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Zusammenfassung

Deep Reinforcement Learning (DRL) ist ein Bereich der künstlichen Intelligenz (KI) an dem sehr
aktiv geforscht wird. DRL hat zum Ziel, einem Agenten beizubringen, sich in einer Umgebung
zurechtzufinden. Deep learning ist ein Teilbereich der KI, der in den letzten Jahren viele Probleme
besser lösen konnte als klassische Methoden. Reinforcement Learning (RL) ist ein allgemeiner Ansatz
für maschinelles Lernens, welcher vergleichbar mit menschlichem Lernen ist. Die Kombination
der beiden Methoden ist DRL und dieser wird das Potenzial zugeschrieben, eine generelle KI zu
erschaffen. Die Umgebung in RL befindet sich in einem Zustand, welcher der Agent beobachtet.
Führt der Agent eine Handlung aus, so kommt die Umgebung in einen neuen Zustand. Der Agent
erhält ein Feedback für seine Handlung, was als Reward (Belohnung) bezeichnet wird. Mit einem
RL-Algorithmus lernt ein Agent für jeden Zustand die Handlung auszuführen, welche ihm den
maximalen Reward erbringt. Dieser wiederholte Vorgang etwas zu sehen, eine Handlung auszuführen,
Feedback zu erhalten, eine neue Beobachtung zu erhalten und daraus Verhaltenverbesserungen
abzuleiten, ist der Ansatz, welcher allen DRL-Methoden zugrunde liegt.

Das Ziel dieser Arbeit ist es, einem Agenten beizubringen Pommerman, ein Klon des Spiels
Bomberman, der für die Forschung mit DRL erstellt wurde, zu spielen. Pommerman wird von
vier Agenten gleichzeitig gespielt. Es gibt verschiedene Modi. In dem "Free for All" Modus
gewinnt der Agent, der als letztes überlebt und in den Teammodi, bei welchem die vier Agenten
in zwei Teams aufgeteilt, das Team mit den letzten Überlebenden. Diese Arbeit untersucht zwei
Ansätze. Als Erstes wurde der Multi-Agent Deep Deterministic Gradient (MADDPG) Algorithmus
implementiert, welcher verspricht solche Probleme gut lösen zu können. Dieser Versuch ist erfolglos,
was wahrscheinlich daran liegt, dass MADDPG für Umgebungen mit kontinuierlichen Handlugen
entwickelt wurde. In Pommerman können jedoch ausschliesslich diskrete Handlugen ausgeführt
werden. Es werden auch Ansätze basierend auf Deep Q-Network (DQN) getestet. Die Resultate
zeigen, dass der double-DQN Algorithmus mit Verwendung eines Convolutional Neural Network
(CNN) in der Pommerman Umgebung Potenzial hat, wenn nur ein Agent lernt und die Anderen
eine fest programmierte Strategie verwenden.





Abstract

Deep Reinforcement Learning (DRL) is a very active field of research in Artificial Intelligence (AI)
which aims to teach agents to navigate in environments. DRL is so popular because it combines deep
learning, which solves many real-world problems better than classical methods, with Reinforcement
Learning (RL), which is an approach to learning that closely resembles how humans learn. DRL is
viewed as having the potential to be the foundation for a general AI. The environment in RL is
always in a state. The agent can observe that state and take an action, which changes the state of
the environment. With each action the agent takes, the environment returns a feedback, informing
the agent about how well it is doing. This feedback is referred to as the reward. RL algorithms
aim to find out, how to navigate the environment in a way that maximises the reward. This loop
of receiving an observation, taking an action, receiving a reward and a new observation and then
learning from that to take better actions in the future is the approach that all RL algorithms are
based on. For this reason, DRL is seen as having the potential to build a more general AI. This
bachelor thesis aims to build an agent that can play Pommerman, a Bomberman clone made for
DRL research. Pommerman is played by four agents at once. There is a purely adversarial mode,
where only the last player alive wins and a mixed cooperative-competitive mode, where the four
players are split into two teams. We explore two approaches to solving this complex environment.
Initially, the Multi-Agent Deep Deterministic Gradient (MADDPG) algorithm is used, but without
success. This is most likely due to the algorithm being designed for continuous action spaces, while
the actions in Pommerman are discrete. Deep Q-Network (DQN) and later double-DQN algorithms
were also used in a simplified environment, where only one agent is learning and the other agents
have hard-coded strategies. Using double-DQN with a Convolutional Neural Network (CNN) and
tuned hyperparameters has shown promising results, where the training agent in some cases won
against the hard-coded agents.





Preface

We had our experiences with the subject of AI and in particular with deep learning, during the
fall semester project thesis and the AI course. The topic of our project thesis of the fall semester
2017 was the exploration of an optimisation method of the training of Generative Adversarial
Networks. We have developed a great interest in deep learning. The AI course was all about
analysing, understanding and solving hard problems using methods which, in some way, yield
intelligent behaviour, which lead us to the subject of RL.

We tinkered with DRL by trying to create an ai for the game 20481. The general approach of DRL
algorithms is to learn by trial and error, similar to the human approach to learning. This being
different to both supervised and unsupervised learning, caught our interest and motivated us to do
our bachelors thesis on the subject. That DRL is still a relatively young and very active field of
research motivated us further.

In a first step we studied the fundamentals of DRL and found an environment that fit our needs.
As this environment allows for multiple learning agents, we were lead to the MADDPG algorithm,
which supposedly can solve such problems. We spent a lot of time on implementing MADDPG,
which ultimately did not yield great results. DRL algorithms are known to be fragile. Even small
bugs in the code base have significantly impacted the results of experiments. While experiments on
buggy code helped fixing those bugs, their results were not helpful towards answering the thesis’
core question.

Due to time constraints, we were not able to create an agent for multi-agent environments trained
using self-play. We did however manage to create an agent that learns in our setting and has
potential to perform well, if it is tweaked further and improved upon.

This project was an intense and interesting experience, in which we learnt a lot about DRL, but still
leaves us hungry for more. Last but not least, we learnt how to systematically approach complex
problems. Taking many small steps and analysing how each step affected our progress, helped us
find a track that could potentially lead us to a great solution.

We would like to thank our supervisors Dr. Thilo Stadelmann and Dr.Oliver Dürr for helping us to
better understand DRL, pointing us in the right direction on multiple occasions and encouraging
us to stay persistent, when we were uncertain that our approaches were correct. We also want to
thank Gabriel Eyyi for sharing with us what he learnt from his masters thesis in DRL and without
whose advice we would not have come as far as we did. Last but not least, we are greatful to Uri
Liebeskind and Josua Wehner for proofreading this thesis.

1https://gabrielecirulli.github.io/2048/
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1. Introduction

1.1. Motivation

Deep Reinforcement Learning (DRL) is one of the most talked about topics in Artificial Intelligence
(AI). This started with DeepMinds Nature publication [Mni+15], where they introduced an algorithm
which can learn to play Atari games better than humans can. The algorithm called Deep Q-Network
(DQN) did not require any prior knowledge. It learnt to play solely by receiving an input image of
the game state and a reward and was the first algorithm to do so successfully on a wide range of
tasks and without prior knowledge about the task.

The next big splash was once again by DeepMind, when they built an AI named AlphaGo for a
game called Go. Go is a strategy board game for two players, where both try to surround more area
of the game board than the opponent. A game of Go in progress is shown in figure 1.1a. Building
an AI for Go was regarded as a particularly hard challenge, since there are approximately 250 valid
moves per position and games last for around 150 moves. An AI based on exhaustive search would
have to visit up to 250150 ≈ 4.91·10350 states, which is infeasible. AlphaGo was the first Go AI to
beat professional players. By using Deep Neural Networks (DNNs) to guide search and evaluating
board position values, they were able to achieve levels of play that were thought to take decades for
an AI to reach [Sil+17b].

(a) A game of Go in
progress [Gob07].

(b) Professional Dota 2 player Danil Ishutin compet-
ing against OpenAIs agent. Screenshot taken
from [Ope17a].

Figure 1.1.: Depictions of the two mentioned games Go and Dota 2.

OpenAI also impressed the DRL community by creating an AI that was able to beat the best
professional Dota 2 players in the world. Dota 2 is an online real time strategy game where two
teams of five players each compete against each other. The details about the implementation of
AI are still unknown however, as the agent was limited to a simplified version of the game and
OpenAI first wants to create a full team of AIs, before they publish their methods. It is known
however that they trained their agents purely through self-play [Ope17b], which makes this work
particularly interesting.

DRL is about teaching agents to navigate an environment, for instance to play a game or drive
a vehicle. The agent receives an observation and chooses an action based on that observation.
The environment returns feedback, or reward, to the agent. The agent then learns to change its
behaviour so that it can maximise the reward received by the environment. This is comparable to
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1.2. Problem Formulation CHAPTER 1. INTRODUCTION

how humans learn by trial and error. For that reason, DRL is often attributed the potential to be
the foundation of a general AI.

This work focuses on environments in a multi-agent setting. The environment is constantly changing
from a single agents point of view, as the other agents keep changing their behaviour through their
own learning progress. Due to the interesting nature of this challenge, researches are very active in
the field [Yu18]. Whilst some papers show very promising results, there are still no algorithms that
can reliably solve a wide range of tasks in multi-agent settings, which motivates this thesis to train
an agent to reliably solve such a task.

1.2. Problem Formulation

What DRL based approaches enable an agent to play Bomberman in a competitive multi-agent
setting? This is the question we seek to answer in this bachelor thesis.

This requires to define an environment that allows for a Reinforcement Learning (RL) setup and is
similar to Bomberman. Algorithms have to be evaluated on the environment in order to find one
that shows the most potential play the game well. Once an algorithm is decided on, parameters are
to be tweaked systematically in order to get the best possible performance from the algorithm.

The question is answered to satisfaction when a combination of algorithm, network architecture
and parameters is found that learns to play in the environment well enough that visual observation
shows strategic and (artificially) intelligent behaviour.

2



2. Fundamentals

This chapter serves as a summary of the theory that is required to understand this thesis thoroughly.
Recommended ressources are referred to throughout this chapter and the reader is encouraged to
study these before continuing with the rest of this thesis. This thesis presupposes knowledge of the
inner workings of Artificial Neural Networks (ANNs), which are used as general nonlinear function
approximators in the remaining chapters. To readers unfamiliar with the subject of deep learning,
we recommend the following online and offline resources:

• The textbook “Deep Learning” by Ian Goodfellow, Yoshua Bengio and Aaron
Courville. [GBC16] This book is also published online for free at https://deeplearningbook.
org.

• Video Series “Neural networks” on YouTube by Grant Sanderson [San]: https://www.
youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

• Online book “Neural Networks and Deep Learning” by Michael Nielsen [Nie15].

2.1. Mathematical Notation

This section describes the mathematical notation used throughout this work. It is taken from the
book “Deep Learning” [GBC16, Chapter “Notation”].

Numbers and Arrays
a Scalar
a Vector
A Matrix
a Scalar random variable
a Vector-valued random variable

Sets, Graphs and Tuples
A Set
{0,1} Set containing 0 and 1
[a,b] The real interval including a and

b

(a,b] The real interval excluding a but
including b

G Graph
〈a,b,c〉 A tuple containing scalars a,b and

c

Calculus
dy
dx Derivative of y with respect to x
∂y
∂x Partial derivative of y with re-

spect to x
∇xy Gradient of y with respect to x

Probability Theory
P (a) A probability distribution over a

variable with discrete values
p(a) A probability distribution over a

variable with continuous values,
or over a variable whose type has
not been specified.

a∼ P Random variable a has probabil-
ity distribution P

Ex∼P [f(x)] Expectation of f(x) with respect
to P (x)

Ef(x)

Functions
σ(x) Logistic sigmoid, 1

1+exp(−x)
||x||p Lp norm of x
||x|| L2 norm of x

3
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2.2. Reinforcement Learning CHAPTER 2. FUNDAMENTALS

Environment

Agent

state reward action
st rt at

Figure 2.1.: The feedback loop that RL is based on. An agent receives a state observation and a
reward. The agent sends actions to the environment based on the observation and learns
to maximise its reward by adjusting its state-action association. Adapted from [SB18,
p. 48].

