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Abstract

In recent years substantial progress was made in the areas of speaker recognition and clustering using
deep neural networks. Due to the time dependant aspects of speech, recurrent neural networks and
long short-term memory architectures are being applied to a wide array of time series problems. Their
ability to include previously seen data in their decision making process is highly beneficial for these tasks
and leads these neural network architectures to this sort of application.

Increased problem complexity typically requires larger amounts of meaningful training data to produce
applicable results. A common approach to overcome long and intensive training phases is to increase
the hardware computation capacity. For small scale businesses this is not a financially feasible way.

In this thesis we explore an active learning approach to reduce the amount of training data shown to
the neural network while still achieving reasonable results on a complex dataset. We show a modular
implementation of this approach, with which we are able to achieve a new record on the TIMIT
dataset using 590 speakers and show why our expectations could not be met on the VoxCeleb2 dataset.
Additionally, we propose improvements to the system and present ideas for future work.



Zusammenfassung

In den letzten Jahren wurden in den Bereichen Speaker Recognition und Clustering durch die Verwen-
dung von Deep Neural Networks betrachtliche Fortschritte erziehlt. Durch die zeitabhdngigen Aspekte
von gesprochener Sprache werden Recurrent Neural Networks und Long Short-Term Memory Struk-
turen auf eine Vielzahl von Problemen in diesem Bereich angewendet. Die Fahigkeit dieser Modelle,
Entscheidungen auf zeitlich bereits zuriickliegende Daten zu stiitzen, ist dusserst vorteilhaft fiir diese
Art von Aufgaben.

Eine erhohte Komplexitat der Problemstellung erfordert typischerweise eine grossere Menge an Train-
ingsdaten um befriedigende Resultate zu erzielen. Ublicherweise wird zusitzliche Rechenleistung in
Form von Hardware eingesetzt um lange und intensive Trainingsphasen zu unterbinden. Dies ist fiir
kleinere und mittlere Unternehmen aus finanzieller Sicht jedoch oft nicht moglich.

Wir erforschen in dieser Arbeit einen Active Learning Ansatz um die Datenmenge, welche ein neu-
ronales Netzwerk zu Trainingszwecken benétigt, klein zu halten und dennoch akzeptable Resultate auf
einem komplexen Datensatz zu erzielen. Wir prasentieren eine modulare Implementation eines solchen
Ansatzes, mit welchem wir auf dem TIMIT Datensatz mit 590 Sprechern einen neuen Bestwert erreichen,
und zeigen auf weshalb die Resultate auf dem VoxCeleb2 Datensatz nicht den Erwartungen entsprechen.
Zusatzlich stellen wir Verbesserungen fiir das System vor, um es kiinftig weiter auszubauen.
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1. Introduction

In audio recordings it is often not clear who is speaking when. Speaker diarization tries to solve this
by dividing the recordings up into smaller pieces. These pieces only contain one active speaker each
and are grouped (or clustered) together with other pieces of the same speaker. This clustering step is
referred to as speaker clustering. Usually, the speakers are unknown and the algorithm is unaware of
the number of total speakers.

Other tasks in the speaker recognition field are speaker verification, the task of deciding if the speaker
in a recording has the same identity as a known speaker and speaker identification, where a recording is
used to match it against multiple known speakers. In both of these cases, the algorithm is working with
a preset of known speakers to compare to and is thus solving a simpler, albeit non-trivial, problem.

The focus of this work lies on the task of speaker clustering using Deep Neural Networks on a recently
published large dataset containing more complex data in the form of audio recordings with background
noise, as it would be the case in a real-world application.

1.1. Motivation

Deep Neural Networks have been applied successfully to many image processing tasks in the past,
examples being the work presented by Deng et al. [4] and Cao et al. [1]. This suggested that these types
of neural networks may also be successful in various other areas of data processing where the underlying
data may be interpreted as an image to leverage progress made in the field of image processing.
Speech processing is one example of such an area, where data (voice recordings) can be converted to
spectrograms, an image representation of that data, and then processed as image sources. Due to the
lack of publicly available large datasets required to do such tasks, only few, highly specific models have
been created. In recent years new, larger and more diverse datasets have become available which led
to an increase of experiments in this area, including the topic of speaker clustering.

Examples of applications in real world scenarios would be analysing business meetings, identifying who
speaks when for how long or protocol and identify sessions in court or political debates. Knowledge
gained from such an analysis can lead to higher efficiency and a better understanding of human inter-
communication in general. Another popular application are the audio assistants developed by some of
the biggest tech companies in the industry. Examples being Apples’ Siri, Amazons' Alexa or Google
Home. These products also use features like speaker identification for security and privacy purposes or
clustering when following a conversation with multiple participants.

The problem is not solved in its entirety, although as stated above, many real world applications
benefit from solutions being developed. As datasets get bigger and more complex, the efficient use
of data and hardware comes to the fore. Examples of other aspects besides scalability where further
improvements can be made would be portability to other datasets and improved algorithms tailored to
specific applications.

1.2. Related Work

Before neural networks, speech recognition was approached from a statistical standpoint, using pre-
dominantly Gaussian mixture models e.g. Jousse et al. [16] or hidden Markov models as in Gales and
Young [8]. Kanagasundaram et al. [17] use identity vectors or i-vectors extracted from a Gaussian
mixture model to cluster utterances and report equal error rates (EERs) of 9.66% for 20 second long
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utterances and 20.92% EER for 5 second utterances on the NIST 2008 speaker recognition evaluation
(SRE) dataset [11].

More recent papers utilize specialized neural network architectures such as convolutional and recurrent
neural networks. Current state of the art systems such as Xie et al. [40] are able to perform speaker
recognition in the wild, reporting equal error rates (EERs) of 3.22% on the VoxCelebl test dataset.
Zhang et al. [41] presented similar EERs on American phone data, with their best experiment at 1.91%
EER. It should be noted that Zhang et al. [41] is using 64 times more data (70 million utterances versus
1.1 million utterances) and it remains unclear if the system proposed by Xie et al. [40] could narrow
the gap with similar amounts of data.

Lukic et al. [23] built the basis for this thesis by applying convolutional neural networks to the studio
recording dataset TIMIT, achieving misclassification rates (MRs) of 0.1 for 20 and 0.05 for 40 speakers
respectively. Stadelmann et al. [35] continued this work with a recurrent neural network architecture
exceeding previous results with a MR of 0.0219 for the same 40 speaker test set. Both focused on the
network architecture and not the clustering step, where Hibraj et al. [13] presented a perfect 0.0 MR
through the use of dominant sets in the clustering step.

1.3. Goals

The Institute of Applied Information TechnologyE] (InIT) at the ZHAW School of Engineering conducted
multiple studies into speaker clustering approaches, motivated by the rise of neural networks and their
capabilities. These studies include Lukic et al. [23] with their use of convolutional neural networks,
followed up by Stadelmann et al. [35] and the use of recurrent neural networks. While these two
approaches mainly focused on improving the way data is represented for the clustering step, Hibraj
et al. [13] improved how speech segments were clustered through the use of so called dominant sets.
All of the mentioned approaches are based on the TIMIT dataset, which is composed of studio recordings
and as such represent a very narrow part of audio recordings in the everyday world.

The primary goal of this work is to adapt the existing speaker clustering system to the new VoxCeleb2
[2] dataset and outperform previously achieved results on the well-established TIMIT dataset, which
will serve as ground truth for the evaluation. An approach has to be found that is able to handle a
much more complex dataset and bridge the gap between studio and real-world recordings.

1.4. Document Structure

The second chapter gives a broad overview on the theoretical principles needed and provide explanations
of technical terms.

The third chapter describes one possible approach to solve the given task, the ideas influencing this
work and elaborates the reasoning behind decision which have been made during this project.

Results are presented in the fourth chapter containing experiments which were conducted throughout
the project.

Lastly, the results are discussed and evaluated in the fifth chapter.

Thttps://www.zhaw.ch/en /engineering/institutes-centres/init/
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2. Theoretical principles

This chapter gives a broad overview on the theoretical principles and knowledge required for this work.

2.1. Clustering

Clustering is the task to process an arbitrary amount of objects and group them together according to
a metric such as distance between objects to build groups or clusters of the same type. The aim is
to end up with clusters that only contain objects of one type and have as many clusters as there are
different types. The amount of clusters is usually unknown and not trivial to calculate, such that many
algorithms assume a given number of clusters, independent of the true number of clusters. As can be
seen in figure 2.1} clustering algorithms’ performance depends on the problem at hand and should be
tailored to the underlying data, as presented in Fahad et al. [6].

