until all predictions are correct.

If the user wants to reset everything to the original prediction, he can do so by pressing the “Reset

Table” button. If everything is correct, the “Download” button appears as show in Figure 16.

Figure 14 A popup window for the blue framed move “c4” in the table. The window shows the original image,

what was predicted by the algorithm and the top suggestions. This move must be corrected to “e4”.

Figure 15 The possible colours and their meaning in the frontend

PGN table.

ZHAW School of Engineering Document Digitization of Chess Scorecards

16

By pressing the “Download” button, the user is presented with a form which he can optionally fill

in (Figure 17). The form can be filled with metadata about the players, the tournament, and the

winner to complete the PGN file. The user can confirm this form with the “Download” button to

download a PGN file with the entered information and the processed game.

Figure 16 A correct game which is successfully

predicted and validated by the user.

Figure 17 The final form

to fill in the meta data

for the PGN header.

ZHAW School of Engineering Document Digitization of Chess Scorecards

17

5 Implementation

In the following chapter, the implementations of the image processing and text recognition

algorithms are described as it was introduced in the Methods and procedures. It is split into six

subchapters: Image alignment, Table extraction, Chess move localisation, CNN approach, ICR

engine implementation and Improvement of recognition. All of those contain individual parts of

the algorithm. In each chapter the results are shown, and further optimizations are discussed. The

implementation was either tested on the layout data set, containing six different scorecard

layouts or on the recognition data set containing 21 written scorecards.

5.1 Image alignment

To identify the tables in subsequent steps of the algorithm, the images that are uploaded must

always be aligned straight. Since this cannot be presupposed, it is solved automatically. This

ensures a constant starting position for the subsequent steps.

An already existing solution, the mobile document scanner [5], is used to align images. The script

requires as a source an image of a sheet of paper on which all four corners are visible and outputs

an aligned grayscale image with the background excluded. This procedure is shown in the image

below. The source code is integrated into the existing pipeline with the adaptation that the source

image is already in grayscale and not full colour.

Figure 18 Shows the original image before the alignment on the left and after

the aligned image on the right.

ZHAW School of Engineering Document Digitization of Chess Scorecards

18

5.1.1 Results & Discussion

The scanner solves the initial problem, that the user’s images are not perfectly aligned. It also

recognizes the perspective of an image and corrects it to a top-down view. This is exclusively

possible if the scorecard can be distinguished from the background and all four vertices of the

scorecard are clearly visible. In this case, the image can be transformed.

The image alignment could be further improved by optimizing the script and filters. Image

distortions exist which the scanner cannot correct, for example waves in the paper. Furthermore,

there are image quality requirements that must be met. If the quality of the image is too low, the

alignment will fail, and the image must be retaken with better quality. Moreover, the vertices are

not always found due to the background being reflective or too bright.

Another possible approach would be to use feature-based image alignment12. To do so, an aligned

source image is compared to the input image with the same table format and based on its features

the input image is mapped to the source image. The problem of such an approach is that a

standardized scorecard would have to be published or users would have to upload aligned source

images into a database. Those uploaded scorecards could then be used as reference for

comparison. Also, the same problem arises, since aligned source images are a must and they can

have errors in their alignment.

12 Feature based image alignment.
Available : https://sites.google.com/site/imagealignment/tutorials/feature-based-vs-direct-image-
alignment [05.06.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

19

5.2 Table extraction

From the aligned scorecard the tables are extracted. Today’s state of the art for written data

extraction in a document considers two approaches. Either the algorithm searches and orients

itself by the table lines or ignores the table lines and searches for text regions which are arranged

in a table structure [6]. In this thesis the search for table lines seemed more promising and thus

this approach was chosen.

Since the image was aligned in the previous step, it can be assumed that the table lines are

horizontal and vertical. The pre-processing was inspired and built upon a blog post [7] presenting

a pre-processing solution applied to a similar starting scenario. Only Python, OpenCV and NumPy

functions were used for the procedures below. To spot the details in the images, all following

figures are zoomed into the bottom left area of an example scorecard which fits the requirements

of the application.

5.2.1 Pre-processing

A series of consecutive steps must be followed to correctly pre-process the image and enables a

reliable table extraction. Following, the steps are described in ascending form.

1. Shadow removal: Through online research, a way to remove shadows in grayscale images was

searched and implemented. This step helps to improve the later removal of noise and to clearly

separate the writing from the background. In Figure 19, the shadow removal is applied. As can be

seen, small gaps are created between the “Q” and the black numbering area.

Figure 19 The left image shows the source image of a table part. Shadow removal

is applied to the right image.

ZHAW School of Engineering Document Digitization of Chess Scorecards

20

2. Adaptive threshold: With the aim of obtaining a binary image that clearly separates the table

from the background, a binary threshold is used. This threshold can be applied either globally or

adaptively. Global thresholding uses a single value. The pixel values greater than the defined value

become 1 and the others become 0. In adaptive thresholding, the threshold value changes

depending on the area of the image. This is beneficial if an image has different lighting conditions

or shadows. The difference can be clearly seen in Figure 20.

Despite the previously applied shadow remover, images might still have different lighting

conditions. For this reason, a binary adaptive mean threshold is used. The small gaps created by

the shadow removal lead to bigger gaps in the table lines, displayed in Figure 21.

Figure 20 Different thresholding methods

applied to a sudoku sheet.

Figure 21 Binarized part of the

table with gaps in the left table

line.

ZHAW School of Engineering Document Digitization of Chess Scorecards

21

3. Morphological operations: To fill the gaps in the table lines, additional steps must be taken.

Morphological operations are used to extract long horizontal and vertical lines from the image.

These operations use kernels as an operating tool. A kernel is a matrix containing binary values.

The morphological kernels used are a “1 x n” kernel for the vertical lines and “n x 1” kernel for the

horizontal lines with n pixels (Figure 22).

During erosion, if any pixel underneath the form is not 1, all these pixels are set to 0. During

dilation, all pixels underneath the form are set to 1 if at least one of them is 1. Combinations of

these operations are very useful to fill gaps in lines, reduce noise or to filter specific shapes in an

image [8]. Therefore, erosion removes all pixels that do not form a line as long as the kernel form

and dilation expands all pixels by a length equal to the kernel form.

To extract the table, the image is once morphologically reduced into the horizontal and once into

the vertical lines. The following examples just show the vertical application of such morphological

operations. The same procedure is applied to get the horizontal lines.

First, a small kernel is defined which removes all minor noise with one erode and fills all gaps in

the table lines with two dilates. For this, the kernel must be larger than the noise contained in the

image after the adaptive threshold is applied. Otherwise, a single erosion would not remove any

noise and thus results in the upcoming dilation extending the noise into one connected line. In

any case, the kernel is chosen so small that no separated table parts are lost by the single erode.

These small table parts containing gaps can be seen in the left image in Figure 23. Due to the small

kernel, not all the noise is extended into a big line and only the real table lines are extended.

Moreover, the kernel must be chosen small enough that no text fragments merge into a line due

[[1],

 [1],

 [1], [[1],[1],[1],[1],[1]]

 [1],

 [1]]

Figure 22 Morphological kernel for vertical and

horizontal lines with a length of 5 pixels.

ZHAW School of Engineering Document Digitization of Chess Scorecards

22

to the doubled dilation. This problem is shown in Figure 23 on the right side. All the noise in the

left image is extended, as well as the table lines. However, the noise can still be separated from

the table lines due to its length in the image. With a bigger kernel, the noise would form a long

straight line and the table recognition would fail. The kernel is adapted with trial and error until

all cleanly photographed images work. In the end, the horizontal kernel is set to a relative size of

1/200 of the image width and the vertical kernel to 1/100 of the image height.

The next step is to define a large kernel, which removes all lines that are too small to represent a

table guideline with a single erode and dilate. The longer this kernel is chosen, the less tolerance

the table lines have in their slanted position. Otherwise even slightly slanted lines are removed

since they do not match the kernel in its full height or width. Therefore, the kernel should be

chosen as small as possible. Thus, the horizontal kernel is set to 1/20 of the image width and the

vertical kernel to 1/10 of the image height.

In Figure 24, the output after a single erode and dilate can be seen. It shows that only long lines

are left, and all the noise is removed.

Figure 23 The left image is the table part after one erosion and the right image after

two dilations with a small kernel.

Figure 24 The table lines left after

a single erosion and dilation with

a large kernel.

ZHAW School of Engineering Document Digitization of Chess Scorecards

23

Slightly slanted lines may lead to gaps within vertical lines (Figure 25). To fill these a square

kernel with a single dilation and erosion is applied. This kernel is set to the size 5x5, because with

this initial size the problem is solved.

To combine the vertical and horizontal lines, both images are merged. In some cases, the lines do

not fully connect, thus a square kernel is used to dilate the image twice. This gives thicker lines

and corrects slight errors at the intersection (Figure 26).

5.2.2 Results & Discussion

Once the whole procedure is applied, the image is inverted which leaves only the extracted table

from the scorecard (Figure 27). This procedure for table extraction generally works reliably for

correctly aligned and focused images in high resolution. Thanks to the use of dynamic kernel

sizes, different image resolutions are supported.

Figure 25 The left image shows a slanted table line which is split. The

right image shows the same line after a single erosion and dilation

with a square kernel.

Figure 26 The right table image is the combination of the other two images which contain all horizontal

and all vertical table lines. Also, dilation with a 5x5 kernel is applied.

ZHAW School of Engineering Document Digitization of Chess Scorecards

24

Layouts with dotted lines or dashed lines are also examined. However, no reliable line detection

is achieved. Dotted lines behave very similar like noise and get filtered out with the noise, whereas

dashed lines are partially detected and filled but have too many gaps to yield a fully connected

table.

As seen in Figure 26 it could be approximated which lines must be of equal length. Such

correlations could help to improve detection for shortened or interrupted lines and could be

corrected by the algorithm.

The implemented kernels have a size relative to the input image. It is possible that kernels

adapting linearly with image resolution may yield improved reliability and should be investigated

in future research.

Figure 27 Binary image of the

scorecards table after the table

extraction.

ZHAW School of Engineering Document Digitization of Chess Scorecards

25

5.3 Chess move localisation

In the previous step a binary table was created. From this, the zones in which the player writes

his chess moves from the original picture must be detected. In the following, the rectangles found

in the binary image which represent the zones that contain writing, will be referred to as “boxes”

and the “relevant boxes” represent the “true positives” that contain the actual chess moves.

5.3.1 Box detection

In this step contours and minimum bounding rectangles are used to locate the chess moves. A

contour may be best described as a curve that connects all continuous pixels with the same

intensity or colour. This will surround every shape in an image and can be further used for object

recognition or position detection of said object. The OpenCV function "cv.findContours()" is used

to identify all contours in the image shown in Figure 27 with the parameter

“chain_approx_simple” an array of contour vertices is returned. The array can be passed to the

function "cv.boundingRect()" which encloses a given contour with the smallest possible

rectangle, a bounding rectangle. Subsequently this detection algorithm is explained in more

detail.

1. Anchor line detection: In a table, the boxes are ordered into columns. To the left and right of

such a column are long vertical lines. These vertical lines are defined as anchor lines and used to

locate the adjacent boxes.

Since the previous step separated vertical and horizontal lines from the image, the vertical lines

can be reused. From these, only the lines which are at least as high as one third of the image are

considered. Out of all these, exclusively the ones on the left of the move boxes are selected as

anchor lines. As shown the upper image of Figure 28, there are eight possible anchor lines but

only four are selected. In the lower image, no spacing is present and thus the lines are selected

normally.

Additionally, to filter the row number lines, any lines that are too close together are removed. For

this purpose, the average distance between all vertical table lines is calculated. The program runs

from left to right and discards any line that is closer to its right neighbour than the average

distance plus or minus a threshold of 1/60 of the picture width. The threshold has been chosen

ZHAW School of Engineering Document Digitization of Chess Scorecards

26

through with trial and error until it worked successfully for all available layouts in the layout data

set.

The x-axis values of the selected anchor lines are stored to later sort the boxes by their x-

coordinates. Additionally, vertical lines that are too close to the left or right edge of the image are

considered incorrect, as they are created by the image alignment if the scorecard does not lie flat

on the surface.

2. Assigning boxes to anchor lines: Based on the found anchor lines, all the bounding rectangles

are now compared against the final set of anchor lines by their x-coordinates. A bounding

rectangle is regarded as valid if its deviation from the anchor lines x-coordinate is smaller than

the threshold of 1/80 of the image width. This threshold was defined after validating its function

on the whole layout data set. After all boxes are assigned, they are sorted in order of their y-

coordinate to regain the structure of the table.

3. Filtering boxes: Since all remaining boxes are only filtered by their x-coordinate, there might

still be faulty boxes within the valid coordinates. It is now a matter of locating the boxes

containing the chess moves. For this step it is assumed that all boxes containing the chess moves

Figure 28 Relevant anchor lines on two different table

layouts.

ZHAW School of Engineering Document Digitization of Chess Scorecards

27

have a uniform size per column. It must be evaluated per column, since it is not always the case

that the boxes have the same width over the whole scorecard (Figure 29).