2.2. Reinforcement Learning

An introductory story A chef is hired at a restaurant to bake cakes. He is ambitious and motivated
to make the most delicious cakes ever. His ultimate goal is to make the customers happy. There is
only one problem: he has never baked a cake before. Since the chef initially does not know where
to start, he decides to mix random ingredients and figure things out on the go. At first, things go
terribly wrong. He tries to put pure flour in a hot pan, and all he gets in return is a bad smell.
Moreover, after he added some uncooked eggs to the now burnt flour, the customers’ feedback was
not good at all. The chef decided to reflect on his new experiences and tried to determine which
of his actions lead to such an adverse outcome. He repeated this process of trying something and
improving his skills based on his customers’ feedback. Soon the restaurant was known for the best
cakes in town, and the chef continued to improve steadily. He felt lucky that his boss was so patient
with him.

In other words, RL is a class of algorithms that allow agents to learn how to navigate an environment
in a way that allows them to collect the maximum reward. Agents can choose from a set of actions
within an environment. The agents receive a reward as the environment changes its state. A reward
for an action can be delayed, so actions cannot be directly associated with the reward received
in the time-step. This feedback loop is visualised in figure 2.1. This general framework makes
reinforcement learning interesting, as it allows agents to learn complex tasks in a wide range of
environments. This chapter formalises reinforcement learning and its elements.

2.2.1. Markov Decision Process

Recommended Ressources

• Chapter 3: “Finite Markov Decision Processes” in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view

• Lecture 2: “Markov Decision Process” in [Sil15, Lecture 2]:

– Slides: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf

– Video: https://www.youtube.com/watch?v=lfHX2hHRMVQ

• Chapter 17: “Making Complex Decisions” Section 17.1 in [RN16].

The Markov Decision Process (MDP) allows formalising environments, the states an environment
can be in and what an agent experiences when traversing the environment. Formally, this means:
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CHAPTER 2. FUNDAMENTALS 2.2. Reinforcement Learning

Definition 2.2.1 (Markov Decision Process).
The Markov Decision Process [Sil15, Lecture 2], is a quintuple 〈S,A,P,R,γ〉, where:

S Is a finite set of states s which fully describe the environment at a time step.

A Is a finite set of actions a. Taking an action usually results in the environment
changing to successor state s′ ∈ S.

P Is a state transition model P (st+1 = s′ | st = s,at = a) which denotes the probability
of entering state s′ when being in state s and taking action a. For reasons of
readability, random variables like st+k will often be omitted.

R Is a reward function R(s), which denotes the reward received for state s.

γ Is a discount factor γ ∈ [0,1].

Markov Property states that an environments state is fully described by its current state s: The
probability of entering state s depends on its parents only and not on any history of states before
that [Sil15, Lecture 2]:

P (st+1|st,at) = P (st+1|s1,a1, . . . ,st,at) (2.1)

Solving an MDP [Sil15, Lecture 2] refers to finding a way to traverse the MDP that maximises
the return Gt.

Definition 2.2.2 (Return).
The return Gt is the total discounted reward from time-step t. [Sil15, Lecture 2]

Gt =R(st)+γR(st+1)+ · · ·=
∞∑
k=0

γkR(st+k) (2.2)

The discount factor γ is a way to define how important rewards in the far future are. A discount
factor close to one means that rewards far in the future are of high importance, values close to zero
mean that only next few steps are relevant. There are numerous reasons as to why this is done: In
a circular MDP with positive rewards, the agent could, in theory, achieve an infinite return. This is
mathematically inconvenient to compute. With γ < 1, a maximum return is always guaranteed.
Using a discount factor also allows to model natural behaviours, where rewards in the near future
are often preferred over rewards which are many time-steps away [Sil15, Lecture 2].

State-value function [Sil15, Lecture 2] If there was a way to measure the value of a state, it
would be easier to solve the MDP. This idea introduces the state-value function v(s), which is the
expected discounted future reward when being in state st:

v(st) = E[Gt | st = s] (2.3)

Given the definition of Gt in equation 2.2, the state-value function v(s) can be reformulated.

v(s) = E[Gt | st = s] (2.4)
= E[R(st)+γR(st+1)+γ2R(st+2)+ · · · | st = s] (2.5)
= E[R(st)+γ(R(st+1)+γR(st+2)+ · · ·) | st = s] (2.6)
= E[R(st)+γG(st+1) | st = s] (2.7)
= E[R(st)+γv(st+1) | st = s] (2.8)

This decomposition into two parts, the immediate reward R(st) and the discounted value of the
successor state γv(s′), is a Bellman equation. A Bellman equation always consists of two parts,
based on a series of choices. The first part is a value for an initial choice plus the second part,
which is the value for the rest of the series of choices.

5



2.2. Reinforcement Learning CHAPTER 2. FUNDAMENTALS

s0

R = 0

s1,1

R = +10

s1,2

R = −10

a1

a2

Figure 2.2.: A very simple MDP, three states, two terminal states s1,1 and s1,2 and discount factor
γ = 1.

A Policy is what defines an agents behaviour. It is common to use the symbol π to refer to the
policy. A policy is either stochastic π(a|s), which is a distribution over states given actions or
deterministic a= π(s) which returns which action a ∈ A is to be chosen in state s ∈ S and therefore
is defined as π : S 7→ A [RN16, p. 647].

State-value function with policy The state-value function v(s) returns the long-term value of
being in state s. But the value of a state changes when following a policy. Consider the example
MDP in figure 2.2.

When not following a policy and the actions are chosen equally likely, the value of state s0 is:

v(s0) =R(s0)+γ
1
2v(s1,1)+γ

1
2v(s1,2) = 0+11

210+11
2(−10) = 0 (2.9)

When following a greedy policy πg, which always visits the successor state s′ with maximum value
then vπg (s0) is:

vπg =R(s0)+γv(πg(s0)) = 0+1·10 = 10 (2.10)

And finally when following a bad policy πb that for some arbitrary reason always takes action a2
then vπb

(s0) =−10.

Equation 2.11 is a more general definition of the state-value function under a policy π: It gives the
value of state s when following policy π.

vπ(s) = Eπ[R(st)+γvπ(st+1) | st = s] (2.11)

The action-value function [Sil15, Lecture 3] q(s,a) extends the state-value function by taking
the action taken at time step t into account: it returns of the value of taking action a in state st:

qπ(s,a) = Eπ[R(st)+γqπ(st+1,at+1) | st = s,at = a] (2.12)

It expresses the value of taking action a in state s and then following policy π.

Optimal value functions [Sil15, Lecture 3] If it was possible to iteratively evaluate all policies,
then it would be possible to find an optimal state-value function v∗(s), which is the maximum
state-value function over all policies:

v∗(s) = max
π

vπ(s) (2.13)

and an optimal action-value function q∗(s,a), which is the maximum action-value function over all
policies:

q∗(s,a) = max
π

qπ(s,a) (2.14)

6



CHAPTER 2. FUNDAMENTALS 2.2. Reinforcement Learning

2.2.2. Finding an Optimal Policy

Recommended Ressources

• Chapter 4: “Finite Markov Decision Processes”, Sections 4.1 - 4.4 in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view.

• Lecture 3: “Planning by Dynamic Programming” in [Sil15]:

– Slides: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/DP.pdf.

– Video: https://www.youtube.com/watch?v=Nd1-UUMVfz4.

• Chapter 17: “Making Complex Decisions” Sections 17.2 - 17.3 in [RN16].

This section is shortened from [RN16, Section 17.1.2]. An optimal policy π∗ is therefore any policy
which can achieve both the optimal state-value function vπ∗(s) = v∗(s) and the optimal action-value
function qπ∗(s,a) = q∗(s,a).

Value Iteration

The value iteration algorithm can find an optimal policy by calculating the value for each state.
The policy then chooses the optimal action in each state based on these state values. For each
state, the optimal value is defined by:

v∗(s) =R(s)+γmax
a∈A

∑
s′

P (s′|s,a)v(s′) (2.15)

When executing the value iteration algorithm, the state-value functions v0,v1, . . . form a series
of state-value functions vk that converges to v∗ for k→∞. To get from vk to vk+1, a Bellman
update is applied:

vk+1(s) =R(s)+γmax
a∈A

∑
s′

P (s′|s,a)vk(s′) (2.16)

This is done synchronously for each state, meaning that for the entire iteration, the right hand side
of the computation uses vk(s′) and not already newly computed values vk+1(s′). This is repeated
until the action-value function converges to a fixed point, that being v∗.

Policy Iteration

Policy iteration executes two steps in turns:

• Policy Evaluation

• Policy Improvement

Policy Evaluation is very similarly to value iteration: It finds the value function vπ by starting
from a value function v0 and synchronously applying a Bellman update to vk(s), but this time
incorporating the policy π:

vk+1(s) =R(s)+γ
∑
s′

P (s′|s,πk(s))vk(s′) (2.17)

7

https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/DP.pdf
https://www.youtube.com/watch?v=Nd1-UUMVfz4


2.2. Reinforcement Learning CHAPTER 2. FUNDAMENTALS

Policy Improvement The policy is then updated greedily: For each action, it always chooses the
action which leads to the state of maximum possible value as indicated by the state-value function
vπk

.

πk+1(s) = argmax
a∈A

∑
s′

P (s′|s,a)vπk
(s′) (2.18)

Both steps policy iteration and policy evaluation are done synchronously, just like in the value-
iteration algorithm. This procedure is repeated until the policy remains unchanged. If the policy
remains unchanged it can no longer be improved and is therefore as good as the optimal policy
π∗.

2.2.3. Passive Temporal-Difference Learning

Recommended Ressources

• Chapter 6: “Temporal-Difference Learning”, Sections 6.1 - 6.3 in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view.

• Chapter 21: “Reinforcement Learning” Section 21.2.3 in [RN16].

This section is a summary of [RN16, Section 21.2.3]. The problem with algorithms like value iteration
or policy iteration is that they require knowledge of the state transitions of an MDP. P (s′|s,a)
provides that information and is fundamentally required in order to do the Bellman updates. In
the real world, however such a state transition model is often not available and impractical to
reconstruct manually. Methods are required that can converge to the optimal state-value function
v∗(s) or can find an optimal policy π∗.

The state transition probabilities give a weight to successor state values, based on how likely those
successor states are to occur.

Successor states that are rarely visited don’t contribute significantly to the expected future return
of s. Temporal-Difference (TD) approximates this behaviour by averaging over many percepts in
trials. A trial is a series of state and reward tuples, that an agent experiences while going from
a starting state to a terminal state. Such a tuple of state and reward 〈s,r〉 is called a percept or
experience. The term Passive indicates that an algorithm finds a value function vπ(s) with a fixed
policy π. The passive TD-learning algorithm updates a table of values for each state:

vπ(s)← vπ(s)+α(r+γvπ(s′)−vπ(s)) (2.19)

Adding a learning rate α allows this equation to slowly converge to the true state-value function vπ.
The full passive-TD algorithm, which is shown in [RN16, figure 21.4. p. 837]. The algorithm can
be extended by adding a weight Ns(s). Ns is a table which keeps track of how often a given state
was visited. It is used to add higher importance to state-values of successor states that are visited
more frequently:

vπ(s)← vπ(s)+αNs(s)(r+γvπ(s′)−vπ(s)) (2.20)

Methods that use temporally successive states to approximate a value function are temporal-
difference methods.
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2.2.4. Exploration

Recommended Ressources

• Chapter 5: “Monte Carlo Methods”, Section 5.5 in [SB18]:

– Online draft: https://drive.google.com/file/d/1xeUDVGWGUUv1-
ccUMAZHJLej2C7aAFWY/view.