Figure 2.1.: Example of two cluster algorithms on different types of data from scikit—learnEl

2.2. Speaker Clustering

In speaker clustering, speech segments from unknown speakers are taken and compared to each other
with the aim to place them in a high dimensional space and be able to discriminate among individual
speakers. Clustering algorithms are used to group speech segments of only one speaker together and

IThe code can be found at |https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html.
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ignoring other speakers’ segments. To be successful, a comparison measure needs to be found that both
scores low for segments of the same speaker and high for different speakers. Examples are hierarchical
agglomerative clustering in Lukic et al. [23] and Stadelmann et al. [35], the use of dominant sets in
Hibraj et al. [13] or the arccos function in facial recognition by Deng et al. [4] which was successfully
applied to the topic of speaker clustering by Xie et al. [40].

2.3. Embeddings

Embeddings are used as a different representation of data, while adding useful characteristics due to
the position of the embeddings in the vector space. The aim of an embedding is to create a comparable
representation with low dimensionality for ease of use.

In the case of word embeddings on the word2vec model by Mikolov et al. [24], vectors from one word to
another indicate relations that can be observed with other word pairs as well. For example, the vector
from the word France to the word Paris is identical to the vector from Italy to Rome or Japan to
Tokyo. In this case, this vector can be used to calculate the capital city for any country.

Speaker embeddings, as used in this thesis, are learned by the neural network. During the training period,
the network is tasked to perform speaker identification and intrinsically creates such an embedding
representation in the hidden layers. This allows the network to transform any spectrogram into a highly
generalized representation for any speaker.

2.4. Prosodic Features

The prosodic (or suprasegmental) features of speech as described by Ladeforged [21] are characteristics
beyond vowels and consonants that lie “in between segments”. They are distinctive for every voice
and are perceived subconsciously by humans to distinguish one voice from another. Naturally, not all
of those features vary as much as others, such that a person whispering can still be identified as the
same person if they were shouting, even though the volume is very different. We summarize the most
important features listed and described in [21] and [39] as follows:

= Pauses can both be used as a rhetorical device or to structure the spoken word.

= Pitch levels change to emphasize meaning, such as increasing towards the end of a question.
However, the pitch stays in a similar range for a given speaker.

= Stress describes the emphasis given to certain syllables during speech. Typical properties of stress
are for example increased length or differences in timbre.

= Rhythm is often taken as a prosodic feature to a certain language or regional accents rather than
being a mainly speaker specific.

= Volume or Loudness is either an indication of emotion (e.g. anger) or a reaction to the envi-
ronment (e.g. whispering when one does not want to be overheard). As such, this feature is
expected to vary wildly between different recordings.

= Tempo refers the amount of words being spoken within a certain timeframe. This feature,
similarly to volume, may have a high variance between segments.
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2.5. Spectrograms

Spectrograms are a different representation for audio data. They were introduced in [1946| by Koenig
et al. [19]. In contrast to wavelength diagrams where axes are time and amplitude, the spectrogram
displays three dimensions: time, frequency and loudness. As seen in figure 2.2} for each combination
of frequency and time the corresponding loudness can directly be seen, where the wavelength diagram,
seen figure [2.3] contains the same information hidden behind the Fourier transform.
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Figure 2.2.: Spectrogram of a sound snippet from a TV—showEl
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Figure 2.3.: Wavelength diagram of the same file as in figure

2.6. Mel Spectrogram

Mel spectrograms represent sound as an image, similar to a regular spectrogram. The sound frequencies
are placed along the Mel scale. Stevens [36] introduced the Mel scale in [1937| as follows:

A subjective scale for the measurement of pitch was constructed from determinations of
the half-value of pitches at various frequencies. This scale differs from both the musical
scale and the frequency scale, neither of which is subjective. (p. 1)

2The sample is taken from the sitcom "The IT-Crowd", series 1, episode 2.

10
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It is therefore closer to the human auditory senses than a linear scaling and resembles how our brain
processes sound more closely. Rosen and Howell [28] states that “for auditory signals and human
listeners, the accepted range is 20Hz to 20kHz, the limits of human hearing”, while Gelfand [9] defines
“hearing is most sensitive in the 2’000 to 5’000 Hz range”. This effect can be observed when comparing
figures 2.2 and The transformation to a Mel spectrogram effectively reduces the amount of noise
in the data by disregarding the parts that would not have been processed by the human brain.

+0dB
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-20 dB
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-30dB
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-60 dB
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Figure 2.4.: Mel spectrogram of the same sentence as in figure

2.7. Speech in the Wild

Audio in a real-world scenario does not only consist of the data which is relevant to the task at hand,
but also various other information or influences by exterior factors. Some examples of background noise
are be cars, trains, other speakers, reverberation effects as well as technical side-effects like a cheap
microphone. Unlike professional studio recordings, speakers are not focusing on clear pronunciation in
this type of audio recording or may not be voice actors but rather of all ages and professions.

Looking at figure[2.4] the middle part of the diagram seems to merge together compared to other parts
of the graph and cannot be separated as clearly. This is caused by background laughter, which can be
heard in the audio file and is a fitting example of speech in the wild.

Evaluation on noisy audio data is a focal point of this thesis using a dataset consisting purely of this
type of audio recording.

2.8. Neural Networks

Neural Networks (NNs) are a computational model, modelled after neurons in the human brain. They
are based on the single neuron perceptron by Rosenblatt [30]. NNs are broken up into different layers
of neurons that are interconnected with other neurons of previous and following layers, generally only
to directly neighboring layers. There exist no connections between neurons inside the same layer.

NNs can be interpreted as a special case of a directed graph where each neuron is a node and the edges
represent the connections from neuron to neuron between layers. NNs have a plethora of variables as
each connection has a weight attached to it, while every neuron has a so called bias, which is added
to the value of the neuron. These variables need to be evaluated and are crucially important for the
performance of the NN.

11



2.9. RNN CHAPTER 2. THEORETICAL PRINCIPLES

input hidden output

Figure 2.5.: Schematic of a simple neural network with one hidden layer.

Network variables are initialized randomly and are iterated upon during the training step via a process
called backpropagation, introduced by E. Rumelhart et al. [5]. This training is done by feeding examples
through the network and comparing the networks output with the desired output value. The resulting
error is - as the name suggests - propagated backwards through the network, adjusting weights and
biases along the way.

The most simple NN has an input layer (the size of the input vector), an output layer with arbitrary size
and one layer in between, a so called hidden layer (see figure[2.5)). In case of multiple hidden layers, we
refer to them as Deep Neural Networks (DNNs).

As described in Lian et al. [22], NN can be interpreted as a one-way function that is constantly improved
upon. The usefulness stems from the complexity of the speaker clustering problem, as it cannot be
solved by applying simple IF ... ELSE statements. Instead, NNs are trained to learn what exactly
distinguishes one voice or speaker from another.

2.9. RNN

Karpathy [18] describes the speciality of recurrent neural networks (RNNs) as follows:

The core reason that recurrent nets are more exciting is that they allow us to operate over
sequences of vectors: Sequences in the input, the output, or in the most general case both.

[.]

They accept an input vector x and give you an output vector y. However, crucially this
output vector's contents are influenced not only by the input you just fed in, but also on
the entire history of inputs you've fed in in the past. (section "Recurrent Neural Networks")

& ® ®
t t

A

A 5 A

| |
© © ©

Figure 2.6.: Schematic of multiple RNN cells connected together.[26]

12
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This ability allows the network in the case of speech recognition to take advantage of an intrinsic
probabilistic model (as seen in figure , that for example someone that is talking is likely to still be
talking milliseconds earlier and later, or that he is more likely to talk again later than a speaker the
network has not seen before.

2.10. LSTM

Long short-term memory networks (LSTMs) were first described by Hochreiter and Schmidhuber [14]
as a subtype of, and improvement over RNNs. These networks are special because they can “learn
to bridge time intervals in excess of 1000 steps even in case of noisy, incompressible input sequences,
without loss of short time lag capabilities” Hochreiter and Schmidhuber [14], p.1.

LSTMs are used as cells that feed into each other, while controlling what needs to be remembered or
forgotten. For leveraging this information flow, three logic gates are used: The input, forget and output
gates (see figure in order from left to right: input, forget and output gates).

) ® ®
| | t

N\ l\
X 0 >
G&n>
A Lebgfl A
J J_’

I
& ® &)

Figure 2.7.: Schematic of connected LSTM cells.[26]

The input gate controls which parts of the information given is remembered for further use. The forget
gate decides if something can be forgotten and the output gate controls how the memory is used to
calculate its output value. Each of these gates can be seen as separate NNs, trained to specifically
accomplish their task. For a more detailed explanation, we refer to the blog post by Olah [26], where
the figures are taken from.