To locate the most prominent box (bounding rectangle) property, the median can be used

regarding the width and width-height ratio. The width is used since it is always larger than the

height and consequently inaccurate box contours have smaller error percentages when compared

using the height. To validate the selected boxes, the width-height ratio is calculated to only select

boxes that fit the ratio and not only the width. Because of the slight deviations caused by image

distortion or image alignment, the width deviation threshold is set to 5% and the width-height

deviation threshold to 15%.

4. Removal of row enumerations: If the table contains an enumeration, these must be removed.

This is necessary since the recognition of ABBYY results in a worse output if the numbers are left

inside the boxes. It is assumed that the number enumeration is located to the left of the moves

and that the enumeration has a uniform size and positioning throughout the table (Figure 30). If

no enumeration exists, this part of the algorithm will not alter anything.

Figure 29 The widths of columns are not equal. The two

marked widths show clear differences.

ZHAW School of Engineering Document Digitization of Chess Scorecards

28

To locate the enumeration, the sector where the enumeration is suspected must be recognized

with an OCR engine. Python-tesseract13 is used to achieve this which is a wrapper for Google’s

Tesseract-OCR engine. It recognizes printed writing, offers different settings and supports all

popular image file standards. Since it can be installed and run locally, the implementation is faster

than ABBYY. Furthermore, the OCR is applied iteratively which makes API calls even slower based

on the connection establishment and queue of ABBYYs process.

To determine if an enumeration exists, the last ten move boxes are selected. They are usually

empty and contain the highest numbers which are assumed to be the widest. Only the left third

of each box is inspected since the enumeration is expected to be on the left side. Since not the

whole box is recognized, the computational time needed for the iterative application is reduced.

The output of the recognition is searched for an enumeration pattern which is further explained

in the next step. The inspected image parts are halved if an enumeration is found and this process

is repeated until no more pattern is found. Eventually the enumeration pattern is broken. Once

the pattern breaks, the width of the last working iteration (n-1) is used to remove the numbers

in all boxes.

Searching of enumeration in the recognition

For each box, the recognition string of “python-tesseract” is converted into positive numbers and

put into an array. Then every number is compared to each other number in the array. If the index

distance between any two numbers are equal to the difference of the numbers, they are in

13 Pytesseract project description. Available: https://pypi.org/project/pytesseract/ [15.04.2020]

Figure 30 An example of a table layout containing enumeration in

the move boxes.

ZHAW School of Engineering Document Digitization of Chess Scorecards

29

enumerating order and the matching counter is increased. The image below shows an example of

an array with five numbers where four are in order.

This approach of counting for an enumeration behaves like a Gaussian sum. This counting method

has the advantage that multiple enumerations can be distinguished from each other. For example,

if ten out of ten moves are in order [0,1,2,3,4,5,6,7,8,9], the matching count is 55. If eight out of

ten moves are in one order and the other two moves are in another order [0,1,2,3,4,5,6,7,0,1], the

matching count is then 37, which concludes that not all moves are in the same order.

Since the OCR has recognition flaws, a number pattern is found if 60% of the numbers are in order,

which corresponds to a matching count of 21. This percentage was chosen through trial and error

and with the intention to support as many recognition flaws as possible. The blue boxes in Figure

32 show the final area selection per box.

Figure 31 Example of the counting

of numbers that are in order.

Figure 32 Marked in blue are the final boxes. The leading

numbers are cut off.

ZHAW School of Engineering Document Digitization of Chess Scorecards

30

5. Sorting of boxes: In the last step of the chess move detection the relevant boxes must be re-

sorted before passing the data to the next steps. They are sorted in the same order as they were

played in a chess game. Using the x- and y-coordinates of the relevant boxes. It is also recorded

how many moves were in each column so that the same layout can be displayed at a later stage.

5.3.2 User validation of relevant boxes

Since solely the boxes containing the written moves are relevant, all other boxes must be

removed. In practice results or signatures are written over the writing region as can be seen in

Figure 33. Thus, all boxes after the lastly written chess move are irrelevant. To locate this box a

user input is used.

If any of the remaining boxes does not contain a written chess move, the user is able to deselect

them in a follow up step. This selection process was previously shown in chapter 4.2.

Figure 33 A scorecard where the

result is written into the move

boxes.

ZHAW School of Engineering Document Digitization of Chess Scorecards

31

5.3.3 Results & Discussion

Using the algorithm described above, all relevant boxes are detected. The algorithms are chosen

in such a way that they work in all table layouts if the table has solid lines. To localize the chess

moves, the orientation by the table lines is implemented.

With this said, problems may still arise if the relevant boxes contain other boxes than just the

ones containing the chess moves. As boxes are only filtered regarding their median properties,

errors are introduced when other boxes have the same properties and the same x-coordinate.

This problem is solved by extending the web interface to take user input to validate the found

boxes. This procedure could be partially automated since the move boxes are usually in a distinct

pattern and not spaced apart or scattered. However, if the faulty boxes fit into the pattern of the

move boxes (for example “Black” and “White” at the top of the column), one must rely on the ICR

engine display the true content of those. With the current approach of fuzzy string matching,

strings that are nowhere near SAN syntax receive a heuristic score close to zero. This indicates

that the found box might not belong to the chess moves and could be removed when further

improving the algorithm and usability.

Another challenge arises from an unsuccessful table extraction which leads to unconnected table

lines and consequently to wrong or missing boxes. This problem is illustrated in Figure 34 and

could be fixed with adding the missing boxes based on the surrounding pattern.

Figure 34 Scorecard with a gap in the top right corner, which

is produced by the pre-processing.

ZHAW School of Engineering Document Digitization of Chess Scorecards

32

To validate that the removal of leading numbers is working correctly and that the removal

improves the recognition a test is conducted with a scorecard that contains row numbering inside

the move boxes. This test image is a best-case scenario. It is not blurry, aligned properly and the

writing is completely inside the boxes and does not reach over the borders (Figure 35).

The test is performed using two different regular expressions and lettersets for ABBYY. The full

test description can be found in the appendix in chapter 9.5.1.

Problems are encountered if the scorecard contains enumerations inside the boxes. The

recognition results in errors, no matter if the regex and the letterset are adjusted or not. Numbers

like 2, 6, and 9 among others are not reliably detected and it is not possible to define a general

solution that works for all cases. Furthermore, some numbers are interpreted as completely

different character combinations such as “11” as “K8” which does not aid the interpretation of the

recognized move.

Figure 35 Evaluation scorecard with

enumeration in the left move boxes.

ZHAW School of Engineering Document Digitization of Chess Scorecards

33

5.4 CNN approach

Once all relevant boxes have been found, they must be processed by an ICR engine. Since custom

CNNs are very efficient and specialized, they are most promising. The big advantage compared to

the alternatives is that they can be trained to the problems needs. This training allows for a

specialized alphabet and optimization. It is evident that this produces good results, which “Reine

- Chess" has proven in their application. The following steps show how the individual characters

are extracted from a move box and how to prepare them for a CNN.

5.4.1 Extracting single characters

MSER is used for blob detection in images. MSER stands for “maximally stable extremal regions”

and the goal of blob detections is to detect regions in images that differ in brightness or colour

compared to their surrounding region. With MSER this is achieved by calculating binary regions

with different thresholds and keeping the regions which are persistent over several threshold

values [9]. This method is widely used for automatic text recognition in natural images [10]. Since

this approach has produced reasonable results from the beginning, no other approaches are

considered.

Pre-processing

MSER is very sensitive to noise. To reduce noise and fill up pixel errors, the image is first binarized

with an OTSU threshold and then blurred with a Gaussian kernel to smooth the edges of the

characters (Figure 36). Since the image background is mostly in the same grayscale, OTSU

threshold dynamically searches the best value to binarize each image.

MSER is then used to detect pixel regions that are persistent over several threshold values. This

creates boxes which are not only around the characters, but every pattern that differs from the

background. As can be seen in Figure 37, boxes are created outside the characters at the upper

and lower image boundaries by the remains of the table, as well as a large box which surrounds

Figure 36 On the left side is the original image of a handwritten move in a box. The

right image is binarized and blurred.

ZHAW School of Engineering Document Digitization of Chess Scorecards

34

the entire image. Boxes are also created within the letters as can be seen inside the character

four in the image below. The thick lines surrounding the characters are several boxes created by

MSER.

To find the correct box for each character out of all possible MSER boxes, three filter methods are

applied in the following order:

1. Area boundary: Since the characters always occupy a certain area in the image, boxes that are

too large or too small can be excluded with a minimum and maximum area threshold. To

determine these threshold values, two scorecard layouts are considered, see Figure 38. In the left

image, writers tend to use more of the available space than in the right image.

Based on the different layouts and the application to various scorecards, the maximum area of

the box to be cut is set to 1/3 and the minimum area to 1/500 of the total area. With the minimum

area threshold all boxes smaller than the smallest character, the hyphen, are removed. The MSER

fields remaining after applying the minimum and maximum area thresholds are shown in Figure

39.

Figure 37 All created boxes by MSER

drawn over the pre-processed image.

Figure 38 Two different move boxes on which the writers use different

amounts of the available space.

ZHAW School of Engineering Document Digitization of Chess Scorecards

35

2. Border boundary: As can be seen in the picture above, boxes can occur at the outer area of

the picture. For that reason, two thresholds are defined, one for the horizontal and one for the

vertical borders. After adapting them to various layouts and considering that the move boxes are

always wider than high, the horizontal threshold is set to 5% of the box width and the vertical

threshold to 20% of the box height. Thus, all boxes that are fully outside this area (red) are

discarded, as shown in Figure 40.

3. Intersection boundary: This leaves only the boxes detected by MSER that are located around

and inside the real characters. The largest box is now selected and all boxes within the selected

box are removed. For this purpose, each box is compared with each other and the percentage of

overlapping area is compared. If the overlapping area is greater than 40% of the smaller box area,

it is assumed that this box is part of the larger character and is discarded. This value is selected

based on writing styles in which the writers write very close together and overlapping exists. The

remaining boxes each surround one character as seen in Figure 41.

Figure 39 All remaining MSER boxes

after applying the minimum and

maximum area thresholds to the

image.

Figure 40 All remaining MSER boxes

after applying the red marked area

threshold to the image.

ZHAW School of Engineering Document Digitization of Chess Scorecards

36

Finally, the characters are cut out based on the coordinates of the remaining MSER boxes from

the original image seen in Figure 36.

5.4.2 EMNIST pre-processing

To enable later recognition with a CNN, the images must be pre-processed in the same way as the

training data. The training data referenced is the EMNIST [4] data set. To pre-process the

characters, the script from “Reine – Chess” GitHub repository14 is used. EMNIST contains

annotated 28x28 pixel images of digits and the alphabet in handwritten form. This is commonly

used when classifying handwritten characters due to the size of annotated data. Figure 42 shows

the pre-processed image after applying the algorithm.

14 GitHub File of Reine – Chess. Available: https://github.com/Messier-16/Reine-Chess-Scoresheet-
Scanner/blob/master/PreProcess.py [05.04.2020]

Figure 41 Situation after applying

the intersection filter. Only the

relevant boxes are left.

Figure 42 EMNIST pre-

processing applied to the cut

out characters.

ZHAW School of Engineering Document Digitization of Chess Scorecards

37

5.4.3 Results & Discussion

The region detection works reliably if the following conditions are met:

• The characters do not overlap any borders

• The characters do not overlap each other

• All parts of a character are connected to each other

Figure 43 shows that the region detection does not work if the above conditions are not satisfied.

In conclusion, overlapping characters and disconnected character parts often occur in written

scorecards. For this reason, the box detection must be improved or perhaps a different approach

to MSER should be implemented. One example is edge enhanced MSER which is a combination of

MSER and Canny edge detection [11].

The functions to cut out characters and pre-process them for a CNN are implemented. However,

the approach was not pursued further for two reasons:

1. The handwriting is not spaced apart which makes it nearly impossible to extract every

character by itself.

2. EMNIST does not contain special characters such as “+, =, #, - and /” which need to be

gathered and annotated first.

The idea to annotate own characters was discarded since no alternative data set was found which

contains the needed characters. Furthermore, the uncertainty if self-gathered and annotated data

would work persisted. With the implemented steps a basis was created on which a self-trained

CNN can be built and trained. However, the problems mentioned above should be solved first.

Figure 43 MSER region detection is applied to both images. The left image

contains separated parts of a character and the right image contains

characters that overlap with each other.

ZHAW School of Engineering Document Digitization of Chess Scorecards

38

5.5 ICR engine implementation

Since the custom CNN approach was not continued an alternative was searched. This chapter first

discusses the selection procedure of the final engine. Secondly, the implemented approaches are

discussed, and the most difficult aspects are pointed out. Finally, the implementation of the final

engine is evaluated to identify common recognition flaws and take advantage of them.

5.5.1 ICR engine selection

ICR engines can generally be divided into two categories. On one hand the recognition of text in a

whole document and on the other hand the recognition of single text fields or characters.

Furthermore, most services are API based and some are more expensive than others.