• Chapter 21: “Reinforcement Learning” Section 21.3.1 in [RN16].

This section is a summary of [RN16, Section 21.3.1]. So far it was not addressed how an agent
should go about choosing actions in trials during training. It seems to make sense always to follow
the policy. Since RL algorithms are finding optimal state-value functions, action-value functions or
optimal policies, why not just follow what the policy recommends? At first, the policy does not
know which action will lead to the maximum return. Once the value function finds rewards for an
action in a state and those rewards turn out to be higher than the default values of non-visited,
the policy will not select actions that lead to the non-visited states, as it expects the known paths
with marginally higher value estimations to yield a higher return. Without deviating from what is
known, much like in real life, the policy will only rarely find ways that maximise the return.

Greedily following the policy is called exploitation. In contrast to exploitation, exploration refers to
a way of choosing an action different from what the policy recommends and by doing so finding
new paths that yield a higher return. Choosing between exploration and exploitation is always a
trade-off. One way to motivate exploration is to use a function f(u,n), with u being the expected
future reward for an action a

∑
s′∈SP (s′|s,a)vπ(s′) and n the number of times the state-action

pair s,a was visited. A simple function of f would then be:

f(u,n) =
{
R+ if n <Ne

u otherwise
(2.21)

where R+ is the best possible reward obtainable by any state and Ne is the number of times the
state-action pair s,a has been visited.

2.2.5. Q-Learning

Recommended Ressources

• Chapter 6: “Temporal-Difference Learning”, Section 6.5 in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view.

• Chapter 21: “Reinforcement Learning” Section 21.3.2 in [RN16].

This section is a summary of [RN16, Section 21.3.2]. Q-Learning aims to learn an action-value
function as in equation 2.22.

Q(s,a) =R(s)+γ
∑
s′∈S

P (s′|s,a)max
a′∈A

Q(s′,a′) (2.22)

This equation once again requires a state transition model P (s′|s,a). Using the TD-approach,
equation 2.22 can be rewritten to equation 2.23. Similarly to equation 2.20, Nsa(s,a) is a table
keeping track of counts, but this time it records the number of occurrences of state-action pairs
instead of just tracking states.

Q(s,a)←Q(s,a)+αNsa(s,a)(R(s)+γmax
a′∈A

Q(s′,a′)−Q(s,a)) (2.23)
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Algorithm 2.1 Q-learning Algorithm as shown in [RN16] on page 844, figure 21.8
1: function Q-Learning-Update(percept) returns an action
2: inputs: percept, a percept indicating the current state s′.and reward r′
3: persistent: Q, a table of action values indexed by state and action, initially zero,
4: Nsa, a table of visitation counts for state-action pairs, initially zero
5: s,a,r, the previous state, action and reward, initially null
6: if Terminal?(s′) then
7: Q(s′,None)← r′

8: end if
9: if s is not null then
10: increment Nsa(s,a)
11: Q(s,a)← (Q(s,a)+αNsa(s,a)(r+γmaxs′∈AQ(s′,a′)−Q(s,a)
12: end if
13: s,a,r← s′,argmaxa∈A f(Q(s′,a′),Nsa(s′,a′)), r′
14: return a
15: end function

Q-learning is an off-policy algorithm: for the target value r+γmaxs′∈AQ(s′,a′) it uses the best
value as suggested by the Q-function instead of using the action a′ that was chosen by the policy
in states′. This is in contrast to on-policy algorithms, which do train using the action a′ which
was actually chosen by π. One example for such an algorithm is SARSA, which uses tuples of
〈s,a,r,s′,a′〉 directly retained from trials.

2.3. Deep Q-Learning

Recommended Ressources

• Nature paper: “Human-level control through deep reinforcement learning” [Mni+15].

• Chapter 16: “Applications and Case Studies”, Section 16.5 in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view.

DeepMind introduced in their landmark Nature publication [Mni+15] a new algorithm called Deep
Q Learning. This algorithm was used for the experiments of this thesis. The algorithm uses a DNN
to approximate the optimal action-value function:

Q∗(s,a) = max
π

E[rt+γrt+1 +γ2rt+2 . . . | st = s,at = a,π] (2.24)

which maximises the expected discounted future reward over all policies π = P (a|s) starting at time
step t, after making an observation s and taking an action a. The Q-network, with parameters θ,
represents an approximation Qθ(a,s)≈Q∗(a,s) of the optimal action-value function. To improve
the stability of the training, the paper introduces two new elements:

Experience Replay The experience replay stores tuples et = 〈st,at, rt,st+1〉 where:

• st: state

• at: action chosen at time step t

• rt: reward received after exiting state st

• st+1: successor state after choosing action at in state st.
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Experiences et are stored in an experience replay Dt = {e1,e2, . . . ,et}. The Q-network is updated
using mini-batches of samples of experiences 〈s,a,r,s′〉 ∼ U(D), drawn uniformly at random. Using
an experience replay as described, creates a smoothing over changes in the data distribution and as
such makes training more stable.

Target Network Using a target network Q̂ with parameters θ− to predict target values y =
r+γmaxa′ Q̂θ−(s′,a′) reduces the correlation of target values y and predicted Q-values Qθ(s,a).
The target network parameters are periodically updated to θ−← θ.

Loss The Q-network has to predict the target values y= r+γmaxa′ Q̂θ−
i

(s′,a′), which is intuitively
related to the value-iteration formulation. Thus, the loss to be minimised is:

L(θ) = E〈s,a,r,s′〉∼U(D)[(y−Qθ(s,a))2 | s,a] (2.25)

Deep Q-Algorithm The deep Q-learning algorithm expects to receive some observation o and
stores this in a sequence s. For each step, the a new sequence st+1 = {st,at,ot+1} is created. This
sequence serves as part of the input to the Q-networks. Since it is impractical to use inputs of
arbitrary lengths for ANNs, a function φ(s) pre-processes sequences and maps them to a suitable
input of fixed length.

Algorithm 2.2 Deep Q-learning with experience replay.
1: Initialise replay memory D to capacity N .
2: Initialise action-value function Q with random weights θ.
3: Initialise target action-value function Q̂ with weights θ− = θ.
4: for episode= 1 . . .M do
5: Initialise sequence s1 = {o1} and pre-process sequence φ1 = φ(s1)
6: for t= 1 . . .T do
7: With probability ε select a random action at
8: otherwise select at = argmaxaQθ(φ(st),a)
9: Execute action at in environment and observe reward rt and image ot+1
10: Set st+1 = st,at,ot+1 and preprocess φt+1 = φ(st+1)
11: Store transition 〈φt,at, rt,φt+1〉 in D

12: Set
{
rj if episode terminates at step j+1
rj +γmaxa′ Q̂θ−(φj+1,a

′) otherwise
13: Perform gradient descent step on (yj−Qθ(φj ,aj))2 with respect to the network parame-

ters θ
14: Every C steps reset θ−← θ.
15: end for
16: end for

2.3.1. Policy Gradient Methods

Recommended Ressources

• Chapter 13: “Policy Gradient Methods”, Sections 13.1 - 13.2 in [SB18]:

– Online draft:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view.

• Chapter 21: “Reinforcement Learning” Section 21.5 in [RN16].
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This section is a summary of [RN16, Section 21.5]. Policy Gradient (PG) methods are discussed
only briefly here. While they are essential, especially to continuous control problems, this thesis
mainly uses methods based on Q-Learning.

Instead of using deterministic policies like π(s) = maxaQ(s,a) we now consider stochastic policies
πθ(s,a), which return the probability of choosing action a in state s. πθ may use any function
approximator, like an ANN, parametrised by weights θ. PG-methods aim to compute a gradient
for the parameters θ which when followed, improves the performance of πθ. To compute a gradient,
πθ has to be differentiable. A popular representation is the softmax function, with Qθ(s,a) being
the standard action-value function but using a function approximator with parameters θ:

πθ(s,a) = exp(Qθ(s,a))∑
a′∈A exp(Qθ(s,a′))

(2.26)

Let ρ(θ) be the policy-value, which gives the expected return when executing policy πθ. To improve
the policy, we would then just need to compute and follow the gradient ∇θρ(θ). This is is what is
called the policy gradient. Since often a function like ρ(θ) is not available, the empirical gradient
can be computed.

In the simple case of a nonsequential environment, where the reward R(s) is obtained immediately
after executing action a in state s0, the policy value is just the expected value of the reward:

∇θρ(θ) =∇θ
∑
a∈A

πθ(s0,a)R(a) =
∑
a∈A

(∇θπθ(s0,a))R(a) (2.27)

This can be approximated by samples generated from the policy πθ. Let N be the number of trials
and aj the jth action taken:

∇θρ(θ) =
∑
a∈A

πθ(s0,a)∇θπθ(s0,a)R(a)
πθ(s0,a) ≈ 1

N

N∑
j=1

(∇θπθ(s0,aj))R(aj)
πθ(s0,aj)

(2.28)

The policy gradient is approximated by a sum of terms involving the gradient of action-selection
probability in each trial. This can be generalised to equation 2.29 for the case of sequential
environments:

∇θρ(θ)≈ 1
N

N∑
j=1

(∇θπθ(s,aj))Rj(s)
πθ(s,aj)

(2.29)

where aj is the action executed in state s on the jth trial and Rj(s) gives the total reward received
from state s onward in the jth trial.

2.4. Multi-Agent Deep Deterministic Policy Gradient

Recommended Ressources

• Publication: “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments” [Low+17]

This section is a summary of [Low+17]. Multi-Agent Deep Deterministic Gradient (MADDPG) is
based on Deep Deterministic Policy Gradient (DDPG) and is a PG method. Methods like this use
two networks, the actor and the critic. The critic is equivalent to the Q-function introduced earlier.
It delivers the expected return given a state and an action. The policy network is referred to as the
actor. It is updated by computing and following the gradient of the actors’ parameters with respect
to the critics output. Figure 2.3

12
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Environment Critic:
value-function

Actor: Policy

TD-error

action

state

reward

Figure 2.3.: The basic setup of actor-critic methods. The critic learns how good state-action pairs
are and the critic maximises the reward predicted by the critic. Adapted from [Mar05].

.

For deterministic policies µθ(a|s), the gradient for updating the actor parameters is written in
equation 2.30, where D is a replay memory containing tuples 〈s,a,r,s′〉.

∇θJ(θ) = Es∼D[∇θµθ(a|s)∇aQµ(s,a) | a= µθ(a)] (2.30)

Q-functions have a hard time learning in an environment, where other agents policies are non-
stationary. In multi-agent environments, the policy of each agent continually changes as it learns.
To properly handle multiple learning agents, the critic is modified. Instead of using only the
observation of the agent that the critic belongs to, the critic is fed with an observation that fully
describes the state of the environment and the actions of all agents in that state. Figure 2.4 shows
how the different components of MADDPG are connected.

