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Zusammenfassung

Gemäss Definition ist ein Hauptbestandteil der Stimmerkennung die Identifikation eines Sprechers und
die Zuweisung der Stimme zu diesem Sprecher. Eine typische Anwendung davon ist die Sprecher-
diarisierung. Für eine beliebige Tonaufnahme (z.B. ein Telefonanruf, eine Besprechungsaufnahme oder
eine Tonspur eines TV-Programms) kann die Sprecherdiarisierung zusammen mit einem Sprache-zu-Text
Modul verwendet werden um die Tonquelle zu transkribieren. In diesem Fall würde das Sprache-zu-Text
Modul den Text aus den gesprochenen Wörtern generieren und das Sprecherdiarisierung-Modul für die
Problemstellung "wer wann gesprochen hat" zuständig sein.
In den vergangenen Jahren konnte das Institut für angewandte Informatik (InIT) grosse Erfolge im Bere-
ich der Sprechererkennung verbuchen. Das Gebiet der Sprecherdiarisierung ist aber noch Neuland. Die
vorliegende Arbeit versucht diese neuen, auf maschinellem Lernen basierenden, entwickelten Ansätze
zu vereinen. Dieses Projekt soll dazu dienen, die Fähigkeiten dieser neuen Methoden zu demonstrieren.
An die Leistung eines hoch entwickelten Sprecherdiarisierung-Systems heranzukommen ist zwar un-
wahrscheinlich aber dennoch wünschenswert. In erster Linie soll dieses Projekt Schwachstellen in der
kombinierten Verwendung für Sprecherdiariserung dieser neuen Techniken aufdecken. Dies hat zum
Ziel, dass neue Projekte vereinfacht an die Resultate dieser Arbeit anknüpfen können.
Verschiedene Experimente eruieren die Qualität der einzelnen Komponenten im System, um zukün-
ftigen Projekten eine solide Basis mit Anknüpfungsmöglichkeiten zu bieten. Das entwickelte Sys-
tem ist ebenfalls fähig, gegen die NIST RT-09 evaluation campaign anzutreten, um es mit anderen
Sprecherdiariserung-Systemen zu vergleichen. Leider ist die gemessene Leistung bei weitem nicht wet-
tbewerbsfähig.
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Abstract

By definition, an integral part of voice recognition is the identification of a speaker and attribution of
voice to said speaker. Unifying those tasks is called speaker diarization. Given an arbitrary recording
(or stream) of voice (i.e., a phone call, a meeting recording or the audio track of a television program),
speaker diarization can be utilized, in conjunction with a speech-to-text module, to transcribe an audio
source. Whereas the speech-to-text module would generate text from the spoken words, the speaker
diarization module would answer the question "to whom the spoken word belongs."
In recent years, the Institute of Applied Information Technology (InIT) has made great progress in
the area of speaker clustering and other voice recognition related topics. However, they have yet to
cope with speaker diarization. This project tries to unify some of the newly developed deep learning
approaches by the InIT. This work is expected to demonstrate how well these deep learning techniques
work.
Matching the performance of a sophisticated state-of-the-art speaker diarization system is a difficult
task and not expected from this project, but desired. Nevertheless, this project should pinpoint the
weak spots of those new techniques when unifying them to a speaker diarization system. This way, new
projects can emerge based on the results of this bachelor thesis.
Various experiments will show how well each component of the system performs and where future work
needs to draw on to improve the performance of this system. This system is also able to evaluate on the
NIST RT-09 evaluation campaign, which makes it comparable with other speaker diarization systems.
Unfortunately, the performance of the system is by far not as good as the state-of-the-art systems.
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1 Introduction

This chapter serves as an introduction to the speaker diarization topic. First, an overview of past work
is given by talking about the origins of the topic in the background section and the motivation to do
speaker diarization. Followed by an explanation of the pursued primary goal. At last, a general overview
of the project is given by describing the content of each upcoming chapter.

1.1 Background & Motivation

Speaker diarization is an immensely important task in processing the spoken word. Mainly because
it answers the questions "which person spoke what part at which time and for how long?" during a
conversation. Two tasks have to be completed before speaker diarization can take place.
Speaker identification is the process of identifying different speakers. Basically, speaker identification

answers to the question "who is speaking in this conversation?"
Speaker clustering is the follow-up process to identify where spoken snippets or phrases are attributed

to a speakers identity. Speaker clustering gives an idea of "to whom are these spoken phrases
belonging?"

Knowing who is speaking and which spoken word is belonging to whom enables us to do speaker di-
arization.
According to "Speaker diarization: A review of recent research" [1], speaker diarization has made great
strides because of the National Institute of Standards and Technology (NIST) sponsored Rich Transcrip-
tion Evaluation campaigns. The most recent Rich Transcription campaign (RT-09) [2] has produced
various state-of-the-art systems using Gaussian Mixture Models (GMM) combined with Mel frequency
cepstral coefficient (MFCC) as their clustering method of choice, such as the ICSI RT-09 Speaker Di-
arization System (ICSI system) [3]. There have been other Rich Transcription Evaluation campaigns,
such as the ESTER Rich Transcription evaluation campaign, with its latest installment ESTER2 [4].
Because of ESTER2, another state-of-the-art system called "the LIUM open-source speaker diarization
toolbox" (LIUM system) [5] has emerged. LIUM also uses GMMs in its architecture. Another note-
worthy system is the "LIA-EURECOM RT-09 Speaker Diarization System" (LIA-EURECOM system) [6].

The Institute of Applied Information Technology (InIT), a department of the ZHAW School of En-
gineering, has made significant progress in the speaker clustering area using various types of neuronal
networks, such as a convolutional neuronal network (CNN) approach in Lukic et al. [7] and a recurring
neuronal network (RNN) approach in Gerber et al. [8]
During the project, advantage is being taken off their achievements to build a speaker diarization system
which should be able to compete alongside the previously mentioned ICSI and LIUM system.

1.2 Goals

The primary goal is to showcase the improvement the newly developed deep learning approaches have
produced over the previously used GMM/MFCC approaches, which were applied in the ICSI and LIUM
systems. To be able to achieve this, a speaker diarization system needs to be built which can be
benchmarked using the NIST RT-09 campaign.
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1.3 Structure

The project is structured as follows:
• In chapter 2 an introduction will be given to the theoretical foundation needed to understand the

system. Additionally some possible challenges will be shown.
• In chapter 3 the system will be dissected to get a detailed understanding of each part.
• In chapter 4 the results of the experiments will be described and discussed.
• In chapter 5 the results will be reviewed in regards to the goals and also some points will be

outlined on where future work can be improved.
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2 Theory

This chapter gives an overview of tools and topics relevant for this project. It starts by describing the
datasets used and ends by describing an LSTM neural network and the dominant sets algorithm, which
is the clustering algorithm used in this project.

2.1 Speaker Diarization

As aforementioned, speaker diarization is the task of identifying "who spoke what at which time." In
theory, a speaker diarization system consists of various components. Intuitively a system would follow
the following steps. This blueprint is also roughly incorporated in current state-of-the-art systems [3]
[5] [6].

1. Preprocessing of the audio
2. Extracting the number of different speakers
3. Detecting the change of speaker
4. Assigning snippets of audio (the spoken phrases) to a speaker (also known as clustering)
5. Providing metrics to measure the performance

As it is usually not known how many speakers are in a given audio stream, speaker diarization can be
considered as an unsupervised machine learning problem. There have not yet been any speaker diariza-
tion projects by the InIT. This work can be considered as the InIT’s first take at speaker diarization.
The motivation to tackle this problem mainly comes from the recent success in speaker clustering.

2.2 Datasets and Corpora

Previously the InIT used the TIMIT corpus for their speaker clustering tasks. To be able to compare the
system developed in this project with others (ICSI [3], LIUM [5]), an evaluation on the RT-09 corpus
will be needed. The RT-09 corpus was provided during the RT-09 challenge [2].

2.2.1 TIMIT

The TIMIT corpus consists of various speakers speaking different dialects. The corpus prompts the
speakers to speak various standardized sentences. Thus, resulting in the same sentences spoken by
different speakers. However, not every speaker speaks all the sentences. All sentences are spoken in
the English language.

15
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Dialect Region # Male # Female Total
DR1 (New England) 31 (63%) 18 (27%) 49 (8%)
DR2 (Northern) 71 (70%) 31 (30%) 102 (16%)
DR3 (North Midland) 79 (67%) 23 (23%) 102 (16%)
DR4 (South Midland) 69 (69%) 31 (31%) 100 (16%)
DR5 (Southern) 62 (63%) 36 (37%) 98 (16%)
DR6 (New York City) 30 (65%) 16 (35%) 46 (7%)
DR7 (Western) 74 (74%) 26 (26%) 100 (16%)
DR8 (Army Brat - moved
around)

22 (67%) 11 (33%) 33 (5%)

Total 438 (70%) 192 (30%) 630 (100%)

Table 2.1: TIMIT speaker distribution of dialects and genders [9]

The TIMIT corpus is not evenly distributed to male and female speakers, as it can easily be seen in
table 2.1. It is also a rather small corpus regarding speakers, but it is providing many data per speaker.
The TIMIT dataset comes in handy when the need arises to create test data during the development
cycle as it consists out of clean or almost noiseless data.

2.2.2 VoxCeleb

The VoxCeleb corpus [10] is another dataset used during the development cycle. VoxCeleb is a dataset
collected from YouTube videos. Nagrani et al. [10] created a pipeline which can produce a large dataset
consisting of various celebrity voices. The dataset also provides ground truth for samples.

Statistic Total
Speaker count 1’251
Utterances 145’379

Table 2.2: VoxCeleb Statistics [10] (simplified)

Due to the nature of this dataset, it does contain low-quality and noised audio samples. This way,
during development the TIMIT-dataset can be used and then the results are validated on the VoxCeleb-
dataset.
As of April 2018, a newer version of the VoxCeleb dataset called VoxCeleb2 [11] has been released by
Chung et al. The VoxCeleb2 corpus is almost five times the size of the VoxCeleb corpus. The initial
VoxCeleb-dataset suffices the needs for this project, which is why the VoxCeleb2 dataset is not used.

2.2.3 RT-09

The RT-09 (or RT09) corpus has been provided during the NIST RT-09 (or RT09) challenge. In
contrast to the TIMIT corpus, the RT-09 corpus is made of 7 meeting recordings which were recorded
at the Edinburgh University (EDI, 2 recordings), the IDIAP Research Institute (IDI, 2 recordings) and
the National Institute of Standards and Technology (NIST, 3 recordings). All the recordings together
yield roughly 180-minutes of meeting excerpts. The RT-09 challenge incorporated the three tasks:
Speech-To-Text (STT) - convert spoken words into streams of text.
Speaker Diarization (SPKR) - find the segments of time within a meeting in which each meeting

participant is talking.
Speaker Attributed Speech-To-Text (SASTT) - convert spoken words into streams of text with

the speaker indicated for each word.
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The speaker diarization task provides two audio input conditions, also known as evaluation conditions.
An audio input condition specifies from which microphone setting the audio originates.
Multi distant microphones (MDM) - this evaluation condition is made of various microphone record-

ings. All of the microphones are placed in the middle of the meeting table in between the
participants. There are at least three omnidirectional microphones per meeting recording.

Single distant microphones (SDM) - this evaluation condition is made of a single microphone record-
ing. This single omnidirectional microphone is placed in the middle of the meeting table in between
the participants. This recording is also included in the MDM evaluation condition.

So-called evaluation maps delimit the various tasks. An evaluation map for a task (and input condition)
specifies which segment of a meeting recording is relevant for the scoring. In contrast to the previously
described datasets, the RT-09 corpus is highly noised, as it was recorded inside regular meeting rooms.
Not only does it contain a lot of ambient noise, but also does it contain a lot of overlapping speech
segments.

2.3 Speaker Clustering

Speaker clustering (SC) is a crucial task in speaker diarization. Since speech samples should be at-
tributed to speakers, grouping (cluster) those samples together is needed. In the past years there
have been many research projects by the InIT in speaker clustering. Most of those newly developed
approaches are based on deep neural networks.
There was an effort in a recent project in 2017 to unify all those different approaches and make them
usable in a single suite (Niederer et al. [12]). This developed suite is being used in this project, which
is why it makes sense to harmonize the naming convention for the various sub-projects and follow the
proposed naming scheme by Niederer et al.
Niederer et al. also unified the metrics used in the various approaches to make these systems compa-
rable. Based on the results by Niederer et al., it was no problem to select one of the four approaches
to supplement the speaker diarization system. All of the following systems used the TIMIT corpus as
training material.
luvo - Lukic et al. 2016 [7] was the first approach by the InIT in speaker clustering, which yielded

great success using a deep convolutional neural network. The network was able to produce
embeddings, which were used in clustering the speakers. As clustering method agglomerative
hierarchical clustering was used.

pairwise_kldiv - Lukic et al. 2017 [13] was the second take by the InIT in speaker clustering. It
mainly sets itself apart from the "luvo" network by using weakly labeled data. The pairwise_kldiv
network used a pairwise approach by comparing two audio samples. Then it determined whether
they belong to the same speaker or not.

flow_me - Gygax et al. [14] was another approach developed during a bachelor thesis. Its architec-
ture is comparable to the "luvo" network.

pairwise_blstm - Gerber et al. [8] this system differs from the previously seen networks. Gerber
et al. used a bidirectional LSTM network (LSTM for long short term memory). According to
Niederer et al. this system outperformed the others. Therefore this neural network is used in this
project.