For our application, the ICR engine must support handwriting, also called handprinted writing.

Only engines with this feature were considered in the selection process. Moreover, a custom

alphabet and rules should be supported.

In the following sections multiple OCR engines and their features are listed and compared. For

this selection, the most important factors are handwriting and zonal recognition support. The

pricing was taken into consideration if the API’s have similar specifications.

ZHAW School of Engineering Document Digitization of Chess Scorecards

39

ABBYY

ABBYY is a web OCR service that provides full-page and zonal OCR through an API (Table 1) [12].

It supports the upload of images with specific region information. This helps to limit the

recognition to only the specified fields and not the full document.

Table 1

Feature analysis of ABBYY.

Feature Description

Price First 500 pages for free afterwards 30$ -

800$ per month.

100$ = 2’000 pages or 10’000 fields

Additional features - Can limit the alphabet

- Supports regular expressions for chess logic

- Whole page input

- Writing styles (American, German, etc.) for

different styles of writing i.e. 1 and 7.

LEADTOOLS ICR Module - OmniPage Engine

LEADTOOLS ICR SDK is an ICR Module for .Net and C/C++ developers [13]. It cannot be used as a

standalone application. It allows for zonal recognition and specification of all the parameters. It

also combines pre-processing and OCR in one tool. However, it is not written in Python and offers

no Python support.

Table 2

Feature analysis of LEADTOOLS ICR Module.

Feature Description

Price Single license 3’000$.

Additional features - Can limit the alphabet

- Huge documentation

- Zonal recognition support

- Automatic pre-processing

ZHAW School of Engineering Document Digitization of Chess Scorecards

40

Google Cloud vision

Google Cloud vision provides an API with a huge documentation and configurable requests [14].

However, the text recognition only supports full-page recognition which returns all recognized

locations in the image with their content and their coordinates.

Table 3

 Feature analysis of Google Cloud vision.

Feature Description

Price First 1000 recognitions free, further

recognitions are 1.50$ per 1000 units.

Additional features - Can limit the alphabet

- Object/Facial recognition and other features

supported that are not needed

Conclusion

The examined services are API based and not free of charge. The API systems allow for

handwriting support and can be integrated into the application. Google Cloud Vision was

eliminated due to not supporting zonal recognition which means that the whole document must

always be processed. This is not ideal since the information varies in each scorecard layout and

is a mixture of handwriting and printed text. The solution from LEADTOOLS is not suited in terms

of scope and implementation effort since it mainly supports other languages but Python.

Furthermore, LEADTOOLS is too expensive to try out if its results are not sufficient. Finally,

ABBYY was chosen since it fits the requirements of this thesis best and is free of charge for the

first 500 pages. Zonal recognition is supported as well as a custom alphabet and rules. Besides

that, ABBYY was recommended since it produces good results in similar fields of application.

ZHAW School of Engineering Document Digitization of Chess Scorecards

41

5.5.2 ABBYY

To identify optimal settings of the ABBYY algorithm for the application, all features (full document

and zonal recognition, recognizing single fields, and array of fields) are tested. Afterwards, the

chosen setup is implemented and optimized. The following two functionalities of ABBYY are

considered: The recognition of text in whole documents in contrast to the recognition of single

parts. To decide whether the recognition works, eight self-written scorecards with different

games and layouts are processed and it is attempted to improve the recognition through

parameter tuning.

5.5.2.1 Recognition of whole scorecards

In the first step these scorecards are processed with full-page recognition. The returned

recognition shows that the computer font is recognized, but not the handwriting. Furthermore,

the layout cannot be reconstructed from the output and therefore it cannot be decided which

strings correspond to which texts in the scorecards.

To improve the output, only the handwritten table is processed. ABBYY’s settings are defined to

extract text from a table but fail to deliver reliable results. Therefore, the approach is changed to

an individual part extraction called zonal recognition.

5.5.2.2 Recognition of individual parts

Since the recognition of whole documents has not been successful, the processing of the

individual move boxes is continued. To begin, certain parameters are classified as non-

optimizable and set to their appropriate value. These parameters are “textType”, “writingStyle”

and “markingType”, which are set to their final parameters as shown in Table 4 and later

discussed. To optimize the parameters “letterSet” and “regExp” two approaches are evaluated.

Either to adapt them iteratively with the course of the chess game or to define the regex and the

letterset in a way that they can be applied to all moves in general.

ZHAW School of Engineering Document Digitization of Chess Scorecards

42

In the iterative approach a virtual chess game is played parallel to the recognition and based on

all possible moves in the current board state the recognition space is minimized. Initial testing

shows that if a move is detected incorrectly, the board state for all subsequent moves is faulty and

affects the parameters in a negative way. A user input correction could correct this error, but all

subsequent moves would then have to be re-recognized by ABBYY. Thus, an iterative approach

does not yield optimal results.

Global definition of parameters

Since the iterative approach failed to deliver the expected results, the general approach is

pursued. To define the parameters in general, all possible move notations in the algebraic

notation are considered. Of all optional abbreviations [15] the following are also considered:

• “x” = capture

• “+” = check

• “++” or “#” = checkmate

The parameter “letterSet” is set to all occurring characters in a chess PGN syntax. To create a

correct regular expression that matches all move variations, the regex is evaluated with a list of

valid and invalid moves, including the optional abbreviations mentioned above15. With the regex

itself, only the syntax can be validated but not whether a move is possible or not. Based on these

considerations, the values are defined as shown in the following table.

15 Regex for PGN moves. Available: https://regex101.com/r/Qqh5Nf/8/tests [30.05.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

43

Table 4

Parameter definitions for the recognition of handwritten moves [16].

Parameter Description

textType Defined as “handprinted”, as the moves are handwritten.

writingStyle Set to “german”, as the evaluated scorecards are written exclusively by

German writers. This refers especially to the numbers 1 or 7 which

have a different writing style in other languages.

markingType Set to "simpleText", after all the text is no longer inside of a box.

letterSet Defined to all occurring characters in the SAN moves:

“RNBQKOabcdefghx12345678=+#-”

regExp Set to a self-implemented regex, which only accepts syntactically

correct SAN moves: “(((|([RNBQK](|[a-h])(|[1-8])(|x)|[a-h](|[1-

8])x))[a-h]([1-8]|[18]=[RNBQ]))|O-O(|-O))(|[+#]|[+][+])”

Once all parameters are defined the document is ready to be recognized. The functions

“submitImage” [17] and “processFields” [18] are used to send a single image to ABBYY and

process all fields in one request. To use the method “processFields” an XML file must be

transmitted with the request body which contains the information of the coordinates of all boxes

and the parameters mentioned in the table above. Based on the XSD schema file16 a custom XML

file creator is in place. An example of such a file with a custom request and response can be seen

in the appendix 9.4.1 Input XML format.

Finally, an XML is received that contains the recognition of ABBYY. Each character has a

confidence for its recognition. If there are several candidates for certain characters, they are sent

along with the recognition confidence. An example output can be found in appendix 9.4.2 Output

XML format.

16 ABBYY XSD Schema. Available: https://www.ocrsdk.com/schema/taskDescription-1.0.xsd
[04.03.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

44

5.5.3 Results & Discussion

The approach with ABBYY is implemented and with it a robust recognition is achieved. It is

possible to speed up the process by sending and receiving the information for a whole

image/document instead of every move separately. The speed improves from two seconds per

move to about three seconds for 40 moves. Overall a recognition confidence of around 95% is

achieved. This meets the requirements of the application to present a solution to the problem

definition. However, ABBYY is expensive in the long run and at the same time not optimized for

the chess syntax. It is assumed that a better recognition can be achieved by an own CNN, therefore

it is recommended to improve this approach in the future.

Furthermore, an evaluation is carried out to find common errors in ABBYY’s recognition. These

findings are further developed during this thesis.

To assess the common mistakes ABBYY yields during recognition, a recognition data set is created

containing 21 scorecards (Figure 44). A scorecard of a match containing every character is

selected and additional moves are appended to increase the number of rarely used characters.

This scorecard is then transcribed by multiple writers. According to the circumstances the

handwriting is more beautiful than at a tournament.

Figure 44 Sample scorecard written by

a volunteer to create an own

recognition data set.

ZHAW School of Engineering Document Digitization of Chess Scorecards

45

After the data collection phase, all moves are sent to the ABBYY. The test resulted in a matrix

which is shown in appendix chapter 9.5.2. Of the various approaches, the recognition of the

individual moves is implemented with generally applicable parameters.

The evaluation shows that a global recognition confidence of 95.46% is achieved. This number

may vary when other scorecards or writers are evaluated and is calculated from 2644 total

characters with 120 total recognition errors leading to this result.

This approach provides very accurate detection for well-legible moves. Based on the evaluation,

it is possible to identify that there is a tendency for certain letters to be misrecognized.

The highest percentage error lies in character “a” with around 27% false positive recognitions.

This is followed by “K”, “c”, “g” and “2” which all have around 13-16% false positive recognitions.

A false positive recognition describes a case in which a character, i.e. “B” is recognized by ABBYY,

but it is an “8” on the scorecard, leading to a false positive “B” recognition. Currently some “Q”

and “g” are recognized as an “a” which are the previous 27% false positive recognitions. Since the

writing area is very narrow, “Q” is often optically small and not clearly recognizable as “Q”, which

means that they are recognized as “a”.

ZHAW School of Engineering Document Digitization of Chess Scorecards

46

5.6 Improvement of recognition

After the whole game has been processed by the application, ABBYY’s recognition is received.

This output must be validated and improved since the output is not always correct. This chapter

covers the steps taken to present the best possible guess for each move. To accomplish this the

recognition data is post-processed and evaluated using a stochastic decision tree.

5.6.1 Post-processing of the ABBYY recognition

The recognition is first cleaned from all unwanted characters. For example, whitespaces are often

among those. All characters are discarded that do not belong to the letterset as it was defined in

Table 4. To revisit this definition, the letterset is defined as “RNBQKOabcdefghx12345678=+#-”.

ABBYY does not return full words but combinations of single characters like: (“a”, “x”, “B”, “5”)

which means “axB5” was recognized. If ABBYY is uncertain it returns options for each character

in doubt: (“a”, “x”, (“B”, “R”), “5”). Regarding the example, ABBYY is not sure if a “B” or an “R” is

recognized and thus gives both a recognition confidence from 0 to 1.This is an example for a

potential candidate for this index and these are extended in the following steps.

5.6.1.1 Potential candidates per character

As discussed in chapter 5.5.3, the evaluation of ABBYY's recognition showed that certain

characters tend to get classified incorrect. For example, it was found that only 73% of all the

recognized “a” are true positives (Table 5). In this case all potential alternative characters which

have an error rate >= 5% are considered as additional candidates.

Table 5

Extract from the ABBYY recognition evaluation showing the frequency

(in %) of identified characters when “a” is the real value.

Alphabet a (%)

Q 9.50

B 0.80

d 2.40

a 73.00

g 13.50

6 0.80

ZHAW School of Engineering Document Digitization of Chess Scorecards

47

In the following example ABBYY recognizes character “a” with a recognition confidence of 100%.

Subsequently the additional characters “g” and “Q” are added as possible candidates. These

potential alternatives then reduce the recognition confidence of the letter “a” by the confidence

of the candidates rounded up to 5% (Table 6). The final set of candidates and their confidences

are stored until the next step.

Table 6

Potential candidate addition for the recognition of the character “a”.

Recognition Candidates for “a” Adapted recognition

Char: Confidence: Char: Error rate: Char: Confidence:

“a” 100.00% “g” 13.50% “a” 75.00%

 “Q” 9.50% “g” 15.00%

 “d” 2.40% “Q” 10.00%

5.6.1.2 Creation of move candidates

Now that the recognition has been cleaned and potential candidates were added, possible moves

may be created based on the potential candidates of the characters. A move must be represented

in a string form and is composed of a series of 2 to 8 characters. All possible combinations of the

recognized characters and their potential candidates are generated, and their overall recognition

confidence is calculated by multiplying their respective recognition confidences (Table 7).

Table 7

Combination of character candidates which lead to move candidates.

First char Second char Move candidates

Char: Confidence: Char: Confidence: Char: Confidence:

“a” 75.00% “4” 100.00% “a4” 75.00%

“g” 15.00% “g4” 15.00%

“Q” 10.00% “Q4” 10.00%

ZHAW School of Engineering Document Digitization of Chess Scorecards

48

5.6.1.3 Creation of move containers

Once all potential move candidates have been determined, move container objects can be

generated. Each move container corresponds to one move, initially containing the potential move

candidates, which are processed in the decision tree. Furthermore, move containers are used to

transfer the state of the application from backend to frontend and vice versa and to store all

necessary information for later access (Table 8).

Table 8

A description of the move container object variables.