Let oi describe the observation of agent i, x state information, for example x = {o1, . . . ,oN},
µ= {µ1, . . . ,µN} a set of all policies, Qµi , ai, µi and θi the critic, action, policy and parameters
of agent i. The replay memory D contains tuples 〈x,x′,a1, . . . ,aN , r1, . . . , rN 〉 This leads to the
following policy gradient:

∇θi
J(µi) = Ex,a∼D[∇θi

µi(ai|oi)∇aiQ
µ
i (x,a1, . . . ,aN ) | ai = µi(oi)] (2.31)

Training
Execution

Environment

Actor1: Policy

TD-error

actions

Critic1:
value-function

reward

ActorN: Policy

CriticN:
value-function

TD-error

reward

observationobservation

r1

o1

a1, ..,aN

o1,a1

rN

oN

oN ,aN

Figure 2.4.: The setup of MADDPG. The critics receive all inputs and observations of all actors and
base value predictions on that information. This is only done during training. Only
the critics are used in during execution. Adapted from [Low+17].
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Algorithm 2.3 Multi-Agent Deep Deterministic Policy Gradients for N agents [Low+17, p. 13]
1: for episode = 1 to M do
2: Initialise a random process N for action exploration
3: Receive initial state x
4: for t= 1 to max-episode-length do
5: for each agent i, select action ai = µθi

(oi)+Nt w.r.t. the current policy and exploration
6: Execute actions a= (a1, . . . ,aN ) and observe reward r and new state x′
7: Store 〈x,a,r,x′〉 in replay memory D
8: for agent i= 1 to N do
9: Sample a random minibatch of S samples 〈xj ,aj , rj ,x′j〉 from D
10: yj = rji +γQµ

′

i (x′j ,a′1, . . . ,a′N )|
a′

k
=µ′

k
(oj

k
)

11: Update critic by minimizing the loss L(θi) = 1
S

∑
j

(
yj−Qµi (xj ,aj1, . . . ,a

j
N )
)2

12: Update actor using the sampled policy gradient:

∇θi
J ≈ 1

S

∑
j

∇θi
µi(oji )∇aiQ

µ
i (xj ,aj1, . . . ,ai, . . . ,a

j
N )
∣∣
ai=µi(oj

i
)

13: end for
14: Update target network parameters for each agent i:

θ′i← τθi+(1− τ)θ′i

15: end for
16: end for

With this method, the replay memory has to include the combined observations of all agents. The
Q-function is updated by minimising its loss:

L(θi) = E
[(
Qµi (x,a1, . . . ,aN )− (ri+γQµ

′

i (x′,a′1, . . . ,a′N ))
)2
]∣∣∣∣∣
a′

j
=µ′

j
(oj)

(2.32)

By giving each critic all observations and actions, essentially making all policies µ part of each
agents critic Qµi , the authors of the paper have found that this model can successfully learn to act
in mixed cooperative-competitive environments and outperform previously existing algorithms in
this setting. The full algorithm is given in 2.3.
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3. Related Work

[Mni+15] introduced an algorithm that can solve a wide range of RL problems without prior
knowledge. Their agent was able to learn on the domain of classic Atari 2600 games [Bel+15] by
looking at images from an emulator and receiving the game’s score via a hard-coded channel. With
this input, their agent was “able to surpass the performance of all previous algorithms and achieve
a level comparable to that of a professional human games tester across a set of 49 games” [Mni+15].
This was achieved with the same algorithm and parameters for all games. However, none of the
Atari 2600 games are multiplayer games. The Pommerman environment used in this thesis is played
by four players.

AWESOME is an algorithm proposed by [CS07]. It stands for “Adapt When Everybody is Stationary,
Otherwise Move to Equilibrium” [CS07]. The AWESOME algorithm works on finite games when
playing against stationary opponents. Instead of learning through self-play like [Sil+17a], there is
only one learning agent trying to match agents with a fixed strategy. [CS07] show an algorithm
which is trying to “adapt to enemies strategies when they appear stationary, but otherwise retreats
to a precomputed equilibrium strategy” [CS07]. With their publication, they provide the first RL
algorithm which learns at a minimum to play optimally against stationary opponents in finite games
by only using the other agents’ actions as additional input.
The AWESOME algorithm, differs to this work by not solving environments where the agents’
policies are non-stationary.

[Mar+14] focus on improving RL for multi-agent in dynamic environments. They propose a
decentralised algorithm for multi-agent environments which is enhanced by a “prediction mechanism
that provides accurate information regarding up-coming changes” [Mar+14]. Through pattern
matching their agent detects changes in the environment and “triggers a new model based subject to
the latest observations and findings from a database” [Mar+14]. [Mar+14] validated their algorithm
in a realistic smart-grid scenario.
While Pommerman is a multi-agent environment, it does not change its behaviour. This algorithm
might be more complex than necessary since Pommerman is not a dynamic environment.

[Foe+17] presents an algorithm called LOLA (Learning with Opponent-Learning Awareness) where
the agents shape the anticipated learning rule of the other agents. This algorithm would be suitable
for the Pommerman Team 2v2 environment, since they show that LOLA agents can cooperate
effectively. Since we are focusing on the Free For All (FFA) mode, which is purely adversarial,
LOLA does not fit our setting.

According to [Foe+16] the nonstationarity of Q-learning makes it incompatible with the experience
replay memory which is used in deep Q-learning. To address this issue, [Foe+16] propose off-
environment importance sampling to stabilise the experience replay. They also show an alternative
approach which overcomes the weakness, that the agents view each other as part of the environment,
meaning they ignore that the other agents policies change over time. [Foe+16] results on a
“challenging decentralised variant of StartCraft unit micromanagement” [Foe+16] confirm the
hypothesis of these methods. Our work focuses specifically on Pommerman, which this algorithm
was not applied to. Doing so would potentially be interesting in future work.

While [Low+17] show a promising algorithm, which allows for multi-agent learning in environments
including communication, mixed adversarial-cooperative elements and agents with different objec-
tives. It extends the deep deterministic policy gradients algorithm by introducing a centralised
critic for each agent, that receives observations and actions of all agents. We evaluate this algorithm
in this thesis (see 2.4) without success and come to the conclusion that it is not fit for environments
with discrete action spaces.
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4. Methods

4.1. Environment: Pommerman

PlayGround is an effort by a group of DRL researchers where they seek to build standardised
environments to explore multi-agent learning and make the research of it more accessible. One issue
is, especially with research in cooperative environments, that results from different publications
tend to be difficult to compare since many papers implement custom environments. Their goal to
create standardised environments, which supports applying a wide range of algorithms, would make
the comparison of DRL algorithms much easier [Res+]. We decided to use their environment called
“Pommerman”, as it fits our needs. Pommerman is a reimplementation of the game “Bomberman”.
Screenshots of both can be seen in figure 4.1.

4.1.1. Modes

Pommerman is a game of survival, in which four agents play against each other and each agent
tries to be the last one to survive. At the beginning of an episode, each agent is placed in one of
the four corners in the 11×11 game world. They start off by blowing up “wooden” blocks to open
up passageways to the enemy agents. The objective for each agent is to have the other agents stand
in an explosion without dying themselves, and that way be the last agent alive.

There are four different modes in the environment:

FFA Each agent is on his own, competing against the other three enemy agents.

Team 2v2 The four agents are split into two teams of two.

Team Radio The four agents are again split into two teams of two. Additionally the agents in the
team can communicate with each other. This is done by extending the agents action by two

(a) Screenshot of Bomberman 1983 [Wik16]. (b) Screenshot taken from a running game of
Pommerman.

Figure 4.1.: Comparison of the original Bomberman and Pommerman, a reimplementation made
for DRL research.
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words. The words are limited to a dictionary of 8 elements, concluding with each action they
can send one of 82 = 64 messages.

4.1.2. Competitions

The creators of Pommerman have planned two competitions, one on June third that will be held
using the FFA environment and one in November at the NIPS 2018 conference, which will be using
the Team 2v2 environment. While it would be nice to participate in the FFA competition, it is not
the focus of this work.

The game board is of size 11×11. There are 3 types of blocks on the board and examples of
them can be seen in figure 4.1b:

passages Gray tiles designate the blocks that agents can stand on.

rigid Dark brown tiles cannot be passed through or destroyed.

wooden Wooden blocks appear as a light brown square and cannot be passed through
either but become destroyed if they are close to an explosion.

Bombs can be placed by agents. When they explode, they spread flames horizontally and vertically.
Any agent that steps into a flame dies. Bombs have two properties:

Blast strength indicates the range of the explosions.

Bomb life indicates in how many time-steps it will explode and starts at 10.

The agents each start in distinct corners. If the mode is either Team 2v2 or Team Radio, the
allied agents start in the diagonally opposite (kitty) corner. Agents start with an ammo count of
one. Ammo refers to the number of bombs an agent has. For each bomb placed, the ammo count
decreases by one. If a placed bomb explodes, the ammo count is increased by one.

Power-ups change the agents’ abilities in some way, usually making them stronger. Half of the
wooden walls have hidden power-ups. If it is blown up, the power-up can be picked up by the agents
by walking on the tile where the power-up is dropped. Pommerman implements four different
power-ups:

Extra Bomb Increase the agents ammo count by one.

Increase Range: The blast strength is increased by one.

Can kick Once picked up, an agent can “kick” bombs away. It does this by moving into a
bomb. The bomb then moves away from the agent at the speed of one unit per
time-step. A bomb stops moving if it collides with a rigid or wooden wall, a
bomb or an agent.

The end of the game is reached if only agents of one team remain. For FFA this means that only
one agent remains alive. If through some (surprisingly common) circumstances all remaining agents
blow themselves up in a choreographic manner, the game outcome is a draw.

4.1.3. Using The Environment

PlayGround environments closely follow the standards established by OpenAIs Gym environments.
The general procedure is described in algorithm 4.1.
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Algorithm 4.1 Reinforcement learning in Pommerman
1: learning_agents← initialize n learning agents
2: other_agents← initialize 4−n non-learning agents
3: env← initialize environment
4: env.set_agents(concatenate(learning_agents,other_agents))
5: repeat
6: observations←s env.reset()
7: terminal← False
8: repeat
9: env.render()
10: actions← env.act(observations)
11: new_observations, rewards, terminal = env.step(actions)
12: terminals← terminalsi is true if learning_agentsi perished in this time-step.
13: ignores← ignoresi is true if learning_agentsi already was dead in the previous step.
14: for i from 1..n do
15: if ignoresi is False then
16: learning_agentsi.experience(observationsi,actioni, rewardi,new_observationsi)
17: end if
18: end for
19: for i from 1..n do
20: learning_agentsi.train()
21: end for
22: observations← new_observations
23: until terminal
24: until convergence

Comments on Algorithm 4.1
1-2: There can be two to four agents, not all agents have to be learners.

10: The act method queries all living agents for an action based on their observation. Observations
is a list containing an observation for each agent.

10, 11: The act and step methods return lists, each with an entry per agent, except of terminal and
info.

11: Terminal is a single boolean variable, which is true when the episode is over for all agents.

12-13: Once an agent received its terminal state, it should not continue to receive any further
observations. Hence we introduce an ignores list, with an entry per agent, which is true if the
agent has been dead for more than one time-step.

16: Each learning agent receives an experience, which it typically stores in its replay memory.

Observation
An observation for an agent is represented as a python dictionary with several entries. All values
are discrete integers:

Actions
The agent can take one of 6 discrete actions per time-step. 5 movement actions and one which
places a bomb. Table 4.2 lists all actions and their identifiers.

Table 4.2.: Actions and their IDs.

Action ID 0 1 2 3 4 5
Action Name Stop Up Left Down Right Bomb
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Table 4.1.: The observation that the agents receive

Name Type Description

alive ndarray List of agent ids that are still alive.
board 11×11 ndarray Each cell represents a block on the game

board. The number indicates the block type.
bomb_blast_strength 11×11 ndarray This is an empty version of the board field,

whith integer numbers at the location of
bomb. This number indicates the blast
strength of the bomb at that location.

bomb_life 11×11 ndarray This is similar to bomb_blast_strength but
indicates the count-down to the bombs ex-
plosion.

position tuple with two elements The agents coordinates.
blast_strength int Blast strength of the bombs placed by the

agent.
can_kick boolean Usually False, becomes True if the agent

picks up the corresponding power-up.
teammate AgentDummy/BaseAgent in FFA, the value is AgentDummy with an

integer value of 10. In Team 2v2 or Team
Radio modes, this indicates which agent on
the board is the teammate.

ammo int How many bombs the agent can put on the
board at the same time.

enemies list of Item.Agentn The type Item.Agentn, where n is an identi-
fier from 0 to 3, has a value property, which
indicates that enemies value on the board.

