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Zusammenfassung

Es hat sich mehrfach gezeigt, dass neuronale Netzwerke gut im Gebiet der Natural Lan-
guage Generation funktionieren. Ein Problem, welches sie zurzeit aber noch haben, ist,
dass eine grosse Menge an speziell vorbereiteten Daten benotigt werden.

Das Ziel dieser Arbeit ist es festzustellen, ob ein bereits existierendes neuronales Netz,
das gut darin ist, Restaurant Reviews zu generieren, auch mit keinen oder nur geringen
Anpassungen in der Lage ist dhnlich gute Resultate im Generieren von Laptop Reviews zu
erreichen. Ein weiteres Ziel ist es herauszufinden, wie schwer es ist ein passendes Datenset
fiir ein neuronales Netz zu erstellen.

Zuerst wurden Daten von einem Onlinehandler gesammelt, die wichtigsten Informationen
extrahiert und das Ganze in einem Datenset zusammengefasst. Anschliessend wurde das
existierende neuronale Netz auf dem erstellten Datenset trainiert.

Die Resultate zeigten, dass die Outputqualitit eines neuronalen Netzwerks in grossem
Zusammenhang mit der Qualitat des Datensets steht. Nicht nur die Grosse des Datensets
selber, sondern auch Eigenschaften wie die Grosse des Vokabulars (Anzahl einzigartiger
Worter) spielen eine grosse Rolle. Da das erstellte Datenset noch sehr "unsauber” war,
fithrte es dazu, dass auch der Output schlecht war. Ausgehend von diesen Resultaten
musste die Problemstellung der Arbeit vereinfacht werden. Die zweite Problemstellung
beinhaltete die Frage, wie gut ein neuronales Netz beim Ordnen von ungeordneten Satzen
und beim Fiillen von Liicken in Sétzen ist.






Abstract

Neural networks work well in the field of natural language generation, the problem being
that they require a great number of data and usually have to be specifically adapted for
the task at hand.

This thesis aims to determine whether an already established network that performs well
in one domain (restaurant reviews), also does so in another one (laptop reviews) with no
or only minor adjustments to it. It also aims to establish how difficult it is to create a
suitable dataset for a neural network.

First, data was gathered from an online laptop retailer. Then the most important in-
formation was extracted and summarized in a dataset. Finally the already established
neural network is trained on said dataset.

Results illustrated that the quality of the dataset is one crucial part of a well perform-
ing neural network. While the total size of the dataset is clearly important, properties
such as the vocabulary size (number of unique words) also play a significant role. The
output quality of the neural network quickly drops when trained on a dataset created
out of "noisy” data. In the end it transpired that given the created dataset, the neural
network did not perform as expected and the task had to be simplified to trying to solve
the problem of bringing shuffled sentences back into the right order and filling gaps in
sentences.
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1. Introduction

In the project preceding this bachelor thesis it was shown that a relatively basic neural
network already performs well in the task of generating sentences when given a feature
vector [11]. The dataset used in said project consists out of approximately 42000 restau-
rant reviews and was specifically prepared for a natural language generation challenge,
meaning it was a very "clean” dataset. The similarities in the sentence structures and a
small vocabulary simplified the learning process for the neural net.

The goal of this bachelor thesis was to determine whether the neural network built in the
previous project can also be used in other domains. It was decided to focus on laptop
reviews, because the challenge is similar to restaurant reviews. The difference was that
the features which can be generated are now for example CPU, GPU, RAM and other
laptop specifications instead of food type, area, price and other attributes. One of the
main challenges was the choice of the dataset. Since there was no already existing set
available one had to be created. This meant that review data had to be crawled from
the internet with the high risk of getting a lot of "noise” in the created dataset and
a most likely large vocabulary compared to the restaurant review one. These factors
could have a great influence on the neural nets ability to recognize patterns and learn
efficiently.

This thesis aimed to answer the following questions:

o What are the challenges when creating a dataset for a neural network out of data
crawled from the internet with the goal of generating natural language?

e Does the network built in the project thesis work at all?
— If so, how well does it perform?

— If not, what adjustments need to be made for it to work / perform well?

This thesis is structured as follows: First the planning chapter includes the meeting
summaries that explain what was done and when it was discussed. Then some basics
needed for this thesis are explained followed by the creation and analysis of the dataset
used. The next chapter explains the architectures of the models created for this thesis.
Finally the results of the individual models are displayed and analyzed followed by a short
conclusion of the thesis.
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2. Related Work

Different approaches exist to build a Natural Language Generator. One approach that is
currently popular is to use Neural Networks to build language models, which was done
for this bachelor thesis and is based on the project "Natural Language Generation using
Neural Networks”[11]. The goal of the preceding project was to set up a neural network
for the E2E NLG challenge [10], which in the end took a feature vector into consideration
and generated meaningful text. In this thesis said neural net was used as a base and
adjustments were made where needed. It consisted of two inputs, one with the already
generated text that was feed to an LSTM and a second with the features to be generated.
Wen et al.(2015) [14] used a similar approach. They created a semantically controlled
LSTM cell where they extended the LSTM cell with the information on which features it
has to generate. This approach led to good results. Juraska et al. [8] used an ensemble of
3 different sequence-to-sequence models as the generator. Two of the models used bidirec-
tional LSTM as an encoder, the third model relied on a CNN encoder. In order to have
different results from the 2 LSTM encoders, they were trained individually for a different
number of epochs. In the end the output probabilities of the top 10 candidates from the
models were combined and the utterance with the highest score was predicted. This en-
semble approach increased the overall output quality of the system.

The second part of this thesis deals with the challenge of bringing words of a sentence into
the right order, which is a difficult task. It depends on different factors such as “syntactic
structure, selective restrictions, subcategorization,and discourse considerations” according
to Elman[5]. There are different approaches to solve the task. A simple approach is to use
n-gram language models. These models can already perform well as Liu and Zhang showed
[9]. They compared the n-gram word modeling and syntactic language models for word
ordering. Syntactic language models also rely on statistical language models such as for
example n-grams but they are extended with a discriminative language model which is able
to consider syntactical information according to Kaufmann and Pfister[13]. Liu and Zhang
found that the syntactic language model performs better then a simple n-gram model,
but a combination of both of them gets even better results[9].

Another approach to the problem is the usage of LSTM lanugage models, which was done
by Schmalz, Rush and Shieber [12]. For this task no explicit syntactic information was
provided to the model. They also compared their model to a n-gram model and showed,
that the LSTM solution outperformed the n-gram approach. Hasler et al. [1] came up
with a bag-to-sequence model that was inspired by a sequence-to-sequence model with
attention. They compared their model with a normal seq2seq model and with n-gram
models. Even though it outperformed both of them, they called the seq2seq model a
strong baseline.
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A question for both of these problems is how does one evaluate the output quality. A
measurement that is often used is the so called BLEU score, which originated from the
field of machine-translation. It is however only considered to be a sufficient meassurement
to give a vague idea on how well the output is, as Juraska et al. [8] concluded in their
paper. The same conclusion was found by Gatt and Krahmer [2] in a study where they
did a survey on the start of the art in Natural Language Generation. It was found
that the BLEU score and human evaluation differ and the correlation between these two
measurements is not always given. Their conclusion was that it would be helpful to look
at different measurements to assess the output quality.
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3. Planning

This chapter contains some information on how the planning of this thesis was done.
The first three weeks mainly consisted out of crawling the necessary data, creating and
analyzing the dataset. For the remaining weeks the topics addressed can be viewed in
the meeting summaries. After the last meeting the main focus was the writing of this
thesis.

3.1. Meeting Summaries

3.1.1. Meeting Week 4

Create tree to visualize features of CPU, GPU, etc. (powerful, energy saving, ...)
Determine most important specs

— Find text parts that describe said specs
— Find values / keywords of specific features (e.g. price — high, moderate, ...)

o Fix missing product names in Notebookcheck dataset
Extract section titles of Notebookcheck reviews
Try to find sentences on Google describing specific CPUs

3.1.2. Meeting Week 5

o Check if a rule of thumb for battery runtime exists

« Extract price expression using Regex

o Remove §$ prices from dataset

» Create first dataset out of extracted sentences for feature
o Write down analysis details for report

3.1.3. Meeting Week 6

Check out external reviews (e.g. Techradar,...)

Compare seed words for prices (e.g. moderate) to actual price — mapping?
Create price distribution statistics (e.g. for specific CPU / GPU models)
Test generation with CPU and GPU features
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¢ Check number of sentences extracted for all features

3.1.4. Meeting Week 7

o 1st Phase: Try generation without feature vector

o 2nd Phase: Add feature vector

o Try CNN stack instead of LSTM

o C(Calculate word count leaving out words with less than e.g. 5 occurrences
e Switch from character to word-based

o Try sentence generation for e.g. GPU given keywords

— Try with large example dataset beforehand (e.g. Shakespeare, Bible, ...)
— Given a vector of words generate a sentence containing them all

3.1.5. Meeting Week 9

o Try a 2D CNN instead of 1D (set length or width to matrix length)
e Start generation with word instead of empty string

— Try with different words and use beam search
e ”Sanity-checks”:

— Non-sorted input
— Assign word-to-int randomly instead of in order

e Set up NN that tries to complete one or multiple words

o Calculate BLEU score or similar (e.g. Rouge, Meteor,...) on output
o Try with restaurant dataset at first

o Find spell-checker API

3.1.6. Meeting Week 10

o Simplify problem: Give the NN a choice of two words to fill a gap
o Leave out the dense layer after one-hot

o Use vector with word ids instead of one-hot encoding

e Analyze the softmax output

— Correct word should be high up
— Try setting up a choice between the correct and a low value word

e Set up or find a NN for the dot product

3.1.7. Meeting Week 11

o Try prediction in different direction - are there different results?
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o Try 2-grams with 2 gaps (input = bag of 2-grams)

o Try seq2seq model for prediction

o Analyze Keras LSTM cell code - check possibility of automatically setting a gener-
ating word to 0 in the input vector

3.1.8. Meeting Week 12

o Check correlation between BLEU score and sentence length

o Attention mechanism in Keras?

e Set up seq2seq model with word-dropout to randomly set gaps by adapting the
dropout layer of keras

o ”Sanity-Checks”:

— Calculate F1-Score over all words
— Are all words present?
— Are additional words added?

o Check if the bad BLEU scores are in correlation with the content of the dev- /
trainset

 Input words in non sorted order (random shuffle)

o Analyze what kind of gaps the NN can fill and where it has problems

3.1.9. Meeting Week 13

o Take a closer look at softmax output of wrongly replaced words (list top 5)
o Compare word statistics of train- and devset
« Fix bug in NN (e.g. Riverside appears way too often)

16



4. Basics

In this chapter specific terms, technologies and methods mentioned or used in this the-
sis are explained in greater detail. This includes the used classes of neural networks
such as the CNN and the RNN and also specific models such as the sequence-to-
sequence model. A more general introduction to neural networks can be found on-
line!.

4.1. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a specific class of a neural net that is most
often used in the area of image recognition. Other applications include video recognition,
recommender systems and also natural language processing. CNNs take inspiration from
biology and how the visual cortex” works?. They use a set of special layers, starting with
the Convolutional layer.

Convolutional layer The convolutional layer (short: conv layer) is always the first layer
in a CNN and applies a convolution operation to the input, which reduces the number
of free parameters and therefore resolves the problem of vanishing or exploding gradi-
ents.

Pooling layer The pooling layer is another special layer used in CNNs. There are
different kinds of pooling layers, such as the max pooling layer, which uses the maximum
value from each of a cluster of neurons at the prior layer, or the average pooling layer,
which is similar to max pooling but uses the average value. The goal of this layer is to
down-sample an input representation and reduce its dimensionality.

Fully connected layer The fully connected layer does, as its name implies, connect every
neuron in one layer to every neuron in another layer. The output of the conv and pooling
layers represent high-level features of the input data. The goal of the fully connected layer

Thttps://ujjwalkarn.me/2016,/08,/09/quick-intro-neural-networks/
Zhttps://adeshpande3.github.io/ A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-
Networks/
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is to to use these features to classify the input into a set of classes based on the training
dataset.