2.4 Embeddings

Embeddings are mappings of an object to a vector representation with real numbers. A practical ex-
ample for an embedding could be the color representation in the RGB color model. For example, the
embedding for the color RED would be RGB(255,0,0). Similarly to the color information, audio in-
formation can also be represented in a vector. A popular vector representation for speech processing
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applications, like speaker diarization, are MFCC (Mel Frequency Cepstral Coefficients) [15]. A disad-
vantage of such a representation is the number and determination of the relevant features, which have
to be evaluated empirically.
Another increasingly used approach is to train and learn these representations. It is common to use
deep neural networks as learning algorithms. The embeddings are the output of one of the hidden
layers. The recent work of the InIT shows that embeddings are better suited for the speaker clustering
task than handcrafted features, because they are able to represent the speakers identity [8] [14].
Since the pairwise_blstm network is used, the term embeddings refers to the pairwise_blstm-embeddings.
The pairwise_blstm provides a 512-dimensional vector.

2.5 Audio Quality

Audio quality is an omnipresent topic in speech recognition tasks. It is without a doubt a topic which
should not be neglected. For instance, a system which is performing really well on studio recordings
might not yield the same results on the same task using cellphone recordings. Studio recordings usually
are recorded using expensive equipment, inside noise reduced rooms, and may have post-processing
applied, whereas cellphone recordings mostly are recorded on the streets with a rather cheap microphone
and much ambient noise. This fact leads to the following problem. A system which performs well under
lab conditions but not in the real world (does not generalize), will not be considered good.
The RT-09 corpus is used for this project, therefore, meeting recordings of mediocre quality has to be
processed. The recordings were made using carefully positioned microphones, but they contain a lot of
meeting room noise and moreover the various voices are sometimes overlapping. This is why the quality
should be considered mediocre. The RT-09 provides meeting room schemes for the three meeting room
setups which can be found in the appendix chapter A.4.3.

2.6 Spectrogram

A spectrogram is one way of representing an audio signal, another popular one is the waveform. To get
a better understanding of what a spectrogram actually is and how it distinguishes to a waveform, one
should look at an example recording. For this example, the phrase "Hello, I am an audio spectrogram"
was recorded.
The waveform (see figure 2.1) is a simple representation of the amplitude over time. This representation
does not give any insight on the audio recording, apart from the "loudness" of the speakers voice at a
given time.

Figure 2.1: Waveform of "Hello, I am an audio spectrogram."
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The spectrogram (figure 2.2) represents information in a 3-dimensional way and is an extension of the
waveform. A spectrogram represents the loudness (z-axis) of a frequency (y-axis) over time (x-axis). A
spectrogram is generated by applying the Fourier transformation on an audio signal.

Figure 2.2: Spectrogram of "Hello, I am an audio spectrogram."

As it can be easily seen in the lower area of the plot in figure 2.2, there is a lot of noise and "useless"
data. The mel-spectrogram (see figure 2.3), a special form of the spectrogram, is usually used in
speech recognition tasks [15]. The mel-spectrogram is a "reduced" and special representation of a
normal spectrogram. Reduced means it better represents audio in a way a human-being can distinguish
the audio. The reduction is achieved by applying the mel-scale [16] on a regular spectrogram.

Figure 2.3: Mel-Spectrogram of "Hello, I am an audio spectrogram."

The pairwise_lstm network by Gerber et al. depends on mel-spectrogram representation of audio files.
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2.7 Bidirectional LSTM Recurrent Neural Networks

A "Long-Short-Term-Memory" (LSTM) network is a special kind of a recurrent neural network (RNN).
The idea of an LSTM was introduced in the paper "Long Short Term Memory" by Hochreiter and
Schmidhuber, 1997 [17]. RNN can persist information through an inner loop. Thus, they can learn
temporal dependencies like in audio signals or structural dependencies like in natural language. Ac-
cording to Christopher Olah RNNs do not differ much from a normal neural network: "A recurrent
neural network can be thought of as multiple copies of the same network, each passing a message to
a successor." [18] Another view of an RNN is a chain of modules, where a module corresponds to the
repeating network.

Figure 2.4: An unrolled recurrent neural network [18]

The disadvantages of RNNs is the missing capability to store long term dependencies, which is primarily
caused by the vanish and exploding gradient problem detailed in Bengio et al. [19]. To solve this
problems, Hochreiter et al. [17] introduced the LSTM architecture. Instead of every repeating network
having one layer, a LSTM module or also called "cell" has four layers. Each of these cells yields two
outputs the cell-state Ct and the actual output ht.

Figure 2.5: LSTM cell [18]

The key to solve the problem with long term dependencies is the cell state. The cell state flows straight
through the chain with some minor interactions, namely the forget ft and update ut functions [18].
The forget function ft defines which parts of the cell state to forget. The update function ut defines
which new information to add.
To calculate the new output ht, the last σ layer is used. This layer filters the current cell state Ct and
therefore defines which information to output.
A bidirectional LSTM network (BLSTM) processes the input from the beginning x0, . . . ,xt and simulta-
neously from the end xt, . . . ,x0. It can be described as two independent networks, where each process
the input in a different order [20]. The final output yt results by the concatenation of the two outputs.
Bidirectional layers can be used by all RNN architectures, where a bidirectional LSTM network uses the
LSTM architecture.
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Figure 2.6: Bidirectional RNN [8]

The advantage of a bidirectional RNN is the knowledge of the past and the future at each input xt,
according to Alex Graves et al. [20].

2.8 Dimensionality Reduction

When operating on high dimensional data, one must somehow reduce the number of dimensions in
order to be able to plot information.

2.8.1 Principal Component Analysis

Principal component analysis (PCA) is a procedure developed by Karl Pearson in 1901 [21]. Basically,
PCA tries to reduce the number of dimensions of a dataset by selecting those dimensions which explain
the most variation in the data. PCA is a pure mathematical method, therefore no machine learning is
required. Hence, PCA is a great and easy to use tool for dimensionality reduction of a high dimensional
dataset.

2.8.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE ) is a modern technique used to visualize high
dimensional data. It was developed by Maaten et al. in 2008 [22]. t-SNE gained a lot of attention in
the past as it appeared to work great in machine learning projects1. t-SNE is a probabilistic method
based on gradient descent. It searches a lower dimensional representation of the high dimensional data
with the goal to preserve structural information. t-SNE and PCA can be combined, whereas PCA is
used to initially break down the dimensions before applying t-SNE.

1Based on the citation count of the paper.
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2.9 Dominant Set Clustering

When referring to the term dominant set clustering (or dominant set) in this thesis, the newly developed
speaker clustering (SC) algorithm by Felix Hibraj et al. [23] is meant. This algorithm outperforms other
state of the art clustering techniques like spectral, hierarchical or k-means clustering in the SC domain.
Similar to spectral clustering, dominant set clustering is a graph-based method, but with the aim to
find dominant sets in the graph. According to Pavan et al. [24] analogies exist between a dominant set
and a cluster.
The graphs have to be modeled as undirected acyclic weighted graphs G= (V,E,w), where the vertexes
V correspond to the items of the dataset (usually feature vectors). The edges E ⊆ V ×V represent the
pairwise relation between those items. Finally the weight function w :E→R≥0 calculates the similarity
of two items. A symmetric n×n adjacency matrix A= (aij) summarizes the graph G, where n= |V |
[23]:

aij =
{
w(i, j) if (i, j) ∈ E
0 otherwise

To find the dominant sets, the algorithm applies a concept of evolutionary game theory known as
replicator dynamics (RD). RD operates a iterative selection process, where at each iteration some
components emerge, while others get extinct. Extinct components do not belong to the current cluster,
while emerged ones do. This selection process converges, if the adjacency matrix A satisfies the
following property: A is symmetric and non-negative [23]. As converge criteria a threshold value ε is
used. If the difference between the iterations i and (i−1), is bellow or equal to ε, a new dominant set
(cluster) is found. ε is therefore the first hyperparameter.
Theoretically an extinct component c has the value xc = 0, where xc defines the participation to the
current cluster. In practice this is not the case. Therefore Hibraj et al. [23] introduced a cutoff value θ,
the second hyperparameter of the algorithm. Instead of using an absolute cutoff value, a relative value
θ ∈ [0,1) is applied. According to Vascon et al. [25], the participation of an component xc is relative to
the participation of the centroid, where θ defines the degree of this relationship. The selection process
repeats until all components belong to a cluster, where at each iteration the current cluster is removed
from the graph [23].
A distance metric like euclidean or cosine can be used as similarity metric. This is needed by the weight
function w. Since the cosine metric showed good performance in SC [10], this is the default metric in
the algorithm.
The big advantage of the dominant set algorithm is that no prior knowledge about the cluster number
k is needed. This property is ideal to use dominant set as clustering algorithm in a speaker diarization
system, because in speaker diarization the number of speakers is usually unknown.
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3 Methods

This chapter provides an overview over the whole system developed during this project. It should also
outline each component of the system on a theoretical level. This gives an insight on how the system
is developed and how the development was planned.

3.1 Overview

For the sake of simplicity, the system developed in this project gets codenamed "SPDR" (originates from
speaker diarization). This should make it easier to reference the system in the following sections.

3.1.1 Idea

The main idea behind the SPDR system boils down to the following:
1. Load the dataset.
2. Extract embeddings from the audio files using the pairwise_blstm neural network by Gerber et

al. [8].
3. Cluster the embeddings using an unsupervised clustering approach, preferably the "Dominant Sets

Clustering" [23] by Hibraj et al.
4. Use a voice activity detector to single out clusters consisting of silence.
5. Calculate the diarization error rate.

Since an audio stream is a linear sequence of segments, it is not desired to randomly cluster segments
together.
Lets assume an audio sequence with multiple 500ms segments is given as in figure 3.1. Given the
characteristics of speech, it is highly unlikely that speakers speak in turn of 500ms windows. Hence,
with a certain probability consecutive segments will belong to the same speaker. This is why some sort of
pre-clustering is needed to gain insights over the audio to properly initialize the clustering algorithm.

Segments 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.1: Hypothetical audio sequence

One way of gaining this knowledge is to iterate over all segments and compare the next segment with
the ones already processed. The idea is to measure the spatial distance of the previously seen segments
and the next one. If the distance remains under a certain threshold, the segments will then be grouped
to a sequence. Afterwards, this information of sequences will be fed to the clustering algorithm for
initialization.
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3.1.2 Pipeline & Components

Figure 3.2: SPDR Pipeline

To implement the idea, a pipeline for the system as in figure 3.2 is needed. In chapter 3.2 an in-depth
look at each component will be given.

3.1.3 Sanity Checks

In a system consisting of many components like the one shown, it is crucial to make sure each of them
performs as expected. A series of experiments is introduced to ensure quality and isolated test each
component. These experiments should pinpoint flaws in the implementation and reveal weak spots in
the idea. Furthermore, the experiments should also give an idea on how to improve the system.

No. Component Problem Approach
1.1 Embedding

Extractor
Do different (regarding different
phrases) samples of the same
speaker generate similarly located
embeddings in the Euclidean plane
(using t-SNE )?

Use small mock datasets, with the
length of 1 sample, of different
phrases of the same speaker.

1.2 Embedding
Extractor

Does the same (regarding the
same phrase) sample of different
speakers generate scattered em-
beddings in the Euclidean plane?

Use small mock datasets, with the
length of 1 sample, of the same
phrase of different speakers.

1.3 Embedding
Extractor

Do different samples from differ-
ent speaker generate scattered em-
beddings and locally cluster (per
speaker) in the Euclidean plane?

Use small mock datasets, with the
length of 1 sample, with different
phrases of different speakers.

Continued on next page

Table 3.1: List of experiments to ensure quality results of components
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Continued from previous page
No. Component Problem Approach
2.1 Sequencer Find a good cutoff value. Build random pairs of segments,

calculate the distance and see if
"same speaker" and "not same
speaker" segments are significantly
apart.

3.1 Clustering Is the clustering algorithm able to
cluster same speaker segments to
one cluster?

Use a small mock dataset consist-
ing of multiple samples of the same
speaker.

3.2 Clustering Is the clustering algorithm able
to cluster speaker segments from
different speakers, each originat-
ing from different recording con-
ditions, to multiple clusters?