Messages

Messages can only be sent in Team Radio mode. The message consists of 2 integer values, both in
[0,8]. With each action, the agent additionally outputs the message which is in [1,8]. Messages are
received by the teammate with its next observation and are set to zero if the allied agent has died,
hence the restriction to [1,8].

4.2. Experiment Setup

Observation Preprocessing

The observation given by the environment contains partially redundant information and data ranges
are not optimal for use with DNNs [LeC+98, Section 4.3]. For this reason, the observations have to
be preprocessed beforehand. Several pre-processors have been implemented:

ActorObservation Replaces all enemy player values on the board with 14 since the agent does not
need to distinguish between them. Additionally the players own position on the board is
replaced by 11. position, enemies and teammate are removed from the observation.

ScaleBoardObservation Scales all the values from the board ([0,14]) to [−1,1].

ScaleOtherObservation Scales ammo ([0,10]) and can_kick ([0,1]) to [−1,1].

ScaleBombLifeObservation Scales all the values from the bomb_life ([0,25]) to [−1,1].
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ScaleBombBlastStrengthObservation Scales all the values from the bomb_blast_strength
([0,10]) to [−1,1].

CombineObservations Combines the observation dictionary to a flat array.

A preliminary experiment has shown, that ANNs can more easily learn to differentiate discrete
values that were scaled to real values in a small range of non-integer numbers. Details about this
experiment are in Appendix C.

Reward Shaping
Several reward shapers were created, which can be freely combined and added to the hyperparameters.
The reward passed to the agent is determined by the sum of rewards returned by the active reward
shapers.

DummyReward This is a placeholder reward and simply passes the rewards recieved by the
environment through to the environment.

KillReward This reward shaper keeps track of bombs placed by the agent and adds a reward of
+0.25 for each kill that the agent gets.

SurvivalReward As long as the agent doesn’t die, it adds +1 reward per time-step.

VictoryReward This reward shaper adds +20 for a victory and removes all reward received in the
episode when the agent dies.

VictoryRewardFix Similar to VictoryReward, it amplifies the reward for a victory, but this time
only by +10. The main difference is that in the case of a loss, this reward shaper removes a
fixed value of -10 in case of a loss or draw, instead of removing all rewards received in the
episode.

Exploration
For experiments using the MADDPG-agent, instead of using the exploration as shown in algo-
rithm 2.3, ε-greedy exploration is used. ε is calculated according to equation 4.2, where gs is the
current training iteration, which often called global step and ε_factor is a factor which controls
how quickly epsilon should fall off. Calculating ε_factor is based on a target εt that should be
reached at a target global step gst, which is done as shown in equation 4.1. An example of the
function 4.2 is shown in figure 4.2.

ε_factor =
(

1
εt
−1
)

1
gst

(4.1)

ε= 1
gs·ε_factor+1 (4.2)

Experiments based on the DQN-agent use a linear scheduler for calculating ε. This scheduler
decreases with a constant rate from a starting value to a final value at a certain time-step and
thereafter is fixed at the final value. An implementation by [SS17] is used for that.

Evaluation
To assess the agents learning progress, evaluation games are run at an interval with respect to the
global step, for instance, every 100’000 training updates. In the self-play setting, four separate
instances of the agents are loaded from checkpoints. One of the agents loads the most recent
checkpoint, and the other agents load older checkpoints. In an ideal situation, if the agent is learning
at a constant rate, the newest agent should win more often than any of the other agents. Exploration
is completely removed, this way the agent plays to the best of its abilities. Experiences are not
stored in the replay memory during evaluation. 100 evaluation games are run with each evaluation
period. After the evaluation is over, the four agents are reset and load the latest checkpoint again,
so that training can continue seamlessly.
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1 2 3 4 5
·105

0.2

0.4
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global_step

ε

Figure 4.2.: ε-greedy exploration as used by the MADDPG-agent. In this example ε starts at 1
and is at 0.05 after 5·105 training iterations. Therefore gst = 5·105, εt = 0.05 and
ε_factor =

(
1

0.05 − 1
)

· 1
5·105 = 38·10−6.

Agent Hyperparameters

The most important hyperparameters of the agents are explained here. For a comprehensive
explanation of each hyperparameter, please refer to Appendix B.1 and Appendix B.2.

learning_rate,actor_lr,critic_lr Are the learning rates for the different kinds of networks.
learning_rate is for the DQN-agent and the others for the critic and actor networks in the
MADDPG-agent.

tau The MADDPG-agent gradually updates its target networks. This parameter defines how fast
that is.

evaluation_interval Sets the interval with respect to training iterations at which evaluation
games are to be run.

minibatch_size How many samples are drawn from the replay-memory when doing training-
updates.

Environments

The Pommerman environment allows for some customisation: the board size, power-ups and block
types can be adjusted. The order of the environment descriptions are in ascending order of increasing
complexity.

FFA, June competition This environment is used during the competition in the beginning of June.
Its board is of size 11×11 and it contains all elements that the environment contains (figure
4.3a).

FFA, 8×8, no blocks, no power-ups This is a minimal environment: the board is reduced to the
smallest size (8×8) allowed by the environment. All blocks are removed, which also means
that no power-ups can be dropped (figure 4.3b).

FFA, 8×8, no power-ups Both wooden and rigid blocks are enabled, but no power-ups are dropped
still (figure 4.3c).

FFA, 13×13 This 13× 13 environment is the full FFA-mode game. It is like competition envi-
ronment, but larger, resembling the original Pommerman FFA environment before it was
removed (figure 4.3d).1

1While no experiments listed in this work use the 13 × 13 environment, quite a few were done on it. Since those
experiments can be found in the code, this environment is still listed in descriptions where the information
relevant, namely network architecture descriptions.
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(a) 11 × 11 June competi-
tion environment.

(b) 8 × 8 environment
without blocks.

(c) 8 × 8 environment
with blocks and
without power-ups.

(d) 13 × 13 environment.

Figure 4.3.: Overview over all environments used in the experiments.

Network Architectures
Some of the ANN-archtectures are compatible with OpenAIs baseline DQN [SS17] implementation,
while the others are built for MADDPG implementation. The model names are prefixed with
“OpenAI” or “MADDPG” respectively. Four different ANN architectures used in the described
experiments. Their detailed structure is described Appendix A and are referred to as OpenAI fully
connnected (figure A.1, OpenAI CNN and OpenAI CNN tanh (figure A.3) and MADDPG fully
connected (figure A.2).

The input to the ANNs is a flattened representation of the board and additional information.
Table 4.3 shows how the varying board sizes result in different ANN input vector lengths.

Table 4.3.: Board sizes and resulting ANN input vector sizes.

Board Size Input Vector Length

8×8 3·82 +3 = 195
11×11 3·112 +3 = 366
13×13 3·132 +3 = 510

For Convolutional Neural Networks (CNNs) the input is split into two parts: One containing the
three boards and one with the additional information. The three boards are reshaped to dimensions
of b× b×3, where b is the length of a side of the board and are the input for the convolutional
layer. The output of the convolutional layers is flattened and concatenated with the additional
information vector. This new vector then is passed to the fully connected output layer.
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5. Experiments

Only the most relevant plots are shown in this chapter. Please refer to the code repository or
accompanying USB-stick as explained in E.

5.1. Experiments using Deep Q-Learning

All experiments in this section use the DQN-algorithm by [SS17].

5.1.1. DQN Experiments 1 and 2: Simple Environment and Self-Play

Environment FFA, 8×8, no blocks, no power-ups.

Agents Four DQN-agents train by playing against each other.

Reward Shaping Only the reward given by the environment is used.

Network Architectures DQN Experiment 1: OpenAI fully connected, DQN Experiment 2: Ope-
nAI CNN.

Hyperparameters γ = 0.95. learning rate=0.0005, minibatch size = 128. For a comprehen-
sive list of all hyperparameters see table B.1 for DQN experiment 1 and
table B.2 for DQN experiment 2.

Objective The objective of this experiment is to compare the two architectures
OpenAI fully connected andOpenAI CNN. The hypothesis is that the CNN
should perform better than the fully connected network. Convolutional
layers have an easier time to detect features and process relative distances.
While a fully connected layer can, in theory, do the same, the CNN should
have an easier time solving the task than the fully connected network.

Results

DQN Experiment 1 Figure 5.1a shows that the agent usually ends games in a draw. In figure 5.1c
it is visible that after half of the training is over, the agent mostly uses one unique action in a
single episode. Figure 5.1e shows that the Q-values become large past half of the training period.
The visual analysis shows that the agent has learnt to only walk upwards. During the evaluation,
all agents walk upwards as far as possible and then stay stuck.

DQN Experiment 2 Figure 5.1b shows some outcome variety during evaluation games. Most of
the games are lost, there are some draws and victories, however. There is a tendency to prefer one
action over others during training episodes in figure 5.1d, but in most episodes, there is not one
action that completely dominates. The Q-values become very large according to figure 5.1f. Visual
inspection shows that the agents learnt to choose different actions in a single episode. The variety
is not very large, and they get stuck in a fixed position after a few moves.
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(a) DQN experiment 1: Stacked wins/draws/losses
in evaluation games.

(b) DQN experiment 2: Stacked wins/draws/losses
in evaluation games.

(c) DQN experiment 1: Stacked action probabilities
per episode during training.

(d) DQN experiment 2: Stacked action probabilities
per episode during training.

(e) DQN experiment 1: Average over the last 500
Q-values at every training iteration.

(f) DQN experiment 2: Average over the last 500
Q-values at every training iteration.

Figure 5.1.: Plots for DQN experiments 1 and 2.

Discussion
From comparing the evaluation game outcomes and action probabilities, one can deduce that the
agent using OpenAI CNN can outperform OpenAI fully connected based agent. The visual analysis
confirms that assumption. While the CNN based agent seems to also prefer one action heavily over
all others at the end of the training, it is not nearly as pronounced compared to the other agent
and seems to have resolved itself at the very end of the training.

Figures 5.1e and 5.1f show that the Q-function heavily overestimates the Q-values. Since the output
layers use a linear activation, there is no limit in how high or low the predicted values can become.
Constraining the Q-function output value range might improve the ANNs performance.

Details about this can be found in Appendix D. This experiment is not listed here since this
approach had negative effects on the performance of the agent.

5.1.2. DQN Experiments 3 and 4: Increasing γ to 0.999

Environment To keep the experiments comparable, the environment stays the same as
in the previous experiments.

Agents Four DQN-agents in self-play setting.
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Network Architectures DQN Experiment 3: OpenAI fully connected, DQN Experiment 4: Ope-
nAI CNN.

Hyperparameters Change γ = 0.999 (was 0.95 before), others stay the same. Hyperpa-
rameters in table B.3 for DQN experiment 3 and table B.4 for DQN
experiment 4.

Objective After seeing the previous experiments perform poorly, one parameter
that could have a significant impact on the performance is γ, as it defines
how far or short-sighted the Q-function is. An episode on the 8× 8
should not take longer than 500 time-steps. Assuming this worst-case
scenario, a positive reward for winning after 500 time-steps contributes
0.95500 = 7.27·10−12 ≈ 0 to the predicted Q-value and can as such not
be taken into consideration. Increasing γ yields a new discount future
reward of 0.999500 = 0.61. With this much higher value, the agents should
be able to better predict victories in the far future.