Input Convolutional Pooling Fully connected

layer layer layer Output

Figure 4.1.: Visualization of a simple CNN model

4.2. Recurrent Neural Network

A Recurrent Neural Network (RNN) is another specific class of a neural net that can use
its internal state to process sequences. RNNs do not only take the current input example
as their input but also what they have perceived previously in time. This 'memory’ allows
the net to preserve sequential information that normal feedforward networks cannot. As
the equation 4.1 and figure 4.2 show, at the time step t the current hidden layer h; is not
only influenced by the current input x; but also by the state of the previous hidden layer
hi_1. In equation 4.2 the output is then simply calculated using the softmax function,
which squashes the outputs of each unit to be between 0 and 1 and divides each output
so that the total sum will be 1.

ht = f(thZEt + Whhhh—l) (41)

or = softmax(Whpyh) (4.2)
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Figure 4.2.: Basic structure of a RNN

4.3. Long Short-Term Memory Network

Long short-term memory (LSTM) networks are a special form of RNNs. They were
introduced in 1997 by Hochreiter & Schmidhuber [7] in order to solve the vanishing
gradient problem of vanilla RNNs. They are very useful in the area of natural language
processing, due to being able to understand long-term dependencies in sentences. LSTM
networks are composed of so called LSTM units. LSTM units possess an internal cell
state (4, an input gate i;, an output gate o, and a forget gate f;.

Forget gate At the beginning this layer decides how much information from the cell
state should be forgotten. The layer outputs a number between 0 and 1 (0 = forget all
information, 1 = keep all information).

fe=o(Wilhi—1, 2] + by) (4.3)

Input gate The input gate decides what new information is going to be stored inside
the cell state C;.

it = O'(Wi[ht_l, ZCt] + bz) (44)
ét = tanh(WC[ht,l, .fCt] -+ bC) (45)
Cy = fiCi—1 +iC, (4.6)
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Output gate The output gate is responsible for the LSTM units output and will be
based on a filtered version of the cell state C;.

o = o(Wolhi—1, z¢] + o) (4.7)

ht = Ot * tcmh(C't) (48)

Ci-1 / /X\ /;\ \ Ci

Ct

(0) g tanh g
I ] I ] I ] ) bt

\J J

Xt

\ 4

h.1

Figure 4.3.: Structure inside of an LSTM unit

4.4. Sequence-to-sequence model

Sequence-to-sequence (seq2seq) is a special type of neural network training model where
sequences from one domain are converted to sequences in other domains. This model is
useful for a variety of problems such as machine translation, where the input might be a
sentence in German and the output the translated sentence in English. A seq2seq model
is usually built out of two or more RNN layers.

Encoder One RNN layer (or multiple) act as an encoder that processes the input and
returns its own internal state while the output itself is ignored.

Decoder Another RNN layer (or multiple) then acts as a decoder and is trained to
predict the next characters or words of the output sequence given what has been generated
up to now.

20



“Willkommen!” “[ISTART]Wel” «—
Reinjected
LSTM w k( LSTM until stop-
encoder Internal States'L decoder condition
(h,c) is met
(discarded) c ——

Figure 4.4.: Visualization of the sequence-to-sequence model
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5. Dataset Analysis

The following chapter takes a closer look at the datasets used in this thesis. First,
the sources of the dataset and the approach to crawling them are explained. After-
wards, the created datasets are analyzed and statistics such as vocabulary size are dis-
played.

5.1. Dataset Source

A thorough internet search revealed that there was no existing dataset suitable for the
task, so one had to to be created. The requirements for the dataset were as follows:
It has to contain structured data regarding the specifications of a laptop (CPU / GPU
model, RAM, screen size, ...) and some sort of text that is related to said specifications.
Two popular websites presented themselves as useful to gather said data: Newegg and
Notebookcheck.

Newegg The website "newegg.com” is a popular US online retailer selling computer
hardware and consumer electronics. There were 9412 laptops available on that site, which
usually contain a short description, a commercial block from the manufacturer and a block
with the specifications of the given model.

Notebookcheck "notebookcheck.net” is a website that contains in-depth reviews about
laptops, tablets and smartphones. The structure of a review is as follows: After the title
there is a short intro text followed by the detailed specifications about the model. The
review itself is then structured into several subsections containing detailed information
about the different specifications or aspects of the model such as the display, case or
performance. A total of 1942 English reviews were crawled from said website. An example
review can be found in the appendix.

5.2. Crawling

For the crawling of data from the websites mentioned in the Dataset Source section, two
similar Python scripts were created which work as follows: In a first step all the links
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to the individual model pages are collected. While this was uncomplicated on Newegg
because it is possible to display all laptops at once, the task turned out to be a challenge
on Notebookcheck. The site does not contain the functionality the display all reviews
on one single or multiple pages, so the search function has to be used with different
parameters to get as many distinctive reviews as possible. Using different manufacturers
and price ranges 1942 review links could be gathered. Afterwards the HTML files of the
individual model pages are collected and in a final step the data is extracted from said
HTML files with the help of certain attribute values and saved to a CSV file. Additionally
simple cleanup of the text, such as the removal of certain HTML tags, was also done.
Certain HTML tags were left in the dataset in hopes of the neural net generating similar
text structure and formatting with the help of for example <b>bold or <p>paragraph
tags.

5.3. Newegg Analysis

The reviews consisted of a total of 92 unique characters and 25657 unique words,
which is significantly more than the restaurant review dataset from the preceding project
work. The large disparity between the amount of unique words and the number of texts
was a finding which turned out to be problematic later on during the learning phase. One
reason for the large quantity of unique words were the often occurring unique product or
part names and their specifications. If only words appearing more than once were counted,
the number is reduced to 17800. Table 5.1 shows additional more detailed results from
the text analysis.

Unique characters 92

Unique words 25657
Unique words with more than 1 appearance | 17800
Unique words with more than 2 appearances | 13511

Unique descriptions 5259
Unique titles 6352
Unique specifications 4991
Average description text length ~ 1624

Table 5.1.: Detailed results from the Newegg dataset analysis

5.4. Notebookcheck Analysis

The reviews consisted of a total of 85 unique characters and 32200 unique words.
For the same reason as with the Newegg dataset, this is considerably more than the
restaurant review dataset. If only words appearing more than once were counted, the
number was reduced to 19765. Table 5.2 shows additional more detailed results from the
text analysis.
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Unique characters 85
Unique words 32200
Unique words with more than 1 appearance | 19765
Unique words with more than 2 appearances | 13586
Unique reviews 1073
Unique titles 1710
Unique specifications 1346
Unique intro texts 796
Average review text length ~ 2775
Average intro text length ~ 281
Number of authors 34
Number of translators 26

Table 5.2.: Detailed results from the Notebookcheck dataset analysis

5.5. Dataset Choice

After a short analysis it was decided to simply work with the Notebookcheck dataset at
first, because the style of the written text was more suitable for the goal of this thesis. The
dataset contained specific information about the specifications of a laptop (e.g. screen
size, brightness, response time, etc.) compared to the Newegg dataset, where most of the
texts were ‘commercial texts’ written by the manufacturer and thus not containing very
specific information.

5.6. Feature Analysis

For the learning and generation process a feature vector similar to the one used in the
project work had to be introduced. The primary goal of the thesis is being able to generate
a review text based on given specifications such as CPU, GPU and RAM, so the feature
vector had to represent the wanted specifications. Each review from Notebookcheck con-
tained structured data about the specifications of a laptop in form of a table. An example
entry can be seen in table 5.3.

Processor Intel Core i7-8550U (Intel Core i7)

Graphics adapter | NVIDIA GeForce GTX 1050 (Notebook) - 4096 MB, Core: 1354 MHz, Memory: 1752 MHz, GDDR5, 23.21.13.8792
Memory 8192 MB, DDR4 (Dual Channel 2 x 4 GB)

Display 15.6 inch 16:9, 1920 x 1080 pixel 141 PPI, yes, native pen support, Chi Mei CMN15D7, IPS, glossy: yes
Mainboard Intel Kaby Lake-U iHDCP 2.2 Premium PCH

Storage Micron 1100 MTFDDAV256TBN, 256 GB, + 1000 GB HDD (Western Digital WD10SPZX), 190 GB free

Weight 2.2 kg (= 77.6 oz / 4.85 pounds), Power Supply: 320 g ( = 11.29 oz / 0.71 pounds)

Price 1299 Euro

Links Acer homepage, Acer notebook section

Table 5.3.: Example of structured data available for the review of Acer Nitro 5 Spin NP515
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Table 5.3 shows that the given data was very specific, meaning that most likely there was
not enough data for each feature and the feature vector would have become too large.
Table 5.4 confirms this claim, showing that the feature with the highest occurrence was
"Operating System: Windows 10 Home 64 bit”, which is not really a useful feature because
the goal of the thesis was to concentrate on the hardware specifications. Table 5.5 shows
that the top CPU was only present in 153 reviews and merely a total of 4 CPUs were
present in more than 50 reviews. This was not nearly enough data for the neural network,
meaning that not only did some features like operating system have to be omitted, but
also that the remaining ones had to be generalized somehow.

Feature Value # of Occ
operating system | microsoft windows 10 home 64 bit | 664
memory 8192 mb 531
memory 4096 mb 321
memory 16384 mb 294
operating system | microsoft windows 10 pro 64 bit 264
links asus homepage 257
camera webcam: hd 253
memory 2048 mb 241
links acer homepage 237
storage 32 gb emmc flash 32 gb 234

Table 5.4.: Top 10 feature values according to occurrence

Feature | Value # of Occ
processor | intel core i7-7700hq 153
processor | intel core i5-7200u 124
processor | intel core i7-7500u 75
processor | intel core i7-6700hq 67
processor | intel core i7-8550u 45
processor | intel core i5-8250u 45
processor | intel core i7-6500u 43
processor | intel core i5-6200u 41
processor | qualcomm snapdragon 625 | 31
processor | mediatek mt6750 30

Table 5.5.: Top 10 values for processor feature according to occurrence

5.6.1. Extending the Dataset

For a majority of the features there were not enough examples in the training set, so
a set of different approaches were analyzed to extend the dataset. One of them was to
crawl data from other sites that also write reviews for notebooks. The problem with
that was that the writing style on other sites was very different from the Notebookcheck
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style. It was often more subjective. A different idea was to just google for a specific CPU
name that appears in the training set and get different sentences for this specific CPU.
In the end, this approach had the same problem as above. Usually the sites found like
this were either forums or vendor sites, which compared to Nootebookcheck had totally
different styles of writing. That meant that there was no easy way to extend the dataset
size.

5.7. The Feature Vector

To shorten the feature vector certain specifications such as CPU had to be generalized and
other specifications had to be left out completely. In Figure 5.1 the chosen feature vector is
visualized. For example the CPU models simply contains the generation number for Intel
processors and AMD processors are generalized altogether due to their low occurrence.
The rest of the features were chosen according to the importance in the view of a consumer.
The rationale being that when reading a review a consumer is more likely to look at
specifications such as screen size and battery lifetime instead of for example the exact
number of USB ports.

| N |  Features

[

| Weight

| @Weight |

Battery Life

@wh
(watt
hours)

’ Price |

Figure 5.1.: Feature vector visualized

5.8. Dataset Creation

Although the crawled dataset already contained structured data (the specifications of
the laptop) and the associated review, directly feeding it to the neural network would
not have been a good idea due to the fact that there was still a lot of unrelated data
("noise”) present. For example there were entire subsections in the review regarding the
case or temperature and energy statistics of the reviewed laptop. This data was not repre-
sented in the chosen feature vector in any way, meaning that the sentences related to the

26



specifications in the feature vector had to be extracted somehow.