2.11. Bidirectional LSTM

While looking back in time, thanks to the LSTM architecture, is helpful, gaining knowledge of the
future is equally important. Schuster and Paliwal [3I] describe bidirectional RNNs to do just that:

To overcome the limitations of a regular RNN [...], we propose a bidirectional recurrent
neural network (BRNN) that can be trained using all available input information in the past
and future of a specific time frame. (p. 2675)

A bidirectional RNN (or LSTM) feeds the input sequence both forward and backward through two
separate, but mirrored RNN cell chains simultaneously. In fig[2.8] this is visualized for time steps ¢t —1,
tand t+1.

13
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FORWARD
STATES

Figure 2.8.: Structure of a bidirectional RNN.[31] p. 2675]

2.12. KL-Divergence

The Kullback-Leiber divergence (KLDIV), introduced by Kullback [20], is a metric for probability dis-
tributions. It is defined as the difference between the entropy H(P) of a distribution P and the
cross-entropy H(P,Q) of a predicted distribution Q:

Dk (P|Q) = H(P,Q) - H(P)

H(P,Q)=- Y p(z)log q(x)

zeX

H(P)=—) p(x)logp(x)

reX

The formula can be further simplified as:

Dir(PIQ) = 3 pla) log 22

zeX q(x

~

The Kullback-Leibler divergence calculates how different two given probability distributions are, where
two equal distributions have a KLDIV of 0. It is important to note that this metric is asymmetrical and
the assignment order for the two distributions is important; to see how well the predicted distribution
holds up to the expectation, P should be assigned as the labels and @) as predictions.

2.13. Hinge Loss

Hinge loss can be used for regularization, which helps numerically stabilizing a loss function. Rosasco
et al. [27] define Hinge loss as follows:

V(w,y) =maz{0, 1—w - y}

Where w is the label output and y the prediction. In this definition, the margin is set to 1. The product
w1y is the value of the loss function. As used in this thesis and defined by Lukic et al. [23] and
Stadelmann et al. [35], the Hinge loss can be used in a more general sense as follows:

14
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V(y) = max{0, margin—1(y)}

2.14. Active Learning

Active Learning (AL), also known as query learning, is usually used to reduce the amount of labelled
data needed to train a neural network. This is achieved by training a network on a smaller subset with
labelled data and then evaluate the remaining data with said network to decide which parts of the
unlabelled data are worth investing time and resources to get accurate labels.

This process tries to avoid labelling data that isn't useful for the network to learn on, as manual labelling
of data is a highly expensive task.[32]

The algorithm works as follows:

Require: n >0 and is set to number of active learning rounds
Require: T' contains data with labels
Require: P contains data without labels

function TRAINMODEL(T) trains the model e.g. using the fit function.
DOWORK
end function

function U(P) returns the least confident predictions for P
DoWoRkK
end function

function LABEL(u_p) returns labelled u_p
DoOWORK
end function

for i< 1,n do
TRAINMODEL(T)
u_p+ U(P)
u_p < LABEL(u_p)
T+THu_p

end for

15



3. Approach / Methodology
In this chapter, the approach taken to achieve the goal described in section is depicted.

3.1. Datasets

TIMIT Acoustic-Phonetic Continuous Speech Corpus [15]

In the TIMIT dataset, each of the 630 speakers is recorded uttering ten sentences. Every sentences is
chosen to include a multitude of different phonetic sounds giving a broad spectrum of characteristics
for each speaker. All speakers are recorded in their native American English accents, within a range of
eight different dialects. The dataset is biased towards male voices, as 70% of the speakers are male
and only 30% female. It is important to note that all speakers were recorded in a studio under similar
conditions, removing background noise, cross-talk and volume discrepancies.

This is a paid product and cannot be distributed as part of this work.

VoxCeleb2 [2]

Built with a focus on real-world data, the VoxCeleb2 dataset consists of sentences extracted from
videos on YouTubeE] As Chung et al. [2] stated when introducing it in|2018, “the speech segments are
corrupted with real world noise including laughter, cross-talk, channel effects, music and other sounds.
The dataset is also multilingual, with speech from speakers of 145 different nationalities, covering a
wide range of accents, ages, ethnicities and languages.” (p. 1).

It features 6112 different speakers and has less of a gender imbalance, with 61% male and 39% female
speakers. For each speaker there are between 21 and 500 utterances in the dataset.

Due to its enormous size, it is not distributed with this work as weIIE]

Comparison

TIMIT VoxCeleb?2
Size 0.6 GB 334 GBf
Unique speakers 630 6112
Male 438 (70%) 3728 (61%)
Female 192 (30%) 2384 (39%)
Utterances 6300 1'128'246
Utterance length max. 8 seconds 4 - 68 seconds
Languages American English Multinational

Table 3.1.: Direct comparison of the TIMIT and VoxCeleb2 dataset

IThe extraction process uses the YouTube search engine with the name of the speaker and the word ’interview' added.
Speaker names are taken from the VGGFace2[I] dataset, which includes predominantly actors, athletes and politicians.
2You can download the dataset at http://www.robots.ox.ac.uk/Vgg/data,/voxceleb/vox2.html.
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3.2. Preparation

The existing code and infrastructure of the project was heavily coupled to the TIMIT dataset used by
Lukic et al. [23] and Stadelmann et al. [35] in their work. In addition, the code was in an outdated
and unstable state. To reproduce the results from Stadelmann et al. [35] a working and stable baseline
had to be created first to be able to compare results reliably when running experiments on the new
dataset.

3.3. Processing of VoxCeleb2 Data

We compared the existing TIMIT dataset with the new VoxCeleb2 dataset to identify the core com-
ponents we would have to adapt so we could process the new one, while maintaining compatibility
with the previous dataset and networks. Main differences relevant for the processing, were: file format
(WAV/M3A), file and folder structure, amount of speakers, amount of files per speaker and variation
in length of audio.

Only supporting WAV file format to create and process spectrograms, changing the file format was not
a feasible option so the entire VoxCeleb2 dataset was converted to WAV format, tripling its size in the
process. For the conversion we used the openly and freely available FFmpeg solution.

Audio file length varies wildly in the VoxCeleb2 dataset, ranging from 4 to 68 seconds. To avoid having
to needlessly add padding to all files shorter than the maximum, a maz_audio_length parameter
was chosen at 8 seconds*] For every file in the VoxCeleb2 dataset used, only the first 8 seconds are
considered.

The big increase in the amount of data caused pickle file format [7] to reach its limits of only allowing
file sizes up to 2GB. We incorporated the option for networks to use the HDF'5 file format [12] not
only for networks but also for speaker information allowing almost infinitely large filesE] The suite now
supports both formats and the networks training and testing components can specify the format which
should be used. Whilst an improvement, the problem of the dataset being too large by a considerable
margin to be stored in a single file or loaded in memory was not solved. We researched ways of splitting
the dataset into multiple partitions, allowing us not to keep it in memory as a whole and switch between
these partitions dynamically.

3.4. Adapting to VoxCeleb2

The ZHAW_deep_voiceE] framework [35] was built for use with the TIMIT dataset. Changing the
dataset over to VoxCeleb2 quickly proved to be unsuccessful due to the sheer size difference. The 180-
fold increase in total utterances (assuming O(n) complexity) would turn the training period from e.g.
a day on TIMIT into half a year on VoxCeleb2, while covering the dataset similarly during training. As
this bachelor thesis is time constrained, a more time efficient approach has to be taken. Furthermore,
memory is not endless and the training set should ideally be kept in memory as to avoid unnecessary
read and write operations.

The following approaches were evaluated and further explored:
= Exploring different loss functions to converge faster
= Handling data more efficiently

= Updating used software to ensure the newest optimizations are used

3The audio files had to be converted from .m4a to .wav, further increasing the total size.

4For reference, the longest recordings in the TIMIT dataset last 8 seconds.

5Most Unix systems however limit the number and size of files opened, realistically giving a 1TB file size limit. See
https: //support.hdfgroup.org/HDF5/doc/TechNotes/BigDataSmMach.html,

Ghttps://github.com /stdm /ZHAW_deep_voice]
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= Reducing the training data shown to the network

Different loss functions

We initially considered hard example mining and triplet loss due to the promising results of Wang et al.
[38] for facial recognition of 100k identities. Facial recognition being a similarly difficult task: the front
and side view of the same face look much different than two different front views of a face. Similarly,
Deng et al. [4] were able to define a new loss function using a geometric representation with arccos,
outperforming the state of the art for facial recognition. A fellow master student explored how to apply
these loss functions to speaker recognition and we planned on eventually combining our findings. As
such we did not pursue this topic further for the scope of this thesis.

Efficient data handling

The framework uses pickle files to store the pre-processed training data. The change from pickle to
HDF5 boosts reading times by about 17%. During training, the dataset is only read once, so this only
brings a negligible benefit. From a memory standpoint however, pickle uses about four times as much
memory as H DF'5 when reading data from disk. The decreased memory need enables us to increase
the amount of data being read with the same RAM constraints. An important note, file sizes for .h5
and .pickle of the same data are within the margin of a few bytes, the argument, pickle uses a more
advanced compression algorithm that causes a bigger memory footprint when read does not apply.