Results
DQN Experiment 3 The evaluation games in figure 5.2a show a few victories and more draws
than in earlier results. The action counts in figure 5.2c seem to be more equally distributed. The
Q-values are small in figure 5.2e. They are mostly negative at around −1. Visual inspection shows
behaviour that is comparable to what was previously observed with the CNN based agent. The
agents move in a fixed pattern and then get stuck.

DQN Experiment 4 The evaluation games in figure 5.2b show similar results compared to the
previous experiment. Figure 5.2d highlights that the agent now usually prefers one action over all
others. The Q-values are overestimated as can be seen in figure 5.2f. Visual inspection shows that
often all four agents move down one tile in the first step and then stand still.

Discussion
The OpenAI fully connected based agent has improved significantly compared to previous experi-
ments, notably the Q-value predictions are in a range close to what is expected. The predictions
are mostly negative, but not below -1.

The performance of the CNN has decreased. Given as nothing besides the discount factor has
changed, it is safe to assume that this is an irregularity as it can happen in DRL [Irp]. It is certainly
not an argument against setting γ = 0.999 and as such this will not be reverted.

Looking at the fully connected network’s predictions, it seems like it rarely predicts something
that is not a loss, hence the negative values. This is plausible: there are much more experiences
for losses in training than there are for victories. A draw is given the same reward of −1 as a loss
and being victorious is the only way for an agent to receive a positive reward. As can be seen in
the evaluation games, draws are much more likely than a single agent winning. This suggests that
adding some artificial positive reward might help the agent to perform better.

5.1.3. DQN Experiment 5: Reward Shaping

Environment 8×8, no blocks, no power-ups.

Agents Four DQN agents.

Network Architecture OpenAI CNN.

Hyperparameters This set of experiments is equal to the previous ones, with the only
difference being an added reward for killing enemies being added to the
reward shapers. See table B.5 for details.
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(a) DQN Experiment 3: Stacked wins/draws/losses
in evaluation games.

(b) DQN Experiment 4: Stacked wins/draws/losses
in evaluation games.

(c) DQN Experiment 3: Stacked action probabilities
per episode during training.

(d) DQN Experiment 4: Stacked action probabili-
ties per episode during training.

(e) DQN Experiment 3: Average over the last 500
Q-values at every training iteration.

(f) DQN Experiment 4: Average over the last 500
Q-values at every training iteration.

Figure 5.2.: Plots of DQN experiments 3 and 4.

Objective The previous experiments have shown that it is challenging for the agents
to learn. The rewards are extremely sparse, as the agent only gets one
reward per episode. When using the kill reward, the agent can collect
up to four positive rewards per game, which is still not a lot but should
help the agent to more easily learn to associate state-action pairs with
victories.

Results
The action counts during evaluation games in figure 5.3a show that the agent learns to not place
bombs and some variety of actions chosen even if there is no exploration. Figure 5.3b shows that
the Q-values are in a relatively small range, but continuously rising. A visual analysis shows that
without exploration, all agent move down one step as soon as the episode starts and then stop there
until the episode ends.

Discussion
Compared to DQN experiment 4, there seems to be a bit more variety of actions chosen during
evaluation games. The Q-values are much better. There still seems to be a strong bias towards
one action per round of evaluation games. It is possible that there is a more fundamental flaw
in the setup. Looking at the agents playing without exploration indicates that the agent has not
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(a) Stacked action probabilties during evaluation
games.

(b) Average over the last 500 Q-values at every
training iteration.

Figure 5.3.: Plots of DQN experiment 5.

learnt anything that would indicate meaningful behaviour, which is slightly contradicting to what
figure 5.3a seems to tell. It seems plausible that adding the kill reward helped the network to
predict Q-values more accurately.

Seeing as [Low+17] shows that DQN takes significantly longer to converge in environments where
multiple agents are learning, this suggests that it would make sense to change the setting in the
environment so that only one agent is learning while all others follow a stationary policy.

5.1.4. DQN Experiment 6: Single-Agent Learning

Environment 8×8, no blocks, no power-ups.

Agents One DQN-agent versus three SimpleAgents.

Network Architecture OpenAI CNN.

Hyperparameters Other than the single-agent setting, the hyperparameters stay the same.
See table B.6.

Objective DQN is known to perform sub-optimally in settings where multiple agents
are learning at the same time. From any single agents perspective, the
other agents are part of the environment. When the enemy agents learn,
this results in the environment changing, as the other agents improve.
As a consequence, the environment is non-stationary, which is not a case
that DQN is suited for [Low+17]. In this experiment, there is only one
learning agent, which means that to the Q-function, the environment is
stationary. In this setup, the agent should be able to learn better than
in previous ones.

Results

Figure 5.4a shows that actions are chosen more equally towards the end of the training. During
most evaluation periods choosing to go down is highly prioritised, which changes over time and
actions are chosen more equally distributed. A visual analysis shows that the agent has learnt to
walk into the bottom right corner if possible and does not seem to plant bombs. It is possible that
it does place bombs rarely, visual inspection has not shown any signs of this, however. Looking at
the total actions counts, it is visible that towards the end of the training, the agent survives longer.
Figure 5.4b shows that the Q-value predictions become very large.
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(a) Stacked action counts during evaluation games.
(b) Average over the last 500 Q-values at every

training iteration.

Figure 5.4.: Plots of DQN experiment 6.

Discussion

Upon visual inspection, the agent now seems to have learnt promising behaviour, compared to the
previous agent. This is a step in the right direction. It only moves toward the bottom right corner,
which might be a local minimum in its behaviour, since the agent does survive longer that way, as
figure 5.4a shows.

The Q-values have become huge. It is known that DQN-algorithms tend to overestimate Q-
values [HGS16]. The parameters of the algorithm have not been changed compared to prior
experiments, with the only difference being that self-play is no longer used. This does not explain
the huge Q-values.

Because the statistics of chosen actions during evaluation games looks very promising, with almost
all actions being represented in the later evaluation rounds, this strongly suggests that the single-
agent learning setting works much better with DQN. In such a simple environment, there is almost
no room for strategic behaviour. Adding some elements back into the environment might lead to
more variety of behaviour.

5.1.5. DQN Experiment 7: Increased Complexity

Environment FFA, 8×8, no power-ups.

Agents One DQN-agent versus three SimpleAgents.

Network Architecture OpenAI CNN.

Hyperparameters This experiment is, besides the environment, equivalent to the previous
experiment. See table B.7.

Objective The statistics seem to show that . As such it is of interest to see if the
agent performs worse again when the complexity of the environment is
increased again. Ideally it would be possible to observe how the agent
learns to make use of rigid blocks as a simple strategic element.

Results

Figure 5.5a shows that actions are reasonably evenly distributed, especially towards the end. The
Q-values are highly overestimated and seem to be exploding towards the end as is shown in
figure 5.5b. Visual analysis suggests that the agent has developed a preference to walk to the right.
It does show some variance in its behaviour, as it places bombs on rare occasions and moves to
different parts of the board. It does not dodge bombs reliably. Figure 5.5c shows that the agent
rarely ends the game in a draw or even wins.
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(a) Stacked action probabilities during evaluation
games.

(b) Average over the last 500 Q-values at every
training iteration.

(c) Wins/draws/losses during evaluation games.

Figure 5.5.: Plots of DQN experiment 7.

Discussion

The evaluation games show that the agent can even win on infrequent occasions. Since the training
agent is playing against simple agents, this is a interesting result. Together with the actions being
selected more evenly, it seems that the choices made are more sensible. It still has developed a
preference to move towards one side of the board, albeit less pronounced this time around.

The Q-values are much better but still very high. At the end of the training, the Q-values reach up
to 8000 and would continue to rise, if the training would continue, as can be seen in figure 5.5b.
Using double Q-learning might help with this issue, since [HGS16] have shown that using double
Q-learning can help with Q-value overestimation just as it helps with the standard Q-learning
algorithm.

5.1.6. DQN Experiment 8: Competition Experiment

Agents DQN-agent with double Q-Network enabled.

Network Architecture OpenAI CNN.

Environment FFA, 11×11, June competition.

Hyperparameters Except of the environment used and use of the double-DQN algorithm
by [SS17], the hyperparameters remain the same. See table B.8.

Objective This experiment is run shortly before the competition. To see whether the
current approach would have any chance at all at the competition, this
experiment is run on the full environment as it is used in the competition
held at the beginning of June. Enabling double-Q-networks should help
with the Q-value overestimation that was seen in previous experiments
since that is one of the main primary of double-DQN [HGS16].
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(a) Stacked action probabilities during evaluation
games.

(b) Average over the last 500 Q-values at every
training iteration.

(c) Wins/draws/losses during evaluation games. (d) Reward collected by the agent during training.

Figure 5.6.: Plots of DQN experiment 8.

Results

The actions chosen during the evaluation are chosen even more evenly than before, as figure 5.6a.
Figure 5.6b shows that the Q-values are much lower than in previous experiments, with the highest
values staying below 50 and having a negative inclination towards the end of the training session.
During the evaluation, the agent pulls out a draw and victories a few times every 100 games reliably,
going up to 30 combined victories and draws in the last set of evaluation games (Figure 5.6c)

The agent collects positive rewards from time to time. In the second half of the training period,
the agent collects more positive reward, which is shown in figure 5.6d

A visual inspection shows that the agent mostly chooses not to do anything. It chooses all actions
from time to time but mostly sticks to not taking any action.

Discussion

Increasing the complexity of the environment seems to have helped the agent to win. This seems to
come down to that the other agents do not only focus on the training agent but of course each
other also. With the larger board, it takes longer until the learning agent is confronted with enemy
agents. This might explain why the action chosen the most is to stop. On average, the enemy
agents will then find each other faster than they will find the training agent, as the training agent
does not work on creating a path towards his enemies.

The statistics look very promising. It seems like the agent has found a way to win from time to
time, much more often than in any previous experiments.

Using double-DQN seems to have helped with more sane Q-values. The results suggest that this
experiment is promising and should be run longer, to see if any other issues will arise. Due to time
constraints, this is left for future work.

32



CHAPTER 5. EXPERIMENTS 5.2. MADDPG-Agent Experiments

5.2. MADDPG-Agent Experiments

The experiments in this section use a custom implementation of MADDPG-algorithm as introduced
by [Low+17]. Since the MADDPG-algorithm is made for use in multi-agent settings and is reduced
to DDPG when not doing so, all experiments are learning in self-play setting.

Two experiments were shown, while more experiments were done using the MADDPG-algorithm,
none of them has shown relevant results.

5.2.1. MADDPG Experiments 1 and 2: MADDPG-Agents in Pommerman

Environments 8× 8, no blocks, no power-ups (MADDPG experiment 1) and 11× 11
June competition (MADDPG experiment 2).

Network Architecture Both experiments use MADDPG fully connected.

Parameters Parameters are kept close to the double-DQN-Agents parameters. MAD-
DPG-specific parameters were set as [Low+17] recommends. The most
important hyperparameters are shared by the two experiments:

actor_lr 0.0001

critic_lr 0.0005

tau 0.01

minibatch_size 128

Hyperparameters of MADDPG experiment 1 are listed in table B.10 and
of MADDPG experiment 2 are in table B.11.

Objective These were the last experiments run with MADDPG. They reflect the
lessons learned from the DQN experiments, by using a high value for γ and
both the KillReward and DummyReward. The only difference between
the two experiments is the environment used. With the hyperparameters
and environment being similar to DQN experiment 8, the agent should
show some signs of intelligent behaviour.

Results

MADDPG experiment 1 The loss in figure 5.7a grew to large values. The agent did vary his
choices in actions during evaluation games, as figure 5.7c shows and the Q-values are in range in
[0,1], as shown in figure 5.7e.