Variable Description

predicted_move This string value is initially empty. If the tree algorithm

successfully predicts a move, the value is set to the

prediction. If the tree is stuck in a dead end, the value

“Error” is set.

move_candidates Includes all candidates that are created in the previous step.

move_certainty Once the full decision tree has finished calculating a move,

the move_certainty describes how certain the tree is, that

this is the correct move. It contains a value from 0-1 where

1 is equal to 100%.

suggestions The top predictions of the tree algorithm for this step if a

move is successfully predicted.

status Is set to a value that represents the status of this container:

• 0 = not processed

• 1 = validated by the user

• 2 = process error in the tree algorithm

• 3 = processed by the tree algorithm

ZHAW School of Engineering Document Digitization of Chess Scorecards

49

5.6.2 Stochastic decision tree

Each move container contains the move candidates and thus it is possible to estimate what was

written in each box by the player. Since a chess game is correlated, it must be played from the first

to the last move. Depending on the state of the board, only a finite number of moves are legal.

Those moves are referenced as legal moves in the following subchapters. Incorrectly recognized

chess moves can therefore change the state of the board in such a way that subsequent

recognitions are no longer valid moves. To take advantage of this characteristic, a stochastic

decision tree is implemented to consider subsequent moves in the prediction and ultimately

improve the recognition. The following steps explain how the decision tree is implemented and

how the algorithm operates.

5.6.2.1 Structure of the tree

During a chess game, a new board state is formed after each move. These states are represented

in the tree as nodes. The players' moves are represented as edges.

Nodes

A node contains all the information about the current board state which is displayed in Table 9.

A node is expandable by adding an edge, connecting it to a new child node. The node value

represents how promising this subtree is. The larger this is, the more likely are all the following

nodes. To simulate the board state, the “python-chess” library is used [19]. It offers functions to

validate individual moves given a certain board state. Furthermore, any given board state can be

reproduced and validated.

ZHAW School of Engineering Document Digitization of Chess Scorecards

50

Table 9

A description of the node object variables.

Variable Description

board Contains the current board state as a board object created

by the “python-chess” library.

value Value of the node that represents how promising this

subtree is based on its child nodes and is initially set to 1.

is_calculated Is set to “True” if all legal moves have been evaluated and

the likely edges have been created. Is used to avoid

redundant calculations.

edges A list of edge objects that connect this node with the

following nodes.

Edges

An edge represents a chess move and connects two nodes with each other. It includes the

information of the heuristic certainty of the move and the two nodes which are connected (Table

10).

Table 10

A description of the edge object variables.

Variable Description

move The string value of the chess move in SAN notation and

which is a legal move in the current board state.

heuristic_certainty The heuristic certainty that this legal move corresponds to

the recognized move on the scorecard. This calculation is

done with heuristics as described in the following chapter.

previous_node The node from which this move originated.

following_node The node that gets expanded when playing the current

move in the board state of the previous node.

ZHAW School of Engineering Document Digitization of Chess Scorecards

51

5.6.2.2 Expanding nodes with heuristics

All legal moves can be obtained from the board state. For each legal move an edge is created in

which the move and the heuristic certainty value is stored. This value indicates how certain the

algorithm is that the chosen legal move is the best possible guess for the recognized move. It is

calculated with the distribution of heuristic points, which are described below. The previously

mentioned move containers are used to access the move candidates and their information.

Each move candidate is compared with each legal move of the current board state. Based on their

similarity, heuristic points are assigned to the legal moves. Because each move candidate also has

his own recognition confidence, these are considered when adding up the points by multiplying

the heuristic points (green) with the candidate’s recognition confidence (orange) as shown in

Table 11. A simplified example of this calculation with the same candidates from chapter 5.6.1.2

is displayed and only four legal moves are considered. The heuristic points presented here serve

as an example and are fictional, to make it more comprehensible. As displayed in Table 11,

candidates are compared to the currently legal moves. How the real heuristics perform is

described after this calculation.

 Strings that are more comparable get more heuristic points. Over all candidates the legal move

“a4” has the most points since it is a full match and needs no character transformations to

resemble a legal move.

Table 11

Fictional heuristic points distribution for legal moves from recognized move candidates.

 Legal moves

Candidates
a4 g3 h3 Nf3

a4 (75%) 120 * 0.75 = 90 5 * 0.75 = 3.75 5 * 0.75 = 3.75 0 * 0.75 = 0

g4 (15%) 50 * 0.15 = 7.5 50 * 0.15 = 7.5 5 * 0.15 = 0.75 0 * 0.15 = 0

Q4 (10%) 5 * 0.10 = 0.5 5 * 0.10 = 0.5 5 * 0.10 = 0.5 0 * 0.10 = 0

Sum 98 11.75 5 0

ZHAW School of Engineering Document Digitization of Chess Scorecards

52

The heuristic certainty of each legal move is then calculated as a percentage of the total sum of all

legal moves. These percentages are output and represent the certainty that these moves

correspond to the recognition.

𝑎4 =
98

98 + 11.75 + 5 + 0
= 85.40%

𝑔3 =
11.75

98 + 11.75 + 5 + 0
= 10.24%

ℎ3 =
5

98 + 11.75 + 5 + 0
= 4.36%

𝑁𝑓3 =
0

98 + 11.75 + 5 + 0
= 0%

The following section explains how the heuristic points are distributed (Table 12). To compare a

legal move with a move candidate, fuzzy string matching is applied. Different algorithms are

considered and those that turn out to be suitable for chess strings are chosen. The comparisons

and their heuristic points are listed in the table below and the points were approximated with

trial and error. A special case are strings with a length difference of two or more which are

excluded from the heuristics and automatically receive zero points. Through comparing ABBYY’s

recognition with what was written on the scorecard it was found that every recognition has at

most a difference of one character in length.

Table 12

Implemented heuristics to compare two strings.

Name Description Possible Points

Full match If the two strings are equal, return all possible

points.

5000

Length Return all possible points if both strings are

equally long. Return 25 points less for each

length difference.

50

Length substring Search in both strings for the biggest matching

substring. The longer the substring contrasts

with the actual strings, the more points are

returned.

200

ZHAW School of Engineering Document Digitization of Chess Scorecards

53

Levenshtein The Levenshtein distance [20] is the minimum

number of editing operations to get from one

string to another. The higher this distance is, the

fewer points are returned.

100

Matches from each side In many cases, the positions of certain

characters are correct when viewed either from

the front or the back. Therefore, points are

awarded per match up to a maximum of the

possible points.

500

5.6.2.3 Discarding of unlikely edges

To make the decision tree more computable, a threshold is implemented which discards all edges

with a smaller heuristic certainty than the threshold. To define a reasonable threshold range,

random samples of the heuristic confidence distribution are taken based on the recognition data

set used in chapter 5.5.3.

Two graphs of the heuristic certainty distribution of the same recognition in two different board

states are shown as followed. The recognition contains the move candidates “Nc6”, “Ne6” and

“Ng6”. In the left graph is a board state, which contains the legal move “Nc6”. Its certainty peaks

over 60% due to a full match with a move candidate. This is different in the right graph, where no

legal move has a full match, because the move candidates are not possible in the board state.

However, the most similar legal moves peak slightly over 10%. Additional graphs are listed in the

appendix 9.5.3.

ZHAW School of Engineering Document Digitization of Chess Scorecards

54

The graphs show that uncertain values range between 0% and 5%, similar moves produce peaks

in the range of 10% to 30% and matching moves peak over 50%. Based on these values, the

threshold should be defined between 5% and 10% to always consider similar moves and not

every possibility.

To locate the optimal percentage in this range, an automated test was performed on the

recognition data set from chapter 5.4.3. For each setting, the number of errors over 19 scorecards

is recorded. The depths range between 1 and 6 because manual tests have shown that higher

depths can result in very long computational times.

The graph displayed in Figure 46 shows the cumulative error count per trial over all the

scorecards.

Figure 45 Different heuristic certainty distribution with move candidates “Nc6”, “Ne6” and “Ng6”,

based on the legal moves of different board states.

ZHAW School of Engineering Document Digitization of Chess Scorecards

55

The number of errors tend to decrease with increasing depth. However, with a depth of 6 the

errors start to increase again. With increasing depth, faulty detections have a negative effect on

more of the preceding predictions. However, with increasing depth more subsequent correct

recognitions can positively affect the current prediction. It is assumed that in this case the

drawbacks outweigh the benefits. Furthermore, if ABBYY returns an empty recognition, the depth

can be specified however high, nevertheless the tree will not produce a reliable prediction.

To achieve the lowest possible error rate the most reliable configuration is with a depth of 5 and

a threshold of 0.06. All further steps are implemented with these parameter settings.

0

5

10

15

20

25

30

1 2 3 4 5 6

Er
ro

r
co

u
n

t

Depth

Threshold: 0.05 Threshold: 0.06 Threshold: 0.07 Threshold: 0.08 Threshold: 0.09 Threshold: 0.1

Figure 46 Error count per depth and threshold combination for 19 scorecards. Each scorecard contains

a valid game of 20.5 moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

56

To avoid dead ends, at least the three edges with the highest heuristic certainty are considered

regardless of the defined threshold. It may be the case that several legal moves have the same

heuristic certainty which can be seen in Figure 47. The move "a6" and the move "g6" are above

the threshold and the moves "f6", "e6" and "d6" share the third highest heuristic certainty. Since

it cannot be decided which of the edges is the most promising, up to 5 edges are considered in

total. If more than 5 edges are chosen, the tree gets very broad too quickly and computation takes

a long time.

A special case occurs if ABBYY returns an empty recognition. In this case it is not possible to tell

which moves are possible and which are not. Therefore, none of the created edges are discarded

and the heuristic certainties are overwritten with 100%. However, the disadvantage of this

procedure is a very broad tree and a high computational time.

Considering the previous example from the heuristic point distribution, the discarding of unlikely

branches is shown in the figure below. As can be seen, the heuristic certainty of the edges “h3”

and “Nf3” are below the threshold value. But since the minimum amount must be met, the edge

“h3” is not discarded. Therefore, only the edge “Nf3” is removed. Nodes are then created for all

remaining edges with an initial node value of 1, in which the board state is extended by the chosen

chess move.

Figure 47 Example move candidates and the possible legal candidates in

the board state. The numbers indicate all the selected moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

57

5.6.2.4 Calculation of node values

Due to the creation of new nodes, the previous steps can be repeated until the specified depth is

reached. First, all legal moves are taken into consideration. Then heuristic points and the

certainty for all edges are calculated. Finally, the remaining edges are expanded. Once the

specified depth is reached, the whole tree is created. For each node that exists at the maximum

depth, a series of legal move combinations from the root node is found. These leaf nodes are

initialized with a node value of 1. From the last layer the values are now calculated upwards. Each

parent node multiplies the values of the child nodes with their edge heuristic certainty and

creates a sum over them.

This calculation is shown in Figure 49, which is the expanded tree from Figure 48.

Figure 48 Decision tree with depth of 1. Orange heuristic certainties are below the threshold. Red edges

are discarded.

Figure 49 Decision tree with depth of two. The node values are recalculated and the edge of move “a4” is

deemed the most promising.

ZHAW School of Engineering Document Digitization of Chess Scorecards

58

5.6.2.5 Determination of best guess

Once all node values have been calculated and propagated upwards, the root node receives the

values from all its edges and selects the maximum. This value corresponds to the move that is the

most promising from all initially considered legal moves in the root node. The chosen move is

then written into the corresponding move container. In the example above, the move “a4” is

chosen, because the value 0.79 is the highest received value. To calculate the move certainty of

this max value in relation to all received values, the max value is divided by the sum of all values

and then written into the move container:

𝑚𝑜𝑣𝑒 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
0.79

0.79 + 0.06 + 0.02
= 0.91

The three most promising moves are added to the move container as suggestions for the user in

the frontend interface. Finally, the corresponding child node to the chosen move is used as the

new root node and the algorithm is recursively applied again.

5.6.2.6 User input to correct moves

After all moves have been processed by the decision tree or if it has reached a dead end, the user

is presented with the prediction. He is given the ability to change single predictions to correct

eventual errors. As soon as the user corrects a move, the game is processed again by the

algorithm. The validated and corrected moves are marked. The algorithm thus knows that at this

node, only the marked move is possible and discards all other edges. Depending on the depth, this

can affect previous moves as well as all subsequent moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

59

5.6.3 Results & Discussion

The following evaluations are carried out with the aim of testing the individual steps and

examining their improvement regarding the final prediction. For the following evaluations, the

self-made data set from the ABBYY evaluation in chapter 5.5.3 is used. Out of the 21 scorecards

19 are used for this purpose since two contain invalid games and could not be tested for a full

game recognition. The decision tree parameters are set to the defined threshold (0.06) and depth

(5) from chapter 5.6.2.3 for the following evaluations.

5.6.3.1 Improvement through additional candidates

To determine if the additional character candidates improve the output of the decision tree, a

prediction is performed with and without the candidates.