Software dependency updates

Due to updates in library dependencies, the epoch training times could be decreased by a factor of
2. We believe the update to tensor flow version 1.13.1 to be the cause of this increase, as LSTM
modules traditionally were implemented without taking advantage of the GPU architecture available.
Using keras’ CuDNNLSTM modules instead of LSTM yielded no measurable performance gain after
upgrading tensor flow.

Reducing training data size

Trying to achieve similar performance with a smaller subset instead of the full dataset is a problem
domain where plenty of research has been made: active learning. Normally, scientist prefer to label
as few examples in their dataset as possible to achieve great results and through active learning, the
network specifies which data needs to be labelled for further training.

Shen et al. [33] showed for named entity recognition that active learning can be applied to conserve the
amount of training data used and still achieve 99% of state of the art performance with as little as 25%
of training data. Their approach uses a starting dataset, which is constructed as a subset of all data
available. After a few training iterations, the network is used to evaluate which part of the remaining
dataset is most useful for the current learning progress.

3.5. Active Learning Approach

Our idea to solve the problem of splitting up the dataset was to use an automated active learning
approach. Usually this process is applied if a large unlabelled data pool and only small amount of
labelled data are available and data labelling is applied manually. Shen et al. [33] showed promising
results, achieving up to 99% performance of state of the art systems with as few as 25% of training
data used.
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We partitioned the VoxCeleb2 dataset into smaller data pools, each pool consisting of a smaller amount
of data samples from each speaker in the full set. These pools are loaded as an extension to the current
processing pipeline training the network on one base pool and then loading the other pools throughout
the active learning process. In each active learning round (ALR), a different data pool is loaded (round
robin) and uncertainty sampling is performed on the pool as if there were no labels available. Then the
current training set is expanded with the selected data including the labels. Retraining is then applied
to the model. This process is illustrated in figure

| initial training data |

777777777777777777777777777777777777777777777777777777777777777777777777777 data pool 1
A 4
training data [« tend training dat
data pool 2
train
neural network uncertainty sampling RR—>  data pool 3

7 ‘

‘ network output ‘

data pool n

no

v
final network output

Figure 3.1.: Training process with AL

The uncertainty sampling function (U) is defined by the following formula and used to detect data
entries the network is least confident to predict correctly:

U(z)=1-P(&|x)

where P is the probability function, “z is the instance to be predicted and Z is the most likely prediction”
(Danka and Horvath [3]). The top n instances with the largest values as samples to be labelled are
selected and added to the training set for the next ALR. We set n to 128 in our experiments. An
experiment using 20 active learning rounds to retrain the model would therefore be trained on the total
20128 = 2560 plus the amount of initial samples.

3.6. Neural Network Architecture

The network models built while conducting experiments follow a similar structure. Each network consists
of two bidirectional LSTM layers (Isl, {s2) with a 50% dropout layer in between, three dense layers
(d1, d2, d3) with a 25% dropout layer between the first and second dense layer and a softmax layer
(ac). The LSTM layers both have a constant width of 256, the first two dense layers are configurable
using a dense_factor (df) and the third uses the output_size (0s), which should match the amount
of classes the network is expected to differentiate (see figure [3.2)).

Mini-batch gradient descent is used to train the network with a batch size of 100. The mini-batches are
small snippets with a length 10 * segment_size ms, extracted randomly from utterances in the training
data. The Adam optimizer is used with standard parameters.
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Figure 3.2.: Neural network layout

A combination of Hinge loss and Kullback-Leibler divergence is used as the loss function, outlined
in Stadelmann et al. [35], with a margin parameter of 3 (see sections [2.12] and the work of
Stadelmann et al. [35] for a detailed explanation).

3.7. Misclassification Rate

This metric has been used to measure the speaker clustering performance. It is based on the following
formula with w equal to the number of not or wrongly clustered instances and n equal to the total
number of instances:

MR =

w
n

For example, if 10 utterances out of a total of 100 utterances are clustered wrongly, the MR is calculated
as 10/100 = 0.1. For a more detailed explanation on how to calculate w and interpret the result, we
refer to the work of Niederer and Heusser [25], which defines it thoroughly.

3.8. Homogeneity Score

The ZHAW_deep_voice framework built by Niederer and Heusser [25] uses the homogeneity score
defined by Rosenberg and Hirschberg [29]. The original definition states:

A clustering must assign only those data points that are members of a single class to a
single cluster. That is, the class distribution within each cluster should be skewed to a single
class, that is, zero entropy. [...] In the perfectly homogeneous case, this value, H(C|K), is
0. (p.411)

This metric observes how well the system is able to spread out data points of different classes, such
that the distance between classes is maximized. For a more detailed explanation, we refer to the works
of Niederer and Heusser [25] and Rosenberg and Hirschberg [29].
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3.9. Completeness Score

As with the homogeneity score above, the completeness score used is defined by Rosenberg and
Hirschberg [29]. The original definition states:

Completeness is symmetrical to homogeneity. In order to satisfy the completeness criteria,
a clustering must assign all of those data points that are members of a single class to a
single cluster. (p.411)

This metric pays attention to how well the system is able to minimize the distance between data points
of the same class. For a more detailed explanation, we refer to the works of Niederer and Heusser [25]
and Rosenberg and Hirschberg [29].

3.10. Used Software

The software programs listed below have been used during the process of this work. We recommend
using a lightweight editor and using standard pip package manager to reduce installation overhead.

Environment

= Microsoft Windows 10, Ubuntu 16.04 LTS
= Visual Studio Code, Version 1.33.1

= Python 3.7

= FFmpeg (audio conversion) |(ffmpeg.org)

= |nkscape, version 0.92.4

Notable Python modules

We only list the most important modules and not all included dependencies. For a full list consult the
Docker file in the attached source code.

= Tensorflow, Version 1.13.1
= keras Version 2.0.8

= Librosa, Version 0.5.1 (Spectrogram extraction)

Documentation

= Overleaf (LaTeX online collaboration tool), www.overleaf.com

Docker

To run the experiments on the GPU cluster, Docker containers are required. Docker is a software
program which runs so-called containers as virtual machines where further programs can be executed in
a dedicated environment. Dependencies can be defined and will be installed on the fly when the virtual
machine is started. It is cross-platform compatible and enables users to work in their encapsulated
environment as a super user without influencing the general infrastructure used.
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4. Results

4.1. Experimental Setup

Global Hyperparameters

Throughout the experiments we kept certain parameter values unchanged. This values are based on
the previous work conducted with this suite [10, 23] 25, 34 [35]. Changing the dataset, applying
the new active learning approach, network architecture, and hyperparameter values would have led
to incomparable results. We decided that preserving the parameters listed in table with values
from previous work would reduce the discrepancies between the projects and aid in the acquisition of
comparable results.

The following values were used throughout the experiments as constants:

Description Value
Batch size 100
Learning ratdl 0.001
B0 0.9
pH 0.999
4 le—8
Deca>m 0.0

Table 4.1.: Hyperparameters used in the experiments section

Hardware

Experiments were ran on a GPU cluster provided by the ZHAW Institute of Applied Information Technol-
ogy (InIT). The cluster consists of four compute nodes. On each node there are two Intel(R) Xeon(R)
CPU E5-2650 v4 © 2.20GHz 12 Cores and eight Nvidia TITAN Xp GPUs available. Each of the ex-
periments were run as a slurm job with the default student QOSE] For each experiment run, one CPU
core and one GPU were used, allocating 32 GB of memory.

Total runtime averaged at about = 20 hours for network training. The evaluation process took = 20
minutes on the smaller TIMIT experiments and ~ 5 hours on all VoxCeleb2 experiments. Evaluation
was performed on twelve checkpoints, ten of which are at equidistant intervals, one at the very end of
training and another where the validation loss function performed best.

4.2. Datasets

We define the following data subset to be used in the experiments. We used different sets for train and
test configurations and did not split a set into two parts. The lists of all speakers in each set can be
found in the source code attached®| or on the GitHub repository.