5.8.1. TFIDF Analysis

The goal of the TFIDF analysis was to find certain expressions that are used together
with a specific CPU so that sentences containing said expression could be extracted and
added to the dataset. Table 5.6 displays the top results of the TFIDF analysis of all
reviews containing the Intel Core i7 CPU. Unfortunately the results turned out to be
poor because most of the words in the list were not CPU related at all or can also be
used in another context. The results for 2-grams as shown in Table 5.7 were not much

better.

h3 0.41756883707808
h2 0.2522290804805468
performance | 0.19659490907343738
display 0.14221094376536408
fest 0.13908542851777367
core 0.1336157768344904
gaming 0.1303339858245205
15 0.111893445863737
opu 0.11064323976470085
notebook | 0.10564241536855618
cpu 0.10454848503189952
model 0.10314200317048383
battery 0.10001648792289342
i7 0.0998602121605139
device 0.0990788333486163
gh 0.09579704233864635
pro 0.09376545742771258
review 0.09345290590295353
power 0.09079621794250169
gtx 0.08923346031870646

Table 5.6.: TFIDF analysis for reviews containing a Intel Core i7 CPU
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core 17

0.20620272689651564

h3 h3

0.13956724008771798

performance h3

0.12959815151002382

h2 h3

0.122777196167391

geforce gtx

0.11280810758969685

card reader

0.11175872984467641

current prices

0.11175872984467641

h5 current 0.11175872984467641
prices h5 0.11175872984467641
xps 13 0.1023143301394925

battery life 0.09969088577694141
original german | 0.09496868592434944
kaby lake 0.09444399705183923
german review | 0.09234524156179835

original german

0.09182055268928814

intel core 0.08867241945422683
input devices 0.08499959734665531
17 inch 0.08395021960163487

Table 5.7.: TFIDF analysis for reviews containing a Intel Core i7 CPU with 2-grams

5.8.2. K-Means

Additionally to the TFIDF analysis the K-Means algorithm was used. The rationale
behind this was the assumption that similar terms should end up in the same cluster.
The TFIDF scores were used as input values. It is then possible to show the dimensions
which have the most influence on the cluster center. Example clusters are shown in Table
5.8. In the first row of the table is a sentence in which one of the top terms appears. It
is then followed by the 10 most influential terms in this cluster.
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the resolution of 1280x720 | as already mentioned the | some less expensive con-
pizels is on the standard | lenovo  thinkpad — t470p | tenders do a better job with
level for the price range clearly — ranges in  the | that
high-price segment
resolution thinkpad job
1280x720 x1 far
inch yoga perform
1920x1080 t470 convertibles
pixel 13 respect
1280x800 2017 rivals
moto carbon exist
1280 t470s things
level oled look
density 1560 total

Table 5.8.: Top 10 of 3 different K-Means clusters

The first two examples in Table 5.8 both seem to represent a cluster with very specific
vocabulary. The cluster on the left seems to focus on screen resolution while the one in the
middle seems to be a Lenovo cluster that includes the different model names. Clusters like
these were very helpful for the analysis, because they showed a lot of different terms for
certain features. However, not all clusters seemed to be specific in respect to a certain ven-
dor or specification. An example for a more general cluster is given on the right. Clusters
like these did not provide additional information for this task.

5.8.3. Entity Recognition

Another approach was to use Spacy', a tool that is designed for entity recognition. Spacy
comes with some pretrained entities such as organizations, countries, celebrities and more.
Entities can then be detected in a sentence. For example in the sentence "Microsoft release
a new Windows version today” Spacy would predict "Microsoft” to be an organization
and would also return the start and end position of the entity, which in this case is 0
respectively 9. It is possible to train new entities, which was tried with GPUs. However,
the problem with the training was that Spacy expects a sentence as training data and the
start and stop position for the entity that is in in. The main goal of this approach was
to extract exactly this information in order to create the Meaning Representation (mr)
for the natural language representations. As a workaround it was tried to use the GPU
name from the structured data, search its position in the sentences and then train Spacy
with this information. The intention behind this was the assumption that Spacy might
recognize certain structures in the sentences and then could detect GPUs even if the model
name was different. Unfortunately Spacy did not generalize well with this training. For
example in the sentence "There is a NVIDIA Quadro K2100M built in”, it would detect
"NVIDIA Quadro K2100M” to be the graphics card. If the sentence is now changed to

thttps://spacy.io/
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"There is a NVIDIA K2100M built in”, it does not detect the GPU. Unfortunately the
Spacy approach did not lead to any useful results because of the bad generalization and
the lack of a special trainset for this task.

5.8.4. Test-Dataset for CPU

In order to conduct a test-run where the goal was simply to generate meaningful text, it
was decided to first only create a dataset for sentences regarding the CPU. This was done
by extracting sentences from reviews that met the following two conditions: They have
to contain at least one of the terms under the paragraph terms but cannot contain one of
the 'filter terms’ listed under the paragraph filter terms. The two sets of these terms were
constructed using k-means clustering (c.f Chapter 5.8.2). Table 5.9 shows some example
sentences which resulted out of using this method. While most of the sentences are talking
about the CPU there are also a few outliners that are referencing for example the gpu
or network adapter. Another problem is that a lot of sentences still contained useless
information such as comparisons with other CPUs.

Terms cpu, core, processor, ghz, i7, cache, 6m, i5, 3m, 7700hq, 8m, 4800mq, 6300u,
4900mq, 7820hq, 4700mq, 7th, 6th, 7200u, quad, 6700hq, 6820hq, 4200m, e3, v6, xeon,
cache, ghz, 1505m, 8mb, 4m, 7500u, 6600u, 4600u, 6500u, 4ghz, 4500u, 3667u, 1ghz, 6th,
bghz, turbo, ram, gpu, ssd, hdd, @nbname

Filter terms score, noise, benchmark, cd/m, temperaturesof, germanreview, keyboard,
4k, fan, compar, brightness, prime95, cinebench, usb, thunderbolt, kabylake, sandybridge,
watt, observe, test, diagram, hyperthreading, behavior, framerate, batterymode, acpower-
mode, tdprestriction, alsooffers, coolboost, pascal, fasterthan, marketing, so-dimm, touch-
pad, pcmark, measure, pcie, alsoavailable, turbo, change, disassembled, exterior, cover,
decline, ramslot, competitors, tablet, moreinformation, furtherinformation, degrees, out-
perform, defeats, %, predecessor, successor, apparently, appear, tdp, directx, unlike, ri-
vals, reach, crystaldiskmark, 3dmark, furmark, depending, competition, plugged, thrott,
warranty, cheaper, replace, identical, skylake, review, overclocking, xperia, smartphone,
overclocked, marshmallow, landscape, panoram, camera, galaxy, -ak033ng, gsm, nfc, sim,
phone, gorilla
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specs-wise it is powered by a @Qghz intel Qcpu 8 gb of Ipddr3 ram and a 256 gb ssd

at the heart of the predator helios 300 is an overclockable @gpu or 1050ti gpu combined
with a 7th-gen intel @cpu(7700hq) or @cpu (7300hq) for outstanding performance

the current @Qcpu is probably the most widely used intel kaby-lake ulv processor which
is often encountered in office or business and multimedia notebooks in particular

to include intel processors in the evaluation we also used the hp 250 gb lenovo’s ideapad
v110-15ikb and the asus vivobook x510ua-br305t

intel has provided a fast quad-core processor in the form of the @Qcpu

even though it is not very up-to-date anymore thanks to the intel dual band wireless-ac
7265 mimo-2x2 module with bluetooth 4

intel specifies this rate as the maximum clock when four cores are loaded simultaneously
intel has specified a base clock of @ghz for this chip

Table 5.9.: Example sentences out of the created CPU dataset

When this data is compared to the sentences from the NLG Challenge, it becomes clear
that the domain is much broader. For example, if the feature family-friendly in the
NLG Challenge was set to 'yes’, there was only a limited amount of expressions for that
feature. In the current dataset however, this is not the case. If a review to an intel core
i-3 should be generated, there are still plenty of different aspects such as the clock speed,
if it is overclockable, the number of cores, the generation number, the exact model name
and more, which can be mentioned. This would not be a problem, if there were enough
mentions of all of these aspects. The feature vector could then simply be extended, so
that this specific features can be generated. However, Table 5.4 shows that there was
already a low amount of CPU references, so it was not possible to split them any further.
The same problem applies for other features such as the GPU, RAM or screen as well.
For the battery life there was an additional inconvenience: The structured data contained
the battery life in the form of Watt hours of the battery. In the reviews however, the
battery life was usually mentioned in hours. A direct mapping between these two different
measurements is not possible, because how long a laptop can run depends on different
factors, such as the hardware that is built in. An additional GPU for example can shorten
the battery life by a large amount. It was decided to ignore this problem and focus on
CPU generation at first.

5.9. NLG Challenge Dataset

The trainset of the NLG challenge was already analyzed during the project thesis related to
this work [11]. The main focus there was to give an overview on how the different features
in the dataset can be expressed. But more relevant for the task of word ordering is the com-
parison of the distribution of words between the train- and devset.

In the trainset there are 42061 different reviews. The devset contains 4672 reviews. For

this analysis all restaurant names were replaced through the token "@name” and all places
through the token "@near”. Furthermore everything was converted to lowercase. After
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the preprocessing there were 2760 different words in the trainset and 1000 different words
in the devset.

Out of these 1000 words 103 did not appear in the trainset. Some of these words were
just slightly different from the words of the trainset. As example averaged-priced was
in the devset and average-priced would have been in the trainset, the same with family-
friend and family-friendly. Other words were different due to the preprocessing. As an
example there is a restaurant called “Browns Cambridge”. The way the preprocessing
was done is that there was an exact substitution of the name through the token "@name”.
But one of the sentences in the devset was ”Brown Cambridge is not family friendly,
but offers a unique menu of Chinese foods.” Due to the missing ”s” at the end of brown
this was not replaced. Some words were also newly introduced words. Examples for
this include "passable”, ”stand-out” and "cheerful”. There are also examples of words
which are wrongly spelled like "costumer-rated” and were not in the trainset because of
this.

Even though there are 103 new words, every new word appears at most 2 times in the
devset. There are 16 words appearing twice, the other 87 appear once. The word distri-
bution can be seen in Figure 5.2. The graphic compares the amount of appearances of all
words in the trainset to the amount of appearances in the devset. It visualizes that an
overwhelming part of the words only appears rarely.

Overview of word occurences in dev- and testset

—— Devset
Testset
Combined

60000

50000

40000

30000

20000

10000

[, A

0 200 400 800 800 1000

Figure 5.2.: Overview of word occurences in the dev and testset

The average number of words per sentence is 20.21 in the testset and 22.92 in the de-
vset.
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6. Architecture

In this chapter all neural networks used for the tasks at hand are listed. The chapter
is split into two sections: The first section is related to the original task which was to
generate reviews with the Notebookcheck dataset and the second section is related to
solving the problems of sentence ordering and filling gaps in sentences with the restaurant
review dataset. This switch of goals had to be done, because the results of all neural nets
set up for the original task were poor.

6.1. Generation with CPU feature

As mentioned in the analysis chapter, the idea was to focus on generation text solely with
the CPU feature first. If this test would perform well, the system could be extended to
include all additional features seen in Section 5.7.

6.1.1. Model with feature vector

The idea of the first model was to simply have a feature vector of length 1 that decides
whether the sentence includes a description about the CPU or not (0 = no CPU descrip-
tion, 1 = includes CPU description). The structure of the model can be seen in Figure
6.1.
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input: | (None, 63, 1)

main_input: InputLayer
P P Y output: | (None, 63, 1)

l

input: (None, 63, 1) ) input: | (None, 1)
Istm_5: LSTM features_input: InputLayer
output: | (None, 63, 512) output: | (None, 1)
input: | (None, 63, 512) input: (None, 1)
Istm_6: LSTM xf: Dense
- output: (None, 512) output: | (None, 512)

~.

concatenate_1: Concatenate

input: | [(None, 512), (None, 512)]
output: (None, 1024)

l

input: | (None, 1024)
output: | (None, 512)

l

input: | (None, 512)
output: | (None, 81)

dense_2: Dense

dense_3: Dense

Figure 6.1.: First CPU generation model with a feature vector

6.1.2. Model for simple generation

The second model was structured even simpler and its goal was to verify if the neural
network is even capable of generating meaningful text out of the given review data. To
check this the feature vector was omitted completely, the full structure of the model can
be seen in Figure 6.2.

input: | (None, 63, 1)

Istm_1_input: InputLayer
P P Y output: | (None, 63, 1)

I

input: (None, 63, 1)
output: | (None, 63, 512)

I

input: | (None, 63, 512)
output: | (None, 63, 512)

)

input: | (None, 63, 512)
output: (None, 512)

}

input: [ (None, 512)
output: | (None, 512)

|

input: | (None, 512)
output: | (None, 81)

Istm_1: LSTM

dropout_1: Dropout

Istm_2: LSTM

dropout_2: Dropout

dense_1: Dense

Figure 6.2.: Second CPU generation model without a feature vector

6.1.3. Model with multiple features

A third model was essentially the same as the first model. The difference was that it had
more features and that the input characters were one-hot encoded. The structure of this
model can be seen in Figure 6.3
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main_input: InputLayer

l

Istm_1: LSTM ‘

\ /

Istm_2: LSTM |

NS

concatenate_1: Concatenate

features_input: InputLayer

dense_2: Dense

Figure 6.3.: Third CPU generation model with a feature vector and one-hot encoded input

6.2. Sentence Ordering

As seen in Section 7.1, the results of the text generation with the created dataset were not
really promising, so the task had to be simplified somehow. One idea was that instead
of using a feature vector containing specifications regarding the laptop, a set of words
describing the laptop can be used to generate a descriptive text of it. (Example: over-
clocked, powerful, cpu — The laptop contains a powerful CPU that can be overclocked.)
Before using this approach, two separate tests had to be done in order to check the feasi-
bility of such a system. One test was to get an unordered sentence and bring it back into
the right order, the other test was trying to fill pre-defined gaps in sentences. Different
approaches were used to try and solve these tasks.