Use a small mock dataset consist-
ing of multiple samples of multi-
ple speakers, with various record-
ing conditions.

3.3 Clustering Is the clustering algorithm able to
cluster speaker segments from dif-
ferent speakers, each originating
from the same recording environ-
ment, to multiple clusters?

Use a small mock dataset consist-
ing of multiple samples of multi-
ple speakers. Each of the speaker
has to be recorded with the same
recording conditions.

3.4 Clustering How do the hyperparameters influ-
ence the performance of the clus-
tering algorithm?

Perform a grid search on a small
mock dataset, where the embed-
dings represent a speakers identity.

4.1 All How does random perform? Make multiple runs with different
random seeds and calculate aver-
age.

Table 3.1: List of experiments to ensure quality results of components

3.1.4 Comparison to other systems

Other systems, such as the LIA-EURECOM system, the ICSI system, and the LIUM system, have similar
architectures to the system described in this chapter. Since these systems do not depend on a neural
network for feature extraction, they need to do their feature engineering in a pre-processing step. All
of the other systems take great care of input sanitation (and enhancement) before feature extraction.
Speech or voice activity detection is usually done before the clustering, which is probably the biggest
difference to the SPDR system.
Other systems may also support multiple RT-09 evaluation conditions as described in chapter 2.2.3.
The SPDR system only supports the SDM condition.

3.2 Components

This section provides an in-depth look at each component as shown in figure 3.2. The experiments
described in table 3.1 are used to improve and test each of the following components.

3.2.1 Handler

The handler is responsible for the preprocessing of a given RT-09 dataset. It parses the ground truth
such that, an evaluation of the system’s performance is possible. After parsing the ground truth, the
input audio files are converted to the needed format for further processing. The audio data is converted
to mono-channel wave files (.WAV) because this format is used by Gerber et al. [8].

25



CHAPTER 3. METHODS N. Simmler & A. Trabi

3.2.2 BLSTM - Neuronal Network

As mentioned in the theory chapter 2.3, the pairwise_blstm network developed by Gerber et al. [8]
will be used. Thanks to Niederer et al. [12] this network is available in the ZHAW Deep Voice Suite2.
The network works by feeding it with Mel-spectrograms of 500ms in length. A duration of 500ms,
the pairwise_blstm showed the best performance, according to Gerber et al. [8]. For most of the
development tasks, the best-trained model by Niederer et al. is used for the pairwise_blstm network.
This model was trained on 100 speakers from the TIMIT corpus. Along with this project two new models
of the pairwise_blstm were trained. These models were created to evaluate the system’s performance
using different embeddings. One model is trained on the RT-09 corpus, which contains 19 speakers.
The other model is trained on a VoxCeleb subset containing 100 speakers. The three models are referred
as follows:

• TIMIT_BLSTM
• VOXCELEB_BLSTM
• RT09_BLSTM

3.2.3 Segmenter

The segmenter is one of three components (the other two are the embedding extractor and the metric
component) in the system, which do not need to be tuned in respect of a given data set. The segmenters
task is to cut any given audio file in fixed-length segments (hence the name). All of the segments will
be written to the disk and will not be kept in memory to keep the systems hardware resources footprint
small.

3.2.4 Embedding Extractor

Once the Segmenter has written the segments to disk, the embedding extractor will generate a Mel-
spectrogram for each segment. Since the pairwise_blstm expects a four-dimensional tensor, the Mel-
spectrogram are stored in this tensor. The tensor has the following structure:

X[Segment,Channel,Frequency,T ime]

The dimension of Segment corresponds to the number of segments, Channel has one, Frequency
has 128, and Time has 50 dimensions. In the Time-dimension 100 units represent one second. The
Channel is set to one dimension because the audio files have one channel (mono) and the network
was trained on mono audio files. The same applies to the Frequency dimension. The generated Mel-
spectrogram are stored in the dimension Frequency and Time.
After processing this tensor, the neural network provides the embeddings as n×m matrix, where n is
equal to the number of segments, and m is 512, the vector size of the embeddings. The embeddings
extractor provides this matrix for further processing by the SPDR system.

3.2.5 Sequencer

The sequencer is a pre-clustering step, which yields some further influence on the clustering algorithm,
apart from its hyperparameters. The sequencers job is to detect speaker change points in a very
conservative way. It does so by looking at each embedding (segment) and calculating the distance
to the previous ones if the distance falls under a threshold (referred as cutoff value throughout the
following sections) the segment is considered as a prolongation of the current speaker’s speech. The
goal is to detect possible speaker change points. In return, it is desired to be able to detect consecutive
same speaker segments with very high precision. This approach yields too many speaker change points
as the cut off value is going to be set very conservative, but the clustering algorithm should then figure
out which of those many sub-clusters belong together.

2https://github.com/stdm/ZHAW_deep_voice
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Speaker change point detection

The sequencer will generate a simple vector containing 0 (for not same speaker as previous segment)
and 1 (for same speaker as previous segment). Lets assume two speakers, A and B, are speaking in
a sequence. The sequence consists of multiple segments. The sequence could look as shown in figure
3.3.

A A A A B B B A A B B A

Figure 3.3: Example sequence between speaker A & B

After running the sequence of figure 3.3 through the sequencer, it will create the vector as in figure
3.4.

0 1 1 1 0 1 1 0 1 0 1 0

Figure 3.4: Generated vector for example sequence

A speaker change detection is then easily possible by iterating over the vector and detecting any falling
edges (changes from 1 to 0).

Linkage method

When building a speaker sub-sequence for any new segment the question arise: "to which previously
seen segment should the distance be calculated?". When selecting an element to calculate the distance
to, one chooses the linkage method. Deciding which linkage method to use is as crucial as carefully
selecting a good cutoff value.
Previous linkage means to calculate the distance to the previously seen segment.
Single linkage means to calculate the distance to the closest one of the previously seen same speaker

elements. This method can also be expressed by

L(x,Y ) = min
y∈Y

d(x,y)

where Y is the set of already seen same speaker segments, d is the distance function and x the
current segment.

Complete linkage means to calculate the distance to the farthest one of the previously seen same
speaker elements. This method can also be expressed by

L(x,Y ) = max
y∈Y

d(x,y)

where Y is the set of already seen same speaker segments, d is the distance function and x the
current segment.

Other linkage methods are for instance "average", "centroid" or "ward". All the methods except "single"
and "complete" are quite computation-intensive because they cannot be calculated by simply iterating
once over the already seen segments. Hence, the focus is set solely on the ones mentioned above.
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3.2.6 Clustering

The clustering component is the heart of the diarization system. The clustering component utilizes the
dominant set clustering algorithm as described in chapter 2.9. Clustering works on embedding level to
cluster all elements. Ideally, the resulting labels correspond to the speaker’s identity. Theoretically, any
unsupervised clustering algorithm can be used, which also means that, only clustering methods without
the prior knowledge of expected clusters are suitable.
During the development process good experience with clustering algorithms such as Affinity Propagation
[26] and the DBSCAN [27] family has been made. If the dominant set clustering method appears not to
be suitable for the job, it is recommended (solely based on the experience gathered during development
of this system) to have a look at HDBSCAN [28] which is a refined version of DBSCAN.

Initialization

To improve clustering performance, it might be a good idea to initialize the clustering algorithm with
the previously collected potential speaker change points. Because dominant set is a graph-based
clustering method, these change points have to be defined inside the graph. To modify the graph,
the adjacency matrix needs to be adjusted. There are basically three approaches to this problem with
various peculiarities.

Flag change point One approach is to flag the change points. This can be achieved by setting the
pairwise similarity of the change point-segment and the prior segment to zero. The zero value indicates
a pairwise dissimilarity. This however, might be a dangerous approach: If there are many potential
speaker change points detected, flagging all of them as distinct might upset the clustering algorithm
and prevent it from actually clustering same speaker sub-clusters.

Flag same speaker Another approach is to flag segments within a sequence as equal by setting the
pairwise similarity to 1.0. According to S. Vascon [29], the problem with this value is that the algorithm
may yield a cluster for each equal pair. Hence, he recommends to use the max similarity value within
the graph. Therefore, the max similarity value is used to flag equal segments. This approach ensures
that sequences are not further divided. However, it is possible that change points are missed.
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Flag both This approach is the combination of both approaches mentioned before. The change points
and the sequences are defined in the adjacency matrix. It unifies the advantages (and disadvantages)
of both methods.

Figure 3.5: Adjacency matrix before initialization (left) and after (right) using the "Flag both" method

Figure 3.5 shows two heatmaps. The left heat map illustrates the adjacency matrix before the initial-
ization procedure is applied, where the right one visualizes the adjacency matrix afterward. The black
color represents a dissimilarity and the yellow color equality. The change points and the corresponding
sequences are visible on the right matrix. The yellow squares along the diagonally are the sequences,
and the smaller black squares between those indicate the change points.

3.2.7 Voice Activity Detector

The SPDR system implements a voice activity detector (VAD). The main purpose of this VAD is to
filter out clusters which consist of non-speech segments.
The VAD can be placed at various positions in a diarization system pipeline. The table 3.2 should give
an idea of the benefits for the VADs current location in our pipeline.

Location Pros Cons
Before Embedding Extractor Less load on the whole system. Nothing is known yet about the

rest of the audio file.
Difficult* to keep track of
flagged non-speech segments
throughout the whole system.

Before Clustering Less load on the clustering al-
gorithm (faster clustering).

Difficult** to keep track of
flagged non-speech segments
throughout the clustering algo-
rithm.

Before Metric Easy to implement because
ideally all non-speech segments
are clustered to one cluster.

Most load on the whole system
because it will let the system
do the work which then will be
partially discarded.

Table 3.2: VAD pipeline location pros and cons

*Because as soon as the audio files are passed into the LSTM network, work is solely done on the
embeddings. This means a separate list is needed in order to keep track of the non-speech segments.
**Because the clustering algorithm needs to be initialized carefully. When initializing the clustering
algorithm with a distance matrix, all non-speech segments have to be marked inside that matrix.
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Technically speaking, the VAD is a trained Gaussian Mixture Model. In its current configuration, the
VAD loops through all clusters and classifies each segment either as speech or non-speech. The goal is
to find clusters where the non-speech segments are prevalent (> 50%). This default behavior can be
reconfigured and thus, the aggressiveness adjusted. Depending on the dataset (noisy or clean) it can
make sense to tune it more aggressive (non-speech to speech ratio of 25% or more) or more conservative
(non-speech to speech ratio of 75% or more). For the sake of simplicity and engineering reasons the
VAD is placed after the clustering component. When looking at other diarization systems, it might
make sense to put the VAD at a different position in the pipeline.

3.2.8 Metric

Benchmarking a speaker diarization system requires various factors to be considered. Almost every
speaker diarization challenge provides a different tool to benchmark a developed system and each tool
requires the data to be in a different format. This is why a robust and easy to use system which
provides standardized metrics is needed. Luckily there is an open-source python library which solves
this problem. For the metric component the pyannote.metrics [30] library by Bredin 2017 is used.

Reference and Hypothesis

To calculate any metric value for speaker diarization with any given tool, two things are needed.
Reference is the ground truth of a given audio file, which includes the speaker ID, the time when the

speaker began to speak and also the end time or duration.
Hypothesis is the counterpart to the reference. It consists of the information gained through inference.

The hypothesis is generated by the system. Obviously, the speaker IDs do not match the reference
IDs.

Diarization Error Rate

As already identified in the paper [30] of pyannote.metrics and by manually comparing various speaker
diarization papers, the Diarization Error Rate (DER) is the standard metric to compare those systems.
pyannote.metrics implements the NIST standard of the DER. The DER is calculated using the following
formula:

DER = false alarm+missed detection+ confusion
total

False alarm is the amount of time misclassified as speech where it should have been non-speech.
Missed detection is the amount of time misclassified as non-speech where it should have been speech.
Confusion is the amount of time the wrong speaker ID has been assigned to a spoken segment.
Total is the total amount of time considered as speech by the reference.

Purity & Coverage

Purity & Coverage is a dual evaluation metric, comparable (regarding duality) to Precision & Recall,
although they do not represent the same idea. Purity & Coverage give insight into the quality of the
DER. According to the paper "Segmentation, classification and clustering of an Italian broadcast news
corpus" [31] by Cettolo 2000, Purity is a metric to judge the quality of a cluster.
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The metrics, Purity & Coverage are calculated using the following formula [30]:

purity =

∑
max |reference speaker∩hypothesized speaker|∑

|cluster|

coverage =

∑
max |hypothesized speaker∩ reference speaker|∑

|hypothesized speaker|

|hypothesized speaker| is the total time a hypothesized speaker speaks
|reference speaker| is the total time a reference speaker speaks
max |reference speaker∩hypothesized speaker| is the maximum time a reference speaker aligns

with each hypothesized speaker
max |hypothesized speaker∩ reference speaker| is the maximum time a hypothesized speaker aligns

with each reference speaker
The above mentioned formula can give the following insights:

• If the system predicts too many different speakers, the purity score tends to be high while the
coverage score tends to be low.