1Standard parameters are used for the Adam optimizer.
2QOS information can be found at https://info.cloudlab.zhaw.ch/pages/gpu/ressource_limits.html#available-qos.
3Check the README file on the enclosed USB drive for information on where to find these lists

22


https://info.cloudlab.zhaw.ch/pages/gpu/ressource_limits.html#available-qos

CHAPTER 4. RESULTS 4.3. Experiments

timit_speakers__40_clustering_vs_reynolds_cluster Referring to [35]@, this set is distinct from the
any other TIMIT sets and is only used during the test phase. It contains 10 utterances per speaker
totalling 400 utterances.

timit_speakers__100_50w_50m_not_reynolds_ cluster This subset contains both 50 male and fe-
male speakers of the TIMIT set and matches the test set used in [35]. It contains 10 utterances
per speaker totalling 1’000 utterances.

timit__speakers__590__clustering__without__reynolds__cluster This subset contains all TIMIT speak-
ers except those used in the test set timit_speakers_40_clustering_vs_reynolds_ cluster. It con-
tains 590 speakers with 10 utterances per speaker totalling 5’900 utterances.

vox2_speakers__120_test_cluster Based on the test set introduced by Chung et al. [2] this set
contains 120 speakers with a total of 36’237 utterancesﬂ In this set, the number of utterances
per speaker varies.

vox2_speakers_5994__dev_600_base We compiled a list of the 600 speakers with the most utter-
ances from VoxCeleb2 to use as a training set. It contains 445 utterances per speaker totalling
118815000 utterances.

This dataset was split into 20 equal partitions of 23 utterances each for every speaker, with the
exception of the last partition containing only 8 utterances. Per partition there are 23 %600 =
13’800 utterances, and for the last one 8600 = 4’800.

The decision, to only use 600 speakers, was made to have a number of speaker reflecting the
larger TIMIT 590 closely and to reduce the memory footprint required to process. We planned
on expanding the dataset step by step to ensure comparability, which ultimately could not be
pursued because of poor performance on the existing set and the time constraints of this work.

To use the desired dataset, two variables train_data and val_data have to be changed directly in
the controller python file. These hardcoded values were retained since the speaker_ factory class also
contains these hard-coded values and they refer directly to each other. Unlike other parameters these
variables are strictly bound to available and set up sets in the solution.

4.3. Experiments

In this chapter, an overview of each experiment conducted and evaluations of the results will be given.
A total of 13 experiments were run, 6 of which will be elaborated in detail. In the following sections,
the remaining experiments will be discussed as an ensemble, as primarily multiple segment_sizes and
out_layers for the speaker embeddings were compared against each other, following Stadelmann et al.
[35] and their search for a sweet spot both for the layer from which to extract speaker embeddings from
and the length of the segment_size.

For evaluation, speaker clustering is done on two utterances per speaker. These two utterances are
created using 80% and 20% of all available utterances for that speaker respectively. The network is
then expected to match each pair of speaker utterances, why the misclassification rate, completeness
score and homogeneity score plots all range from zero to twice the number of speakers. Under ideal
conditions, the network should perform optimally where the true number of speakers is positioned.

To ensure a comfortable reading experience, each experiment is displayed on two separate pages. The
first page contains the setup, reasoning why we ran the experiment and its result. The second page
contains graphics or plots supporting the reader in understanding the results visually.

4A timit_ prefix was added to the existing speaker lists to distinguish them more easily from the VoxCeleb2 sets.

Sldentity metadata can be found on |http://www.robots.ox.ac.uk/ vgg/data/voxceleb/vox2.html under the metadata
section. The 120 speaker test set contains all speakers with the value test in the Set column. On the official page
the set is reported to contain 118 speakers, while there are 120 identities given. We assume this is because only 118
of the speakers contain audio files and the remaining two are empty. To reflect the total number of speakers that are
defined in the metadata set, we decided to name it 120 instead of 118.
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4.3.1. Experiment #1: TIMIT-100 vs. TIMIT-40

Setup

Configuration entry Value

Training dataset timit_speakers_100_50w_50m_not_reynolds_ cluster

Test dataset timit__speakers_40_clustering_vs_reynolds_cluster

Segment size 40

Dense Factor 100

Output Size 100

Output Layer 2 (first dense layer)

Epochs trained (total) 1000

Active learning deactivated

Table 4.2.: Setup for IExperiment #1: TIMIT-100 vs. TIMIT-40

Reasoning

This experiment tries to recreate the results from Stadelmann et al. [35] and Niederer and Heusser [25]
by using their ZHAW_deep_voicéﬂ framework with as few adjustments as possible to get a ground
truth from which further experiments are evaluated. For comparability the same metrics and plot types
as by |Niederer and Heusser| were used. The configured hyperparameters are shown in table

Since only the pre-processing steps were adjusted to use the hdf5 format instead of the pickle format,
the same result as|Stadelmann et al.|and|Niederer and Heusser| reported, is expected to be reproduced.

Result

Misclassification rate, completeness score as well as homogeneity score could be reproduced with nearly
identical results{ﬂ when compared with Niederer and Heusser [25]. The outlier curves after 100 and 200
epochs respectively can be easily spotted where the network clearly was still in process of coarse tuning,
while the MR improved almost constantly with additional epochs. This experiment reaches a plateau
somewhere around 800 epochs where it assumes 41 clusters for the 40 different speakers, exactly as
observed in Stadelmann et al. [35]. This experiment confirms that the network itself did not change
through the addition of active learning code. See figure [4.1] for a visual representation of the result.

5The repository can be found on https://github.com/stdm/ZHAW__deep_voice
"The commands used to start the experiments can be found in the appendix section
8\We refer to figure 11 of their work, found on page 21.
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Figure 4.1.: Plot for [Experiment #1: TIMIT-100 vs. TIMIT-40|
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4.3.2. Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active learning

Setup
Configuration entry Value
Training dataset timit_speakers_590_ clustering_ without_reynolds_ cluster
Test dataset timit__speakers_40_clustering_vs_reynolds_cluster
Segment size 40
Dense Factor 100
Output Size 590
Output Layer 2 (first dense layer) and 3 (second dense layer)
Epochs trained (total) 1000
Active learning # of epochs before active learning starts: 200
# of rounds: 16
# of epochs per round: 50

Table 4.3.: Setup for IExperiment #2: TIMIT-590 vs. TIMIT-40 with modest active learning

Reasoning

As with the previous experiment, Niederer and Heusser [25] settled on a 100 speaker training set for their
best results and were not able to fully use the whole TIMIT dataset. In this experiment, we explore how
the active learning approach differs from their result. Due to the increased size and number of speakers

in this training set, it is expected that this experiment to perform at least similarly to [Experiment #17
\Y 00 \Y 40

Result

As in all of the previous work[23] [25] 35], this experiment performs worse than training on the smaller
dataset. Niederer and Heusser [25] trained a different network architecture on this dataset and achieved
a MR of 0.625, while Lukic et al. [23] reported as low as 0.05 and a MR of 0.125 with the speaker
embeddings extracted at the matching layer for this experiment. For the first dense layer used to extract
the speaker embeddings, we achieved similar results to Lukic et al. [23], resulting in a MR of 0.1125
in this experiment. When extracting embeddings from the second dense layer however, the lowest MR
reported was 0.0625 outperforming the expected result in this scenario (see figure .

It is noteworthy that even the very first checkpoint at 100 epochs (min. MR of 0.25) is already
performing much better than its counterpart in the previous experiment (min. MR of 0.3375) on the
100 speaker training set. At this point, the network is still training on the initial base training set and
has not been increased through the active learning rounds.
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Figure 4.2.: Plot for |Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active Iearningl
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4.3.3. Experiment #3: TIMIT-590 vs. TIMIT-40 with increased active

learning
Setup
Configuration entry Value
Training dataset timit_speakers_590_ clustering_ without_reynolds_ cluster
Test dataset timit_speakers_40_clustering_vs_reynolds_ cluster
Segment size 40
Dense Factor 100
Output Size 590
Output Layer 2 (first dense layer) and 3 (second dense layer)
Epochs trained (total) 1000
Active learning # of epochs before active learning starts: 50
# of rounds: 38
# of epochs per round: 25

Table 4.4.: Setup for IExperiment #3: TIMIT-590 vs. TIMIT-40 with increased active learning

Reasoning

The results from [Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active learning| show at least
comparable results to previous experiments on the 590 speaker training set. Here the pre-training period
without active learning rounds is decreased and each active learning round lasts fewer epochs. Adding
more useful data earlier is expected to improve the performance of this network quicker and ultimately
outperform the previous experiment due to the fact that the network is able to decide more often which
samples help the most in its learning process.