6.2.1. Sentence order with CNN

One of the models which were built for this task had two inputs. The first one got a one-
hot encoded vector with words which were still available for generation. The second input
had a sequence with the already predicted words. Both of those sequences were padded
to the length of the longest sentence in the dataset. A mapping from the words in the
dataset to an integer was taken as the input value for the vectors. These values were then
translated with an embedding layer into dense vectors. It was decided to use this approach
instead of one-hot encoding at the input layer, because otherwise there would have been
huge sparse vectors. After that the output will then be fed to two convolutional layers
with a maxpooling in between and then a global maxpooling layer. After the maxpooling
layer there is a dense layer and then the two different branches will be merged. At the
end there is another dense layers before the prediction is done. The output layer is then
the same size as the vocabulary and uses one-hot encoding.
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input: | (None, 56)

main_input: InputLayer
-t P Y output: | (None, 56)

l

embedding_1: Embedding

l

input: | (None, 1, 512)
output: | (None, 0, 512)

l

max_poolingld_1: MaxPooling1D

l

input: (None, 0, 512)
output: | (None, -1, 512)

l

input: (None, 56)
output: | (None, 1, 512)

convld_1: ConvlD

input: | (None, 0, 512)
output: | (None, 0, 512)

convld_2: ConvlD

. . input: | (None, -1, 512) . input: | (None, 2808)
global_max_poolingld_1: GlobalMaxPooling1D features_input: InputLayer
output: (None, 512) output: | (None, 2808)
input: | (None, 512) input: | (None, 2808)
dense_1: Dense dense_2: Dense
- output: | (None, 512) - output: | (None, 512)

.

concatenate_1: Concatenate

input: | [(None, 512), (None, 512)]
output: (None, 1024)

)

input: | (None, 1024)
output: | (None, 512)

)

input: (None, 512)
output: | (None, 2808)

dense_3: Dense

dense_4: Dense

Figure 6.4.: CNN sentence order with multiple inputs

6.2.1.1. Filling the gaps with a CNN

The second approach which was initially used as a check if CNNs can master this task
had only one input. It did not get the second input with the available words as the model
above. That meant that it is also not able to bring a sentence back into the right order,
it was just used to fill the gaps in a sentence. The input consisted of a sentence with
placeholder tokens and a prediction token. The placeholders are words which are not yet
known and the prediction token indicates the word that should be predicted in this run.
For example the sentence "The red car over there is very nice” could become "The red
@placeholder over @topredict @placeholder very nice”. All sentences were padded to the
length of the longest sentence with empty tokens.
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input: | (None, 56)

main_input: InputLayer
-t P Y output: | (None, 56)

l

embedding_3: Embedding

l

input: | (None, 1, 512)
output: | (None, 0, 512)

l

max_poolingld_3: MaxPooling1D

l

input: (None, 0, 512)
output: | (None, -1, 512)

l

global_max_poolingld_3: GlobalMaxPooling1D

l

input: | (None, 512)
output: | (None, 512)

l

input: (None, 512)
output: | (None, 2808)

input: (None, 56)
output: | (None, 1, 512)

convld_5: ConvlD

input: | (None, 0, 512)
output: | (None, 0, 512)

convld_6: ConvlD

input: | (None, -1, 512)
output: (None, 512)

dense_5: Dense

dense_6: Dense

Figure 6.5.: CNN sentence order with single input

The performance of this model could be boosted by using a second input during sampling
with the available words one-hot encoded. This second input is then multiplied with the
results from the softmax layer above. This guarantees that all the words which are not
available for the generation get a score of 0. This is especially helpful when the missing
words have synonyms. For example if the network gives a high score to "restaurant”
and "venue” the multiply layer could set "restaurant” to 0, because it is not available for
generation and thus "venue” would be predicted.

6.2.2. Sentence order with Seq2Seq using word-to-int encoding

The template of the model was taken from a Keras blog [4] entry where they described
how to build sequence-to-sequence models with Keras. The model worked on word-level
and got the encoder integer sequences padded to the length of the longest sentence in the
trainset as an input. For padding purposes a so called "empty” token was defined. Both
the encoder and decoder then had an embedding layer followed by an LSTM layer. While
the encoder only consisted of these two layers, the decoder had an additional dense layer
at the end with the softmax activation function.

Training

During training the input to the encoder was an unordered list of the integers which are
padded to the maximum sentence length. The decoder got the encoder state as initial
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state and then got a start token followed by a list of integers which represent the words in
the sentence in order as input. If it is assumed that the max sentence length is 7 and the
target sentence is the car is green the input sequence would be [1,7,2,5,/,0,0]. The used
vocabulary for this example can be seen in the Table 6.1. The example mapping from
every word to the integer is shown in Table 6.2. The target data is the one-hot encoded
sentence.

Word Integer
Qempty
Q@start
car
fancy
green

is

@start | the | car | is | green | @empty | @empty
1 7 2 514 0 0

nice

the

unique

@stop
@placeholder

Table 6.2.: Example sequence

OO || U =W N+ O

—_
e}

Table 6.1.: Example  vocabu-
lary

Sampling

During the sampling process the following steps are made: First the unordered sentence
is fed to the encoder. The output of the encoder is discarded, but the internal states of
the LSTM are kept. The internal state is then used as the initial state of the decoder
LSTM. Now, if the first word should be predicted, the decoder gets the start token as
input and predicts the first word. The input to the second round will then be the word
that has just been generated and the internal state of the previous round. This process
will continue until the decoder generates the stop token. If again the vocabulary from
Table 6.1 is taken and the input sentence would be “the car is green” the input sentence
to the decoder would therefore be [2,4,5,7]. The internal state of the encoder will be the
initial state of the decoder and the input 1 (start token) would be given to the decoder.
If the model predicts it correctly, the prediction would be 2 and the current decoder state
would be used as initial state of the second round and 2 will be fed to the neural network.
This process will continue until the sequence-to-sequence model predicts 9, which is the
stop token.

6.2.2.1. Filling the gaps

The same sequence-to-sequence model that is used to predict the sentence order can be
used to fill in gaps in a sentence. The only difference is in the training process: The
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encoder input was adjusted and words were randomly substituted through a placeholder
token. If the sentence "the car is green” is taken again to demonstrate this, the input
would be [7,10,5,4,0,0,0] with the vocabulary from Table 6.1 and the assumption that
the word "car” has been randomly replaced.

6.2.3. Sentence order with LSTM

6.2.3.1. Filling of gaps

Multiples Inputs One LSTM models to fill in the gaps in a given sentence worked as
follows: It had two inputs, one input got a bag of words with the words which are available
to fill in the blank spaces in the sentence, the other got a sentence. The sentence was
padded to the length of the longest sentence with a "padding” token. Some of the words
in the sentence were randomly replaced with a "placeholder” token. Ome of the words
was the "predict” token, which told the neural network which word it should predict.
Every word in the sentence was then mapped to an integer. There was a embedding
layer connected to the input sentence, which was decided to be used instead of one-hot
vectors, because the one-hot vectors would be high-dimensional vectors with only one
entry (the current word) set to one and the rest would have been set to zero. After the
embedding layer there were two bidirectional LSTM. Bidirectional was chosen to give the
neural network some additional information, since the layers until here were supposed
to learn the language model. After the LSTMs two dense layers followed. The output
from the Dense layer was then concatenated with the input from the bag of words after a
dense layer. After the concatenation two more dense layers followed, one had a softmax
activation and was the output layer.

39



main_input: InputLayer

l

embedding_2: Embedding

l

bidirectional 3(Istm_3): Bidirectional(LSTM) ‘

l

bidirectional 4(Istm_4): Bidirectional(LSTM) ‘

l

dense_7: Dense

\ '

dense_8: Dense

N

concatenate_2: Concatenate

features_input: InputLayer

dense_9: Dense

dense_11: Dense

dense_12: Dense

Figure 6.6.: LSTM sentence order with multiple inputs

During the sampling process a multiply layer could be added at the end. This layer takes
the softmax output and the input from the bag of words and does an element by ele-
ment multiplication. This was an additional safeguard to guarantee that only candidates
available in the bag of words were predicted.

Single input The second LSTM was a simpler form of the model above. Instead of
having two inputs, one for the available words and the other with the sequence, it just got
the input with the sequence. This means that it just learns a language model in the end
and it just generated suitable candidates. This could be used to generate new training
samples.

6.2.4. Sentence order

For the task of bringing a sentence back into the right order, the same model as above
was used.
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7. Results

7.1. Generation with CPU feature

7.1.1. Model with feature vector

For this experiment the model described in Chapter 6.1.1 was trained. If the feature
vector was set to 0 it should have generated a review containing a CPU. If it was set
to 1, it should not talk about the CPU in the reviews. The output quality was rather
poor, as can be seen in the results below. Very often the network was stuck at a local
optimum, generating the same words over and over again. Also the same problem from
the preceding project work that characters close to each other may get mixed up still
existed. This can be seen in the first example below: The start pattern is o’ and the
network generated 'oumbers’, most likely coming from 'numbers’.

Start pattern: o

Feature vector: [[1]]

umber of usb 3.0 ports: 1</p><p>number of usb 3.0 ports: 2</p><p>num-
ber of usb 3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of
usb 3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb
3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb 3.0
ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb 3.0 ports:
2</p><p>

number of usb 3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>num-
ber of usb 3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of
usb 3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb
3.0 ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb 3.0
ports: 2</p><p>number of usb 3.0 ports: 2</p><p>number of usb 3.0 ports:
2< /p><p>

number of usb 3.0 ports: 2</p

Start pattern: p

Feature vector: [[1]]

rocessor model: i7-7500u (dual core 2.7ghz 3th gen) intel core i7 (7th gen) 7200u) 1.50
ghz with turbo boost technology up to 3.5ghz) with intel hd graphics 620 ddr3 sdram
- bluetooth - english keyboard - front camera/webcam - ieee 802.11ac - ethernet -
network (rj-45) - hdmi - 3 x usb 3.0 ports - 1 x usb 3.0 ports - 1 x usb 3.0 ports - 4-cell
lithium ion (li-ion) - 12 hours battery life (depending on configuration &amp&#59
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usage) up to 12 hours bnd 40 minutes (mixed usage), up to 5 hours and 40 minutes
(mixed usage), up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd
30 minutes of battery life - up to 12 hours of battery life - up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 mi

Start pattern: h

Feature vector: [[0]]

ard drive: 500gb sata hard drive + 1tb hard drive - 128gb ssd - 16gb ddr4 ram,
2133 mhz - 4g lte-a sierra wireless em7455 wwan card (amp&#59 olufsen sound
technology. 59 intel core i7-4500u (3mb intel smart cache, up to 3.50 ghz) with intel
vpro technology for easy access to your network or hotspots on your screen. *15.6 ”
fhd (1920 x 1080) display, and a new surface pen (platinum), 128gh micro sd card,
mini displayport to hdmi/vga/dva cable adapter</b><ol><b>wsb ports:</b>usb
3.0 - 2, usb 3.0 - 2</li><li><b>built-in webcam:</b>yes</li><li><b>backligh
memory«/b>8192mb< /li><li><b>processors: </b>intel core i7-7500u dual-core
2.5ghz 4mb cpu</li><li><b>memory installed:</b>

4096mb ddr3< /li><li><b>hard drive:</b>500gb 7.2k 3gh/s sata 2.5”” hdd< /li><li>
<b>power supply:</b>hp charger</1

Start pattern: b

Feature vector: [[1]]

attery life: up to 10 hours and 40 minutes (mixed usage), up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd
30 minutes of battery life - up to 12 hours of battery life - up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd
30 minutes of battery life - up to 12 hours of battery life - up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd 30
minutes of battery life - up to 12 hours of battery