• If the system predicts too few speakers, the purity score tends to be low while the coverage score
tends to be high.

F-Measure for Purity & Coverage

As with precision and recall, one can also calculate an F-measure (in this case called F1-score) for purity
and coverage. This F1-score is being calculated using the following formula:

PC-F-Score = 2· purity·coverage
purity+ coverage

When speaking about the F-Score in this project, the mentioned PC-F-Score is meant.

Examples for Calculating Purity & Coverage

To understand how purity and coverage are calculated, an example will reveal the functioning, as the
formulas are quite complex. Given an example where the purity score is 0.75 and the coverage score is
0.85 respectively.
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Purity To calculate the purity for the scenario as in figure 3.6. One has to find the maximum time
a reference speaker aligns with each hypothesized speaker. This will yield the max |reference speaker∩
hypothesized speaker|. The equation for this example looks like this:

purity = 6+2+7
20 = 0.75

Note: If there are multiple reference speakers aligning with a hypothesized speaker, the one with the
maximum spoken time prevails.

Figure 3.6: Example for calculating purity
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Coverage To calculate the coverage for the scenario as in figure 3.7. One has to find the maximum
time a hypothesized speaker aligns with each reference speaker. This will yield max |hypothesized speaker∩
reference speaker|. The equation for this example looks like this:

coverage = 6+4+7
20 = 0.85

Note: If there are multiple hypothesized speakers aligning with a reference speaker, the one with the
maximum spoken time prevails.

Figure 3.7: Example for calculating coverage
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Examples for Over- and Under-Clustering

In the following examples, the impact of various clustering behaviors on the Purity & Coverage values
will be visualized. For the sake of simplicity, it is assumed that the system does perfectly detect silence.
Given is the fictional reference as in figure 3.8.

Figure 3.8: Example Reference

Perfect diarization Ideally it is desired to achieve perfect diarization (DER 0.0). Note: The detected
clusters are intentionally named differently because unless previously initialized, a speaker diarization
system cannot guess the names of speakers.

Figure 3.9: Reference and hypothesis with perfect diarization
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Over-clustering As already mentioned in the Purity & Coverage section, over-clustering (yielding too
many speakers and too many change points) will yield a high purity and low coverage value.

Figure 3.10: Reference and hypothesis with high purity and low coverage

Under-clustering Vice versa, under-clustering (cluster too many different speakers as one) will yield
a low purity and high coverage value.

Figure 3.11: Reference and hypothesis with low purity and high coverage
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4 Results

In this chapter, the results of each experiment as described in chapter 3.1.3 are presented. After having
a detailed look at each experiment, the performance of the SPDR system is demonstrated on the RT09
dataset.

4.1 State Of The Art

In table 4.1 various results on the RT-09 corpus are presented. This should give a rough idea on what
can be expected from a speaker diarization system.

Condition LIA-EURECOM [6] ICSI [3] Hanwu et al. [32]
MDM 23.5%/18.5% 39.27% -
SDM 26.0%/21.5% 44.61% 17.34%/12.10%

Table 4.1: Performance of various speaker diarization systems on RT-09

If there is more than one value in the table, then the first value is the result of "with overlapping audio"
and the second value is the result of "without overlapping audio". The RT09 evaluation campaign
allowed to be evaluated while ignoring parts where multiple speakers (overlapping speech) are speaking
at once. As there are various meetings in the RT-09 dataset, the presented DER is the overall score.

4.2 Experiments

As already mentioned in the chapter 3.1.3, multiple experiments serve to ensure the quality and perfor-
mance of the system. Some are intended to give a clear indicator of what to expect, and others should
give insights why some things do not work whereas others do. Listed in this section are the detailed
experiments and their interpretations.

4.2.1 Experiment #1.1

Goal

This experiment aims to verify if embeddings of one speaker are similarly located in the Euclidean
plane.

Expectation

Assuming the embeddings represent a speaker’s identity, it is expected that the embeddings form one
(dense) cluster if they are from the same speaker.
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Setup

Mock datasets are used in order to compare the results of this experiment on various conditions and
different constraints. The mock dataset for this experiment is a small dataset consisting of only one
speaker but multiple spoken phrases by this speaker.
As source, multiple subsets originating from the following dataset are used:

• TIMIT (studio recordings, no overlapping speech, no noise)
• VoxCeleb (YouTube videos, various recording conditions, overlapping speech, noise present)
• RT09 (meeting recordings, various recording conditions, overlapping speech, noise present)

A mock dataset is defined by the following parameters:
• Source dataset
• Number of speakers
• Number of utterances per speaker
• Number of segments per utterance

The total number of samples (segments) n is therefore:

n= no. of speakers×no. of utterances×no. of segments

A utterance is segmented with a duration of 500ms, whereby the parameter "No. of segments" defines
the maximum. For each segment, the script yields a tuple with following structure: (Mel-spectrogram,
speaker-label). The speakers and the utterances are selected randomly to ensure a variation of the data.
For each Mel-spectrogram embeddings are generated using each of the following trained models:

• TIMIT_BLSTM (trained on the TIMIT dataset)
• VOXCELEB_BLSTM (trained on the VoxCeleb dataset)
• RT09_BLSTM (trained on the RT-09 dataset)

Scatter plots are used to analyze the embeddings, which visualize the location of the data in the
Euclidean plane. In order to plot the embeddings, a dimensionality reduction is performed using t-SNE.
Each data-point is colorized according to the speaker label. In this experiment a dataset is used with
five utterances of one speaker to ensure a variation in the spoken word. Each utterance is split into
four segments.

Results

Figure 4.1: Single speaker with multiple utterances of the TIMIT-dataset
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The result shows that none of the embeddings are arranged as one cluster. However, the distances
between the embeddings of the TIMIT-network are of equal size and also quite dense, whereas the
distances of the other embeddings have a wider variance. This indicates that the pairwise_blstm does
not generalize well enough on other datasets.

Figure 4.2: Single speaker with multiple utterances of the VoxCeleb-dataset

On the VoxCeleb dataset all three plots look similar. The TIMIT- and RT09-embeddings are arranged
in three clusters, whereas the VoxCeleb-embeddings form five clusters.

Figure 4.3: Single speaker with multiple utterances of the RT-09-dataset

On the RT-09 dataset the performance of the networks is equally bad as on the VoxCeleb dataset.
None of the embeddings are arranged as one cluster.

Interpretation

This experiment demonstrates that the embeddings do not represent a speaker’s identity. However,
compared to the other datasets, the run on the TIMIT-dataset shows the best performance. The
embeddings have a denser distribution. After all, this experiment indicates that the embeddings have
a bigger distribution for each speaker than expected.

38



CHAPTER 4. RESULTS N. Simmler & A. Trabi

4.2.2 Experiment #1.2

Goal

This experiment aims to verify if embeddings of multiple speakers using only one utterance are signifi-
cantly distributed (clustered per speaker) in the Euclidean plane.

Expectation

It is expected that the embeddings form one cluster per speaker.

Setup

Datasets are generated as in experiment 1.1 to run this experiment on various conditions. Instead
of one speaker, five speakers are used, each with one utterance. Four segments are used for each
utterance. The neural networks TIMIT_BLSTM, VOXCELEB_BLSTM and RT09_BLSTM are used
as embedding-generators.

Results

Figure 4.4: Five speakers with one utterance of the TIMIT-dataset

The TIMIT-embeddings represent one cluster per speaker, except for two outliers. The VoxCeleb-
embeddings show two clearly distinct clusters and one cluster with multiple speakers, whereas the
RT09-embeddings solely represent mixed clusters.
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Figure 4.5: Five speakers with one utterance of the VoxCeleb-dataset

All embeddings form one cluster per speaker on the VoxCeleb-dataset, with one outlier in the RT09-
embeddings.

Figure 4.6: Five speakers with one utterance of the RT09-dataset

The VoxCeleb- and RT09-network show three and the TIMIT-network four clusters. The number of
clusters by the VoxCeleb- and RT09-embeddings corresponds to the number of meetings. The speaker
label identifies the meeting (EDI, IDI, and NIST) to which a speaker belongs.

Interpretation

The results of this experiment meet the expectation on the VoxCeleb-dataset and by the TIMIT-network
on the TIMIT-dataset. On the RT09-dataset all embeddings form three clusters, which correspond to
the number of meetings and the speakers originating from those meetings. This experiment shows
that the pairwise_blstm can distinguish speakers if each utterance has different audio characteristics.
The VoxCeleb-dataset meets this condition since these recordings have different recording qualities. It
appears as the TIMIT-network performs well if the recording environment does not differ like in the
TIMIT-dataset, This characteristic also applies to a meeting of the RT09-dataset, but compared to
TIMIT, overlapping speech is present. Which is probably why the TIMIT-network performance is worse
on the RT09-dataset than on the TIMIT-dataset.
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4.2.3 Experiment #1.3

This experiment is a combination of experiment 1.1 and 1.2. It uses ten speakers, whereas eight
utterances support each speaker. Since this experiment is a combination of the two experiments, it is
a closer approximation of the actual application.

Goal

This experiment aims to verify that embeddings of multiple speakers using multiple utterances are
significantly distributed (clustered per speaker) in the Euclidean plane.

Expectation

Since the TIMIT-network showed a good performance in experiment 1.1 and 1.2., the TIMIT-network
is expected to perform well on the TIMIT-dataset. The VoxCeleb-dataset is expected to perform rather
well. According to the results of experiment 1.2, the RT09-dataset is expected to be clustered per
meeting instead of per speaker.

Setup

Datasets are generated as in experiment 1.1 and 1.2 to run this experiment on various conditions.
Although, more variation in the data is needed to simulate the real use case. One utterance contains
four segments as in the previous experiments.

Results

Figure 4.7: Ten speakers with multiple utterances of the TIMIT-dataset

The TIMIT-embeddings form clusters per speaker. It does not perfectly cluster the utterances, for
instance the speakers MPGL0 (gray) and MDLD0 (brown). Besides that, some outliers are present.
The VoxCeleb-embeddings do not form distinct clusters. The plot of the RT09-embeddings just contains
mixed clusters, which makes the result rather useless.
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Figure 4.8: Ten speakers with multiple utterances of the VoxCeleb-dataset

None of the embeddings form clusters. The cluster-like piles do not represent speakers.

Figure 4.9: Ten speakers with multiple utterances of the RT09-dataset

All plots look similar. Each of them visualizes three rough clusters.

Interpretation

This experiment meets the expectations. The TIMIT-network shows the best performance on the
TIMIT-dataset. On the RT09- and VoxCeleb-dataset no neural network outperforms the others. As
expected, on the RT09-dataset there are roughly three clusters present. The results lead to the con-
clusion that the embeddings represent the different meetings instead of the different speakers. Each
meeting shows different recording qualities, which the neural networks detect. Within a meeting, the
networks are not able to differentiate between the speakers.

General interpretation This experiment indicates that the pairwise_blstm does not just learn char-
acteristics of speech, it mostly learns characteristics of the environment. If this characteristics vary (e.g.
more or less noise in the background), the pairwise_blstm uses this to distinguish speakers. If these
characteristics do not vary, the neural network is forced to use speech characteristics (or something
else) for the distinction. This behavior is emphasized during the runs with the TIMIT-network. On the
TIMIT-dataset, which does not contain a wide variation in the recording quality, it is able to distinguish
speakers. On datasets with varying recording conditions, like RT09 or VoxCeleb, it uses these variations
as differentiation criteria.
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Another issue is overlapping speech. The recordings of the RT09 dataset contains a lot of utterances
with overlapping speech, especially the NIST-meeting, which explains the wide distribution within the
NIST-meeting cluster.

4.2.4 Experiment #2.1

This experiment serves to proof whether a certain pre-clustering is possible using a cutoff value inside
the sequencer component. The idea behind the pre-clustering is to group consecutive segments if
they are spatially dense and initialize the clustering component with this knowledge. If the distance
of consecutive segments surpasses the cutoff value, a new group will be created. The cutoff value
ought to be chosen quite conservative as we would like to group same speaker segments with high
precision. As the cutoff value is used in conjunction with the spatial distance of two given embeddings,
this experiment shall be re-run for each dataset/neural network model combination.

Goal

Demonstrate the possibility to pre-cluster using a cutoff value.

Expectation

Assuming the embedding extractor delivers quality embeddings in terms of speaker identification*, find-
ing an appropriate cutoff value should be fairly easy. Easy means it should be obvious where the cutoff
value should be.