As Figure 50 shows, 10 out of 19 scorecards contained no errors. Scorecard 9 contains the most

errors with and without additional candidates. The maximum number of errors is 7 which is

recorded without additional candidates. The addition of candidates improves the prediction in 3

out of 9 scorecards and reduces the errors from a total of 21 to 17. This is an overall error

reduction of 19% which indicates that approximately every fifth error could be resolved with this

method. It also confirms the observed and chosen character transformations can be utilized like

this.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Er
ro

r
co

u
n

t

Scorecard

Without Candidates With Candidates

Figure 50 Error count of each scorecard with and without additional candidates. Each scorecard

contains a valid game of 20.5 moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

60

5.6.3.2 Evaluation of computation time

Once an edge is selected by the algorithm, most of the calculated information contained in the rest

of the decision tree can be reused. Since the board states and their subsequent recognitions in the

tree do not change, the calculated heuristic certainties are constant. Thus, they can be stored and

only need to be recalculated in new layers. To confirm that the storage of data is saving time and

improving performance, the computational time is evaluated with and without the storage of data

over the data set.

Figure 51 shows the total error count of all 19 scorecards included in the data set. It shows the

computational time in logarithmic scale for each scorecard.

Through storing already computed tree nodes, the computational time could be reduced by a

factor of 18 to 30 depending on their amount of errors. Therefore, only the last depth must be

recalculated. This is considered a success and paved the path for further utilization of the decision

tree. Without this optimization, the decision tree would not be computable.

To measure the effect of different depths and thresholds on computability, the computation time

per setting was measured including the optimized settings from the previous evaluation. To

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
in

 s
ec

o
n

d
s

(l
o

g)

Scorecard

Without optimization With optimization

Figure 51 Computational time needed for each scorecard with and without optimization. Each

scorecard contains a valid game of 20.5 moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

61

simulate a user interaction with the application, the game is first fully predicted before any errors

are corrected. After the full prediction, the first error occurring in the prediction is corrected and

the whole tree is recalculated. This procedure is repeated until all moves are correctly predicted.

Figure 52 shows the computational time in logarithmic scale versus the depth and threshold of

the tree.

Figure 52 shows that the computation time per increased depth approximately triples. A

threshold of 0.05 takes much longer to compute at higher depths. This is due to the width of the

decision tree which is expanding rapidly as many moves have a confidence of over 5%.

The average computational time is 33 seconds per scorecard where each contain a game with

20.5 moves. Based on the database provided by “chessgames.com” [21], an average chess game is

finished within 41.07 moves. Thus, the average computational time per game is around one

minute for the user in the current setting.

The current implementation is not fully optimized and still suffers from long computational times.

Multithreading or multiprocessing could be implemented to speed up the computation process.

1

10

100

1000

10000

1 2 3 4 5 6

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
in

 s
ec

o
n

d
s

(l
o

g)

Depth

Threshold: 0.05 Threshold: 0.06 Threshold: 0.07

Threshold: 0.08 Threshold: 0.09 Threshold: 0.1

Figure 52 Computational time needed to predict and correct 19 scorecards per depth and threshold

combination.

ZHAW School of Engineering Document Digitization of Chess Scorecards

62

5.6.3.3 Performance of the overall implementation

The improvement of the chess move prediction using post-processing is investigated. Therefore,

to compare the predictions, the output from ABBYY is compared with the output of the decision

tree with the current settings.

The following figure shows how many errors per scorecard occurred through ABBYY’s pure

recognition and after post-processing.

By validating on the data set, as well as post-processing and using heuristics in combination with

a decision tree, the initial 89 errors were reduced to 17. This is an improvement of about 80%

less errors. The tests have shown that minor errors can be corrected if they are followed by

correct recognitions. Since moves in chess are interdependent, false recognitions are more likely

to be corrected if they are in a relation or contradiction with the ensuing moves. Special cases

with few errors exist, such as scorecard 7 or 12, where errors are so severe that they cannot be

corrected automatically. To better understand the spike in errors recognized in scorecard 9, it is

investigated in more detail below.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Er
ro

r
co

u
n

t

Scorecard

Without post-processing With post-processing

Figure 53 Comparison of errors per scorecard with and without post-processing. Each scorecard

contains a valid game of 20.5 moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

63

Figure 54 shows on the left side fourteen errors returned by ABBYY without post-processing. On

the right side, it is reduced to five with the help of the decision tree algorithm.

The prediction fails due to the wrong recognition supplied by ABBYY. A few examples are given:

• “Bd2” is an empty recognition

• “Qxg6” is recognized as “QK&”

• “Qxe8+” is recognized as “Qxd+”

This problem can only be tackled if the handwriting is nicer and does not overlap the table lines

or other letters. Furthermore, another ICR engine could be used to improve the recognition

output.

In conclusion, by using post-processing, heuristics and a decision tree model the errors on the

data set are reduced. Without post-processing 89 errors exist over the whole recognition data set.

This is reasonable since a confidence of 95.46% is measured for ABBYY’s output which leads to

around 113 wrongly classified characters in 2470 characters over the data set. This number is

Figure 54 The left image is the prediction for scorecard 9 without post-processing

and the right image is with post-processing. Marked in green are the correct and

in red the wrong predictions.

ZHAW School of Engineering Document Digitization of Chess Scorecards

64

optimized to a final low of 17 errors, which is an error reduction by 80%. This shows that the

decision tree gives a significant boost in the right direction.

There are many aspects which can be extended. If the heuristic points are to be better distributed,

the current board state in each move should be considered. An idea was to implement a

“MiniMax”17 as a heuristic tool inside the decision tree implementation. This gives an insight into

the current board state and helps to understand if a favourable position can be reached. When

playing chess on an average to high level, the goal is to win and to outplay the opponent. Bad

board states are not desired and will be avoided whenever possible. This could remove

unnecessary branches and further reinforce legal moves.

By applying the minimum error configuration of a depth of 5 and a threshold value of 0.06, the

lowest amount of errors is recorded in the data set. However, the computational time is

considerably higher than using a lower depth. By reducing the depth, a slightly higher number of

errors are predicted but it is faster for the user to correct more errors instead of waiting for the

algorithm to calculate the decision tree on high depths. Furthermore, the decision to select a

minimum of three and a maximum of five different legal moves could be rethought and optimized

in additional steps in the future. Considering the time savings, the depth is set to 3 and the

threshold to 0.06 in the productive system which overall enhances the user experience with lower

idle times. Currently the recognized moves are sent back and forth in a JSON file format. The file

size might exceed the maximum session file size of 4MB thus the end of a game might be cut of if

it is longer than 40 moves. This could be fixed with user and session management to not always

send the whole recognition but only the relevant changes back and forth.

17 Game Theory – The Minimax Algorithm Explained. Available: https://towardsdatascience.com/how-a-
chess-playing-computer-thinks-about-its-next-move-8f028bd0e7b1 [14.06.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

65

6 Conclusion

The goal of this bachelor thesis was to implement an algorithm which automatically digitizes the

moves of a chess game from the image of a scorecard. This algorithm detects the handwritten

moves, recognizes and checks them for correctness. The application was developed in Python

with a Flask web server and contains a web interface for the user to interact with and partake in

the digitization and recognition process.

The application takes an image of a scorecard with a table layout and outputs a PGN file containing

the written chess game after taking in user input. The table must have solid lines and the initial

handwritten text must be legible. Furthermore, the written text should be strictly written inside

the boxes. The character recognition was implemented through the ABBYY API and a recognition

confidence of around 95% was achieved. Additionally, based on commonly occurring recognition

errors a stochastic decision tree with custom heuristics was implemented to improve the quality

of the recognition and validate the moves. This reduced the error rate over the data set of 19

scorecards by around 80% from 89 down to 17 errors.

With these results, a reliable recognition was achieved. The software stands out from the

competition since multiple layouts are supported and the application is interactive and control

over the recognition is handed to the user.

ZHAW School of Engineering Document Digitization of Chess Scorecards

66

7 Outlook

To further improve the application, the custom CNN approach could be investigated and

implemented. A custom CNN might reach a higher confidence score than ABBYY and thus further

improve the application. To support more layouts, the web interface could offer an option to pre-

select the input scorecard layout and adapt the used recognition algorithm in the application

regarding the selected option. The underlying algorithms may be improved to solely focus on the

handwritten text instead of the table lines. Additionally, this approach could enable the extraction

of header data including i.e. the tournament name, player names or the score of the game.

Since each step in the implementation offers potential for optimization, a documented test run of

the application should be carried out to identify where the most errors occur. Once these points

of failure are identified, they can be fixed successively.

To develop a commercially viable product, it requires a solid foundation and additional features:

• The frontend application should be ported to a current web framework.

• The architecture of the application should be adapted to function like an API to make it

more extensible.

• The application in its current state only allows single user access and no user

management system is in place. This extension would have to be installed to handle user

accounts, user specific data and confidential information.

• Since the ABBYY OCR engine is not free of charge, an alternative and free approach would

be beneficial to lower the cost of the application and allow for further specialization of the

recognition.

• Further layouts could be supported within the application through focusing on the next

most common layout apart from solid tables.

• Include chess analytics into the application and create an all-in-one solution to digitize

and analyse chess games.

ZHAW School of Engineering Document Digitization of Chess Scorecards

67

8 Listings

8.1 Bibliography

[1] Newsgroup rec.games.chess. Standard: Portable Game Notation Specification and

Implementation Guide [Online].

Available:

http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm [01.04.2020]

[2] Newsgroup rec.games.chess. Standard: Portable Game Notation Specification and

Implementation Guide [Online]. Sect. 8.2.3.

Available:

http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm [01.04.2020]

[3] S. Garrido-Jurado et al. 2014. Automatic generation and detection of highly reliable

fiducial markers under occlusion. Pattern Recogn. 47, 6, June 2014, p. 2280-2292.

[4] G. Cohen, S. Afshar, J. Tapson and A. van Schaik, “EMNIST: an extension of MNIST to

handwritten letters”, The MARCS Institute for Brain, Behaviour and Development,

Penrith, Australia, arXiv:1702.05373v2, 01 March 2017.

[5] A. Rosebrock. (2014 September 1). How to Build a Kick-Ass Mobile Document Scanner in

just 5 minutes [Online].

Available:

https://www.pyimagesearch.com/2014/09/01/build-kick-ass-mobile-document-

scanner-just-5-minutes/ [10.04.2020]

[6] CSE. (2018). Making sense of Handwritten Sections in Scanned Documents using the

Azure ML Package for Computer Vision and Azure Cognitive Services [Online].

Available:

https://devblogs.microsoft.com/cse/2018/05/07/handwriting-detection-and-

recognition-in-scanned-documents-using-azure-ml-package-computer-vision-azure-

cognitive-services-ocr/ [10.05.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

68

[7] K. Vyas. (2018, July 22). A Box detection algorithm for any image containing boxes

[Online].

Available:

https://medium.com/coinmonks/a-box-detection-algorithm-for-any-image-containing-

boxes-756c15d7ed26 [07.04.2020]

[8] OpenCV. (2020). Morphological Transformations (4.3.0-dev) [Online].

Available:

https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html

[09.04.2020]

[9] J. Matas, O. Chum, M. Urban and T. Pajdla. (2004). Robust Wide Baseline Stereo from

Maximally Stable Extremal Regions. Image and Vision Computing. 22. 761-767.

10.1016/j.imavis.2004.02.006.

[10] MathWorks. Automatically Detect and Recognize Text in Natural Images [Online].

Available:

https://www.mathworks.com/help/vision/examples/automatically-detect-and-

recognize-text-in-natural-images.html [03.04.2020]

[11] H. Chen, S. Tsai, G. Schroth, D. Chen, R. Grzeszczuk and B. Girod. (2011). Robust text

detection in natural images with edge-enhanced Maximally Stable Extremal Regions. IEEE

International Conference on Image Processing. 2609-2612. 10.1109/ICIP.2011.6116200.

[12] ABBYY. Cloud OCR SDK [Online].

Available:

https://www.ocrsdk.com/ [20.04.2020]

[13] Leadtools. ICR SDK Technology [Online].

Available:

https://www.leadtools.com/sdk/ocr/icr [20.04.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

69

[14] Google Cloud. Detect handwriting in images [Online].

Available:

https://cloud.google.com/vision/docs/handwriting [20.04.2020]

[15] International Cheess Federation. (2018, January 1). Fide Laws of Chess [Online].

Appendix C.13.

Available:

https://old.fide.com/fide/handbook.html?id=208&view=article [28.04.2020]

[16] ABBYY. (2020) XML parameters of field recognition [Online].

Available:

https://www.ocrsdk.com/documentation/specifications/xml-scheme-field-settings/

[04.03.2020]

[17] ABBYY. (2020) API Reference submitImage Method (version 1) [Online].

Available:

https://www.ocrsdk.com/documentation/api-reference/submit-image-method/

[04.03.2020]

[18] ABBYY. (2020) API Reference processFields Method (version 1) [Online].

Available:

https://www.ocrsdk.com/documentation/api-reference/process-fields-method/

[04.03.2020]

[19] N. Fiekas. (2020). Python-chess, Project description [Online].

Available:

https://pypi.org/project/python-chess/ [16.04.2020]

[20] Cluelogic Insights. (2017 January 25). The Levenshtein Algorithm [Online].

Available:

https://www.cuelogic.com/blog/the-levenshtein-algorithm [01.06.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

70

[21] Chessgames Services LLS (2020). Statistics Page [Online].