Start pattern: s

Feature vector: [[0]]

he system is powered by a 2.8 ghz intel core i7-8550u qrocessor and 16gb of memory,
a 2tb hard drive, a multi-format sd digital media reader, 10/100/1000mbps gigabit
ethernet, 802.11 wi-fi, an integrated webcam and microphone. there are also built-
in speakers utilizing bang &amp&#59 olufsen sound technology. pptioal memory
card formats. *next-generation wireless-ac connectivity for yireless nan built into
the screen size and a thin dell inspiron 15 5000 series notebook from dell is a durable
system that can withstand life nore than the thinkpad p50 features a blazing fast and
enjoy the security features that allows you to responsive display and stay connected
and entertainment features and enhanced security features to have the macbook pro
model a computer upgrade king of the latest high-

Start pattern: b

42



Feature vector: [[1]]

attery life: up to 10 hours and 40 minutes (mixed usage), up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd
30 minutes of battery life - up to 12 hours of battery life - up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd
30 minutes of battery life - up to 12 hours of battery life - up to 12 hours bnd 40
minutes (mixed usage) up to 10 hours bnd 30 minutes of battery life - up to 12 hours
of battery life - up to 12 hours bnd 40 minutes (mixed usage) up to 10 hours bnd 30
minutes of battery life - up to 12 hours of battery

Start pattern: w

Feature vector: [[1]]

ireless connectivity: 802.11lac wi-fi &amp&#59 bluetooth 4.0Ointerface: 2x usb 3.0
ports, 1x usb 3.0 (always on), headphone/mic combo, microsd, omnm, and an inte-
grated dard tlot, and a new gigabit ethernet connection offers faster than wireless-n.
the fast ethernet lan port also plugs into wired networks. *built-in hd webcam with
dual digital microphone array microphones&#59 bluetooth 4.0interface: 1x usb 3.0
ports, 1x usb 3.0 port, 1x hdmi port, 1x mini displayport, 1x rj45 lan jack for lan
(10/100), memory card reader and 10/100 ethernet port with dolby home theater and
usb 3.0 ports, 1 usb 3.0 ports, 1 usb 2.0 ports, 1 usb 2.0, 1 headphone/microphone
jack, 1 x usb 3.0, 1 headphone/microphone jack, 1 x usb 3.0, 1 headphone/micro-
phone jack, 1 x usb 3.0, 1 headphone/microphone jack, 1 x usb

Start pattern: the hp

Feature vector: [[0]]

elitebook 850 g3 notebook from dell is a durable system that can withstand life
nore than the thinkpad p50 features a blazing fast and enjoy the security features
that allows you to responsive display and stay connected and entertainment features
and enhanced security features to have the macbook pro model a computer upgrade
king of the latest high-speed devices for security and music videos in corporate-
clean qicture. *1- usb 3.0 ports, a firewire ””800”” port, two usb 3.0 ports, a
"”thunderbolt”” port, an audio in/out, and an sdxc card slot, and an integrated
digital microphone for extability and music videos in compatible with fast security
and multimedia capabilities. the latest intel core i7-6500u processor and 16gb of
memory, a 2tb hard drive, a multi-format sd digital media reader

7.1.2. Model for simple generation

Below are the results for the model, whose goal is simply to generate text without any fea-
ture vector. Even here the output quality was poor, probably due to the large vocabulary
size of the training set.

Start pattern: |
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ntel core i5-7200u processor model: i5 8200u 1.5ghz (tupport tize 1.1 gb (1360 x 108)
w 1.0.. x 1.. im (

Start pattern: o

rocessor model: i5-6200u 2.5ghz - 8 gb ram - 220 gb ssd - windows 10 pro 64,bit -
8 gb ram - 156 gb ssd - 156 mb ssd hos wideo camera with the latest amd quad-
core processing performance for a seroection of the latest and quad-core processing
performance for a seroection of the latest and quad-core processing performance for a
seroection of the latest and quad-core processing performance for a seroection of the
latest and quad-core processing performance for a seroection of the latest and quad-
core processing performance for a seroection of the latest and quad-core processing
performance for a seroection of the latest and quad-core processing performance for
a seroection of the latest and quad-core processing performance for a seroection of
the latest and quad-core processing performance

Start pattern: e

esigned fesigned with a 1tb had boost sp headphone ouititask with a 1.0 gb soleds for
a hard deii processors and backlit keyboard with windows 10 pro operating system
and aacess tested and leno you can with the latest amd quad-core processing per-
formance for a seroection of the latest and quad-core processing performance for a
seroection of the latest and quad-core processing performance for a seroection of the
latest and quad-core processing performance for a seroection of the latest and quad-
core processing performance for a seroection of the latest and quad-core processing
performance for a seroection of the latest and quad-core processing performance for
a seroection of the latest and quad-core processing performance for a seroection of
the latest and quad-core processing performance f

Start pattern: u
he macbook pro "core i5 3320m 2.5ghz (tumxag baptery ( ladbook pro "core 2 duo”
2.2 13

Start pattern: r

he mew x1 carbon features a windows 10 pro opbrating system: windows 10 pro
operating system and aacess tested and leno you can with the latest amd quad-
core processing performance for a seroection of the latest and quad-core processing
performance for a seroection of the latest and quad-core processing performance for a
seroection of the latest and quad-core processing performance for a seroection of the
latest and quad-core processing performance for a seroection of the latest and quad-
core processing performance for a seroection of the latest and quad-core processing
performance for a seroection of the latest and quad-core processing performance for
a seroection of the latest and quad-core processing performance for a seroection of
the latest and quad-core processing performance for a s
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7.1.3. Model with multiple features

This model seemed to have slightly better results than the other two. Especially for the
generation of the CPU and SSD features. However there is still a lot of nonsense that is
generated by the model. Individual words may make sense and some sentences are also
more or less correct, but it is not coherent in general. It also gave an indication on what
the neural network could learn about certain features.

The way that sampling worked for this model was, that different features could be chosen
for generation. The model then generated either until the features were generated or
until 800 characters were predicted. To check if a feature was generated, an external
script was used where the features were hard coded. In the 4th example it can be seen
that the model generated both features (GPU and CPU) and still continued to predict.
This happened because the GPU value should have been "@Qgpu” instead of a GPU name.
But in some cases the dataset had a disparity between the GPU model in the text and in
the structured data. This led to the effect that some of the GPUs were not substituted
during training and were learnt by the neural network.

Features to generate: CPU, SSD Start pattern: d

espite the fast processor a @cpu and an @Qgpu with 6 gb of video ram at its disposal.
for a further 100 euros you can get a model with windows 10 operating system while
150 euros more will get you a 256 gb ssd as well as windows 10.

Features to generate: CPU, SSD Start pattern: h
igh performance with the optional @Qcpu 8 gb of working memory and a 128 gb ssd.
the 8 gb of ram and the 256-gb ssd and the 1 tb hdd from seagate.

Features to generate: CPU, SSD Start pattern: a
model with @Qcpu processor 8 gb of ram 256 gb ssd storage and either 32 gb or 64 gb
of storage which can be expanded by up to 200 gb.

Features to generate: CPU, SSD Start pattern: u

sers can place on the @nbname and its height feet somewhat portable programs and
also achieved performance potential at least for a price of about 1000 euros but that
is the campus program and cpu performance is at aboot 300 and up to 3.0ghz when
encryption achieved a maximum enveloped @cpu (surrounding up to 4 gb) about the
same contrast level as the ram can be expanded up to 32 gb. the @cpu is a dual
core processor and an integrated and a dedicated radeon r5 m430 gpu. the cheapest
configuration is an amd quad-core processor that clocks at a base speed of Qghz. the
processor clocks at a base speed of @Qghz. the processor clocks at a base speed of
@ghz. the processor clocks at a base speed of @ghz. the processor clocks at a base
speed of @Qghz. the processor clocks at a base speed of @Qghz.

Features to generate: CPU, SSD Start pattern: 1
imited models can be configured with an Qcpu 8 gb of ram and a 128 gb ssd.
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Features to generate: CPU, RAM Start pattern: |

imited models can be configured with an @Qcpu 8 gb of ram and a 128 gb ssd efore
the processor that games at least to a higher clock maintenance flap as to a fast ssd
and a free m.2 solid-state drive. the @Qcpu is a mid-range phone with a high-end gpu
and ssd solution is supported by a 4-cell display and 3 gb of ram.

Features to generate: CPU, SSD Start pattern: the dell

with a weither integrated graphics processor and an @cpu 16 gb of ram and ghd+
1800p glossy touchscreen for $1750 usd. though slightly disappointing this which
would put the xps 13 more in line with the tuxedo infinitybook pro sporting the
same cpu. the three devices with the better cpu cannot really break away from the
rest of the field. despite having only two cores the huawei is able to keep up well
against the eurocom with excessively paid for the private scale. the @nbname is
exactly 1354 mb/s while writing. the specifications fujitsu has a fingerprint-sensor
for gaming. the @nbname is equipped with a 1 tb hdd and 256 gb ssd storage with
256 gb being standard.

Features to generate: CPU, Intel Start pattern: s

ince the @nbname behaves very differently. bass is a foreign word for the @nbname
because the @gpu can run most games smoothly at low resolutions and low quality
settings. the gpu’s weaknesses are seen in the fast-paced racing game ”<i >asphalt
8 </i >” without any problems. unfortunately the ssd does not support hyper-
threading and the more powerful cpu has to run demanding tasks for a regular
radeon r5 m430 gpu. the built-in nvme ssd ensures a fast-running system. the ssd’s
transfer rates are good. intel’s hd graphics 520 gpu is responsible for video output.

Features to generate: CPU, Gpu Start pattern: m

ost people serfequently the less expensive @cpu offers a moderate performance in-
crease. the cpu recurrently windows 10 pro includes the combination of a 32 gb ssd
cache and separate (!) hdd is installed in dell’s xps 13. due to the large range in
the clock rate sitjer the 14-inch notebook with an @gpu with 6 gb of vram is plenty
sturdy with a more powerful gpu.

7.2. Filling gaps in a sentence

Because the results for the language generation were not promising it was tried to as-
sess if a neural network can fill gaps in a sentence. This was done on the restaurants
dataset.
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7.2.1. Softmax output

To check if the built neural networks learn the language model and are able to generate
good candidate words for a placeholder in a sentence, the softmax output was analyzed.
The multiply layer was omitted for this experiment so that it would not influence the
output. The input was a sentence with one placeholder.

LSTM

Single Input LSTM In this section there are some examples for the output of the
softmax layer from the model with a single input described in Chapter 6.2.3.1. On top
of every example sentence the top 5 results according to the softmax are listed in order.
This means that the candidate with the highest score is on the far left side on position
one, the candidate from the top 5 with the lowest score is on the far right side at position
5.

Top 5: city, town, historical, mid-range, pub

Input: in the @tofind centre there is a venue name @name this is not a family-
friendly venue

Expected: city

Top 5: restaurant, place, pub, venue, coffee-shop

Input: in the city centre there is a @Qtofind name @name this is not a family-friendly
venue

Expected: venue

Top 5: riverside, river, @Qnear, city, northern
Input: @name is a coffee shop in the Qtofind area
Expected: riverside

Top 5: serves, offers, features, provides, sells
Input: it @Qtofind chinese food and has a customer rating of 1 out of 5
Expected: sells

Top 5: japanese, french, italian, fast, indian
Input: it sells @Qtofind food and has a customer rating of 1 out of 5
Expected: chinese

These examples show that the neural network generally did a good job at predicting a
suitable candidate for the placeholder. There were cases like the last one, where the
expected word for the placeholder was not in the top 5. But even in cases like this, the
top 5 candidates consisted mainly out of words that would also be grammatically correct
in the given context.

Another example shows how difficult it was to rank the proper word in the top 20 without
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knowledge of eligible candidates:

Top 20: popular, kids-friendly, fast-food, non-family-friendly, noodle, five-star, en-
glish, family, the, children-friendly, high-priced, expensive, italian, child-friendly,
riverside, kid-friendly, french, cheap, family-friendly, japanese

Input: near @Qnear in city centre is the @tofind establishment @name

Expected: adult

The only candidate that does not make any sense at all given the context is the word "the”.
While "Noodle” may sound strange in this sentence, when taken into account the neural
network probably learns that restaurant and establishment can be used as synonyms, it
starts to make more sense. The sentence ... is the noodle restaurant @name” for example
would be a correct prediction.

Results The softmax results from all the examples in the devset from the NLG Chal-
lenge were analyzed. Table 7.1 shows how many times the expected word was not
ranked under the top x words. There were a total of 93693 samples. That means
that 76980 examples were correctly detected if only one placeholder is used in the sen-
tence.

Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
16713 10447 5360 2425 1552

Table 7.1.: Number of times an expected word was not in the top x

Multi-input LSTM  The multi-input LSTM that is described in Chapter 6.2.3.1 was
analyzed in the same way as the LSTM model from above. Theoretically this neural
network should have provided better results then the previous one, because it has the
possible words to fill the gap as additional information.

In this experiment the available words were the word that should be predicted and an
additional 50 random words. If the random words were not added, the task would be too
trivial, because the model would have simply had to predict the only word that it gets in
the available words. Below are some of the results of the LSTM.

Top 5: is, has, moderate, serves, @name
Input: there Qtofind a place in the city centre @name that is not family-friendly
Expected: is

Top 5: riverside, town, in, @name, an
Input: @name is an english coffee shop in @tofind
Expected: riverside

Top 5: @Qname, there, stars, the, that

Input: @Qtofind is a place in the city centre @name that is not family-friendly
Expected: there
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Top 5: indian, italian, located, @name, @Qnear
Input: this Qtofind restaurant called @name is located in riverside near @Qnear
Expected: kids-friendly

There was the problem that the neural network could not correctly detect phrases which
were not present in the training set. For example the word "looks” only appeared
once in the training set in the sentence ”...it also looks good... ”. In the devset there
was also a sentence with the word "looks” in it, but the context was completely differ-
ent:

Top 5: restaurant, also, families, they, offers
Input: @name Qtofind like a location where people or families arent allowed
Expected: looks

It was not surprising that the network did not learn to predict words and phrases, which
are rarely seen during training. Nevertheless this architecture performed well and pro-
duced useful results. In Table 7.2 the results over the whole devset are listed:

Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
10829 5935 3393 2292 1606

Table 7.2.: Number of times an expected word was not in the top x

CNN

Single Input CNN The same experiment was done for the CNN model that is de-
scribed in Chapter 6.2.1.1. The two main differences to the model above are: First,
the CNN cells instead of LSTM cells and second, that the only input is the sentence
with the placeholder. The available words to fill the gap are not given to the neural
network.

Number of samples: 93693
Top 5: there, it, @name, @Qnear, this
Input: Qtofind is a place in the city centre @name that is not family-friendly
Expected: there
Top 5: cheap, family-friendly, kid-friendly, child-friendly, children-friendly
Input: @name is a @tofind establishment near @near at the riverside
Expected: non-family-friendly
Top 5: near, the, beside, neat, nearby
Input: Qtofind @near in the city centre @name is family-friendly
Expected: located

Top 5: without, scale, ranting, okay, establishment
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Input: @Qname looks like a @tofind where people or families arent allowed
Expected: location

Top 5: rate, allows, popular, rated, enjoy
Input: @name looks like a location where @tofind or families arent allowed
Expected: people

Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
19605 12112 6269 3046 1853

Table 7.3.: Number of times an expected word was not in the top x

In Chapter 6.2.1.1 it was also mentioned that additionally a multiply layer could be
added at the end to improve the results. In Table 7.4 the results of this model are
listed.

Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
4763 2117 934 463 101

Table 7.4.: Number of times an expected word was not in the top x

As can be seen, it still does not predict every word correctly. Below are some of the
examples where it failed:

Top 5: as, very, is, having, customer
Input: the customer rating is 1 out of 5 as well as Qtofind a very high price range
Expected: having

Top 5: a, not, is, friendly, @name
Input: @Qname is @Qtofind a children friendly english coffee shop
Expected: not

Top 5: and, but, it, called, is

Input: it is called @name and it is family friendly @tofind it does have a 1 out of 5
rating

Expected: but

Top 5: family, a, style, friendly, is
Input: @Qname is a family friendly @tofind coffee shop
Expected: style

A reason that some of the examples (e.g the last one and the first one) are still wrong,
is that some of the language constructs in the devset are very rare or non-existent in
the trainset. The phrase "as well as having” appears only once in the trainset and it
is followed by "a coffee shop”, unlike in the first example where it is followed by the
high price range. Conclusively, it makes sense that the neural network was unable learn
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phrases, which appeared that rarely. The same problem was already observed above with
the LSTMs.

Multi Input CNN The same experiment was also done with the second CNN model,
which was described in Chapter 6.2.1. This neural network got the input sentence with a
placeholder and also the available words to fill the gap. For this experiment all the words
which appear in the sentence, including the word that should be predicted and 50 random
words were marked as available words in order to make it more difficult. There were a
total of 93693 examples. In Table 7.5 the results can be seen.

Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
12274 6352 3225 2020 1291

Table 7.5.: Number of times an expected word was not in the top x

7.2.2. Sequence-to-Sequence

The seq2seq model cannot be compared directly to the models above, because the task
for this model was more difficult. The model got an input sequence, which was unordered
and additionally one word replaced with a placeholder. The goal was then to bring it
back into the proper order and find the right word for the placeholder. The other models
from above always got the sentence in right order and simply had to predict the missing
word. Below are some examples:

Missing word: near

Input sequence: @Qnear @name is @placeholder riverside located in
Target sentence: @name is located near @near in riverside
Decoded sentence: @name is located near @near in riverside

Missing word: in

Input sequence: a family area friendly @name place @placeholder the is riverside
Target sentence: @name is a family friendly place in the riverside area
Decoded sentence: @name is a family friendly place in the riverside area

Missing word: is

Input sequence: @placeholder @name venue a area the in family-friendly riverside
there called

Target sentence: there is a family-friendly venue in the riverside area called @name
Decoded sentence: there is a cheap family-friendly venue in the riverside area
called @name
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Missing word: serves

Input sequence: chinese range @name shop high food that the price a @placeholder
is coffee in

Target sentence: @Qname is a coffee shop that serves chinese food in the high price
range

Decoded sentence: @name is a coffee shop that provides indian food in the high
price range

Recall was chosen as a measurement to detect how many placeholders were replaced
through the expected word. It ignores the word order and checks if all the expected words
are included in the generated sentence. The recall score was 0.7864.

7.2.3. Conclusion

If the models are compared, it does not come to a surprise to see, that the models with
a multiply layer do exceptionally well on this task. When the CNN, which just got the
sentence with the placeholder and the one that also got the available words are compared,
it can be seen that the one with the additional information outperforms the other. The
same is true for the LSTM models. More interesting to see is that CNNs performed
nearly as well as the LSTM models. It would have been interesting to see, if CNNs could
outperform the LSTM model given properly tuned hyper-parameters. If this was the case,
the advantage would be that training and prediction time for the CNN model would be
significantly faster than for the LSTM model. Unfortunately there was not enough time
to analyze said question.

Model Not in top 1 | Not in top 2 | Not in top 5 | Not in top 10 | Not in top 20
CNN 19605 12112 6269 3046 1853

CNN with available words | 12274 6352 3225 2020 1291

CNN with multiply layer 4763 2117 934 463 101

LSTM 16713 10447 5360 2425 1552

LSTM with available words | 10829 5935 3393 2292 1606

Table 7.6.: Comparison of results from the different models

The sequence-to-sequence model can not be directly compared to these other models for
this task. However it got clear during a evaluation by hand and with the use of the recall
score, that if the goal is simply to fill one gap, a seq2seq model does a worse job than the
other models.
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7.2.4. Filling multiple gaps
7.2.4.1. CNN with multiple inputs

In the previous section it was shown, that the CNN described in Chapter 6.2.1 is able to
fill a single gap in a sentence. It was evaluated, if the model could also fill multiple gaps
in a sentence. For this multiple placeholder token were set in the sentence. To sample
one of the placeholders, it was replaced through a prediction token. This was done until
all placeholders were predicted. Below are some of the results:

Input: @placeholder is a @placeholder in @placeholder @placeholder @placeholder
@name @placeholder is not @placeholder

Expected: there is a place in the city centre @name that is not family-friendly
Predicted: there is a place in the city centre @name that is not family-friendly

Input: @placeholder @placeholder @placeholder @Qnear its customer @placeholder
is @placeholder out @placeholder 5

Expected: it is near @near its customer rating is 3 out of 5

Predicted: it is near @near its customer rating is 3 out of 5

Input: @Qplaceholder is @placeholder @placeholder @placeholder @placeholder @place-
holder centre @name that @placeholder @placeholder family-friendly

Expected: there is a place in the city centre @name that is not family-friendly
Predicted: there is not place in the city centre @name that is a family-friendly

Input: in the city centre @placeholder @placeholder @placeholder @placeholder
name @name @placeholder @placeholder @placeholder a @placeholder venue
Expected: in the city centre there is a venue name @name this is not a family-
friendly venue

Predicted: in the city centre and there a venue name @name this is not a family-
friendly venue

Input: in the @placeholder centre @placeholder @placeholder @placeholder venue
name Qtofind this is @placeholder @placeholder @placeholder @placeholder
Expected: in the city centre there is a venue name @name this is not a family-
friendly venue

Predicted: in the city centre there a a venue name @name this is not is family-
friendly venue

Input: @name coffee @placeholder is @placeholder friendly with @placeholder en-
glish food @tofind a @placeholder @placeholder rating

Expected: @name coffee shop is family friendly with cheap english food with a
low customer rating
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Predicted: @name coffee shop is family friendly with cheap english food with a low
customer rating

Input: @name Qtofind coffee @placeholder @placeholder @placeholder @placeholder
price with @placeholder @placeholder @placeholder @placeholder @placeholder out
of 5; @placeholder in the @placeholder area close @placeholder @near

Expected: @name chinese coffee shop is moderate in price with a customer rating
of 3 out of 5; located in the riverside area close to @Qnear

Predicted: @name chinese coffee shop in is moderate price with a customer rating
of 3 out of 5; located in the riverside area close to @near

Input: @placeholder @placeholder @placeholder @placeholder @placeholder @place-
holder @tofind @placeholder @placeholder @placeholder coffee @placeholder @place-
holder @placeholder @placeholder located by @placeholder riverside customers have
@placeholder @placeholder 1 out @placeholder 5

Expected: if youre looking for a kid free moderately priced english coffee shop check
out @name located by the riverside customers have rated it 1 out of 5

Predicted: youre a moderately priced out check it if looking english coffee shop free
free @name located by the riverside customers have rated for 1 out of 5

The examples above show that this neural network is able to fill in multiple gaps. For
sentences were a pattern is visible (e.g "placeholder placeholder friendly”) and available
words would fit that pattern (e.g. "not family friendly”), it performs well and finds the
right places for the available words. If however there are a lot of placeholders in succession
like in the last example and not a lot of additional information is provided, the quality
quickly drops. A possible approach to increase the performance for such examples could be
to implement a beam search and for example follow the top 5 solutions, instead of using
the best one from the beginning. To assess the output quality different measurements
were calculated. The whole devset was taken and in every sentence at least 2 words
were randomly replaced by placeholders and at most as much as that one word would
still be in the sentence. E.g for the sentence ”it was a very nice day” it means that the
sentence would at least be something like 7it placeholder a placeholder nice day.” and
at most "placeholder placeholder a placeholder placeholder placeholder”. Then the recall
score, the precision and the BLEU score were calculated. The results are shown in Table
7.7

Recall Precision Bleu
0.9896886201791828 | 0.996647277624764 | 0.9741221735891562

Table 7.7.: Recall, Precision and Bleu score for CNN
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7.2.4.2. LSTM with multiple gaps

The previous findings illustrated, that the LSTM model with multiple inputs from Chapter
6.2.3.1 performed best in the task of filling one gap. So it was also evaluated how well it
performs in filling multiple gaps. Here are some examples:

Input: in the @placeholder centre @placeholder @near there is a @placeholder
@placeholder called @placeholder its not family @placeholder serves @placeholder
@placeholder has an average customer rating @placeholder @placeholder high price
range

Expected: in the city centre near @near there is a coffee shop called @name its not
family friendly serves chinese food has an average customer rating and a high price
range

Predicted: in the city centre near @near there is a coffee shop called @name its not
family friendly serves chinese food has an average customer rating and a high price
range

Input: @name is a @placeholder shop that @placeholder @placeholder food @place-
holder @placeholder @placeholder @placeholder

Expected: @name is a coffee shop that serves english food in the city centre
Predicted: @name is a coffee shop that serves english food in the city centre

Input: @placeholder @placeholder @placeholder coffee @placeholder @placeholder
@placeholder @placeholder @placeholder @placeholder @placeholder low @place-
holder range with @placeholder @placeholder customer rating