Figure 4.10: Ideal distance distribution

Ideally, the experiment yields plots as shown in figure 4.10. The plots show the spatial distances of a
multitude of segment pairs. Some segment pairs are from the same speaker, and some segment pairs
are from distinct speakers. A good cutoff value would be somewhere close to the point where the two
curves intersect (or slightly to the left of it), as almost all "same speaker" segments would get hit using
this cutoff value and almost no "not same speaker" segments.

* In theory, same speaker segments should be spatially dense whereas distinct speakers should be
significantly apart. If the neural network properly learned how to identify speakers, then this should be
no problem. However, if it learned to distinguish the reverberation of the room (or something similar),
then this will be difficult or rather impossible.
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Setup

Since finding the cutoff value is crucial and the various datasets may differ in the result of this experi-
ment, this experiment has to be done manually.
A dataset consisting of embeddings power the experiment. During this experiment pairs of segments
are created.

• Each embedding is annotated by the identity of its speaker.
• Half of the embeddings are fully joined with the other half to create pairs (∼ 40′000− 50′000

pairs).
• Each pair is annotated whether it consists of same speaker segments or not.
• The in-pair spatial distance is calculated.

Results

During development this experiment has been run multiple times with different combinations as shown
in table 4.2. Note: The dataset mentioned in table 4.2 does not refer to the whole corpus, it is just a
small subset of 500ms segments.

Run No. Dataset Network
1 TIMIT Random TIMIT-trained
2 RT09 EDI Meetings TIMIT-trained
3 RT09 EDI Meetings VoxCeleb-trained

Table 4.2: Various experiment setup combinations

Keeping in mind, an ideal distribution (as in figure 4.10) on the plots for these runs is expected

Run 1 - TIMIT on TIMIT This run is expected to perform the best result according to the setup
condition.

Figure 4.11: TIMIT on TIMIT: distance distribution
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Run 2 - RT09 on TIMIT This run is expected to perform the worst result because of the experience
with previous experiments and results during development.

Figure 4.12: RT09 EDI on TIMIT: distance distribution

Run 3 - RT09 on VoxCeleb This run is expected to perform equally as the second run, since the
VoxCeleb trained network model showed the same performance on the RT09 dataset as the TIMIT
trained network.

Figure 4.13: RT09 EDI on VoxCeleb: distance distribution

Interpretation

This experiment sheds some light on various things.

Interpretation of figure 4.11 Even on a well-trained model (TIMIT) with almost noiseless data
(TIMIT), it is hard to find a clear cutoff value. The two curves are partially overlapping but can still
be separated to some degree. It also shows that the idea theoretically works on good data.

Interpretation of figure 4.12 and 4.13 As expected, these runs (2 and 3) are much worse than
run 1. It is almost impossible to select a good cutoff value, which means one would need to resort to
a cutoff value close to 0.0. This also means in return more stress is put on the clustering algorithm.
Seeing these plots, good performance of the system is highly unlikely.
These plots not only show that the quality of the embeddings is not ideal, but it also gives the notion that
the neural network cannot clearly identify speakers but rather outputs embeddings for room conditions.
This notion is derived from the fact that the curves are heavily overlapping.
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General interpretation Generally speaking, finding a good cutoff value is difficult after all. However,
having good quality embeddings which are strongly tied to the speaker’s identity, would possibly have
great impact on the performance of the system.

4.2.5 Experiment #3.1

This experiment serves to test the clustering component in the pipeline. Dominant set is used as
clustering algorithm. The clustering component is essential for speaker diarization and therefore for
this system, since it is responsible to determine the correct number of speakers and the assignment
of segments to a speaker. Therefore, it is indispensable to test the performance of the clustering
component. As the embeddings are clustered, the performance strongly depends on the quality of
these. In this experiment embeddings of only one speaker are used.

Goal

The aim of this experiment is to determine whether embeddings originating from the same speaker are
clustered to one cluster.

Expectation

Assuming the embeddings represent a speaker’s identity, it is expected that they are clustered to one
cluster.

Setup

Ground truth is needed to evaluate the performance. Since embeddings are clustered, each of them
has to be labeled with the corresponding speaker. This condition is met by the generated datasets
used in the embedding experiments (chapter 4.2.1). The generated datasets, which fulfill the needed
setup of this experiment, are the "single speaker"-datasets of experiment 1.1. They contain five ut-
terances of one speaker. According to experiment 1.1, the embeddings of the TIMIT-network on the
TIMIT-dataset meet our expectations of the embeddings to perform speaker clustering. Therefore, the
generated TIMIT-dataset is used in this experiment. Since the dataset contains the Mel-spectrograms,
the embeddings have to be extracted. The TIMIT-BLSTM network is used as extractor.
These embeddings are clustered with the dominant set algorithm with the hyperparameters set to
ε= 1e−6, θ = 0.15 and metric = cosine. These setup is the best parameter choice according to Felix
Hibraj et al.[23] Two scatter plots are used to evaluate the clustering performance. One visualizes the
embeddings colorized by the speaker labels (ground-truth) and the other one shows the embeddings
colorized by the cluster assignment (prediction). Dimensionality reduction is performed using t-SNE to
be able to plot the embeddings.
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Results

Figure 4.14: Clustering of one speaker

This plot shows that the embeddings, except for one outlier, are assigned to one cluster.

Interpretation

This experiment indicates that dominant set can cluster embeddings of one speaker to one cluster. It
shows that dominant set is suitable for speaker clustering.

4.2.6 Experiment #3.2

This experiment tests dominant set on a dataset consisting of various speakers. The dataset contains
speakers, which have been recorded under different conditions. This variation enables an evaluation of
the clustering performance. Since variation in the data is needed, ten speakers are used.

Goal

The goal of this experiment is to check whether dominant set can detect several clusters when using
multiple speakers.

Expectation

As shown in the embedding experiments, the embeddings represent rather the meeting room conditions
than the speaker’s identity. Dominant set is therefore expected to cluster the embeddings to three
clusters (one for each meeting).

Setup

As in experiment 3.1, a generated dataset from the embedding experiments is used. The RT09-dataset
contains three meetings, and each one has a different recording setup. Therefore, a generated RT09-
dataset is used, which contains ten speakers, each with eight utterances. The TIMIT-network is used
to extract embeddings. For dominant set the hyperparameter are set as in experiment 3.1 (ε= 1e−6,
θ = 0.15 and metric = cosine). The evaluation is performed as in experiment 3.1 with two scatter
plots, where one shows the ground truth and the other the clustered (predicted) result.
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Results

Figure 4.15: Clustering of ten speakers in various recording conditions

This plot shows that dominant set finds six clusters. Contrary to the expectation, the clusters are spread
over the different meetings (visible clusters). As an example, the cluster "0" (blue), which corresponds
to speaker "EDI_spkr3", does have utterances in a NIST-meeting.

Interpretation

This experiment does not meet the expectations. Instead of a cluster for each meeting, there are six
clusters present. These clusters are not restricted to a meeting, neither are they tied to the speakers,
which shows that dominant set connects the embedding in a different way.

4.2.7 Experiment #3.3

This experiment tests dominant set with multiple speakers, where all are recorded in the same envi-
ronment. The recording characteristics will not vary since the samples originate from the same source.
Ten speakers are used to evaluate the performance.

Goal

The aim of this experiment is to observe the behavior of dominant set on a stable recording environ-
ment.

Expectation

If the embeddings represent a speaker’s identity, dominant set is expected to be able to cluster the
segments to the correct speaker.
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Setup

The TIMIT dataset is used since a stable environment and embeddings which properly represent a
speaker are needed. The TIMIT-network extracts the embeddings because according to the embedding
experiments, the embeddings extracted by this experiment represents best a speaker. As only a subset
of TIMIT is needed, a generated dataset of the embedding experiments is used. This dataset contains
ten speakers, each with eight utterances. The hyperparameters of dominant set are set to ε= 1e−6,
θ = 0.15 and metric = cosine. Scatter plots are used to evaluate the performance, where one visualizes
the ground truth and the other the clustered (predicted) result.

Results

Figure 4.16: Clustering of ten speakers in similar recording conditions

The ground truth shows a cluster for each speaker, whereas in the result only three clusters are present.

Interpretation

This experiment indicates that dominant set is not able to attribute the embeddings to the speakers.
Even in a stable environment where the embeddings represent a speaker, the clustering is not working
as expected.

General interpretation These experiments show that dominant set does not cluster the same way
as t-SNE does visually. Interestingly enough, neither does it perform well on the TIMIT-dataset, where
Felix Hibraj et al. reported a misclassification rate of 0.0 [23]. The key difference to their system
is the neural network, which provides the necessary embeddings. Instead of an LSTM-network, they
used convolutional neural networks (CNN), namely the luvo neural network [7] and the VGGVox-CNN
[10]. Both networks provide higher dimensional embeddings than the embeddings generated using the
pairwise_blstm.
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4.2.8 Experiment #3.4

In this experiment dominant set is tested with several hyperparameters to demonstrate the effects they
induce on the clustering performance.

Goal

The goal of this experiment is to execute dominant set with different settings (grid search) to identify
possible flaws and to observe the effect of these hyperparameters.

Expectation

According to Felix Hibraj et al. [23] dominant set has a large area with possible hyperparameters where
the performance of the algorithm is stable. Hence, this behavior is expected in this experiment too.
The stable performance of dominant set indicates that the cluster performance will not increase signif-
icantly without an optimal setting. This depends primarily on the used feature vectors (embeddings).
Therefore an improvement of the clustering performance is not expected in almost any of the tested
hyperparameter configuration.

Setup

A grid search is performed to test dominant set with different settings. The search uses combinations
of the hyperparameter ε and θ to evaluate the performance of dominant set. For the parameters the
following values are used: ε ∈ {1e− 11,1e− 10, . . . ,1e− 2} and θ ∈ {0.0,0.0005, . . . ,0.9995}. This
search space was also used in the sensitivity analysis of dominant set, executed by Felix Hibraj et al.
[23] In order to evaluate the clustering performance, the misclassification rate (MR) is applied [12].
A mock TIMIT-dataset is used to perform the clustering. The dataset consists of ten speakers in
conjunction with eight utterances each. The result is a heat map which visualizes the results of the
grid search.

Results

Figure 4.17: Grid search results of dominant set
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Figure 4.17 illustrates that the clustering performance is stable for almost all hyperparameter combina-
tions. The best results yield the following setup: ε= 1e−2 and θ = 0.0005 with a MR of 0.63 (lower
left corner of figure).

Interpretation

The results show that dominant set has a large area where it produces consistent results, which means
the hyper-parameters do not have a big impact on the performance. In general the performance is not
great, since the MR is between 0.8 and 0.85 for most combinations. This leads to the conclusion that
dominant set strongly depends on the feature vectors. Therefore, to improve the clustering performance,
the feature vectors have to be improved for the clustering task.

4.2.9 Experiment #4.1

Description

This experiment serves to assess the baseline for the diarization error rate. The baseline should represent
the performance of "guessing" as well as possible.

Goal

For each available RT-09 meeting recording the baseline should be evaluated.

Expectation

During the development process, many runs were performed on the RT-09 dataset to evaluate the
progress. Based on these runs one could expect to have a baseline for each meeting recording around
0.85.

Setup

The experiment was run for each meeting ten times, each with a different random seed (the seeds have
been generated randomly using RANDOM.org3).
The pseudocode listing 4.1 is an illustration of how the experiment is set up.
1 DATASETS = [’EDI_20071128 -1000 ’, ’EDI_20071128 -1500 ’, ’IDI_20090128

-1600 ’, ’IDI_20090129 -1000 ’, ’NIST_20080201 -1405 ’, ’NIST_20080227
-1501 ’, ’NIST_20080307 -0955 ’]

2 SEEDS = [30938 , 29772 , 24801 , 31810 , 44803 , 46861 , 42649 , 33132 ,
25087 , 18062]

3

4 for seed in SEEDS:
5 np. random .seed(seed)
6 for dataset in DATASETS :
7 load_embeddings ()
8 define_cluster_count ()
9 randomly_assign_clusters_to_embeddings ()

10 randomly_pick_one_cluster_as_silence ()
11 calculate_metrics ()

Listing 4.1: Pseudocode Random Experiment

3https://www.random.org/
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With such a complex system as the diarization system, one cannot simply tell a function to act random
instead of normal. Therefore, the experiment’s purpose is to recreate the functionality of the system.
The following criteria serve to outline the conditions after which the "random system" obeys. These
criteria also act as the blueprint for the baseline evaluation process:

• Randomly decide how many clusters (speakers) will be in the audio recording (random pick from
[2..20])

• Random cluster assignment to each segment
• Randomly select one cluster as "non-speech"

Results

The table 4.3 shows the summarized performance of guessing (random) according to the previously
described experiment.