Available:

https://www.chessgames.com/chessstats.html [10.06.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

71

8.2 List of Figures

Figure 1 USCF scorecard layout with a closed table. ... 3

Figure 2 A different scorecard layout with a closed table. ... 3

Figure 3 A scorecard layout with an open table layout. .. 3

Figure 4 The downloadable scorecard format from Reine – Chess with ArUco markers in the

corners... 5

Figure 5 Screenshot of CheSScan Android App interface. .. 6

Figure 6 The general workflow of the application. Each main step is in a hexagon. 10

Figure 7 Landing page of the application where the user can upload an image and start the

application. ... 11

Figure 8 The aligned image is displayed in the page. The user can confirm the correctness of the

alignment. ... 11

Figure 9 The user selects the last move and automatically the rest of the boxes are unselected.12

Figure 10 The user selects any unwanted boxes. This example does not contain any unwanted

boxes.. 12

Figure 11 The unwanted boxes are deselected by the user and marked in red. 13

Figure 12 The loading screen that is displayed in every asynchronous step. ... 13

Figure 13 The predicted game that is presented to the user based on the recognition. 14

Figure 14 A popup window for the blue framed move “c4” in the table. The window shows the

original image, what was predicted by the algorithm and the top suggestions. This move must be

corrected to “e4”. .. 15

Figure 15 The possible colours and their meaning in the frontend PGN table. 15

Figure 16 A correct game which is successfully predicted and validated by the user. 16

Figure 17 The final form to fill in the meta data for the PGN header. ... 16

Figure 18 Shows the original image before the alignment on the left and after the aligned image

on the right. .. 17

Figure 19 The left image shows the source image of a table part. Shadow removal is applied to the

right image. .. 19

Figure 20 Different thresholding methods applied to a sudoku sheet. .. 20

Figure 21 Binarized part of the table with gaps in the left table line. ... 20

Figure 22 Morphological kernel for vertical and horizontal lines with a length of 5 pixels. 21

Figure 23 The left image is the table part after one erosion and the right image after two dilations

with a small kernel. .. 22

file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476349
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476350
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476350
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476351
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476351
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476352
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476353
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476353
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476354
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476355
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476356
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476357
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476357
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476357
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476358
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476359
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476360
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476361
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476361
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476362
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476362
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476363
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476364
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476365
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476366
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476366

ZHAW School of Engineering Document Digitization of Chess Scorecards

72

Figure 24 The table lines left after a single erosion and dilation with a large kernel. 22

Figure 25 The left image shows a slanted table line which is split. The right image shows the same

line after a single erosion and dilation with a square kernel. .. 23

Figure 26 The right table image is the combination of the other two images which contain all

horizontal and all vertical table lines. Also, dilation with a 5x5 kernel is applied. 23

Figure 27 Binary image of the scorecards table after the table extraction. ... 24

Figure 28 Relevant anchor lines on two different table layouts. ... 26

Figure 29 The widths of columns are not equal. The two marked widths show clear differences.

 .. 27

Figure 30 An example of a table layout containing enumeration in the move boxes. 28

Figure 31 Example of the counting of numbers that are in order. .. 29

Figure 32 Marked in blue are the final boxes. The leading numbers are cut off.................................... 29

Figure 33 A scorecard where the result is written into the move boxes. .. 30

Figure 34 Scorecard with a gap in the top right corner, which is produced by the pre-processing.

 .. 31

Figure 35 Evaluation scorecard with enumeration in the left move boxes. .. 32

Figure 36 On the left side is the original image of a handwritten move in a box. The right image is

binarized and blurred... 33

Figure 37 All created boxes by MSER drawn over the pre-processed image. ... 34

Figure 38 Two different move boxes on which the writers use different amounts of the available

space. ... 34

Figure 39 All remaining MSER boxes after applying the minimum and maximum area thresholds

to the image. .. 35

Figure 40 All remaining MSER boxes after applying the red marked area threshold to the image.

 .. 35

Figure 41 Situation after applying the intersection filter. Only the relevant boxes are left. 36

Figure 42 EMNIST pre-processing applied to the cut out characters. .. 36

Figure 43 MSER region detection is applied to both images. The left image contains separated

parts of a character and the right image contains characters that overlap with each other........... 37

Figure 44 Sample scorecard written by a volunteer to create an own recognition data set........... 44

Figure 45 Different heuristic certainty distribution with move candidates “Nc6”, “Ne6” and “Ng6”,

based on the legal moves of different board states... 54

file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476367
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476368
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476368
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476369
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476369
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476370
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476371
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476372
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476372
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476373
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476374
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476375
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476376
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476377
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476377
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476378
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476379
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476379
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476380
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476381
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476381
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476382
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476382
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476383
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476383
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476384
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476385
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476386
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476386
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476387
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476388
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476388

ZHAW School of Engineering Document Digitization of Chess Scorecards

73

Figure 46 Error count per depth and threshold combination for 19 scorecards. Each scorecard

contains a valid game of 20.5 moves. ... 55

Figure 47 Example move candidates and the possible legal candidates in the board state. The

numbers indicate all the selected moves. .. 56

Figure 48 Decision tree with depth of 1. Orange heuristic certainties are below the threshold. Red

edges are discarded. .. 57

Figure 49 Decision tree with depth of two. The node values are recalculated and the edge of move

“a4” is deemed the most promising. ... 57

Figure 50 Error count of each scorecard with and without additional candidates. Each scorecard

contains a valid game of 20.5 moves. ... 59

Figure 51 Computational time needed for each scorecard with and without optimization. Each

scorecard contains a valid game of 20.5 moves. ... 60

Figure 52 Computational time needed to predict and correct 19 scorecards per depth and

threshold combination. .. 61

Figure 53 Comparison of errors per scorecard with and without post-processing. Each scorecard

contains a valid game of 20.5 moves. ... 62

Figure 54 The left image is the prediction for scorecard 9 without post-processing and the right

image is with post-processing. Marked in green are the correct and in red the wrong predictions.

 .. 63

file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476389
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476389
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476390
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476390
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476391
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476391
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476392
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476392
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476393
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476393
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476394
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476394
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476395
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476395
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476396
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476396
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476397
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476397
file:///D:/BA_OCR%20for%20Chess.docx%23_Toc43476397

ZHAW School of Engineering Document Digitization of Chess Scorecards

74

8.3 List of Tables

Table 1 Feature analysis of ABBYY. .. 39

Table 2 Feature analysis of LEADTOOLS ICR Module.. 39

Table 3 Feature analysis of Google Cloud vision. .. 40

Table 4 Parameter definitions for the recognition of handwritten moves [16]. 43

Table 5 Extract from the ABBYY recognition evaluation showing the frequency (in %) of

identified characters when “a” is the real value. .. 46

Table 6 Potential candidate addition for the recognition of the character “a”. 47

Table 7 Combination of character candidates which lead to move candidates. 47

Table 8 A description of the move container object variables. ... 48

Table 9 A description of the node object variables. .. 50

Table 10 A description of the edge object variables. .. 50

Table 11 Fictional heuristic points distribution for legal moves from recognized move candidates.

 .. 51

Table 12 Implemented heuristics to compare two strings. .. 52

ZHAW School of Engineering Document Digitization of Chess Scorecards

75

9 Appendix

9.1 Official task, project assignment

Bachelor thesis definition

Topic: OCR for Chess Scorecards [Machine Learning]

Students: Colin Dreher (drehecol), Béla Noah Horváth (horvabel)

Supervisor: Prof. Dr. Mark Cieliebak

Problem definition:

Nowadays chess players write down the moves of a chess game in a Portable Game Notation

(PGN) on a spreadsheet while they are playing. If the players want to analyse their game, they

have to replay all the moves by hand in a program such as "ChessBoard". This takes a lot of time

and is sometimes not worth the effort for the players, although such analysis programs can give

the players valuable information about their behavior and tactics.

Objective:

The aim of this bachelor thesis is to implement an algorithm, which processes an image of a

scorecard. The algorithm should recognize the players moves with machine learning, check them

for correctness and return them as a machine readable PGN.

The algorithm should be implemented in Python on a web server. The webapp should have an

interface for the user to interact with the PGN output to check the validity of a PGN output or

redefine uncertain or incorrect moves.

ZHAW School of Engineering Document Digitization of Chess Scorecards

76

9.2 Software architecture

9.2.1 Physical architecture

The software is divided into two parts, the backend, and the frontend. The backend includes all

tasks for the image processing, while the frontend is used for presentation and interaction. The

frontend depends on user input to either confirm or correct the presented recognition, computed

in the backend.

For the backend, a Python application is used. To allow the backend to communicate with the

frontend the framework Flask18 is chosen. Flask is an open-source web framework that aims to

have a small core while remaining extensible. Flask only depends on Jinja219 as a templating

engine and Werkzeug20 as a WSGI interface. Flask has its own web server for development and

debug purposes which is suitable for this work. In this thesis, the ABBYY application

programming interface (API) is used for all OCR tasks.

The frontend is developed without a framework and uses the templating engine of Flask to

produce a dynamic single page application.

To deploy the application, it is recommended to use a different web server with a WSGI. The

application is hosted on a virtual server from Cloudlab at the ZHAW21. To deploy the application

on said server, the mod_wsgi package22 is used.

18 Pallets Flask documentation. Available: https://flask.palletsprojects.com/en/1.1.x/ [18.05.2020]
19 Pallets Jinja documentation. Available: https://palletsprojects.com/p/jinja/ [18.05.2020]
20 Pallets Werkzeug documentation. Available: https://palletsprojects.com/p/werkzeug/ [18.05.2020]
21 InIT Openstack Clusters. Available: https://info.cloudlab.zhaw.ch/pages/openstack.html#cluster-apu-
apu-cloudlab-zhaw-ch [18.05.2020]
22 Documentation mod_wsgi. Available: https://modwsgi.readthedocs.io/en/develop/ [04.05.2020]

ZHAW School of Engineering Document Digitization of Chess Scorecards

77

The image below shows the situation where the application is deployed and a user accesses it via

his browser.

9.2.2 Logical architecture

As stated, a backend and a frontend structure is used. The following chapter describes the flow of

the application in more detail. Additionally, all contained files are listed and their purpose is

documented.

9.2.2.1 Backend

The backend is a Python application. Python is suitable for machine learning and image

processing. Since it must be possible to handle all subtasks at the same place and most of the

existing solutions are written in Python, Python is a solid choice.

Every folder must contain a “__init__.py” file to ensure that the compiler has access to all the

modules in the project. When deploying the server with apache and mod_wsgi, as described in

the appendix 9.3.2, the flask app must be created inside an “__init__.py” file, for it to correctly

instantiate and run.

The backend is then divided into five main parts. These parts are, Flask, Scanner, Pre-processing,

ABBYY and Post-processing. An additional directory called Helper contains functionality used

over the whole application and it is not considered as its own part. The last directory is called

Evaluations and contains a test environment to probe heuristics and decision tree parameters. In

each of these, the available scripts and their scope of functions are described.

Figure A - 1 Physical architecture of the application.

ZHAW School of Engineering Document Digitization of Chess Scorecards

78

If an error occurs in any of the steps below, a custom exception is thrown and the user is

redirected onto the error page with a custom message. This helps to understand what went wrong

and how to tackle the problem.

Implementation

The central entry point is the file "__init__.py" in the top directory. This file contains the flask web

server and communicates with the frontend. To call the algorithms from within the flask server

and apply them to the uploaded images, another central file is needed. This file is called

"frontendPipeline". All partial steps can be called from within this file.

Table A - 1

Central backend files of the application.

File name Description

__init__ Central access point of the application and container of the flask

web server.

frontendPipeline The frontend pipeline contains all necessary methods to run the

application from start to finish and is the central interface

between the flask web server and the algorithm.

Helper

To ensure that certain conventions are adhered throughout the application and functionality is

not reimplemented several times, "helper classes" are used and they can be seen in Table A - 2.

These files are imported when they are needed and serve to ensure a more uniform structure.

Table A - 2

All files that contain classes or helper functionality.

File name Description

exceptions List of custom exception classes.

jsonParser Helper methods that parses the JSON into move container objects

or move container objects into JSON.

enumClasses Global values sorted into different Enums. Used within the

application.

ZHAW School of Engineering Document Digitization of Chess Scorecards

79

moveContainerClass Contains the moveContainerClass with its features. Used to create

move container objects and store information inside them.

Provides the functionality to dump the object as JSON and to

interact with the move itself. Add suggestions, recognitions or

change the status of the move.

Scanner

If the application is entered via the "frontendPipeline" the uploaded image is aligned first. This is

achieved with two files listed in Table A - 3. The “transformer” file contains functionality to

mathematically transform the image in a plane.

Table A - 3

All files containing the logic to align images.

File name Description

scanner The scanner module which aligns the uploaded images.

transformer An additional module of the scanner which is responsible for the

"4-point" transformation. Four points, so all vertices of the

scorecard are needed to perform the transformation.

Pre-processing

After the image is aligned it needs to be pre-processed first. Pre-processing is split into multiple

parts, as can be seen in Table A - 4. First “preProcessImage” is called and creates a custom

directory for each upload. This directory is then filled with the pre-processed images in binary

format.