Expected: @name is a coffee shop that serves english food in the low price range
with a low customer rating

Predicted: @name is a coffee shop that serves english food in the low price range
with a low customer rating

Input: @name is a coffee @placeholder that serves @placeholder @placeholder in
the low @placeholder @placeholder @placeholder @placeholder @placeholder @place-
holder @tofind

Expected: @name is a coffee shop that serves english food in the low price range
with a low customer rating

Predicted: @name is a coffee shop that serves english food in the low price range a
customer rating with low

Input: in the city centre there @placeholder @placeholder @placeholder name @name
this @placeholder not a @placeholder venue

Expected: in the city centre there is a venue name @name this is not a family-
friendly venue

Predicted: in the city centre there is a family-friendly name @name this venue not
a family-friendly venue
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Input: for @placeholder adults-only @placeholder @placeholder 5 @placeholder
@placeholder 5 by its @placeholder head to @name near @near @placeholder river-
side Expected: for an adults-only venue rated 5 out of 5 by its patrons head to
@name near @near in riverside Predicted: for an adults-only venue rated 5 out of
5 by its patrons head to @name near @Qnear in riverside

Input: @placeholder @placeholder @placeholder @placeholder rated 5 out of 5 by
@placeholder @placeholder @placeholder to @name near @near @placeholder river-
side Expected: for an adults-only venue rated 5 out of 5 by its patrons head to
@name near @near in riverside Predicted: adults-only venue for its rated 5 out of
5 by pounds pounds patrons to @name near @near in riverside

Input: for @placeholder @placeholder @placeholder @placeholder @placeholder out
of @placeholder @placeholder @placeholder patrons head to @placeholder near @near
in @placeholder Expected: for an adults-only venue rated 5 out of 5 by its patrons
head to @name near @near in riverside Predicted: for adults-only venue rated an
5 out of 5 by its patrons head to @name near @Qnear in riverside

As can be seen in the examples, simpler sentences can be rebuilt well, even if there are a lot
of unknown words in the sentence. The last three examples show how the same sentence
with different placeholders can result in better or worse outputs. Especially interesting
in the last two examples is, that less gaps in a sentence do not necessarily lead to better
results. The last example had 10 placeholder whereas the second last had 8 placeholders.
The results of the example with more placeholders were better in this specific constella-
tion. This lead to the same conclusion as for the CNN, that the output quality depends
on the substituted word and if there are obvious expressions in the sentence.

Recall Precision Bleu
0.9936536957087293 | 0.9962966484055036 | 0.9868172936633186

Table 7.8.: Recall, Precision and Bleu score for multi input LSTM

7.2.4.3. Seq2Seq with multiple gaps

The sequence-to-sequence model that was described in Chapter 6.2.2 can also be used to
fill multiple gaps. The part that makes this task hard for the model is again that it has
to bring the sentence into the right order and at the same time predict the right words
for the placeholders. Here are some examles:

Missing words: riverside, is

Input sequence: in @Qnear @Qplaceholder near @name located @placeholder
Target sentence: @name is located near @near in riverside

Decoded sentence: @name is located near @near in riverside

Bleu score: 1.0

Recall score: 1.0
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Missing words: a, in, near

Input sequence: @placeholder family @placeholder there located friendly @place-
holder is @name riverside @Qnear place

Target sentence: there is a family friendly place @name located near @Qnear in
riverside

Decoded sentence: there is a family friendly place @name located near @near in
riverside

Bleu score: 1.0

Recall score: 1.0

Missing words: is

Input sequence: @name riverside near the in @placeholder @near area family-
friendly a location @placeholder

Target sentence: @name is a family-friendly location in the riverside area near the
@near

Decoded sentence: the family-friendly location near @Qnear in the riverside area is
called @name

Bleu score: 0.8290090653071776

Recall score: 0.9090909090909091

Missing words: child, which, is, friendly, there

Input sequence: @placeholder a @placeholder @placeholder riverside called @name
restaurant @placeholder @placeholder @placeholder

Target sentence: there is a riverside restaurant called @name which is child friendly
Decoded sentence: there is a fast food restaurant called @name by the riverside
Bleu score: 0.6603237968547442

Recall score: 0.7

Missing words: you, child, the, their, try, @name, meal, for, a, provide, they, river-
side, to

Input sequence: Q@placeholder service take @placeholder @placeholder @place-
holder @placeholder if friendly @placeholder in @placeholder @placeholder want
@placeholder children setting @placeholder then @placeholder @placeholder @place-
holder @placeholder

Target sentence: if you want to take the children for a meal then try @name they
provide a child friendly service in their riverside setting

Decoded sentence: if you want a more than £30 price and children-friendly low cus-
tomer service rating fast food restaurant @name would be in riverside near @near
Bleu score: 0.4884131772209672

Recall score: 0.36363636363636365

Missing words: with, its, @name, by, low

Input sequence: @placeholder friendly @placeholder is @placeholder ratings @place-
holder customers @placeholder child

Target sentence: @name is child friendly with low ratings by its customers
Decoded sentence: it is child friendly and receives a low customer rating

Bleu score: 0.6445873357693387
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Recall score: 0.6445873357693387

The examples show that the neural network is able to rebuild sentences in the correct
order with the right words, if the sentences are simple and only a few words are missing.
For longer sentences it is not possible to recover the original words, which makes sense,
because the words are not provided to the neural network. To get a measurement of the
output quality precision, recall and the BLEU score were calculated over all the samples:
Bleu score: 0.7417775417424143

Precision: 0.7757993592075457

Recall: 0.7871104677100901

Recall Precision Bleu
0.7871104677100901 | 0.7757993592075457 | 0.7417775417424143

Table 7.9.: Recall, Precision and Bleu score for multi input LSTM

However, the scores were not that meaningful for this task and the sequence-to-sequence
model. It was more important to check, if the decoded sentences made sense. This had
to be done by hand, because there did not seem to be any suitable tools available to solve
this task. They either marked too many things as mistakes such as e.g country names
written in lowercase, British English words given there were American English equivalents
or the tools simply checked the words but not the grammar. During this evaluation it
was seen that very long sentences were often grammatically wrong and incoherent. Below
are some examples that show said problem:

if you are looking for a cheap coffee shop with a 5 out of 5 customer rating you should

try @name located near @near and has prices then visit @name

if you want to get english food with a moderately priced coffee shop then go to
@name it has still with customer rating for it 5 out of 5 and offer food near @near

if youre looking for a high priced coffee shop that is children friendly but not so
children is you should try @name near the @near the customer rating is average

if you are looking for chinese food place @name near the @near in the city centre
with a moderate price range and a customer rating of 1 out of 5 but not kid friendly

in the city centre is a 5 out of 5 rated fast food coffee shop called @name they are
cheap and inexpensive prices and terrible reviews

Shorter sentences in contrast usually were of high quality (grammatically correct) and
had a similar style to the sentences in the training set.
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7.2.5. Conclusion

Three different models were shown to be able to fill in gaps in a sentence. Depending
on the task, the best model changes. If a sentence has to be rebuilt and the words are
known, the LSTM with multiple inputs had the best performance. If the task is to build a
sentence with only some given words, the sequence-to-sequence model showed promising
results.

Model Recall Precision Bleu

Seq2Seq

0.7871104677100901

0.7757993592075457

0.7417775417424143

CNN multi input

0.9896886201791828

0.996647277624764

0.9741221735891562

0.9936536957087293

0.9962966484055036

0.9868172936633186

LSTM multi input

Table 7.10.: Recall, Precision and Bleu score for multi input LSTM

The CNN model was slightly beaten by the LSTM in terms of recall and BLEU score. In
precision however it was vaguely better.

7.3. Sentence ordering

7.3.1. Sequence-to-Sequence
7.3.1.1. Examples

In this section there are some examples of the seq2seq model. At first there is the
input sequence, which consists of the words that were randomly shuffled. Next there
is the target sentence, which is the sentence that the neural network should generate.
The decoded sentence is the sentence which was actually generated by the neural net-
work.

Input sequence: city a place in is the family-friendly that is there centre @name

not

Target sentence: there is a place in the city centre @name that is not family-
friendly

Decoded sentence: there is a place @name in the city centre that is not family-
friendly

Bleu score: 0.9884373631740123

Input sequence: venue this @name in the family-friendly venue is a centre a is
name city not there

Target sentence: in the city centre there is a venue name @name this is not a
family-friendly venue

Decoded sentence: there is a venue not family-friendly name @name is this venue
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in the city centre
Bleu score: 0.896366497899096

Input sequence: is place a city not @name family-friendly located in centre
Target sentence: @Qname is not a family-friendly place located in city centre
Decoded sentence: @name is not a family-friendly place located in city centre
Bleu score: 1.0

Input sequence: in place centre not the family-friendly is @name city a
Target sentence: @name is not a family-friendly place in the city centre
Decoded sentence: @name is a not family-friendly place in the city centre
Bleu score: 0.9557892810345545

Input sequence: is isnt riverside @name family-friendly it in but
Target sentence: @Qname isnt family-friendly but it is in riverside
Decoded sentence: @name is in riverside but isnt family-friendly
Bleu score: 0.9043437155197077

The examples above show that the model works well. It is able to bring simple sentences
back into the right order. Sometimes it outputs a different order that would still be
grammatically correct. This cannot be avoided if no extra information is given to the
neural network and is in fact no problem for this task.

Input sequence: establishment near the @name in centre adult city is @near
Target sentence: near @Qnear in city centre is the adult establishment @name
Decoded sentence: @name is adult establishment in the city centre near @near
Bleu score: 0.8960776018554231

Input sequence: rating 3 5 of @name budget a with for is a a great out on is those
moderate which child-friendly restaurant of

Target sentence: @name is a child-friendly moderate restaurant with a rating of 3
out of 5 which is great for those on a budget

Decoded sentence: @name is a great restaurant for families which is in a mid
range menu with a rating of 3 out of 5

Bleu score: 0.6512064825119718

Input sequence: near has adults happy @near children rating customer of is 5
located place 3 and to @name for very

Target sentence: @name is located near @Qnear very happy place for children and
adults has 3 to 5 of customer rating

Decoded sentence: @name coffee shop near @near located near to @near and has
very high prices in the riverside atmosphere

Bleu score: 0.46600282322240805

Input sequence: a a offering medium-priced coffee meals is shop star @name rating
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called three with

Target sentence: a coffee shop called @name is medium-priced offering meals with
a three star rating

Decoded sentence: a coffee shop called @name is a three star with a pub that

features
Bleu score: 0.5927274901448417

Input sequence: average heard @name @Qnear have are friendly you they and fam-
ilies of the

Target sentence: have you heard of @near and @name they are the average friendly
families

Decoded sentence: families are welcome at @name they have a average customer

rating and are not family-friendly
Bleu score: 0.4992103170949989

These additional examples show cases, where the neural network did a rather poor job
according to the BLEU score. But if the last example is analyzed, it can be seen that even
the target sentence is not grammatically correct. So even though the decoded sentence
did not contain all the words from the input and did not recreate the target sentence,
it can be said that the generated sentence makes more sense from a grammatical stand-
point.

For all the samples the BLEU score, recall and precision was calculated. The averages
scores were:

Bleu score: 0.9286144193974197

Precision: 0.9630055907925232

Recall: 0.9596015752708394

It was also analyzed whether there is a visible correlation between the sentence length and
the BLEU score, which according to the results in table 7.11 is not the case.

Correlation between input sentence length and BLEU score 0.03938729
Correlation between output sentence length and BLEU score 0.05036982
Correlation between difference of input and output sentence length and BLEU score | -0.11418943

Table 7.11.: Correlation of BLEU score and sentence length

To try to further improve the model an attention mechanism could be implemented
on the decoder side, so that the output not just relies on the hidden states from the
encoder. Another approach which could be helpful would be a beam search mecha-
nism.
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7.4. Conclusion

In this chapter the results from different tasks were discussed. First, it was shown that
language generation with the self crawled dataset did not work well. Afterwards, the re-
sults from multiple models with the goal of filling a single gap in a sentence were presented,
which turned out to be of good quality. Next, it was tried to fill in multiple gaps, which
also showed promising results. In the end, the results of a sequence-to-sequence model,
which is able to bring a sentence back into order, were displayed.
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8. Conclusion

The first part of the thesis illustrated how crucial the quality of the dataset is for a
neural network to perform well. A neural net, that has been proven to perform well in
the project thesis given a specifically prepared dataset of restaurant reviews, was unable
to learn and generate anything meaningful when given the self created dataset of laptop
reviews. One issue that could be further analyzed is how the performance of the network
could be improved by for example using a different approach during the learning process
or by adapting the dataset. Another question that was unable to be answered during this
thesis is how well the neural network from the previous project would perform on a dataset
from another domain of similar quality to the restaurant dataset.