Result

Compared to the previous experiment [Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active]
this network is able to almost cut the MR in half culminating at a value of 0.0625 (see
figure , which confirms our expectations that more frequent active learning rounds help with model
performance. The performance of early checkpoints varies more, so that these checkpoints perform
worse than before indicating that shorter pre-training periods decrease the quality of early active learning
rounds. Likely, a balance of just enough pre-training needs to be found for optimal use. Similarly to
the results previously observed when using the second dense layer to extract the embeddings, this
experiment also yielded a MR of 0.0375 (see figure , exceeding the 0.050 MR result from Lukic
et al. [23] and showing the same tendency as the previous experiment, that with a larger dataset,
extracting the speaker embeddings from deeper layers boosts the overall performance.
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Figure 4.3.: Plot for |Experiment #3: TIMIT-590 vs. TIMIT-40 with increased active Iearning|

(embeddings extracted from the first dense layer)
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Figure 4.4.: Plot for |Experiment #3: TIMIT-590 vs. TIMIT-40 with increased active Iearning|

(embeddings extracted from the second dense layer)
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4.3.4. Experiment #4: VoxCeleb2-600 vs. VoxCeleb2-120

Setup

Configuration entry Value

Training dataset vox2_speakers_5994_dev_600_base

Test dataset vox2_speakers_120_test_ cluster

Segment size 40

Dense Factor 100

Output Size 600

Output Layer 2 (first dense layer)

Epochs trained (total) 1000

Active learning deactivated

Table 4.5.: Setup for IExperiment #4: VoxCeleb2-600 vs. VoxCeleb2-120

Reasoning

This experiment only trains on a smaller subset of VoxCeleb2 with 23 files for each of the 600 speakers,
similar to TIMIT's 10 files for each of their 590 speakers. It aims to change as little as possible compared
to the experiments[4.3.2]and hence active learning is deactivated. Due to the increased complexity
of the dataset compared to TIMIT, it is expected to perform worse in terms of MR. However, we should
be able to improve on the MR metric through later experiments with the addition of active learning.

Result

As expected, the network performs much worse with a min. MR in the 0.40 range instead of the MR
below 0.10 from earlier TIMIT experiments (see figure[4.5]). While the earlier MR plots curves seemed to
reach their minimum close to the true number of clusters (in this case at 120), the MR plateaus around
the 120 cluster mark but reaches the minimum closer to about 170 clusters. A similar discrepancy can
be found in the completeness scores, where the TIMIT experiments were close to 1.00 completeness
almost up to the true number of speakers and only then really started to drop monotonously. Instead,
the completeness scores drop as low as 0.65 and recover, but never exceed 0.90. This is expected to
be caused by the much more complex combination of both speech and non-speech elements in the
recordings. The progress of the loss curve (see figure did not indicate any overfitting as another
potential reason of performance decrease.
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Figure 4.5.: Plot for |Experiment #4: VoxCeleb2-600 vs. VoxCeIeb2—120|
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4.3.5. Experiment #5: VoxCeleb2-600 vs. VoxCeleb2-120 with modest
active learning

Setup

Configuration entry Value

Training dataset vox2_speakers_5994_dev_600_base

Test dataset vox2_speakers_120_test_ cluster

Segment size 40

Dense Factor 100

Output Size 600

Output Layer 2 (first dense layer) and 3 (second dense layer)

Epochs trained (total) 1000

Active learning # of epochs before active learning starts: 200
# of rounds: 16
# of epochs per round: 50

Table 4.6.: Setup for IExperiment #5: VoxCeleb2-600 vs. VoxCeleb2-120 with modest active learning

Reasoning

Having a baseline with the VoxCeleb2 dataset, we conducted experiments using the employed active
learning process. For a reasonable comparison, the active learning configuration used, is the same as in
the previous experiments with the full TIMIT dataset with 590 speakers.

Early checkpoints of 100 and 200 epochs are expected to perform better than without active learning,
but are vary of how the increased complexity of this dataset influences the active learning process. Due
to the mediocre performance of the previous experiment, a huge performance gain is not expected.

Result

The previously observed performance improvement when using out_layer 3 instead of 2 did not prevail
in this experiment and further experiments conducted with VoxCeleb2. Because the overall performance
of the VoxCeleb2 experiments is no match compared to the TIMIT experiments, it has yet to be
confirmed whether for larger datasets a different layer to extract the embeddings would continuously
result in a performance improvement. Furthermore, the loss function (see figure in line with the
min. MR (see figure value of a2 0.40) across epoch checkpoints indicates potential overfitting on
the training data seen; the best min MR performance is achieved around the epoch 400 mark, after
which the MR increases again and almost reaches levels of the epoch 100 checkpoint.
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4.3.6. Experiment #6: VoxCeleb2-600 vs. VoxCeleb2-120 with increased
active learning

Setup

Configuration entry Value

Training dataset vox2_speakers_5994_dev_600_base

Test dataset vox2_speakers_120_test_ cluster

Segment size 40

Dense Factor 100

Output Size 600

Output Layer 2 (first dense layer) and 3 (second dense layer)

Epochs trained (total) 1000

Active learning # of epochs before active learning starts: 200
# of rounds: 38
# of epochs per round: 25

Table 4.7.: Setup for IExperiment #6: VoxCeleb2-600 vs. VoxCeleb2-120 with increased active learning

Reasoning

Based on the previous experiment and analogue to the process used with the TIMIT experiments, the
number of active learning rounds were increased in this experiment, shortening the iterative retraining
to have comparable result to both experiment #5 in and experiment #4 in [4.3.4] At the same
time, the pre-training period to harness the active learning samples earlier, is reduced. This experiment
is expected to once more achieve better results, but the performance difference between TIMIT and
VoxCeleb2 may well ignore the benefits of active learning.

Result

This experiment performs much worse. Contrary to every other experiment conducted, the MR, com-
pleteness and homogeneity plots are very close together across all epoch checkpoints (see figure [4.9).
It is evident that this experiment failed, as there is barely any change in min. MR between epochs.

Comparing the loss function to both previous VoxCeleb2 experiments, the starting plateau is roughly
twice as big (1.0 versus 0.5) and does not decrease as consistently. While the loss function starts
decreasing around the 50 epoch mark where the first active learning round begins, this can be also
accounted for by the way the KL-divergence is calculated, as the value of this function decreases with
the amount of files in the training set[]

The network is clearly overfitting after epoch 400, where the validation loss starts diverging from the
training loss (see figure [4.10]). The reason for this could be a particularly bad initial state, such that
the network was not able to pick useful examples through uncertainty sampling and did not possess
the ability to recover. When rerunning the experiment, the network was still overfitting, but not as
terribly as in the initial run. This supports our assumption of the network being in a bad initial state
when starting the active learning process. The min. MR value dropped to = 0.41 improving from the
previous & 0.5 albeit still bad.

9For more details see section
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4.4. Segment Length Sweet Spot

Referring to Stadelmann et al. [35], the experiments on the VoxCeleb2 dataset were evaluated according
to their out_layer and seg_size parameters. As figure shows, the experiment on VoxCeleb2
achieve the best results with a segment length of 400ms, extracting speaker embeddings from the first
dense layer. The second dense layer outperforms the first dense layer only for a segment length of 700ms
on VoxCeleb2. On the TIMIT 590 it performs better than the first dense layer overall. For seg_size
this confirms the sweet spot described in Stadelmann et al. [35] at a length of 400ms not only for the
TIMIT but also the VoxCeleb2 dataset. A sweet spot for the output layer used to extract the speaker
embeddings could not observed, due to contradicting observations from either the large TIMIT dataset
opposed to the VoxCeleb2 experiments.
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Figure 4.11.: Comparison of different segment lengths and embedding extraction layers for VoxCeleb2,
trained on 600 speakers and evaluated against the 120 speaker training set

4.5. Active Learning Comparison

To see how effective active learning can be on both TIMIT and VoxCeleb2 datasets, the experiments
show a "no active learning", "modest active learning" and an "increased active learning" setup. The first
one gives a baseline result to compare against the other two setups. The second shows the benefits of
active learning with a decent pre-learning period and the third setup focuses on applying active learning

earlier to increase performance more quickly.

The experiments strongly support a performance increase on the TIMIT dataset. Compared to the
network trained by Lukic et al. [23] with a MR of 0.125 with their first dense layer as extraction layer,
our active learning approach measures a MR of 0.0625 in [Experiment #3: TIMIT-590 vs. TIMIT-40|
[with increased active learning] exceeding their result by a factor of =~ 2. Even more so, if we consider
the best extraction layer for both experiments: Lukic et al. [23] were able to report a MR as low as
0.050 while our best experiment on TIMIT [Experiment #3: TIMIT-590 vs. TIMIT-40 with increased|

achieves a 0.0375 MR.

With more frequent active learning rounds (and thus uncertainty sampling), this approach is able to
achieve even better results: In [Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active learning]
a MR of 0.1125 could be achieved, while [Experiment #3: TIMIT-590 vs. TIMIT-40 with increased|

was able to beat this metric on the same extraction layer by a factor of ~ 2 (0.0625).
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It should be stated however, that it does not serve as a master key. If the network is not able to
reasonably gauge its (un)certainty, active learning is able to theoretically add disadvantageous sam-
ples and lead the neural network to a local minimum. One such example would be [Experiment #6|
[VoxCeleb2-600 vs. VoxCeleb2-120 with increased active learning, where in the first run the state of the
network seems to be rather faulty compared to previous experiments and ends up overfitting heavily.
Rerunning this experiment lead to more reasonable loss behavior and better results, but still performed
worse than [Experiment #5: VoxCeleb2-600 vs. VoxCeleb2-120 with modest active learningl This might
be an indication that the network is not able to achieve a meaningful intermediate state from which to
start adding useful samples.
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5. Discussion

In this chapter we will review the presented results of this project, discuss if and how the goals defined
at the beginning were reached and list possible improvements or further work that should be completed
in the future.