Meeting Mean DER Mean Purity Mean Coverage Mean F-Score
EDI_20071128-1000 0.7578 0.3967 0.5223 0.4366
EDI_20071128-1500 0.8014 0.4172 0.6348 0.4944
IDI_20090128-1600 0.7654 0.3771 0.5199 0.4214
IDI_20090129-1000 0.7881 0.3627 0.6023 0.4296
NIST_20080201-1405 0.7556 0.3736 0.6356 0.4449
NIST_20080227-1501 0.7782 0.3774 0.7842 0.4906
NIST_20080307-0955 0.7608 0.3497 0.5156 0.3931
Overall Mean 0.7724 0.3792 0.6021 0.4444

Table 4.3: Random Performance on RT-09

Detailed results of this experiment can be found in the appendix chapter A.3.1.

Interpretation

The results of this experiment are quite interesting. They give a rough understanding of how well the
system should perform at least. Nevertheless, these results should be considered as pseudo-random
since there are some constraints on the algorithm. For instance, there is a limitation on the possible
amount of clusters (speakers) and the assumption that only one cluster is considered as silence. In real
diarization, a voice activity detection component could probably flag multiple clusters as silence. A
really random experiment (without constraints) may perform much worse. Nonetheless, these results
are still realistic, since a meeting usually does not involve an indefinite amount of people. Most of the
time a meeting consists of 2 to 20 participants.
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4.3 Overall Performance

In this section a closer look is taken at the system’s performance from A to Z. As already shown in
the embedding experiments, the results highly depend on the input, which is why multiple runs with
different configurations are needed to examine the performance.
Handcrafted TIMIT "dummy datasets" are used which are fairly easy to work with to get an under-
standing how good the system could perform. The "dummy datasets" consist of various utterances.
There are two different datasets being used4:

1. TIMIT / TIMIT_DUMMY-01: This is a handcrafted dataset with 5 different speakers and one
phrase (roughly 3s) each. It consists of handpicked speakers which sound very distinct. This
dataset can be regarded as the easiest for speaker diarization. The dataset has a total length of
30s of evaluable time as it always contains silence after each phrase.

2. TIMIT_RND / TIMIT_DUMMY: This dataset is similar to the other TIMIT dummy. However,
this dataset consists of 10 speakers which were randomly picked from the whole TIMIT dataset.
There can be multiple spoken phrases originating from the same speaker. The dataset has roughly
75s of evaluable length as it can also contain silence after a single phrase.

4.3.1 Evaluation

Benchmarking the system is done by performing multiple runs with various different configurations.

Run Dataset Model
1 TIMIT / TIMIT_DUMMY-01 TIMIT_BLSTM
2 TIMIT / TIMIT_DUMMY-01 VOXCELEB_BLSTM
3 TIMIT_RND / TIMIT_DUMMY TIMIT_BLSTM
4 TIMIT_RND / TIMIT_DUMMY VOXCELEB_BLSTM
5 RT09 / EDI_20071128-1000 TIMIT_BLSTM
6 RT09 / EDI_20071128-1000 VOXCELEB_BLSTM
7 RT09 / EDI_20071128-1500 TIMIT_BLSTM
8 RT09 / EDI_20071128-1500 VOXCELEB_BLSTM
9 RT09 / IDI_20090128-1600 TIMIT_BLSTM
10 RT09 / IDI_20090128-1600 VOXCELEB_BLSTM
11 RT09 / IDI_20090129-1000 TIMIT_BLSTM
12 RT09 / IDI_20090129-1000 VOXCELEB_BLSTM
13 RT09 / NIST_20080201-1405 TIMIT_BLSTM
14 RT09 / NIST_20080201-1405 VOXCELEB_BLSTM
15 RT09 / NIST_20080227-1501 TIMIT_BLSTM
16 RT09 / NIST_20080227-1501 VOXCELEB_BLSTM
17 RT09 / NIST_20080307-0955 TIMIT_BLSTM
18 RT09 / NIST_20080307-0955 VOXCELEB_BLSTM

Table 4.4: Description of the various runs

As shown in table 4.4, the runs are all possible combinations of available datasets and the trained models
for the pairwise_blstm network. For the overall performance experiment, these runs were performed
multiple times, each with a different cutoff value for the sequencer. The first four runs are sanity runs
on the TIMIT "dummy datasets". Since the experiment in chapter 4.2.4 has shown that "not-same
speaker" and "same speaker" embeddings are not easily be told apart, multiple conservative cutoff
values were chosen (0.0, 0.05, 0.1).
As clustering configuration, the parameters are set to ε= 1e−6,θ = 0.15 and metric=cosine, using the
initialization method "flag both". The detailed results can be found in the appendix chapter A.3.2.

4More details in Appendix Chapter A.4.1

53



CHAPTER 4. RESULTS N. Simmler & A. Trabi

Figure 4.18: Overall Performance DER & F-Score

In figure 4.18 the diarization error rate (left) and the F-score (right) are depicted. All runs as specified
in table 4.4 are listed on the x-axis of the figures 4.18 and 4.19.

Figure 4.19: Overall Performance Purity & Coverage

In the figure 4.19 the purity (left) and the coverage (right) scores are shown. The plots show the
behavior of over-clustering as described in the chapter 3.2.8.
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Meeting Ground TIMIT Model VoxCeleb Model
Truth 0.0 0.05 0.1 0.0 0.05 0.1

TIMIT / TIMIT_DUMMY-01 5 1 4 4 4 5 5
TIMIT_RND / TIMIT_DUMMY-01 10 1 2 2 11 11 10
EDI_20071128-1000 4 1 23 8 1 13 6
EDI_20071128-1500 4 0 22 8 0 24 8
IDI_20090128-1600 5 2 26 39 2 46 14
IDI_20090129-1000 4 2 25 20 2 46 17
NIST_20080201-1405 5 1 29 34 1 19 20
NIST_20080227-1501 6 1 26 15 1 18 29
NIST_20080307-0955 11 1 31 18 1 30 16

Table 4.5: Overall speaker clustering results (No. of predicted speakers)

The table 4.5 shows the amount of speakers detected by the two different models. When using a cutoff
value greater than 0.0, the models clearly over-cluster which correlates with the purity and coverage
plots in figure 4.19.

4.3.2 Interpretation

General The results as shown in figures 4.18 and 4.19 are almost as expected. The runs 1 to 4 are
obviously performing really well as they are performed on the TIMIT "dummy datasets" (low DER and
high F-score).
The runs on the RT09 dataset are somewhat expected, since the previous experiments showed, that
the components of the system cannot produce great output. The system seems to over-cluster (high
purity and low coverage) quite a lot on the RT09 dataset, which is also shown in table 4.5. The only
exceptions are the runs performed with a cutoff value of 0.0, where the exact opposite is the case.
The performance for the runs 9 to 12 (IDI meetings) using a cutoff value of 0.0 are thus surprising.
Obviously, a DER in the range of 0.5 and 0.6 is not great compared to the state of the art systems,
but the performance is really good in comparison to the other runs.

Clustering The over-clustering runs (cutoff value 0.05 and 0.1) occurred probably due to the fact
that the clustering algorithm is initialized with a modified distance matrix. Initializing the clustering
algorithm does more harm than good in this case. Since a cutoff value of 0.0 does the exact opposite to
the clustering result, it can be assumed that without proper and careful initialization of the clustering
algorithm, no good results can be expected. Obviously, the runs with a cutoff value of 0.0 are looking
good DER-wise, but this is rather by accident than by intention. As shown in table 4.5 most of the
meetings do have 4-6 participants, which are fairly close to the predicted cluster count. However, since
the clustering component clusters almost all runs to 1 or 2 clusters, this can only be assumed as a
mistake.
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5 Discussion

This chapter takes a step back on the presented work and reviews the results. Possible follow up project
ideas are listed at the end of this chapter.

5.1 Project Scope & Goals

This project aimed to match the performance of current state-of-the-art systems. Looking at the results
described in chapter 4.3 this is not the case. Nevertheless, the goal as described in chapter 1.2 can be
considered as reached. The following reasons contribute to this statement:

• A system was built that can be benchmarked using the NIST RT-09 evaluation campaign, which
makes it comparable to other state-of-the-art systems.

• Problems in the pipeline are outlined in the experiment’s chapter 4.2, which allow further im-
provements of the system.

• All of this was developed in a relatively short timeframe compared to the years of research used
in the state-of-the-art systems, which shows how well these new approaches (deep learning) work
for this task.

5.2 Learnings

During the course of this project many learnings became clear. Some were related to machine learning
and audio processing and some others are more interdisciplinary and more abstract. These learnings
should serve as good takeaway messages for future projects.

• It really helps to get your hands early on the datasets and get a good understanding of how it is
structured. Ideally, get it ready before the development starts, otherwise you will be refactoring
a lot.

• Build the pipeline quickly and then refine it. Do not work component-wise, but build it as a whole
and then flesh out the components. Employ mocking of components where necessary.

• Do not get sidetracked when fleshing out the components. Stick to the plan. Too much time
was spent trying to improve the clustering algorithm as a whole with various machine learning
techniques without implementing the original plan in the first place.
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5.3 Future Work

There are a lot of potential projects and tasks for the future where one could extend the system. Based
on the experience collected during this project, the following next steps are recommended.
ZHAW Deep Voice Suite The suite itself needs some extensions. Currently it is only possible to pass

fixed length segments into the neural network. This should be made dynamic to make it trainable
with various datasets. Also a fixed length means the system can only be as accurate in diarization
as the model’s segment length during training. The suite is quite tailored to the TIMIT corpus.
The TIMIT corpus is made out of single speaker recordings in studio condition, whereas other
datasets (i.e. RT-09) are multi-speaker recordings (conversations). Converting the RT-09 dataset
into a TIMIT like dataset is possible, but not ideal. For this system to perform well, the model
needs to be trained on various datasets. Maybe even new networks have to be implemented.

Embedding Extractor The embedding extractor needs to deliver better embeddings. Some of the
experiments in chapter 4.2 have shown that the retrieved embeddings are not really identifying
the speakers, but the room itself. One way to achieve better embeddings would probably be to
normalize the training data before passing it to the neural network.

Sequencer As shown in the experiments, the idea of pre-clustering works but it needs some refinement.
Not only better embeddings are required but also the algorithm of pre-clustering should be made
more robust. Apart from just relying on a cutoff value in conjunction with a linkage method on
previously seen segments, a lookahead method should be considered to detect outliers. A speaker
change detection could also be interpreted as a binary classification problem. Another way of
solving the speaker change detection problem could be to use a LSTM neural network. There
has been research in this direction for example by Yin et al. [33].

Clustering The dominant set clustering algorithm has the capability to perform very well for this task.
However, as the experiments have shown, it does not perform well with the pairswise_blstm em-
beddings. Therefore, experiments with another neural network should be performed. For example
the CNN-network luvo, developed by Lukic et al. [7], would be a good choice, because dominant
set shows a good performance using those embeddings [23].
Another thing which definitely should be experimented with is the implementation of different
clustering algorithms such as Affinity Propagation and (H)DBSCAN. These algorithms have shown
good performances during development while testing various architectures.
All clustering algorithms depend on some sort of metric to evaluate whether an element belongs
to a cluster or not. According to a newly published article by Meier et al. proper clustering can
also be learned using a neural network. [34].
Optimizing the dominant set clustering algorithm and comparing it to different clustering algo-
rithm could possibly be the scope for a follow up bachelor thesis.

Pipeline The pipeline currently does not incorporate any input sanitization. This means the incoming
audio is not being cleaned and no other preprocessing is done with the audio. One could try to
clean the audio to get better Mel-spectrograms. When comparing the pipeline with other state
of the art speaker diarization software, these kind of mechanisms are clearly lacking.
Furthermore, the pipeline currently only supports the SDM condition of the RT-09 evaluation
campaign. One should implement the MDM condition to have a competitive system. This would
require to work with various microphones. The additional condition and the research on how to
deal with multiple microphones could probably be fit in a complete project on its own.
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Glossary

This chapter explains the terms (if not already explained in a previous chapter) and abbreviations used
in this document.

Affinity Propagation An unsupervised clustering
algorithm.

BLSTM Bidirectional Long Short Term Memory,
see chapter 2.7.

CNN Convolutional Neural Network, a neural net-
work architecture.

Complete Linkage A linkage method, see chap-
ter 3.2.5.

Cosine A distance metric used to calculate spatial
distance.

Coverage A metric which can be calculated using
the metric component, see chapter 3.2.8.

Cutoff value A configurable hyperparameter used
in the sequencer for pre-clustering.

DBSCAN An unsupervised clustering algorithm.
DER Diarization error rate, see chapter 3.2.8.
Dominant Sets Clustering An unsupervised

clustering algorithm, see chapter 2.9.
DS / DOS Dominant Set, see chapter 2.9.
EDI Edinburgh University
Epsilon ε A hyperparameter for dominant set.

See chapter 2.9.
ESTER A rich transcription evaluation campaign.
Euclidean A distance metric used to calculate

spatial distance.
F-Score A metric for accuracy, see chapter 3.2.8.
Flow_me A neural network developed by stu-

dents at the InIT.
GMM Gaussian Mixture Models
Grid search A technique of finding optimal hy-

perparameters.
HDBSCAN An improved version of DBSCAN.