A visual analysis shows that the agents move to the top of the board and a few steps to the right.
They then continue to move upwards, which is of course not possible, since they are already at the
top border of the board.

MADDPG experiment 2 The loss is shrinking over time and is rather small over the entire course
of the training, which can be seen in figure 5.7b. Figure 5.7d suggests that the agent did not learn
to take any other action besides "Up" throughout the entire training. The Q-values in figure 5.7f
are again in the range [0,1].

As is suggested by the actions logged during evaluation games, visual inspection shows that all
agents move upwards as far as they can. They keep taking action "Up", which is, of course, ignored
by the environment at that point.
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5.2. MADDPG-Agent Experiments CHAPTER 5. EXPERIMENTS

(a) MADDPG experiment 1: critic loss. (b) MADDPG experiment 2: critic loss.

(c) MADDPG experiment 1: Stacked action proba-
bilities of evaluation games.

(d) MADDPG experiment 2: Stacked action proba-
bilities of evaluation games.

(e) MADDPG experiment 1: Average over the last
500 Q-values at every training iteration.

(f) MADDPG experiment 2: Average over the last
500 Q-values at every training iteration.

Figure 5.7.: Plots of MADDPG experiments 1 and 2.

Discussion There are no signs pointing towards learning progress of any kind. Particularly
interesting are the extremely large critic loss in figure 5.7a and how the critic loss is rather small in
figure 5.7b, even though the only difference between the two experiments is the environment chosen.
The loss should in theory not get this large, given that the Q-values are relatively small. This
would hint an implementation bug. That would however pose the question, why this behaviour is
completely different in MADDPG experiment 2.

These two experiments are representative of most other MADDPG experiments that are not shown
in this thesis. After finding that deterministic policy gradients are for use in continuous action
spaces, it was decided that this approach would not be further investigated and experiments should
be focused on simpler environments with well tested algorithm implementations should be the next
step
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6. Conclusion

We were not able to fully answer the initial question of what approach can learn to play Bomberman
in a multi-agent setting. Nevertheless, this work shows a few key challenges and brings forth a few
concrete pointers which might bring good results in the Pommerman environment. Concluding we
want to go over what approaches did not work, but more importantly, which methods might lead
to success in future work.

Choice of Environment

We chose the Pommerman environment as a challenge to solve in this work. While the environment
is great, in theory, and perfect for our criteria, it was and still is in early development. With the
development of Pommerman, we also had to make adjustments to our code base repeatedly. Since
some elements have been changed or removed early experiments are no longer reproducible with
the latest version of Pommerman. Namely, the board size was reduced to 11× 11, a power-up
was removed, and the observation received by the environment was updated several times the last
time only three weeks before finalising this work1. During the project, we have observed several
bugs in the environment being fixed and encountered a few ourselves. This, of course, was never a
huge hindrance and could mostly be dealt with efficiently. It does, however, pose an issue with
reproducibility, as it cannot be guaranteed that the code accompanying this thesis will still work
reasonably with Pommerman in a few months from the time of writing.

Choosing a Fitting Algorithm

While the MADDPG algorithm seems to be fit perfectly to solve the Pommermans environments,
including communication to cooperate in Team Radio 2v2 mode, we did not succeed in getting it
to work in Pommerman. The reason might be a bug in our implementation of the algorithm that
we could not identify, or more likely, because it is based on deterministic policies, which is designed
to work in continuous action spaces [Low+17].

The DQN algorithm is known to not work well in multi-agent settings, and our experiments have
confirmed that the agent learns better when there is only one learning agent. Particularly the
double-DQN algorithm has shown the potential for good results in such a simplified setting.

Starting Simple

Our experiments have shown that it makes sense first to start as simple as possible. Initially,
we did not expect that having multiple agents learning would pose much of an issue with DQN.
The outcome of our experiments has however shown that this is an issue. After simplifying the
environment as much as possible by removing as many elements as possible, the experiments were
much more successful.

From experience with this thesis, we have learnt that it is vital first to use a minimal environment
to get the algorithms to work and then scale the environment up in complexity, step by step figuring
out what it takes to get the agent to learn in the environment.

1The project was actively developed during the time period we were working on this bachelors thesis: https:
//github.com/MultiAgentLearning/playground/commits/master
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CHAPTER 6. CONCLUSION

Choosing Parameters
We chose parameters by using what has been proven to work in other environments already. This
does not mean that those parameters will work just as well in Pommerman. For this reason, we
decided to change γ to 0.999, as its previous value of 0.95 was too low for the agent to predict
rewards for victories that on average were too far into the future.

Reward Shaping
Sparse rewards make it difficult for the agent to learn. It is challenging to do reward shaping
correctly, as it can easily happen that the agent then learns to follow a heuristic instead of learning
to solve the environment correctly. By adding a kill reward, which objectively is a good action in
Pommerman, the agents seem to have been able to learn better behaviour.

Deep Reinforcement Learning in Pommerman
This work leaves many open questions. It does however illustrate some important findings. Double-
DQN, with γ = 0.999 and a bit of reward shaping and only one learning agent has potential to solve
the environment. Using CNNs to approximate the Q-function is performing better than using fully
connected networks.

The MADDPG algorithm is not a well-suited algorithm for Pommerman, as none of the experiments
has shown any behaviour that would indicate that the agent learnt anything sensible.
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7. Future Work

Since this bachelor thesis was not able to solve Pommerman, there are still a lot of possible further
approaches to achieving that goal.

Continue Work on Double-Q-learning
The possibilities with the Double-DQN agent are by no means exhausted. It would be interesting
to continue working on the agent from DQN experiment 8 (Section 5.1.6), possibly using techniques
like curriculum learning [Ben+09] to gradually improve the agent or applying replay memory
stabilisation methods as shown in [Foe+16].

Network Architectures
The CNN architecture shows potential, for future work we recommend sticking to use of CNNs.
The approach to follow would be to get an agent to win consistently against the SimpleAgent
on the small 8× 8 environment without power-ups or blocks. We are convinced that the latest
experiment is, in theory, able to do so. Doing changes to the network architecture would show how
these changes affect performance and a fitting network architecture could be found.

Using curriculum learning [Ben+09] the environment could then be increased in complexity. The
network might have to be changed in this process as the environment becomes more complex.

Autoencoder
While autoencoders were not discussed in this thesis, one experiment was done using undercomplete
autoencoders. This is inspired by [LR10], where they used autoencoders to compress features in
input images. While Pommerman does not supply images as observations, autoencoders could still
be helpful, as it would help the ANN to recognise patterns and useful information.

Search
Since the rules of the Pommerman environment are well defined, it would be feasible to apply
adversarial search methods to the problem. In this framework of looking ahead, it might be possible
to achieve better results. The solution, in this case, could be inspired by [Sil+17b], as they were
using self-play and search as well.

Different Algorithm
Once there is a solid understanding of how complex the environment is, it would make sense to
experiment with different algorithms that are better suited for multi-agent learning environments
like Pommerman. The algorithm would ideally be based on DQN, as those methods are built for
discrete action spaces [Mni+15], whereas methods based on DDPG are a better fit for continuous
control problems [Lil+15].

Applying MADDPG to DQN would be one such algorithm we would suggest to explore. The
MADDPG algorithm extends DDPG by using all agents observations and actions as input for
the critic. This works because the additional information is available during training time. At
evaluation time, only the actor-network is needed and only this one takes the agents own observation
as input.

This could be implemented analogously with DQN, by using the same centralised critic. A “localised”
critic then learns to approximate the centralised critic based on only the agent’s observation-action
pair.
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DQN Deep Q-Network. , 1, 21, 22, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, III

DRL Deep Reinforcement Learning. , 1, 2, 17, 27, 43

FFA Free For All. 15, 17, 18, 19, 22, XIII

MADDPG Multi-Agent Deep Deterministic Gradient. , 12, 21, 22, 33, 32, 33, 34, 33, 34, 35, 36,
37, 43, XV

MDP Markov Decision Process. 4, 5, 6, 8, 43

PG Policy Gradient. 11, 12

RL Reinforcement Learning. , 2, 4, 9, 15, 43

TD Temporal-Difference. 8, 9
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A. Network Architectures
A.1. OpenAI fully connected and MADDPG fully connected

Fully Connected
Activation: ReLu

192/366/510 → 512

Fully Connected
Activation: ReLu

512 → 128

Fully Connected
Activation: Linear

128 → 6

Figure A.1.: OpenAI fully con-
nected.

Fully Connected
Activation: ReLu

Actor: 192/366/510 → 1024
Critic: 216/279/534 → 1024

Dropout: 0.2

Fully Connected
Activation: ReLu

1024 → 512
Dropout: 0.2

Fully Connected
Activation: Linear
Actor: 512 → 6
Critic: 512 → 1

Figure A.2.: MADDPG fully
connected. Actor
and critic networks
differ in input and
output dimensions,
but are otherwise
identical.

A.2. OpenAI CNN and OpenAI CNN tanh

Split
195 → [192, 3]
366 → [363, 3]
510 → [507, 3]

Reshape
192 → 8x8x3

363 → 11x11x3
507 → 13x13x3

Conv2D
Kernel: 3x3

Activation: leaky ReLu
Strides: [1, 1]

8x8x3 → 8x8x8
11x11x3 → 11x11x8
13x13x3 → 13x13x8

Conv2D
Kernel: 3x3

Activation: leaky ReLu
Strides: [1, 1]

8x8x8 → 8x8x16
11x11x8 → 11x11x16
13x13x8 → 13x13x16

Flatten
8x8x16 → 1024

11x11x8 → 1936
13x13x8 → 2704

Concatente
[1024, 3] → 1027
[1936, 3] → 1939
[2704, 3] → 2707

Fully Connected
Activation: Linear

1027 → 6
1939 → 6
2707 → 6

Figure A.3.: The image shows OpenAI CNN. OpenAI CNN tanh is identical, except of the activation
in the output layer being tanh instead of linear.

I





B. Experiment Hyperparameters

This chapter is a list of tables, showing the hyperparameters of all relevant experiments.

B.1. OpenAI Baselines DQN-Agent Hyperparameters

environment_config A function that returns properties required by the Pommerman environment.
This contains things such as board size, block types, available power ups and more.

use_double_q If set to true, double Q-learning is used.

learning_rate The learning rate used to update the ANN with.

replay_memory_size How many elements can be stored in the replay memory.

min_training_replay_memory_size The number of elements that need to be in the replay memory
before training begins. Before that is reached, the network is not updated, only playing
happens in order to gather enough experience tuples.

minibatch_size How many samples are drawn from the replay memory for an update.

nr_episodes How many games should be played before ending the training.

exploration OpenAI baselines has several different schedulers for computing ε, which is used
for exploration. This parameter is an instance of any one of those schedulers. Only the
LinearScheduler is used for DQN-agents.

training_agents A list of classes which of learning agents. These will be instantiated later on.

playing_agents A list of agents that need not be updated. These agents are added to the
environment just like the training_agents are, but are ignored by the training algorithm.

model A python module containing a function that takes a tensorflow tensor object, the size of
the action space and returns a tensorflow tensor object. When querying tensorflow for that
tensor, the result is a vector with length of the action-space, where each element of the tensor
represents the state-action value of an action.

observation_preprocessor An instance of Observation, to which a list of observation pre
processors is passed.

reward_shaper A list of reward shapers.

keep_max_n_checkpoints The parameters are saved regularly. A short history is kept of past
checkpoints and this parameter limits how many are kept.

update_target_interval Determines how often the target network is updated.

evaluation_interval Determines after how many training iterations evaluation games are run.

evaluation_games How many games are run in an evaluation period.

evaluation_agents_checkpoints A list of four elements, determining which checkpoints are to
be used. A value of 0 means that the latest checkpoint is used, a value of −1 means that the
previous checkpoint is used and so on. The evaluation_interval determines how often the
models are saved.

gamma The discount factor as it is described in paragraph 2.2.1.