5.1. Conclusion

The proposed active learning approach was able to reproduce similar results on the TIMIT datasets
compared to previous work [23] [25] [35] and even improve on the results by Lukic et al. [23] for the
TIMIT-590 training set. We believe that not only file size and memory issues can be kept in check with
the active learning approach, but also faster training times can be achieved in general.

We were unable to achieve a comparable performance on the VoxCeleb2 dataset and believe the following
issues to be at least partially responsible:

VoxCeleb2 dataset Unlike the TIMIT dataset, VoxCeleb2 features a wide range of background noise,
different recording settings and general non-speech elements. We presume the network is unable
to distinguish between speech and non-speech characteristics well enough, causing non-speech
aspects to manifest themselves as distinctive features of a particular speaker, e.g. speaker A is
often recorded with heavy wind and speaker B with cars driving in the background.

Network complexity The neural network architecture is mostly unchanged compared to the pair-
wise_lstm network used in Niederer and Heusser [25], due to the desire to have small changes
in-between experiments for ease of comparison. As the conducted experiments show a wide per-
formance gap, an architecture with a vastly increased capacity in terms of deepness or wideness
could narrow said gap.

Network components Both state of the art systems forgo the use of LSTM networks and apply a CNN
together with ResNet layers with Xie et al. [40] or different RNN types (gated recurrent units)
altogether in the case of Zhang et al. [41], where an earlier system using LSTMs was replaced.

Batch size While we are unable to support this statement with a mathematical proof at this point,
increasing the amount of classes to learn by a factor of 6 reduces the backpropagation adjustments
for every class by the same amount. By that logic, the network is unable to reasonably cover
every class as thoroughly as before and optimizes any class it has never seen down to zero. Zero,
because the labels are one-hot encoded vectors that always contain zero in every row where the
speaker has not been seen during training. Tang et al. [37] use bidirectional LSTMs successfully
in conjunction with time delay neural networks on 20’000 speakers using a batch size of 256, this
suggests that batch size alone cannot be the sole issue.

5.2. Goals

The project aimed to utilize the existing framework used at the ZHAW InlIT, adapt it to the new
dataset VoxCeleb2 and find an approach to make use of it, outperforming previously achieved results
on the established TIMIT dataset. Looking at the results described in chapter [4] this goal could only be
achieved partially. Nevertheless, we consider this work to be successful and give the following reasons
to support this statement:
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= The ZHAW_deep_voice framework can now leverage an active learning approach, surpassing
earlier work on the 590 speaker TIMIT dataset.

= VoxCeleb2 can now be used with ZHAW__deep_ voice and a baseline could be set for future work.
= Improvements were made to more easily work with new and different datasets.

= Various proposals to increase the performance on VoxCeleb2 and address problems discussed in

section [5.1} are presented in the upcoming section "Future Work]".

5.3. Lessons Learned

During such a project, there are always findings on what could have been done better and lessons
learned from that, which we will apply in future work. The following main takeaways are noteworthy
and may proof useful for readers as well:

= Test parameters at the start of every function and maybe even use debug logs to visualize their
values. This can help a lot in finding incorrectly passed values through many layers of code and
to find magic constants.

= Employ sanity checks for your network as early as possible to identify potential errors while
changing values incrementally. Rerun the sanity checks after every change.

= Software Engineering tasks are an important part of implementing and testing an algorithm. Do
not disregard the time it takes to adapt existing systems to new approaches or algorithms as they
might have assumptions built in which hinder a simple transition.

= When running test on external or decentralized infrastructure, make sure to plan spare time for
errors, as you have little control over that system and debugging or rerunning experiments may
take long. Run sanity checks on the local system beforehand to make sure you waste as little
time deploying as possible.

5.4. Future Work

Based on discoveries, takeaways and shown results we recommend the following proposals to further
improve the system:

Computation Performance during Training The neural network architecture in tandem with the
libraries used is not fully taking advantage of parallelization. During the uncertainty sampling
step for example, the neural network model is not changing and could be run on multiple threads
simultaneously to speed up the active learning rounds or perform them on bigger subsets.

Decouple Active Learning By the end of this project, the active learning algorithm is coupled to
the pairwise_Istm_vox2 network. The code itself is mostly decoupled and should be moved
to the common section or a new modules section. Existing networks could be extended to be
configurable to use this approach, using the implementation of the pairwise_Istm_ vox2 network
as an example.

Additional Data The active learning approach is capable of dynamically adding more data. Additional
data may help covering the overfitting problem and improve the performance. This proposal could
not be pursued to the full extent during this project due to time constraints with retraining the
models created. It is also limited by physical resources of the machine used for training.
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Batch Generator The current implementation(s) of the batch generator(s) require all data given to be
held in memory. With a huge dataset such as VoxCeleb?2, it will not be feasible in the near future
to train on the entire dataset - see section A possibility to implement a batch generator which
itself handles partitions, gets samples randomly from the disk and passes them to the network
should be explored. The change to the HDF5 file format should alleviate some of the read /write
operation performance concerns.

Max Audio Length Data retrieved from audio files is cut off after the configured max audio length.
As of this project this value is set to 8 seconds. While in the TIMIT dataset all samples are
between 3 and 8 seconds, VoxCeleb?2 offers audio lengths between 4 and over 60 seconds. There
is a lot of potentially helpful data in later parts of the files. This increases extraction file sizes and
memory usage further. If pursued, file size and memory usage once again need to be addressed.

CNN over LSTM With the highly successful application of CNN to the VoxCeleb2 dataset as in its
introductory paper by Chung et al. [2] or in Xie et al. [40], both using a ResNet variation, re-
evaluating the current architecture or combining both approaches could improve the performance.

Wider and deeper network With the indication of a performance improvement when using the sec-
ond dense layer for embedding extraction shown in experiments [Experiment #2: TIMIT-590 vs|
[TIMIT-40 with modest active learning| and [Experiment #3: TIMIT-590 vs. TIMIT-40 with in-
[creased active learning) further research on using different layers for that task should be conducted.
The possibility to deepen or widen the network should also be explored.

Thinner network Being the complete opposite to the previous proposal, this option could yield im-
provements nevertheless. Referring to Xie et al. [40] or, together with active learning, Shen
et al. [33] thin networks were used to reduce the duration of the training phase. Xie et al. [40]
compensated the smaller network with an increased amount of training data used.

Loss Function The use of different loss functions was initially considered but not further pursued. A
collaboration with a fellow master student was planned, where he evaluated loss functions for
speaker recognition, in particular the additive angular margin loss proposed by Deng et al. [4].
While it was shown that this special loss function works well in facial recognition, Xie et al. [40]
applied it successfully to speaker recognition as well.

Batch Sizing Identified as a potential performance issue, it might be reasonable to try bigger batch
sizes to increase the odds of seeing more classes and avoiding the vanishing effects of absentees.
A mathematical model could be created to get a sense for the amount of classes the network is
able to see during each batch.
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Glossary

In this section you will find terms and abbreviations with short explanations or references to sections

where these can be found.

Abbr Abbreviation
Active Learning: A process in which the model is used to determine which
AL data samples would be best to achieve better results. Often used to
evaluate, what additional data should be labelled.
Active Learning Round: A single iteration of the active learning training
ALR . . . .
process described in this thesis.
CPU Central Processing Unit
DNN Deep Neural Networks, see chapterm
GB Gigabyte - unit of measurement for disk space or memory. Equals to one
billion Bytes.
Gaussian Mixture Model, a statistical model in which multiple Gaussian
GMM o
distributions are used to represent the total data.
GPU Graphics Processing Unit
HDF5 A standardized file format, introduced by the HDF Group [12]
Hidden Markov Model, a probabilistic model using the Markov chains.
HMM
[12]
InlT Institute of Applied Information Technology at ZHAW
KLDIV Kullback-Leibler divergence, see chapter [2.12|
Long Short-Term Memory: A recurrent neural network (RNN) architecture
LSTM . R
with some form of intrinsic memory.
M3A Audio File Format - used to store audio files on a disk
MB Megabyte - unit of measurement for disk space or memory. Equals to one
million Bytes.
NN Neural Network, see chapter|2_.8|
PICKLE File format used to store data, popular in python projects.
QOS Quality of service, how the individual resource limits are defined on the
ZHAW GPU cluster.
Random Access Memory - temporary memory storage with higher speed
RAM . .
than hard drives or flash disks
RNN Recurrent Neural Network, see chapter|ﬁ|
TIMIT A speech corpus containing studio recordings. See chapter|§|
VoxCeleb2 A speech corpus containing real-world recordings. See chapter |3.1|
WAV Waveform Audio File Format - used to store audio files on a disk
ZHAW Zurich University of Applied Sciences
ZHAW__deep_voice | A framework for speaker clustering, created by Niederer and Heusser [25]
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A.2. Manual Project Setup

We refer to the README docs provided both in the attachment and the GitHub repository, as well as
the command line help on how to get this suite up and running locally. All of the steps required are
documented in these files.