After all the image pre-processing has been carried out, “splitTableInBoxes” is called. As the name

suggests, all fields in which the player can write are searched in the image and thus the table is

split into boxes. Some layouts may have row numbering inside these boxes. With the help of

"leadingNumerRemover" this enumeration is removed. Furthermore, the user is asked to validate

the found boxes via unselecting all irrelevant boxes and continuing as described in chapter 4.

When continuing, “removeUnusedBoxes” is called to remove those that are unselected and so

only the boxes containing handwritten moves are left. After this step, all box coordinates and the

width and height of all the boxes is calculated and the recognition can be performed.

ZHAW School of Engineering Document Digitization of Chess Scorecards

80

To prepare for a custom CNN recognition, all characters must be separated from each other since

a CNN classifier on EMNIST data operates on single characters instead of whole words. The files

“findCharactersInBox” and “preProcessEmnist” implement this but are not used in the productive

system.

Table A - 4

All files containing pre-processing functionality.

File name Description

preProcessImage All the pre-processing is handled in this file. It contains methods

for removing the shadows and applying the kernel.

splitTableInBoxes Extracts all relevant boxes from the binary image. It is the next

step after the image has been pre-processed. In this file also the

"leadingNumberRemover" is executed to remove parts of the

boxes if necessary.

leadingNumberRemover This file contains the utilities to recognize a number pattern

which enumerates the lines of the scorecard. If a pattern is found,

it will iteratively remove the pattern to ensure that the removed

part is not too wide.

removeUnusedBoxes Receives all boxes and all the relevant boxes. Compares both lists

and removes any that are inside the relevant boxes. This is due to

the interaction with the frontend where the user unselects any

boxes that contain no handwritten move.

findCharactersInBox After finding all boxes in the image, those boxes are further split

into all their contained characters.

preProcessEmnist Pre-processes the found characters inside “findCharactersInBox”

to match the EMNIST format. This is necessary if a CNN is trained

with EMNIST data since the same format must be present.

ZHAW School of Engineering Document Digitization of Chess Scorecards

81

ABBYY

Once all images are pre-processed and merely the relevant boxes are left, recognition can be

performed with ABBYY. The settings, as well as creating a task and addressing the API, are

regulated in the two files in Table A - 5. To recognize certain regions in a whole document at once,

also called zonal recognition, an XML document must be passed to the API. This document gets

created inside “AbbyyOnlineSDK”.

Table A - 5

All files that are needed to use the ABBYY.

File name Description

AbbyyOnlineSDK Contains the AbbyyOnlineSdk class according to the template of

ABBYY. Additionally, contains helper methods to create and parse

the XML file back and forth. Its main purpose is to keep track of

the current task created in the “process”.

process Contains the setup of ABBYY, creates the processor and includes

the actual method "recognize_image" which is used for

recognition. It is in close cooperation with AbbyyOnlineSDK.

Post-processing

After receiving the data from ABBYY, the important fields of the returned XML document are

parsed and cleaned up using "post-processing". The cleaned data is the basis of the "decisionTree"

which uses the "stringHeuristics" to create an optimized chess game. Finally the chess game is

sent to the frontend as JSON file and displayed to the user. This JSON file sometimes exceeds the

maximum session size of 4MB and thus not all the information can be sent to the frontend.

Whenever the user changes a move, it gets marked to “editedByUser” and thus is seen as correct.

The new, changed chess game is now returned to the backend and again processed by the

“decisionTree”. When finished, the user gets a revalidated version of his game which is again

interactable until the user decides to download his final PGN file as an output.

ZHAW School of Engineering Document Digitization of Chess Scorecards

82

Table A - 6

All files containing functionality that is applied after the recognition of ABBYY.

File name Description

post-processing "post-processing" post-processes the recognition of ABBYY. This

is where the recognition is cleaned up for spaces and noise.

Additional candidates are also added based on the common

recognition flaws. Based on these character candidates, move

candidates are created which are stored in a move container

object.

decisionTree The decisionTree file includes an implemented stochastic

decision tree. This tree is applied to the data to find the most

optimal chess game, which is later transferred to the frontend.

stringHeuristics Includes all heuristic methods that are used to compare two

strings on how similar they are. These methods are used in the

decision tree to compare legal moves with the post-processed

recognition.

Evaluations

This is not part of the productive system and only serves evaluation purposes. It is used to

experiment with different heuristics and decision tree parameters.

Table A - 7

All files containing evaluation functionality.

File name Description

ABBYYoutputEval This evaluation counts the amount of wrong recognized moves by

ABBYY. Outputs the errors and counts in a text file.

depthThresholdTreeEval Contains the logic to test the decisionTree with different

thresholds and depths. It counts the occurred errors and

measures the process time with each depth and threshold.

Outputs a text file that contains a summary of the test.

detailedTreeEval Evaluates all scorecards with a defined threshold and depth

overall scorecards. Collects information about the errors for each

scorecard. Outputs a text file with all this information.

ZHAW School of Engineering Document Digitization of Chess Scorecards

83

9.2.2.2 Frontend

The frontend is implemented without a framework. This presents the freedom to change the

design and the process as it was considered best practice per task. However, a framework such

as Vue, React or Angular can be recommended if the complexity of the application increases.

Currently the Jinja2 templating engine provided by Flask is used to dynamically load and populate

the templates. The description of the frontend is reduced to a list of files and the folder structure

which can be seen in appendix 9.3.3.

Templates

The templates directory contains all the views of the frontend.

Table A - 8

All templates of the application in the frontend.

File name Description

base Base file with containers. Gets filled dynamically with content

from the following files.

landingPage Starting page that gets displayed when starting the web server.

Contains the Upload functionality.

confirmBoxes Contains the stepper with the box confirmations and info boxes.

The logic behind the green/blue buttons is handled in the

confirmBoxes JavaScript file.

downloadPage Handles the download of the actual PGN file as well as the

interaction with the output. Allows users to reset the table if any

mistakes were made and offers the feature to revalidate the PGN

output by the application.

error Displays custom error messages and gets loaded inside base.

ZHAW School of Engineering Document Digitization of Chess Scorecards

84

Partials

Every template is considered a partial, if it does not represent a whole page but merely a reusable

fragment.

Table A - 9

All files that are implemented as partials. Can be included in every page.

File name Description

loadingScreen Contains the loading screen that is used as a partial and included

in the html sites that need a loading screen for async calls.

tournamentForm Is a modal in itself and gets called when trying to download the

final PGN file. Contains the form to add the event, site, players and

result of the game.

infoBox The container of the info box with its overlay. Can be dynamically

filled with content through JavaScript and inserted withing the

application in each step.

Static

The static directory contains all images, stylesheets and JavaScript files. They must reside in this

folder to be served by flask, depending on the current request of the browser.

Images

Table A - 10

All the image directories and their corresponding task.

File name Description

favicon Contains the sites favicon.

icons Contains logos and interactive pictures.

processedUploads Contains the processed uploads by their filename after the

application processed an upload. Also contains info box images.

uploads Folder in which all uploads from “landingPage” are stored if they

are successfully uploaded.

ZHAW School of Engineering Document Digitization of Chess Scorecards

85

Javascript

Table A - 11

All JavaScript files and what they are used for.

File name Description

upload Logic to upload an image to the backend flask server.

confirmBoxes Contains the logic to validate the found boxes in the scorecard.

Uses a state to display the red/green or grey/blue selection

process. Also sends the final layout to the backend to finally

recognize the moves with ABBYY Cloud SDK OCR.

downloadPage Used to interact with the recognition, edit and revalidate the

recognition. To revalidate it sends the table in a JSON format back

to the backend and receives a new table in a JSON format with a

revalidated game. Also contains the logic to navigate the table and

ultimately download the PGN file. For usability purpose a reset

button is present to reset the table to its initial state.

jquery jQuery library used for DOM interaction manipulation.

Styles

Table A - 12

All stylesheets and their scope of usage.

File name Description

style Global stylesheet.

post-processing Styling of the post-processing that contains the stepper, buttons

and confirmBoxes html page.

loadingScreen Styling for the partial page loadingScreen.

turnamentForm Styling for the partial page tournamentForm.

infoBox Styling for the partial page infoBox.

ZHAW School of Engineering Document Digitization of Chess Scorecards

86

9.3 Technical documentation

This part describes the full installation process to locally develop or to deploy the app on a server.

9.3.1 Local installation

Repository data:

Fork the repository: https://github.zhaw.ch/horvabel/Bachelorarbeit

Clone the repository locally or copy the files into a folder and create a new repository.

ABBYY Setup:

Create a new account: https://www.ocrsdk.com/

Check your E-mail for the Application Password. Copy the password.

from: https://cloud.ocrsdk.com/Account/Welcome

copy your Application ID in a similar format “551ff3ed-40d8-4f0f-8d2b-7150d25861de”

Open AbbyyOnlineSdk.py file located in “./Algorithm/ABBYY_OCR/AbbyyOnlineSdk.py” and

change the ApplicationId and Password accordingly inside AbyyOnlineSdk class.

This allows you to use the free 500 pages. If a licence is in place you must use the account details

of the licenced account.

Backend Setup:

1. Install Python version 3 (sudo apt-get install python3.X)

2. Install pip3 python3-pip (sudo apt-get install pip3)

3. Install python virtualenv: pip install -upgrade virtualenv

4. Create and activate the venv in the app folder

For Windows (Python v. 3.8):

cd “appname”

virtualenv -python “c:\python38\python.exe” env .\env\Scripts\activate

PyCharm:

Create virtualenv in interpreter settings.

Activate venv for the project

5. Install requirements:

pip3 install -r requirements.txt

ZHAW School of Engineering Document Digitization of Chess Scorecards

87

9.3.2 Deployment

Follow:

• https://apu.cloudlab.zhaw.ch

• https://www.youtube.com/watch?v=YFBRVJPhDGY

• https://stackoverflow.com/questions/39418012/my-apache-wsgi-flask-web-app-cannot-

import-its-internal-python-module

to have as a backup when configuring the mod_wsgi. You can also choose another web server and

gateway of choice like Nginx or similar.

Installation

1. Set up server like documented on cloudlab.

• Forward port 80 (or 443 if needed) to the server.

2. Install Python and Pip (sudo apt-get install python)

• sudo apt update

• sudo apt install software-properties-common

• sudo add-apt-repository ppa:deadsnakes/ppa

• sudo apt install pythonX.Y (<-- enter version)

• sudo apt install python3-pip

3. run: sudo pip3 install -r requirements.txt (located in base of repository)

UBUNTU ONLY

• . sudo apt install tesseract-ocr (use this if it cannot run because of tesseract ocr error)

4. Follow: https://www.youtube.com/watch?v=YFBRVJPhDGY tutorial on how to deploy with

apache wsgi.

• NOTE: https://stackoverflow.com/questions/39418012/my-apache-wsgi-flask-web-

app-cannot-import-its-internal-python-module answer to configure the

YOURAPPNAME.wsgi file, otherwise it will not work correctly.

5. Connect to the server via the public IP-Address and use your page!

ZHAW School of Engineering Document Digitization of Chess Scorecards

88

9.3.3 Overview of the files

The following tree structure shows the whole application:

Project Code/
├── __init__.py
├── Algorithm/
│ ├── __init__.py
│ ├── ABBYY_OCR/
│ │ ├── __init__.py
│ │ ├── AbbyyOnlineSdk.py
│ │ └── process.py
│ ├── frontendPipeline.py
│ ├── Helper/
│ │ ├── __init__.py
│ │ ├── enumClasses.py
│ │ ├── exceptions.py
│ │ ├── jsonParser.py
│ │ └── moveContainerClass.py
│ ├── PostProcessing/
│ │ ├── __init__.py
│ │ ├── DecisionTree/
│ │ │ ├── __init__.py
│ │ │ ├── decisionTree.py
│ │ │ └── stringHeuristics.py
│ │ └── postProcessing.py
│ ├── PreProcessing/
│ │ ├── __init__.py
│ │ ├── findCharactersInBox.py
│ │ ├── leadingNumberRemover.py
│ │ ├── preProcessEmnist.py
│ │ ├── preProcessImage.py
│ │ ├── removeUnusedBoxes.py
│ │ └── splitTableInBoxes.py
│ └── Scanner/
│ ├── __init__.py
│ ├── scanner.py
│ └── transform.py
├── evaluations/
│ ├── ABBYYoutputEval.py
│ ├── depthThresholdTreeEval.py
│ └── detailedTreeEval.py
├── README.md
├── requirements.txt
├── static/
│ ├── images/
│ │ ├── favicon/
│ │ │ └── favicon.ico
│ │ ├── icons/
│ │ │ ├── anleitung.png

ZHAW School of Engineering Document Digitization of Chess Scorecards

89

│ │ │ ├── arrow.png
│ │ │ ├── logo.png
│ │ │ └── newlogo.png
│ │ ├── processedUploads/
│ │ │ ├── aligned_template.PNG
│ │ │ ├── final_output.gif
│ │ │ ├── select_last.gif
│ │ │ ├── templatemove.png
│ │ │ └── unselect_boxes.gif
│ │ └── uploads/
│ ├── js/
│ │ ├── confirmBoxes.js
│ │ ├── downloadPage.js
│ │ ├── jquery.js
│ │ └── upload.js
│ └── styles/
│ ├── partials/
│ │ ├── infoBox.css
│ │ ├── loadingScreen.css
│ │ └── tournamentForm.css
│ ├── postProcessing.css
│ └── style.css
└── templates/
 ├── base.html
 ├── confirmBoxes.html
 ├── downloadPage.html
 ├── error.html
 ├── landingPage.html
 └── partials/
 ├── infoBox.html
 ├── loadingscreen.html
 └── tournamentForm.html

ZHAW School of Engineering Document Digitization of Chess Scorecards

90

9.4 XML

Following, the XML input and output format for the ABBYY API function “processFields” are

presented. The input format contains the settings for the recognition and the location of each

move in the image. The image must first be uploaded with the “submitImage” function.