An unsupervised clustering algorithm.
ICSI International Computer Science Institute

(USA)

IDI IDIAP Research Institute (Switzerland)

InIT Institute of Applied Information Technology
(Switzerland)

LIA-EURECOM A joint venture of LIA and EU-
RECOM to build speech recognition soft-
ware.

LIUM Research Institute at University Lemans.

LSTM Long Short Term Memory, see chapter 2.7.

Luvo A neural network developed by students at
the InIT.

MDM An evaluation condition for the RT09 chal-
lenge, see chapter 2.2.3.

Mel-Spectrogram A special form of a spectro-
gram, see chapter 2.6.

MFCC Mel Frequency Cepstral Coefficient

MR Misclassification Rate

NIST National Institute of Standards and Tech-
nology

Pairwise_blstm A neural network developed by
students at the InIT.

Pairwise_kldiv A neural network developed by
students at the InIT.

PC-F-Score The F-Score calculated using purity
and coverage, see chapter 3.2.8.

PCA Principal Component Analysis, used as a
dimensionality reduction technique in this
project.

Previous Linkage A linkage method, see chapter
3.2.5.

Purity A metric which can be calculated using the
metric component, see chapter 3.2.8.

RD Replicator dynamics, see chapter 2.9.

RGB A color information representation model.

RNN Recurrent Neural Network, a neural network
architecture.
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RT Rich Transcription, a style of transcribing au-
dio (or video) which includes speaker mark-
ers.

RT09 A rich transcription evaluation campaign by
NIST.

RT09_BLSTM The pairwise_blstm network
model trained using RT09 data.

SASTT Speaker Attributed Speech-To-Text, a
task from the RT09 evaluation campaign.
See chapter 2.2.3.

SC Speaker clustering, see chapter 2.3.
SDM An evaluation condition for the RT09 chal-

lenge, see chapter 2.2.3.
Single Linkage A linkage method, see chapter

3.2.5.
SPDR Speaker Diarization, a term coined during

this project.
Spectrogram A representation of audio, see

chapter 2.6.
SPKR Speaker Diarization, a term coined by

NIST. Also a task from the RT09 evaluation
campaign. See chapter 2.2.3.

STT Speech-To-Text, a task from the RT09 eval-
uation campaign. See chapter 2.2.3.

t-SNE t-Distributed Stochastic Neighbor Embed-
ding, used as a dimensionality reduction
technique in this project.

Theta θ A hyperparameter for dominant set. See
chapter 2.9.

TIMIT A speech corpus used to train neural net-
works. See chapter 2.2.1.

TIMIT_BLSTM The pairwise_blstm network
model trained using TIMIT data.

VAD Voice Activity Detector, see chapter 3.2.7

VoxCeleb A speech corpus used to train neural
networks. See chapter 2.2.2.

VOXCELEB_BLSTM The pairwise_blstm net-
work model trained using VoxCeleb data.

WAV Waveform Audio File Format

YAML / yml YAML Ain’t Markup Language, a
language commonly used to write configura-
tion files. See chapter A.2.3.

ZHAW Zurich University of Applied Sciences
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A Appendix

A.1 Project Management

A.1.1 Official Project Description

-
-

-
-

-
-

Monday 14. May 2018 17:25

Voice Recognition with Deep Neural Networks

BA18_stdm_2

BetreuerInnen: Thilo Stadelmann, stdm
Oliver Dürr, dueo

Fachgebiete: Datenanalyse  (DA)
Software (SOW)

Studiengang: IT / WI
Zuordnung:
Interne Partner:

Institut für angewandte Informationstechnologie (InIT)
Institut für Datenanalyse und Prozessdesign (IDP)

Gruppengrösse: 2

Kurzbeschreibung:
Automatische Stimmerkennung ist eine wichtige Basistechnologie in verschiedenen kommerziellen
Bereichen (z.B. biometrische Authentifizierung, Gesprächsanalyse für Teledienste, Medienmonitoring).
Trotzdem liefern automatische Verfahren deutlich schlechtere Ergebnisse als menschliches Hören.
Forschung der Betreuer hat kürzlich einen Weg gezeigt, diese Lücke zu schliessen: Mittels Verfahren des
maschinellen Lernens, wie sie in der Analyse von Bildern zum Einsatz kommen, lässt sich der zeitliche
Verlauf von Sprache (der "Klang") extrahieren und in einem für die Stimme charakteristischen Modell
abspeichern. Insbesondere Deep Convolutional oder Recurrent Neural Networks (CNNs / RNNs) bieten
sich hier an, die in den letzten Jahren zu einem Milliardengeschäft und heissesten Eisen in der Machine
Learning Forschung geworden sind.
 

Ziel: 
 

Ziel dieser Bachelorarbeit ist es, "Speaker Clustering" weiterzuentwickeln. Hierzu ist ein geeigneter Ansatz
aus der Literatur gemeinsam mit den Betreuenden auszuwählen, zu implementieren und experimentell mit
dem wissenschaftlichen State of the Art zu vergleichen. Dabei kann auf bestehenden Python Code, gute
Beschreibungen und verfügbare Daten zurückgegriffen werden.
 

Vorgehen: 
 

Kennenlernen des Hintergrunds von Speaker Clustering
Einarbeiten in die relevante Literatur; einen Einnlick liefert etwa
https://www.robots.ox.ac.uk/~vgg/publications/2017/Nagrani17/nagrani17.pdf
Implementieren eines geeigneten Ansatzes (Auswahl zusammen mit Betreuern)
Geeignetes Wählen von Einstellungen anhand der Leistung auf gegebenen Testdaten (gerne mit
Anknüpfungspunkten zum Medienarchiv der SRG)
Evaluieren anhand systematischer Experimente und Vergleich mit existierendem Baseline Ansatz
Darstellung und Diskussion der eigenen Ergebnisse im Licht des Standes der Forschung (BA-Bericht,
Vortrag)

 

 

Die Arbeit ist vereinbart mit:
Niclas Simmler (simmlnic)
Amin Trabi (trabiami)
 

Weiterführende Informationen:
https://www.robots.ox.ac.uk/~vgg/publications/2017/Nagrani17/nagrani17.pdf

Figure A.1: Official project description
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A.1.2 Workload Distribution

Since this project is intended to be completed by a team of two, the workload needs to be organized.
There are topics and components which are mainly developed by one team member. The following list
should give an idea who got the lead or is the expert on which part of this system:
Amin Trabi Segmenter, Embedding Extractor and ZHAW Deep Voice Suite Setup, Dominant Set

Clustering Algorithm, Voice Activity Detector
Niclas Simmler Pipeline Setup, Dataset Procurement and Handling, Sequencer (Preclustering), Met-

rics
Note: Both were working on all parts of the system. However, the list shows who had the lead on each
part.

A.1.3 Time Schedule

This thesis is due to be handed in by the 8th of June 2018. The work is organized using sprints. Sprints,
in this case, are thematic groupings of tasks and last two weeks.

Figure A.2: Project Schedule
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A.2 Speaker Diarization Suite

A.2.1 Structure

/

data

in

out

pickles

plots

runs

vad_models

experiments

spdr

tests_and_examples

ZHAW_deep_voice

controller.py

setup_conda.sh

runner.py

The structure of the speaker diarization folder is quite simple.

• One of the most important folders is the data folder.
– In the in subfolder the datasets can be found.
– In the out subfolder the fixed length segments used by

the embedding extractor will be stored.
– In the pickles subfolder the embeddings for quicker re-

runs will be dumped.
– In the plots subfolder any kind of plots produced by the

system or experiments are archived.
– In the runs subfolder the results of the remotely exe-

cuted runs by the runner.py file are stored.
– In the vad_models the trained GMM models used inside

the voice activity detection component should be placed

• Code which was used for creating the plots or running the
experiments as described in the experiments chapter can be
found in the folder experiments.

• The whole (productive) code can be found inside the spdr
folder.

• During development there was the need for isolated testing.
In the tests_and_examples folder many scripts are available,
which show example usages or test some behavior.

• Inside the ZHAW_deep_voice folder resides the
ZHAW_deep_voice suite (including the trained models).

• The controller.py file is the main entry point for the suite.

• Using the setup_conda.sh file one can set up a dedicated
python environment with all the required libraries preinstalled.

• The runner.py file can be used to remotely trigger multiple
runs by specifying multiple run conditions for the controller.py
file.

A.2.2 Setup

The suite can be installed using the following steps.
1. One needs to install the python environment using the setup_conda.sh script. After running the

script a python environment called spdr will be present, with all the required packages installed.
2. The required dataset needs to be placed inside the ./data/in/ folder.
3. The ZHAW_deep_voice suite needs to be set up. One needs to either train or place a fully

trained model in the correct place. As of the time of writing this thesis, it would be un-
der ./ZHAW_deep_voice/common/data/experiments/nets/. For further information consult the
documentation of Niederer et al.[12]
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A.2.3 Config.yml - Suite Configuration

The system can be configured using a config.yml file. The SPDR_Utils class offers an easy to use
handle (n-dimensional-array) to access the configuration. Since the configuration file is a YAML5 file,
the configuration can easily be modified. For the sake of readability the configuration parameters
are shown in dot-notation instead of a YAML representation. When using the SPDR_Utils class for
accessing the configuration an (multidimensional) array notation has to be used.

Configuration Possible Values Description
clustering.algorithm dominantset The clustering algorithm to

be used in the clustering
component. Only "dom-
inantset" is implemented
yet.

clustering.metric cosine, euclidean The metric to be used dur-
ing clustering. "cosine"
is recommended as it has
shown the best results dur-
ing the experiments.

clustering.dominantset.cutoff Float 0..1 A hyper-parameter for the
dominant set algorithm

clustering.dominantset.epsilon Float 0..1 A hyper-parameter for the
dominant set algorithm.

clustering.dominantset.apply_similarity_mode similar, different,
full

A hyper-parameter for the
dominant set algorithm.
Defines how the distance
matrix is modified for the
pre-clustered results gener-
ated using the sequencer.

data.dataset_original String A substring used to re-
place paths when parsing a
dataset. Used for the RT09
dataset. Not a real config
parameter. For the RT09
this should be "./audio/e-
val09/english/confmtg/"

data.datasubset_to_use String For the RT09 this would be
the meeting.

data.in String of a path The location of the dataset.
Normally this path would
be a subfolder located in
the data/in folder.

data.out String of a path The location of a temporary
out folder. Normally this
path would be the data/out
folder.

data.pickle String of a path The location of the pickle
folder. Normally this path
would be the data/pickles
folder.

Continued on next page

Table A.1: Config.yml Configuration Parameters

5http://yaml.org/
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Continued from previous page
Configuration Possible Values Description
data.use_normalized_audio Boolean flag A flag to use the normalized

audio. The script: ./nor-
malize_audio.sh have to be
executed to normalize the
audio.

embeddings.network String The filename of the trained
model to be used for the
ZHAW_Deep_Voice.

hypothesis.scaledown Boolean flag If set to true, the system
convertsms to s when pars-
ing a dataset. Can be
handy when ground truth is
using ms.

segment.cap Number The maximum amount of
segments the segmenter
will create. It is not recom-
mended to go below length
of file in ms/segment.size.

segment.size Number The size of segments to be
created. This corresponds
to the segment size for the
neural network. 500ms is
recommended for current
trained models.

sequence.cutoff Float 0..1 The cutoff value used for
pre-clustering.

sequence.linkage single, complete,
last

The linkage method used
for pre-clustering.

sequence.metric cosine, euclidean The metric used for pre-
clustering.

spkr.condition SDM The RT09 condition on
which to evaluate. MDM is
not supported, but could be
implemented in the future.

vad.aggressiveness low, normal, high Defines the aggressiveness
of the VAD. When set to
high a cluster only has to
contain 25% of silence to be
classified as silence. Nor-
mal requires 50% and low
requires 75% of silence.

Table A.1: Config.yml Configuration Parameters
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A.3 Experiments

The following chapter lists the detailed results collected while running some of the experiments.

A.3.1 Experiment 4.1

These results were collected during the run of experiment 4.1 (the "random" experiment).