A.3. Docker setup on the GPU cluster

Docker is used in conjunction with singularity to create an executable runtime environment on the
GPU cluster provided by ZHAW.E] Unlike most docker containers, this is merely a box in which to
execute the Python files.

At the time of this thesis, in June of 2019, the libraries used are mostly up to date and handcrafted
to not conflict with each other. Should you be using the code at a later time, make sure that you at
least tried running it with exactly these library versions. From experience, the combination of numpy,
tensor flow and keras is usually the culprit.

The following steps are needed to build and launch your very own docker environmentﬂ
Clone GitHub repository from github.com/edualc/ZHAW_deep_voiceE|
Install docker

Register an account on dockerhub at https://hub.docker.com/

sl A

Build the docker container using the following command:

docker built -t <docker_hub_username >/<container_identifier>

-

5. Login to dockerhub on the command line:

1 |docker login

6. Create a repository on dockerhub with the same name as your container_identifier

7. Upload the container to your dockerhub repository:

1 | docker push <docker_hub_username >/<container_identifier>

8. Connect to the ZHAW GPU cluster i.e. via SSH
The following commands assume you are connected to the GPU cluster and have a docker and
development folder in your home directory. Feel free to arrange your development files however
you prefer, this is just to ensure these command work without path

9. Move to the docker folder and download your container:

1 |cd ~/docker
> | singularity pull docker://<docker_hub_username >/<
container_identifier>

10. Move to the development folder and clone the GitHub repository.

1 |cd ~/development
2 | git clone <repo-url>

1See https://info.cloudlab.zhaw.ch/pages/gpu.html to access the complete documentation of the ZHAW GPU cluster.

2Most of the steps below can be found on the official ZHAW GPU cluster documentation.

3Be sure to also check the original repository owned by our supervisor Thilo Stadelmann at
github.com/stdm/ZHAW__deep_voice, as there is a chance the framework received further updates.
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11.

12.

13.

14.

15.
16.

17.

18.

19.

Move into the ZH AW _deep_voice directory and ensure you have correct project state:

cd ./ZHAW_deep_voice
git branch
git status

Start a screen:

screen -S <your_screen_identification>

(Optional) To see a list of all your active screen sessions:

screen -list

(Optional) To reattach to an existing screen:

screen -r <your_screen_identification>

Ensure you are still inside the ZH AW _deep_wvoice directory

(VariantA) Start your Python environment (this does not start the framework directly and will
not shut down when your experiments conclude):

srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:1l
singularity shell ~/docker/<container_identifier>.simg

(VariantB) Start an experiment directly, executing it until completion:

srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l
singularity exec ~/docker/<container_identifier>.simg -~/
development/ZHAW_deep_voice/controller.py <insert args>

(Optional) Terminating the screen (if a program is running, it will be terminated as well):

exit

(Optional) Key binding for leaving the screen (already running programs such as the framework
will keep running):
Ctrl+A, Ctrl+D

IMPORTANT Resources on the GPU cluster are usually sparse. Consider running long experiments
only using the exec variant B, as to free up the resources used as soon as your experiment concludes.
If left untouched, variant A will only terminated after 10 days! If you are trying to debug however,
the shell variant A is very handy. Just be aware that inside a screen only the last fifty or so lines of
output are displayed - logging the output of your srun command into a log file can make debugging
easier.

A.4. Continuing Development

During development, it is best to create small and simple datasets and run the framework locally instead
of on the GPU cluster. Call the controller.py file as per normal:

1

python controller.py <args>

Compared to the original ZH AW _deep_wvoice we were given, two main components were heavily
modified to change the code to work with our VoxCeleb2 dataset:

Y
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Speaker pickle generation (-setup flag) Generation of the pickle files for the TIMIT dataset was
heavily coupled to the structure of said dataset. Assumptions were made that for every speaker
there are exactly 10 utterances. We rewrote most of the code in the speaker.py file to accom-
modate varying utterance numbers and the speaker_train_splitter.py used to split datasets.
It is also possible to create datasets that are partitioned into multiple files, for more details have
a look at speaker.py and the arguments used in the speaker_factory.py.

Active learning Based on the pairwise_lstm controller, a second pairwise_lstm_vox2 controller
exists as a complete copy of the first one. In this folder, files were changed to create com-
patibility with the new dataset, as well as adding the whole active learning process. Since the
active learning using our active learning rounds is hugely independent of the dataset, it should
not be hard to extract and apply it to the other existing or completely new network controllers.
The dataset assumption for active learning is that there exist at least two dataset files named
after the dataset identifier (e.g. vox2_speakers_5994_dev_600_base) where the base dataset
for pre-learning is named vox2_speakers_5994_dev_600_base.h5 and all the partitions con-
sidered during active learning rounds are named vox2_speakers_5994_dev_600_base_0.h5,
vox2_speakers_5994_dev_600_base_1.h5, etc. with an incremental partition index.

There is also a network controller called 1stm_arc_face, which is based on the research of fellow
master student Daniel Neururer. He explored the use of the ArcFace loss function introduced by Deng
et al. [4] on the same code base using the TIMIT dataset. While many commits on the repository point
to changes on this network, the implementations are completely separated.

A.5. Experiment Commands

The experiments were run on the GPU cluster inside a screerE] using the following commands. To be
able to use these commands make sure the folder structure is set up accordingly and you have completed
the setup process. Also you will need to adapt the used network controller to be configured for the
specific datasets mentioned in each experiments’ configuration table.

A.5.1. [Experiment #1: TIMIT-100 vs. TIMIT-40|

1 | srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l
singularity exec ~/docker/zhaw_deep_voice.simg python ~/
development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -
train -test -plot -dense_factor 100 -output_size 100 -epochs_total
1000 -alr O -seg_size 40

A.5.2. |[Experiment #2: TIMIT-590 vs. TIMIT-40 with modest active
learning

1 |srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l
singularity exec ~/docker/zhaw_deep_voice.simg python -~/
development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -
train -test -plot -dense_factor 100 -output_size 590 -epochs_total
1000 -alr 16 -epochs_pre_alr 200 -seg_size 40

4A screen is used to keep a session open during training, as disconnecting from the GPU cluster would terminate the
session and ultimately stop the execution.
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A.5.3. [Experiment #3: TIMIT-590 vs. TIMIT-40 with increased active

learning

1 |srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l

singularity exec ~/docker/zhaw_deep_voice.simg python -~/

development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -

train -test -plot -dense_factor 100 -output_size 590 -epochs_total
1000 -alr 38 -epochs_pre_alr 50 -seg_size 40

A.5.4. [Experiment #4: VoxCeleb2-600 vs. VoxCeleb2-120|

1 | sTun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l

singularity exec ~/docker/zhaw_deep_voice.simg python -~/

development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -

train -test -plot -demnse_factor 100 -output_size 600 -epochs_total
1000 -alr O -epochs_pre_alr 1000 -seg_size 40

A.5.5. |[Experiment #5: VoxCeleb2-600 vs. VoxCeleb2-120 with modest

active learning|

1 |srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l

singularity exec ~/docker/zhaw_deep_voice.simg python ~/

development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -

train -test -plot -dense_factor 100 -output_size 600 -epochs_total
1000 -alr 16 -epochs_pre_alr 200 -seg_size 40

A.5.6. [Experiment #6: VoxCeleb2-600 vs. VoxCeleb2-120 with increased

active learning|

1 | srun --pty --ntasks=1 --cpus-per-task=1 --mem=32G --gres=gpu:l

singularity exec ~/docker/zhaw_deep_voice.simg python -~/

development/ZHAW_deep_voice/controller.py -n pairwise_lstm_vox2 -

train -test -plot -dense_factor 100 -output_size 600 -epochs_total
1000 -alr 38 -epochs_pre_alr 50 -seg_size 40

A.6. Resources on USB Flash Drive

This document is handed in together with a USB flash drive containing the following information:

This document as a PDF-File
A snapshot of the source code by the time this project was concluded

The stored network models for each of the experiments, including network checkpoints, calculated
result pickles and plots

Scripts used to generate various graphics in this report

Graphics used in this report
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