III



B.1. DQN Hyperparameters APPENDIX B. EXPERIMENT HYPERPARAMETERS

DQN Experiment 1

Table B.1.: Hyperparameters of DQN experiment 1
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIDense3
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.95

DQN Experiment 2

Table B.2.: Hyperparameters of DQN experiment 2
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.95
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APPENDIX B. EXPERIMENT HYPERPARAMETERS B.1. DQN Hyperparameters

DQN Experiment 3

Table B.3.: Hyperparameters of DQN experiment 3
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIDense3
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999

DQN Experiment 4

Table B.4.: Hyperparameters of DQN experiment 4
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999
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B.1. DQN Hyperparameters APPENDIX B. EXPERIMENT HYPERPARAMETERS

DQN Experiment 5

Table B.5.: Hyperparameters of DQN experiment 5
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999

DQN Experiment 6

Table B.6.: Hyperparameters of DQN experiment 6
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent
playing_agents SimpleAgent, SimpleAgent, SimpleAgent
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999
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APPENDIX B. EXPERIMENT HYPERPARAMETERS B.1. DQN Hyperparameters

DQN Experiment 7

Table B.7.: Hyperparameters of DQN experiment 7
Hyperparameter Value

environment_config FFA, 8x8, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 500000
training_agents DeepQAgent
playing_agents SimpleAgent, SimpleAgent, SimpleAgent
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999

DQN Experiment 8

Table B.8.: Hyperparameters of double-DQN experiment 8
Hyperparameter Value

environment_config FFA, 11x11, June competition
use_double_q True
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 1, final eps = 0, num steps = 500000
training_agents DeepQAgent
playing_agents SimpleAgent, SimpleAgent, SimpleAgent
model OpenAIConv2D2Dense1
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 100000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.999
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B.1. MADDPG Hyperparameters APPENDIX B. EXPERIMENT HYPERPARAMETERS

DQN Experiment 9

Table B.9.: Hyperparameters for experiment exp10
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
use_double_q False
learning_rate 0.0005
replay_memory_size 500000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 10000000
exploration Linear Scheduler: initial eps = 0, final eps = 0, num steps = 6000000
training_agents DeepQAgent, DeepQAgent, DeepQAgent, DeepQAgent
playing_agents None
model OpenAIConv2D2Dense1tanh
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper DummyReward
keep_max_n_checkpoints 10
update_target_interval 1000
evaluation_interval 200000.0
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
gamma 0.95

B.2. MADDPG-Agent Hyperparameters

environment_config A function that returns properties required by the Pommerman environment.
This contains things such as board size, block types, available power ups and more.

actor_lr If set to true, double Q-learning is used.

critic_rate The learning rate used to update the ANN with.

tau At what rate the target network is updated.

gamma The discount factor as it is described in paragraph 2.2.1.

gradient_clip_norm Policy gradients can become large. This parameter defines at which absolute
value the gradients are clipped.

epsilon_global_step Determins after how many training iterations an ε is reached, which is
given in the next parameter.

epsilon_at_epsilon_global_step Determines the exact value of ε after a certain amount of
training iterations.

replay_memory_size How many elements can be stored in the replay memory.

min_training_replay_memory_size The number of elements that need to be in the replay memory
before training begins. Before that is reached, the network is not updated, only playing
happens in order to gather enough experience tuples.

minibatch_size How many samples are drawn from the replay memory for an update.

nr_episodes How many games should be played before ending the training.

training_agents A list of classes which of learning agents. These will be instantiated later on.

VIII



APPENDIX B. EXPERIMENT HYPERPARAMETERS B.2. MADDPG Hyperparameters

playing_agents A list of agents that need not be updated. These agents are added to the
environment just like the training_agents are, but are ignored by the training algorithm.

agent_model A python module containing a function that takes a tensorflow tensor object, the
size of the action space and returns a tensorflow tensor object. When querying tensorflow for
that tensor, the result is a vector with length of the action-space, where each element of the
tensor represents the state-action value of an action.

observation_preprocessor An instance of Observation, to which a list of observation pre
processors is passed.

reward_shaper A list of reward shapers.

keep_max_n_checkpoints The parameters are saved regularly. A short history is kept of past
checkpoints and this parameter limits how many are kept.

evaluation_interval Determines after how many training iterations evaluation games are run.

evaluation_games How many games are run in an evaluation period.

evaluation_agents_checkpoints A list of four elements, determining which checkpoints are to
be used. A value of 0 means that the latest checkpoint is used, a value of −1 means that the
previous checkpoint is used and so on. The evaluation_interval determines how often the
models are saved.

MADDPG Experiment 1

Table B.10.: Hyperparameters of MADDPG experiment 1
Hyperparameter Value

environment_config FFA, 8x8, no blocks, no power-ups
actor_lr 0.0001
critic_lr 0.0005
tau 0.001
gamma 0.999
gradient_norm_clip 5.0
epsilon_at_epsilon_global_step 0.01
epsilon_global_step 10000000.0
replay_memory_size 100000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 1000000000
training_agents MADDPGAgent, MADDPGAgent, MADDPGAgent, MADDPGAgent
playing_agents None
agent_model Dense3Layers
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
evaluation_interval 20000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
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B.2. MADDPG Hyperparameters APPENDIX B. EXPERIMENT HYPERPARAMETERS

MADDPG Experiment 2
Table B.11.: Hyperparameters of MADDPG experiment 2

Hyperparameter Value

environment_config FFA, 11x11, June competition
actor_lr 0.0001
critic_lr 0.0005
tau 0.001
gamma 0.999
gradient_norm_clip 5.0
epsilon_at_epsilon_global_step 0.01
epsilon_global_step 10000000.0
replay_memory_size 100000
min_training_replay_memory_size 1024
minibatch_size 128
nr_episodes 1000000000
training_agents MADDPGAgent, MADDPGAgent, MADDPGAgent, MADDPGAgent
playing_agents None
agent_model Dense3Layers
observation_preprocessor ActorObservation

ScaleBoardObservation
ScaleBombBlastStrengthObservation
ScaleBombLifeObservation
ScaleOtherObservation
CombineObservations

reward_shaper KillReward, DummyReward
keep_max_n_checkpoints 10
evaluation_interval 20000
evaluation_games 100
evaluation_agents_checkpoints 0, -1, -1, -1
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C. Preliminary Experiment

In the reward shaping experiments, we scale the values to [−1,1], as is described in section 4.2.
To check how difficult it is for a network to map a floating point number to a discrete value, an
experiment was conducted to empirically show that this does work. The network is very simple
and can be seen in figure C.1. All hyperparameters are listed in table C.1.

i

0

Layer l0
Dropout: 0.2%
Activation: ReLu

0

1

...

39

40

l1
Dropout: 0.2%
Activation: σ

0

1

...

29

Figure C.1.: Network that learns to produce a one-hot encoding from a real input.

Table C.1.: Hyperparameters for preliminary experiment for real number to one-hot encoding.

Parameter Value

Number of Samples 222 = 1048576
Test-Set 0.2%
Optimiser Adam
Learning Rate 0.001
Minibatch Size 1024
Epochs 100

Data Generation The data required is very simple: In a first step, 222 samples are generated,
which serve as input data. In a second step, labels are generated, which are a one-hot representation
of the previously generated random numbers. Lastly, the inputs are scaled from [0,29] to [−1,1].

Results The network can easily learn to map real numbers to a one-hot encoding. Without much
tweaking, the ANN is able to learn to map all numbers from 0 to 29 mapped to [−1,1] to a one-hot
encoding without any errors. The loss becomes very low quickly, which is shown in figure C.2. After
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APPENDIX C. PRELIMINARY EXPERIMENT

only 25 episodes of training, which is in total 81925 training iterations (3277 iterations per episode,
based on number of sample minus the test set).

This experiment confirms that the way the preprocessing is done is not a source for error, as the
networks should easily be able to differentiate 14 different values in the board. While the bomb_life
values are in [0,25], these values are much less important to differentiate between, as it can be
looked at as a continuous countdown. Even if this would not be the case, the network should still
be able to learn this however.

Figure C.2.: Loss on training set and test set over the 25 training episodes.
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D. DQN Experiment 9: Changing the
Activation Function

This experiment is the same as the previous ones, except of the following points:

Environment FFA, 8×8, no blocks, no power-ups.

Agents Four DQN-agents.

Network Architecture OpenAI CNN tanh, see figure A.3 for detailed architecture.

Parameters learning rate = 0.0005, minibatch size = 128, detailed hyperparameters are listed in
table B.9.

Objective Because the Q-values became huge in previous experiments, this experiment aims to limit
the Q-function’s output range by using tanh activation for the output layer. The hypothesis
is that the agent might learn faster if the Q-values are in a better range.

Results

(a) Average Q-values over the
last 500 values at each train-
ing iteration.

(b) Stacked action counts dur-
ing evaluation games.

(c) Critic loss during training.

Figure D.1.: Plots for DQN experiment 9.

Figure D.1a shows how the Q-values quickly clip to 1. The stacked action probabilities plot in
figure D.1b shows that the agent only chooses the action "Stop". The loss in figure D.1c is small.

Discussion
Since all Q-values are equal with a value of ≈ 1, argmaxa∈AQ(s,a) always returns index 0, which is
the action "Stop". It makes sense that the critic loss is relatively small, which also means that the
agents will not learn much, however. It seems obvious at this point that the approach of adding a
tanh activation function does not work.
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E. Experiment Hard- and Software

Hardware
All experiments were run on the ZHAW internal GPU cluster using NVIDIA Titan Xp GPUs and
Intel Xeon CPU E5-2650 v4 CPUs.

Software
Information on how to run our code is in the README.md on the usb stick. Following dependencies
need to be installed first:

• Python 3.5 or higher
• high performance message passing library headers. (In ubuntu repositories: libopenmpi-dev)
• zlib compression library headers. (In ubuntu repositories: zlib1g-dev)

We recommend using the docker image provided in src/docker or on docker hub: https://hub.
docker.com/r/dujoram/pommerman-tensorflow-gpu/

Python Packages
• pandas
• tk
• opengl
• pydot
• tensorforce
• keras
• Dependencies of Pommerman: https://github.com/MultiAgentLearning/playground
• Dependencies of OpenAI baselines: https://github.com/openai/baselines

USB / Repository contents
The USB1 provided with this thesis contains the following folder structure:

1can also be found in the git repository https://github.engineering.zhaw.ch/Sparclex/ba-stdm-3-2018
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APPENDIX E. EXPERIMENT HARD- AND SOFTWARE

Table E.1.: USB / Repository contents
Path Description

Bachelor-Thesis-Stdm-3-2018.pdf This document
README.md A short description to reproduce the experiments
experiment_plots All generated plots of the described experiments
src Experiment code
src/ActorCriticModel All models used for the experiments
src/agents DeepQ and MADDPG agents
src/docker The docker file, which was used to run the experiments
src/encoder_trainer.py Encoder training runner
src/exp2tex.py Converts the experiement hyperparameters to a tex table
src/experiment_data models, plots and csv_logs
src/ExperimentLog.py Experiment logger
src/experiments Experiment classes which do the whole setup and handling of an experiment
src/hyperparameters.py All the hyperparameters of the experiments
src/p The pommerman repository
src/plot.py Creates plots by the given experiment
src/preprocessors Observation preprocessors
src/ReplayMemory.py Implementation of a replay memory
src/reward_shapers Reward shapers
src/runner.py Runs the experiments by using the experiment class and the hyperparameters
src/tensorboard_runner.py Handles all the tensorboard related stuff
src/util.py Utility functions
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