Meeting Run DER Purity Coverage F-Score
EDI_20071128-1000 1 0.7427 0.4916 0.6814 0.5711

2 0.8092 0.3974 0.4588 0.4259
3 0.7222 0.4088 0.4716 0.4379
4 0.7976 0.4602 0.3757 0.4137
5 0.8179 0.2943 0.5879 0.3922
6 0.7531 0.2742 0.6365 0.3833
7 0.7744 0.2745 0.5977 0.3762
8 0.6492 0.5053 0.4700 0.4870
9 0.8390 0.3983 0.5824 0.4731
10 0.6726 0.4620 0.3614 0.4056

EDI_20071128-1500 1 0.7701 0.4444 0.5664 0.4981
2 0.7519 0.2809 0.4181 0.3360
3 0.7065 0.3208 0.5474 0.4045
4 0.8402 0.2878 0.7630 0.4180
5 1.0000 1.0000 1.0000 1.0000
6 0.8646 0.4270 0.6446 0.5137
7 0.7174 0.4088 0.6540 0.5031
8 0.8019 0.4139 0.6399 0.5026
9 0.8546 0.2672 0.5668 0.3632
10 0.7065 0.3208 0.5474 0.4045

IDI_20090128-1600 1 0.7744 0.2745 0.5977 0.3762
2 0.6492 0.5053 0.4700 0.4870
3 0.8556 0.3983 0.3424 0.3682
4 0.6726 0.4620 0.3614 0.4056
5 0.6828 0.4602 0.5420 0.4977
6 0.8546 0.2672 0.5668 0.3632
7 0.7531 0.2742 0.6365 0.3833
8 0.7744 0.2745 0.5977 0.3762
9 0.8259 0.4568 0.5851 0.5130
10 0.8110 0.3983 0.4998 0.4433

IDI_20090129-1000 1 0.6794 0.4485 0.4928 0.4696
2 0.7394 0.4602 0.4388 0.4493
3 0.8312 0.2792 0.5801 0.3770
4 0.7065 0.3208 0.5474 0.4045
5 0.8402 0.2878 0.7630 0.4180
6 0.7241 0.3951 0.8800 0.5454
7 0.8385 0.4066 0.3786 0.3921
8 0.8692 0.3014 1.0000 0.4632
9 0.7976 0.4602 0.3757 0.4137
10 0.8546 0.2672 0.5668 0.3632

NIST_20080201-1405 1 0.7065 0.3208 0.5474 0.4045
2 0.8498 0.2951 0.7591 0.4250
3 0.6492 0.5053 0.4700 0.4870

Continued on next page

Table A.2: Results of random performance experiments
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Continued from previous page
Meeting Run DER Purity Coverage F-Score

4 0.8652 0.3983 0.3455 0.3700
5 0.6726 0.4620 0.3614 0.4056
6 0.6677 0.4539 0.8403 0.5894
7 0.8562 0.2647 1.0000 0.4185
8 0.7700 0.3072 0.6573 0.4187
9 0.8402 0.2878 0.7630 0.4180
10 0.6785 0.4407 0.6124 0.5125

NIST_20080227-1501 1 0.9083 0.3682 0.8826 0.5196
2 0.7959 0.4671 1.0000 0.6368
3 0.6757 0.4444 0.8637 0.5869
4 0.8423 0.2631 1.0000 0.4165
5 0.7416 0.2857 0.6966 0.4052
6 0.8298 0.2191 0.7639 0.3405
7 0.7084 0.4108 0.7104 0.5205
8 0.9070 0.3929 1.0000 0.5642
9 0.5752 0.4620 0.5495 0.5020
10 0.7976 0.4602 0.3757 0.4137

NIST_20080307-0955 1 0.7519 0.2809 0.4181 0.3360
2 0.7941 0.2781 1.0000 0.4352
3 0.7744 0.2745 0.5977 0.3762
4 0.7192 0.4501 0.4973 0.4725
5 0.8652 0.4153 0.3424 0.3753
6 0.6726 0.4620 0.3614 0.4056
7 0.7976 0.4602 0.3757 0.4137
8 0.7519 0.2809 0.4181 0.3360
9 0.7065 0.3208 0.5474 0.4045
10 0.7744 0.2745 0.5977 0.3762

Table A.2: Results of random performance experiments

A.3.2 Overall Performance

The table A.3 shows the results of all the experiments we performed to measure the overall performance.
The name of a run is defined by its DATASET (TIMIT or RT09), the SUBSET (for RT09 this would
be the different meetings) and the used MODEL for the pairwise_blstm network. For the sake of
completeness, we also included the results for the performance on our dummy datasets.

# Name Metric Cutoff
0.0 0.05 0.1

1 DATASET_timit.
SUBSET_timit_dummy-01.
MODEL_pairwise_lstm_100_best

DER 0.7915 0.2853 0.2853
Purity 0.2444 0.9005 0.9005
Coverage 1 1 1
F-Score 0.3927 0.9476 0.9476

2 DATASET_timit.
SUBSET_timit_dummy-01.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.2309 0.3482 0.4159
Purity 1 0.8982 0.8576
Coverage 1 0.8321 0.7855
F-Score 1 0.8639 0.82

Continued on next page

Table A.3: Results of overall performance experiments
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Continued from previous page
# Name Metric Cutoff

0.0 0.05 0.1
3 DATASET_timit_rnd.

SUBSET_timit_dummy.
MODEL_pairwise_lstm_100_best

DER 0.8435 0.8208 0.8208
Purity 0.2225 0.2381 0.2381
Coverage 1 0.7474 0.7474
F-Score 0.364 0.3611 0.3611

4 DATASET_timit_rnd.
SUBSET_timit_dummy.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.5373 0.5809 0.6012
Purity 0.7548 0.6651 0.5715
Coverage 0.6037 0.5376 0.5178
F-Score 0.6708 0.5946 0.5433

5 DATASET_rt09.
SUBSET_edi_20071128-1000.
MODEL_pairwise_lstm_100_best

DER 0.7663 0.9294 0.9248
Purity 0.4038 0.6879 0.4179
Coverage 1 0.1872 0.2047
F-Score 0.5753 0.2943 0.2748

6 DATASET_rt09.
SUBSET_edi_20071128-1000.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.7669 0.9213 0.9043
Purity 0.4025 0.4945 0.4535
Coverage 1 0.2247 0.2358
F-Score 0.5739 0.309 0.3103

7 DATASET_rt09.
SUBSET_edi_20071128-1500.
MODEL_pairwise_lstm_100_best

DER 1 0.9525 0.9193
Purity 0 0.4945 0.4567
Coverage 0 0.206 0.2975
F-Score 0 0.2909 0.3603

8 DATASET_rt09.
SUBSET_edi_20071128-1500.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 1 0.9619 0.9333
Purity 0 0.5173 0.4923
Coverage 0 0.1188 0.1862
F-Score 0 0.1932 0.2703

9 DATASET_rt09.
SUBSET_idi_20090128-1600.
MODEL_pairwise_lstm_100_best

DER 0.6034 0.9293 0.9384
Purity 0.4394 0.4499 0.476
Coverage 0.9997 0.1076 0.0967
F-Score 0.6105 0.1737 0.1608

10 DATASET_rt09.
SUBSET_idi_20090128-1600.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.6041 0.8793 0.8701
Purity 0.4384 0.6135 0.4612
Coverage 0.9997 0.1275 0.1559
F-Score 0.6095 0.2112 0.2331

11 DATASET_rt09.
SUBSET_idi_20090129-1000.
MODEL_pairwise_lstm_100_best

DER 0.5606 0.9272 0.9277
Purity 0.4443 0.4604 0.4527
Coverage 0.9997 0.114 0.1146
F-Score 0.6152 0.1827 0.1829

12 DATASET_rt09.
SUBSET_idi_20090129-1000.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.5625 0.9492 0.8872
Purity 0.4439 0.5088 0.4587
Coverage 0.9997 0.0786 0.1764
F-Score 0.6148 0.1362 0.2548

13 DATASET_rt09.
SUBSET_nist_20080201-1405.
MODEL_pairwise_lstm_100_best

DER 0.7794 0.9395 0.9518
Purity 0.2609 0.3026 0.3095
Coverage 1 0.1253 0.1684
F-Score 0.4138 0.1772 0.2182

14 DATASET_rt09.
SUBSET_nist_20080201-1405.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.7794 0.8276 0.9193
Purity 0.2609 0.3484 0.3139
Coverage 1 0.196 0.172
F-Score 0.4138 0.2508 0.2223

Continued on next page

Table A.3: Results of overall performance experiments

VIII



APPENDIX A. APPENDIX N. Simmler & A. Trabi

Continued from previous page
# Name Metric Cutoff

0.0 0.05 0.1
15 DATASET_rt09.

SUBSET_nist_20080227-1501.
MODEL_pairwise_lstm_100_best

DER 0.7769 0.8801 0.8903
Purity 0.2489 0.3305 0.2793
Coverage 1 0.135 0.1657
F-Score 0.3986 0.1917 0.208

16 DATASET_rt09.
SUBSET_nist_20080227-1501.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.7769 0.7583 0.8834
Purity 0.2489 0.4019 0.4036
Coverage 1 0.2121 0.15
F-Score 0.3986 0.2777 0.2187

17 DATASET_rt09.
SUBSET_nist_20080307-0955.
MODEL_pairwise_lstm_100_best

DER 0.8354 0.8719 0.8931
Purity 0.1784 0.3607 0.2228
Coverage 1 0.1473 0.1396
F-Score 0.3027 0.2092 0.1717

18 DATASET_rt09.
SUBSET_nist_20080307-0955.
MODEL_pairwise_lstm_1251_voxceleb_best

DER 0.8354 0.6755 0.8598
Purity 0.1784 0.6046 0.2912
Coverage 1 0.3111 0.1968
F-Score 0.3027 0.4108 0.2349

Table A.3: Results of overall performance experiments

A.4 Various

A.4.1 Reference TIMIT Dummy Datasets

As mentioned in chapter 4.3 two dummy datasets consisting of snippets from the TIMIT corpus were
created.

TIMIT / TIMIT_DUMMY-01

Dataset name TIMIT
Subset name TIMIT_DUMMY-01
Speaker count 5
Total length 33.3s
Segments per speaker 1
Segments seperated by silence Yes
Remarks Speakers are handpicked to sound

distinct
Diarization Difficulty Very easy

Table A.4: TIMIT / TIMIT_DUMMY-01 Characteristics

1 3000.000 6027.000 S5
2 9027.000 13315.000 S3
3 16315.000 19873.000 S1
4 22873.000 26988.000 S4
5 29988.000 33399.000 S2

Listing A.1: Ground truth of TIMIT / TIMIT_DUMMY-01
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TIMIT_RND / TIMIT_DUMMY

Dataset name TIMIT_RND
Subset name TIMIT_DUMMY
Speaker count 10
Total length ∼75s
Segments per speaker multiple (every distinct segment

once)
Segments seperated by silence Yes
Remarks Speakers are randomly picked from

the whole TIMIT corpus
Diarization Difficulty Easy to Moderate

Table A.5: TIMIT_RND / TIMIT_DUMMY Characteristics

1 1500.000 4956.000 FKDE0
2 6456.000 9528.000 MDJM0
3 11028.000 13844.000 MBML0
4 15344.000 18186.000 FCJF0
5 19686.000 22240.000 MDJM0
6 23740.000 26537.000 FSMA0
7 28037.000 31058.000 MTBC0
8 32558.000 37275.000 MTBC0
9 38775.000 40727.000 MMGK0

10 42227.000 45805.000 FSMA0
11 47305.000 49967.000 MJEE0
12 51467.000 55077.000 MTBC0
13 56577.000 59534.000 MJBG0
14 61034.000 63645.000 MJBG0
15 65145.000 69964.000 FCDR1
16 71464.000 75822.000 FCDR1

Listing A.2: Ground truth of TIMIT_RND / TIMIT_DUMMY

A.4.2 Additional Tools

Various tools were developed during this project. The most heavily used ones are open-sourced and
can be found on the GitHub6.
The open-source project space can be found using the following link: https://github.com/ZHAW-
SPDR.
The most important repositories found on this project space are described below:
SPDR is the repository for the code of the system developed during this thesis.
TIMIT-stitcher is the repository for a tool which can be used to create datasets as in chapter A.4.1.

These datasets can then be used in the SPDR system (placeable in the ./data/in/ folder).
ZHAW_deep_voice_dataset_converter is the repository for a tool which can be used to create

datasets to train the networks in the ZHAW_deep_voice suite.

6https://www.github.com/

X
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A.4.3 Meeting Room Setup

The RT-09 corpus consists of recordings from three different meetings. Those meetings were held on-
site at the Edinburgh University (EDI), the IDIAP Research Institute (IDI), and the National Institute
of Standards and Technology (NIST). The following schemes should give an idea of the meeting room
looked like and how the microphones were spaced out. These schemes were provided by NIST inside the
RT-09 dataset and now listed as is. Not all marked microphones are relevant for the speaker diarization
task (and the MDM/SDM evaluation condition).
EDI - this is the meeting room scheme for the room at the Edinburgh University

Figure A.3: EDI Meeting Room Scheme[2]

IDI - this is the meeting room scheme for the room at the IDIAP Research Institute

Figure A.4: IDI Meeting Room Scheme[2]
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NIST - this is the meeting room scheme for the room at the National Institute of Standards and
Technology.

Figure A.5: NIST Meeting Room Scheme[2]
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