The output XML contains for each moveField a recognition and additionally “charRecVariants” if

any exist. Meaning if an “e” gets recognized as char, it may contain a “c” as a charRecVariants,

since e and c often get misclassified in handwriting recognition.

9.4.1 Input XML format

<document xmlns="http://ocrsdk.com/schema/taskDescription-1.0.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://ocrsdk.com/schema/taskDescription-1.0.xsd">

 <fieldTemplates>

 <text id="moveField" top="0" right="0" bottom="0" left="0">

 <language>English</language>

 <textType>handprinted</textType>

 <regExp>(((|([RNBQK](|[a-h])(|[1-8])(|x)|[a-h](|[1-

8])x))[a-h]([1-8]|[18]=[RNBQ]))|O-O(|-O))(|[+#])</regExp>

 <markingType>simpleText</markingType>

 <letterSet>RNBQKOabcdefghx12345678=+#-</letterSet>

 <writingStyle>german</writingStyle>

 </text>

 </fieldTemplates>

 <page applyTo="0">

 <text template="moveField" id="0" top="665" right="613" bot-

tom="698" left="358"/>

 <text template="moveField" id="1" top="667" right="915" bot-

tom="702" left="625"/>

 <text template="moveField" id="2" top="710" right="613" bot-

tom="743" left="358"/>

 <text template="moveField" id="3" top="712" right="915" bot-

tom="746" left="625"/>

 <text template="moveField" id="4" top="754" right="613" bot-

tom="788" left="358"/>

 <text template="moveField" id="5" top="757" right="915" bot-

tom="791" left="625"/>

 </page>

</document>

Figure A - 2 The XML format used in the application to communicate with the ABBYY API function

"processFields".

ZHAW School of Engineering Document Digitization of Chess Scorecards

91

9.4.2 Output XML format

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ocrsdk.com/schema/resultDescription-1.0.xsd

http://ocrsdk.com/schema/resultDescription-1.0.xsd"

xmlns="http://ocrsdk.com/schema/resultDescription-1.0.xsd">

 <page index="0">

 <text id="0" left="358" top="665" right="613" bottom="698">

 <value>e4</value>

 <line left="402" top="669" right="451" bottom="697">

 <char left="402" top="674" right="420"

bottom="696">e</char>

 <char left="431" top="669" right="451"

bottom="697">4</char>

 </line>

 </text>

 <text id="1" left="625" top="667" right="915" bottom="702">

 <value>e6</value>

 <line left="714" top="673" right="760" bottom="701">

 <char left="714" top="682" right="738"

bottom="701">e</char>

 <char left="742" top="673" right="760"

bottom="701">6</char>

 </line>

 </text>

 <text id="2" left="358" top="710" right="613" bottom="743">

 <value>d4</value>

 <line left="402" top="711" right="450" bottom="742">

 <char left="402" top="711" right="425"

bottom="742">d</char>

 <char left="432" top="714" right="450"

bottom="742">4</char>

 </line>

 </text>

 <text id="3" left="625" top="712" right="915" bottom="746">

 <value>d5</value>

 <line left="692" top="712" right="745" bottom="745">

 <char left="692" top="712" right="714"

bottom="745">d</char>

 <char left="721" top="715" right="745"

bottom="745">5</char>

 </line>

 </text>

 <text id="4" left="358" top="754" right="613" bottom="788">

 <value>Nd2</value>

 <line left="405" top="754" right="482" bottom="787">

 <char left="405" top="760" right="425"

bottom="787">N</char>

 <char left="423" top="754" right="446"

bottom="787">d</char>

 <char left="459" top="759" right="482"

bottom="787">2</char>

 </line>

 </text>

 <text id="5" left="625" top="757" right="915" bottom="791">

 <value>Nf6</value>

 <line left="692" top="757" right="769" bottom="790">

 <char left="692" top="760" right="716"

bottom="790">N</char>

 <char left="722" top="757" right="741"

bottom="790">f</char>

 <char left="745" top="759" right="769"

bottom="790">6</char>

 </line>

Figure A - 3 The received XML format from the ABBYY API after "processFields"

 is called with the previous Input XML format.

ZHAW School of Engineering Document Digitization of Chess Scorecards

92

9.5 Test scenarios

This chapter contains all the test scenarios for the different subchapters inside of the

Implementation chapter. No result is discussed, only what was defined and what was obtained

because of this definition.

9.5.1 Removing of leading numbers

The test setup for the in chapter 5.3.3, the removal of an enumeration is described below.

First test settings:

Table A - 13

Parameters for the first ABBYY test.

Parameter Description

Function process_fields

Letterset RNBQKOabcdefghx12345678=+#-

Regular expression (((|([RNBQK](|[a-h])(|[1-8])(|x)|[a-h](|[1-8])x))[a-h]([1-

8]|[18]=[RNBQ]))|O-O(|-O))(|[+#])

Output

Table A - 14

Output of the first ABBYY test.

Row Without numbers With numbers

1 a4 b5 1a4 b5

2 axb5 Nc6 Raxb5 Nc6

3 b6 a6 3b6 a6

4 b7 Ra7 4b7 Ra7

5 b8=Q Bb7 5b8=Q Bb7

6 f4 e5 Bf4 e5

7 fxe5 d6 7fxe5 d6

8 Qc8 Nxe5 8Qc8 Nxe5

9 e4 d5 ge4 d5

10 Qh5 h6 10ah5 h6

ZHAW School of Engineering Document Digitization of Chess Scorecards

93

11 Bc4 dxc4 K8Bc4 dxc4

12 Nc3 Ng6 12Nc03 Ng6

13 d3 Bd6 13d3 Bd6

14 Nf3 Nf6 14Nf3 Nf6

15 O-O O-O 150-023 O-O

16 Qxd8 Kh8 16Qxd8 Kh8

17 Nd1 Bxe4 17Nd1 Bxe4

18 Bd2 Nd5 18Bd2 Nd5

19 Qxg6 Re8 1gQxg6 Re8

20 Qxe8+ Bf8 20Qxe8+ Bf8

21 Qxf8# 21Qxf8#

Second test settings:

Table A - 15

Parameters for the second ABBYY test.

Parameter Description

Function process_fields

Letterset RNBQKOabcdefghx0123456789=+#-

Regular expression (|[1-9](|[0-9])\\s)(((|([RNBQK](|[a-h])(|[1-8])(|x)|[a-h](|[1-8])x))[a-

h]([1-8]|[18]=[RNBQ]))|O-O(|-O))(|[+#])

Output

Table A - 16

Output of the second ABBYY test.

Row Without numbers With numbers

1 a4 b5 1a4 b5

2 axb5 Nc6 Raxb5 Nc6

3 b6 a6 3b6 a6

4 b7 Ra7 4b7 Ra7

5 b8=Q Bb7 5b8=Q Bb7

23 Inserted 0-0 instead of O-O, not fully sure why because the alphabet allows no “zero”, only capital o.

ZHAW School of Engineering Document Digitization of Chess Scorecards

94

6 f4 e5 Bf4 e5

7 fxe5 d6 7fxe5 d6

8 Qc8 Nxe5 8Qc8 Nxe5

9 e4 d5 ge4 d5

10 Qh5 h6 10ah5 h6

11 Bc4 dxc4 K8bc4 dxc4

12 Nc3 Ng6 12Nc3 Ng6

13 d3 Bd6 13d3 Bd6

14 Nf3 Nf6 14Nf3 Nf6

15 O-O O-O 150-024 O-O

16 Qxd8 Kh8 16Qxd8 Kh8

17 Nd1 Bxe4 17Nd1 Bxe4

18 Bd2 Nd5 18Bd2 Nd5

19 Qxg6 Re8 19Qxg6 Re8

20 Qxe8+ Bf8 20Qxe8+ Bf8

21 Qxf8# 21Qxf8#

9.5.2 ABBYY common error evaluation

This chapter describes the ABBYY common error evaluation with a self-gathered data set of 20

scorecards. This evaluation took place, before the letterset and regular expression for ABBYY was

altered. The alternation removed the “0” and the “/” out of the regular expression and letterset.

Following the test scenario is described. A total of 20 scorecards were filled out by 16 different

writers. The total list of tested characters can be found below.

Scorecard composition:

Table A - 17

Composition of the scorecards inside the test set.

Quantity Type

12 Without extensions, only a full game of chess.

8 With extensions of rarely used characters (K, R, h, g, 1, 7)

24 Still inserts 0-0 as zeros and not capital o.

ZHAW School of Engineering Document Digitization of Chess Scorecards

95

Total combined character list:

Table A - 18

Combined characters of the data set composition.

Character Quantity Character Quantity

R 72 0 0

N 160 1 44

B 120 2 36

Q 140 3 76

K 52 4 120

O 80 5 160

a 96 6 180

b 120 7 68

c 100 8 160

d 180 = 20

e 140 + 20

f 120 # 20

g 64 - 40

h 76 / 0

x 180

Evaluation:

To evaluate the transformations (common errors/mistakes) made by ABBYY, a Excel document

is referenced. The document contains a matrix with x and y being the alphabet. All horizontal

characters of the alphabet are the true characters on the scorecard.

It can be read column by column like this:

For all recognized characters “R” by ABBYY, 95.71% were a true character “R” and 4.29% were a

character “B” which would be a wrong recognition. This can be seen in the table below.

Figure A - 4 ABBYY evaluation

table example.

 96

Info: The following tables show the transformation matrix for the whole alphabet, recorded on the data set of 21 scorecards with ABBYY’s recognition. The

columns show that i.e. 95.71% of all recognized “R” were real “R” on the scorecard and 4.29% of those were a misclassified “B” on the scorecard.

Table A - 19

Part one of the ABBYY character transformation.

Alphabet R N B Q K O a b c d e f g h x
R 95.71 0.00 0.00 0.00 8.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 0.00 100.00 0.00 0.00 1.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B 4.29 0.00 99.04 0.00 0.00 0.00 0.79 9.16 0.87 0.00 0.00 0.00 0.00 0.00 0.00
Q 0.00 0.00 0.96 99.21 0.00 0.00 9.52 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 85.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 4.55 0.00 0.00
a 0.00 0.00 0.00 0.79 0.00 0.00 73.02 0.00 0.87 0.00 0.00 0.00 4.55 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87.79 0.00 0.00 0.00 0.00 0.00 6.25 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 86.09 0.57 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00 2.38 0.00 0.00 99.43 0.00 0.00 0.00 2.50 0.56
e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.96 0.00 99.24 0.00 2.27 0.00 0.00
f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.74 0.00 0.00 99.15 2.27 0.00 0.00
g 0.00 0.00 0.00 0.00 0.00 0.00 13.49 1.53 2.61 0.00 0.76 0.85 86.36 0.00 0.00
h 0.00 0.00 0.00 0.00 3.28 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 91.25 0.00
x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.44
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 1.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 97

Table A - 20

Part two of the ABBYY character transformation

Alphabet 0 1 2 3 4 5 6 7 8 = + # -
R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
f 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 2.44 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x 0.00 0.00 4.88 0.00 0.00 0.00 0.00 1.43 0.00 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 93.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26 0.00 0.00
2 0.00 0.00 87.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 94.94 0.00 0.00 0.00 1.43 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 2.44 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 2.53 0.00 100.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00
6 0.00 4.35 0.00 0.00 0.00 0.00 99.44 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.14 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 1.27 0.00 0.00 0.00 0.00 98.75 0.00 0.00 0.00 0.00
= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 2.50
+ 0.00 2.17 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 94.74 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
- 25.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.50

ZHAW School of Engineering Document Digitization of Chess Scorecards

 98

9.5.3 Evaluation of threshold definition

Screenshots were taken from the certainty distribution in different board states. Legal moves are

compared to the move candidates and the certainty value indicates how sure the algorithm is,

that this legal move is the best possible guess for the available move candidates.

Figure A - 5 Different heuristic certainty distribution with move candidates “h8=Q” and “b8=Q”,

based on the legal moves of different board states.

Figure A - 6 Different heuristic certainty distribution with move candidates “a6”, “Q6” and “g6”, based

on the legal moves of different board states.