The second part of the thesis proved that it is possible for neural networks to learn to
not only fill gaps in a sentence but also to bring unordered sentences back into the right
order. Even a combination of both worked well when the given sentence contained a clear
and correct structure. One open question would be how well this approach would work
for the problem mentioned in the first part of the thesis. Instead of the current situation,
where a feature vector that defines what features should be described in the output is
given, a vector of words have be included in the output could be used as the input. For
example the input vector containing of the words "laptop cpu powerful” could turn into
the output sentence "The laptop comes with a powerful CPU.”,

Further future work that could be done is to write a special LSTM cell for the task of
sentence ordering, so that it gets a vector with the available words and sets generated
words internally to zero, so that it would not generate them again. It could also help
to write a beam search for the LSTM and CNN models, so that multiple solutions are
considered. Additionally, it could be interesting to build an ensemble over the different
models and see, if this boosts the output performance. An improvement for the sequence-
to-sequence model could be to use an attention mechanism, so that the decoder not solely
relies on the encoder state but gets additional information.
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A. How to use the software

A.1. Requirements

In order to use the developed system, the following software is required. The specified
version does not necessarily have to be met, but the software was developed with this
versions.

e python 3.5.3
e pip 9.0.1

Additionally the following python packages in the following list must be installed. If
pip is used as python package manager the packages can be installed with the com-
mand

Listing A.1: pip package installation on Linux

$ pip3 install “packagename” --user

e numpy 1.13.3

o tensorflow-gpu 1.5.0
e hbpy 2.7.0

o keras 2.1.4

o matplotlib 2.0.0

A.2. Software

The files containing the source code are in the folder ”src” on the CD. Some of the scripts
in there depend on files from the "utils” subfolder. In there are as example preprocessing
scripts.

The Jupyter notebook seq2seq contains the sourcecode to the sequence to sequence model

which brings sentences back in order. seq2seq-gaps is the model that has one placeholder
and seq2seqg-multigaps contains the model for multiple gaps.
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To sample from the single input Istm or cnn models the training scripts need to be
run first. For every notebook there is a python file with the same name and "training”
behind the name. After training the notebooks can be executed to sample for the trained

models. For the other models the training and sampling sections are defined in the same
file.
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B. Example Reviews

B.1. Notebookcheck

Here is an example review copied from notebookcheck 1.

Title: Acer Aspire 3 A315-41 (Ryzen 3 2200U, Vega 3, SSD, FHD) Laptop Review
Introtext: Simple office notebook. Acer’s 15.6-inch laptop scores some major points with
its hardware combination of a powerful Ryzen 3 2200U APU, a fast SSD and 8 GB of dual-
channel RAM. However, the screen and thermal performance disappoint.

Review: The Aspire 3 A315-41 is an office notebook that is powered by a Ryzen 3 2200U
APU. We have already reviewed several Aspire 3 models with the Aspire 3 A315-51-36YU,
the Aspire 3 A315-51-55E4, the Aspire 3 A315-21-651Y and the Aspire 3 A315-51-30YA.
The competing devices include: The Acer Aspire 3 A315-51, the HP 250 G6, and the
Lenovo V330-15IKB.

Please note: In many online stores, the A315-41 is advertised with images that depict the
A315-51, the A315-31 or the A315-21. The A315-41 comes with a different case. Acer
Germany could not provide any product images for the A315-41 when we asked for them.
Case & Connectivity - Acer uses a plastic case

The Aspire 3 A315-21, the Aspire 3 A315-31 and the Aspire 3 A315-51 all use the same
case. However, the Aspire 3 A315-41 comes with a different case. It is a little thicker
and has different hinges. It also has larger fan grills. That being said, all Aspire 3 A315
models are made of black, brushed plastic.

All in all, the device has a good build quality. However, the display lid could have been
somewhat more rigid: It can be twisted with little effort, and when it is twisted, it usually
leads to image distortions. The images also become distorted when pressure is applied to
the back of the display lid. The hinges can hold the display in a set position. However,
there is some screen wobble. The display lid can be opened with one hand, but this will
require some sleight of hand to achieve.

The Aspire 3 offers two maintenance hatches. The small hatch enables access to the RAM.
The large hatch allows access to the 2.5-inch drive bay. However, this drive bay offers

neither an installation frame for an HDD nor a SATA connector.

To reach the rest of the hardware you will have to remove the bottom cover. For this,

thttps://www.notebookcheck.net/ Acer-Aspire-3-A315-41-Ryzen-3-2200U-Vega-3-SSD-FHD-Laptop-
Review.306442.0.html
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you will have to first remove both maintenance covers. Then you will need to undo all
the screws on the underside. Now the bottom cover can be removed with the help of a
spatula or a (plastic) putty knife.

The A315-41 has the same selection of ports as its siblings. Acer provides the notebook
with three USB Type-A ports (one USB 3.1 Gen 1 port, two USB 2.0 ports). The laptop
does not offer any USB Type-C ports. An external monitor can be connected via HDMI.
The SD card reader belongs to the faster specimens of its kind. When copying large
chunks of data, a maximum transfer speed of 75.9 MB/s was achieved. The transfer of
250 JPG image files was completed with a speed of 86.2 MB/s. We test the SD card
reader with the help of a reference SD card (Toshiba Exceria Pro SDXC 64 GB UHS-
I1).

The Aspire 3 comes equipped with a Wi-Fi module from Qualcomm (QCA9377). Be-
sides the Wi-Fi standards 802.11 a/b/g/n, it also supports the fast Wireless-AC stan-
dard. The data transfer speeds that we measured under the optimal conditions (no
other Wi-Fi-enabled devices in close proximity, a short distance between the notebook
and the server PC) are quite average, because the device features a 1x1 MIMO an-
tenna.

Input Devices - The Aspire 3 does not have a keyboard backlight The Aspire 3 comes
with an unlit chiclet-style keyboard complete with a number pad. The keys have a slightly
rough surface. They have a short travel distance and a clear actuation point. The keys
are a little too mushy for our taste. During typing, the center of the keyboard exhibits
some mild flex. However, this does not prove to be annoying. All in all, Acer delivers an
“okay” keyboard that is well suited for regular typing.

The multitouch-enabled ClickPad occupies an area of some 10.5 x 7.8 cm (4.1 x 3 in).
Therefore, there is enough space for the use of gesture controls. The smooth surface
of the pad makes finger-gliding easy. The corners of the ClickPad register inputs well.
The bottom of the pad, where the left and the right mouse buttons are usually located,
exhibits a long travel distance and a vague actuation point.

Display - The dim display with poor viewing angles is not going to win any praise The
matte 15.6-inch display of the Aspire 3 has a native resolution of 1920x1080. Both the con-
trast ratio (544:1) and the brightness (211 c¢d/m?) are way too low.

Unfortunately, at 10% brightness and below, the screen exhibits PWM flickering with a
frequency of 25000 Hz. However, such a high frequency should not lead to headaches
and/or eye-strain amongst susceptible individuals.

Screen Flickering / PWM (Pulse-Width Modulation)

The display does not shine in terms of color accuracy. Straight out of the box, we measured
a DeltaE 2000 color deviation of 11.27 (DeltaE less than 3 is the optimal value). Moreover,
the display suffers from a noticeable bluish cast. The display can cover only 56% of the
sRGB color space and 36% of the Adobe RGB color space.
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By means of our color profile, the color reproduction can be improved. However, before
downloading it, you should make sure that your laptop has the same display model (man-
ufacturer + model number) as our review device, because otherwise our color profile can
result in worse color reproduction. Displays from different manufacturers can often be
found within notebooks from the same model range.

Verdict

The Aspire 3 A315-41 is a 15.6-inch office notebook that is powered by a Ryzen 3 2200U
APU. The APU offers more than enough computing power for such usage scenarios as
office work and Internet browsing. The notebook does not become hot even under full
load. However, the fan is active both when the notebook is idle and when it is under
load. This can be attributed to the fact that the fan tends to spin too fast even when the
temperatures are relatively low.

An SSD creates a very responsive system. It can be replaced. However, to do this you
will have to remove the entire bottom cover. The two maintenance hatches do not provide
access to the SSD. The keyboard has left a positive impression and is fit for regular office
work. It does not feature a backlight.

The battery life is okay. There is a fast SD card reader on board. The screen disap-
points once again. Here, Acer uses a dim TN panel with poor contrast and viewing
angles.

All in all, the built-in AMD APU has left a positive impression. It is a direct competitor

to Intel’s dual-core Kaby Lake CPUs. In both CPU and GPU benchmarks, the two
processors are roughly on the same level.

B.2. Newegg

Here is an example review copied from Newegg 2.

Title: DELL Laptop Latitude 5580 (PXP7J) Intel Core i5 7th Gen 7200U (2.50 GHz) 4
GB Memory 500 GB HDD Intel HD Graphics 620 15.6” Windows 10 Pro 64-Bit

Text: Dell Latitude 5580: Feature-rich and versatile

A 15.6” laptop built for ultimate productivity and performance. Featuring top of the line
security features and flexible docking options.

Operating System

Zhttps:/ /www.newegg.com/Product/Product.aspx?Ttem=1TS-000A-01MY0
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Available with Windows 10 Pro - for a smooth, versatile PC experience.

Security you can rely on Log in with ease: Activate Windows Hello via optional infrared
camera to facilitate facial recognition for easy and secure access.

Trusted authentication: The Latitude 5580 offers multiple security options to meet your
diverse security needs. Features include essential multi-factor authentication hardware
such as touch fingerprint reader, contacted FIPS 201 Smart Card Reader and Contactless
Smart Card Reader NFC with Control Vault 2™ Fips 140-2 Level 3 Certification to
prevent unauthorized access.

Protection from attacks: Dell™ ControlVault™ provides a more secure alternative for
storing and processing passwords, biometric templates and security codes.

Manage with ease: Through Dell unique vPro extensions, you can remotely manage a fleet
of devices, including diagnostics whether they are powered on or off.

Keeps up with you, and your work The power to perform: Leverage scalable performance
using Intel’s® latest 7th Gen Core™ i Dual (U) or Quad Core™ (H) processors, NVIDIA®
graphics and a range of storage options from HDD to M.2 PCle NVMe.

Designed with purpose: Work confidently on a laptop equipped with all-day battery life
and if needed, bring your Dell Power Companion for an extended day.

Focus on work, not your notebook: Tested against 15 MIL STD 810G benchmarks, our in-
credibly durable systems make sure your work stays safe wherever you go.

Secure Only Dell offers industry-leading encryption, authentication including optional
touch fingerprint reader and leading-edge malware prevention from a single source right
out of the box. Plus, with Dell Data Protection | Protected Workspace, your data is safe
across all endpoints, including external media, self-encrypting drives and in public cloud
storage.

Manageable The world’s most manageable laptop is built to allow flexible and automated
BIOS and system configurations through Dell Client Command Suite free tools. We make
it easy to deploy, monitor and update your Latitude fleet.

Reliable Features a durable, built-to-last chassis that has undergone extensive military-
grade MIL-STD 810G testing that ensures your system can withstand real-world condi-
tions.

Ports & Slots

1. Audio Combo Jack | 2. External SIM tray (optional) | 3. USB 3.0 Powershare | 4. VGA
| 5. Nobel Wedge lock slot | 6. RJ45 | 7. HDMI | 8. USB 3.0 | 9. Power 10. Display Port
Over Type C; optional Thunderbolt | 11. USB 3.0 | 12. SD slot

Dimensions & Weight
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1. Height (front): 0.9” (23.25mm) | 2. Width: 14.8” (376.0mm) | 3. Depth: 9.87”
(250.65mm) Weight: 4.19 lbs (1.90 kg)

Intel® Ultrabook, Celeron, Celeron Inside, Core Inside, Intel, Intel Logo, Intel Atom, In-
tel Atom Inside, Intel Core, Intel Inside, Intel Inside Logo, Intel vPro, Itanium, Itanium
Inside, Pentium, Pentium Inside, vPro Inside, Xeon, Xeon Phi, and Xeon Inside are trade-
marks of Intel Corporation in the U.S. and/or other countries.
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